
MODULAR SAFETY-CRITICAL CONTROL OF LEGGED ROBOTS

by

Berk Tosun

B.S., Mechanical Engineering, Middle East Technical University, 2018

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Systems and Control Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Evren

Samur; his continuous support and understanding guided me through the challenges.

I thank Assist. Prof. Sinan Öncü for his lasting support. I would also like to thank

Prof. Dr. Duygun Erol Barkana for accepting to be a jury member of my thesis.

This project is supported by the Scientific and Technological Research Council

of Turkey (TÜBİTAK #118E922).

I am grateful to the SoftExo research group for their generous support and hard

work. My gratitude also goes to Ruben Grandia from ETH Zurich, Robotic Systems

Lab for clarifying my questions.

I thank my dear friend and colleague Emre Tanfener who has helped me through

countless long discussions.

Finally, I thank my family for their love and understanding: my father, Halil, and

my brother Bilgehan for inspiring me; his lovely wife Özge and their children Alaz and

Uraz for generously spreading joy; my brother Tolgahan for being there for me, mostly

for a good laugh; my mother Saniye for her love, wit, and kindness; my sweetheart

Hilal Say, for her patience, support and love.

iv

ABSTRACT

MODULAR SAFETY-CRITICAL CONTROL OF LEGGED

ROBOTS

With recent performance improvements, legged robots will soon enter our lives

to stay. Various control algorithms are already employed in deploying existing robots,

and many more algorithms are still in the making. Safety concerns during the opera-

tion of legged robots must be addressed to enable their widespread use and ease their

development. Especially machine learning-based control methods would benefit from

model-based constraints to improve their safety. This thesis presents a modular safety

filter to improve safety, i.e., reduce the chance of a fall of a legged robot. The availabil-

ity of a robot capable of locomotion is assumed, i.e., a nominal controller exists. During

locomotion, terrain properties around the robot are estimated through machine learn-

ing which uses a minimal set of proprioceptive signals. A novel deep-learning model

utilizing an efficient transformer architecture is used for terrain estimation. A quadratic

program combines the terrain estimations with inverse dynamics and a novel control

barrier function constraint to filter and certify nominal control signals. The result is

an optimal controller that acts as a filter and the filtered control signal allows the safe

locomotion of the robot. The resulting approach is general and could be transferred

with low effort to any other legged system.

v

ÖZET

BACAKLI ROBOTLARIN MODÜLER GÜVENLİĞİ

KRİTİK KONTROLÜ

Hızla yaygınlaşmakta olan ve performansı artan bacaklı robotlar, yakın gelecekte

hayatlarımıza dahil olacak. Mevcut robotlarda halihazırda çeşitli kontrol algoritmaları

kullanılmakta ve yeni kontrol metotları geliştirilmektedir. Bacaklı robotların yaygın

kullanımlarını sağlamak ve geliştirme sürecini kolaylaştırmak için robotun güvenliği

dikkatle ele alınmalıdır. Özellikle makine öğrenmesi kullanan kontrol yöntemlerinde

güvenlik için model-temelli kısıtların da hesaba katılmasına ihtiyaç vardır. Bu tez, ba-

caklı bir robotun güvenliğini sağlamak, i.e., düşme olasılığını azaltmak, için modüler

bir güvenlik filtresi sunmaktadır. Hareket edebilen bir robotun mevcut olduğu kabul

edilmiştir, başka bir deyişle, bir nominal kontrolcü mevcuttur. Hareketli robotun

çevresindeki arazi özellikleri, sadece propriyoseptif sinyaller kullanan makine öğrenimi

yoluyla tahmin edilmiştir. Derin öğrenmede hızla yaygınlaşan verimli transformer mi-

marisi ile geliştirilen özgün bir derin öğrenme modeli, arazi özelliklerinin tahmini için

kullanılmiştır. Karesel programlama ile arazi tahminleri, ters dinamikler ve özgün bir

kontrol set fonksiyonu kısıtıyla birleştirilmiştir. Ortaya çıkan optimal kontrolcü bir

filtre görevi görerek nominal kontrol sinyallerinin güvenli olduğunu sertifikalar, aksi

halde kontrol sinyalini güvenliği ihlal etmeyecek şekilde değiştirir. Filtrelenmiş kontrol

sinyali, robotun güvenli hareketiyle sonuçlanacaktır. Ortaya konan yaklaşım geneldir

ve az bir çabayla diğer herhangi bir bacaklı robota aktarılabilir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Background . 1

1.2. Motivation . 2

1.3. Aims . 3

1.4. Outline . 4

2. PRELIMINARIES AND RELATED WORK 5

2.1. Dynamics of a Legged Robot . 5

2.1.1. Equations of Motion . 5

2.1.2. Quantifying Safety: Viability 8

2.2. Control Barrier Functions . 10

2.2.1. Modular Safety-Critical Control 11

2.3. Terrain Estimation by Data-Based Spatial-Temporal Modeling 12

2.3.1. Graph models . 12

2.3.2. Transformers . 12

2.3.3. Modeling Terrain Properties . 13

3. METHODS . 14

3.1. Modular Safety-Critical Control . 14

3.2. Modular Safety Filters . 15

3.2.1. Cart-Pole System: Naive Formulation 15

3.2.1.1. Dynamics . 16

3.2.1.2. Nominal Control . 16

3.2.1.3. Enforce Limits on Cart Velocity: CBF 17

vii

3.2.1.4. Enforce Limits on Cart Position: ECBF 17

3.2.2. Cart-Pole System: Inverse Dynamics Formulation 18

3.2.3. Quadruped Robot: Inverse Dynamics Formulation 19

3.2.3.1. Dynamics . 19

3.2.3.2. Nominal Control . 20

3.2.3.3. ID-CBF-QP . 20

3.2.3.4. Enforce Ground Clearance: ECBF 22

3.2.4. Moving From Simulation to an Actual Robot 24

3.2.5. Moving From Point Foot to Planar Foot 25

3.3. Data-Based Terrain Estimation . 26

3.3.1. Network Architecture . 26

3.3.2. Data Collection . 27

4. IMPLEMENTATIONS . 30

4.1. Safe Control of Cart-Pole Sytem . 30

4.1.1. Nominal System . 31

4.2. Safe Control of Quadruped Robot . 32

4.2.1. Nominal System . 33

4.3. Data-Based Terrain Estimation . 34

5. RESULTS AND DISCUSSION . 35

5.1. Cart-Pole Simulation . 35

5.1.1. CBF: Cart Velocity . 35

5.1.2. ECBF: Cart Position . 37

5.2. Quadruped Robot Simulation . 39

5.2.1. Friction Cone . 39

5.2.2. Ground Clearance . 41

5.3. Terrain Estimator . 44

5.4. Discussion . 48

6. CONCLUSION . 50

6.0.1. Contributions . 50

6.0.2. Outlook . 51

REFERENCES . 52

viii

LIST OF FIGURES

Figure 2.1. All possible contact modes and their transitions. 5

Figure 2.2. Floating base robot with one point foot in contact. The foot is in

stance mode, as the reaction force λ lies inside the friction cone. . 5

Figure 2.3. Evolution of some sample states and their relation with the viability

kernel: a) Limit cycle, stable walking; b) Robot leaving the viability

kernel, e.g., it tips over; c) Robot takes a single step while remaining

statically stable for the whole duration; d) Impossible state transition. 9

Figure 2.4. A safety filter acting as a filter to modify the nominal control signal. 11

Figure 2.5. Evolution of a dynamic system’s states showing set forward invari-

ance with the help of a safety filter. The safety filter plays an active

role near the boundary to keep the system in a safe set. 11

Figure 3.1. Block diagram of a two-level closed-loop control system, as com-

monly found in robotics. 14

Figure 3.2. Illustration of the cart-pole dynamic system. 15

Figure 3.3. Two independent, sample cases of the ground clearance ECBF for

an arbitrary obstacle for a single foot. a) Obstacle is already cleared

by the nominal trajectory, no interference is required. b) Obstacle

must be clarified by adjusting the nominal trajectory, ECBF can

do it in an optimal sense. 22

ix

Figure 3.4. The robot moves one of its feet, shown with red, over time. Records

for each joint at each time step are gathered and fed into the neural

network. The network predicts terrain properties. 26

Figure 3.5. Nvidia Isaac simulates 4096 Unitree A1 quadrupeds over a ter-

rain with varying roughness and friction. At each reset, robots are

placed at different locations to experience different terrain condi-

tions; the friction coefficient is replaced with a random value drawn

from a uniform distribution. 28

Figure 4.1. PyBullet simulation of cart-pole while moving in a frictionless plane. 31

Figure 4.2. PyBullet simulation of Unitree A1 with the trotting gait. 32

Figure 4.3. Control diagram of the quadruped robot. The plant is simulated

in Pybullet. 33

Figure 4.4. Openloop feet trajectory profile in the xz-plane. Front right and

rear left move in unison, then front left and rear right also move in

unison. There is a phase difference between the two diagonal pairs,

resulting in a trotting gait. 34

Figure 5.1. Cart-pole CBF-QP, safety filter enabled. CBF limits cart velocity. 36

Figure 5.2. Cart-pole CBF-QP, safety filter disabled. CBF limits cart velocity. 36

Figure 5.3. Cart-pole ECBF-QP, safety filter enabled. ECBF limits cart position. 38

Figure 5.4. Cart-pole ECBF-QP, safety filter disabled. ECBF limits cart position. 38

Figure 5.5. Comparison of optimized and measured ground reaction forces.

The robot is walking with a trotting gait on flat ground. 40

x

Figure 5.6. Decrease in lateral forces due to friction constraint after the filter

is activated. The robot walks normally until the filter starts; then

filter reduces lateral (tangential) forces. 41

Figure 5.7. Simulation results with ground clearance constraint as a 2nd order

polynomial. ECBF Constraint is active after the filter starts, and

it is only defined during flight phases of the foot. 42

Figure 5.8. Simulation results with ground clearance constraint as a 4th order

polynomial. ECBF Constraint is active after the filter starts, and

it is only defined during flight phases of the foot. 43

Figure 5.9. Training loss shown with both raw and smoothed curves. 46

Figure 5.10. Validation loss shown with both raw and smoothed curves. 46

Figure 5.11. Regression performance of the model. 47

Figure 5.12. Error residuals with the dashed line showing locally weighted linear

