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ABSTRACT 

 

 

A REINFORCEMENT LEARNING BASED CONTROLLER 

TO MINIMIZE FORCES ON THE CRUTCHES OF A LOWER-

LIMB EXOSKELETON 

 

The majority of the metabolic energy consumption of a lower-limb exoskeleton user 

comes from the upper body effort, since the lower body can be considered to be passive. 

However, the upper body effort of lower limb exoskeleton users is ignored during motion 

controller development process in the literature. In this thesis study, deep reinforcement 

learning is used to develop a locomotion controller that minimizes the ground reaction forces 

(GRF) on crutches. The rationale for minimizing the ground reaction forces is to minimize 

the upper body effort of the user. A model of the human-exoskeleton system with crutches 

is created in URDF and XML formats. Reward functions that encourage the forward 

displacement of the center of mass of the exoskeleton-human system without falling and 

extreme joint torques are shaped. The state-of-the-art methods, Twin Delayed Deep 

Deterministic Policy Gradient (TD3) and Proximal Policy Optimization (PPO), are 

employed with the RaiSim and MuJoCo physics simulators and with different algorithm 

specific parameters in multiple training trials. The employed networks generate the joint 

torques based on the joint angle and velocities along with the ground reaction forces on feet 

and crutch tips. These generated joint torques are directly sent to the exoskeleton model and 

a new state is observed after implementing the action that the deep RL framework provides. 

Policies trained by the TD3 and PPO methods on RaiSim are observed to fail to generate 

proper control commands for a stable and natural looking gait. In general, it is observed that 

the PPO method generated higher rewards than the TD3 method on RaiSim. After failing to 

develop a desired policy with RaiSim, MuJoCo is employed as the simulator. Eventually, a 

policy that can generate a reasonable gait with a desired crutch usage and with 35% 

minimization in GRFs with respect to the baseline policy is developed. 
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ÖZET 

 

 

ALT EKSTREMİTE DIŞ İSKELETLERİNİN 

BASTONLARINDAKİ KUVVETLERİ MİNİMİZE EDEN 

PEKİŞTİRMELİ ÖĞRENME TABANLI BİR KONTROLCÜ  

 

Bir alt ekstremite dış iskelet kullanıcısının metabolik enerji tüketiminin çoğu, alt vücut 

pasif olarak kabul edilebileceğinden, üst vücudun harcadığı efordan gelir. Ancak literatürde 

alt uzuv dış iskelet kullanıcılarının üst vücut eforu hesaba katılmamaktadır. Bu tez 

çalışmasında, bastonların yer tepki kuvvetlerini (YTK) optimize eden bir hareket 

kontrolcüsü geliştirmek için derin pekiştirmeli öğrenme kullanılmıştır. Yer reaksiyon 

kuvvetlerini minimize etmenin amacı kullanıcının üst vücut eforunu en aza indirmektir. 

Bastonlar ve insan-dış iskelet sisteminin modeli URDF ve XML formatlarında 

oluşturulmuştur. Düşmeden ve aşırı eklem torkları olmadan kütle merkezinin ileriye doğru 

yer değiştirmesini teşvik eden ödül fonksiyonları şekillendirilmiştir. Son teknoloji yöntemler 

olan Twin Delayed Deep Deterministic Policy Gradient (TD3) ve Proximal Policy 

Optimization (PPO), RaiSim ve MuJoCo simülatörleri ve çeşitli parametre setleriyle 

uygulanmıştır. Kullanılan sinir ağları, eklem açısı ve hızları ile ayaklar ve baston uçlarındaki 

zemin reaksiyon kuvvetlerine dayalı olarak eklem torklarını üretir. Oluşturulan bu eklem 

torkları doğrudan dış iskelet modeline gönderilir ve derin PÖ çerçevesinin sağladığı aksiyon 

uygulandıktan sonra yeni bir durum gözlemlenir. TD3 ve PPO yöntemleriyle RaiSim’de 

eğitilen politikaların, dengeli ve doğal görünümlü bir yürüyüş için uygun kontrol komutları 

üretemediği gözlemlenmiştir. Genel olarak RaiSim’de PPO yönteminin TD3 yöntemine göre 

daha yüksek ödül değerlerine ulaştığı görülmektedir. RaiSim ile istenen tarzda bir robot 

politikası elde edemedikten sonra MuJoCo simülatör olarak kullanılmıştır. Sonuç olarak, 

uygun baston hareketlerini de içeren ve istenen tarzda lokomosyonu yer tepki kuvvetlerini 

%35 oranında azaltarak sağlayan bir robot politikası geliştirilmiştir. 
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1.  INTRODUCTION 

 

1.1. Motivation 

Locomotion of legged robots is one of the fundamental domains in the field of robotics. 

Thus, the locomotion behavior is at utmost importance for developing a robotic device. 

Lower-limb exoskeletons, which are subclass of legged robots, even have an increased level 

of locomotion complexity as human movements are also involved. Lack of some degrees of 

freedoms may oblige the exoskeleton user to use crutches for stability purposes. As a 

consequence, the user uses the upper body to control the crutches, which results in increased 

metabolic energy consumption. This increased metabolic energy consumption should be 

minimized in order to improve the comfort of the exoskeleton user. However, there has not 

been any work in the literature that addresses this issue. The motivation of this thesis is to 

fill this gap by developing a controller that takes the crutch movements and the crutch contact 

forces into account in order to minimize the metabolic energy consumption of an exoskeleton 

user.  

1.2. Objectives 

In this study, an implementation of state-of-the-art RL algorithms with a reward 

function including crutch reaction force regulating term for a lower-limb exoskeleton is 

presented. The developed RL agents are aimed to exhibit a walking behavior with desired 

gait characteristics and crutch usage.  

The first aim is to develop a motion controller for an exoskeleton that minimizes the 

reaction forces exerted on the crutch tips by the ground. By introducing a cost term into the 

reward function, excess reaction forces can be penalized. 

The second aim is to keep the other gait characteristics such as linear displacement, 

lateral displacement, tilt angle of the human body and angle of the feet soles with respect to 

the ground within an acceptable range while achieving the first aim. By achieving these 

goals, the long term goal to improve the comfort of lower-limb exoskeleton users can be 

realized.  
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2. PRELIMINARIES 

 

2.1.  Definition of Exoskeleton 

The role of wearable robotic devices in daily life is increasing more and more [1]. 

Recent developments in powered exoskeleton technology offers many new possibilities to 

paraplegics and will offer increased motion capabilities for physically and neurologically 

intact people from many different application areas such as military or industry. To put it all 

in simple terms, a powered exoskeleton is a wearable mobile machine that is composed of 

links actuated by the attached motors in order to improve the motion capabilities of its user. 

Even though exoskeletons are still a hot topic of research, the history of exoskeletons 

dates back to 1890. The earliest known device that resembles an exoskeleton was developed 

in that date by a Russian engineer named as Nicholas Yagn [2]. The source of energy of this 

system was compressed gas bags. In the 1960’s, first active exoskeletons were developed in 

Mihajlo Pupin Institute. The goal of the legged locomotion systems developed in Mihajlo 

Pupin Institute was assisting in the rehabilitation of paraplegics. 

