

A REINFORCEMENT LEARNING BASED CONTROLLER TO MINIMIZE FORCES

ON THE CRUTCHES OF A LOWER-LIMB EXOSKELETON

by

Aydın Emre Utku

B.S., Mechanical Engineering, Middle East Technical University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

 Graduate Program in Systems & Control Engineering

 Boğaziçi University

 2022

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors Assoc. Prof. Evren Samur and Assist.

Prof. Sinan Öncü for their guidance that helped me substantially to overcome the difficulties

I have faced. Moreover, I want to thank Assoc. Prof. Emre Uğur for supporting me with his

ideas that also assisted me quite a lot. I would also like to express my gratitude to Prof. Dr.

Duygun Erol Barkana for accepting to be a jury member of my thesis.

I am grateful to Assist. Prof. Barkan Uğurlu, my dear friends Muhammet Hatipoğlu,

Suzan Ece Ada and Mustafa Derman for supporting me with their enlightening ideas.

This thesis has been in part supported by TÜBİTAK (The Scientific and Technological

Research Council of Türkiye) under the project no 118E922 and the BİDEB 2210-A

program.

Finally, I would like to express my gratitude to my parents Oğuz and Nihal who have

been always with me throughout my entire life.

iv

ABSTRACT

A REINFORCEMENT LEARNING BASED CONTROLLER

TO MINIMIZE FORCES ON THE CRUTCHES OF A LOWER-

LIMB EXOSKELETON

The majority of the metabolic energy consumption of a lower-limb exoskeleton user

comes from the upper body effort, since the lower body can be considered to be passive.

However, the upper body effort of lower limb exoskeleton users is ignored during motion

controller development process in the literature. In this thesis study, deep reinforcement

learning is used to develop a locomotion controller that minimizes the ground reaction forces

(GRF) on crutches. The rationale for minimizing the ground reaction forces is to minimize

the upper body effort of the user. A model of the human-exoskeleton system with crutches

is created in URDF and XML formats. Reward functions that encourage the forward

displacement of the center of mass of the exoskeleton-human system without falling and

extreme joint torques are shaped. The state-of-the-art methods, Twin Delayed Deep

Deterministic Policy Gradient (TD3) and Proximal Policy Optimization (PPO), are

employed with the RaiSim and MuJoCo physics simulators and with different algorithm

specific parameters in multiple training trials. The employed networks generate the joint

torques based on the joint angle and velocities along with the ground reaction forces on feet

and crutch tips. These generated joint torques are directly sent to the exoskeleton model and

a new state is observed after implementing the action that the deep RL framework provides.

Policies trained by the TD3 and PPO methods on RaiSim are observed to fail to generate

proper control commands for a stable and natural looking gait. In general, it is observed that

the PPO method generated higher rewards than the TD3 method on RaiSim. After failing to

develop a desired policy with RaiSim, MuJoCo is employed as the simulator. Eventually, a

policy that can generate a reasonable gait with a desired crutch usage and with 35%

minimization in GRFs with respect to the baseline policy is developed.

v

ÖZET

ALT EKSTREMİTE DIŞ İSKELETLERİNİN

BASTONLARINDAKİ KUVVETLERİ MİNİMİZE EDEN

PEKİŞTİRMELİ ÖĞRENME TABANLI BİR KONTROLCÜ

Bir alt ekstremite dış iskelet kullanıcısının metabolik enerji tüketiminin çoğu, alt vücut

pasif olarak kabul edilebileceğinden, üst vücudun harcadığı efordan gelir. Ancak literatürde

alt uzuv dış iskelet kullanıcılarının üst vücut eforu hesaba katılmamaktadır. Bu tez

çalışmasında, bastonların yer tepki kuvvetlerini (YTK) optimize eden bir hareket

kontrolcüsü geliştirmek için derin pekiştirmeli öğrenme kullanılmıştır. Yer reaksiyon

kuvvetlerini minimize etmenin amacı kullanıcının üst vücut eforunu en aza indirmektir.

Bastonlar ve insan-dış iskelet sisteminin modeli URDF ve XML formatlarında

oluşturulmuştur. Düşmeden ve aşırı eklem torkları olmadan kütle merkezinin ileriye doğru

yer değiştirmesini teşvik eden ödül fonksiyonları şekillendirilmiştir. Son teknoloji yöntemler

olan Twin Delayed Deep Deterministic Policy Gradient (TD3) ve Proximal Policy

Optimization (PPO), RaiSim ve MuJoCo simülatörleri ve çeşitli parametre setleriyle

uygulanmıştır. Kullanılan sinir ağları, eklem açısı ve hızları ile ayaklar ve baston uçlarındaki

zemin reaksiyon kuvvetlerine dayalı olarak eklem torklarını üretir. Oluşturulan bu eklem

torkları doğrudan dış iskelet modeline gönderilir ve derin PÖ çerçevesinin sağladığı aksiyon

uygulandıktan sonra yeni bir durum gözlemlenir. TD3 ve PPO yöntemleriyle RaiSim’de

eğitilen politikaların, dengeli ve doğal görünümlü bir yürüyüş için uygun kontrol komutları

üretemediği gözlemlenmiştir. Genel olarak RaiSim’de PPO yönteminin TD3 yöntemine göre

daha yüksek ödül değerlerine ulaştığı görülmektedir. RaiSim ile istenen tarzda bir robot

politikası elde edemedikten sonra MuJoCo simülatör olarak kullanılmıştır. Sonuç olarak,

uygun baston hareketlerini de içeren ve istenen tarzda lokomosyonu yer tepki kuvvetlerini

%35 oranında azaltarak sağlayan bir robot politikası geliştirilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xv

1. INTRODUCTION . 1

1.1. Motivation . 1

1.2. Objectives . 1

2. PRELIMINARIES . 2

2.1. Definition of Exoskeleton . 2

2.2. Classification of Exoskeletons . 2

2.3. Control of Exoskeletons . 3

2.4. Reinforcement Learning Background . 4

 2.4.1. Activation Functions . 7

 2.4.2. Markov Decision Process . 11

 2.4.3. Temporal Difference Learning . 11

 2.4.4. Actor-Critic Methods . 12

 2.4.5. Policy Gradients . 13

 2.4.6. Entropy in Reinforcement Learning . 15

 2.4.7. Q Learning . 16

3. LITERATURE . 18

4. METHODOLOGY . 25

4.1. Simulation Environment and Modeling . 25

 4.1.1. OpenAI Gym . 26

 4.1.2. MuJoCo . 27

 4.1.3. RaiSim . 27

 4.1.4. Exoskeleton-Human System Modeling . 29

 4.1.5. Action and Observation Space in RaiSim 30

vii

 4.1.6. Action and Observation Space in MuJoCo . 31

4.2. Implemented RL Methods . 31

 4.2.1. Proximal Policy Optimization . 31

 4.2.2. Twin Delayed Deep Deterministic Policy Gradient 36

4.3. Reward Shaping . 39

 4.3.1. Reward Shaping for RaiSim . 39

 4.3.2. Reward Shaping for MuJoCo . 41

4.4. Overall Implementation . 43

 4.4.1. Implementation for RaiSim . 43

 4.4.2. Implementation for MuJoCo . 45

5. RESULTS . 47

 5.1. Results for TD3 with RaiSim . 47

 5.2. Results for PPO with RaiSim . 49

 5.3. Results for PPO with MuJoCo . 51

 5.4. Comparison for PPO with MuJoCo . 53

6. DISCUSSION . 60

7. CONCLUSION . 64

 7.1. Outlook and Future Work . 65

REFERENCES . 66

viii

LIST OF FIGURES

Figure 2.1. Flow chart of exoskeleton control layers . 4

Figure 2.2. Reinforcement learning main structure . 5

Figure 2.3. Deep reinforcement learning diagram . 7

Figure 2.4. Input/output plot of ReLU and sigmoid . 9

Figure 2.5. Input/output plot of tanh . 9

Figure 2.6. Input/output plot of softplus . 10

Figure 2.7. Actor-critic architecture . 12

Figure 4.1. Exoskeleton-human system with crutches from different views, (a)

Front view (b), Rear view (c), Transverse view 30

Figure 4.2. Contact spheres. (a) Feet contact, (b) Crutch contact 30

Figure 4.3. Behavior of LCLIP with 𝜀 = 0.25 for (a) A > 0, (b) A < 0 33

Figure 4.4. Beta distribution for different α and β values 34

Figure 4.5. Position of the root attached to the hip section of the exoskeleton . . 39

Figure 5.1. (a) Result of TD3 parameter set 1, (b) The result of TD3 paramet-

 er set 2 . 48

Figure 5.2. (a) Result of TD3 parameter set 3, (b) The result of TD3 paramet-

 er set 4 . 48

ix

Figure 5.3. (a) Result of TD3 parameter set 5, (b) The result of TD3 paramet-

 er set 6 . 48

Figure 5.4. (a) Result of PPO parameter set 1, (b) The result of PPO paramet-

 er set 2 . 49

Figure 5.5. (a) Result of PPO parameter set 3, (b) The result of PPO paramet-

 er set 4 . 50

Figure 5.6. (a) Result of PPO parameter set 5, (b) The result of PPO paramet-

 er set 6 . 50

Figure 5.7. (a) Average reward plot for RL agent 1 with wcrutch_reaction_force

 =40000, (b) Average reward plot for RL agent 2 with wcrutch_re-

.action_force = 30000 . 51

Figure 5.8. (a) Average reward plot for RL agent 3 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒

 =30000, (b) Average reward plot for RL agent 4 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒−

.𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 20000 . 51

Figure 5.9. Average reward plot for baseline agent training sessions with 5 dif-

ferent seeds. . 542

Figure 5.10. (a) Average reward plot the best result with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒

=40000, (b) Average reward plot for the best result with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_−

.𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒=30000 . 512

Figure 5.11. (a) Average reward plot the best result with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒

=20000, (b) Average reward plot for the best result with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_−

.𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒=10000 . 513

x

Figure 5.12. (a) GRF on crutch cost for PPO Baseline, (b) Percent velocity tra-

 cking error for PPO Baseline . 54

Figure 5.13. (a) Percent orientation error for PPO Baseline, (b) Lateral displa-

cement error for PPO Baseline . 55

Figure 5.14. (a) GRF on crutch cost for RL agent 1, (b) Percent velocity trac-

 king error for RL agent 1 55

Figure 5.15. (a) Percent orientation error for RL agent 1, (b) Lateral displace-

ment error for RL agent 1 . 56

Figure 5.16. (a) GRF on crutch cost for RL agent 2, (b) Percent velocity trac-

 king error for RL agent 2 . 56

Figure 5.17. (a) Percent orientation error for RL agent 2, (b) Lateral displace-

ment error for RL agent 2 . 57

Figure 5.18. (a) GRF on crutch cost for RL agent 3, (b) Percent velocity trac-

 king error for RL agent 3 . 57

Figure 5.19. (a) Percent orientation error for RL agent 3, (b) Lateral displace-

 ment error for RL agent 3 . 58

Figure 5.20. (a) GRF on crutch cost for RL agent 4, (b) Percent velocity trac-

 king error for RL agent 4 . 58

Figure 5.21. (a) Percent orientation error for RL agent 4, (b) Lateral displace-

ment error for RL agent 4 . 59

Figure 5.22. Gait sequence of RL agent 1 . 59

xi

LIST OF TABLES

Table 4.1. General information about frequently used physics simulators [34] . . 28

Table 4.2. Comparison of physics simulators [34] . 28

Table 4.3. Measurements of human subjects [36] . 29

Table 4.4. Pseudocode of PPO-Clip algorithm . 33

Table 4.5. Pseudocode of TD3 . 38

Table 4.6. Varied hyperparameters for TD3 method . 44

Table 4.7. Constant hyperparameters for TD3 method . 44

Table 4.8. Network properties for TD3 method . 44

Table 4.9. Varied hyperparameters for PPO method . 44

Table 4.10. Constant hyperparameters for PPO method 45

Table 4.11. Network properties for PPO method . 45

Table 4.12. Varied weights for PPO method on MuJoCo 45

Table 4.13. Constant hyperparameters for PPO method on MuJoCo 46

Table 4.14. Network properties for PPO method on MuJoCo 46

Table 5.1. Test results for TD3 method. . 48

xii

Table 5.2. Test results for PPO method. . 50

Table 5.3. Comparison of resulting RL agents with a baseline RL agent. 53

xiii

LIST OF SYMBOLS

ℙ Probability

𝑠𝑡 State at time t

𝑎𝑡 Action at time t

rt Reward at time t

Rt Discounted reward at time t

Γ Discount factor

Vt
∗ Actual reward

Vt Reward prediction

α Learning rate

π𝑖 Policy with parameters i

Aπθ Advantage of policy πθ

Θ Policy parameters

τ Trajectory

H Entropy function

Ât Estimation of advantage at time t

Êt Expectation at time t

𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 Horizon of PPO algorithm

ℎ Beta distribution

Γ Gamma function

𝑄𝜋 Critic/Value function

𝑦 Target value in TD3

xiv

𝝋𝒊 Critic network parameters

𝒩 Normal distribution

𝔹 Replay buffer

∇𝑖 Gradient with respect to i

𝛽 TD3-exploration noise coefficient

𝛽𝑑𝑒𝑐𝑎𝑦 TD3-exploration noise decay coefficient

N TD3 batch size

c Maximum action

𝜏 TD3 – Target update coefficient

𝜎 Standard deviation of Normal distribution

𝜀 PPO-Clip rate

𝐾𝑒𝑝𝑜𝑐ℎ𝑠 PPO-Epoch number

𝐿𝑎 PPO-Actor slice length

𝐿𝑐 Critic slice length

λ Lambda used in advantage estimation for PPO algorithm

xv

LIST OF ACRONYMS/ABBREVIATIONS

3-D 3 Dimensional

CoM Center of Mass

CPG Central Pattern Generator

EMG Electromyography

GRF Ground Reaction Force

IMU Inertial Measurement Unit

LLRE Lower Limb Rehabilitation Exoskeleton

LR Learning Rate

MDP Markov Decision Process

PD Proportional-Derivative

PPO Proximal Policy Optimization

ReLU Rectified Linear Activation

RL Reinforcement Learning

TD3 Twin Delayed Deep Deterministic

TD Temporal Difference

1

1. INTRODUCTION

1.1. Motivation

Locomotion of legged robots is one of the fundamental domains in the field of robotics.

Thus, the locomotion behavior is at utmost importance for developing a robotic device.

Lower-limb exoskeletons, which are subclass of legged robots, even have an increased level

of locomotion complexity as human movements are also involved. Lack of some degrees of

freedoms may oblige the exoskeleton user to use crutches for stability purposes. As a

consequence, the user uses the upper body to control the crutches, which results in increased

metabolic energy consumption. This increased metabolic energy consumption should be

minimized in order to improve the comfort of the exoskeleton user. However, there has not

been any work in the literature that addresses this issue. The motivation of this thesis is to

fill this gap by developing a controller that takes the crutch movements and the crutch contact

forces into account in order to minimize the metabolic energy consumption of an exoskeleton

user.

1.2. Objectives

In this study, an implementation of state-of-the-art RL algorithms with a reward

function including crutch reaction force regulating term for a lower-limb exoskeleton is

presented. The developed RL agents are aimed to exhibit a walking behavior with desired

gait characteristics and crutch usage.