regression. Residuals are symmetrically distributed. 47

xi

LIST OF TABLES

Table 3.1. Raw measurements from Nvidia Isaac for each record. 29

Table 3.2. Definition of Nvidia Isaac measurements for a single robot for one

timestep. 29

Table 4.1. Cart-pole system parameters. 31

Table 4.2. Cart-pole LQR parameters. 32

Table 5.1. Cart-pole CBF parameters. 35

Table 5.2. Cart-pole ECBF parameters. 37

Table 5.3. Selected features as input for the neural network model. 44

Table 5.4. Subsampled measurements from Nvidia Isaac for each record. . . . 44

Table 5.5. Network hyperparameters . 45

xii

LIST OF SYMBOLS

ag Gravitational acceleration magnitude

f Part of control affine system - autonomous vector field

g Part of control affine system - control vector field

h Control barrier function

he Exponential control barrier function

h̄ Linear Inequality Vector

l Length of pole in cart-pole system

mc Mass of cart in cart-pole system

mp Mass of pole in cart-pole system

nc Number of contact points

nv Number of total joints

nva Number of actuated joints

nvu Number of unactuated joints

p Position of cart in cart-pole system

pbound Position bound for cart in cart-pole system

q Robot configuration

qa Decomposed robot configuration - actuated joints

qu Decomposed robot configuration - unactuated joints

t Time

u Control signal

vbound Velocity bound for cart in cart-pole system

v Robot velocities

v̇ Robot accelerations

x State vector

A State (or system) matrix

B Input (or selection) matrix

C Safe set

D State space

G Gravity terms

xiii

Ḡ Linear Inequality Matrix

Jc Geometric Jacobian relative to the base for feet in contact

Jflight Geometric Jacobian relative to the base for feet in flight state

M Mass matrix

Ma Decomposed mass matrix - actuated joints

Mu Decomposed mass matrix - unactuated joints

S Boolean array showing contact state of all feet

SE(3) Special Euclidean group comprising 3D rigid body motions

X Concatenated optimization variables vector

αcbf Gain of control barrier function

αecbf
1 Gain one of exponential control barrier function

αecbf
2 Gain two of exponential control barrier function

θ Angle of pole in cart-pole system

λ Concatenated constraint forces vector

λx Constraint force component in x-axis

λy Constraint force component in y-axis

λz Constraint force component in z-axis

µ Friction coefficient

µ̃ Effective friction coefficient

ϕ Step phase

·{i} Property related to i-th stance foot

·{j} Property related to j-th flight (swing) foot

xiv

LIST OF ACRONYMS/ABBREVIATIONS

3D Three Dimensional

6D Six Dimensional

dt Simulator timestep

CBF Control Barrier Function

CoM Center of Mass

CWC Contact Wrench Cone

DoF Degree of Freedom

ECBF Exponential Control Barrier Function

LQR Linear Quadratic Regulator

MPC Model Predictive Control

QP Quadratic Program

URDF Unified Robot Description Format

ZMP Zero Moment Point

1

1. INTRODUCTION

1.1. Background

Although wheels offer a more efficient mode of transportation, it is common to re-

place them with legs in the case of robot locomotion. As in nature, legs enable robots

to travel in challenging environments such as rough terrain, climb stairs and reach

tight spots, which might be impossible for wheeled robots. The last two decades have

seen significant improvements in legged robots. Leading firms have started commer-

cializing their products; legged robots will become increasingly common in industries

starting with environments such as warehouses and oil or gas plants. The next step for

legged robots is integrating them further into human lives and it must be done with

an emphasis on safety.

In the scope of this work, we will consider the safety of a legged robot as main-

taining its ability to locomote; it can be also stated simply but roughly as not falling.

It must be noted that there is no concrete definition of safe locomotion as there is no

agreed way of quantifying their safety [1, 2].

Contact plays a key role in the dynamics of legged systems. To accomplish their

tasks, the robots must generate proper contact forces through their interaction with the

environment [3]; in the scope of legged robots and for their main task of locomotion,

the environment is reduced to terrain alone. In other words, the terrain is a part of

the legged robots’ dynamics and it enters the dynamics via contact. Thus, achieving

safe legged locomotion requires the control systems to consider the limitations of the

terrain, i.e., legged robots must become contact-aware to operate safely.

Legged robots are switched systems. A switched systems’ dynamics transition

based on events. In the case of a legged robot, changes in the contact states, i.e.,

making and breaking contact with the ground correspond to the events. After an

event, the robot’s dynamics change and stay that way until the next event. Both the

2

environment and the robot’s morphology affects the system dynamics and it results in

a complex system. In other words, the dynamics of a legged robot are fully defined only

by considering the terrain and contact states of its feet, in addition to the ordinary

states of position and velocity of its joints. In this text, we frequently talk about

the dynamics of legged robots, and it refers to this full description of dynamics which

includes contact.

1.2. Motivation

Autonomous robotic devices require their safe operation as one of their funda-

mental properties. In current literature, the stability of legged robots is generally

considered for the case of rigid flat ground such that the complex dynamics of the sys-

tem are simplified. However, in real-world situations, this simple assumption is often

violated; the point of having legs is to clear challenging terrain. Current robots try to

handle different types of terrain as a disturbance, and they can tolerate only some of

them. To overcome this challenge, some recent work focused on estimating the effect

of the terrain [4,5]. More recent work [6,7] have shown only proprioceptive, i.e., blind,

measurements combined with deep learning are effective in considering terrain effects

while generating control actions. However, there has been no work on a dedicated

proprioceptive terrain estimator; in this work, we construct a blind terrain estimator

so that the robot gains access to the terrain properties with no additional sensors.

With the proposed approach, only the sensors required to control a robot’s actuators

should be sufficient; thus, there is no need for the cost and complexity of additional

sensors such as cameras and lidars. Though additional sensors have their place, a blind

estimator can be integrated into most robots with ease.

Another recent development is the introduction of the Control Barrier Func-

tion (CBF) framework to guarantee the safe operation of dynamics systems such as

legged robots [8]. This work uses CBF to generate constraints such that rough terrain

can be safely navigated. The terrain can be estimated by the previously described

blind terrain estimator and fed into the CBF constraint to generate an adaptive safety

filter. The resulting system will function as a filter, allowing it to be integrated easily.

3

As the proposed system is modular, it can be integrated with a minimally intrusive

fashion into complex control systems, to allow them to execute safe control actions.

In the last decade, machine learning has revolutionized many fields such as com-

puter vision and natural language processing. Robotics significantly benefit from ma-

chine learning too, mainly through deep reinforcement-learning [9]. Some of the most

impressive, high-performance controllers are obtained with such methods [7]. How-

ever, learning-based controllers can be based on simple models or no model at all, i.e.,

model-free. Combining such controllers with model-based safety constraints would be

an effective way to address safety concerns. Thus, our proposed modular safety filter

would be especially valuable in the testing and eventual deployment of learning-based

systems.

1.3. Aims

The study’s long-term goal is to improve the safe operation of robots, by improv-

ing their contact awareness. The short-term goal is to add an independent module to

a legged robot to guarantee it remains in safe states, reducing the chance of a fall. The

central hypothesis is to achieve better safety-critical control performance by estimating

the full dynamics of the system.

The first objective is synthesizing a modular, minimally intrusive filter that reg-

ulates the control signal to guarantee safety. Using the CBF framework, a safety

filter can be synthesized to filter control signals using optimal control in the form of a

quadratic program. The resulting module can easily be added to an existing control

system, making it a good choice for complex control systems.

The second objective is updating safety constraints by estimating full dynamics

which is mainly influenced by the terrain. For control purposes, the dynamics of a

legged robot could be significantly simplified by terrain assumptions. By implementing

a proprioceptive terrain estimator, the robot will get access to the terrain properties

which will include some of the unmodeled dynamics. By taking the terrain into account,

4

a safer control approach can be achieved. The terrain estimation can be used in the

proposed safety filter; alternatively, any other control system can use it as an input.

1.4. Outline

Chapter 2 introduces the literature and related work concerning the problem at

hand. The dynamics of floating base robot systems and their safety are discussed.

Then, mathematical frameworks which will be used in further chapters are introduced.

Chapter 3 details the proposed solution for safer legged locomotion. The ideas

introduced in Chapter 2 are put to work. Several CBF formulations are made in in-

creasing complexity. A novel terrain estimator and a novel CBF constraint are detailed

and discussed in this chapter.

Chapter 4 includes the implementation of the methods discussed in the previ-

ous chapter. First, the simple system of cart-pole is realized and then the developed

methods are extended to a quadruped robot.

In Chapter 5, the performance of the proposed methods is evaluated in simulation

environments. The results are reported and discussed.

Chapter 6 concludes the thesis with an outline.

5

2. PRELIMINARIES AND RELATED WORK

2.1. Dynamics of a Legged Robot

2.1.1. Equations of Motion

Contact is what makes legged systems both interesting and challenging. Legged

systems are capable of making and breaking contact with their environment. Links of

a robot can transition between 3 contact modes as shown in Figure 2.1.

Stance

Flight Slipping

Make
contact

Break
contact

Figure 2.1. All possible contact modes and their transitions.

Constraint forces, also called reaction forces, are introduced into the equation of

motion through the contacts in slipping or stance mode. A generic case of a robot

capable of making and breaking contact is shown in Figure 2.2.

λ

Inertial Frame

Robot
Base

Frame

Floating Base

6 Virtual DOFs

Figure 2.2. Floating base robot with one point foot in contact. The foot is in stance

mode, as the reaction force λ lies inside the friction cone.

6

A legged robot is an underactuated control system [10], meaning it has less num-

ber of actuators than its degrees of freedom (DoF). Define nva as the number of actu-

ated joints and nvu as the number of unactuated joints. The total DoF is defined as

nv = nva + nvu. Underactuation implies nva < nv; as a result, we have limited control

authority over the system. The structure of the dynamics will be explored later in this

section.

In the scope of robot dynamics [3, 11, 12], contact is very commonly modeled

as rigid point contacts. Compliant contact models are generally avoided due to their

numerically stiff, unstable condition. For systems such as legged robots, which can

make contact in various combinations, a popular choice is to use excess coordinates,

i.e., flight coordinates. In this case, a link is selected as the floating base link, and

a base frame is assigned to it; then the floating base frame and an inertial frame are

connected through 6 virtual, unactuated DoFs. The resulting equation of motion allows

us to represent the dynamics concisely:

M(q)v̇ +H(q,v) = Bu+ Jc(q)
Tλ, (2.1)

where

• q ∈ Rnqu+nva is the robot configuration vector which includes both actuated and

unactuated DoFs. Making the same statement formally: q = (qu, qa). nqu is the

number of parameters used to represent floating base configuration. In this work,

quaternions are used to represent base orientation. Thus nqu = 7; 3 to represent

translation, 4 for orientation.

• v ∈ R6+nva is the robot velocity, similar to q, v = (vu,va). Note q̇ �= v unless

Euler angles are used to represent base orientation. qu ∈ SE(3) includes rotations

that can be represented in different ways; regardless of the configuration of qu,

the velocity of the floating base is represented by six parameters.

• v̇ ∈ R6+nva is the robot accelerations.

• u ∈ Rnva is the control inputs, i.e., joint torques.

• M (q) ∈ Rnv×nv is the mass matrix.

• H(q,v) ∈ Rnv is the nonlinear effects: centrifugal, Coriolis, and gravity terms.

7

• B ∈ Rnv×nva is the selection matrix, B = [0nva×nvu Inva]
T .

• Jc(q)
T ∈ Rnv×3nc is the contact jacobian transposed. Define nc as the number of

contact points. For each contact point, there will be a 3D constraint force.

• λ ∈ R3nc is the vector of constraint forces, i.e., Lagrange multiplier.

• Jc(q)
Tλ is the vector of contact forces, which must be constantly updated based

on the contact status.

There is little work in the literature regarding the slipping mode of contact. It is

interesting that nature also shies away from it. Following the current literature, we will

model contact points in either stance or flight mode. A contact point in stance mode

means the contact point is stationary until contact is broken. It implies a kinematic

constraint is introduced due to fixed rigid contact points:

Jc(q)v̇ + J̇c(q)v = 0. (2.2)

Equation (2.1) and Equation (2.2) define the constrained dynamics of a legged robot.