2.2.  Classification of Exoskeletons 

         In general, exoskeletons are classified according to their body part focus, structure 

(rigid or soft), action (active or passive), actuator type (electric, hydraulic, pneumatic etc.), 

purpose (recovery or performance) and application area [3]. Apart from full body, lower 

body and upper body exoskeletons, there are also exoskeletons for specific limbs and joints 

such as hand, ankle or foot. The action category is about whether there is any actuator to 

help the user in an active manner without requiring any energy from the user. Passive 

exoskeletons do not have any actuators on them and they only facilitate the movement of the 

user. Recovery class exoskeletons are designed for rehabilitation for patients who have lost 

some of their motor functions, and performance class exoskeletons are designed for 

augmenting the physical performance of able-bodied users [2]. 

         Recovery exoskeletons can be divided into two parts as full assistance and partial 

assistance devices. Aim of full assistance exoskeletons is to provide full mobilization to the 
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people who have lost their lower body motor functions completely by providing movement 

for their legs via actuators [4]. Since the legs of the user are assumed to be completely 

passive, the control structure for these exoskeletons excludes the consideration of the torque 

supplied by the legs which simplifies the control algorithm significantly. On the other hand, 

partial assistance devices are developed for those who did not lose their lower body motor 

functions completely. These devices are used to increase the motion capabilities of users 

who suffers from less serious injuries or aging. The control algorithm for partial assistance 

devices are more complex than that of full assistance devices because the decreased motion 

capabilities of the user also come into play. Increased complexity of the interaction between 

the user and the device leads to increased complexity of the control structure. In this study, 

an active lower body exoskeleton powered by series elastic actuators with crutches to be 

designed for full assistance rehabilitation of paraplegics will be considered. 

2.3.  Control of Exoskeletons 

         While many hardships such as mechanical design, strength analysis of critical parts of 

such devices are still present, control of exoskeletons in accordance with the users remaining 

lower body functionality is also a very challenging problem. Physical and cognitive 

interaction between user and the exoskeleton plays a huge role in a successful exoskeleton 

control algorithm. This aspect requires the concepts of trajectory and trajectory optimization 

to be mentioned. Trajectory is the time history of position and velocity of the joint angles in 

an exoskeleton and it is the main element that shapes the gait pattern of an exoskeleton or 

any other walking device. A good trajectory should be feasible in terms of the joint angle 

restrictions of a human and be comfortable considering the anatomy of humans. Hence, an 

optimal trajectory generated for an exoskeleton will be crucial for comfort, health and 

performance of the user.  

Exoskeleton control strategies are generally divided into three main layers which are 

high level, mid-level and low level [4]. The operation mode which describes activities such 

as walking or stair climbing is decided within the scope of high level control. High level 

control is not critically important for rehabilitation purposes, but it is still quite important for 

daily usage of robotic exoskeletons. Mid-level control algorithms make sure that the device 

acts in a continuous manner for all types of movements and it maps the high level commands 
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into low level commands [4]. Stability and equilibrium analysis, estimation of environmental 

factors and calculating the required joint torques are taken care in middle level. Finally, low 

level control layer executes torque control commands such that higher level intentions are 

realized as in Figure 2.1. 

Figure 2.1.  Flow chart of exoskeleton control layers. 

Even though there are many different possible numerical or analytic motion control 

methods that can solve the problem of generating correct low level torque control 

commands, they generally require complex mathematical models that describe the dynamic 

behavior of the whole system. For example, classic PID control is often used in locomotion 

tasks, but we still need to mathematically model the system and especially the contact 

dynamics for being able to minimize the contact forces. Considering the highly nonlinear 

nature of this kind of problem, it is a good option to explore the capabilities of the 

reinforcement learning techniques which does not need these expressions of complex system 

dynamics. 

2.4.  Reinforcement Learning Background 

In this section, some prior information that reinforcement learning methods use will 

be introduce in order to build a base. Reinforcement learning is a machine learning method 

based on trial and error. A simulation environment that captures the dynamics of the problem 

is required in order to implement this method. Reinforcement learning agent interacts with 

the environment adjust its actions based on the feedback it gets from the environment as 

shown in Figure 2.2. This feedback is calculated as a reward function which is a design 

consideration. Desired behaviors are rewarded whereas undesired ones are penalized within 

the scope of the reward function. However, reward engineering process is a non-trivial 

process and trials for very different combinations of reward functions and coefficients in the 
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reward function may be required. The RL agent aims to maximize the cumulative reward 

over time after doing thousands of iterations. 

 
Figure 2.2.  Reinforcement learning main structure. 

Reinforcement learning methods can be used to solve some various different types of 

problems such as games, statistics, swarm intelligence, robotics and control theory. Even 

though reinforcement learning is one of the hot topics in the field of AI, its applications in 

the real world conditions are still not very widespread. Since reinforcement learning heavily 

depends on the interaction with the environment, using this approach may not be always 

feasible especially for situations that require interacting with complex physical 

environments. The time required to solve this kind of a problem makes it unreasonable to 

use reinforcement learning. However, if a realistic model of the complex environment can 

be simulated and by using multiple hardware to train the algorithm, reinforcement learning 

can still be an option. 

There are two main classes of reinforcement learning algorithms, model based and 

model free reinforcement learning. In the model based approach, the agent tries to build a 

model of the environment based on how it interacts with the environment [5]. Therefore, the 

agent is able to predict the corresponding reward before applying the action on the 

environment. Hence, preferences become more important than results of actions the agent 

takes and the agent will try to take an action with the maximum reward without any regard 

of the possible results of that action. On the other hand, model free approaches aim the agent 

to establish the connection of their actions and consequences based on past experience. Thus, 
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the agent cannot predict the corresponding reward before applying the action.  In such an 

algorithm, the agent carries multiple actions and adjust the policy according to the reward.  

Another way to examine different types of reinforcement learning methods is to 

distinguish whether the algorithm is off-policy or on-policy. On-policy algorithms need the 

way that the data is collected to be improved or evaluated [6]. On the other hand, off-policy 

algorithms learn a policy from a data set which is a result of an arbitrary policy, so they 

evaluate and improve a policy which is a different policy than that of generates the actions. 

The past experience of the agent is stored in a structure called replay buffer. The stored batch 

of data are used to train the network and update the policy accordingly, so the training data 

generated by the previous policies are also utilized in the off-policy learning. 

Even though reinforcement learning is a powerful method for complex tasks with 

unknown system dynamics, not all types of reinforcement learning algorithms are suitable 

for continuous control tasks. Continuity of the action and observation spaces, high 

dimensional action and observation spaces make some reinforcement learning methods 

unusable. In this situations, model-free deep reinforcement learning methods are better 

choices as they can learn high dimensional actions and explore high dimensional state 

spaces, without any need of a mathematical equation system for the dynamics of the 

system[7]. 

Deep reinforcement learning is essentially a combination of deep learning and 

reinforcement learning. It is one of the most rapidly growing areas of machine learning and 

AI as it can solve many different types of difficult problems which are not possible to be 

solved by other reinforcement learning methods. These methods owe their performance to 

deep learning, which incorporates artificial neural networks in order to mimic the learning 

behavior of living things by modeling the neurons, connections between these neurons and 

how they interact with each other. Very large scaled raw inputs can be supplied to a neural 

network without any structuring layer for the observation space. Another advantage of deep 

RL algorithms is improved generalization [8]. Since deep RL algorithms can work with raw 

data (such as image pixels), the environment does not need be necessarily defined 

beforehand. Thus, the algorithm can work together with some new set of inputs that was not 

a part of training session. For example, the algorithm can predict that there is a cat on the 
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image although the particular cat or the same species of the particular cat was not introduced 

during the training. 

