UNIVERSITY OF CALIFORNIA

Maxch 11, 1956

Professor L. Landau
Inetitute for Physical problems
Noscow, U.S.S.R.

Deax Landax:
I received your letter with some delay because of my txip to Berkeley, where I Intend to stay until the end of May. I shail be back in zurich by Juine 2nd, and I also intend, to be present at the Conference in Gencva, at the beginning of July. As long as I am here I prefer to write in English for the technical reason thent it is easier to get typed.

From Weisskoff I hear that yorrane rather enthusiastic about the attergpt of Heisenberg and me to freorgorac the isogroup into the spinor model and to comnect an ingeryned metric with it. Ny own mood is rather fluctuating and at the mement 1 am again rather cxitical about the whole tiea, while Helsenberg is eymays the optimistic partner. As you are on the list of the pewoons to whom preprints have been sent, I assume that you obtained it meerrmild and I shail make here some amendments and comments to 1t. This (p) eprint)has not been sent for publication yet because of the dark points (which) 1) contained. I shall wake the finol. version for print as jogn as Lean overcome the remaining aifficulties, which I sho11 mentipn

1. I stede nov ty report on other discussions which preceded this particular papen and which are connected with Helsenbers's paper on the Lee-model (Kuclear Fhysics 4, 532, 1957). I found that the method of this paper can be extended to the case of complex roots of $f l \boldsymbol{f}=0$. The "dipole ghosit" is a limiting case, which, however, is unessential in the Iec-model. (The double root has been tntroduced by Heisenberg in his earlier papers on the spinor model in order to obtain photons from 1t.) As the complex roote are never on a real, energy sheli, it is trivial that the S-matrix on the Latter stays unitary, but it is not heivial that this S-matrix cam be optrained as a limit from a macroscople space time description, which means from a (-mptrix joining states at inite times (t_{2}, t_{2}), as in general exponential functions of time w111 occur which incrense inderinitely In the limit $t_{2} \rightarrow \infty+\infty, t_{2} \rightarrow t$ QO. Here, however, the partition of the Hulbert-spece into the two equal halves of the upper and the lower conglex plene comes inta pley. Every such half plane contains oniy zero states besides the ordinary physical states of positive nozm andreal energy similar to the Bleuler-Gugta metric in electrodynamies. One obtains a nonphysical wesult only by a superposition of a state of the upper half plane with one in the lower hale plaff. Therefore it is possible to prescribe only the physical part of the initial state at t_{1} and to choose the non-physical.
part in one half-plane in such a way, that the final state at t_{2} contains only non-physical states in the some half plane and not in the other. I have show by a perturbation calculation that in this case the exponentials which increase with time do not occur in the transition matrix and that the S-matrix can be incorporated into a macroscopic space-time description. This perturbation calculation has been repeated independently and also somewhat extended by Ktlle with the same result. For small space-time regions many strange results appear in such a formalism and for the Leemodel also a violation of the T-invariance.

But in this way the door seems to be opened for further developments by searching for systems with on indefinite metric in Hilbert-space without single states with negative nom and real energy values. This is also the opinion of Kblleif, who favors now on findefinite metric of this kind but is at present opposed to the more spedial idea of a spinor-model. I define the latter by the special assumption that all fields should be derived from a single spinor field. Heisqnbedg and I are now trying how far one gets with the latter, but I am aleoter if somebody wants to investigate models with a larger numbepof indepodent field operators. In any case, it is clear to me, that cho ${ }^{\text {in }}$ derinite metric in Hilbert-space is the last attempt to save a theorfyco lescription using field operators, which depend continuously on space and tine.
2. Last autumn I refiyen th preprint of a paper by F. Gilrsey, in whith he showed the isomor(by/sm pedween the isospin-rotation group and the group corresponding to befon-conorvation law with transformations which I had formulated in the vesy lyferent connection with the free neutrino (Nuovo Cimento 0_{0} 204, 297). I guess that Gutrsey's puper has appeared meanwille in muop cimento. (Gutrsey is a younger man of Turkish nationality, who is ngw) in this country and who is supposed to come to Berkeley soon. Xt loght the same time Heisenberg worked on the incorporation of the isosyin Into his spinor model and had already changed his Lagrangian for this purpose. The possibility of a synthesis of all these somewhat heterogenous ideas occurred to Heisenberg and me and the result of it is the preprint which you got.