Equation (2.1) can be decomposed into unactuated and actuated parts for further

inspection:

Mu(q)v̇u +Hu(q, v) = Jcu(q)
Tλ, (2.3)

Ma(q)v̇a +Ha(q, v) = u+ Jca(q)
Tλ. (2.4)

Equation (2.3) shows that floating base, i.e., unactuated DoF, can be controlled only

indirectly through contact forces [3]. In other words, underactuation limits the robot’s

center of mass (CoM) acceleration. Since contact forces cannot pull, the CoM cannot

accelerate toward the ground faster than gravitational acceleration. The horizontal

thrust generated by ground reaction forces is subject to friction and thus limited.

Various past works and nature itself show that it is possible to achieve excellent control,

even with all the discussed constraints [13].

Constraint forces, i.e., contact forces (in the scope of this work, we will assume

a robot only makes contact with the ground; thus, they can be thought of as ground

reaction forces as well) can only push; they cannot pull. A 3D contact force exists

for each contact point, and three mutually orthogonal vectors can represent it. To

8

be concise, we will use a coordinate frame aligned with the inertial coordinate frame.

Then the contact force at each contact point can be decomposed into its components

λx,λy λz. Since we consider the case of horizontal locomotion, we can assume the

normal component will align with the z-axis. This is commonly stated as the unilateral

contact constraint:

λz > 0. (2.5)

In line with the literature, we use Coulomb friction to model the friction. Lateral

components of the contact forces must lie within the friction cone as illustrated in

Figure 2.2. The following constraints must be satisfied; otherwise, the contact switches

to the slipping mode:

µλz ≥ ||λx||2, (2.6)

µλz ≥ ||λx||2, (2.7)

where µ is the static friction coefficient, || • ||2 is Euclidean norm.

2.1.2. Quantifying Safety: Viability

For traditional control systems, stability is analyzed by established measures such

as eigenvalues or phase margins. Legged robots require special attention due to the

complexity of quantifying the robot’s safety. Safe locomotion of legged robots is seen

as a problem of viability instead of Lyapunov stability [2, 14].

The viability kernel is defined as the set of all states where the system remains

safe, i.e., it can keep operating. For legged robots, all states where the robot can keep

its ability to locomote are included in the system’s viability kernel. By definition, any

state that is out of the viability kernel cannot return to the viability kernel, and thus it

eventually ends up in a failed state. Figure 2.3 illustrates the same statement visually

by providing some examples.

9

Viability Kernel

States doomed to fail

Contact Wrench Cone

Zero Moment Point

a)

b)

d)

c)

Figure 2.3. Evolution of some sample states and their relation with the viability

kernel: a) Limit cycle, stable walking; b) Robot leaving the viability kernel, e.g., it

tips over; c) Robot takes a single step while remaining statically stable for the whole

duration; d) Impossible state transition.

Legged robot controllers must consider the viability kernel and show effort to stay

in it. Legged robots are high DoF, switched dynamical systems; thus, it is intractable

to compute a viability kernel for them. However, it is possible to define safety criteria

as subsets of the viability kernel. There are several of them that are used widely in the

literature:

• Zero Moment Point (ZMP) [15]: Oldest and simple criteria; it requires the robot’s

CoM to lie in the convex polygon created by the contact points at all times.

• Contact Wrench Cone (CWC) [16]: The set of all possible feasible forces is con-

sidered.

10

• N-step capturability [17]: The set of states where the robot can come to a stop

in N-steps at all times.

The established safety criteria have their uses. However, their effect on the result-

ing closed-loop control system must be considered thoroughly. For example, ZMP

requires the robot to always remain statically stable. Such control results in unnatu-

ral, slow, and highly energy-inefficient locomotion. CWC improves on ZMP and allows

the controller to use a wider set of the viability kernel. Recent literature shows that

learning-based robot controllers overperform controllers synthesized by the established

safety criteria [7, 9]. Learning-based robot controllers do not necessarily consider any

such safety criteria.

2.2. Control Barrier Functions

Control Barrier Function (CBF) [8] arises from a mathematical framework that

lends itself to the synthesis of controllers which possess set forward invariance, meaning

if the system states are in a certain set initially, it stays in that set for all future

timesteps. As a model-based approach, CBF enables theoretical guarantees by checking

and restricting derivatives. There have been various applications of CBF on different

systems, such as automobiles, quadrotors, and legged robots.

The CBF framework requires us to define a CBF that denotes the system’s safety.

Define the system states as x ∈ D, where D is the entire state space of the system.

Then CBF, h : D → R, is defined so that returned scalar value must always be

positive for safe states, i.e., safe if h ≥ 0. The framework allows the construction of

linear inequality constraints that can be used in optimal controllers. Since CBF relies

on a model, it is sensitive to modeling errors common in complex systems such as

legged robots. Different learning-based methods are shown to solve such problems [18].

11

2.2.1. Modular Safety-Critical Control

CBF discussed in section 2.2 are commonly utilized to construct modular safety

filters. As shown in Figure 2.4, a safety filter can be inserted into an existing control

system after the current, or nominal, controller. Following the literature, we will im-

plement the safety filters as optimal controllers which minimize the interference to the

nominal control signal. We make use of a highly efficient convex optimization method

known as quadratic programming (QP). In a QP, we can include linear inequality

constraints allowing us to incorporate CBF constraints.

Safety FilterNominal Controller Plant

Reference

Nominal
Control
Signal

Safe
Control
Signal Output

Figure 2.4. A safety filter acting as a filter to modify the nominal control signal.

The safety filter is minimally intrusive, i.e., it will only interfere with the nominal

control signal near the boundary of the safe set to make sure the system remains in

the safe states, which is illustrated in Figure 2.5.

: Nominal control signal

: Safe control signal

Boundary of safe set

Figure 2.5. Evolution of a dynamic system’s states showing set forward invariance

with the help of a safety filter. The safety filter plays an active role near the

boundary to keep the system in a safe set.

12

Considering the discussion from Section 2.1.2, CBF are used for restricting parts

of the state space to avoid evolutions leaving the viability kernel. Instead of using

classical safety criteria such as ZMP, we incorporate the physical limits of the system

of interest and intuitive CBF constraints.

2.3. Terrain Estimation by Data-Based Spatial-Temporal Modeling

2.3.1. Graph models

Machine learning, especially deep learning, had a lot of success in various fields

recently. There has been extensive work on Graph Neural Networks for graphs with ar-

bitrary structures. Among them, Graph Convolutional Network Network is introduced

by [19]. [20] has been the first to extend their work into the skeleton-based action

recognition domain. Following their high success, various methods are introduced [21].

The measured quantities, such as 3D coordinates, of the joints are represented by con-

structing a graph. The quantities for each joint at each time step are represented as

a node in the graph. Since the nodes are distributed over both spatial and temporal

dimensions, connecting the nodes results in a spatial-temporal model.

2.3.2. Transformers

Transformer architecture has retained its popularity in deep learning since its

introduction by [22]. They remain the de facto architecture for natural language pro-

cessing with highly successful applications [23, 24]. By allowing powerful modeling of

long-range relationships, transformers obtain an edge over other alternatives in some

applications.

Recently, the work on the transformer expanded to different domains, mainly

computer vision [25, 26]. We see that they can achieve impressive results with scale

and tedious training.

13

The self-attention employed in the transformer gives it its expressive power, but it

is costly to compute. It especially suffers from quadratic memory complexity. Recent

studies on transformers enabled various methods to approximate memory-intensive

computation of the original transformer. With a growing number of methods, they,

called efficient transformers, enable the modeling of long sequences [27, 28].

The regular transformer with the self-attention mechanism is roughly equivalent

to a graph network working on a fully-connected graph [29]. Extending the discussion

to the efficient transformer architectures, we can think of sparse graphs instead of

fully-connected ones.

2.3.3. Modeling Terrain Properties

It is plausible to use deep learning for modeling the terrain properties. Previ-

ous work has shown that it is possible to estimate terrain properties by only using

proprioceptive measurements [30]. Namely, the main ones are:

• Joint torques

• Joint positions

• Joint velocities

• Base velocity

• Desired velocity

By storing the mentioned measurements for short amounts of time and processing

them accordingly, it is possible to achieve very effective reinforcement learning models.

Further analysis of the models shows that the model can accurately reconstruct the

terrain. With terrain properties, two important ones affecting the robot dynamics are

meant: friction coefficient and a rough estimate of the elevation map of the terrain,

i.e., macroscopic surface roughness.

A similar problem is skeleton-based action recognition, where graph-based models

have enjoyed success [20]. The measurements are structured as a graph and processed.

14

3. METHODS

3.1. Modular Safety-Critical Control

In the scope of this thesis, two independent modules are developed to enable

modular safety-critical control. The first is the safety filter, detailed in Section 3.2,

an optimal controller that minimally modifies the nominal control signal and ensures

that safety constraints are satisfied. The second is the terrain estimator, discussed

in Section 3.3, which estimates terrain properties such as friction. As a legged robot

navigates, its environment changes; since its dynamics depend on the environment,

updating constraints, would allow the robot to adapt to the terrain, allowing safe

locomotion. In our scope, the constraints are targeted towards safety; thus, resulting

control will be safer. Figure 3.1 illustrates the proposed system visually; a two-level

control loop with different frequencies is shown. Such control schemes are getting

common in robotics and are well motivated [31, 32].

High-Level
Controller

Low-Level
Controller

Perception

Terrain Estimator

Safety Constraint

Safety Filter

Safety Constraint

Safety Constraint

Low Frequency
Loop: 20-100 Hz High Frequency Loop: 250-1000 Hz

Plant

: Part of the nominal system, required

: Part of the nominal system, optional

: Part of the proposed system

Output

Safe
Control
Signal

Nominal
Control
Signal

: Constraint update, optional

Figure 3.1. Block diagram of a two-level closed-loop control system, as commonly

found in robotics.

15

3.2. Modular Safety Filters

As discussed in Section 3.1 and Section 2.2.1, we will include safety constraints

by using modular safety filters. Since we implement the safety filter as an optimization

problem, it is flexible and can contain multiple constraints. For the scope of this work,

we will focus on CBF constraints.

The CBF framework allows different implementations. The following subsections

implement a safety filter satisfying some CBF constraints in increasing complexity.

First, a low-complexity control system, cart-pole, is utilized to implement and demon-

strate different implementations. Then, we transfer the same developed implementa-

tion to a legged robot. Novel parts of our formulation are Section 3.2.1.4, Section 3.2.2

and Section 3.2.3.4.

3.2.1. Cart-Pole System: Naive Formulation

The classical control benchmark of the cart-pole problem is selected as the starting

point. The 2-DoF system has one actuated, p, and one unactuated, θ, DoF. It is a

simple system as we do not need to model contact dynamics, additionally, there are

no switched dynamics since the systems never leave the ground. It is illustrated in

Figure 3.2.

p

θ

m
p

u

m
c

l

Figure 3.2. Illustration of the cart-pole dynamic system.

16

3.2.1.1. Dynamics. Since it is a relatively simple system, the equations of motion

can be obtained relatively easily by manual methods, e.g., the method of Lagrange.