The first aim is to develop a motion controller for an exoskeleton that minimizes the

reaction forces exerted on the crutch tips by the ground. By introducing a cost term into the

reward function, excess reaction forces can be penalized.

The second aim is to keep the other gait characteristics such as linear displacement,

lateral displacement, tilt angle of the human body and angle of the feet soles with respect to

the ground within an acceptable range while achieving the first aim. By achieving these

goals, the long term goal to improve the comfort of lower-limb exoskeleton users can be

realized.

2

2. PRELIMINARIES

2.1. Definition of Exoskeleton

The role of wearable robotic devices in daily life is increasing more and more [1].

Recent developments in powered exoskeleton technology offers many new possibilities to

paraplegics and will offer increased motion capabilities for physically and neurologically

intact people from many different application areas such as military or industry. To put it all

in simple terms, a powered exoskeleton is a wearable mobile machine that is composed of

links actuated by the attached motors in order to improve the motion capabilities of its user.

Even though exoskeletons are still a hot topic of research, the history of exoskeletons

dates back to 1890. The earliest known device that resembles an exoskeleton was developed

in that date by a Russian engineer named as Nicholas Yagn [2]. The source of energy of this

system was compressed gas bags. In the 1960’s, first active exoskeletons were developed in

Mihajlo Pupin Institute. The goal of the legged locomotion systems developed in Mihajlo

Pupin Institute was assisting in the rehabilitation of paraplegics.

2.2. Classification of Exoskeletons

 In general, exoskeletons are classified according to their body part focus, structure

(rigid or soft), action (active or passive), actuator type (electric, hydraulic, pneumatic etc.),

purpose (recovery or performance) and application area [3]. Apart from full body, lower

body and upper body exoskeletons, there are also exoskeletons for specific limbs and joints

such as hand, ankle or foot. The action category is about whether there is any actuator to

help the user in an active manner without requiring any energy from the user. Passive

exoskeletons do not have any actuators on them and they only facilitate the movement of the

user. Recovery class exoskeletons are designed for rehabilitation for patients who have lost

some of their motor functions, and performance class exoskeletons are designed for

augmenting the physical performance of able-bodied users [2].

 Recovery exoskeletons can be divided into two parts as full assistance and partial

assistance devices. Aim of full assistance exoskeletons is to provide full mobilization to the

3

people who have lost their lower body motor functions completely by providing movement

for their legs via actuators [4]. Since the legs of the user are assumed to be completely

passive, the control structure for these exoskeletons excludes the consideration of the torque

supplied by the legs which simplifies the control algorithm significantly. On the other hand,

partial assistance devices are developed for those who did not lose their lower body motor

functions completely. These devices are used to increase the motion capabilities of users

who suffers from less serious injuries or aging. The control algorithm for partial assistance

devices are more complex than that of full assistance devices because the decreased motion

capabilities of the user also come into play. Increased complexity of the interaction between

the user and the device leads to increased complexity of the control structure. In this study,

an active lower body exoskeleton powered by series elastic actuators with crutches to be

designed for full assistance rehabilitation of paraplegics will be considered.

2.3. Control of Exoskeletons

 While many hardships such as mechanical design, strength analysis of critical parts of

such devices are still present, control of exoskeletons in accordance with the users remaining

lower body functionality is also a very challenging problem. Physical and cognitive

interaction between user and the exoskeleton plays a huge role in a successful exoskeleton

control algorithm. This aspect requires the concepts of trajectory and trajectory optimization

to be mentioned. Trajectory is the time history of position and velocity of the joint angles in

an exoskeleton and it is the main element that shapes the gait pattern of an exoskeleton or

any other walking device. A good trajectory should be feasible in terms of the joint angle

restrictions of a human and be comfortable considering the anatomy of humans. Hence, an

optimal trajectory generated for an exoskeleton will be crucial for comfort, health and

performance of the user.

Exoskeleton control strategies are generally divided into three main layers which are

high level, mid-level and low level [4]. The operation mode which describes activities such

as walking or stair climbing is decided within the scope of high level control. High level

control is not critically important for rehabilitation purposes, but it is still quite important for

daily usage of robotic exoskeletons. Mid-level control algorithms make sure that the device

acts in a continuous manner for all types of movements and it maps the high level commands

4

into low level commands [4]. Stability and equilibrium analysis, estimation of environmental

factors and calculating the required joint torques are taken care in middle level. Finally, low

level control layer executes torque control commands such that higher level intentions are

realized as in Figure 2.1.

Figure 2.1. Flow chart of exoskeleton control layers.

Even though there are many different possible numerical or analytic motion control

methods that can solve the problem of generating correct low level torque control

commands, they generally require complex mathematical models that describe the dynamic

behavior of the whole system. For example, classic PID control is often used in locomotion

tasks, but we still need to mathematically model the system and especially the contact

dynamics for being able to minimize the contact forces. Considering the highly nonlinear

nature of this kind of problem, it is a good option to explore the capabilities of the

reinforcement learning techniques which does not need these expressions of complex system

dynamics.

2.4. Reinforcement Learning Background

In this section, some prior information that reinforcement learning methods use will

be introduce in order to build a base. Reinforcement learning is a machine learning method

based on trial and error. A simulation environment that captures the dynamics of the problem

is required in order to implement this method. Reinforcement learning agent interacts with

the environment adjust its actions based on the feedback it gets from the environment as

shown in Figure 2.2. This feedback is calculated as a reward function which is a design

consideration. Desired behaviors are rewarded whereas undesired ones are penalized within

the scope of the reward function. However, reward engineering process is a non-trivial

process and trials for very different combinations of reward functions and coefficients in the

5

reward function may be required. The RL agent aims to maximize the cumulative reward

over time after doing thousands of iterations.

Figure 2.2. Reinforcement learning main structure.

Reinforcement learning methods can be used to solve some various different types of

problems such as games, statistics, swarm intelligence, robotics and control theory. Even

though reinforcement learning is one of the hot topics in the field of AI, its applications in

the real world conditions are still not very widespread. Since reinforcement learning heavily

depends on the interaction with the environment, using this approach may not be always

feasible especially for situations that require interacting with complex physical

environments. The time required to solve this kind of a problem makes it unreasonable to

use reinforcement learning. However, if a realistic model of the complex environment can

be simulated and by using multiple hardware to train the algorithm, reinforcement learning

can still be an option.

There are two main classes of reinforcement learning algorithms, model based and

model free reinforcement learning. In the model based approach, the agent tries to build a

model of the environment based on how it interacts with the environment [5]. Therefore, the

agent is able to predict the corresponding reward before applying the action on the

environment. Hence, preferences become more important than results of actions the agent

takes and the agent will try to take an action with the maximum reward without any regard

of the possible results of that action. On the other hand, model free approaches aim the agent

to establish the connection of their actions and consequences based on past experience. Thus,

6

the agent cannot predict the corresponding reward before applying the action. In such an

algorithm, the agent carries multiple actions and adjust the policy according to the reward.

Another way to examine different types of reinforcement learning methods is to

distinguish whether the algorithm is off-policy or on-policy. On-policy algorithms need the

way that the data is collected to be improved or evaluated [6]. On the other hand, off-policy

algorithms learn a policy from a data set which is a result of an arbitrary policy, so they

evaluate and improve a policy which is a different policy than that of generates the actions.

The past experience of the agent is stored in a structure called replay buffer. The stored batch

of data are used to train the network and update the policy accordingly, so the training data

generated by the previous policies are also utilized in the off-policy learning.

Even though reinforcement learning is a powerful method for complex tasks with

unknown system dynamics, not all types of reinforcement learning algorithms are suitable

for continuous control tasks. Continuity of the action and observation spaces, high

dimensional action and observation spaces make some reinforcement learning methods

unusable. In this situations, model-free deep reinforcement learning methods are better

choices as they can learn high dimensional actions and explore high dimensional state

spaces, without any need of a mathematical equation system for the dynamics of the

system[7].

Deep reinforcement learning is essentially a combination of deep learning and

reinforcement learning. It is one of the most rapidly growing areas of machine learning and

AI as it can solve many different types of difficult problems which are not possible to be

solved by other reinforcement learning methods. These methods owe their performance to

deep learning, which incorporates artificial neural networks in order to mimic the learning

behavior of living things by modeling the neurons, connections between these neurons and

how they interact with each other. Very large scaled raw inputs can be supplied to a neural

network without any structuring layer for the observation space. Another advantage of deep

RL algorithms is improved generalization [8]. Since deep RL algorithms can work with raw

data (such as image pixels), the environment does not need be necessarily defined

beforehand. Thus, the algorithm can work together with some new set of inputs that was not

a part of training session. For example, the algorithm can predict that there is a cat on the

7

image although the particular cat or the same species of the particular cat was not introduced

during the training.

In deep reinforcement learning, the agent is defined as a neural network or some

combinations of multiple neural networks. The number of layers and the number of neurons

in each layer, their activation functions and connectivity structure are some of the design

considerations. Required actions that should be taken for a specific observation and

assessments such as how good it is to be in a state are calculated by these neural networks.

The weight of the connections between the layers are initiated and then adjusted on every

update sequence depending on the error calculated every step and the result of

backpropagation algorithm applied. This general combination of reinforcement learning and

deep learning can be seen as a diagram in Figure 2.3.

Figure 2.3. Deep reinforcement learning diagram.

2.4.1. Activation Functions

Selection of the activation function is one of the critical parts of the neural network

design. It determines how the neurons from different layers interact with each other, which

means that it has a direct effect on the learning process. Selection of the output layer

activation function affects the generated output by the neural network. Activation functions

are mathematical expressions that take the weighted sum of the activations generated by the

previous layer as input and apply a transformation based on its internal mathematics. Neural

networks are built layer by layer. Input layer takes the raw input, calculates the activations

and passes them to the next layer. Output layer is the layer that generates the predictions that

8

neural network is expected to make. The layers between input and output layers are called

hidden layer. Number of the hidden layers is also another design choice. Generally, same

type of activation function is used for all hidden layers and a different activation function

for output layer may be selected depending on the desired output of the network. Activation

functions are required to be differentiable since the error in the output layer should be

differentiated in order to optimize the network [9].

The most frequently used activation functions for hidden layers are Rectified Linear

Activation (ReLU), Logistic (Sigmoid), and Hyperbolic Tangent (Tanh). Nonlinear

dynamics of these functions allow the network to learn more complex functions when

compared to linear activation functions. ReLU activation function is the most popular one

for the hidden layers thanks to ease of implementation and its lower vulnerability to

vanishing gradients problem [9], which describes that the gradients cannot be properly back

propagated and the desired behavior is not learned eventually. ReLU function returns the

input value unless the input is negative. If the input is negative it returns 0. The behavior of

ReLU activation can be seen in Figure 2.4(a). It is generally advised that the input values

shall be normalized in the range [0, 1] if the activation function is ReLU. Sigmoid function

takes real values as input and squeezes them between the range [-1, 1]. It is a good practice

to normalize the input values in the range [0, 1] when using Sigmoid as activation function.

Shape of sigmoid activation function can be seen in Figure 2.4(b). Mathematical expression

of sigmoid function is

𝜎 =

1

1 + 𝑒−𝑥
 .

 (2.1)

Tanh function takes real input values as input and outputs a value in the range [1, -1] just as

sigmoid function does. It is suggested that the input values shall normalized in the range [1,

-1]. Plot of tanh activation function is also available in Figure 2.5. The equation of tanh

function is

tanh =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 .

 (2.2)

9

 a) ReLU b) Sigmoid

Figure 2.4. Input/output plot of ReLU and sigmoid.

Figure 2.5. Input/output plot of tanh.

The selection of activation function for hidden layers is done according to some

considerations. A neural network uses the same activation function for all hidden layers in

most of the situations. Tanh activation function was the default option for hidden layers until

the end of the first decade of 2000s. However, tanh and sigmoid functions are vulnerable to

vanishing gradient problem and ReLU activation function has become a more viable option

in the modern neural network implementations [9]. The type of the network plays a huge

role for selecting a proper activation function. For Convolutional Neural Networks and

Multilayer Perceptron, ReLU is the best option most of the time, whereas sigmoid and tanh

function is more reliable for Recurrent Neural Networks.

There are four types of output layer activation functions that worth mentioning, which

are linear, logistic (sigmoid), softmax and softplus. Linear activation function is also known

as “identity” or “no activation” because it outputs the input value directly. Sigmoid function

10

has already been in introduced in the previous paragraphs. The softmax activation function

outputs a vector of values and the sum of these values are one, so it can be interpreted that

these values are probabilities. Mathematical expression of softmax is

softmax =

𝑒𝑥

∑ 𝑒𝑥
 .

 (2.3)

Softplus activation function is the smoothed verison of ReLU and it can be used in the hidden

layers as well. ReLU has a discontinuity around the origin. Even though this does not cause

much trouble in practice, researchers proposed the usage of softplus at the beginning of

2000s because of its continuity [10]. Dombrowski et al. [11] claimed that the gradients with

respect to the input becomes unstable in case any slight perturbation exists and softplus

solves this problem. The plot of softplus function is available in Figure 2.6 and it expressed

by the following equation

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 =

log (1 + 𝑒(𝛽∗𝑥))

𝛽
,

 (2.4)

where 𝛽 is a parameter with default value one. Softplus is differentiable everywhere and its

derivative is basically sigmoid function.

Selection of the activation function for output layer is what determines the output

essentially, so it is a significant aspect of neural network usage. The most important aspect

to consider when choosing the activation function for output layer is the type of the variable

that network predicts. If the problem is a regression problem, linear activation function is

generally the best option. However, sigmoid or softmax generally lead to better results for

classification type of problems [12].

Figure 2.6. Input/output plot of softplus.

11

2.4.2. Markov Decision Process

Markov Decision Process (MDP) is a mathematical environment that describes a

formulation where the current state characterizes the future process and this framework is

useful to model the decision making processes [13]. Markov Decision Process is a process

where all state-action pairs have Markov property. Markov property is defined as

 ℙ{𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑠0, 𝑎0} = ℙ{𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡}, (2.5)

where s is state, a is action.

 The meaning of the Equation 1.5 is that if the state and action pair is known at time 𝑡,

then the state at time t + 1 only depends on state and action pair at time t. The state-action

values before time t is irrelevant in this condition. If the environment has this Markov

property, then the next state, next reward can be predicted, given the current state of the

environment and current action. This property is crucial for reinforcement learning point of

view and most problems can be described as MDP. Thus reinforcement learning methods

are based on MDP’s.

2.4.3. Temporal Difference Learning

Temporal Difference (TD) Learning is an approach used to estimate the total reward

over a time horizon by reinforcement learning methods in an unsupervised way [14]. The

most important concept of TD learning is the discounted reward which is expressed as

 Rt = rt+1 + γrt+2 + γ2rt+3 + ⋯ γ∞r∞

= ∑ γkrt+k+1

∞

k=0

 ,

 (2.6)

where γ is discount factor and t is time. Discount factor depicts how much the future rewards

are valued. It is a real value between 0 and 1.

TD error is based on the difference between the actual reward Vt
∗ and the reward

prediction Vt:

 Et = Vt
∗−Vt

12

 = rt+1 + ∑ γkrt+k+1 − Vt
∞
k=1

 = rt+1 +γ(∑ γk−1rt+k+1) − Vt
∞
k=1

 = rt+1 +γ(∑ γkr(t+1)+k+1) − Vt
∞
k=0

 = rt+1 +γVt+1 − Vt, (2.7)

After calculating the error, the update is done to the current value as

Vt ← Vt + αEt

 = Vt + α(rt+1 + γVt+1 − Vt), (2.8)

where α is the learning rate. Learning rate determines how fast the learning process will be.