In deep reinforcement learning, the agent is defined as a neural network or some 

combinations of multiple neural networks. The number of layers and the number of neurons 

in each layer, their activation functions and connectivity structure are some of the design 

considerations. Required actions that should be taken for a specific observation and 

assessments such as how good it is to be in a state are calculated by these neural networks. 

The weight of the connections between the layers are initiated and then adjusted on every 

update sequence depending on the error calculated every step and the result of 

backpropagation algorithm applied. This general combination of reinforcement learning and 

deep learning can be seen as a diagram in Figure 2.3.  

 

Figure 2.3.  Deep reinforcement learning diagram. 

2.4.1.  Activation Functions 

Selection of the activation function is one of the critical parts of the neural network 

design. It determines how the neurons from different layers interact with each other, which 

means that it has a direct effect on the learning process. Selection of the output layer 

activation function affects the generated output by the neural network. Activation functions 

are mathematical expressions that take the weighted sum of the activations generated by the 

previous layer as input and apply a transformation based on its internal mathematics. Neural 

networks are built layer by layer. Input layer takes the raw input, calculates the activations 

and passes them to the next layer. Output layer is the layer that generates the predictions that 
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neural network is expected to make. The layers between input and output layers are called 

hidden layer. Number of the hidden layers is also another design choice. Generally, same 

type of activation function is used for all hidden layers and a different activation function 

for output layer may be selected depending on the desired output of the network. Activation 

functions are required to be differentiable since the error in the output layer should be 

differentiated in order to optimize the network [9].  

The most frequently used activation functions for hidden layers are Rectified Linear 

Activation (ReLU), Logistic (Sigmoid), and Hyperbolic Tangent (Tanh). Nonlinear 

dynamics of these functions allow the network to learn more complex functions when 

compared to linear activation functions. ReLU activation function is the most popular one 

for the hidden layers thanks to ease of implementation and its lower vulnerability to 

vanishing gradients problem [9], which describes that the gradients cannot be properly back 

propagated and the desired behavior is not learned eventually. ReLU function returns the 

input value unless the input is negative. If the input is negative it returns 0. The behavior of 

ReLU activation can be seen in Figure 2.4(a). It is generally advised that the input values 

shall be normalized in the range [0, 1] if the activation function is ReLU. Sigmoid function 

takes real values as input and squeezes them between the range [-1, 1]. It is a good practice 

to normalize the input values in the range [0, 1] when using Sigmoid as activation function. 

Shape of sigmoid activation function can be seen in Figure 2.4(b). Mathematical expression 

of sigmoid function is  

 
𝜎 =  

1

1 + 𝑒−𝑥
 . 

      (2.1) 

Tanh function takes real input values as input and outputs a value in the range [1, -1] just as 

sigmoid function does. It is suggested that the input values shall normalized in the range [1, 

-1]. Plot of tanh activation function is also available in Figure 2.5. The equation of tanh 

function is 

 
tanh =  

𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 . 

      (2.2) 
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                    a) ReLU                                             b) Sigmoid                                  

Figure 2.4.  Input/output plot of ReLU and sigmoid. 

 

Figure 2.5.  Input/output plot of tanh. 

The selection of activation function for hidden layers is done according to some 

considerations. A neural network uses the same activation function for all hidden layers in 

most of the situations. Tanh activation function was the default option for hidden layers until 

the end of the first decade of 2000s. However, tanh and sigmoid functions are vulnerable to 

vanishing gradient problem and ReLU activation function has become a more viable option 

in the modern neural network implementations [9]. The type of the network plays a huge 

role for selecting a proper activation function. For Convolutional Neural Networks and 

Multilayer Perceptron, ReLU is the best option most of the time, whereas sigmoid and tanh 

function is more reliable for Recurrent Neural Networks. 

There are four types of output layer activation functions that worth mentioning, which 

are linear, logistic (sigmoid), softmax and softplus. Linear activation function is also known 

as “identity” or “no activation” because it outputs the input value directly. Sigmoid function 
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has already been in introduced in the previous paragraphs. The softmax activation function 

outputs a vector of values and the sum of these values are one, so it can be interpreted that 

these values are probabilities. Mathematical expression of softmax is 

 
softmax =  

𝑒𝑥

∑ 𝑒𝑥
 . 

 

       (2.3) 

Softplus activation function is the smoothed verison of ReLU and it can be used in the hidden 

layers as well. ReLU has a discontinuity around the origin. Even though this does not cause 

much trouble in practice, researchers proposed the usage of softplus at the beginning of 

2000s because of its continuity [10]. Dombrowski et al. [11] claimed that the gradients with 

respect to the input becomes unstable in case any slight perturbation exists and softplus 

solves this problem. The plot of softplus function is available in Figure 2.6 and it expressed 

by the following equation 

 
𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 =  

log (1 + 𝑒(𝛽∗𝑥))

𝛽
, 

      (2.4) 

where 𝛽 is a parameter with default value one. Softplus is differentiable everywhere and its 

derivative is basically sigmoid function. 

Selection of the activation function for output layer is what determines the output 

essentially, so it is a significant aspect of neural network usage. The most important aspect 

to consider when choosing the activation function for output layer is the type of the variable 

that network predicts. If the problem is a regression problem, linear activation function is 

generally the best option. However, sigmoid or softmax generally lead to better results for 

classification type of problems [12].  

 

Figure 2.6.  Input/output plot of softplus. 
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2.4.2.  Markov Decision Process 

Markov Decision Process (MDP) is a mathematical environment that describes a 

formulation where the current state characterizes the future process and this framework is 

useful to model the decision making processes [13]. Markov Decision Process is a process 

where all state-action pairs have Markov property. Markov property is defined as 

            ℙ{𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡, 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑠0, 𝑎0} = ℙ{𝑠𝑡+1 = 𝑠′|𝑠𝑡, 𝑎𝑡},           (2.5) 

where s is state, a is action. 

         The meaning of the Equation 1.5 is that if the state and action pair is known at time 𝑡, 

then the state at time t + 1 only depends on state and action pair at time t. The state-action 

values before time t is irrelevant in this condition. If the environment has this Markov 

property, then the next state, next reward can be predicted, given the current state of the 

environment and current action. This property is crucial for reinforcement learning point of 

view and most problems can be described as MDP. Thus reinforcement learning methods 

are based on MDP’s. 

2.4.3.  Temporal Difference Learning 

Temporal Difference (TD) Learning is an approach used to estimate the total reward 

over a time horizon by reinforcement learning methods in an unsupervised way [14]. The 

most important concept of TD learning is the discounted reward which is expressed as 

                     Rt = rt+1 + γrt+2 + γ2rt+3 + ⋯ γ∞r∞ 

 
= ∑ γkrt+k+1

∞

k=0

 , 
 

   (2.6) 

where γ is discount factor and t is time. Discount factor depicts how much the future rewards 

are valued. It is a real value between 0 and 1. 

