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ABSTRACT

PREDICTING KIDNEY TUMOR SUBTYPE FROM CT
IMAGES USING RADIOMICS AND CLINICAL FEATURES

This study aims to evaluate the performance of machine learning methods in

predicting the subtype (clear-cell vs. non-clear-cell) of kidney tumors using clinical

patient and radiomics data from CT images. CT images of 192 malignant kidney

tumor cases (142 clear-cell, 50 other) from TCIA’s KiTS-19 Challenge were used in the

study. There were several different tumor subtypes in the other group, most of them

being chromophobe or papillary RCC. Patient clinical data were combined with the

radiomic features extracted from CT images. Features were extracted from 3D images

and all of the slices were included in the feature extraction process. Initial dataset

consisted of 1157 features of which 1130 were radiomics and 27 were clinical. Features

were selected using Kruskal Wallis - ANOVA test followed by Lasso Regression. After

feature selection, 8 radiomic features remained. None of the clinical features were

considered important for our model as a result. Training set classes were balanced

using SMOTE. Training data with the selected features were used to train the Coarse

Gaussian SVM and Subspace Discriminant classifiers. Coarse Gaussian SVM was faster

compared to Subspace Discriminant with a training time of 0.47 sec and 11000 obs/sec

prediction speed. Training duration of Subspace Discriminant was 4.1 sec with 960

obs/sec prediction speed. For Coarse Gaussian SVM was found as 0.86 while for

Subspace Discriminant AUC was 0.85. Both models produced promising results on

classifying malignant tumors as ccRCC or non-ccRCC.

Keywords: Kidney Tumor, Clear-Cell, Machine Learning, CT Imaging.
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ÖZET

RADYOMİK VE KLİNİK ÖZELLİKLER KULLANILARAK
BT GÖRÜNTÜLERİNDEN BÖBREK TÜMÖRÜ TİPİNİN

BELİRLENMESİ

Bu çalışma, radyomik ve klinik veriler kullanılarak BT görüntülerinden böbrek

tümörü tipinin (berrak hücreli veya berrak hücreli olmayan) tespit edilmesinde makine

öğrenimi algoritmalarının performanslarını karşılaştırmayı hedeflemektedir. Çalışmada

TCIA’nın KiTS-19 Yarışması’nda bulunan 192 malign böbrek tümörü BT görüntüsü

(142 berrak hücreli, 50 diğer tip) kullanılmıştır. Özellikler 3 boyutlu görüntü kesit-

lerinin tümü kullanılarak çıkarılmıştır. Başlangıçta çıkarılan özellik sayısı, 1130 rady-

omik ve 27 klinik olmak üzere toplam 1157’dir. Kruskal Wallis - ANOVA testi ardın-

dan Lasso Regresyon metodu uygulanarak modellerde kullanılacak 8 özellik seçilmiştir.

Bu aşamada tüm klinik özellikler elenmiştir. Eğitim kümesi sınıfları SMOTE metodu

kullanılarak dengelenmiştir. Seçilen özellikler için eğitim kümesi verileri kullanılarak

Coarse Gaussian SVM ve Subspace Discriminant algoritmaları eğitilmiştir. Coarse

Gaussian SVM için eğitim süresi 0.47 sn ve tahmin hızı yaklaşık 11000 göz/sn iken;

Subspace Discriminant için bu değerler sırasıyla 4.1 sn ve yaklaşık 960 göz/sn olarak gö-

zlemlenmiştir. Coarse Gaussian SVM için ROC puanı 0.86 bulunurken, Subspace Dis-

criminant için 0.85 olarak hesaplanmıştır. İki model de çalışmanın amacı olan böbrek

tümörü tipi sınıflandırması için umut verici sonuçlar sağlamıştır.

Anahtar Sözcükler: Böbrek Tümörü, Berrak Hücre, Makine Öğrenimi, BT Görün-

tüleme.
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1. INTRODUCTION

More than 400 000 patients are diagnosed with kidney cancer each year, more

than 90% of them being renal cell carcinoma (RCC). RCC is known to be the most

common type (approximately 75%) of kidney cancer as well having the highest mor-

tality rate among genitourinary cancers. It is also one of the 10 most common cancers.

RCC has more than 10 histological and molecular subtypes. The progression of its

molecular and histopathological description has changed the way it is classified. Clear

cell RCC (CCRCC), papillary RCC (PRCC) and chromophobe RCC (CHRCC) have

the highest incidences among all subtypes [1].

In cases where RCC is localized; active surveillance, nephrectomy or ablation

are the treatment options. If the cancer metastasizes (nearly 30% of localized RCC

cases), systemic therapy alternatives are needed.

Over the past 30 years, mortality rates of RCC have been dropping globally.

On the contrary, incidence rates continue to rise by dint of changing healthcare and

peoples’ way of living. For instance; abdominal imaging in hospitals has become more

common, which increases the chance of uncovering small renal masses. In addition, the

rising number of obesity cases all over the world may have an impact on the incidence

of RCC.

Three most important RCC risk factors were determined as tobacco use, hy-

pertension and being obese/overweight. The following are also correlated with RCC:

hemodialysis, diabetes mellitus, chronic kidney disease and kidney transplantation. In

addition to these, genetic factors partake in the risk of RCC development. For example;

having a family member which has or had RCC makes an individual two times more

likely to acquire it as well [1].