But here already some criticism of mine starts. Heisenberg's Lagrangian, both the old and the new, is the sum of two terms which have logically no link with each other (of which the second term is multiplied by l^{2}). This arbitrariness may be weakened by Heisenberg's assertion that the results don't change, if the second term is replaced by a certain class of function of it. But still, the sign of the second term relative to the first seems to be essential; a circumstance which I don't like at all.
with the Yoreover, more recently Heisenberg has added the formalism investigation. Whatever the connection "through the total Hilbert space". ($p, 6$) between the two spinors ψ and ψ (and its onfuembs adj oure th and oft) may be, one has in this way many more possibilities to construct Lagrangians which fulfill all clainis of invariance.
3. The decisive key for further developments of theories of the kind proposed by Heisenberg and me (may it be the spinor model or a more general model) lies, according to my opinion, in our section 5. The methoas for solving eigenvalue problems in theories without a priori given Hamiltonian or comnutation mules are only sketched in this section. The state of these methods, as they have been developed until now by different groups of "experts" are in no way satisiactory. The main problem seems to me to study further what are the mathomatical possibilities for the commutation relatisg, if the Lagrangian (and therefore the field equations) are given. Although Heisenberg theoreticaliy quphasizes that it is not possible to intwoduce arbitraxy assumpigas tor the invariant functions occurring in the vacum expectation valuas, He neyertheless prectically behaves as if such arbitrary assumptigns yere possible.

He does so in the course 0 the expplication of the so-called. Taum-Daneoff method of approximation. gatite independently of the name of this method (whether one calls it Tohn-Syncoff method or simply Tam-method) I believe that it is one of tyemot asploximation-methods ever tivented. in the history of physics (of pinipa) which is in no way shared by Helsenberg. My very best refa(ds to pur excellent friend tema). Therefore I never had much interest in he-cartier published results of Hisenberg on the spinor model nor an I participate in the calculations mode at present in Coettingen (Hoigopberg and his collaborators by applying this method.

The problem of tire comection between the vacumm-expectation values (of two or more factors of localized field operators) on the one hand and the Lasrangian on the other hand is a very fundamental one. The ides seemed to me seductive, that in an indefinite metric it may be possible, that the former could have a lesser symmetry (group-invariance) than the latter and that in this way one could reach an interpretation of the grodual. breakdown of Invariances by passing from the strong interactions to the electromagnetic ones and again from these to the weak interactions. (In contrast to Heisenberg I don't believe that the parilicies with zero rest mass are of decisive importance in this connection.) But whether this idea can be actuelly carried through can only be declded if one succeeds in inproving considerably the mathematical methods mentioned in our section 5. I don't believe, that I am able to do this aione and I am therefore much interested in your opinion on this point. Perhaps in your Institute one could also work on 圤. I also belleve that only with better
methods will it be possible to decide whether one particular model like the spinor model is better or worse than other more general models.
4. I want further to draw your attention to another. question which goes more into detail and is specific for the spinor model, namely the problem, how to interpret the "strangeness" of the spue elementary particles. With this I mean particularly the circumstance that there exist particles with half-integer ordinary spin and integer isospin and also the other way around. For this purpose Heisenberg invented the trick of a degenerate vacuum which you will find in the preprint. This is, however, an ad hoc hypothesis which in no way follows from the other essumptigns of our paper. Until nov no particular prescription is known to me, dow one obtains the "symmetry changing π "by applying $\psi 47$ to the degenerated vecuwn. It is very doubtful to me whether this trick of vacuum-degeneration works at all. Gluey proposed a different formalism with a simple vacuum, in which the neutrino produces the strangeness, but his proposal has also its disadvantages. Pep pas one meets here a necessity to generalize the spinor mode) hylititroducing at least one more Afield, which cannot be derived from a smelowpine infield.

These are the main feature \Rightarrow dy present attitude to a new situation, which is however far fob oo pos final, but on the contrary, is always changing. I shall let youkon te new developments occur and please let me know your own views.

WP:bh

Boğaziçl Ónlversltesl

Arģlv ve Dokumantasyon Merkezl
Kişisel Arşivlerle Istanbul'da Bilim, Koltor ve Egitim Tarihi
Feza Gürsey Koleksiyonu