It is a real value between 0 and 1. Learning rate should be tuned as optimal as possible

because high learning rates may cause diverging from optimal results and aggressive

fluctuations. A low learning rate is somewhat safer in terms of convergence, but it leads to

slower training.

2.4.4. Actor-Critic Methods

Figure 2.7. Actor-critic architecture.

13

Actor-Critic methods are TD learning methods that uses two different neural networks

which are policy network and value network. Actor network maps the observation vector to

the probability distribution over the possible actions that the agent can take or directly the

actions. Value network predicts the expected return that the agent will obtain if it starts from

a particular state and acts according to the current policy from this point on. In other words,

critic network criticizes the actions generated by actor based on the current policy. A general

Actor-Critic architecture is shown in Figure 2.7.

Actor-Critic methods are based on the gradient that is calculated by the equation

∇J(θ) = ∑ ∇θlogπθ(at, st)

T−1

t=0

Aπθ(st, at),

 (2.9)

where Aπθ is the advantage function and πθ is the policy network with parameters set θ.

Advantage function is basically the TD error which was introduced earlier as the Equation

2.7. Equation 2.9 is also known as policy-gradient expression. In each iteration, these

gradients are used to update the policy network parameters according to the equation

 θ ← θ + α∇J(θ), (2.10)

where θ is the policy network parameters.

2.4.5. Policy Gradients

Policy gradients are frequently used in RL algorithms due to their dependence of

simple principles [15]. The policy is defined as

 π(a|s), (2.11)

where π depicts the probability of taking the action a, given a state s. Expected rewards can

be formulized as

J(θ) = E [∑ R(st, at); πθ

T

t=0

]

 = ∑ P(τ; θ)R(τ)

τ

, (2.12)

14

where τ depicts a trajectory. The ultimate goal is to develop a policy πθ that creates a

trajectory τ which includes state-action pairs

 (s1, a1, s2, a2, … , sT, aT),

which maximizes the expected return. Thus the objective function becomes

 max
θ

 J(θ) = max
θ

∑ P(τ; θ)R(τ),

τ

 (2.13)

which means a maximization problem of the sum of the expected rewards.

Policy gradient approach makes uses of a derivation trick defined as

f(x)∇θ log f(x) = f(x)

∇θf(x)

f(x)

 = ∇θf(x). (2.14)

Replacing f(x) with policy πθ(τ) gives

 πθ(τ)∇θ log πθ(τ) = ∇θπθ(τ). (2.15)

The expected return or continuous space can be expressed as

Ez~p(x)[f(x)] = ∫ p(x)f(x)dx,

 (2.16)

and the goal becomes the following equation defined as

 θ∗ = arg max
θ

J(θ)

 = arg max

θ
Eτ~pθ(τ) [∑ r(st, at)

t

] .
 (2.17)

Modifying the Equation 2.16 according to πθ(τ) gives

 J(θ) = Eτ~πθ(τ)[r(τ)]

 = ∫ πθ(τ)r(τ)dτ,

 (2.18)

and taking the gradient of this objective function gives the policy gradient defined as

∇θJ(θ) = ∫ ∇θπθ(τ)r(τ)dτ

15

 = ∫ πθ(τ)∇θ log πθ(τ)r(τ)dτ

 = Eτ~πθ(τ)[∇θ log πθ(τ)r(τ)]. (2.19)

Taking the gradient of log πθ(τ) is required in order to compute the policy gradient. πθ(τ)

is defined as

 πθ(τ) = πθ(s1, a1, … , sT, aT)

 = p(s1) ∏ πθ(at|st)p(st+1|st, at),

T

t=1

 (2.19)

and taking the log of both sides gives

log πθ(τ) = log p(s1) + ∑ log πθ(at|st) + log p(st+1|st, at),

T

t=1

 (2.20)

where p(st+1|st, at) is the probability of transitioning into st+1 from st if the action at is

applied. The first and the last term in Equation 2.20 do not depend on network parameters θ,

so they can be ignored while substituting it into Equation 2.19. Then Equation 2.19 becomes

∇θJ(θ) ≈
1

N
∑ (∑ ∇θ log πθ(ai,t|si,t)

T

t=1

)

N

i=1

(∑ r(si,t, ai,t

T

t=1

),

 (2.21)

and it is used to update the weights such that

 θ ← θ + α∇θJ(θ). (2.22)

The term ∇θ log πθ(ai,t|si,t) in Equation 2.21 is called maximum log likelihood and it

is a measure of how likely the trajectory is under the current policy. The aim of multiplying

it with the rewards is to increase the likelihood of a policy if the trajectory gives a positive

reward. Simultaneously, if the policy results in negative reward, the likelihood of this policy

is decreased.

2.4.6. Entropy in Reinforcement Learning

In many reinforcement learning algorithms such as policy gradient and actor-critic

algorithms, the actions are defined over a probability distribution like Gaussian distribution.

Entropy is a measure of randomness for the agent’s actions. The term “entropy” is originally

16

a physics term and it refers to the lack of order in a system whereas its meaning in terms of

reinforcement learning corresponds to the unpredictability of the actions generated by the

agent. In some RL algorithms, entropy is introduced into the objective function as

 J(θ) = E[R(st, at) + βH(πθ(st))], (2.23)

where H(πθ(st)) is the entropy of the policy πθ in the state st. This added term is sometimes

called entropy bonus and it is defined as

 H(πθ(st)) = − ∑ πθ(st, a) log πθ(st, a).

a

 (2.24)

Entropy bonus improves the exploration behavior of the agent and prevents the policy to get

stuck at a local optimum. However, the entropy coefficient should be tuned carefully because

if it is too high, entropy dominates the other components of objective function which

introduces a high degree of chaos. Similarly, too low entropy prevents the agent to explore

the environment and converge to better optima.

2.4.7. Q Learning

Q Learning is a model free reinforcement learning algorithm which is primarily built

on estimating the value of an action in a particular state [16]. It utilizes a table named as Q-

table which is a lookup table in order to estimate the expected returns for each possible action

in each state. “Q” stands for quality and intuitively Q value can be described as the quality

of the action. Q learning uses Bellman equation which is shown as

 V(st) = max
at

R(st, at) + γV(st+1). (2.25)

The stochastic version of Bellman equation is

V(st) = max
at

(R(st, at) + γ ∑ P(st+1|st, at)

st+1

V(st+1)).

 (2.26)

Q function takes inputs 𝑠𝑡 and 𝑎𝑡 in order to estimate the Q value as

 Qπ(st, at) = E[Rt+1 + γRt+2 + γ2Rt+3 + ⋯ |st, at], (2.27)

which is basically expected discounted reward. This calculation is used to update Q values

according to the equation

17

 Qnew(st, at) = Q(st, at) + α[R(st, at) + γ ∗ maxQπ(st, at) − Q(st, at)]. (2.28)

The next action is selected based on the new version of Q-table such that the action has the

maximum Q value. This update is applied iteratively until convergence.

18

3. LITERATURE

In this section, state-of-the-art studies in the field of exoskeletons, bipedal robots,

trajectory optimization and reinforcement learning which can provide some insight about the

thesis topic are summarized.

Optimal control strategies are widely used in the literature in the context of

exoskeletons and bipedal robots. One of them is direct collocation. In this method, system

dynamics, cost function and all constraints are discretized by integration approximations

such as Simpson’s rule or trapezoidal rule. Then the problem is reduced to nonlinear

programming problem that can be solved by numerous software packages such as

MATLAB. Chao et al. [17] used this method to generate optimal gait trajectories with the

cost function known as “mechanical cost of transport” which corresponds to the amount of

mechanical energy the device spends over the period of gait and generated feasible and

optimal gait patterns. Ackermann et al. [18] also showed functionality of direct collocation

methods on optimizing trajectories of human gait. Kelly [19] created an open source

MATLAB trajectory optimization library which uses direct collocation methods and

demonstrated efficacy of these methods on different problems including a five-link bipedal

robot. Hereid et al [20] used direct collocation method for trajectory optimization and

showed that optimization results yield dynamic and stable gaits for a bipedal robot.

Consequently, usability and efficiency of direct collocation methods on walking robotic

systems are shown many times in the related literature.

Luo et al. [21] proposed a novel motion controller that uses reinforcement learning for

squat assistance on a lower body exoskeleton. The aim of the exoskeleton which has

actuation on ankle joint for both sagittal and front planes is to help the user to complete squat

movement without any loss of efficiency, stability and robustness. A PD controller is used

the track the desired joint angles which are the outputs of the reinforcement learning

algorithm. Multi-layer perception that was used in the study is composed of 3 fully connected

layers with ReLu activation function. Proximal Policy Optimization which is one of the most

effective policy gradient algorithms is used to train the network. The center of pressure is

estimated by the help of force sensors on the foot and utilized in the observation space and

19

in the reward function. Additionally, dynamics randomization and perturbations forces are

also used during the training session in order to improve the robustness. The effectiveness

of the proposed strategy is shown in the experiments with different environmental

conditions.

Taylor et al. [22] introduced a method to teach a real world bipedal robot to walk

directly from motion capture data by using reinforcement learning. Required actuator

commands to realize a desired motion are derived as a result of the proposed method. The

acceleration and angular velocity values of the torso that are measured by an IMU, joint

angles, surface reaction forces and time measured by a built in sensor are used as the

observations for the reinforcement learning algorithm. The state vector is composed of the

velocities of the joint angles. Resultant joint velocities are converted into joint position

targets by an integrator and PD control is used to track these target joint positions. This

incorporation of integration has some advantages such as avoiding motor jitter and

smoothing the joint angle curve. PPO algorithm is utilized in the learning process. Policy

and value networks are created such that they have 3 layers which are composed of 128

neurons with softsign as the activation function. Reward function is shaped such that it

includes a term that checks the difference between the target link orientations and the actual

ones, a term that penalizes self-collisions, a term about foot contacts and orientation of the

foot during contact and a term that penalizes out of range joint angles. The algorithm is

trained for different initial conditions during 2500 episodes. Domain randomization is also

incorporated such that random motor backlash, friction coefficient and Young's modulus are

included during training. Consequently, the trained network can successfully imitate the

human gait even though there is still room for improvement in terms of overall robustness.

Lillicrap et al. [23] demonstrated the generalized efficacy of deep reinforcement

learning on various tasks. A novel algorithm called Deep Deterministic Policy Gradient

(DDPG) is introduced to solve continuous control problems. It is a combination of Deep Q

Network algorithm [24] and actor-critic approach where actor generates action and critic

criticizes it. It is tried on very different continuous control problems that include multi-joint

dynamics and unstable contact dynamics such as cart pole, pendulum swing-up, puck

shooting, robotic manipulation, legged locomotion and autonomous driving. One of the most

20

interesting aspects of the work is that the same hyper parameter settings and network

topology which decreases the amount of engineering required significantly.

Peng et al. [25] presented a imitation learning based method that can teach quadrupedal

robots very complex animal movements that include extreme agility skills. The input of the

proposed framework may be motion capture data obtained from the movements of real

animals. There are 3 main steps implemented in order to achieve the challenging goal of

imitating real animal movements. Firstly, the reference motion is processed for doing the

mapping between reference morphology and robot morphology. Secondly, the mapping

done in the first step is used to train the network that imitates the reference movements.

Finally, the developed robot policy is transferred to a real robot. Policy network which has

2 layers with 512 and 256 neurons outputs a Gaussian action distribution. The framework

can successfully learn to imitate a wide range of dynamically challenging movements such

as backward trot, running, turning, hop-turning. Moreover, the developed policy is able to

perform these movements after a sim-to-real transfer process.

Margolis et al. [26] developed a framework for a controller that enables a quadrupedal

robot to sprint and turn with high speeds on very different and challenging natural terrains

such as ice and grass. Reward function is engineered such that linear, angular velocity are

tracked and some additional conditions for stability, smoothness and safety are regulated.

Since some tilting movement through forward direction is observed during training sessions,

some penalty terms for body height and orientation are also added into reward function. PPO

algorithm is trained with randomized parameters for body mass, center of mass, motor

parameters, friction and restitution coefficients of ground in order to realize a better sim-to-

real transfer. Like many of the reinforcement learning studies, neural network outputs some

target joint positions which are to be tracked by a PD controller. Additionally, curriculum

learning is incorporated in order to enable high speed locomotion. It is found out that the

policy cannot learn desired behaviors without any curriculum. The result is that the random

exploration at the beginning rarely leads to movements with fast body motion, which

eventually keeps the reward small. Trained policy is tested on various real world conditions

by using a quadrupedal robot. The robot has outperformed the previous sprint speed record

which was achieved by model predictive control for the same robot configuration. Then the

robot is also tested on outdoor conditions and even if there is a decrease of sprint speed, the

21

robot can still sprint at a quite high speed. Finally, the robot is tested for yaw control which

resulted in with a yaw rate of 5.7 rad/s and for terrain change, hardware failure conditions,

which demonstrated improved agility.

Deep reinforcement learning has shown its efficacy in not only bipedal/quadrupedal

locomotion tasks, but also in other modes of locomotion such as snake locomotion. Shi et

al. [27] used reinforcement learning in order to derive gaits for multi-link snake shaped

robots in both aquatic and terrestrial environments. Links are attached at the end of each

other and this simple design is used for terrestrial and aquatic versions of snake robot.

Terrestrial version includes some wheels as well. The observation space consists of relative

angles of two joints of the robot and orientation of the robot in inertial frame whereas the

action space consists of the joint velocities. Two different reward functions are utilized

depending on two different tasks, moving forward or backward and changing the direction

of the robot to right or left. Forward displacement, orientation and robots orientation

displacement in the desired direction are used to shape the reward function. Since the

dimensionality of the problem is low, a network with 2 hidden layers with 50 neurons is

enough. The created network is trained by Deep Q Network method and it converges to an

optimal value after 5000 iterations for both configurations. A prototype of the wheeled snake

robot is created and transferring the learned policy into real world conditions is presented as

a future work.

Another type of robot geometry that can be used along with deep reinforcement

techniques is tensegrity robots. Zhang et al. [28] has developed a novel method that uses

reinforcement learning to achieve efficient gait for tensegrity robots. Tensegrity robots are

composed of some solid links and elastic elements that connect these links to each other.

Despite their intricate motion dynamics which makes it cumbersome to control them, they

are used for exploring planets. A tensegrity robot called SUPERball which has 6 solid rods,

and 24 elastic cables is used in the study. 12 of the elastic cables can be actuated. The

complex gait dynamics of this robot includes contracting the elastic cables such that area of

the base shrinks. The decrease in the area of the support polygon makes the robot tip over.

A 12-dimensional observation space which incorporates the acceleration measurements

along the bar axis. Action space is composed of desired positions of 12 different motors. A

neural network with 3 hidden layers each with 64 neurons activated by ReLU activation

22

function. The network is trained by an improved version of MDGPS algorithm [29] that

encompasses periodic behaviors. During training, some parameters such as terrain slope,

gravitational acceleration, noise level for the inputs are varied in a systematic way. The robot

can successfully learn to perform an efficient gait on the simulation environment. Moreover,

the trained policy is directly transferred into real world without any post-tuning and the robot

can travel distances such as 12m, 9m and 8m by performing rolling movements. Therefore,

it is stated that the proposed method achieved even better results when compared to some

hand engineered control algorithms.