Nowell claimed that the majority of neoplasms originate from a single cell. The
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genetic diversity of this origin cell allows the tumor to progress. Therefore, due to

differences of tumor evolution from patient to patient, as well as within the same

case, specific treatments should be implemented [2]. In one of the studies which was

conducted in order to understand tumor genetic diversity in RCC; it was discovered

that VHL mutation and 3p loss of heterozygosity were present across all regions -

in each tumor- for all four patients. On the other hand, mutations such as BRM1,

KDM5C, PTEN and SETD2 resided in the primary tumor as well as some of the

places to which it had spread.

In a study which included 19 different cancer types, CCRCC was found to have

the highest T cell infiltration median [3]. According to this paper, use of immune

checkpoint inhibitors might be effective for the treatment of CCRCC. This is due to

the strong antigen recognition and presentation, besides the robust immune filtration

which is already present.

Currently, a great effort is being put into the studies concerning how different

kidney tumor morphology might affect the treatment process. Surgery, chemotherapy

and targeted drugs are used for treatment and a variety of new, more effective drugs are

continued to be developed. There has been a big improvement in the median survival

of the disease in the past few years, thanks to the targeted drug development [4].

In the past, patients with RCC would seek medical help because of hematuria,

a conspicuous abdominal mass and flank pain. Today, most patients are diagnosed

thanks to the imaging results carried out in pursuance of other medical findings. These

results may raise suspicion even though radiographic presentations of different RCCs

are changeful. Generally, CCRCC presents features such as high contrast enhancement

agent uptake, heterogeneity and outward growth [1].

During the process of diagnosis of renal cancer; laboratory tests and biopsy

are used in addition to radiology. Presently, biopsy is obligatory in order to deduce

key information as whether the cancer is invasive, its grade, its stage and spread to

lymph nodes. In addition to these, biopsy must be performed to identify specific
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proteins, genes and other factors which are unique to the tumor. These factors play

an important role in prognosis prediction and in the construction of a treatment plan.

They can also provide a clearer view on how to design more effective drugs targeting

specific intracellular pathways [5].

Biopsy is a highly invasive diagnosis tool which carries a small risk of infection

and bleeding. Moreover, for cancer cases, reaching a result might take several days.

For these reasons, there is a need for obtaining the necessary information for diagnosis

by using better tools.

RCC is staged considering several factors: presence of metastasis, spread to

lymph nodes, tumor volume outside the kidney, size of the tumor. Computed tomog-

raphy is an indispensable tool in order to reach a healthy staging decision. Moreover,

a variety of predictors for prognosis evaluation can be analyzed via laboratory testing.

In general, the Fuhrman grade is preferred for RCC, which has a significant meaning

for prognosis.

In the present, RCCs are managed by a range of treatment options which are

suitable for varying cases. When the tumor is operable, nephrectomy is performed. In

cases where surgery cannot be considered practicable, RCC is commonly handled by

systemic treatment. Further, ablative therapies or active surveillance are also possible

choices especially for certain patient types. As regards the non-CCRCCs, disease man-

agement cannot be based on sufficient data, as very few patients were included in drug

trials in the past. In addition, there are many non-CCRCC subtypes with different

characteristics, which implies that each one might respond in a different manner to the

same treatment. Largely, the need for efforts to research and develop effective targeted

drugs for non-CCRCCs still remains.

Some of the treatments which might be important options in the future are;

targeted radiotherapy, personalized vaccines and selective cytoreductive nephrectomy.

Moreover, combinations of various therapies might take place; such as adding im-

munotherapy or targeted therapy to the existing processes. At present, it is known
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that treating RCC with a collection of distinct targeted drugs is more effective than

using only one drug. However, this comes with the disadvantage of higher toxicity

development in the patient’s body. If drug resistance is to be avoided, optimal tar-

geted drug combinations must be established. Immune checkpoint inhibitors may be

the primary and the most suitable answer for reaching this goal [1].

Imaging is essential in the process of diagnosis and treatment of RCCs. A

variety of medical imaging modalities play different roles when it comes to detection of

renal masses, as well as deciding on the course of action. First of all, it is important to

discriminate between benign and malignant tumors. Oncocytoma and angiomyolipoma

are benign renal tumors, with oncocytoma showing a high level of similarity to RCC

on medical images. Secondly, discrimination among RCC histologic subtypes becomes

a critical target. Different imaging techniques have variable performances for reaching

these two goals.

Ultrasound is one the modalities used for renal imaging. It does not require

nephrotoxic contrast agents and there is no radiation involved in the process. Moreover,

it is an economical option and easily reachable. When the patient’s tumor is large

enough, its detection possibility with the US is high. On the other hand, small tumors

are comfortably missed on US images. Differentiation between malignant and benign

cases is undependable; as it is when discriminating between subtypes. Some innovative

US techniques are considered relatively better than gray-scale US for these objectives.

Computed Tomography (CT) is widely used for clinical diagnosis, localization

of pathology, observation of anatomical structure, surveillance of therapy evolution and

planning the optimal treatment in cancer. CT is generally the first choice for imaging

the evolution of renal tumor because it is more available than Magnetic Resonance

Imaging (MRI) and is more useful than Ultrasound (US) Imaging [6]. Moreover, CT

imaging provides shorter acquisition time than MRI. The most prominent disadvan-

tages are exposure to radiation and nephrotoxic contrast agents.

Scanning protocol has a determinative impact for detecting tumors, as well as
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discriminating between malignant, benign and RCCs of different subtypes. Larger

tumors are more easily detected. There are studies with high success which use CT

imaging for both goals. It can be profitably used to determine whether a tumor is RCC

or angiomyolipoma. However, it cannot be used by itself for detecting a papillary RCC.