Eventually, any process yields the equations of motion:

M(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (3.1)

where

M (q) =

mc +mp mplcosθ

mplcosθ mpl
2

 , C(q, q̇) =

0 −mplθ̇sinθ

0 0

 , (3.2)

G(q) =

 0

mpglsinθ

 , B =

1
0

 . (3.3)

Note, Equation (3.1) is written in a slightly different form than the general form shown

in Equation (2.1). For the cart-pole system, instead of six, only one virtual DoF is

introduced via p. Then, for q = (p, θ), q̇ = v holds allowing us to use q̇ for velocities

equivalently.

Equation (3.1) is linearized about the pendulum-up configuration and written in

state-space representation:

θ̇

θ̈

ṗ

p̈

=

0 1 0 0

mc+mp

mcl
ag 0 0 0

0 0 0 1

−mp

mc
0 0 0

θ

θ̇

p

ṗ

+

0

− 1
mc

l

0 1
mc

0

u, (3.4)

ẋ = Ax+Bu. (3.5)

3.2.1.2. Nominal Control. Using the linearized dynamics in Equation (3.5), state con-

trol is achieved through an LQR controller. The obtained closed-loop system can

simultaneously maintain the pendulum-up state and follow references for cart position.

We will call the closed-loop system response as nominal control from now on.

Now that we have the nominal controller set up, we can construct some CBF to

enforce safety constraints.

17

3.2.1.3. Enforce Limits on Cart Velocity: CBF. Regular CBF must have a relative

degree of 1, e.g., the control inputs should be available in the first derivative of the

CBF. For the cart-pole, this means we can only constrain the velocities: namely the

linear velocity of the cart and the angular velocity of the pendulum. Following CBF

enforces a symmetric bound on the cart velocity:

h(x) = |x4 − vbound|, (3.6)

= |ṗ− vbound|. (3.7)

Then as described in Section 2.2, the safe states are defined as h(x) ≥ 0. We can

enforce this limit by embedding the optimal control problem in a QP. This formulation

is known as CBF-QP:

argmin
u∈R1

1

2
||u− unominal||22 (3.8)

s.t. ḣ(x, u) ≥ −α(h(x)). (3.9)

where Equation (3.8) is the objective function that aims to minimally modify the

nominal control signal; Equation (3.9) is the CBF constraint for the cart velocity, it

combines the systems’ dynamics with the CBF:

ḣ(x, u) = Lfh(x) + Lgh(x), (3.10)

where Lfh(x) = ∇h(x) · f(x) is the Lie derivative of f and h; f and g are used to

define a nonlinear affine control system, in the general form:

ẋ = f(x) + g(x)u. (3.11)

Equation (3.11) can be obtained from the state equations, Equation (3.5).

3.2.1.4. Enforce Limits on Cart Position: ECBF. A more powerful CBF variant known

as Exponential-CBF (ECBF) can be used in the case of control barrier functions for

arbitrarily high-relative degrees [33]; i.e., ECBF generalizes CBF. For the cart-pole

system we use it to enforce a symmetric bound on the cart position so that the cart

cannot go further than the specified limit. The resulting CBF is of relative degree 2;

since acceleration is related to the second derivative of the position.

18

To utilize the ECBF approach, we first start by defining a CBF for the cart

position:

h(x) = |x3 − pbound|, (3.12)

= |p− pbound|. (3.13)

Since the time derivative of Equation (3.12) does not contain the control input, it is

not possible to directly use it for the barrier constraint. We solve the issue using the

ECBF approach, by defining an auxiliary function he(x), called ECBF, as:

he(x, ẋ) = ḣ(x) + α1(h(x)). (3.14)

Similar to Equation (3.9), an inequality including the control input, u, will be obtained

by differentiating he(x, ẋ):

ḣe(x, ẋ, u) ≥ −α2(he(x, ẋ)). (3.15)

Note, ḣ(x) in Equation (3.14) is a conventional time derivative, whereas ḣe(x, ẋ, u) in

Equation (3.15) requires a Lie derivative as given in Equation (3.10).

3.2.2. Cart-Pole System: Inverse Dynamics Formulation

So far, we have used the CBF-QP formulation given in Equation 3.8 to enforce

the barrier constraints. Though it works perfectly fine for a low DoF system such as a

cart-pole, the CBF-QP formulation is not the best option for higher DoF systems. It is

especially problematic for legged systems which have switched dynamics based on their

contact configuration. As explained in Section 2.1.1, the contact forces enter the dy-

namics through the term JT (q)λ where λ is the constraint forces. In addition, we have

kinematic constraints due to rigid contacts. In CBF-QP formulation, we must embed

the dynamics into the barrier inequality constraints, as shown in Equation (3.10). This

requires two undesirable operations: inversion of the mass matrix and solving for λ [34].

Finding λ is challenging; it requires the assumption that kinematic contact constraints

are satisfied. Inversion of the mass matrix tends to get numerically stiff [35]. Thus, it

is preferable to have a different formulation without these issues.

19

We can avoid these issues by using the already mature inverse dynamic schemes.

The CBF inequality constraints which are affine in the control input, joint torques can

be directly integrated into the inverse dynamics formulation [34,36]. For the cart-pole,

we get the following controller, which we will call as ID-CBF-QP:

argmin
u

1

2
||u− unominal||22 (3.16)

s.t. M(q)q̈ +H(q, q̇) = Bu (3.17)

ḣ(q, q̇, u) ≥ −α(h(q, q̇)) (3.18)

where q = (x1, x3) = (θ, p) is the robot configuration; Equation (3.17) enforces the

physics and Equation (3.18) enforces the barrier constraint. Note, we do not need the

Lie derivatives from Equation (3.10) anymore in Equation (3.18); the dynamics are

already embedded into the problem by Equation (3.17). Though a regular CBF is

shown in this formulation; it can be replaced with an ECBF without any additional

effort.

3.2.3. Quadruped Robot: Inverse Dynamics Formulation

Moving on to legged robots, we focus on quadruped robots. A quadruped is

preferred because:

• It allows relatively simpler dynamics due to their almost universal point feet

design, compared to for example bipeds.

• Quadrupeds generally employ a design with light legs whose dynamics are fast

and easier to control.

• There is extensive literature, some software, and access to different control schemes.

3.2.3.1. Dynamics. Quadrupeds are high DoF systems. Thus obtaining and computing

their equations of motion is not trivial. We make use of Pinocchio [37], which is

a carefully optimized library for modern rigid body algorithms for poly-articulated

systems based on revisited Roy Featherstone’s algorithms. Pinocchio can build models

from URDF (Unified Robotics Description Format), which is the standard format for

20

representing robot models. Thus, we use Pinocchio with modular software to achieve

a general solution, i.e., independent of the robot.

3.2.3.2. Nominal Control. We use some existing nominal controllers from the litera-

ture. The control approach does not matter, as long as it generates a control signal

for the actuated joints, i.e., computes unominal. Section 4.2.1 details the nominal

controller.

In Section 3.1, a modern control scheme is introduced; though the shown system

consists of two levels, one for planning and one for acting, note that there are no such

restrictions. It is only expected that joint torques are generated by the nominal con-

troller. We develop our objective function in the following sections based on unominal.

Alternatively, it is possible to formulate our optimization problem based on desired

accelerations, v̇desired. Thus, different types of controllers can be supported. For ex-

ample, if there exists some trajectory planning, it can be added to the formulation by

only adjusting the objective function.

3.2.3.3. ID-CBF-QP. For the inverse dynamics controller, we have a similar formu-

lation to that of the cart-pole system given in Section 3.2.2; however, we should add

contact dynamics and its related constraints into the formulation:

argmin
X=(v̇,u,λ)

1

2
||u− unominal||22 (3.19)

s.t. M (q)v̇ +H(q,v) = Bu+ JT
c λ (3.20)

Jc(q)v̇ + J̇c(q)v = 0 (3.21)

λ{i}
z > 0 (3.22)

µ̃λ{i}
z ≥ |λ{i}

x | (3.23)

µ̃λ{i}
z ≥ |λ{i}

y | (3.24)

ḣ(q,v,u) ≥ −α(h(q,v)) (3.25)

− τmax ≤ u ≤ τmax, (3.26)

where we see the familiar terms from Section 2.1.1:

21

• Equation (3.19) is the objective function. Three different decision variables, con-

catenated into vector X, will be optimized. The decision variables are:

(i) v̇ ∈ Rnv , accelerations for all degrees of freedom,

(ii) u ∈ Rnva , torques for actuated joints,

(iii) λ ∈ R3nc , concatenated ground reaction forces from each contact point; since

we are working on robots with point feet, each stance foot contributes only

one contact point.

Note, v̇ can be included in the objective; for example, it can replace u−unominal

with v̇ − v̇desired. Or both u and v can be used with weights. This flexibility is

one big advantage of optimization-based control.

• Constrained equations of motion are included as constraints:

(i) Equation (3.20) is the generalized equation of motion.

(ii) Equation (3.21) is the kinematic constraint to keep contact points stationary.

• Stance feet must maintain their contact mode; it can be done by including friction

cone constraints:

(i) Equation (3.22) is the unilateral contact constraint to avoid loss of contact

for each stance foot, foot {i}.
(ii) Equation (3.23) and Equation (3.24) are the linearized friction cone con-

straints to avoid slipping for each stance foot, foot y. We use a square

pyramid to get an inner approximation; it requires the use of µ̃ = µ/
√
2 as

the effective friction coefficient.

• Equation (3.25) is the control barrier constraint.

• Equation (3.26) is the joint torque limits.

Inverse dynamics formulation for legged systems is quite powerful; it allows us to

check for many failure cases since it takes contact forces into account, which might cause

a fall in case the nominal controller does not consider them. If the nominal controller is

already an ID-QP, one can simply add the CBF constraint to the formulation, achieving

the same effect. Note that the formulation can be further extended.

22

3.2.3.4. Enforce Ground Clearance: ECBF. As an inequality constraint, we can in-

corporate CBFs into the optimization problem, as shown in Equation (3.25). There

can be multiple CBF constraints as long as the QP remains feasible. In this instance,

we define a novel CBF constraint to keep the feet from hitting the ground by including

the terrain profile.

he
ig

ht

0 1

: h < 0, failed: foot collided with obstacle

: h > 0, safe: foot is clear of the obstacle

: Nominal foot trajectory

: Obstacle / Terrain profile

he
ig

ht

0 1

a) b)

Figure 3.3. Two independent, sample cases of the ground clearance ECBF for an

arbitrary obstacle for a single foot. a) Obstacle is already cleared by the nominal

trajectory, no interference is required. b) Obstacle must be clarified by adjusting the

nominal trajectory, ECBF can do it in an optimal sense.

We apply an ECBF to enforce ground clearance of the robot’s end-effectors, i.e.,

its swing feet; so that its feet do not hit obstacles or adepts to uneven terrain while

walking. Figure 3.3 describes the constraint by illustrating two sample cases. We start

the formulation with a position-based CBF:

h(q,ϕ) = Wp{j}
z (q)− z{j}(ϕ), (3.27)

where ϕ ∈ [0, 1] is the phase variable, denoting the progress of the swing phase;

Wp
{j}
z (q) : Rnv → R is the z-axis position (height) of the {j}th swing foot in the world

frame; z{j}(ϕ) : R → R maps the phase variable to desired ground clearance height for

the {j}th swing foot in the world frame. z(ϕ) can be thought as the obstacle heights

over the gait period. Note, both q and ϕ are functions of time, t.