Ouyang et al. [30] has demonstrated that reinforcement learning based methods can be

used to develop bioinspired adaptive locomotion controllers for hexapod robots as well.

Central Pattern Generators (CPGs) are a part of the central nervous system and they generate

some commands in order to achieve complex and rhythmic locomotion patterns in animals.

A DDPG reinforcement learning agent that takes the position and velocity of the robot body,

joint torques, angles and first derivatives of the angles is implemented. This agent optimizes

2 parameters of CPGs, which are amplitude and phase difference between the hip joint and

knee joint. CPG based controller generates the desired joint positions based on these

parameters and these target angles are tracked by PD controller. Velocity direction and the

energy consumption are considered in terms of reward function. In conclusion, it has been

showed that the proposed controller structure can very good maneuverability, adaptability t

different environments, robustness and stability.

Deep reinforcement learning has been used to generate the desired joint torques for

bipedal robots or lower body exoskeletons most of the time. However, setting the output

layer such that it outputs the joint torques directly is also a valid option. Rose et al. [7] used

deep neural networks in order to develop a controller that generates the correct torque values

directly. A neural network that generates joint torques based on observations for joint angle,

velocity, acceleration, actuator torque, speed and joint angle goals is established and trained

by DDPG algorithm. A common reward scheme is used to generate a general reward

function that encompasses the successful tracking of goal joint angles and a penalty for

exceeding the joint limits. This common reward scheme is implemented for all the joints and

they are summed up in order to generate the overall reward. OpenSim-RL, which is an open

source reinforcement learning environment for multibody physics simulations, is used as the

23

simulation environment. Desired gait pattern is obtained via applying inverse kinematics

after using the joint torque profiles which are available in OpenSim. The network is tested

after the training and it is observed that the desired joint trajectories are tracked even in the

presence of small perturbations. Being able to track the unseen trajectories in the training is

given as a future work.

Another deep reinforcement learning method that may be used for developing

exoskeleton controllers is TD3 (Twin Delayed Deep Deterministic Policy Gradient). TD3 is

an improved version of DDPG algorithm. Some shortages of DDPG algorithm such as

unstable convergence, overestimation of the critic network outputs, and over-reliance of

hyper parameters are solved in TD3. Oghogho et al. [31] proposed a TD3 based method to

regulate the assistance levels of upper limb exoskeletons. The aim of the user is detected

based on the EMG activity of the muscles and assistive actions are generated, so EMG

signals are included in the observation space along with the joint angles. Based on these

observations, the network outputs the assistive gains for the actuators. Large overshoots in

the joint positions, EMG activities of the corresponding muscles and out of range assistive

gain values are penalized in the reward function. The proposed system is able to learn how

to output the desired assistive gains without any knowledge of muscular capability of the

user and the complex dynamics between the exoskeleton and human. The resultant TD3

agent is used in the real world experiments and helped the user to lift a 4 kg object by

decreasing the muscular activity by 15 %.

Luo et al. [32] presented novel controller based on a deep reinforcement learning

framework which includes three independent neural networks for lower limb exoskeletons.

High degree of uncertainty in the dynamics between the human and exoskeleton poses

challenge for developing efficient controller and conventional methods require much effort

in order to tune many different parameters within the control system. In this study, deep RL

is utilized as a way to come up with a controller that considers the interaction forces between

exoskeleton and human. Muscle-actuated human control loop is used to generate realistic

interactions between human and exoskeleton. The aim of the LLRE (Lower Limb

Rehabilitation Exoskeleton) control policy loop is to generate the required joint torques that

track a reference motion. Muscle coordination network in muscle-actuated human control

loop is a network trained in a supervised way and it predicts the muscle activations of the

24

user while walking with the exoskeleton based on the joint accelerations and muscular state

by minimizing error for desired joint acceleration and actual joint acceleration. Interaction

network outputs the human joint angle targets based on joint angles and joint angle velocities

such that the interaction forces between the human and exoskeleton are small. PD controllers

are used to generate the joint torques for LLRE control loop and joint accelerations for

muscle-actuated human control loop such that the target joint angles are tracked. All the

neural networks in the loop are trained simultaneously. Reward function for motion imitation

network consists of following multiple sub rewards. Imitation reward encourage the

exoskeleton to track the reference trajectories. Root reward aims to track the root’s position

and rotation trajectories. Center of Pressure reward encourages the controller to produce

actions that leads to situations where the center of pressure is within the support polygon,

which is the safe region in terms of stability for the center of pressure. Action smoothness

reward penalizes high second order derivatives of actions. Foot clearance reward tries to

ensure that roll and pitch angle of the swing foot in order to keep the foot parallel to the

ground as much as possible for avoiding tripping. Lastly, torque reward encourages the agent

to generate actions with superabundant joint torques. PPO algorithm is used to train the

network. During training, maximum isometric forces of muscles are randomized within a

range in order to generalize better such that different people with different muscle properties

can use the system without patient specific parameter tuning. After the training, the

controller is tested with multiple users with varying physical health status such as healthy,

muscle weakness or hemiplegic in an open source simulator DART. The proposed

multilayered control algorithm can successfully help the users to have a stable and efficient

gait.

25

4. METHODOLOGY

This thesis study is part of a TÜBİTAK project (project no 118E922) about lower-limb

exoskeletons. Minimization of metabolic energy is determined as one of the topics that we

will contribute as Boğaziçi University. After examining usability of conventional control

methods, it has been decided that RL shall be used to minimize the necessary reaction forces

because of less required mathematical model complexity when compared to the classic

methods. Since the lower portion of the body is assumed to be completely passive in this

project, lower body metabolic energy consumption is ignored. The GRF’s on the crutch tips,

which can be considered as an indicator for the upper body metabolic effort, are identified

as the minimization goal. The exoskeleton-human system is modeled in accordance with the

real exoskeleton developed in Özyeğin University. Physics simulators RaiSim and MuJoCo

are used to simulate the dynamics of the problem. After failing in RaiSim trials, MuJoCo is

adopted as the physics simulator and different RL agents that reaches the goal of GRF

minimization are developed.

4.1. Simulation Environment and Modeling

Machine learning methods generally operate on a readily available training datasets

and optimize their mathematical models by using the dataset. However, reinforcement

learning methods do not require any training dataset which is available prior training.

Instead, they require a simulation environment to be able to realize the problem virtually.

This simulation environment supplies the training data as a result of the interactions between

the RL agent and the environment. Moreover, the data is not given as a whole by simulation

environments. The data becomes available to the algorithm piece by piece. As all other

machine learning methods, reinforcement learning also depends heavily on the quality of

training data coming from the simulation environment. Therefore, the simulation

environment is expected to capture all the important dynamics of the problem as realistic as

possible and supply the observations such as joint states, reaction forces and dynamic effects

to the agent. Especially in legged locomotion, the stability of the overall structure is

extremely dependent of the accuracy of contact force modeling. These forces establish the

basis for interaction between the robot and the ground. Even though there are many different

26

physics engines that simulate these contacts, the methods they use for these calculations

differ a lot and it is necessary to pick the most suitable one based on the advantages and

disadvantages.

4.1.1. OpenAI Gym

One of the most well-known, popular and easy to use reinforcement learning

environments is OpenAI Gym and it contains many different problems varying from robotics

and control tasks to various type of games. It includes a wide variety of environments such

as bipedal walker, inverted pendulum and cart pole. OpenAI Gym is generally used for

benchmarking the efficacy of new algorithms and as a learning environment for

reinforcement learning new starters thanks to ease of implementation.

 There are some crucial and useful features of OpenAI Gym in terms of interacting the

environment and they generally form the basis of reinforcement learning algorithms. These

functions are:

• reset : Resets the environment to the initial conditions and returns the initial

state values

• step: Implements the action to the environment and returns some information

about the environment after the action. The retuned information are:

o state: State of the environment after the action

o reward: Reward obtained after applying the action

o done: The signal that terminates the episode based on whether the goal

is reached or any termination criteria are satisfied

o info: Any other information depending on the environment which can

help the debugging.

By following the same structure of readily available OpenAI Gym functions, new

classes that include a physics simulator and customized definitions of required functions

such as reset and step are shaped in this study. For example, problem specific termination

criteria should be described within done function such as terminating the episode if the robot

falls. Additionally, the state vector and reward function that was engineered such that the

desired functionalities are mathematically described also have been added into this new class

27

that draws the boundaries of the task to be solved. This process requires a meticulous

selection of the physics simulator and the integration of it into the reinforcement learning

environment. In the next parts, some important physics simulators will be introduced.

4.1.2. MuJoCo

MuJoCo (Multi-Joint Dynamics with Contact) is an open source multi body physics

simulator that can calculate the rigid body contact forces accurately. It has very different

types of robot models available such as one legged, bipedal, quadrupedal robots. MuJoCo

has been one of the most frequently used multibody physics simulators for reinforcement

learning methods, especially for locomotion tasks. Fujimoto et al. [33] has showed the

efficacy of MuJoCo for different types of locomotion tasks by producing efficient gaits for

all the available robot configurations in MuJoCo. Due to its proven efficacy in locomotion

tasks, MuJoCo is selected as one of the physics simulators that have been tried in this study.

4.1.3. RaiSim

RaiSim is another multibody physics engine designed to simulate robotic systems and

it is one of the most recent ones. Moreover, any multibody object that is built by URDF

convention can be simulated in RaiSim and the overall system can be visualized by RaiSim

Unity including the direction and magnitude of ground contact forces and contact points.

Hwangbo et al. [34] has tested this physics simulator that they created and it is claimed that

speed and accuracy is generally better than some other popular physics simulators. The

general information about these frequently used simulators is available in Table 4.1 and the

comparison between these simulators on different task is available in Table 4.2. These tables

are inspected to select the simulators used in this study. RaiSim has a distinctive method for

simulating the contact forces and this helps it to simulate multibody or single body tasks

quite successfully. Thus, it is expected that RaiSim will become one of the most frequently

used multibody physics simulators due to its prowess. As an addition to MuJoCo, RaiSim is

also selected to model the exoskeleton and human system that includes the crutches also in

order to use the overall model as a simulation environment for the reinforcement learning

process in this study.

28

Table 4.1. General information about frequently used physics simulators [34]

 RaiSim Bullet ODE MuJoCo DART

Initial

release
Unreleased 2006 2001 2015 2012

Author
J. Hwangbo

D. Kang
E. Coumans R. Smith E. Todorov

J. Lee et

al

License Proprietary
Zlib

(open-source)

GPL / BSD

(open-source)
Proprietary BSD

Main

purpose
Robotics Game, Graphics

Game,

Graphics
Robotics Robotics

Language C++ C / C++ C++ C C++

API C++ C++ / Python C C C++

Contacts Hard Hard/Soft Hard/Soft Soft Hard

Solver Bisection MLCP LCP
Newton /

PGS / CG
LCP

Integrator
Semi-implicit

Euler

Semi-implicit

Euler

Semi-implicit

Euler

Semi-

implicit

Euler / RK4

Semi-

implicit

Euler

Coordinates Minimal Minimal Maximal Minimal Minimal

Table 4.2. Comparison of physics simulators [34]

 RaiSim Bullet ODE MuJoCo DART

Rolling ++ +++ - + -

Bouncing ++++ ++ +++ - +

666 +++ + ++ + +

Elastic 666 ++++ ++ +++ - +

ANYmal PD +++++ +++ + ++++ ++

ANYmal

Momentum
+++ ++ +++++

++++ (RK4)
+

++ (Euler)

ANYmal

Energy
++++ +++ ++

+++++ (RK4)
+

+++ (Euler)

29

4.1.4. Exoskeleton-Human System Modeling

In order to create the exoskeleton-human compound model, a human model which has

already been implemented with URDF convention is surveyed. Even though, there are not

many implementations of a human model with joint actuations, a URDF model which was

originally created for simulations on Gazebo, which is another dynamics simulator used for

robotics, is available. [35] The models in this repository are generated by Human Model

Generator [36] and using motion capture data. The links in the human body are modeled as

cylinders and boxes with different dimensions. There are 8 different models with different

measurements as shown in Table 4.3. Subject 2 is chosen as the model to be used because it

has the closest measurements the real exoskeleton in Ozyegin University in terms of hip

height and knee height. This model contains nearly every present degree of freedoms in a

healthy human body. In order to decrease the dimensionality of the problem and simplify

the problem, some unnecessary degrees of freedom are removed by setting the joints as fixed

joints. Ankle, knee, hip, arm and shoulder joints in the sagittal plane are preserved.

Table 4.3. Measurements of human subjects [36]

Subject
Mass

[kg]

Height

[cm]

Foot

size

[cm]

Arm

span

[cm]

Ankle

height

[cm]

Hip

height

[cm]

Hip

width

[cm]

Knee

height

[cm]

Shoulder

width

[cm]

Shoulder

height

[cm]

 Sole

height

[cm]

1 62.2 168 24 163 8 91 25 48.5 35.4 140 -

2 79.4 176 26 169 8 94 33 48 40 140 -

3 75.4 180 27 190 8 102 28 58 43 148 -

4 72.7 182 26 197 8 102 29 56 42 150 -

5 55 168 24 168 8 98 25 52 38 139 -

6 71.2 179 29 180 8 100 31 49 43 147 -

7 78.9 178 28 192 8 102 30 52 44 148 -

8 55.2 166 25 170 8 90 28 45 37 139 -

After having the human model which includes the necessary joints, a lower body

exoskeleton has been modeled and attached to the human model along with the crutches that

were fixed to left and right arm as shown in Figure 4.1. In order to sense whether the feet

sole contact the ground or not, 4 spheres which are connected to the feet sole are added for

each foot. Similarly, spheres are connected to the tips of the crutches in order to sense the

reaction forces applied to the crutches. These artificial sensors are defined as prismatic joints

with predefined stiffness and they behave as springs that enable force measurement. This

30

contact information is very useful in terms of the observation vector in reinforcement

learning. The aforementioned contact spheres beneath the feet are shown in Figure 4.2(a),

whereas the contact sphere at the tip of the crutch can be seen in Figure 4.2(b).

(a) (b) (c)

Figure 4.1. Exoskeleton-human system with crutches from different views. (a) Front

view (b), Rear view (c), Transverse view.

(a) (b)

Figure 4.2. Contact spheres. (a) Feet contact, (b) Crutch contact.

4.1.5. Action and Observation Space in RaiSim

In a similar way described in Section 4.1, observation and action spaces have been

created. Observation space consists of following variables; x, y, z positions of the root,

rotation angles with respect to x, y, z axes in quaternion representation, rotation angles of

ankle, knee, hip, shoulder and arm joints in sagittal plane, displacements in the prismatic

joints that are used to attach the contact spheres and velocities of all these variables. Action

space is defined as the joint torques to be applied on ankle, knee, hip, shoulder and arm

joints. Note that the arm and shoulder joints are actuated by the human in a real world

31

environment, but it is necessary to simulate these actuations in order to obtain a complete

gait with crutch usage and the arm actuations are assumed to be a part of the robotic

exoskeleton. RaiSim successfully computes the variables required and communicates with

Python which enables the usage of all these variables in order to build the observation and

action spaces to be used within the scope of reinforcement learning.