Furthermore, it is not plausible to discriminate between oncocytoma and chromophobe

RCC due to their resembling appearances. Also, there are a few novel techniques which

ameliorate the efficacy of discrimination. Conclusively, when RCC is suspected, biopsy

or surgery should be performed for additional diagnostic information.

In general, MRI imaging is preferred when a renal tumor cannot be characterized

with CT or US. In addition, it can be needed for patients who have other renal disorders.

Despite its acquisition taking long, it is superior to CT in terms of not having to expose

the patient to radiation. MRI capability is not as common at clinics as CT imaging,

which can be considered as another convenience of CT. Regarding the identification of

tumors MRI and CT perform similarly for the ones which require surgery.

There is no solid evidence showing apparent diffusion coefficient values can be

used for distinguishing between ccRCC and other RCC subtypes. On the other hand,

MRI might be an effective tool to differentiate ccRCC and papillary. As for chromo-

phobe RCC, it is hard to recognize because of its image characteristics being similar to

other RCC subtypes. Some of the angiomyolipoma can be told from RCCs, even though

biopsy is encouraged for final diagnosis. Oncocytoma is very hardly discriminated from

RCC due to their resembling features, with chromophobe RCC being the most alike

among all RCCs. Some of these challenges may be overcome to improve renal tumor

distinction using new MRI imaging techniques as several studies have shown.

Nuclear imaging might also be performed in the course of diagnosis and treat-

ment surveillance of renal tumors. PET/CT is not mainly suggested for the first

diagnosis of renal tumors considering its poor performance of identification. On the

other hand, SPECT/CT and PET/CT can be used when differentiating RCCs and

oncocytomas, as well as detecting ccRCC by the aid of correct tracer choices.
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Overall, medical imaging has encouraged advancements which may bring the

world closer to distinguish between malignant and benign cases, and between different

RCC subtypes. However, currently, depending solely on imaging for diagnosis in cases

where RCC is suspected would not be a possible medical decision-making process.

Data collection and analysis gains more importance day by day. It is accepted

that data can be a powerful tool to show the causal relationships between incidents, help

detect errors, provide guidance for decision-making, predict the outcome of actions, and

partition instances into desired classes. As a result, many disciplines began to increase

their efforts to collect and manipulate data for these purposes. Medicine is one of the

fields that is being influenced by this trend.

Obtaining standardized and clean digital data is highly crucial for the sake of

sustainability and reliability. Therefore, data collectors should be attentive and well-

informed. Dedicated control mechanisms and data health checks might be implemented

in order to avoid errors as much as possible. In medicine, clinical processes are often

frail to these sorts of errors due to its nature. However, gathering and storage of digital

data, and implementing these to usual practice routines, presents several advantages.

A variety of medical data are collected such as test findings, clinical observations, diag-

noses, current health issues, medications as well as data obtained via different medical

devices which usually have integrated software systems. Real-time data acquisition is

especially valuable in medicine and it should be supported by the authorities to be

made apprehensible. Digital health data are crucial when it comes to personalized

medicine, as well as detecting diseases at early stages and personalized preventative

medicine. Furthermore, recent medical findings and research results should be reach-

able freely by the actors in medicine and science fields, so that relevant data can be

used to enable further advancements and additional data.

As the volume of data increases, the need for smart and automated tools becomes

more crucial in order to exploit it in the most efficient way possible. Today, many

artificial intelligence applications are used for this purpose in a variety of work areas.

By most, the birth of robots is recognized as the root of artificial intelligence. It was



7

first outlined as “the science and engineering of making intelligent machines”. It is

established by several disciplines coming together such as psychology, philosophy and

computer science.

With the progress of artificial intelligence, computers have become able to

solve complicated mathematical problems which have multiple branches. Moreover,

it started to be used in medical diagnostic processes as well as data mining. The

advancements resulted in the emergence of instruments which have increasing com-

putation capacities. Currently, artificial intelligence moves rapidly by enforcing new

concepts and discovering innovative solutions to complex problems using engineering

methods [7].

Cybernetics is a research area which focuses on conceptual organization roles

of complicated systems. It aims to understand the functioning principles of a system,

rather than the components which make it up. Cybernetics tries to answer the question

of how systems consume information, construct models and manage actions in order

to reach a goal. The aforementioned question might be about systems from many

different disciplines such as: biology, physics, psychology, technology, sociology or a

mix of these. Cybernetics is not solely concerned with engineered systems, but also

with organic, evolving systems which are self-controlled.

Second-order cybernetics mainly focuses on the impact and performance of hu-

man observation when building system models. It was realized that the systems which

were built, would only acknowledge facts that are significant for its objective. This

situation stems from their dependency on their designers. These kinds of models are

inactive and open to be steered by the designers. Second-order cybernetics leans on

the idea of a system being alive, having interactions with other systems and the ob-

servers. Artificial intelligence is among the fields on which modern cybernetics have an

important influence [8].

In medicine, artificial intelligence is used in two major forms: virtual and phys-

ical. The physical form consists of medical equipment, physical entities and care-giver
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robots which become more advanced day by day. Robots can take part in surgeries

either as the main surgeons or as assistants. Artificial intelligence may also be used

in the process of guided drug delivery to specific organs or tissues. It is a necessity to

interrogate the impact of these applications on the physical and psychological state of

patients, adverse events, quantifiable results and health signs [7].