TD error is based on the difference between the actual reward Vt
∗ and the reward 

prediction Vt: 

                                            Et = Vt
∗−Vt   
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                          = rt+1 +  ∑ γkrt+k+1 − Vt
∞
k=1    

                                 = rt+1 +γ(∑ γk−1rt+k+1) − Vt
∞
k=1   

                                    = rt+1 +γ(∑ γkr(t+1)+k+1) − Vt
∞
k=0   

           = rt+1 +γVt+1 − Vt,   (2.7) 

After calculating the error, the update is done to the current value as 

Vt ← Vt + αEt 

                                                              = Vt + α(rt+1 + γVt+1 − Vt),  (2.8) 

where α is the learning rate. Learning rate determines how fast the learning process will be. 

It is a real value between 0 and 1. Learning rate should be tuned as optimal as possible 

because high learning rates may cause diverging from optimal results and aggressive 

fluctuations. A low learning rate is somewhat safer in terms of convergence, but it leads to 

slower training. 

2.4.4.  Actor-Critic Methods 

 

Figure 2.7.  Actor-critic architecture. 
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Actor-Critic methods are TD learning methods that uses two different neural networks 

which are policy network and value network. Actor network maps the observation vector to 

the probability distribution over the possible actions that the agent can take or directly the 

actions. Value network predicts the expected return that the agent will obtain if it starts from 

a particular state and acts according to the current policy from this point on. In other words, 

critic network criticizes the actions generated by actor based on the current policy. A general 

Actor-Critic architecture is shown in Figure 2.7. 

Actor-Critic methods are based on the gradient that is calculated by the equation 

 

∇J(θ) = ∑ ∇θlogπθ(at, st)

T−1

t=0

Aπθ(st, at), 
 

      (2.9) 

where Aπθ is the advantage function and πθ is the policy network with parameters set θ. 

Advantage function is basically the TD error which was introduced earlier as the Equation 

2.7. Equation 2.9 is also known as policy-gradient expression.  In each iteration, these 

gradients are used to update the policy network parameters according to the equation 

 θ ← θ + α∇J(θ),    (2.10) 

where θ is the policy network parameters. 

2.4.5.  Policy Gradients 

Policy gradients are frequently used in RL algorithms due to their dependence of 

simple principles [15]. The policy is defined as 

 π(a|s),      (2.11) 

where π depicts the probability of taking the action a, given a state s. Expected rewards can 

be formulized as 

 

J(θ) = E [∑ R(st, at); πθ

T

t=0

] 

 

  = ∑ P(τ; θ)R(τ)

τ

,    (2.12) 
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where τ depicts a trajectory. The ultimate goal is to develop a policy πθ that creates a 

trajectory τ which includes state-action pairs  

 (s1, a1, s2, a2, … , sT, aT),  

which maximizes the expected return. Thus the objective function becomes 

 max
θ

 J(θ) = max
θ

∑ P(τ; θ)R(τ),

τ

 
  (2.13) 

which means a maximization problem of the sum of the expected rewards. 

Policy gradient approach makes uses of a derivation trick defined as 

 
f(x)∇θ log f(x) = f(x)

∇θf(x)

f(x)
 

 

                                                               = ∇θf(x).   (2.14) 

Replacing  f(x) with policy πθ(τ) gives 

 πθ(τ)∇θ log πθ(τ) =  ∇θπθ(τ).   (2.15) 

The expected return or continuous space can be expressed as 

 
Ez~p(x)[f(x)] = ∫ p(x)f(x)dx, 

  (2.16) 

and the goal becomes the following equation defined as 

 θ∗ = arg max
θ

J(θ)  

 
                                        = arg max

θ
Eτ~pθ(τ) [∑ r(st, at)

t

] . 
 (2.17) 

Modifying the Equation 2.16 according to πθ(τ) gives 

 J(θ) = Eτ~πθ(τ)[r(τ)]  

 
            = ∫ πθ(τ)r(τ)dτ, 

 (2.18) 

and taking the gradient of this objective function gives the policy gradient defined as 

 
∇θJ(θ) = ∫ ∇θπθ(τ)r(τ)dτ 

 



15 

 

 
                                 = ∫ πθ(τ)∇θ log πθ(τ)r(τ)dτ 

 

                                = Eτ~πθ(τ)[∇θ log πθ(τ)r(τ)].  (2.19) 

Taking the gradient of log πθ(τ) is required in order to compute the policy gradient. πθ(τ) 

is defined as 

 πθ(τ) =  πθ(s1, a1, … , sT, aT)  

 

                                    = p(s1) ∏ πθ(at|st)p(st+1|st, at),

T

t=1

 

 

 (2.19) 

and taking the log of both sides gives 

 

log πθ(τ) = log p(s1) + ∑ log πθ(at|st) + log p(st+1|st, at),

T

t=1

 

 

  (2.20) 

where p(st+1|st, at) is the probability of transitioning into st+1 from st if the action at is 

applied. The first and the last term in Equation 2.20 do not depend on network parameters θ, 

so they can be ignored while substituting it into Equation 2.19. Then Equation 2.19 becomes 

 

∇θJ(θ) ≈
1

N
∑ (∑ ∇θ log πθ(ai,t|si,t)

T

t=1

)

N

i=1

(∑ r(si,t, ai,t

T

t=1

), 
 

  (2.21) 

and it is used to update the weights such that 

 θ ← θ + α∇θJ(θ).   (2.22) 

The term ∇θ log πθ(ai,t|si,t) in Equation 2.21 is called maximum log likelihood and it 

is a measure of how likely the trajectory is under the current policy. The aim of multiplying 

it with the rewards is to increase the likelihood of a policy if the trajectory gives a positive 

reward. Simultaneously, if the policy results in negative reward, the likelihood of this policy 

is decreased. 

2.4.6.  Entropy in Reinforcement Learning 

In many reinforcement learning algorithms such as policy gradient and actor-critic 

algorithms, the actions are defined over a probability distribution like Gaussian distribution. 

Entropy is a measure of randomness for the agent’s actions. The term “entropy” is originally 
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a physics term and it refers to the lack of order in a system whereas its meaning in terms of 

reinforcement learning corresponds to the unpredictability of the actions generated by the 

agent. In some RL algorithms, entropy is introduced into the objective function as 

 J(θ) = E[R(st, at) + βH(πθ(st))],   (2.23) 

where H(πθ(st)) is the entropy of the policy πθ in the state st. This added term is sometimes 

called entropy bonus and it is defined as 

 H(πθ(st)) = − ∑ πθ(st, a) log πθ(st, a).

a

 
  (2.24) 

Entropy bonus improves the exploration behavior of the agent and prevents the policy to get 

stuck at a local optimum. However, the entropy coefficient should be tuned carefully because 

if it is too high, entropy dominates the other components of objective function which 

introduces a high degree of chaos. Similarly, too low entropy prevents the agent to explore 

the environment and converge to better optima. 

2.4.7.  Q Learning 

Q Learning is a model free reinforcement learning algorithm which is primarily built 

on estimating the value of an action in a particular state [16]. It utilizes a table named as Q-

table which is a lookup table in order to estimate the expected returns for each possible action 

in each state. “Q” stands for quality and intuitively Q value can be described as the quality 

of the action. Q learning uses Bellman equation which is shown as 

 V(st) = max
at

R(st, at) + γV(st+1).   (2.25) 

The stochastic version of Bellman equation is 

 

V(st) = max
at

(R(st, at) + γ ∑ P(st+1|st, at)

st+1

V(st+1)). 