4.1.6. Action and Observation Space in MuJoCo

In order to shape the observation space, a script originally written for simulating a

humanoid model in MuJoCo[37] is used [38]. In this script, current positions of the center

of mass of the exoskeleton-human system in x, y, z coordinates are excluded from the

observation space. Thus, the observation consists of rotation angles with respect to x, y, z

axes in quaternion representation, rotation angles of ankle, knee, hip, shoulder and arm joints

in sagittal plane, displacements in the prismatic joints that are used to attach the contact

spheres, velocities of all these variables, center of mass inertia and velocity and actuator

forces.The center of mass inertia is defined as the body inertia based on CoM in MuJoCo.

The same action space as in the RaiSim trials which consists of the joint torques is used for

the MuJoCo trials as well.

4.2. Implemented RL Methods

As explained by many different studies in the Literature Review section, there are

numerous state of the art reinforcement learning methods that may be used to develop a

locomotion controller for a lower limb robotic exoskeleton. In this section some of these

recent algorithms will be explained in detail. In order to develop a reinforcement learning

based controller which utilizes neural networks and does the mapping between the robot

states and required joint torques, Proximal Policy Optimization (PPO) [39] and Twin

Delayed Deep Deterministic Policy Gradient (TD3) [33] methods will be utilized along with

the help of RaiSim and MuJoCo simulation environments.

4.2.1. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy gradient method that can be used to

solve the problems with discrete or continuous action spaces. The neural networks are

32

utilized in an Actor-Critic architecture and a stochastic policy is trained in on-policy manner.

PPO builds on the Vanilla Policy Gradient with advantage function which is expressed as

 ∇J(θ) = Êt[∇θlogπθ(at|st)Ât], (4.1)

where πθ is the stochastic policy that outputs a probability distribution of actions, Ât is the

estimation of advantage at time t and Êt is the expectation which is an average calculated

over a finite number of batches.

Equation 2.9 is the gradient of the policy loss function which is

 LPG(θ) = Êt[logπθ(at|st)Ât]. (4.2)

Even though it seems reasonable to update the network parameters constantly in a batch of

collected experience , the resulting update rate of the parameters generally come out very

aggressive which is called “destructively large policy updates”. One way to avoid this

problem is to use Trust Region Policy Optimization [40]. Schulman et al. [40] proposed this

method such that the update rate of the policy is constrained within a trustable region, so the

destructively large update rates are avoided. First, a ratio is defined as

r(t)(θ) =

πθ(at|st)

πθold
(at|st)

,
 (4.3)

in order to determine the similarity between the current policy and the previous one. For

example, the ratio r(t)(θ) will be greater than 1 if the particular action is more probable for

the current policy when compared to the previous policy. Similarly, the ration will be

between 0 and 1 if that action is less probable for the current policy when compared to the

previous one. Trust Region Policy Optimization (TRPO) uses this ratio to shape an

optimization problem defined as

max

θ
Êt [

πθ(at|st)

πθold
(at|st)

Ât]

 (4.4)

 subject to Êt [KL[πθold
(. |st), πθ(. |st)]] ≤ δ, (4.5)

where the objective function is called surrogate objective.

33

 PPO combines the approaches the approaches described above and tries to strike a

balance between the efficacy, use of implementation and robustness to hyper parameter

tuning. The main contribution of PPO is Clipped Surrogate Objective defined as

 LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)], (4.6)

where the function “clip” clips the first argument rt(θ) within a range [1 − ε, 1 + ε]. Here,

the objective function takes the minimum value between the original policy gradient and the

expectation is computed over this selected value.

 (a) (b)

Figure 4.3. Behavior of LCLIP with 𝜀 = 0.25 for (a) A > 0, (b) A < 0.

The behavior of LCLIP is shown on Figure 4.3. When the advantage is positive the

selected action has affected the outcome better than expected, but loss function is flattened

if the likelihood of the action gets too high when compared to the previous policy. Similarly,

the loss function is also clipped if the likelihood of the action is much less than the previous

policy. The pseudocode of PPO-Clip algorithm is available in Table 4.4.

Table 4.4. Pseudocode of PPO-Clip algorithm

Algorithm PPO-Clip

1: Input: initial policy parameters 𝛉𝟎, initial value function parameters 𝛗𝟎

2: for 𝐤 = 𝟎, 𝟏, 𝟐, … 𝐝𝐨

3: Collect set of trajectories 𝐃𝐤 = {𝛕𝐢} by running the policy 𝛑(𝛉𝐤) in the environment

4: Compute rewards-to-go �̂�𝐭

5: Compute advantages �̂�𝐭 based on the current value function 𝐕𝛗𝐤

6: Update the policy by maximizing the PPO-Clip objective by using slice length 𝑳𝒂

 after every 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 timestep:

34

Table 4.4. Pseudocode of PPO-Clip algorithm (cont.)

 𝛉𝐤+𝟏 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝛉

𝟏

|𝐃𝐤|𝐓
∑ ∑ 𝐦𝐢𝐧 (𝐫(𝐭)(𝛉)𝐀𝛑𝛉𝐤(𝐬𝐭, 𝐚𝐭), 𝐜𝐥𝐢𝐩(𝐫𝐭(𝛉), 𝟏 − 𝛆, 𝟏 + 𝛆)𝐀𝛑𝛉𝐤(𝐬𝐭, 𝐚𝐭))

𝐓

𝐭=𝟎
𝛕∈𝐃𝐤

 typically with gradient ascent with Adam optimizer

 7: Fit value function by mean squared error and using slice length 𝑳𝒄::

𝛗𝐤+𝟏 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝛗

𝟏

|𝐃𝐤|𝐓
∑ ∑ (𝐕𝛗(𝐬𝐭) − �̂�𝐭)

𝟐
𝐓

𝐭=𝟎
𝛕∈𝐃𝐤

 typically by gradient descent algorithm.

8: end for

Figure 4.4. Beta distribution for different α and β values.

35

If the policy and value function shares some parameters, squared loss of critic should

also be included in the overall loss. If the policy a value functions are different networks,

then they should be updated independently. Then the final form of the loss function becomes

 Lt
CLIP+VF+S(θ) = Êt[Lt

CLIP(θ) − c1Lt
VF(θ) + c2S[πθ](st)], (4.7)

 where c1 and c2 are hyper parameters to tune, S is entropy bonus and Lt
VF(θ) is defined as

 Lt
VF(θ) = (Vθ(st) − Vt

targ
)

2
. (4.8)

 The stochastic policy πθ may be model by probabilistic distributions such as

Gaussian distribution or beta distribution. Chou et al. [41] has proposed to use the beta

distribution for continuous control tasks with deep reinforcement learning. Unlike Gaussian

distribution which can give out of range action values, beta distribution supplies a bounded

action space between 0 and 1. If beta distribution is used in the policy, the neural network

outputs α and β values which characterizes the shape of beta distribution which can be seen

in Figure 4.4.

 Beta distribution is expressed as

h(x: α, β) =

Γ(αβ)

Γ(α)Γ(β)
xα−1(1 − x)β−1,

 (4.9)

where the function Γ(Gamma) is defined as

 Γ(n) = (n − 1)!. (4.10)

When acting in a stocasthic manner in training phase, the outputs of the policy network,

which are α and β, used to generate the distribution and the action value is sampled from the

distribution within the range [0,1]. If a deterministic action is required, the action is taken

according to

 πθ =
α

α + β
 , (4.11)

where α and β is the output of the policy network πθ.

 In order to get α, β > 1, 1 is added to the output layer activations for both α, β.

Petrazzini et al. [42] used beta distribution with PPO along with softplus activation at the

output (with +1 offset) and stated that beta distribution outperforms Gaussian distribution

36

with PPO in terms of fast and stable convergence to an optimal solution. Another useful

result that is reached in Petrazzini et al.’s study is that continuous control tasks where the

action space is bounded and observation space is high dimensional are facilitated if the

policy is described by beta distribution. Therefore, PPO with beta distribution is employed

in the first part of this thesis where RaiSim is used as the physics simulator in order to provide

a continuous control strategy for a lower limb robotic exoskeleton. In the later stages of this

study, used PPO algorithm is also changed along with the transition from RaiSim to

MuJoCo. During the MuJoCo trials, PPO algorithm implemented by OpenAI Baselines is

used without any modification [43]. Therefore, Gaussian distribution is used in the later

stage.

4.2.2. Twin Delayed Deep Deterministic Policy Gradient

 Even though the value overestimation is studied in the literature, it is still a problem

for most of the actor-critic family algorithms that is used for continuous control tasks.

Overestimation bias is present in Q-learning method because of the noise in the value

estimation. In a TD learning setup, this noise causes further problems as TD learning uses

the noisy estimates to update which eventually leads to accumulation of noise. This

accumulation of noise results in poor updates and being unable to converge to a desired

policy. This overestimation caused by noisy estimates also poses a problem for deterministic

policy gradient methods with continuous action and state spaces. Fujimoto et al. [33]

proposed a solution to this problem by introducing a pair of independent critic networks. The

idea of using multiple critic networks belongs to Van Hasselt et al. [44] Fujimoto et al.

employed a few tricks such as target networks which is a frequently used concept in deep Q-

learning, delayed policy updates and a novel regularization strategy. These updates are

applied to Deep Deterministic Policy Gradient (DDPG) [24] which is one of the modern

deep reinforcement learning techniques.

In Actor-Critic reinforcement learning methods, the policy network is updated based

on the equation

 ∇𝜃𝐽(𝜃) = 𝐸𝑠~𝑝𝜋
[∇𝑎𝑄𝜋(𝑠, 𝑎)|𝑎=𝜋(𝑠)∇𝜃π𝜃(𝑠)], (4.12)

where 𝑄𝜋(𝑠, 𝑎) is the critic or value function. It is defined as

37

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝑠~𝑝𝜋,𝑎~𝜋[𝑅𝑡|𝑠, 𝑎], (4.13)

which is the expected return after 𝜋 taking the action 𝑎 in the state 𝑠. As explained earlier in

2.4.7., the value function 𝑄𝜋(𝑠, 𝑎) can be learned by Bellman equation which establishes the

bridge between values of state-action pairs belonging to subsequent time samples.

For large state spaces, neural networks can be used as function approximators in order

to estimate the value function. In this case, the value function becomes 𝑄𝜑(𝑠, 𝑎) where 𝜑 is

the parameter set of the neural network. Another network called frozen target network

𝑄𝜑′(𝑠, 𝑎) is used along with TD-learning. Hence a fixed objective value is obtained as

 𝑦 = 𝑟 + 𝛾𝑄𝜑𝑡+1
(𝑠𝑡+1, 𝑎𝑡+1), (4.14)

where 𝑎𝑡+1~𝜋𝜃𝑡+1(𝑠𝑡+1). Since there are two critic networks in Twin Delayed Deep

Deterministic Policy Gradient (TD3) algorithm, sometimes 𝑄𝜑2
(𝑠, 𝜋𝜃(𝑠)) will be greater

than 𝑄𝜑1
(𝑠, 𝜋𝜃(𝑠)). This situation may introduce problems, because 𝑄𝜑1

will overestimate

values most of the time. The larger 𝑄𝜑2
value estimate will increase the degree of

overestimation. Fujimoto et al. suggested to use the minimum value between 𝑄𝜑1
 and 𝑄𝜑2

for calculating the target update such that

 𝑦1 = 𝑟 + 𝛾 min
𝑖=1,2

𝑄𝑡+1,𝜑𝑖
(𝑠𝑡+1, 𝜋𝜃(𝑠𝑡+1)), (4.15)

where min function picks the smaller value between 𝑄𝑡+1,𝜑1
 and 𝑄𝑡+1,𝜑2

. Even though the

equation 4.15 may introduce underestimation, it is not more dangerous than overestimation

as it will not propagate throughout the update sequence. If there is only one actor network

the same target 𝑦2 = 𝑦1 will be used for updating 𝑄𝜑2 and this option is more preferable if

computation cost is important.

Apart from the variance introduced by the overestimation, variance itself is addressed

in TD3 algorithm as well, since high variance estimates results in noisy gradients. Using

these noisy gradients in policy update reduces learning speed according to Sutton et al. [6]

and may cause poor performance. Variance causes the estimation error to grow as training

progresses. By using a stable target network, convergence behavior can be improved.

Fujimoto et al.[33] states that the high variance in policy updates causes divergence if there

is not any target network is used. Therefore, target networks can be used to decrease the

38

estimation error whereas policy updates on the states with high error may cause the policy

to diverge. One of the main ideas of TD3 algorithm is to update value network more

frequently than the policy network. This approach ensures that the error is decreased before

optimizing the policy network.

Table 4.5. Pseudocode of TD3

Algorithm TD3

1: Input: initial policy parameters 𝛉𝟎, initial critic network parameters 𝛗𝟏and 𝛗𝟐, initial

target networks 𝝋𝟏
′ ← 𝝋𝟏, 𝝋𝟐

′ ← 𝝋𝟐 and 𝜽′ ← 𝜽, initial empty replay buffer 𝔹

2: for 𝐭 = 𝟏, 𝟐, … 𝐓 𝐝𝐨

3: Select action with exploration noise 𝒂𝒕 = 𝝅𝜽(𝒔𝒕) + 𝝐 where 𝝐 = 𝜷𝓝(𝟎, 𝝈) and 𝜷

 is exploration coefficient

4: Update exploration coefficient: 𝜷 ← 𝜷 ∗ 𝜷𝒅𝒆𝒄𝒂𝒚

4: Implement the action 𝒂𝒕 on the environment

5: Observe 𝒔𝒕+𝟏, 𝒓𝒕 and store transition information (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝔹

6: Sample N number of random transitions from 𝔹

7: �̃� ← 𝝅𝜽′(𝒔𝒕+𝟏) + 𝝐 , where 𝝐 = 𝒄𝒍𝒊𝒑(𝓝(𝟎, �̃�), −𝒄, 𝒄)

 𝒚 ← 𝒓 + 𝜸 𝐦𝐢𝐧
𝒊=𝟏,𝟐

𝑸𝝋𝒊
′(𝒔𝒕+𝟏, �̃�)

8: Update critics 𝛗𝐢 ← 𝒂𝒓𝒈𝒎𝒊𝒏𝝋𝒊
𝑵−𝟏 ∑ (𝒚 − 𝑸𝝋𝒊

(𝒔𝒕, 𝒂𝒕))
𝟐

9: if t mod policy_delay then

 Compute policy gradients for 𝜽 and update policy:

 𝛁𝜽 𝑱(𝜽) = 𝑵−𝟏 ∑ 𝛁𝒂𝑸𝝋𝟏
(𝒔𝒕, 𝒂𝒕)|𝒂=𝝅𝜽(𝒔𝒕)𝛁𝜽𝝅𝜽(𝒔𝒕)

 Update the target networks:

 𝝋𝒊
′ ← 𝝉𝝋𝒊 + (𝟏 − 𝝉)𝝋𝒊

′

 𝜽′ ← 𝝉𝜽 + (𝟏 − 𝝉)𝜽′

10: end if

11: end for

Another contribution that is introduced by Fujimoto et al. [33] is target policy

smoothing regularization. Deterministic policies often induce an inaccuracy caused by

function approximation errors. The resulting high variance should be regularized. The

approach introduced in TD3 ensures that similar actions have similar value. Fitting the value

within an area around target action

 𝑦 = 𝑟 + 𝐸𝜖[𝑄𝑡+1,𝜑(𝑠𝑡+1, 𝜋𝑡+1,𝜃(𝑠𝑡+1) + 𝜖)], (4.16)

smooths the value estimate, where 𝜖 is the noise parameter clipped between an upper and

lower limit pair. Using Equation 4.16 over mini batches and averaging reduces the variance.