23

To use the ECBF approach, we need ϕ and its derivatives. In this work, we define

the phase variable, ϕ as follows:

ϕ(t) =
t mod periodgait

periodgait
. (3.28)

Its time derivates are given by:

ϕ̇ =
1

periodgait
, (3.29)

ϕ̈ = 0. (3.30)

Since the ground clearance CBF, h, is a position-based CBF, it cannot be directly

used [38]. We have covered a similar case in Section 3.2.1.4; again, we encounter

a control barrier function for a second relative degree safety constraint. We solve

this problem as we did earlier; using the ECBF approach by defining an auxiliary

function, he:

he(q,v,ϕ) = ḣ(q,v,ϕ) + α1h(q,ϕ). (3.31)

Then, the ECBF constraint is:

α2he(q,v,ϕ) + ḣe(q,v, v̇,ϕ) ≥ 0. (3.32)

Taking the derivatives and substituting, we get:

α2he(q,v,ϕ) +
W p̈{j}

z (q)− z̈{j}(ϕ)ϕ̇+ α1(
W ṗ{j}

z (q)− ż(ϕ){j}ϕ̇) ≥ 0. (3.33)

With the help of Jflight, Jacobian of the flight feet, we recover one of the optimization

variables; v̇:

α2he(q,v,ϕ)+
W (J̇

{j}
flight(q)v+J

{j}
flight(q)v̇)z−z̈{j}(ϕ)ϕ̇+ α1(

W ṗ{j}
z (q)−ż{j}(ϕ)ϕ̇) ≥ 0.

(3.34)

Note, the ECBF constraint, Equation (3.32), does not directly include the control

signal, u. However, the CBF framework requires u in the final constraint. Equa-

tion (3.32) can serve as a valid CBF because, v̇ appears in affine relation to u in

Equation (3.20) [36].

24

We use readily available, highly optimized QP solvers; as long as the inequality

constraint is written in the standard form, we can use any off-the-shelf solver:

ḠX ≤ h̄, (3.35)

where Ḡ is the linear inequality matrix, h̄ is the linear inequality vector; note Ḡ, h̄

are not related to G and h, we use bar to avoid any confusion. Reorganizing Equa-

tion (3.34) to match the format of Equation (3.35), we get the inequality constraint in

the standard form:

−J
{j}
flight(q) 01×nva 01×3nc

−J
{j+1}
flight(q) 01×nva 01×3nc

...
...

...

v̇

u

λ

 ≤

α2he(q,v,ϕ) +
W (J̇

{j}
flight(q)v)z − z̈{j}(ϕ)ϕ̇+ α1(ḣ(q,v,ϕ))

α2he(q,v,ϕ) +
W (J̇

{j+1}
flight (q)v)z − z̈{j+1}(ϕ)ϕ̇+ α1(ḣ(q,v,ϕ))

...

 ,

(3.36)

where we add one row for each foot in flight; since J
{j}
flight(q) ∈ R1×nv is a row vector.

3.2.4. Moving From Simulation to an Actual Robot

The formulation from Section 3.2.3.3 is sufficient for simulation purposes. How-

ever, integration into an actual robot requires more effort. A C++ controller imple-

mentation is the de facto standard in robotics to run the controller in an embedded

system. Another important point is the real-time performance of our optimization

problem; it is desired to have high-frequency control loops on the order of 250-1000

Hz. Therefore, it is desired to solve the optimization problem under 1 ms. The time

complexity of the optimization problem is O(n3) where n is the number of decision

variables. It is possible to exploit the structure of the dynamics to reduce the number

of decision variables, thus, speeding up its execution.

Equation (3.20) and Equation (3.21) can be written with actuated and unactuated

parts separated as shown in Equation (2.3). The control signal, u, can be expressed as

an affine function of other variables. Thus, it is removed from the formulation. This

would require the objective function to be formulated with respect to v̇ as discussed

25

in Section 3.2.3.3. Though the problem size decreases moderately, the reductions in

solution time are significant due to O(n3) time complexity [39].

A C++ implementation (with Python bindings) exists from the same group that

created Pinocchio: TSID [39] is an optimization-based inverse-dynamics control li-

brary that uses Pinocchio for efficient computations. One can extend TSID such that

CBF constraints are handled as well. This would achieve a faster, embedded-ready

implementation of the formulation from Section 3.2.3.3. An example of such an imple-

mentation with a different, not open-sourced, package can be found in [36].

3.2.5. Moving From Point Foot to Planar Foot

Building on top of the previous section, the robot’s feet geometry is the necessary

change. For robots with a planar foot, point feet are replaced with planar rectangular

surfaces. Any planar surface contact can be equally represented by several contact

points placed at the vertices of the contact surface.

TSID has support for such geometries. It defines a special force-generator matrix

to enable the mapping between multiple 3-D force vectors and 6-D motion vectors [39].

26

3.3. Data-Based Terrain Estimation

3.3.1. Network Architecture

Time

• 𝑞
i
t

• 𝑞
i̇
t

• 𝜏
i
t-1

• 𝑞
i
t-2

• 𝑞
i̇
t-2

• 𝜏
i
t-3

Position embedding:
time + joint index

Transformer Encoder

MLP
Head

Terrain properties

Figure 3.4. The robot moves one of its feet, shown with red, over time. Records for

each joint at each time step are gathered and fed into the neural network. The

network predicts terrain properties.

Section 2.3.3 discusses the existing literature on modeling terrain with machine

learning. In this section, we propose a new approach in the same vein. Instead of

constructing a sparse graph by hand, we use a much denser graph in which every node

is connected. It is possible to achieve such a model using Transformer architecture [22].

The full attention mechanism powering the Transformers is loosely equivalent to a com-

plete graph model. In this sense, each node in the graph becomes a token. The tokens

are constructed by combining the mentioned proprioceptively available measurements.

The full attention mechanism is not suited for long sequences; it has O(n2) time and

memory complexity, where n is the number of elements in the sequence. To remedy

this issue, a class of transformers known as efficient transformers are introduced [27];

they exploit the structure of the naive full-attention to achieve better algorithmic com-

plexity. For our purposes, we use a popular one, Linformer [28]. Linformer reduces the

O(n2) complexity to O(n), allowing us to use it for long sequences with little loss of

expression.

27

The proposed network is illustrated in Figure 3.4. Network architecture draws

heavy inspiration from the vision transformer [25]. Proprioceptive inputs of the neural

network are gathered for each joint at each timestep, and they are composed of the

following:

• joint position, q

• joint velocity, q̇

• joint torque, τ

Measurements of the joint quantities over a time window are concatenated with position

embeddings and fed into the network. Since the torque values for the current time frame

are not available, the torque values are shifted one step into the future to match the

size of the tokens in all time frames. Using such a model, estimated terrain properties

can be fed into the ID-CBF-QP described in Section 3.2.3.3:

• Friction cone constraints, Equation (3.23) and Equation (3.24), can be improved

by updating µ.

• CBF ground clearance constraint, Equation (3.25), can be improved by updating

z(ϕ) in Equation (3.27).

3.3.2. Data Collection

To train the terrain estimation model described in Section 3.3.1, large amounts

of data are required. To obtain such data, we can use Nvidia Omniverse Isaac [40].

It is a GPU-accelerated simulator that can achieve an order of faster simulations than

the common CPU-based simulators.

Building on the work of [41], we can use Nvidia Isaac to simulate and gather

data for legged robots. Figure 3.5 shows the simulation of 4096 parallel Unitree A1

quadruped robots, which is one of the popular choices for simulation and reinforcement-

learning-based works. The simulation is able to reach 100,000 steps per second on an

Nvidia RTX 3080 12GB GPU.

28

Collected data are stored as 3D arrays: the first dimension represents timesteps,

the second is the environments, and the third is the measurements. We record the

simulation observations to create a dataset. Due to the significant size of the records,

care is required to keep batch sizes manageable; so they fit into memory. Table 3.1

displays values of the dimensions for each record. Measurements are given in Table 3.2.

Figure 3.5. Nvidia Isaac simulates 4096 Unitree A1 quadrupeds over a terrain with

varying roughness and friction. At each reset, robots are placed at different locations

to experience different terrain conditions; the friction coefficient is replaced with a

random value drawn from a uniform distribution.

29

Table 3.1. Raw measurements from Nvidia Isaac for each record.

Parameter Value

Simulator timestep (dt) 0.005 s

Number of timesteps 120

Total time 0.6 s

Number of environments (robots) 4096

Number of measurements 252

Table 3.2. Definition of Nvidia Isaac measurements for a single robot for one timestep.

Name Size

Base linear velocity 3

Base angular velocity 3

Projected gravity 3

Commanded base linear velocity 3

Joint positions 12

Joint velocities 12

Joint torques, applied in the last step 12

Height map grid around robot feet 187

Feet contact state 4

Friction coefficient 1

Joint torques, about to be applied 12

Total 252

30

4. IMPLEMENTATIONS

Theoretical methods discussed in Chapter 3 are realized in simulation environ-

ments. I have implemented a software package to work on mechanical systems via

optimal control. The complete source code will be made available in [42]. Our im-

plementation intends to be a general-purpose dynamical system control package for

research. The main features are implemented while working on the simpler cart-pole

system, discussed in Section 4.1. We have further specialized the package for working

with legged robots; a quadruped robot is used during the implementation, details are

given in Section 4.2.

Our software package uses PyBullet [43] for simulation and Pinocchio for rigid

body computations. PyBullet is used only for simulation and observation; all calcula-

tions are carried out via Pinocchio. This would allow an easy transition to an actual

robot, where highly efficient and embedded-ready Pinocchio is fully utilized. For op-

timization, we use the interface provided by qpsolvers [44]; through it, we have access

to popular, powerful solvers such as CVXOPT [45], OSQP [46].

Different CBF formulations discussed in Chapter 3 result in different constraints.

We have an implementation that allows us to define and add constraints easily to the

optimization problem. After the controller is set up the performance can be evaluated

by running simulations in different environments and with different initial conditions.

4.1. Safe Control of Cart-Pole Sytem

We have applied the safe control methods discussed in the previous chapter to

the cart-pole system, described in Section 3.2.1. For the cart-pole system, we have two

different implementations:

• A minimal implementation for cart-pole is developed [47]. Instead of simulation,

ode45 implementation of Scipy [48] is used to integrate the equations of motion.

31

• Cart-pole system is also implemented in our main package [42] as well, where we

use a rigid body dynamics simulator, PyBullet. Figure 4.1 shows the simulation

environment in PyBullet.

The results from both implementations, direct integration of equations of motion and

PyBullet simulation, agree as expected. While using the simulation environment a

frictionless, flat plane is used thus the contact forces do not play any critical role. The

simpler implementation with integrating equations of motion yields the same results.

4.1.1. Nominal System

The python-control [49] package is utilized to define the system dynamics given

in Section 3.2.1.1. Then a LQR controller is constructed as the nominal controller.

Figure 4.1. PyBullet simulation of cart-pole while moving in a frictionless plane.

Table 4.1 shows the system parameters; Table 4.2 shows the parameters used for

the nominal controller.

