Archives and Documentation Center
Digital Archives

Workload orchestration for multi-tier multi-access edge computing systems

Show simple item record

dc.contributor Ph.D. Program in Computer Engineering.
dc.contributor.advisor Ersoy, Cem.
dc.contributor.advisor Özgövde, Bahri Atay.
dc.contributor.author Sönmez, Çağatay.
dc.date.accessioned 2023-03-16T10:13:26Z
dc.date.available 2023-03-16T10:13:26Z
dc.date.issued 2020.
dc.identifier.other CMPE 2020 S76 PhD
dc.identifier.uri http://digitalarchive.boun.edu.tr/handle/123456789/12532
dc.description.abstract Edge computing is a broad concept covering a variety of computing technologies such as cloudlet-based computing, Fog Computing, Mobile Cloud Computing (MCC), and Multi-Access Edge Computing (MEC). All these computing paradigms have a common approach of bringing the cloud-computing capabilities to the edge of the network. The term edge used in this area refers to a location close to the end-users. Computation (task) o oading is an essential feature of edge computing. It reduces the battery consumption and makes it possible to execute applications that are unable to be executed on mobile devices due to their insu cient processing power, memory, and unpredictable network connectivity. In this regard, edge computing can enable new applications and use cases for the environments where there are many mobile users, such as university campuses, airports, and smart roads. The increasing number of smart devices that are connected to the Internet brings new challenges in terms of high communication delay and computational resources congestion. Although edge computing overcomes these challenges by bringing cloud computing capabilities to close proximity of the end-user, it presents a very dynamic and exible environment where both computational and networking resources are utilized in real-time in accordance with the requirements. Hence, e ciently managing and orchestrating di erent types of resources become crucial issues. To overcome these challenges, we introduced novel edge orchestrators. Firstly, we developed an edge computing simulator, namely EgeCloudSim, to evaluate the performance of the proposed orchestration algorithms. Secondly, we proposed a fuzzy logic-based workload orchestrator for multi-tier mobile edge computing systems. As a nal contribution, we presented a machine learning (ML) based workload orchestrator for multi-tier multi-access vehicular edge computing (VEC) environments.
dc.format.extent 30 cm.
dc.publisher Thesis (Ph.D.) - Bogazici University. Institute for Graduate Studies in Science and Engineering, 2020.
dc.subject.lcsh Machine learning.
dc.subject.lcsh Edge computing.
dc.subject.lcsh Computer networks -- Workload.
dc.title Workload orchestration for multi-tier multi-access edge computing systems
dc.format.pages xix, 133 leaves ;


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Archive


Browse

My Account