39

TD3 is an off-policy algorithm that trains a deterministic policy. In order to facilitate

the exploration, some amount of noise is added to the actions generated by the policy. The

magnitude of the noise may be reduced gradually as the training progresses to have better

quality of training data. Overall algorithm for TD is available in Table 4.5.

4.3. Reward Shaping

4.3.1. Reward Shaping for RaiSim

During the trials made on RaiSim, the reward function is designed in order to make

the human-exoskeleton system walk in the straight direction without diverging through left

or right, without tilting the body too much and without falling. The terms that shape the

reward function are 𝑟𝑤𝑎𝑙𝑘, 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙, 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑎𝑐𝑡𝑖𝑜𝑛. During the first

trials, simple expressions are used to shape the reward, but after failing to converge to a

useful policy, exponential functions are adopted. Due to the shape of the exponential

functions, undesired actions are penalized more when compared to linear functions. The

position of the exoskeleton is based on the root attached to the middle section of the

exoskeleton model as seen in Figure 4.5.

Figure 4.5. Position of the root attached to the hip section of the exoskeleton.

Walking reward encourages the human-exoskeleton system to translate its root

position in the forward direction. It is defined as

𝑟𝑤𝑎𝑙𝑘 = 𝑒−50(100(�̇�𝑥−�̇�𝑥,𝑑𝑒𝑠))

2

,
 (4.17)

40

where �̇�𝑥 is the derivative of the root position in x coordinate based on the x coordinate of

the previous state, whereas �̇�𝑥,𝑑𝑒𝑠 is the desired forward velocity and it is set as 0.0005 m/s.

Walk straight reward discourages the system to walk to left or right side. It is defined

as

 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = 𝑒−50𝑝�̇�
2
, (4.18)

where 𝑝�̇� is the difference between the position in y coordinate of current state and position

in y coordinate of the previous state.

Do not fall reward encourages the human-exoskeleton system to keep the height of the

root close to the desired height. It is defined as

𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 = 𝑒−50((𝑝𝑧−𝑝𝑧,𝑑𝑒𝑠))

2

,
 (4.19)

where 𝑝𝑧 is the position in z coordinate of current state, whereas 𝑝𝑧,𝑑𝑒𝑠 is the desired root

height and it is set as 0.75 m.

Orientation reward discourages the human-exoskeleton system to tilt the body forward

too much. It is defined as

 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑒−20𝑎𝑥
2
, (4.20)

where 𝑎𝑧 is the angle of the body to the forward direction.

Action reward discourages the exoskeleton to generate exaggerated actions. It is

defined as

𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑒−

‖𝑎𝑐𝑡𝑖𝑜𝑛‖
50 ,

 (4.21)

where 𝑎𝑐𝑡𝑖𝑜𝑛 is the joint torques generated by the neural network.

The sub-rewards described above are combined and an overall reward function is

shaped as

 𝑟 = 𝑤1𝑟𝑤𝑎𝑙𝑘 + 𝑤2𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡+ 𝑤3𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙+ 𝑤4𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛+ 𝑤5𝑟𝑎𝑐𝑡𝑖𝑜𝑛, (4.22)

41

where 𝑤1, 𝑤2, 𝑤3, 𝑤4and 𝑤5 are 0.8, 0.05, 0.05, 0.05, 0.05 respectively. This reward

function is used along with the PPO and TD3 algorithms on RaiSim simulation environment

in order to obtain a natural looking crutched gait.

4.3.2. Reward Shaping for MuJoCo

During the trials made on MuJoCo, the reward function is shaped in a similar way as

done during the trials on RaiSim. On the contrary to the trials made with RaiSim, the

termination criteria for episode length has not been used. Expressions which are

mathematically simpler worked, so exponential functions are not used as done during the

trials on RaiSim. After observing that the agent has learnt to walk as desired, additional terms

to optimize the gait are added. The terms that shape the reward function are

𝑟𝑤𝑎𝑙𝑘, 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙, 𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 , 𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒

and 𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 .

As in the trials made on RaiSim, walking reward encourages the human-exoskeleton

system to translate its root position in the forward direction. It is defined as

 𝑟𝑤𝑎𝑙𝑘 = 1.25(2 − 25(�̇�𝑥 − �̇�𝑥,𝑑𝑒𝑠))2, (4.23)

where �̇�𝑥 is the derivative of the CoM position in x coordinate of current state based on the

CoM position in x coordinate of the previous state, whereas �̇�𝑥,𝑑𝑒𝑠 is the desired forward

velocity and it is set as 0.25 m/s.

Walk linear reward discourages the system to walk to left or right side. It is defined as

 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = −|𝑝𝑦|, (4.24)

where 𝑝𝑦 is the position in y coordinate.

Do not fall reward encourages the human-exoskeleton system to keep the height of the

root within an acceptable height range. It is defined as

𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 = {

 5 , 𝑖𝑓 𝑚𝑖𝑛𝑧 < 𝑝𝑧 < 𝑚𝑎𝑥𝑧

0 , 𝑒𝑙𝑠𝑒
 ,

 (4.25)

42

where 𝑝𝑧 is the position in z coordinate of current state, 𝑚𝑖𝑛𝑧 is 0.65, 𝑚𝑎𝑥𝑧 is 3, whereas

𝑝𝑧,𝑑𝑒𝑠 is the desired root height and it is set as 0.75 m.

Action reward discourages the exoskeleton to generate exaggerated actions. It is

defined as

 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −3‖𝑎𝑐𝑡𝑖𝑜𝑛‖, (4.26)

where 𝑎𝑐𝑡𝑖𝑜𝑛 is the joint torques generated by the neural network.

Orientation reward discourages the human-exoskeleton system to tilt the body forward

too much. It is defined as

 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = −8(𝑎𝑧 − 0.35)2, (4.27)

where 𝑎𝑧 is the angle of the body to the forward direction. 0.35 rad which corresponds to 20

degrees is selected based on the observations done on exoskeleton users.

Flat contact reward encourages the exoskeleton to keep the feet parallel to the ground

in order to avoid tripping. It is defined as

 𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = −10(𝑟𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 + 𝑙𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡)2, (4.28)

where

 𝑟𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 = (𝑎𝑧 + 𝑎𝑟𝑖𝑔ℎ𝑡_ℎ𝑖𝑝 + 𝑎𝑟𝑖𝑔ℎ𝑡_𝑘𝑛𝑒𝑒 + 𝑎𝑟𝑖𝑔ℎ𝑡_𝑎𝑛𝑘𝑙𝑒)2, (4.29)

 𝑙𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 = (𝑎𝑧 + 𝑎𝑙𝑒𝑓𝑡_ℎ𝑖𝑝 + 𝑎𝑙𝑒𝑓𝑡_𝑘𝑛𝑒𝑒 + 𝑎𝑙𝑒𝑓𝑡_𝑎𝑛𝑘𝑙𝑒)2, (4.30)

and 𝑎𝑥_𝑦 is the angle of related foot-joint combination.

Crutch reaction force reward discourages the human-exoskeleton system to have too

much ground reaction force on the crutches. It is defined as

 𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = −𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒(𝑑𝑐𝑟𝑢𝑡𝑐ℎ𝑟

2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ𝑙

2), (4.31)

where 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 and 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙 are the displacements on the tip of the right crutch and left

crutch, respectively. These displacements represent the ground reaction forces on the crutch

tips.

43

Hip angle reward discourages the exoskeleton to extend the hip angle backwards with

respect to the upper body as the hip angle always stays positive during a natural looking

lower body exoskeleton gait. This reward term is defined as

𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒 = {

−2 , 𝑖𝑓 𝑎ℎ𝑖𝑝_𝑟 < 0 𝑎𝑛𝑑 𝑎ℎ𝑖𝑝_𝑙 < 0

0 , 𝑒𝑙𝑠𝑒
 ,

(4.32)

where 𝑎ℎ𝑖𝑝_𝑟 and 𝑎ℎ𝑖𝑝_𝑙 are the angle of right hip and left hip, respectively.

Ensure crutch contact reward discourages the human-exoskeleton system to stop the

contact of the two crutches on the ground at the same time. It is defined as

𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = {

−2, 𝑖𝑓 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 < 0.003 𝑎𝑛𝑑 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 < 0.003

0, 𝑒𝑙𝑠𝑒
,

 (4.33)

where 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 and 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙 are the displacements on the tip of the right crutch and left

crutch, respectively. The value 0.003 is selected as the threshold to infer the contact

information with the ground.

The sub-rewards described above are combined and an overall reward function is

shaped as

 𝑟 = 𝑟𝑤𝑎𝑙𝑘 + 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 + 𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 + 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 +

𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + 𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 + 𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒+ 𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡.

 (4.34)

4.4. Overall Implementation

4.4.1. Implementation for RaiSim

By using the reward scheme shown in Equation 4.22, TD3 algorithm has been

implemented by using the RaiSim as the simulator. 6 different training runs have been made

with different parameters sets and a maximum episode length of 7000 timesteps. The

hyperparameters in Table 4.6 are kept constant throughout the TD3 training runs. The other

hyperparameters are varied across the different training runs. These varied parameters are

available in Table 4.7. Network properties for actor and critic networks are shown in Table

4.8.

44

 Table 4.6. Varied hyperparameters for TD3 method

Parameter

Set
𝜸 𝜷𝒅𝒆𝒄𝒂𝒚 Actor

LR

Critic

LR

1 0.9900 0.999 1e-4 1e-4

2 0.9996 0.9996 1e-4 1e-4

3 0.9900 0.9996 1e-4 1e-4

4 0.9900 0.9996 5e-4 5e-4

5 0.9900 0.9996 5e-5 5e-5

6 0.9999 0.9996 5e-5 5e-5

Table 4.7. Constant hyperparameters for TD3 method

 N c 𝝉 𝝈 𝜷 Network

Width
policy_delay

Parameters 256 160 0.005 0.25 0.25 200 2

Table 4.8. Network properties for TD3 method

Network Hidden

Layer

Number

Hidden

Layer

Width

Input Layer

Activation

Hidden

Layer

Activation

Output

Layer

Activation

Actor 1 200 Tanh Tanh Tanh

Critic 1 1 200 ReLu ReLu Linear

Critic 2 1 200 ReLu ReLu Linear

After being unable to reach a satisfactory result with TD3, the algorithm is changed.

The same reward function is used along with the PPO algorithm and RaiSim. In a similar

manner to TD3 implementation, different parameters sets are tried with a maximum episode

length of 7000 timesteps. The actor and critic network architecture is built by using the

network parameters in Table 4.11. The hyperparameters in Table 4.10 are kept constant

whereas the hyperparameters in Table 4.9 are varied as shown in the table.

 Table 4.9. Varied hyperparameters for PPO method

Parameter

Set
𝜸 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 Actor

LR

Critic

LR

1 0.9900 2048 2e-4 2e-4

2 0.9900 2048 1e-4 1e-4

3 0.9996 2048 1e-4 1e-4

4 0.9996 2048 5e-5 5e-5

5 0.9999 2048 5e-5 5e-5

6 0.9999 7000 5e-5 5e-5

45

Table 4.10. Constant hyperparameters for PPO method

 𝜺 𝑲𝒆𝒑𝒐𝒄𝒉𝒔 𝑳𝒂 𝑳𝒄 Entropy

Coefficient

Network

Width

Entropy

Coefficient

Decay

𝝀

Parameters 0.2 10 64 64 1e-3 200 0.99 0.95

Table 4.11. Network properties for PPO method

Network Hidden

Layer

Number

Hidden

Layer

Width

Input Layer

Activation

Hidden

Layer

Activation

Output

Layer

Activation

Actor 1 200 Tanh Tanh Softplus

Critic 1 200 Tanh Tanh Linear

4.4.2. Implementation for MuJoCo

Since the training runs have not yielded successful results with RaiSim, it has been

decided to change the physics simulator. URDF file that models the system is transformed

into XML format and MuJoCo is integrated to the training loop. As described in Section

4.2.1, PPO implementation of OpenAI Baselines is used together with MuJoCo. Equation

4.34 is used as the reward function. The properties of the used networks are tabulated in

Table 4.14. PPO hyperparameters are kept constant as shown in Table 4.13 throughout the

training runs in MuJoCo, because the trained RL agents exhibit desired behaviors for most

of the cases.

 Table 4.12. Varied weights for PPO method on MuJoCo

RL Agent No 𝒘𝒄𝒓𝒖𝒕𝒄𝒉_𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏_𝒇𝒐𝒓𝒄𝒆

1 40000

2 30000

3 20000

4 10000

The term 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 is varied in order to see the effect of different weights

on the GRF’s on the crutch tips. These varied weights are tabulated in Table 4.12. Each

different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value is tried with 5 different seeds and 4 different RL agents

are trained for each 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value. However, the training runs are designed

46

without any termination criteria about average reward. In order to be able to plot the

variances for different runs with different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameters, all average

reward trajectories should be of equal length. Therefore, all training runs are conducted for

8000 iterations.

Table 4.13. Constant hyperparameters for PPO method on MuJoCo

𝜺 𝑲𝒆𝒑𝒐𝒄𝒉𝒔 𝑳𝒂 𝑳𝒄 Entropy

Coefficient

Net

Width

𝝀 𝜸 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 Actor

LR

Critic

LR
0.02 10 64 64 0 64 0.95 0.99 2048 1e-4 1e-4

 Table 4.14. Network properties for PPO method on MuJoCo

Network Hidden

Layer

Number

Hidden

Layer

Width

Input Layer

Activation

Hidden

Layer

Activation

Output

Layer

Activation

Actor 2 64 Tanh Tanh Linear

Critic 2 64 Tanh Tanh Linear

After developing RL agents based on a reward function with GRF minimization term,

baseline RL agents have been also developed in order to assess whether the GRF’s are

minimized or not. The same PPO implementation and exoskeleton-human system model is

used. The reward function used for baseline is also the same as the other training runs on

MuJoCo, but without any term for GRF minimization. The network properties and the PPO

hyperparameters are also the same and these training settings for baseline have also been

tried with 5 different seeds.

47

5. RESULTS

The algorithms and reward function described in Section 4 are used together in order

to train the human-exoskeleton system with crutches. The average values of the last 100

episodic rewards are calculated (by moving average filter) and average reward versus

episode plots are generated in the next subheadings. In section 4.4.1, six different trials with

different parameters for each algorithm were done by using RaiSim. After each training run,

the resulting policy is tried 10 times with an episode length of 7000 timestep and the average

rewards for these 10 trials are also tabulated.

In Section 5.3, the results of PPO implementation of OpenAI Baselines with different

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameter and MuJoCo are presented. Based on the observations

during the rendering of the training process and resulting RL agents, an intuition about the

reward amounts has been established. If the exoskeleton-human system walks in forward

direction by using crutches in a reasonable, sequential and symmetric way without falling

the reward amount is observed to be around 2000. Thus this value can be used as the success

criteria for the training.

In Section 5.4., a comparison between the resulting RL agents and the baseline agent

is made based on the desired gait characteristics such as GRF’s on crutch tips and velocity

tracking error.