Table 4.1. Cart-pole system parameters.

Parameter Value

mc 5 kg

mp 2 kg

l 1.5 m

32

Table 4.2. Cart-pole LQR parameters.

Parameter Value

diag(Q) [10.0, 1.0, 10.0, 100.0]

R 1.0

4.2. Safe Control of Quadruped Robot

We have further developed our software package to include the safe control meth-

ods for legged robots, which are explained in Section 3.2.3. In the scope of this thesis,

we limit the work to a quadruped robot with point feet. Again PyBullet provides the

simulation environment, and Pinocchio provides rigid body dynamics algorithms for

required model calculations such as mass matrix, jacobians, etc.

The selected quadruped robot is Unitree A1, shown in Figure 4.2. A1 is a popular

choice for such purposes [50]. A1 has 12 actuated joints, 3 for each leg; it weighs 12

kilograms. The robot’s specifications are available online, the details can be found in

the openly available URDF.

Figure 4.2. PyBullet simulation of Unitree A1 with the trotting gait.

33

4.2.1. Nominal System

A simple control scheme is applied for the nominal control of the robot. Figure 4.3

shows the control diagram used in this section. Though the used system is simpler than

the two-loop version shown in Figure 3.1, the safety filter can be directly integrated

into such, more complex systems.

Plant
Safety
Filter

PD
Control

Inverse
Kinematics

Trajectory

Safe
joint

torques

Nominal
joint

torquesq
des

 , q̇
des

Desired
Feet

positions

: Part of nominal control system

: Part of safe control system

q , q̇

, S

Figure 4.3. Control diagram of the quadruped robot. The plant is simulated in

Pybullet.

As shown in Figure 4.3, an open loop trajectory is used. The trajectory for one

foot over a step cycle is shown in Figure 4.4. Though the A1 robot can move in 3D, our

implementation uses a planar motion for each foot. Right legs lead left legs by half a

period, resulting in a trotting gait, which can be seen in Figure 4.2. It should be noted

that the trotting gait is a form of dynamic walking; which cannot be achieved by simple

methods such as ZMP. Based on the sampled trajectory, desired robot configuration

and velocity are forwarded to a PD controller, where we get the nominal joint torques.

The nominal control signal, in this case, nominal joint torques are one of the

two inputs to the safety filter. The safety filter computes the safe joint torques by

minimally modifying the nominal torque values as detailed in Equation (3.19). The

34

robot state is provided to the safety filter as its second input by the feedback loop. S

denotes a boolean array of size four which includes the contact status of each foot. By

using S, we formulate proper constraints for each foot: if the foot is in stance mode,

then it must obey the friction cone constraints; if it is in flight mode, it must follow the

trajectory and also the ground clearance ECBF constraint given by Equation (3.36).

���� ���� ���� ���� ���� ���� ����

�����������������

����

����

����

����

����

����

�
��
��
�
�
�
��
�
��
��
�
�

����������

Figure 4.4. Openloop feet trajectory profile in the xz-plane. Front right and rear left

move in unison, then front left and rear right also move in unison. There is a phase

difference between the two diagonal pairs, resulting in a trotting gait.

4.3. Data-Based Terrain Estimation

The network architecture specified in Section 3.3.1 is implemented with Py-

Torch [51]. A dataset is created with the help of Nvidia Isaac by the means of

GPU simulation as discussed in Section 3.3.2. We have split the dataset into three

sets: train, validation, and test. Hyperparameters of the network are optimized with

random search. The model with the best validation performance is selected and its

generalization capabilities are verified with the test split.

35

5. RESULTS AND DISCUSSION

We developed a flexible implementation as detailed in Chapter 4. In this chapter,

our implementation is used to evaluate the performance of the proposed methods in

simulation environments for the two dynamical systems of interest: the cart-pole system

and the quadruped robot.

5.1. Cart-Pole Simulation

In the methods, we have detailed two ways of formulating safety filters for the

cart-pole system: the naive formulation given in Section 3.2.1 and the inverse dynamics

formulation given in Section 3.2.2. We use the naive formulation, CBF-QP, in this

section; though, both formulations yield the same results. The nominal controller used

for the simulations below is described in Section 4.1.1.

5.1.1. CBF: Cart Velocity

CBF for cart velocity limits discussed in Section 3.2.1.3 is implemented, and

the related parameters are shown in Table 5.1. Two simulations are performed, they

only differ on whether the safety filter is enabled or disabled. Figure 5.1 shows the

safety filter enabled case, we see that as the cart velocity reaches the velocity limit

specified by the CBF constraint, vbound, the control signal is modified temporarily. For

other timesteps, the control signal remains unaltered. Figure 5.2 shows the safety filter

disabled case for contrast. We observe that the CBF framework works as expected,

one can note the safety filter interference causes a sudden change in the control signal.

Table 5.1. Cart-pole CBF parameters.

Parameter Value

vbound 0.45 m/s

αcbf 10

36

� � �� �� ��

��������

���

���

���

���

���

���

���

�
�
�
��
��
�
��

��
��
�
�

������������

�

�����

�����

���������

��� ��� ��� ���

�����������������

���

���

���

���

���

�
�
��
��
�
��
�
��
�
��
�
��

������������������������

���

���

���

���

����

����

����

����

���� ����

�������������������

�����

�����

�����

�����

�����

�����

�
�
��
��
�
��
�
��
�
��
��
�
��
�

������������������������

���

���

���

���

����

����

����

����

� � �� �� ��

��������

�

�

�

�

�

�
�
��
�

���

���������

����������

� � �� �� ��

��������

�

�

�

�

�

�
�
��
�

�������������

�

���������

����������

� � �� �� ��

��������

���

���

���

���

���

���

���

���

�
�
��
�
��
�
�

��������������

�������

��������

Figure 5.1. Cart-pole CBF-QP, safety filter enabled. CBF limits cart velocity.

� �� ��

��������

���

���

���

���

���

���

���

�
�
�
��
��
�
��

��
��
�
�

������������

�

�����

�����

���������

��� ��� ��� ���

�����������������

���

���

���

���

���

�
�
��
��
�
��
�
��
�
��
�
��

������������������������

���

���

���

���

����

����

����

����

���� ����

�������������������

�����

�����

�����

�����

�����

�����

�
�
��
��
�
��
�
��
�
��
��
�
��
�

������������������������

���

���

���

���

����

����

����

����

� �� ��

��������

�

�

�

�

�

�
�
��
�

���

���������

����������

� �� ��

��������

�

�

�

�

�

�
�
��
�

�������������

�

���������

����������

� �� ��

��������

���

���

���

���

���

���

���

���

�
�
��
�
��
�
�

��������������

�������

��������

Figure 5.2. Cart-pole CBF-QP, safety filter disabled. CBF limits cart velocity.

37

5.1.2. ECBF: Cart Position

ECBF for cart position limits discussed in Section 3.2.1.4 is implemented; Ta-

ble 5.2 shows the related parameters for the ECBF. Similar to the previous CBF case,

two simulations are performed, one with the safety filter and the other with the safety

filter off. Figure 5.3 show the case with the safety filter on, and Figure 5.4 show the

filter off case. Similar to the CBF constraint from the previous section, we see that the

ECBF constraint works as expected and stops the pole from going past the position

limit, pbound.

Compared to the previous CBF case, the effect is harder to observe as pbound is

carefully selected to minimally change the nominal closed-loop response; lowering pbound

and further constraining the system causes a larger modification to the control signal

by the safety filter. Sudden, large control signals push the system out of the pole-up

configuration, since the nominal LQR controller is operated to work with linearized

dynamics around the pole-up configuration, the system cannot recover and the pole

drops down. This case demonstrates one of the main concerns of the safety filters: the

safety filter does not consider the capabilities of the nominal controller. The problem

of conflicting with the nominal controller can be reduced in different ways:

• Careful tuning of parameters both for the safety filter and the nominal controller.

• Safety filter takes the nonlinear dynamics into account and can operate the sys-

tem regardless of its configuration. To match the two controllers, the nominal

controller can be extended or replaced with, for example, trajectory optimization.

Table 5.2. Cart-pole ECBF parameters.

Parameter Value

pbound 1.77 m

αecbf
1 10

αecbf
2 5

38

� � �� �� ��

��������

���

���

���

���

���

���

���

�
�
�
��
��
�
��

��
��
�
�

������������

�

�����

�����

���������

��� ��� ��� ���

�����������������

���

���

���

���

���

���

�
�
��
��
�
��
�
��
�
��
�
��

������������������������

���

���

���

���

����

����

����

����

���� ����

�������������������

�����

�����

�����

�����

�����

�����

�����

�
�
��
��
�
��
�
��
�
��
��
�
��
�

������������������������

���

���

���

���

����

����

����

����

� � �� �� ��

��������

�

��

��

��

���

���

���

���

�
�
��
�

���

���������

����������

� � �� �� ��

��������

�

��

��

��

���

���

���

���

�
�
��
�

�������������

�

���������

����������

� � �� �� ��

��������

���

���

���

���

���

���

���

���

�
�
��
�
��
�
�

��������������

�������

��������

Figure 5.3. Cart-pole ECBF-QP, safety filter enabled. ECBF limits cart position.

� � �� �� ��

��������

���

���

���

���

���

���

���

�
�
�
��
��
�
��

��
��
�
�

������������

�

�����

�����

���������

��� ��� ��� ���

�����������������

���

���

���

���

���

���

�
�
��
��
�
��
�
��
�
��
�
��

������������������������

���

���

���

���

����

����

����

����

���� ����

�������������������

�����

�����

�����

�����

�����

�����

�
�
��
��
�
��
�
��
�
��
��
�
��
�

������������������������

���

���

���

���

����

����

����

����

� � �� �� ��

��������

�

��

��

��

���

���

���

���

�
�
��
�

���

���������

����������

� � �� �� ��

��������

�

��

��

��

���

���

���

���

�
�
��
�

�������������

�

���������

����������

� � �� �� ��

��������

�

�

�

�

�

�
�
��
�
��
�
�

��������������

�������

��������

Figure 5.4. Cart-pole ECBF-QP, safety filter disabled. ECBF limits cart position.

39

5.2. Quadruped Robot Simulation

In this section, we inspect the effectiveness of our method for the control of legged

systems detailed in Section 3.2.3. We use a quadruped robot in this work, the robot

and nominal control approach are explained in Section 4.2.

5.2.1. Friction Cone

As detailed in Section 3.2.3.3, the optimal control problem for legged systems

works with three optimization variables; one of them is λ, the constraint forces or, in our

specific case, ground reaction forces. By adding λ to the optimization problem, we can

also apply constraints to it. Friction cone constraints are specified by Equation (3.22),

Equation (3.23), and Equation (3.24). Assuming the friction coefficient is valid, the

robot will never slip while walking as long as the friction cone constraint is satisfied.

Thus, a major mode of failure will be limited. According to our implementation as a

safety filter, the control will be adjusted only when the friction cone is about to be

violated.

First, we would like to confirm the constraint forces from the optimal control

solution match with the actual values. Figure 5.5 demonstrates the optimal controller

can predict the constraint forces closely while walking in the simulation environment:

• For the vertical component, the mean absolute error is 3.0505 N.

• For the lateral components, the mean absolute error is 1.8463 N.