The virtual part primarily corresponds to machine learning and deep learning

applications, which involve algorithms ameliorating their learning via knowledge and

training. Machine learning can be described as the study domain which enables com-

puters to learn without programming them specifically. In other words, it aims to

program computers so that they can optimize models by the aid of data samples and

past evidence. To sum up, the concept of machine learning is based on tutoring a com-

puter to wisely carry out tasks by experience it gains from an external environment.

A machine learning application must be able to learn from the information it

gathers from its surroundings to be successful. In this particular framework, learning

corresponds to projecting dependencies from given information.

Machine learning cannot be defined without mentioning data mining. Data

mining employs machine learning methods in order to investigate extensive databases

and discover hard-to-find information within those databases. On the other hand, ma-

chine learning applications use data mining during data preprocessing as a preparatory

step for learning specific tasks. Nonetheless, one should keep in mind that machine

learning offers solutions to complicated artificial intelligence problems via adaptation

to constantly evolving cases, as well as resolving complications concerning databases.

Machine learning methods might be classified according to how they label data.

Supervised algorithms aim to label an output, using the labeled data which are present.

On the contrary, unsupervised methods take solely the input instances of a sample to

learn from them. The third class would be semi-supervised methods which is a mixture

of the aforementioned two classes. These kinds of methods use data which have both

labeled and unlabeled data; and the labeled part is exploited to deduce information
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about the unlabeled part.

Machine learning methods can also be classified based on their probabilistic as-

pects. There are discriminant methods which aim to find the probability of an output

dependent on the inputs. Support vector machines might be an example belonging to

this class. In the other class, there are generative methods which are entirely prob-

abilistic. These methods may use Bayesian networks, or a technique that does not

include graph modeling such as naive Bayes.

With regards to the methodology that should be used when constructing a

successful machine learning application, primarily, the essence of the problem must be

clearly defined. Input samples and the outputs are considered in this step. Moreover,

the quality of data which are fed to the model, is crucial. The impact of bad quality

input data utilization cannot be compensated by a good model. Even though the model

is robust to noise, it is principally based on estimates from the input data. Lastly, a

successful model should be optimally simple, whereas more complex models tend to be

too much dependent on the input samples, which results in overfitting. If the model’s

simplicity is preserved, the data which are not present may also be taken into account

[9].

Ensemble learning is a methodology of machine learning which builds a collection

of classifiers and decides on the class of a new data instance by voting these classifiers’

prediction results. That is, predictions of multiple classifiers are blended into one final

decision using weighted/unweighted voting. Studies have been and are being made

about the development of successful classifier ensembles. Generally, ensembles have a

tendency to achieve higher accuracies than the classifiers of which they consist.

The primary requirements of an ensemble to perform better than all of its classi-

fiers is that each classifier is sufficiently accurate and distinct. Sufficient accuracy can

be described as predicting with less error than random prediction. Classifiers being

distinct signifies their difference of prediction errors for new instances. For example;

if there were five classifiers which all made the same incorrect prediction for a new
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data point, the ensemble result would also be incorrect. Contrarily, if the classifiers

are unique, the majority of them could classify the new instance correctly while the

others are incorrect. This would result in the final decision to be correct, which means

the ensemble is successful thanks to this diversity.

A machine learning algorithm’s goal is to find the optimum hypothesis in a pool

of hypotheses. It becomes a challenge when this pool of hypotheses is wider than the

size of the training sample. If the sample is too small, the algorithm faces the problem

of detecting too many identical hypotheses which have the exact same accuracy. One

way of increasing the chance of selecting the correct classifier is to create a set of

accurate learners. This is one of the reasons why an ensemble might work wonderfully.

Another argument is in the computational aspect. A lot of learners apply local

searches, which raises the risk of getting stuck on the minimum or maximum of the

objective function for a particular region of the input space. The risk is lowered if

the local search gets started off from various distinct points by establishing an ensem-

ble. This method may provide a superior estimation of the correct function than the

classifiers within the ensemble.

The last rationale is from a representational stand point. It is likely to acquire a

broader representation of functions when the hypotheses in the pool are given weights

and then summed up. The preceding points are the essential problems that cause

the current individual learners to fall flat. On that account, ensemble learning offers

the opportunity to remove or at least weaken these deficiencies that typical learning

algorithms have.

There are different ways an ensemble can be built. One method influences the

training data and develops several hypotheses. Multiple subsets of training data are

used to run the classifier numerous times. This method might be the most preferable

in case of unsteady algorithms. If the output classifier varies immensely in return of a

little modification to the training sample, the algorithm is considered to be unstable.
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Another approach to building an ensemble is introducing randomness into the

algorithm. In the process of neural networks training, errors from output nodes are back

propagated to the input nodes. During the backpropagation, the network’s beginning

weights are determined at random. This technique enables the classifier to be at

variance with each different beginning weighting [10].

Random subspace is among the approaches to ensemble methods. It works by

randomizing the algorithm through the medium of constructing feature subsets and

using these subsets to train the classifier. Afterwards, the results of these classifiers

are merged into one final output through majority voting.

Random subspace may be used with different algorithms such as discriminant

analysis. With the aim of reducing error rates, random subset of features can be fed

into different learners. The disadvantage of this technique is that, in certain cases, the

capability of differentiation is weak because of random picking. When this situation

occurs, the final output is also inadequate. However, the inconvenience can be defeated

by majority voting. Often, an individual learner of the ensemble consumes a limited

portion of the existing features. Furthermore, each of them is capable of classifying new

data points. The majority voting process enables the classifiers to distinctly classify

new data points. The definitive result is determined as the prediction which gets the

majority of votes among all classification decisions [11].