  (2.26) 

Q function takes inputs 𝑠𝑡 and 𝑎𝑡 in order to estimate the Q value as  

 Qπ(st, at) = E[Rt+1 + γRt+2 + γ2Rt+3 + ⋯ |st, at],   (2.27) 

which is basically expected discounted reward. This calculation is used to update Q values 

according to the equation 
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 Qnew(st, at) = Q(st, at) + α[R(st, at) + γ ∗ maxQπ(st, at) − Q(st, at)].   (2.28) 

The next action is selected based on the new version of Q-table such that the action has the 

maximum Q value. This update is applied iteratively until convergence. 
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3.   LITERATURE  

In this section, state-of-the-art studies in the field of exoskeletons, bipedal robots, 

trajectory optimization and reinforcement learning which can provide some insight about the 

thesis topic are summarized. 

Optimal control strategies are widely used in the literature in the context of 

exoskeletons and bipedal robots. One of them is direct collocation. In this method, system 

dynamics, cost function and all constraints are discretized by integration approximations 

such as Simpson’s rule or trapezoidal rule. Then the problem is reduced to nonlinear 

programming problem that can be solved by numerous software packages such as 

MATLAB. Chao et al. [17] used this method to generate optimal gait trajectories with the 

cost function known as “mechanical cost of transport” which corresponds to the amount of 

mechanical energy the device spends over the period of gait and generated feasible and 

optimal gait patterns. Ackermann et al. [18] also showed functionality of direct collocation 

methods on optimizing trajectories of human gait. Kelly [19] created an open source 

MATLAB trajectory optimization library which uses direct collocation methods and 

demonstrated efficacy of these methods on different problems including a five-link bipedal 

robot. Hereid et al [20] used direct collocation method for trajectory optimization and 

showed that optimization results yield dynamic and stable gaits for a bipedal robot. 

Consequently, usability and efficiency of direct collocation methods on walking robotic 

systems are shown many times in the related literature. 

Luo et al. [21] proposed a novel motion controller that uses reinforcement learning for 

squat assistance on a lower body exoskeleton. The aim of the exoskeleton which has 

actuation on ankle joint for both sagittal and front planes is to help the user to complete squat 

movement without any loss of efficiency, stability and robustness. A PD controller is used 

the track the desired joint angles which are the outputs of the reinforcement learning 

algorithm. Multi-layer perception that was used in the study is composed of 3 fully connected 

layers with ReLu activation function. Proximal Policy Optimization which is one of the most 

effective policy gradient algorithms is used to train the network. The center of pressure is 

estimated by the help of force sensors on the foot and utilized in the observation space and 
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in the reward function. Additionally, dynamics randomization and perturbations forces are 

also used during the training session in order to improve the robustness. The effectiveness 

of the proposed strategy is shown in the experiments with different environmental 

conditions. 

Taylor et al. [22] introduced a method to teach a real world bipedal robot to walk 

directly from motion capture data by using reinforcement learning. Required actuator 

commands to realize a desired motion are derived as a result of the proposed method. The 

acceleration and angular velocity values of the torso that are measured by an IMU, joint 

angles, surface reaction forces and time measured by a built in sensor are used as the 

observations for the reinforcement learning algorithm. The state vector is composed of the 

velocities of the joint angles. Resultant joint velocities are converted into joint position 

targets by an integrator and PD control is used to track these target joint positions. This 

incorporation of integration has some advantages such as avoiding motor jitter and 

smoothing the joint angle curve. PPO algorithm is utilized in the learning process. Policy 

and value networks are created such that they have 3 layers which are composed of 128 

neurons with softsign as the activation function. Reward function is shaped such that it 

includes a term that checks the difference between the target link orientations and the actual 

ones, a term that penalizes self-collisions, a term about foot contacts and orientation of the 

foot during contact and a term that penalizes out of range joint angles. The algorithm is 

trained for different initial conditions during 2500 episodes. Domain randomization is also 

incorporated such that random motor backlash, friction coefficient and Young's modulus are 

included during training. Consequently, the trained network can successfully imitate the 

human gait even though there is still room for improvement in terms of overall robustness. 

Lillicrap et al. [23] demonstrated the generalized efficacy of deep reinforcement 

learning on various tasks. A novel algorithm called Deep Deterministic Policy Gradient 

(DDPG) is introduced to solve continuous control problems. It is a combination of Deep Q 

Network algorithm [24] and actor-critic approach where actor generates action and critic 

criticizes it. It is tried on very different continuous control problems that include multi-joint 

dynamics and unstable contact dynamics such as cart pole, pendulum swing-up, puck 

shooting, robotic manipulation, legged locomotion and autonomous driving. One of the most 
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interesting aspects of the work is that the same hyper parameter settings and network 

topology which decreases the amount of engineering required significantly.  

Peng et al. [25] presented a imitation learning based method that can teach quadrupedal 

robots very complex animal movements that include extreme agility skills. The input of the 

proposed framework may be motion capture data obtained from the movements of real 

animals. There are 3 main steps implemented in order to achieve the challenging goal of 

imitating real animal movements. Firstly, the reference motion is processed for doing the 

mapping between reference morphology and robot morphology. Secondly, the mapping 

done in the first step is used to train the network that imitates the reference movements. 

Finally, the developed robot policy is transferred to a real robot. Policy network which has 

2 layers with 512 and 256 neurons outputs a Gaussian action distribution. The framework 

can successfully learn to imitate a wide range of dynamically challenging movements such 

as backward trot, running, turning, hop-turning. Moreover, the developed policy is able to 

perform these movements after a sim-to-real transfer process. 

Margolis et al. [26] developed a framework for a controller that enables a quadrupedal 

robot to sprint and turn with high speeds on very different and challenging natural terrains 

such as ice and grass. Reward function is engineered such that linear, angular velocity are 

tracked and some additional conditions for stability, smoothness and safety are regulated. 

Since some tilting movement through forward direction is observed during training sessions, 

some penalty terms for body height and orientation are also added into reward function. PPO 

algorithm is trained with randomized parameters for body mass, center of mass, motor 

parameters, friction and restitution coefficients of ground in order to realize a better sim-to-

real transfer. Like many of the reinforcement learning studies, neural network outputs some 

target joint positions which are to be tracked by a PD controller. Additionally, curriculum 

learning is incorporated in order to enable high speed locomotion. It is found out that the 

policy cannot learn desired behaviors without any curriculum. The result is that the random 

exploration at the beginning rarely leads to movements with fast body motion, which 

eventually keeps the reward small. Trained policy is tested on various real world conditions 

by using a quadrupedal robot. The robot has outperformed the previous sprint speed record 

which was achieved by model predictive control for the same robot configuration. Then the 

robot is also tested on outdoor conditions and even if there is a decrease of sprint speed, the 
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robot can still sprint at a quite high speed. Finally, the robot is tested for yaw control which 

resulted in with a yaw rate of 5.7 rad/s and for terrain change, hardware failure conditions, 

which demonstrated improved agility.  

Deep reinforcement learning has shown its efficacy in not only bipedal/quadrupedal 

locomotion tasks, but also in other modes of locomotion such as snake locomotion. Shi et 

al. [27] used reinforcement learning in order to derive gaits for multi-link snake shaped 

robots in both aquatic and terrestrial environments. Links are attached at the end of each 

other and this simple design is used for terrestrial and aquatic versions of snake robot. 

