Arşiv ve Dokümantasyon Merkezi
Dijital Arşivi

Intraday correlation dynamics in Borsa Istanbul using score-driven Kalman filtering

Basit öğe kaydını göster

dc.contributor Ph.D. Program in Management.
dc.contributor.advisor Karahan, Cenk C.
dc.contributor.author Bahcivan, Hulusi.
dc.date.accessioned 2023-03-16T12:16:21Z
dc.date.available 2023-03-16T12:16:21Z
dc.date.issued 2021.
dc.identifier.other AD 2021 B34 PhD
dc.identifier.uri http://digitalarchive.boun.edu.tr/handle/123456789/16834
dc.description.abstract Studies on intraday conditional correlation dynamics is limited and existing literature mostly depends on classical methodologies that are prone to errors due to unaddressed issues like non-synchronous trading and market microstructure noise. Trades are not homogenously scattered along the day. Hence, upon close inspection of data in high frequency domain such as one-second-long intervals, one sees intermittent and irregular observations. In contrast to its methodological counterparts, combination of Generalized Autoregressive Score (GAS) framework and State-Space Modelling produces reliable results on such data structures by guaranteeing full data usage. Findings of this study reveal that average intraday conditional correlation rises as trading commences, lingers around certain altitude for some time before an upward trend closes out the trading day, which we attribute to the US market opening. Visual inspection of the findings across different market conditions and days of the week reveals elevated correlation levels in volatile markets as well as a distinguishable path for both ends of a week. A closer inspection of findings via Dynamic Time Warping exhibits that intraday conditional correlation patterns are discernibly different for Mondays, Tuesdays and Fridays. Beyond the scholarly contribution, the methodology and findings are of interest to various parties like high-frequency traders, risk and portfolio managers and regulatory agencies in formulating their high frequency trading practices, margin requirements and portfolio construction schemes.
dc.format.extent 30 cm.
dc.publisher Thesis (Ph.D.) - Bogazici University. Institute for Graduate Studies in the Social Sciences, 2021.
dc.subject.lcsh Stock-exchanges -- Turkey.
dc.title Intraday correlation dynamics in Borsa Istanbul using score-driven Kalman filtering
dc.format.pages xii, 53leaves ;


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

Dijital Arşivde Ara


Göz at

Hesabım