5.1. Results for TD3 with RaiSim

The average reward amounts of six different trials made with TD3 algorithm and

RaiSim simulator have not reached a sufficient reward amount as the maximum reward has

been designed as 7000 in the training setup, as seen in Figure 5.1, 5.2, and 5.3. Even though,

there are some upward slopes in the average reward, the resulting RL agents have been

observed to be unsuccessful in terms of moving forward, staying upright and other gait

characteristics as can be seen from the low average test rewards in Table 5.1.

48

a) TD3 parameter set 1 b) TD3 parameter set 2

Figure 5.1. (a) Result of TD3 parameter set 1, (b) The result of TD3 parameter set 2.

a) Parameter set 3 b) Parameter set 4

Figure 5.2. (a) Result of TD3 parameter set 3, (b) The result of TD3 parameter set 4.

a) Parameter set 5 b) Parameter set 6

Figure 5.3. (a) Result of TD3 parameter set 5, (b) The result of TD3 parameter set 6.

 Table 5.1. Test results for TD3 method.

Trial No Average Test Reward
1 392.66

2 145.20

3 654.05

49

Table 5.2. Test results for TD3 method (cont.)

4 441.39

5 752.63

6 62.72

5.2. Results for PPO with RaiSim

The average reward amounts of six different training runs made with PPO algorithm

and RaiSim simulator also have not reached a sufficient reward amount, as seen in Figure

5.4, 5.5, and 5.6. Even though, there are some upward slopes in the average reward just as

in Section 5.1, the resulting RL agents also have been observed to be unsuccessful in terms

of moving forward and other gait characteristics. However, the RL agent trained with

parameter set 6 surpassed the average reward value 3000, which is considerably higher than

the other trials. This RL agent is also tested and the average test reward has been calculated

as 3210.54, but it has been observed that the desired forward displacement is not achieved

and the generated motions are redundant. The average test rewards for other trials are also

tabulated in Table 5.2.

a) Parameter set 1 b) Parameter set 2

Figure 5.4. (a) Result of PPO parameter set 1, (b) The result of PPO parameter set 2.

50

a) Parameter set 3 b) Parameter set 4

Figure 5.5. (a) Result of PPO parameter set 3, (b) The result of PPO parameter set 4.

a) Parameter set 5 b) Parameter set 6

Figure 5.6. (a) Result of PPO parameter set 5, (b) The result of PPO parameter set 6.

 Table 5.3. Test results for PPO method.

Trial No Average Test Reward
1 447.67

2 494.60

3 502.42

4 703.02

5 1049.54

6 3210.54

51

5.3. Results for PPO with MuJoCo

a) RL agent 1 b) RL agent 2

Figure 5.7. (a) Average reward plot for RL agent 1 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 40000, (b) Average reward plot for RL agent 2 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 30000.

a) RL agent 3 b) RL agent 4

Figure 5.8. (a) Average reward plot for RL agent 3 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 20000, (b) Average reward plot for RL agent 4 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 10000.

In this section, the results of PPO implementation with MuJoCo is presented. As

mentioned in the beginning of Results section, 2000 is a reward value that represents a

successful training run. Even if a parameter set has not been successful, the same

hyperparameters are tried multiple times, considering the stochastic nature of the PPO

algorithm. This approach actually paid off and 4 successful agents have been trained after

failing the first time. Even though the average reward drops drastically after starting from a

value around 100, it generally reaches the value 4000 in all trials. As can be seen from the

Figure 5.7 and 5.8, there is a huge variance across all the training runs and average reward

does not converge to some specific value. Even if the average reward surpasses 4000, it

drops significantly and recovers again. This problem can be overcome by setting a specific

52

training termination criteria for the average reward, but the average reward trajectories will

not be of equal length, which makes it impossible to draw the variance plots. For this reason,

all trainings are run for 8000 iterations. Additionally, the plot for the average and variance

of the reward values obtained from baseline training runs with 5 different seeds is available

in Figure 5.9.

Figure 5.9. Average reward plot for baseline agent training sessions with 5 different

seeds.

Among the 5 different trials made for different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 values, the best

training results are given separately in Figure 5.10 and 5.11 for each different

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value .

a) RL agent 1 b) RL agent 2

Figure 5.10. (a) Average reward plot of the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 40000, (b) Average reward plot of the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 30000.

53

a) RL agent 3 b) RL agent 4

Figure 5.11. (a) Average reward plot for the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 20000, (b) Average reward plot for the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 10000.

5.4. Comparison for PPO with MuJoCo

The best RL agents selected for each different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameters are

tested by simulating the agents for 2000 timesteps. Performance metrics such as GRF’s

exerted on the crutch tips, velocity tracking error, orientation tracking error are integrated

over the 2000 timesteps and average values for this performance variables are plotted and

tabulated in Table 5.3.

Table 5.4. Comparison of resulting RL agents with a baseline RL agent.

RL Agent Average

Crutch

Reaction

Cost

Average

Absolute

Velocity

Error (%)

Average

Absolute

Orientation

Error (%)

Average Absolute

Lateral

Displacement (m)

Baseline-1 0.911 20.51 % 17.40 % 0.03

Baseline-2 0.769 17.10 % 16.71 % 0.03

Baseline-3 0.797 17.81 % 18.61 % 0.08

1 0.501 11.11% 34.96 % 0.07

2 0.588 17.26 % 12.19 % 0.17

3 0.619 16.78 % 22.51 % 0.07

4 0.665 15.58 % 23.82 % 0.05

The average crutch reaction cost has been calculated based on the Equation 4.31 with

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 for all RL agents in each timestep. The average of these

values from each timestep have been calculated and given as average crutch reaction cost in

Table 5.3. Note that 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 selected as 40000 only during the testing in order

to compare the GRFs of different RL agents, because we are interested in comparing the

54

term (𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟
2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙

2) in Equation 4.31 for different RL agents. In order to calculate

the average absolute velocity error in Table 5.3, center of mass velocities have been

subtracted from the desired velocity, which was defined as 0.25 m/s for each timestep, and

absolute values of these subtractions have been summed up over 2000 timesteps. Then these

integrated values have been divided by 2000 to calculate the average absolute velocity error.

The average absolute orientation error has also been calculated by the same method as used

to calculate the average absolute velocity error. In order to calculate the average absolute

lateral displacement, the absolute values of lateral displacements in each timestep are

summed up and the sum is divided by 2000.

In the following parts, the performance plots for the best ones of the trained agents are

presented. Baseline-2 is selected as the best baseline as it generates less crutch reaction cost,

average absolute velocity error, average absolute orientation error and average absolute

lateral displacement error compared to the other baseline RL agents. Baseline-2 is simulated

for 2000 timesteps and GRF cost is calculated based on Equation 3.31 and with

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 as seen in Figure 5.12 (a). The percent velocity/orientation

tracking error and lateral displacement are also plotted in Figure 5.12 (b), Figure 5.13 (a)

and (b), respectively.

 a) Baseline - GRF b) Baseline - Velocity error

Figure 5.12. (a) GRF on crutch cost for PPO Baseline, (b) Percent velocity tracking

error for PPO Baseline.

55

 a) Baseline - Orientation error b) Baseline - Lateral displacement

Figure 5.13. (a) Percent orientation error for PPO Baseline, (b) Lateral displacement

error for PPO Baseline.

The RL agent 1 is simulated for 2000 timesteps and GRF cost is calculated based on

Equation 3.31 and with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 as seen in Figure 5.14 (a). The

percent velocity/orientation tracking error and lateral displacement are also plotted in Figure

5.14 (b), Figure 5.15 (a) and (b), respectively.

 a) RL agent 1 - GRF b) RL agent 1 - Velocity error

Figure 5.14. (a) GRF on crutch cost for RL agent 1, (b) Percent velocity tracking

error for RL agent 1.

56

 a) RL agent 1 - Orientation error b) RL agent 1 - Lateral displacement

Figure 5.15. (a) Percent orientation error for RL agent 1, (b) Lateral displacement

error for RL agent 1.

The RL agent 2 is simulated for 2000 timesteps in the same way as the others. The

performance plots for the RL agent 2 are presented in Figure 5.16 and Figure 5.17.

 a) RL agent 2 - GRF b) RL agent 2 - Velocity error

Figure 5.16. (a) GRF on crutch cost for RL agent 2, (b) Percent velocity tracking

error for RL agent 2.

57

 a) RL agent 2 - Orientation error b) RL agent 2 - Lateral displacement

Figure 5.17. (a) Percent orientation error for RL agent 2, (b) Lateral displacement

error for RL agent 2.

The RL agent 3 is simulated for 2000 timesteps in the same way as the others. The

performance plots for the RL agent 3 are presented in Figure 5.18 and Figure 5.19.

 a) RL agent 3 - GRF b) RL agent 3 - Velocity error

Figure 5.18. (a) GRF on crutch cost for RL agent 3, (b) Percent velocity tracking

error for RL agent 3.

58

 a) RL agent 3 - Orientation error b) RL agent 3 - Lateral displacement

Figure 5.19. (a) Percent orientation error for RL agent 3, (b) Lateral displacement

error for RL agent 3.

The RL agent 4 is simulated for 2000 timesteps in the same way as the others. The

performance plots for the RL agent 4 are presented in Figure 5.20 and Figure 5.21. Note that

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 selected as 40000 only during the testing in order to compare the GRFs

of different trials, because we are interested in comparing the term (𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟
2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙

2)

in Equation 4.31 for different trials.

 a) RL agent 4 - GRF b) RL agent 4 - Velocity error

Figure 5.20. (a) GRF on crutch cost for RL agent 4, (b) Percent velocity tracking

error for RL agent 4.

59

 a) RL agent 4 - Orientation error b) RL agent 4 - Lateral displacement

Figure 5.21. (a) Percent orientation error for RL agent 4, (b) Lateral displacement

error for RL agent 4.

The screenshots from the gait generated by RL agent 1 is available as a sequence in

Figure 5.22.

Figure 5.22. Gait sequence of RL agent 1

60

6. DISCUSSION

It is important to have an intuition about the amount of reward in reinforcement

learning techniques such that the results can be assessed properly. The reward function used

throughout all the trials made in RaiSim have a mathematical upper limit of 1. In other words,

the agent should get a reward of 1 in each timestep if it can generate perfect actions that can

fulfill the reward function 100%. Since maximum length of each episode is 7000, it can be

said that a perfect reinforcement learning agent should reach a reward of 7000 for each trial

episode. However, this is not physically possible. Instead, expecting a reward around 4000-

5000 would be a more realistic approach for RaiSim trials. For MuJoCo trials, the reward

amounts are observed along with the physical rendering of the system and it is concluded

that a reward amount around 2000 corresponds to a reasonable gait with crutch usage. If the

agent can reach these reward levels, it can be said that the agent generates actions that leads

to a forward gait with crutch usage in a straight direction without falling and generating

exaggerated joint torques.

For results of TD3 trials, it is observed that most of the trials have converged to very

poor local optima. The worst result for TD3 is obtained with parameter set 6 with an average

test reward of 62.72 which is very far from the desired reward range of 4000-5000.

Considering that the training may start from rewards around 100, it can be concluded that

even a random RL agent can achieve this result. Thus, it is observed that training runs with

parameter sets 1, 3, 4 and 5 have actually learned some non-random behavior. The best result

for TD3 has been obtained with the parameter set 5 with an average test reward of 752.63.

Even though this reward is larger than the other TD3 trials, it is still not enough for an

efficient gait as it is quite far away from the desired reward range. In conclusion, TD3

method failed to converge a meaningful and useful result in terms of crutched exoskeleton

gait during RaiSim trials.

For the results of PPO trials made by using RaiSim, it can be observed that the results

are generally better than the results of TD3 if a comparison between Table 5.1 and Table 5.2

is made. However, it is also visible that the most of the trials converged to poor local optima.

The worst result has been obtained with parameter set 1 with an average test reward of

61

447.67. This reward score is far from a reward that a random RL agent is expected to achieve,

but it is still very far away from the desired reward range. The best result for PPO trials

belongs to parameter set 6 with an average test reward of 3210.54. This reward score is

significantly higher than the other trials and it is also very close to the desired reward range.

When the network trained with parameter set 6 is rendered and tested, it is observed that the

agent actually translates to the forward direction without falling and by making use of the

crutches in order to maintain the stability. However, the translation amount is quite small

when compared to the expected forward displacement. The desired forward displacement

was 0.0005 meters in between consecutive time samples. Since each episode is 7000

timesteps long, the expected forward displacement is 3.5 meters in a perfect scenario. Even

though this expected forward displacement is unachievable in a realistic scenario, it is

plausible to expect a forward displacement around 2 meters. Nevertheless, the agent’s

forward displacement is observed as around 0.5 meters at most. Moreover, joint torques

generated by the agent may have some extreme values sometimes and this is observable from

the rendering results. These unnecessarily high joint torque values manifest themselves in

the form of unnecessary movements of the hip section. The solution for these kind of

problems is to penalize the joint torques further in the reward function. Thus, a more natural

looking gait may be obtained.

Another solution for making the solutions better may be redesigning the other parts of

the reward function, because finding the optimal reward function depends on trial and error

most of the time and this is a non-trivial process. In order to encourage the forward

displacement more, the weight of forward walking reward may be increased. Another reason

for not being able to reach the desired reward range and desired behavior may be the physics

simulator. Even though RaiSim is rated better than the other available simulators for most

of the aspects, it is still a new simulator which has not been tried extensively on

reinforcement learning based locomotion studies. In the supporting direction of this doubt,

there is a study that considers the usage of RaiSim and Mujoco for the purpose of simulating

the contacts by legged robots during cat-like jumping and landing. Rudin et al. [45] states

that even though RaiSim is quite good at simulating the hard contacts between feet and

ground and is faster than Mujoco, it can have some problems when it comes to handle the

problems with complex nonlinear dynamics. The reason of this situation is simply put as

RaiSim’s integration method Euler method can diverge quickly in the study by Rudin et al.

62

This exact problem may be also present in the crutched exoskeleton gait as well, as it also

depends on complex nonlinear dynamics. Therefore, the reason for failing during RaiSim

trials may be the instability of the Euler integration method.

In the latter part of this study, the simulation environment is changed to MuJoCo as its

efficacy at locomotion tasks is shown in many different studies and examples. MuJoCo

physics simulator is combined with high quality PPO implementation from OpenAI

Baselines [30]. After seeing that locomotion patterns are achieved by some simple reward

terms such as walking forward and not falling, the reward function is shaped further to

capture an improved gait that includes reasonable crutch usage. Since the resulting gait is

satisfactory, the last reward term for optimizing the ground reaction forces on the crutch tips

is added. After numerous trials with different reward weights and seeds, 4 best results with

optimized GRF’s on crutch tips are selected. 5 separate trainings are run for the baseline

without GRF minimization term and 3 of them were successful in terms of exoskeleton gait

with crutches. Baseline-2 can be regarded as the best baseline RL agent, because the GRF’s

and other performance metrics in Table 5.3 are better than those of other two baseline

versions. Based on the Table 5.3., it is observed that average crutch reaction cost for RL

agent 1 is decreased around 34.85 % compared to the Baseline-2, which is the best baseline.