In medicine, there are numerous successful artificial intelligence applications

and one of them is an unsupervised methodology using unsupervised protein-protein

interaction graphs. This application encouraged innovative findings of therapeutic

targets. The proposed methodology integrated an adaptive evolutionary algorithm

with advanced clustering techniques [12]. These kinds of methods are more vigorous

and less likely to overfit, which may happen in case the training sample is not sufficiently

large compared to the number of parameters.

Another AI application in medicine is its use for providing care for patients.

This can be in the form of avatars which are usually VR simulations, robots or systems
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with physical sensors and sound. Natural language processing (NLP), VR simulation

and artificial intelligence built on human expert knowledge are rapidly progressing

research areas. Advances in these fields also give rise to the development of artificial

intelligence care providers. AICPs have been established and evaluated for clinical

exercise, ability attainment and presenting information on mental health and assistance

to patients in need. Additional purposes of artificial intelligence care providers are

tracking, evaluation and consulting about self-care [13].

An emerging field, Radiomics, is concerned with reaching useful diagnostic, prog-

nostic and predictive information. It has the ability to provide many advantages in

cancer imaging. Radiomics focuses on obtaining quantitative information from clinical

images. This approach helps characterize the image phenotypes of the tumor in a more

detailed way.

In radiomics, the goal is to exploit the data present in the clinical environment

and draw powerful insights from it based on state-of-the-art, occasionally non-intuitive

mathematical interpretation. Medical images incorporate information which is useful

for distinguishing diseases. Human eye is able to perceive only a part of this useful

information. Therefore, there is a need for tools which are capable of capturing and

presenting the knowledge that may have a shaping impact on diagnosis and treatment

of diseases. Radiomics offers this opportunity in oncology for this reason.

Radiomics obtains quantitative texture information using artificial intelligence

to extract intensity spatial distribution and pixel correlations in an image. Different

experts might get varying insights from a medical image, hence, the decisions made

according to the insights may largely depend on the expert’s judgment. Inconsistencies

that may arise because of this situation can be averted by quantifying the visually

detectable elements such as texture, form and intensity changes in medical images.

In this fashion, radiomics enhances the data which are needed during the diagnosis

routine.

Medical images obtained via various imaging modalities such as CT, PET and
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MRI can be put through radiomics methodology. Radiomics presents the opportunity

to make analyses based on the combined information gathered from different imaging

methods. Therefore, it becomes more advantageous than analyzing data from each

imaging modality separately. On the other hand, the circumstances chosen for the

analysis may differ among researchers, which have a high impact on the outcomes. For

this reason; standardization, steadiness and universality between all studies must be

established.

A radiomics analysis starts with determining the region or volume of interest.

This is an important part of the process as the features that will be used are extracted

within ROI or VOI. Images may be segmented by an expert which is called manual

segmentation. It can also be performed automatically; either semi or fully. Level set

based active contouring, localized region based active contouring and seeded region

growing are some of the semi-automatic image segmentation methods. Generally, deep

learning is used for segmenting images completely automatically [14].

The main objective of texture segmentation is to differentiate the components

in the image so as to focus on the ones that are more important for the purposes of

the analysis. Moreover, differentiation of foreground and background contents can be

possible with segmentation which is required for some analyzes. Segmentation simplifies

the analysis of an image by converting it into an image with the desired number of

regions with respect to texture characteristics [15].

In Medical Imaging, segmentation serves the goal of recognizing anatomical

structures. It presents solutions to problems such as detecting tumors, tissue analysis

and bone fractures. One of the factors complicating segmentation in medical images is

noise, which is related to the sensors and electronic system used. Noise makes it harder

to decide in which class a pixel/voxel belongs. Another factor is the partial volume

effect which is present both in CT and MR images. There are also the problems

arising from the presence of different artifacts such as motion and ring artifacts [16].

In kidney tumor segmentation specifically, the non-uniform motion, various shapes and

similar appearance produce extra difficulties [17]. Search for finding new segmentation
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methods which can overcome the complications caused by these factors is a matter of

focus in medical image analysis.

After segmentation, images need to be processed prior to feature extraction.

Image pre-processing renders the images more homogenized in relation to pixel distri-

bution, gray level intensity and histogram bins. This step has great importance as it

affects the potency of the extracted features. For instance, texture features can be made

stable in terms of rotation by interpolation. Normalization is another pre-processing

technique. It enables the elimination of pixels with gray levels higher or lower than

the predefined limits. Finally, discretization is performed by creating bins of gray level

intensities.

Image pre-processing is followed by radiomic feature extraction which indicates

the computation of feature values. There are a variety of features such as texture,

shape, histogram and radial. Usually, the number of features extracted need to be

reduced in order to avoid overfitting. Feature selection signifies the choosing of features

which will be meaningful for the model. Correlation between the features should also

be considered and significantly correlated features must be excluded from the model.

In conclusion, a radiomics application should fulfill an existing clinical necessity.

Moreover, it should be based on sufficient data to justify the inferences of the study.

If possible, including data other than the ones obtained from medical images might

be considered. Finally, for an optimal radiomics study, images should be acquired

in a standard way or if not, the methodology should compensate for the changeable

procedures which may have been used [14].