Terrestrial version includes some wheels as well. The observation space consists of relative 

angles of two joints of the robot and orientation of the robot in inertial frame whereas the 

action space consists of the joint velocities. Two different reward functions are utilized 

depending on two different tasks, moving forward or backward and changing the direction 

of the robot to right or left. Forward displacement, orientation and robots orientation 

displacement in the desired direction are used to shape the reward function. Since the 

dimensionality of the problem is low, a network with 2 hidden layers with 50 neurons is 

enough. The created network is trained by Deep Q Network method and it converges to an 

optimal value after 5000 iterations for both configurations. A prototype of the wheeled snake 

robot is created and transferring the learned policy into real world conditions is presented as 

a future work. 

Another type of robot geometry that can be used along with deep reinforcement 

techniques is tensegrity robots. Zhang et al. [28] has developed a novel method that uses 

reinforcement learning to achieve efficient gait for tensegrity robots. Tensegrity robots are 

composed of some solid links and elastic elements that connect these links to each other. 

Despite their intricate motion dynamics which makes it cumbersome to control them, they 

are used for exploring planets. A tensegrity robot called SUPERball which has 6 solid rods, 

and 24 elastic cables is used in the study. 12 of the elastic cables can be actuated. The 

complex gait dynamics of this robot includes contracting the elastic cables such that area of 

the base shrinks. The decrease in the area of the support polygon makes the robot tip over. 

A 12-dimensional observation space which incorporates the acceleration measurements 

along the bar axis. Action space is composed of desired positions of 12 different motors. A 

neural network with 3 hidden layers each with 64 neurons activated by ReLU activation 
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function. The network is trained by an improved version of MDGPS algorithm [29] that 

encompasses periodic behaviors. During training, some parameters such as terrain slope, 

gravitational acceleration, noise level for the inputs are varied in a systematic way. The robot 

can successfully learn to perform an efficient gait on the simulation environment. Moreover, 

the trained policy is directly transferred into real world without any post-tuning and the robot 

can travel distances such as 12m, 9m and 8m by performing rolling movements. Therefore, 

it is stated that the proposed method achieved even better results when compared to some 

hand engineered control algorithms. 

Ouyang et al. [30] has demonstrated that reinforcement learning based methods can be 

used to develop bioinspired adaptive locomotion controllers for hexapod robots as well. 

Central Pattern Generators (CPGs) are a part of the central nervous system and they generate 

some commands in order to achieve complex and rhythmic locomotion patterns in animals. 

A DDPG reinforcement learning agent that takes the position and velocity of the robot body, 

joint torques, angles and first derivatives of the angles is implemented. This agent optimizes 

2 parameters of CPGs, which are amplitude and phase difference between the hip joint and 

knee joint. CPG based controller generates the desired joint positions based on these 

parameters and these target angles are tracked by PD controller. Velocity direction and the 

energy consumption are considered in terms of reward function. In conclusion, it has been 

showed that the proposed controller structure can very good maneuverability, adaptability t 

different environments, robustness and stability.    

Deep reinforcement learning has been used to generate the desired joint torques for 

bipedal robots or lower body exoskeletons most of the time. However, setting the output 

layer such that it outputs the joint torques directly is also a valid option. Rose et al. [7] used 

deep neural networks in order to develop a controller that generates the correct torque values 

directly. A neural network that generates joint torques based on observations for joint angle, 

velocity, acceleration, actuator torque, speed and joint angle goals is established and trained 

by DDPG algorithm. A common reward scheme is used to generate a general reward 

function that encompasses the successful tracking of goal joint angles and a penalty for 

exceeding the joint limits. This common reward scheme is implemented for all the joints and 

they are summed up in order to generate the overall reward. OpenSim-RL, which is an open 

source reinforcement learning environment for multibody physics simulations, is used as the 
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simulation environment. Desired gait pattern is obtained via applying inverse kinematics 

after using the joint torque profiles which are available in OpenSim. The network is tested 

after the training and it is observed that the desired joint trajectories are tracked even in the 

presence of small perturbations. Being able to track the unseen trajectories in the training is 

given as a future work. 

Another deep reinforcement learning method that may be used for developing 

exoskeleton controllers is TD3 (Twin Delayed Deep Deterministic Policy Gradient). TD3 is 

an improved version of DDPG algorithm. Some shortages of DDPG algorithm such as 

unstable convergence, overestimation of the critic network outputs, and over-reliance of 

hyper parameters are solved in TD3. Oghogho et al. [31] proposed a TD3 based method to 

regulate the assistance levels of upper limb exoskeletons. The aim of the user is detected 

based on the EMG activity of the muscles and assistive actions are generated, so EMG 

signals are included in the observation space along with the joint angles. Based on these 

observations, the network outputs the assistive gains for the actuators. Large overshoots in 

the joint positions, EMG activities of the corresponding muscles and out of range assistive 

gain values are penalized in the reward function. The proposed system is able to learn how 

to output the desired assistive gains without any knowledge of muscular capability of the 

user and the complex dynamics between the exoskeleton and human. The resultant TD3 

agent is used in the real world experiments and helped the user to lift a 4 kg object by 

decreasing the muscular activity by 15 %. 

Luo et al. [32] presented novel controller based on a deep reinforcement learning 

framework which includes three independent neural networks for lower limb exoskeletons. 

High degree of uncertainty in the dynamics between the human and exoskeleton poses 

challenge for developing efficient controller and conventional methods require much effort 

in order to tune many different parameters within the control system. In this study, deep RL 

is utilized as a way to come up with a controller that considers the interaction forces between 

exoskeleton and human. Muscle-actuated human control loop is used to generate realistic 

interactions between human and exoskeleton. The aim of the LLRE (Lower Limb 

Rehabilitation Exoskeleton) control policy loop is to generate the required joint torques that 

track a reference motion. Muscle coordination network in muscle-actuated human control 

loop is a network trained in a supervised way and it predicts the muscle activations of the 
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user while walking with the exoskeleton based on the joint accelerations and muscular state 

by minimizing error for desired joint acceleration and actual joint acceleration. Interaction 

network outputs the human joint angle targets based on joint angles and joint angle velocities 

such that the interaction forces between the human and exoskeleton are small. PD controllers 

are used to generate the joint torques for LLRE control loop and joint accelerations for 

muscle-actuated human control loop such that the target joint angles are tracked. All the 

neural networks in the loop are trained simultaneously. Reward function for motion imitation 

network consists of following multiple sub rewards. Imitation reward encourage the 

exoskeleton to track the reference trajectories. Root reward aims to track the root’s position 

and rotation trajectories. Center of Pressure reward encourages the controller to produce 

actions that leads to situations where the center of pressure is within the support polygon, 

which is the safe region in terms of stability for the center of pressure. Action smoothness 

reward penalizes high second order derivatives of actions. Foot clearance reward tries to 

ensure that roll and pitch angle of the swing foot in order to keep the foot parallel to the 

ground as much as possible for avoiding tripping. Lastly, torque reward encourages the agent 

to generate actions with superabundant joint torques. PPO algorithm is used to train the 

network. During training, maximum isometric forces of muscles are randomized within a 

range in order to generalize better such that different people with different muscle properties 

can use the system without patient specific parameter tuning. After the training, the 

controller is tested with multiple users with varying physical health status such as healthy, 

muscle weakness or hemiplegic in an open source simulator DART. The proposed 

multilayered control algorithm can successfully help the users to have a stable and efficient 

gait. 
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4.  METHODOLOGY 

 