Even though the average absolute orientation error of RL agent 1 is greater than the other

RL agents, the orientation of the body does not seem very different compared to an

exoskeleton user with crutches visually. Moreover, all of the other RL agents trained with

different GRF minimization coefficients also minimize the GRF’s on the crutch tips when

compared to the baselines. The GRF’s on the crutch tips tend to decrease as the parameter

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 increases, just as expected. The reason is that the GRF’s are penalized

more as the parameter 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 increases. The GRF’s are minimized by 23.54

%, 19.51% and 13.52% by RL agent 2, 3 and 4 respectively. As a result, it can be concluded

that the RL agent 1 trained with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 yields best result which

corresponds to 34.85 % improvement in GRF’s on the crutch tips, considering the

observations made during the rendering and Table 5.3.

In Table 5.3, it can be seen that GRF’s are minimized successfully. However, the

tracking errors for orientation, velocity and lateral displacement errors are slightly higher

than expected. By using some conventional control methods such as PID control, Linear

63

Quadratic Regulator or any kind other state-of-the-art optimal control method, these tracking

errors and lateral displacement errors may be decreased with respect to the outcomes of this

work. Then mathematically modeling a complex system such as exoskeleton gait with crutch

usage would be the case. By using RL instead of these conventional methods, the burden of

complex mathematical modeling is avoided, but greater tracking and lateral displacement

errors should be tolerated in this case. Thus, the selection of the method can be regarded as

an engineering consideration which requires an analysis of these trade-offs.

64

7. CONCLUSION

In this study, we have developed a motion controller for a lower limb powered

exoskeleton using deep reinforcement learning. The exoskeleton considered in this study has

actuation only on its sagittal plane, which obligates the user to use crutches to keep the

equilibrium. This situation results in increased metabolic energy consumption for the user.

This issue has not been tackled in the literature yet as it is quite difficult to measure or

formulize the metabolic energy consumption. However, there is a relation between the upper

body metabolic energy consumption and GRFs on the crutch tips. By introducing a reward

term about the GRFs exerted on the crutch tips, a minimization about these GRFs is aimed

to decrease the upper body effort of the exoskeleton user. After trying different physics

simulators and parameter sets, four different RL agents that can generate a gait with crutch

usage and minimized GRFs are developed by using PPO algorithm and MuJoCo. These RL

agents are compared with a baseline agent trained without any reward term about GRFs on

crutch tips. It is shown that one of the developed RL agents can achieve 34.85 %

minimization in GRFs on crutch tips, compared to the baseline RL agent. Thus, a

contribution with respect to the state-of-the-art by means of minimizing the metabolic energy

consumption is made in this study. Nevertheless, the findings in this thesis work are reached

in simulation only.

A shortcoming of this work is the coupling between the robot actuators and the human

actuators. The goal of the part of actor network that generates the actions for the arm

movements is providing a prediction about the human upper body movements during

crutched exoskeleton gait. However, there is a common network for generating the human

actuations and the robot actuations. This results in that the human actuations are also

optimized during the training along with the robot actuators. This coupling may be an

obstacle while transferring the simulation work to the real world. On the other hand,

decoupling the human and robot actuators will result in a need of establishing a realistic

bridge between robot actuations on the lower body and the human actuations in the upper

body.

65

7.1. Outlook and Future Work

In this study, the findings are reached by simulation only. Thus, conducting real world

experiments and comparing the developed RL agents with the baseline versions and some

other lower-limb exoskeleton controllers would be beneficial to validate the findings of this

thesis.

Apart from the consideration of upper body metabolic effort, another gap in the area

of lower-limb exoskeleton locomotion is the bridge between lower body movements

generated by the exoskeleton and the arm movements of the user. If there have been more

work that establish this connection between the upper and lower body movements of an

exoskeleton user with crutches, this information could have been used to train a neural

network. This pre-trained network would act as a human upper body motion predictor and

could be used in the reinforcement learning loop. This approach would result in a better

result in real world trials, but the essential problem is the need of a huge training data that

includes lower body trajectories and upper body trajectories. Filling this gap would be a fine

contribution to the state-of-the-art exoskeleton control methods.

66

REFERENCES

1. Secciani, N., C. Brogi, M. Pagliai, F. Buonamici, F. Gerli, F. Vannetti, M. Bianchini,

Y. Volpe and A. Ridolfi, “Wearable Robots: An Original Mechatronic Design of a

Hand Exoskeleton for Assistive and Rehabilitative Purposes”, Frontiers in

Neurorobotics, Vol. 15, No. 750385, 2021.

2. de la Tejera, J., R. Bustamante-Bello, R. A. Ramirez-Mendoza and J. Izquierdo-

Reyes, “Systematic Review of Exoskeletons Towards a General Categorization

Model Proposal”, Applied Sciences, Vol. 15, No. 76, pp. 1-25, 2021.

3. Tiboni, M., A. Borboni, F. Vérité, C. Bregoli and C. Amici, “Sensors and Actuation

Technologies in Exoskeletons: A Review”, Sensors, Vol. 22, No.3, p. 884, 2022.

4. Baud, R., A.R. Manzoori and A. Ijspeert and M. Bouri, “Review of Control Strategies

for Lower-limb Exoskeletons to Assist Gait”, Journal of NeuroEngineering and

Rehabilitation, Vol.18, No.1, pp. 1-34, 2021.

5. Abbasi, M., A. Shahraki, M.J. Piran and A. Taherkordi, “Deep Reinforcement

Learning for QoS Provisioning at the MAC Layer: A Survey”, Engineering

Applications of Artificial Intelligence, Vol. 102, No.104234, pp.20, 2021.

6. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, Volume 1.

MIT Press Cambridge, 1998.

7. L. Rose, M. C. F. Bazzocchi and G. Nejat, “End-to-End Deep Reinforcement

Learning for Exoskeleton Control”, IEEE International Conference on Systems, Man,

and Cybernetics (SMC), Toronto, Canada, pp. 4294-4301, 2020.

8. Ouyang, W., Y. Wang, S. Han, Z. Jin and P. Weng, “Improving Generalization of

Deep Reinforcement Learning-based TSP Solvers”, IEEE Symposium Series on

Computational Intelligence (SSCI), Orlando, USA, pp. 01-08, 2021.

67

9. Brownlee J., “How to Choose an Activation Function for Deep Learning”, 2021,

https://machinelearningmastery.com/choose-an-activation-function-for-deep-

learning/, accessed on December 11, 2022.

10. Serengil S.I., “Softplus as a Neural Networks Activation Function”, 2017,

https://sefiks.com/2017/08/11/softplus-as-a-neural-networks-activation-function/,

accessed on December 11, 2022

11. Dombrowski, A., M. Alber, C.J. Anders, M. Ackermann, K. Müller and P. Kessel,

“Explanations Can Be Manipulated and Geometry is to Blame”, Conference on

Neural Information Processing Systems (NeurIPS), Vancouver, Canada, pp. 13589-

13600, 2019.

12. Pramoditha R., “How to Choose the Right Activation Function for Neural Networks”,

2022, https://towardsdatascience.com/how-to-choose-the-right-activation-function-

for-neural-networks-3941ff0e6f9c, accessed on December 11, 2022.

13. Van Heeswijk W., “The Five Building Blocks of Markov Decision Processes”, 2022,

https://towardsdatascience.com/the-five-building-blocks-of-markov-decision-

processes-997dc1ab48a7, accessed on December 11, 2022.

14. Uther, W., Temporal Difference Learning. Encyclopedia of Machine Learning,

Springer, Boston, MA., 2011.

15. Hui J., “RL-Policy Gradient Explained”, 2018, https://jonathan-hui.medium.com/rl-

policy-gradients-explained-9b13b688b146, accessed on December 11, 2022.

16. Shyalika C., “A Beginners Guide to Q-Learning”, 2019,

https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c,

accessed on December 11, 2022.

17. Chao, K., and P. Hur, “A Step Towards Generating Human-like Walking Gait via

Trajectory Optimization Through Contact for a Bipedal Robot with One-Sided

https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://sefiks.com/2017/08/11/softplus-as-a-neural-networks-activation-function/
https://towardsdatascience.com/how-to-choose-the-right-activation-function-for-neural-networks-3941ff0e6f9c
https://towardsdatascience.com/how-to-choose-the-right-activation-function-for-neural-networks-3941ff0e6f9c
https://towardsdatascience.com/the-five-building-blocks-of-markov-decision-processes-997dc1ab48a7
https://towardsdatascience.com/the-five-building-blocks-of-markov-decision-processes-997dc1ab48a7
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c

68

Springs on Toes”, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vancouver, Canada, pp. 4848-4853, 2017.

18. Ackermann, M. and A. J. van den Bogert, “Optimality Principles for Model-based

Prediction of Human Gait”, Journal of Biomechanics, Vol. 43, No. 6, pp. 1055 – 1060,

2010.

19. Kelly, M., “An Introduction to Trajectory Optimization: How to Do Your Own Direct

Collocation”, SIAM Review, Vol. 59, No. 4, pp. 849-904, 2017.

20. Hereid, A., E. A. Cousineau, C. M. Hubicki and A. D. Ames, “3D Dynamic Walking

with Underactuated Humanoid Robots: A Direct Collocation Framework for

Optimizing Hybrid Zero Dynamics”, IEEE International Conference on Robotics and

Automation (ICRA), Stockholm, Sweden, pp. 1447-1454, 2016.

21. Luo, S., G. Androwis, S. Adamovich, H. Su, E. Nunez and X. Zhou, “Reinforcement

Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance”,

Frontiers in Robotics and AI, Vol. 8, No. 702845, 2021.

22. Taylor, M., S.D. Bashkirov, J. Rico, I. Toriyama, N. Miyada, H. Yanagisawa and K.

Ishizuka, “Learning Bipedal Robot Locomotion from Human Movement”, IEEE

International Conference on Robotics and Automation (ICRA), Xi’an, China, pp.

2797-2803, 2021.

23. Lillicrap, T.P., J.J. Hunt, A. Pritzel, N.M. Heess, T. Erez, Y. Tassa, D. Silver and D.

Wierstra, 2015, “Continuous Control with Deep Reinforcement Learning”,

arXiv:1509.02971.

24. Mnih, V., K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.

Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski and S. Petersen, “Human-level

Control Through Deep Reinforcement Learning”, Nature, Vol. 518, No. 7540, pp.

529-533, 2015.

69

25. Peng, X.B., E. Coumans, T. Zhang, T.W. Lee, J. Tan, and S. Levine, 2020, “Learning

Agile Robotic Locomotion Skills by Imitating Animals”, arXiv:2004.00784.

26. Margolis, G.B., G. Yang, K. Paigwar, T. Chen and P. Agrawal, 2022, “Rapid

Locomotion via Reinforcement Learning”, arXiv:2205.02824.

27. Shi, J., T. Dear, and S.D. Kelly, “Deep Reinforcement Learning for Snake Robot

Locomotion”, IFAC-PapersOnLine, Vol. 53, No. 2, pp. 9688-9695, 2020.

28. Zhang, M., X. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. SunSpiral, P. Abbeel

and S. Levine, “Deep Reinforcement Learning for Tensegrity Robot Locomotion”,

IEEE International Conference on Robotics and Automation (ICRA), Singapore,

Singapore, pp. 634-641, IEEE, 2017.

29. Montgomery W. and S. Levine, “Guided Policy Search as Approximate Mirror

Descent”, 2016, arXiv:1607.04614.

30. Ouyang, W., H. Chi, J. Pang, W. Liang and Q. Ren, “Adaptive Locomotion Control

of a Hexapod Robot via Bio-inspired Learning”, Frontiers in Neurorobotics, Vol. 15,

No. 627157, 2021.

31. Oghogho M., M. Sharifi, M. Vukadin, C. Chin, V. K. Mushahwar and M. Tavakoli,

“Deep Reinforcement Learning for EMG-based Control of Assistance Level in

Upper-limb Exoskeletons”, International Symposium on Medical Robotics (ISMR),

Atlanta, USA, pp. 1-7, 2022.

32. Luo, S., G. Androwis, S. Adamovich, E. Nunez, H. Su and X. Zhou, “Robust Walking

Control of a Lower Limb Rehabilitation Exoskeleton Coupled with a Musculoskeletal

Model via Deep Reinforcement Learning”, Research Square, 2021.

33. Fujimoto, S., H. Hoof and D. Meger, “Addressing Function Approximation Error in

Actor-Critic Methods”, International Conference on Machine Learning, Stockholm,

Sweden, Vol.80, pp. 1582-1591, 2018.

70

34. Kang D. and J. Hwangbo, “SimBenchmark”, 2018,

https://leggedrobotics.github.io/SimBenchmark/, accessed on December 11, 2022.

35. Tirupachuri Y., L. Rapetti, C. Latella, R. Grieco, D. Ferigo, K. Darvish, “Human-

Gazebo”, GitHub Repository, 2019, https://github.com/robotology/human-gazebo,

accessed on December 11, 2022.

36. Latella C. and L. Rapetti, “Human-model-generator”, GitHub Repository, 2020,

https://github.com/ami-iit/human-model-generator, accessed on December 11, 2022.

37. Todorov E., T. Erez and Y. Tassa, “MuJoCo: A Physics Engine for Model-based

Control”, IEEE/RSJ International Conference on Intelligent Robots and Systems,

Algarve, Portugal, pp. 5026-5033, 2012.

38. https://zoo.cs.yale.edu/classes/cs470/materials/hws/aima/gym/gym/envs/mujoco/hu

manoid_v3.py, accessed on December 11, 2022.

39. Schulman, J., F. Wolski, P. Dhariwal, A. Radford and O. Klimov, 2017, “Proximal

Policy Optimization Algorithms”, arXiv:1707.06347.

40. Schulman, J., S. Levine, P. Abbeel, M. Jordan and P. Moritz, “Trust Region Policy

Optimization”, International Conference on Machine Learning, Lille, France, pp.

1889-1897, 2015.

41. Chou P.W., D. Maturana, and S. Scherer, “Improving Stochastic Policy Gradients in

Continuous Control with Deep Reinforcement Learning Using the Beta Distribution”,

International Conference on Machine Learning, Sydney, Australia, pp. 834–843,

2017.

42. Petrazzini, I.G. and E.A. Antonelo, “Proximal Policy Optimization with Continuous

Bounded Action Space via the Beta Distribution”, IEEE Symposium Series on

Computational Intelligence (SSCI), Orlando, USA, pp. 1-8, 2021.

https://leggedrobotics.github.io/SimBenchmark/
https://github.com/robotology/human-gazebo
https://github.com/ami-iit/human-model-generator
https://zoo.cs.yale.edu/classes/cs470/materials/hws/aima/gym/gym/envs/mujoco/humanoid_v3.py
https://zoo.cs.yale.edu/classes/cs470/materials/hws/aima/gym/gym/envs/mujoco/humanoid_v3.py

71

43. Dhariwal, P., C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,

S. Sidor, Y. Wu and P. Zhokhov, “OpenAI Baselines”, GitHub Repository, 2017,

https://github.com/openai/baselines, accessed on December 11, 2022.

44. Hasselt, H., “Double Q-learning”, Advances in Neural Information Processing

Systems, Vol.23, pp. 2613-2321, 2010.

45. Rudin, N., H. Kolvenbach, V. Tsounis and M. Hutter, “Cat-like Jumping and Landing

of Legged Robots in Low Gravity Using Deep Reinforcement Learning”, IEEE

Transactions on Robotics, Vol. 38, No.1, pp.317-328, 2021.