One of the the main objectives of the presented work is to perform a comparison

among existing machine learning methods for the classification of tumor histologic

subtypes of renal cell carcinoma (RCC) patients. It also focuses on the question of

which radiomic features and patient clinical data provide meaningful information about

the histologic subtypes.
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2. LITERATURE REVIEW

In a 2019 study [18], Convolutional Neural Networks were used to classify the

tumor histologic subtypes of RCC cases. The data set included clear-cell, chromophobe

and papillary subtypes. The model was fed with three-phase CT images and one slice

from each phase was used. AUC values for differentiating clear-cell from non-clear-cell,

papillary from non-papillary and chromophobe from non-chromophobe were; 0.93, 0.91

and 0.88 respectively.

Another paper by Kocak et al. focused on classifying the tumors as ccRCC or

Non-ccRCC, as well as differentiation of ccRCC, pcRCC and chcRCC from each other.

Artificial Neural Networks classifier predicted the subtypes as ccRCC or non-ccRCC

with an AUC of 0.92, while the AUC of Support Vector Machine classifier was 0.79.

Both of them performed worse in the three-class models [19].

Zhang et al. evaluated several models incorporating SVMs for classifying tumors

as ccRCC or non-ccRCC, and chromophobe or papillary RCC. Slices with the largest

cross-sectional area of the lesion from 3-phase CT images were used. Top 3 features were

selected by Mann-Whitney U-tests, ROC curves and Pearson’s correlation coefficient

methods. An SVM with a nonlinear radial basis function kernel was implemented.

Best results were achieved using the corticomedullary phase images. AUC for ccRCC

vs. non-ccRCC classification was 0.94 [20].

Hoang et al., conducted a study which used random forest models for three

classifications: oncocytoma vs. RCC, oncocytoma vs. ccRCC and papillary vs. ccRCC.

Three consecutive slices containing the largest cross-sectional area from each of the four

phases of MR images of 142 lesions from 41 patients were included. Pairwise Wilcoxon

rank test, modified false discovery rate adjustment, Lasso regression were used for

feature selection. ccRCC cases were distinguished from oncocytomas with an average

accuracy of 77.9% [21].
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3. MATERIALS AND METHODS

3.1 Data Sets

CT images and patient clinical data from the Climb 4 Kidney Cancer-Kidney

Tumor Segmentation Challenge (C4KC-KiTS) database [22],[23] were acquired. 210

patients were included in the C4KC-KiTS database. In this study, 192 of the cases

which had malignant tumors were used.

3.2 Image Pre-processing

Resampling, intensity normalization and gray level discretization were applied

before starting the feature extraction process. Images had different slice thicknesses (0.5

mm to 5 mm) and different pixel sizes (0.438 mm to 1.04 mm). After reconstruction and

resampling, 1 mm x 1 mm x 1 mm spatial resolution was achieved. Python software

was used to perform resampling, and the new values of the resampled images were

obtained by Cubic B-Spline interpolation method [24]. Z-score normalization was used

for the normalization of image intensity values. For gray level discretization, bin width

was adjusted to be 0.01 on 3D Slicer software [25]. Gray level discretization lessens the

heterogeneity influences on the images, resulting from acquisition and reconstruction

protocols [26].

3.3 Feature Extraction

Radiologic images carry relevant and significant clinical information [27]. Fea-

ture extraction is an important step for finding the link between disease and image

attributes, on the grounds that its enablement to obtain solid, quantitative represen-

tations.
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Features were extracted using PyRadiomics extension on 3D Slicer. Three types

of images were subject to feature extraction: original, Laplacian of Gaussian (LoG) and

wavelet-transformed. Laplacian of Gaussian filter values were 2 mm, 4 mm, and 6 mm

in order to explain patterns with various sizes.

After all radiomic features were extracted, certain patient clinical data were

added to get a combined data set. Clinical data included information such as age,

sex, body mass index; as well as presence of several diseases, alcohol and tobacco use.

Afterwards, the combined data were split into training and test sets as 85% and 15%

respectively. As a result, 162 training cases included 128 clear-cell RCC and 34 other

histologic subtypes (chromophobe, papillary, clear-cell papillary, multilocular cystic,

urothelial, wilms). Further, 15 of the test cases were clear-cell and the remaining 15

were other (chromophobe, papillary, clear-cell papillary).

3.4 Feature Selection

Feature selection process was executed on Matlab (R2021b) software. Kruskal-

Wallis (KW) test was conducted as the first step of feature selection. KW compares

the medians of the groups of data to determine if the samples come from the same

population. In this case, each feature was tested for its ability to differentiate between

the data classified as clear-cell and other with p = 0.05. Only 111 features among the

1157 were decided to be relevant. Moreover, none of the patient clinical features were

selected.

Secondly, least absolute shrinkage and selection Operator (LASSO) was used at

the next phase for selecting features. Lasso is an improved version of ordinary least

squares estimates in regression analysis combining subset selection and ridge regression

[28]. It causes some regression coefficients to shrink and set some of them to zero. At

the end, coefficients belonging to the less important features become zero. Lambda

with the minimum standard error was chosen to obtain the optimal set of coefficients.

Subsequently, 8 features were selected as the most relevant for our model.
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3.5 Model Training and Evaluation

Coarse Gaussian Support Vector Machine and Subspace Discriminant classifiers

were trained with the selected features in the Classification Learner App of Matlab.

