Archives and Documentation Center
Digital Archives

Lithospheric structure of the western Turkey and aegean region

Show simple item record

dc.contributor Ph.D. Program in Geophysics.
dc.contributor.advisor Karabulut, Hayrullah.
dc.contributor.author Afacan Ergün, Tuğçe.
dc.date.accessioned 2023-03-16T13:02:04Z
dc.date.available 2023-03-16T13:02:04Z
dc.date.issued 2019.
dc.identifier.other GPH 2019 A43 PhD
dc.identifier.uri http://digitalarchive.boun.edu.tr/handle/123456789/18363
dc.description.abstract Aegean-Anatolia region undergoes an intense internal deformation as evidenced by the existence of major active faults, intense seismic activity and the marked thinning of the crust. It makes the region center of attraction to the study the interaction between the deep structure with the surface deformation. The aim of this study is to provide constraints on the crustal and uppermost mantle structure by using seismic data of permanent broad-band network of Kandilli Observatory and Earthquake Research Institute (KOERI-RETMC), and a temporary array of Seismic Imaging beneath Aegean-Anatolia Domain (SIMBAAD) experiment. Seismic stations of Republic of Turkey Prime Ministry Disaster and Emergency Management Presidency (AFAD), Incorporated Research Institutions for Seismology (IRIS) and previous experiment called Western Anatolia Seismic Recording Experiment (WASRE) were used to complement the network. In this regard we present two high resolution lithospheric images along a ~650 km transect crossing western Anatolia at 28°E longitude from the Black Sea to the Mediterranean and a ~550 km transect crossing central Anatolia at 30.5°E longitude. A total of 5250 receiver functions are computed from the records of teleseismic earthquakes at 40 broadband seismic stations for each of the profiles with an average spacing of ~ 15 km. Lateral variations of crustal thickness, Vp/Vs are inferred from both H-K, and common conversion point stacks (CCP). In order to have a better idea on the accuracy of the estimated crustal parameters we also performed a search scheme based on the Neigboorhood Algorithm. The receiver functions are inverted for a 1-D layered medium to determine the layer thicknesses, Vs and Vp/Vs. The CCP images reveals a longwavelength variations of Moho depth from ~31 km in the Thrace basin to ~25 km beneath the Marmara Sea, ~25 km beneath the Menderes Massif and ~20 km on the coast of the Mediterranean on the western Anatolia transcent. On the eastern transect, a smooth Moho topography is observed with a sharp discontinuity at depths ranging from 34 km beneath the Black Sea coast, ~35 km beneath the Sakarya Zone with mafic composition to 43 km beneath the Antalya Bay on the central Anatolia profile. The Moho of the subducted African lithosphere is imprinted between ~40 and ~60 km depth at the southern end of the western Anatolia profile, dipping northward where the subducted Cyprus lithosphere is observed dipping northward with an angle of 40◦ between ~40 and ~100 km depths beneath the Antalya Bay on the central Anatolia transect.
dc.format.extent 30 cm.
dc.publisher Thesis (Ph.D.)-Bogazici University. Kandilli Observatory and Earthquake Research Institute, 2019.
dc.subject.lcsh Lithosphere -- Turkey.
dc.subject.lcsh Geology, Structural -- Turkey.
dc.title Lithospheric structure of the western Turkey and aegean region
dc.format.pages xxiii, 106 leaves ;


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Archive


Browse

My Account