Then. to demonstrate the effectiveness of the friction constraint, a low friction

value is set for the constraints: µ = 0.2. The resulting control and ground reaction

forces are shown for the front left foot in Figure 5.6, only a single arbitrarily selected

foot is shown to keep the figure clean. In the figure, only the lateral forces are shown

to keep it comprehensible; furthermore, the left-out vertical component has negligible

change because it is hardly controllable. We observe spikes in the figure as the robot’s

foot impacts the ground, the simulator considers the impact only for a single timestep.

40

���

�

���

�
�
��
�
��
�
�

����������������������������������

������

������

������

����������

����������

����������

���

�

���

�
�
��
�
��
�
�

�����������������������������������

���

���

�

���

���

�
�
��
�
��
�
�

���������������������������������

��� ��� ��� ��� ��� ���

��������

���

�

���

�
�
��
�
��
�
�

����������������������������������

Figure 5.5. Comparison of optimized and measured ground reaction forces. The robot

is walking with a trotting gait on flat ground.

We see that the ground reaction forces, λ, are properly calculated and executed

by the proposed control architecture. Results from the low friction environment given

in Figure 5.6, show that the robot can walk with lateral ground reaction forces about

half of the original. Since our nominal controller uses inverse kinematics, it does not

take forces into account. By introducing the safety filter we compute inverse dynamics

and apply friction cone constraints; thus, allowing us to eliminate foot sliding and

enable safer locomotion.

41

��� ��� ��� ��� ��� ��� ��� ��� ���

��������

���

��

�

��

���

���

�
�
��
�
��
�
�

��������������

��

������

������

���������

����������

Figure 5.6. Decrease in lateral forces due to friction constraint after the filter is

activated. The robot walks normally until the filter starts; then filter reduces lateral

(tangential) forces.

5.2.2. Ground Clearance

We have discussed an ECBF to allow the robot to clear obstacles or navigate

uneven terrain in Section 3.2.3.4. Arbitrary obstacle trajectories can be given as input

to the safety filter; however, care must be taken to avoid infeasible solutions.

Figure 5.7 and Figure 5.8 show the simulation results in the presence of the

ground clearance, i.e., ECBF, constraint for different obstacle profiles. In the figures,

we observe that the ECBF framework works as expected and keeps the foot clear of

the obstacle with minimal interference to the nominal control signal. We have used

polynomials for demonstration, this is not necessary; our formulation only requires the

obstacle profile to be twice differentiable, thus any function satisfying that property

can be used.

42

����

����

����

����

����

����

�
�
�
��
��
�
��
�
��
��
�
��
��
�
�

��������������

���������������������������

����

��������

�

����

�����

�����

�
�
�
�
��
�
��
��
�
�
��
�

��������������������������

�

���

����

����

����

����

�
��
��
�
�
�
��
�
��
�
�
��
�
��
��
�
�

������������������������

��� ��� ��� ��� ��� ���

����

��

�

��

��
��
�
�
��
�
�
�

�������������

Figure 5.7. Simulation results with ground clearance constraint as a 2nd order

polynomial. ECBF Constraint is active after the filter starts, and it is only defined

during flight phases of the foot.

43

����

����

����

����

�
�
�
��
��
�
��
�
��
��
�
��
��
�
� ��������������

���������������������������

����

��������

�

����

�����

�����

�����

�����

�
�
�
�
��
�
��
��
�
�
��
�

��������������������������

�

���

����

����

����

����

�
��
��
�
�
�
��
�
��
�
�
��
�
��
��
�
�

������������������������

��� ��� ��� ��� ��� ���

����

��

�

��

��
��
�
�
��
�
�
�

�������������

Figure 5.8. Simulation results with ground clearance constraint as a 4th order

polynomial. ECBF Constraint is active after the filter starts, and it is only defined

during flight phases of the foot.

44

5.3. Terrain Estimator

The model described in Section 3.3 is implemented; only proprioceptive measure-

ments are used as features which are shown in Table 5.3. Raw measurements from

the Isaac simulator are processed as shown in Table 5.4; dt is reduced by subsampling

so that longer time windows are fed into the network. Our analysis shows network

performance significantly increases with time windows (total time) of around 1 second.

A set of hyperparameters yielding good results are given in Table 5.5. Loss curves

and evolution of model losses are shown in Figure 5.9 and Figure 5.10.

Using randomly sampled 3264 data points from the test split, the model can

predict the friction coefficient with a mean absolute error of 0.0720; Figure 5.11 shows

the regression performance of predictions and true values. Figure 5.12 shows that the

error residuals are symmetric, implying a good fit.

Table 5.3. Selected features as input for the neural network model.

Name Dimension per timestep

Joint configurations 12

Joint velocities 12

Joint torques 12

Table 5.4. Subsampled measurements from Nvidia Isaac for each record.

Parameter Value

dt 0.01 s

Number of timesteps 240

Total time 2.4 s

Number of environments (robots) 4096

Number of measurements 252

45

Table 5.5. Network hyperparameters.

Parameter Value

Learning rate 0.001

Batch size 64

Epochs 100

Time frames 40

Time between frames 0.03 s

Nodes in a time frame 12

Features per node 3

Positional embedding dimension 32

Depth attention layers 4

Number of attention heads 4

Hidden layer dimension 128

Dropout 0.2

Linformer-K dimension 64

46

� �� �� �� �� ��� ��� ���

������

����

����

����

����

����

����

�
�
�
��
�
�
�

�������������

Figure 5.9. Training loss shown with both raw and smoothed curves.

� �� �� �� �� ��� ��� ���

������

����

����

����

����

����

����

�
�
�
��
�
�
�

���������������

Figure 5.10. Validation loss shown with both raw and smoothed curves.

47

��� ��� ��� ��� ��� ���

�������������������������

���

���

���

���

���

���

�
�
�
�
��
�
�
�
��
�
��
�
��
�
��
�
�
��
��
��
�
�

Figure 5.11. Regression performance of the model.

��� ��� ��� ��� ��� ��� ���

�������������������������

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�
�
��
�
��
�
��
�
��
�
�
��
��
��
�
�

Figure 5.12. Error residuals with the dashed line showing locally weighted linear

regression. Residuals are symmetrically distributed.

48

5.4. Discussion

We have shown the safety-critical performance of two underactuated dynamical

systems in simulation environments. As the first system, the cart-pole demonstrated

the potential and limitations of CBF; it tends to result in an aggressive control action

and possible conflicts with the nominal controller. For the second system, we have used

a quadruped robot to include contact-related effects. Nominal control of the robot with

inverse-kinematics has shown its practical value but also its fragility. The inclusion of

friction constraints had a strong positive effect on ensuring safety by stopping feet from

slipping.

To include safety in a viability sense, we have turned to CBF. The CBF frame-

work allows a flexible, intuitive synthesis of safety constraints; in the case of legged

robots, working on the task space was straightforward. CBF framework allows room

for creativity while defining safety, with the addition of the ECBF approach it becomes

possible to use any combination of the robot’s states to synthesize a CBF. There has

already been some work on applying CBF to legged robots [18, 36, 38]; it is shown

in physical systems that the modeling and measurement errors can be handled to

a certain degree. However, larger deviations may cause failures. For such hard-to-

model systems, few-shot learning-based methods are utilized and the system returns

to functioning with high performance. Another concern with the CBF framework is

implementing it as a safety filter; it can lead to suboptimal performance and conflicts

with the nominal controller. For our implementations, we faced this issue while work-

ing on the cart-pole system for the position constraint as detailed in Section 5.1.2.

Regarding a legged robot, it is common to employ Model Predictive Control (MPC)

for the planning [32]; we have instead used a simpler scheme with open-loop trajec-

tories. Having MPC for planning and a QP solver for execution opens the way to

include constraints in one or both of them since both are optimal controllers. Recent

work by [36], shows that having the constraint in the QP allows it to be enforced

at a higher rate resulting in improved performance, as expected. Though, care must

be given to aligning the two controllers; one can include complementing constraints in

both to allow well-synchronized operation.

49

As we focus on including terrain effects, we formulated our CBF to take obstacles

into account. One can combine it with the foot placement CBF found in the afore-

mentioned works to achieve complete safe positioning of the feet in 3D space. It must

be noted, there had been difficulties during the development, especially in tuning the

barrier gains. Eventually, we achieved high-performance filtering of control signals.

Framing safety in terms of model-based, intuitive functions allows a good way to quan-

tify and guarantee legged robot performance, which will ease the deployment of such

systems.

We have used blind sensing, i.e., proprioceptive estimation, in our machine-

learning-based terrain estimator. Our work showed that the spatial-temporal relation-

ships in legged robots should be evaluated in the order of seconds, not milliseconds.

The transformer architecture has been applied to various domains already; we have

shown it also performs well in understanding the contact dynamics of legged systems.

Blind sensing is a promising, cost-effective approach to enable the wider use of legged

robots. As detailed in Section 5.3, we see the friction coefficient can be predicted

closely. By subtracting a small amount for possible deviations, one can get a conserva-

tive estimation of the friction coefficient which can then be used for all contact-related

tasks.

50

6. CONCLUSION

This study presents a modern approach to safety-critical control of legged robots.

We have constructed safety filters to allow minimally-intrusive, modular controllers

that can be easily added to existing control architectures. For this purpose, the CBF

framework is utilized to generate constraints. We have used the cart-pole system while

working on the basics of safety filters which are implemented as optimal controllers. The

inverse dynamics formulation of CBF which is suitable for legged robot applications

has been developed first for the cart-pole system. Then, the developed approach is

extended to a legged robot, a quadruped, to include contact-related effects. Proposed

methods are implemented and evaluated in simulation.

In this work, we have developed a flexible optimal control software package that

specializes in contact-aware robots. We have focused our efforts on legged systems

which must be carefully controlled due to their underactuated nature. By defining

constraints for the optimization problem, we have included several safety criteria; they

cover some of the major sources of locomotion failures. In addition, we have developed

a proprioceptive machine-learning model to estimate terrain properties. A blind terrain

estimator can be easily added to most robots to increase their contact awareness which

can then be used for high-performance control.

6.0.1. Contributions

In this work, following three contributions are made:

• An intuitive, high-level optimal-control-based safety filter framework is imple-

mented in Python, which has direct support for Control Barrier Functions. The

source code will be publically available [42, 47].

• A novel adaption of a state-of-the-art deep learning architecture, transformer, to

model the friction of the terrain.

51

• A novel ECBF is formulated and implemented for ground clearance of the swing

feet of legged robots.

6.0.2. Outlook

In this work, two seperate modules are developed for a quadruped robot: a safety

filter and a terrain estimator. The effectiveness of each module has been shown inde-

pendently; however, their combined performance is not explored in this work. Adding

both the safety filter and terrain estimator to a powerful nominal control architecture

such as ocs2 [52] would demonstrate their efficacy in greater confidence. Further-

more, embedded implementation on a real-time controlled robot is needed to verify

all the findings from the simulation. Though they are addressed in Section 3.2.4 and

Section 3.2.5, the work in this thesis has been limited to simulation alone. Further ex-

perimental work would be beneficial; intentional or unintentional simplifications from

the simulation could be verified and if required fixed.