SVM classifier aims to find the optimal hyperplane in the N-dimensional space that dis-

tinctly classifies the data points. The optimal hyperplane can be described as the most

distant of all possible ones to both classes. The data points closest to this hyperplane

are defined as support vectors. In some cases simple hyperplanes do not show sufficient

separation performance. Hence, kernels are reproduced which use several functions. In

this study, the SVM classifier with a Gaussian (radial basis function) kernel was used.

Box constraint level was 1 and kernel scale was chosen as 11 for the classifier. 5-fold

cross validation was used in the training process.

Discriminant classifiers assume that different classes have different Gaussian

distributions. Their objective is to classify the data points while minimizing the classi-

fication cost. Ensemble learning combines several classifiers to improve the prediction

performance. Each learner, discriminant classifier, is trained using a random subset of

features among the selected ones. At the end, the best model is introduced. The model

included 30 learners with 4 subspaces and the training was performed using 5-fold cross

validation. Previously reserved test data set was used to test the model performances.

Accuracy and area under the curve (AUC) for both models were calculated for evalu-

ation.
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4. RESULTS

4.1 Feature Extraction and Selection

In addition to the 27 clinical features (see Figure 4.1), 1130 radiomic features

were extracted from the CT images, adding up to 1157 features in total. Among the

radiomic features; 744 were from wavelet-transformed images with 8 distinct filters

and 6 classes of features (first-order, gray level dependence matrix (gldm), gray level

co-occurrence matrix (glcm), gray level run-length matrix (glrlm), gray level size zone

matrix (glszm) and neighboring gray tone difference matrix (ngtdm). Laplacian of

Gaussian (LoG) filtered images produced 279 features, while 107 features were ex-

tracted from original images.

Figure 4.1 List of clinical features.

As a result of the Kruskal-Wallis test, 111 features were eliminated as they

were not significant for the problem in question. The process was followed by Lasso

regression to detect the most useful features, which left 8 of them (see Figure 4.2) to

be used in the classification models. These included: First Order Interquartile Range,

GLCM Inverse Difference Normalized and GLRLM Run Variance. Prior to model

training, new instances belonging to the minority class were created synthetic minority
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Figure 4.2 Selected features for the models.

oversampling technique (SMOTE) to balance the training set. Ultimately, both classes

consisted of 128 cases and the models were trained with a total number of 256 cases.

4.2 Performance Evaluation

Coarse Gaussian SVM was faster compared to Subspace Discriminant with a

training time of 0.47 sec and 11000 obs/sec (observations per second) prediction speed.

Training duration of Subspace Discriminant was 4.1 sec with 960 obs/sec prediction

speed. For Coarse Gaussian SVM; validation accuracy was 67.6% while the accuracy

of test was 80%, with and AUC of 0.86. Similarly, Subspace Discriminant had 68.8%

validation accuracy and 80% test accuracy; AUC was 0.85. Figure 4.1 shows the

confusion matrices of the two models. The receiving operator characteristic (ROC)

curves can be seen on Figure 4.2.
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Figure 4.3 Confusion matrices for Coarse Gaussian SVM and Subspace Discriminant on test data
set.

Figure 4.4 ROC curves of classification models on the test dataset.
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5. DISCUSSION

For metastatic cases, management of surgical process and cases for which surgery

is not an option; differentiating RCC histologic subtypes can be of great importance.

Subtype information may also be considerably helpful for new targeted immunother-

apy opportunities which are specific to histologic subtypes. There are other emerging

therapies which address the therapeutic demands of particular subtypes. Due to the

several disadvantages of biopsy such as mistakes of sampling, complication risk, neces-

sity to obtain adequate samples and its potential impact on the treatment process; its

comprehensive use is questionable.

This study investigates the usefulness of machine learning algorithms for ma-

lignant kidney tumor histologic subtype classification. In consideration of the perfor-

mance evaluation, both models demonstrated promising results when classifying the

tumors as clear-cell RCC or non-clear-cell RCC. Nonetheless, Coarse Gaussian SVM

might be slightly more preferable because of its training and prediction speed.

For the method that Han et al. introduced, medical experts needed to determine

the positions of the tumors [18]. On the other hand, the classification of different tumor

subtypes was successful. Therefore, the method can provide assistance for radiologists

on the next steps of the disease. It may also aid radiologists with little experience to

diagnose cancer.

Their method efficiently classified papillary RCC and clear cell RCC; yet, the ef-

ficiency was low for classifying chromophobe RCC. This may happen because of having

an uneven number of instances in classes. In this case, each class had approximately

the same number of instances. The reason might also be that chromophobe RCC would

need other features in order to be differentiated from other subtypes, which were not

included in this study. Conducting research with additional data may increase the

performance.
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The approach was based on linearly combining three channel images so as to

make them more suitable for machine learning models. The study demonstrated that

three channel images might be altered by means of achieving improved results, even

though it is not possible to fix their weights entirely. It was also deduced that the

optimal weight might be various for different tasks. The linear combination weights

were determined in the course of learning and the best weights were automatically

chosen based on the training sample. Expert opinion can be gathered in order to find

out if the linearly combined images make it simpler to distinguish the suspected region.

In their paper, researchers showed that approaching the discrimination goal as

a three-class problem decreases the model performance when compared to the two-

class classification model. This can be a sign of high similarity between some tumor

subtypes. In addition, they discovered that a bigger volume of data is needed in order

to optimize the three-class model than the two-class model. Also, the weight quantity

is greater in the three-class model than it is in the two-class model, though, the reason

for this could not be explained with the present study.