This thesis study is part of a TÜBİTAK project (project no 118E922) about lower-limb 

exoskeletons. Minimization of metabolic energy is determined as one of the topics that we 

will contribute as Boğaziçi University. After examining usability of conventional control 

methods, it has been decided that RL shall be used to minimize the necessary reaction forces 

because of less required mathematical model complexity when compared to the classic 

methods. Since the lower portion of the body is assumed to be completely passive in this 

project, lower body metabolic energy consumption is ignored. The GRF’s on the crutch tips, 

which can be considered as an indicator for the upper body metabolic effort, are identified 

as the minimization goal. The exoskeleton-human system is modeled in accordance with the 

real exoskeleton developed in Özyeğin University. Physics simulators RaiSim and MuJoCo 

are used to simulate the dynamics of the problem. After failing in RaiSim trials, MuJoCo is 

adopted as the physics simulator and different RL agents that reaches the goal of GRF 

minimization are developed. 

4.1.  Simulation Environment and Modeling 

Machine learning methods generally operate on a readily available training datasets 

and optimize their mathematical models by using the dataset. However, reinforcement 

learning methods do not require any training dataset which is available prior training. 

Instead, they require a simulation environment to be able to realize the problem virtually. 

This simulation environment supplies the training data as a result of the interactions between 

the RL agent and the environment. Moreover, the data is not given as a whole by simulation 

environments. The data becomes available to the algorithm piece by piece. As all other 

machine learning methods, reinforcement learning also depends heavily on the quality of 

training data coming from the simulation environment. Therefore, the simulation 

environment is expected to capture all the important dynamics of the problem as realistic as 

possible and supply the observations such as joint states, reaction forces and dynamic effects 

to the agent. Especially in legged locomotion, the stability of the overall structure is 

extremely dependent of the accuracy of contact force modeling. These forces establish the 

basis for interaction between the robot and the ground. Even though there are many different 
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physics engines that simulate these contacts, the methods they use for these calculations 

differ a lot and it is necessary to pick the most suitable one based on the advantages and 

disadvantages.  

4.1.1.  OpenAI Gym 

One of the most well-known, popular and easy to use reinforcement learning 

environments is OpenAI Gym and it contains many different problems varying from robotics 

and control tasks to various type of games. It includes a wide variety of environments such 

as bipedal walker, inverted pendulum and cart pole. OpenAI Gym is generally used for 

benchmarking the efficacy of new algorithms and as a learning environment for 

reinforcement learning new starters thanks to ease of implementation. 

 There are some crucial and useful features of OpenAI Gym in terms of interacting the 

environment and they generally form the basis of reinforcement learning algorithms. These 

functions are: 

• reset : Resets the environment to the initial conditions and returns the initial 

state values 

• step: Implements the action to the environment and returns some information 

about the environment after the action. The retuned information are: 

o state: State of the environment after the action 

o reward: Reward obtained after applying the action  

o done: The signal that terminates the episode based on whether the goal 

is reached or any termination criteria are satisfied 

o info: Any other information depending on the environment which can 

help the debugging. 

By following the same structure of readily available OpenAI Gym functions, new 

classes that include a physics simulator and customized definitions of required functions 

such as reset and step are shaped in this study. For example, problem specific termination 

criteria should be described within done function such as terminating the episode if the robot 

falls. Additionally, the state vector and reward function that was engineered such that the 

desired functionalities are mathematically described also have been added into this new class 
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that draws the boundaries of the task to be solved. This process requires a meticulous 

selection of the physics simulator and the integration of it into the reinforcement learning 

environment. In the next parts, some important physics simulators will be introduced. 

4.1.2.  MuJoCo 

MuJoCo (Multi-Joint Dynamics with Contact) is an open source multi body physics 

simulator that can calculate the rigid body contact forces accurately. It has very different 

types of robot models available such as one legged, bipedal, quadrupedal robots. MuJoCo 

has been one of the most frequently used multibody physics simulators for reinforcement 

learning methods, especially for locomotion tasks. Fujimoto et al. [33] has showed the 

efficacy of MuJoCo for different types of locomotion tasks by producing efficient gaits for 

all the available robot configurations in MuJoCo. Due to its proven efficacy in locomotion 

tasks, MuJoCo is selected as one of the physics simulators that have been tried in this study. 

4.1.3.  RaiSim 

RaiSim is another multibody physics engine designed to simulate robotic systems and 

it is one of the most recent ones. Moreover, any multibody object that is built by URDF 

convention can be simulated in RaiSim and the overall system can be visualized by RaiSim 

Unity including the direction and magnitude of ground contact forces and contact points. 

Hwangbo et al. [34] has tested this physics simulator that they created and it is claimed that 

speed and accuracy is generally better than some other popular physics simulators. The 

general information about these frequently used simulators is available in Table 4.1 and the 

comparison between these simulators on different task is available in Table 4.2. These tables 

are inspected to select the simulators used in this study. RaiSim has a distinctive method for 

simulating the contact forces and this helps it to simulate multibody or single body tasks 

quite successfully. Thus, it is expected that RaiSim will become one of the most frequently 

used multibody physics simulators due to its prowess. As an addition to MuJoCo, RaiSim is 

also selected to model the exoskeleton and human system that includes the crutches also in 

order to use the overall model as a simulation environment for the reinforcement learning 

process in this study.  

 



28 

 

Table 4.1.  General information about frequently used physics simulators [34] 

  RaiSim Bullet ODE MuJoCo DART 

Initial 

release 
Unreleased 2006 2001 2015 2012 

Author 
J. Hwangbo 

D. Kang 
E. Coumans R. Smith E. Todorov 

J. Lee et 

al 

License Proprietary 
Zlib 

(open-source) 

GPL / BSD 

(open-source) 
Proprietary BSD 

Main 

purpose 
Robotics Game, Graphics 

Game, 

Graphics 
Robotics Robotics 

Language C++ C / C++ C++ C C++ 

API C++ C++ / Python C C C++ 

Contacts Hard Hard/Soft Hard/Soft Soft Hard 

Solver Bisection MLCP LCP 
Newton / 

PGS / CG 
LCP 

Integrator 
Semi-implicit 

Euler 

Semi-implicit 

Euler 

Semi-implicit 

Euler 

Semi-

implicit 

Euler / RK4 

Semi-

implicit 

Euler 

Coordinates Minimal Minimal Maximal Minimal Minimal 

 

Table 4.2.  Comparison of physics simulators [34] 

  RaiSim Bullet ODE MuJoCo DART 

Rolling ++ +++ - + - 

Bouncing ++++ ++ +++ - + 

666 +++ + ++ + + 

Elastic 666 ++++ ++ +++ - + 

ANYmal PD +++++ +++ + ++++ ++ 

ANYmal 

Momentum 
+++ ++ +++++ 

++++ (RK4) 
+ 

++ (Euler) 

ANYmal 

Energy 
++++ +++ ++ 

+++++ (RK4) 
+ 

+++ (Euler) 
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4.1.4.  Exoskeleton-Human System Modeling 

In order to create the exoskeleton-human compound model, a human model which has 

already been implemented with URDF convention is surveyed. Even though, there are not 

many implementations of a human model with joint actuations, a URDF model which was 

originally created for simulations on Gazebo, which is another dynamics simulator used for 

robotics, is available. [35] The models in this repository are generated by Human Model 

Generator [36] and using motion capture data. The links in the human body are modeled as 

cylinders and boxes with different dimensions. There are 8 different models with different 

measurements as shown in Table 4.3. Subject 2 is chosen as the model to be used because it 

has the closest measurements the real exoskeleton in Ozyegin University in terms of hip 

height and knee height. This model contains nearly every present degree of freedoms in a 

healthy human body. In order to decrease the dimensionality of the problem and simplify 

the problem, some unnecessary degrees of freedom are removed by setting the joints as fixed 

joints. Ankle, knee, hip, arm and shoulder joints in the sagittal plane are preserved. 

