Abstract:
Advanced Oxidation Processes (AOP) that are based on the in-situ generation of hydroxyl radicals in solution are extremely powerful tools for the destruction of recalcitrant compounds in water and groundwater. Recent research has shown that subsurface injection of nanoparticles may also be a viable technology for the in-situ remediation of contaminated groundwater resources. The purpose of this study was to assess the degradability of typical groundwater contaminants, namely phenol and 2-chlorophenol by advanced oxidation processes, nanoparticles and combinations thereof. Advanced oxidation processes investigated were ozonation, UV irradiation, sonolysis, and sono-Fenton process. In the second part of the research, flow-through reactors were used to test the mobility of the selected nanoparticle solutions in porous media under different flow configurations. Continuous flow experiments mainly focused on the assessment of the mobility of nanoparticle solutions in porous media under different flow configurations. Comparison of the nanoparticle breakthrough curves to that of the conservative tracers showed that the transport of nanoparticles is influenced by their concentration, which strongly controls the particle size and hence, their mobility. Overall, this study has demonstrated that phenolic compounds in contaminated water and groundwaters may be effectively destroyed by use of optimized hybrid processes involving Advanced Oxidation Processes and nanoparticles.|Keywords: advanced oxidation, ultrasound, nanoparticle, groundwater remediation, phenolic compounds