In another study, Kocak B.et al. prepared two-class models to classify three

RCC subtypes providing a comparison of their performances [19]. They expressed

that the models which aimed to differentiate clear cell RCC from non-clear cell RCC

outperformed the models with other classification goals. The performance gap was

especially big for the three-class models as they performed unsatisfactorily when com-

pared against other models.

Kocak B.et al. also deduced that utilization of corticomedullary phase CT

images enabled the models to show superior performance as opposed to the utilization

of unenhanced CT images. This situation might suggest occurence of generalizability

issues in case of erroneous features selection when unenhanced CT images are used in

these models. In order to compensate for this issue, they claimed that methods such

as bagging or adaptive boosting may be useful.

Validating the model performances externally is beneficial in terms of gener-
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alizability, yet, it does not solve all the related problems. For instance, overfitting

becomes more probable because of the fact that a small sized training sample was

used. Moreover, segmentation of two image slices may not be clinically applicable al-

though the suggested models require them. It should also be taken into account that

external validation images were pre-processed as the internal images with the exception

of reconstruction.

Although renal cell carcinoma has many other uncommon subtypes, these were

not included in the study because of insufficient cases. This reasoning goes for our

study as well. In the paper of Kocak B.et al., it was also pointed out that working

with cases which are divided into two separate groups in terms of small and large sized

tumors might answer other specific questions.

Hoang et al. conducted a research which argued for the usefulness of analyzing

contrast enhanced magnetic resonance image textures in order to distinguish renal

tumor histologic subtypes [21]. They chose to construct a random forest model for this

purpose. Also, they took advantage of the tumor’s complete cross sectional area to

extract features.

One of the main findings was that clear cell RCC exhibited weaker arterial en-

hancement compared to oncocytoma. There are studies that have reached the opposite

of this result, as well as the ones that have reached the same conclusion. This might

mean that it is difficult to differentiate ccRCCs and oncocytomas by their imaging

features. On the other hand, their study had promising outcomes as their models were

significantly more successful to differentiate between oncocytomas and two subtypes of

renal cell carcinomas than a research with expert opinions.

Another discovery they made was the existence of significant image texture fea-

tures for discriminating clear cell RCC from papillary RCC. This discovery is consistent

with the opinion that papillary RCC has higher homogeneity than clear cell RCC, es-

pecially for small kidney tumors. The research was limited with the inclusion of only

small renal masses because they detected a particular pressing lack in this area.
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The same study had a few restraints such as the exclusion of chromophobe RCC

and angiomyolipoma due to insufficient data. Secondly, the number of patients being

too low against the number of lesions might have resulted in misleading accuracy for

detecting oncocytomas. For this reason, the model should be evaluated with a wider

patient sample to apprehend the variation among patients and achieve better precision.

Zhang et al. found that standard deviation, entropy and mean of positive pix-

els provide useful information about non clear cell RCCs on images [20]. In addition,

skewness and mean of positive pixels can be included in models to distinguish between

chromophobe RCC and papillary RCC. They also discovered that clear cell RCC pre-

sented notably higher mean, standard deviation, mean of positive pixels, entropy and

lower kurtosis than non clear cell RCC.

According to the results of the paper; raise in the amount of highlighted features

during filtration and the difference of mean brightness in comparison with background

might cause heterogeneity between tumor histologic subtypes. These may also give

rise to the observation of greater standard deviation, mean, entropy, mean of positive

pixels and smaller kurtosis values for clear cell RCC.

In the study, authors claimed that combining different texture features might be

useful for the distinction of clear cell and non-clear cell RCC even though each feature

does not have the power to make the distinction by itself alone. Moreover, contrast-

enhanced CT appeared to provide texture features with stronger differentiation ability

when compared to unenhanced CT images. The accuracy of diagnosis was also greater

for the models which incorporated enhanced images.

One of the disadvantages of the study was the number of cases being low, which

may decrease the accuracy of cross validation. Moreover, due to the fact that some

clear cell RCC cases were left out, the scope of this study might not reflect some of the

clear cell RCC texture traits. Authors also pointed out that the diagnostic accuracy

might have been overestimated because they used data which was collected in the past.
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Our methodology produced similar results as other studies focusing on the sim-

ilar questions. Therefore, we can deduce that machine learning in radiomics is a viable

method for determining the histologic tumor subtype of renal tumors. However, our

study differs from others with the data source which was used, as well as other dimen-

sions such as having a high number of cases. Dissimilar to the studies of Kocak B. et

al., Zhang G. et al., Hoang et al. and Han et al., this study used all slices of the CT

images as an input to the models. Furthermore, we tested if the inclusion of patient

clinical data would be useful. Our study found that the specific clinical data included

did not have an impact on the classification.

In the future, improved models might be constructed by the addition of blood

and urine biomarkers as clinical features. Our methodology can be seen as the next

course of action after determining that the tumor is malignant. Therefore, performing

a classification for differentiating benign and malignant cases prior to the application

of our method can be considered. In addition, automated segmentation is crucial in

order for this methodology to be applicable in a real clinical environment. Increasing

the size of the data set to achieve better representation of other histologic subtypes

can also be considered in order to answer different classification problems.
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6. CONCLUSION

We proposed two different models based on machine learning algorithms to label

the malignant tumor cases as ccRCC or non-ccRCC using relevant radiomic features

extracted from renal CT images. Both models produced similar results which can

be considered as encouraging. These types of classifiers were considered for the first

time. This work supports the objective of having a fast and non-invasive technique

in the diagnosis process of RCC patients; specifically for deciding the tumor histologic

subtype.
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