We followed the literature in our approach to the safety of legged robots. We

have implemented an ECBF to enable ground clearance guarantees, combined with

additional constraints it would serve well as a practical controller. However, there

is no established method to evaluate the performance of legged robots; I believe a

locomotion benchmark would accelerate progress in the field. Furthermore, improved

definitions of locomotion safety, especially ones with a probabilistic sense would be

valuable.

Our work could have benefited or had a different direction if the literature pro-

vided a more concrete understanding of deep learning. Most methods in the literature

remain very practical; however, theoretical work is critical. There is a dire need for

some technical framework that handles uncertainties and safety issues of machine learn-

ing models. Hopefully, the major interest in machine learning research will shed light

on this area.

52

REFERENCES

1. Gong, Y. and J. Grizzle, “Zero Dynamics, Pendulum Models, and Angular Mo-

mentum in Feedback Control of Bipedal Locomotion”, ArXiv:2105.08170, 2021.

2. Zaytsev, P., W. Wolfslag and A. Ruina, “The Boundaries of Walking Stability:

Viability and Controllability of Simple Models”, IEEE Transactions on Robotics ,

Vol. 34, No. 2, pp. 336–352, 2018.

3. Wieber, P.-B., Holonomy and Nonholonomy in the Dynamics of Articulated Mo-

tion, pp. 411–425, Springer Berlin Heidelberg, Berlin, 2006.

4. Carpentier, J. and N. Mansard, “Multicontact Locomotion of Legged Robots”,

IEEE Transactions on Robotics , Vol. 34, No. 6, pp. 1441–1460, 2018.

5. Focchi, M., R. Orsolino, M. Camurri, V. Barasuol, C. Mastalli, D. G. Caldwell

and C. Semini, “Heuristic Planning for Rough Terrain Locomotion in Presence

of External Disturbances and Variable Perception Quality”, Springer Tracts in

Advanced Robotics , pp. 165–209, Springer International Publishing, 2019.

6. Siekmann, J., K. Green, J. Warila, A. Fern and J. Hurst, “Blind Bipedal Stair

Traversal via Sim-to-Real Reinforcement Learning”, ArXiv:2105.08328, 2021.

7. Miki, T., J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun and M. Hutter, “Learn-

ing Robust Perceptive Locomotion for Quadrupedal Robots in the Wild”, Science

Robotics , Vol. 7, No. 62, p. eabk2822, 2022.

8. Ames, A. D., S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath and P. Tabuada,

“Control Barrier Functions: Theory and Applications”, 18th European Control

Conference (ECC), pp. 3420–3431, Naples, Italy, 2019.

9. Ibarz, J., J. Tan, C. Finn, M. Kalakrishnan, P. Pastor and S. Levine, “How to Train

53

Your Robot with Deep Reinforcement Learning: Lessons We Have Learned”, The

International Journal of Robotics Research, Vol. 40, No. 4-5, pp. 698–721, 2021.

10. Tedrake, R., “Underactuated Robotics”, https://underactuated.csail.mit.edu,

accessed on December 1, 2022.

11. Featherstone, R. and D. E. Orin, “Dynamics”, Handbook of Robotics , pp. 35–65,

Springer, Berlin, Heidelberg, 2008.

12. Budhiraja, R., J. Carpentier, C. Mastalli and N. Mansard, “Differential Dynamic

Programming for Multi-Phase Rigid Contact Dynamics”, IEEE-RAS 18th Inter-

national Conference on Humanoid Robots (Humanoids), pp. 1–9, 2018.

13. Holmes, P., R. J. Full, D. Koditschek and J. Guckenheimer, “The Dynamics of

Legged Locomotion: Models, Analyses, and Challenges”, SIAM Review , Vol. 48,

No. 2, pp. 207–304, 2006.

14. Wieber, P.-B., “Viability and Predictive Control for Safe Locomotion”, IEEE/RSJ

International Conference on Intelligent Robots and Systems , pp. 1103–1108, 2008.

15. Vukobratović, M. and B. Borovac, “Zero-Moment Point — Thirty Five Years of Its

Life”, International Journal of Humanoid Robotics , Vol. 01, No. 01, pp. 157–173,

2004.

16. Hirukawa, H., S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fu-

jiwara and M. Morisawa, “A Universal Stability Criterion of the Foot Contact of

Legged Robots - Adios ZMP”, IEEE International Conference on Robotics and

Automation (ICRA), pp. 1976–1983, 2006.

17. Koolen, T., T. de Boer, J. Rebula, A. Goswami and J. Pratt, “Capturability-Based

Analysis and Control of Legged Locomotion, Part 1: Theory and Application

to Three Simple Gait Models”, The International Journal of Robotics Research,

Vol. 31, No. 9, pp. 1094–1113, 2012.

54

18. Rodriguez, I. D. J., N. Csomay-Shanklin, Y. Yue and A. D. Ames, “Neural Gaits:

Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics

Policies”, Vol. 168, pp. 1060–1072, 2022.

19. Kipf, T. N. and M. Welling, “Semi-Supervised Classification with Graph Convolu-

tional Networks”, ArXiv:1609.02907, 2017.

20. Yan, S., Y. Xiong and D. Lin, “Spatial Temporal Graph Convolutional Networks

for Skeleton-Based Action Recognition”, Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 32, No. 1, 2018.

21. Liu, Z., H. Zhang, Z. Chen, Z. Wang and W. Ouyang, “Disentangling and Unifying

Graph Convolutions for Skeleton-Based Action Recognition”, ArXiv:2003.14111,

2020.

22. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, �L. Kaiser

and I. Polosukhin, “Attention Is All You Need”, Advances in Neural Information

Processing Systems , Vol. 30, 2017.

23. Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding”, ArXiv:1810.04805, 2019.

24. Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer and V. Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining

Approach”, ArXiv:1907.11692, 2019.

25. Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby,

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”,

International Conference on Learning Representations (ICLR), 2021.

26. Chen, H., Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu and

W. Gao, “Pre-Trained Image Processing Transformer”, ArXiv:2012.00364, 2021.

55

27. Tay, Y., M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang,

S. Ruder and D. Metzler, “Long Range Arena: A Benchmark for Efficient Trans-

formers”, ArXiv:2011.04006, 2020.

28. Wang, S., B. Z. Li, M. Khabsa, H. Fang and H. Ma, “Linformer: Self-Attention

with Linear Complexity”, ArXiv:2006.04768, 2020.

29. Joshi, C., “Transformers are Graph Neural Networks”, The Gradient , Vol. 12,

2020.

30. Lee, J., J. Hwangbo, L. Wellhausen, V. Koltun and M. Hutter, “Learning

quadrupedal locomotion over challenging terrain”, Science Robotics , Vol. 5, No. 47,

p. eabc5986, 2020.

31. Roy, N., I. Posner, T. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg, O. Brock,

I. Depatie, D. Fox, D. Koditschek, T. Lozano-Perez, V. Mansinghka, C. Pal,

B. Richards, D. Sadigh, S. Schaal, G. Sukhatme, D. Therien, M. Toussaint and

M. Van de Panne, “From Machine Learning to Robotics: Challenges and Oppor-

tunities for Embodied Intelligence”, ArXiv:2110.15245, 2021.

32. Bledt, G., M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing and S. Kim,

“MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot”,

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 2245–2252, 2018.

33. Nguyen, Q. and K. Sreenath, “Exponential Control Barrier Functions for Enforcing

High Relative-Degree Safety-Critical Constraints”, American Control Conference

(ACC), pp. 322–328, 2016.

34. Reher, J., C. Kann and A. D. Ames, “An Inverse Dynamics Approach to Control

Lyapunov Functions”, American Control Conference (ACC), pp. 2444–2451, 2020.

35. Featherstone, R., “An empirical study of the joint space inertia matrix”, In Inter-

56

national Journal of Robotics Research, Vol. 23, pp. 859–871, 2004.

36. Grandia, R., A. J. Taylor, A. D. Ames and M. Hutter, “Multi-Layered Safety

for Legged Robots via Control Barrier Functions and Model Predictive Control”,

IEEE International Conference on Robotics and Automation (ICRA), pp. 8352–

8358, 2021.

37. Carpentier, J., G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse and

N. Mansard, “The Pinocchio C++ library – A Fast and Flexible Implementation

of Rigid Body Dynamics Algorithms and Their Analytical Derivatives”, IEEE In-

ternational Symposium on System Integrations (SII), pp. 614–619, Paris, France,

2019.

38. Nguyen, Q., A. Hereid, J. W. Grizzle, A. D. Ames and K. Sreenath, “3D Dy-

namic Walking on Stepping Stones with Control Barrier Functions”, IEEE 55th

Conference on Decision and Control (CDC), pp. 827–834, 2016.

39. Prete, A. D., N. Mansard, O. E. Ramos, O. Stasse and F. Nori, “Implementing

Torque Control with High-Ratio Gear Boxes and without Joint-Torque Sensors”,

Vol. 13, No. 1, p. 1550044, 2016.

40. Makoviychuk, V., L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,

D. Hoeller, N. Rudin, A. Allshire, A. Handa and G. State, “Isaac Gym: High Per-

formance GPU-Based Physics Simulation For Robot Learning”, ArXiv:2108.10470,

2021.

41. Rudin, N., D. Hoeller, P. Reist and M. Hutter, “Learning to Walk in Minutes Using

Massively Parallel Deep Reinforcement Learning”, ArXiv:2109.11978, 2021.

42. Tosun, B., “taslel: Terrain-Aware Safe Legged Locomotion”, 2022,

https://github.com/Berk-Tosun/taslel, accessed on December 10, 2022.

43. Coumans, E. and Y. Bai, “PyBullet, A Python Module for Physics Simulation

57

for Games, Robotics and Machine Learning”, http://pybullet.org, accessed on

August 7, 2022.

44. Caron, S., “qpsolvers”, https://github.com/stephane-caron/qpsolvers, ac-

cessed on October 14, 2022.

45. Andersen, M. S., J. Dahl and L. Vandenberghe, “CVXOPT: A Python Package for

Convex Optimization”, 2013, https://github.com/cvxopt/cvxopt, accessed on

March 8, 2022.

46. Stellato, B., G. Banjac, P. Goulart, A. Bemporad and S. Boyd, “OSQP: An Oper-

ator Splitting Solver for Quadratic Programs”, Mathematical Programming Com-

putation, Vol. 12, No. 4, pp. 637–672, 2020.

47. Tosun, B., “cbf-cartpole”, 2021, https://github.com/Berk-Tosun/cbf-cartpole,

accessed on October 31, 2022.

48. Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,

M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,

E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-

alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.

Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contrib-

utors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”,

Nature Methods , Vol. 17, pp. 261–272, 2020.

49. Murray, R., B. Grainera, S. Fuller and C. Rowley, “python-control”,

https://github.com/python-control/python-control, accessed on October 4,

2022.

50. Coumans, E., J. Peng and Y. Yang, “motion-imitation”, 2018,

https://github.com/erwincoumans/motion imitation, accessed on August 26,

2021.

58

51. Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chin-

tala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,

ArXiv:1912.01703, 2019.

52. Farshidian, F., M. Neunert, A. W. Winkler, G. Rey and J. Buchli, “An Efficient

Optimal Planning and Control Framework for Quadrupedal Locomotion”, IEEE

International Conference on Robotics and Automation (ICRA), 2017.