Table 4.3.  Measurements of human subjects [36] 

Subject 
Mass 

[kg] 

Height 

[cm] 

Foot 

size 

[cm] 

Arm 

span 

[cm] 

Ankle 

height 

[cm] 

Hip 

height 

[cm] 

Hip 

width 

[cm] 

Knee 

height 

[cm] 

Shoulder 

width 

[cm] 

Shoulder 

height 

[cm] 

 Sole 

height 

[cm] 

1 62.2 168 24 163 8 91 25 48.5 35.4 140  - 

2 79.4 176 26 169 8 94 33 48 40 140  - 

3 75.4 180 27 190 8 102 28 58 43 148  - 

4 72.7 182 26 197 8 102 29 56 42 150  - 

5 55 168 24 168 8 98 25 52 38 139  - 

6 71.2 179 29 180 8 100 31 49 43 147  - 

7 78.9 178 28 192 8 102 30 52 44 148  - 

8 55.2 166 25 170 8 90 28 45 37 139  - 

 

After having the human model which includes the necessary joints, a lower body 

exoskeleton has been modeled and attached to the human model along with the crutches that 

were fixed to left and right arm as shown in Figure 4.1. In order to sense whether the feet 

sole contact the ground or not, 4 spheres which are connected to the feet sole are added for 

each foot. Similarly, spheres are connected to the tips of the crutches in order to sense the 

reaction forces applied to the crutches. These artificial sensors are defined as prismatic joints 

with predefined stiffness and they behave as springs that enable force measurement. This 
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contact information is very useful in terms of the observation vector in reinforcement 

learning. The aforementioned contact spheres beneath the feet are shown in Figure 4.2(a), 

whereas the contact sphere at the tip of the crutch can be seen in Figure 4.2(b). 

 

(a)                           (b)                            (c) 

Figure 4.1.  Exoskeleton-human system with crutches from different views. (a) Front 

view (b), Rear view (c), Transverse view. 

 

(a)                                              (b) 

Figure 4.2.  Contact spheres. (a) Feet contact, (b) Crutch contact. 

4.1.5.  Action and Observation Space in RaiSim 

In a similar way described in Section 4.1, observation and action spaces have been 

created. Observation space consists of following variables; x, y, z positions of the root, 

rotation angles with respect to x, y, z axes in quaternion representation, rotation angles of 

ankle, knee, hip, shoulder and arm joints in sagittal plane, displacements in the prismatic 

joints that are used to attach the contact spheres and velocities of all these variables. Action 

space is defined as the joint torques to be applied on ankle, knee, hip, shoulder and arm 

joints. Note that the arm and shoulder joints are actuated by the human in a real world 
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environment, but it is necessary to simulate these actuations in order to obtain a complete 

gait with crutch usage and the arm actuations are assumed to be a part of the robotic 

exoskeleton. RaiSim successfully computes the variables required and communicates with 

Python which enables the usage of all these variables in order to build the observation and 

action spaces to be used within the scope of reinforcement learning. 

4.1.6.  Action and Observation Space in MuJoCo 

In order to shape the observation space, a script originally written for simulating a 

humanoid model in MuJoCo[37] is used [38]. In this script, current positions of the center 

of mass of the exoskeleton-human system in x, y, z coordinates are excluded from the 

observation space. Thus, the observation consists of rotation angles with respect to x, y, z 

axes in quaternion representation, rotation angles of ankle, knee, hip, shoulder and arm joints 

in sagittal plane, displacements in the prismatic joints that are used to attach the contact 

spheres, velocities of all these variables, center of mass inertia and velocity and actuator 

forces.The center of mass inertia is defined as the body inertia based on CoM in MuJoCo. 

The same action space as in the RaiSim trials which consists of the joint torques is used for 

the MuJoCo trials as well. 

4.2.  Implemented RL Methods 

As explained by many different studies in the Literature Review section, there are 

numerous state of the art reinforcement learning methods that may be used to develop a 

locomotion controller for a lower limb robotic exoskeleton. In this section some of these 

recent algorithms will be explained in detail. In order to develop a reinforcement learning 

based controller which utilizes neural networks and does the mapping between the robot 

states and required joint torques, Proximal Policy Optimization (PPO) [39] and Twin 

Delayed Deep Deterministic Policy Gradient (TD3) [33]  methods will be utilized along with 

the help of RaiSim and MuJoCo simulation environments. 

4.2.1.  Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is a policy gradient method that can be used to 

solve the problems with discrete or continuous action spaces. The neural networks are 
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utilized in an Actor-Critic architecture and a stochastic policy is trained in on-policy manner. 

PPO builds on the Vanilla Policy Gradient with advantage function which is expressed as 

 ∇J(θ) = Êt[∇θlogπθ(at|st)Ât],        (4.1) 

where πθ is the stochastic policy that outputs a probability distribution of actions, Ât is the 

estimation of advantage at time t and Êt is the expectation which is an average calculated 

over a finite number of batches.  

Equation 2.9 is the gradient of the policy loss function which is 

 LPG(θ) = Êt[logπθ(at|st)Ât].        (4.2) 

Even though it seems reasonable to update the network parameters constantly in a batch of 

collected experience , the resulting update rate of the parameters generally come out very 

aggressive which is called “destructively large policy updates”. One way to avoid this 

problem is to use Trust Region Policy Optimization [40]. Schulman et al. [40] proposed this 

method such that the update rate of the policy is constrained within a trustable region, so the 

destructively large update rates are avoided. First, a ratio is defined as 

 
r(t)(θ) =

πθ(at|st)

πθold
(at|st)

, 
       (4.3) 

in order to determine the similarity between the current policy and the previous one.  For 

example, the ratio r(t)(θ) will be greater than 1 if the particular action is more probable for 

the current policy when compared to the previous policy. Similarly, the ration will be 

between 0 and 1 if that action is less probable for the current policy when compared to the 

previous one. Trust Region Policy Optimization (TRPO) uses this ratio to shape an 

optimization problem defined as 

 
max

θ
Êt [

πθ(at|st)

πθold
(at|st)

Ât] 
 

    (4.4) 

                                       subject to Êt [KL[πθold
(. |st), πθ(. |st)]] ≤ δ,     (4.5) 

where the objective function is called surrogate objective. 
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 PPO combines the approaches the approaches described above and tries to strike a 

balance between the efficacy, use of implementation and robustness to hyper parameter 

tuning. The main contribution of PPO is Clipped Surrogate Objective defined as 

 LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)],   (4.6) 

where the function “clip” clips the first argument rt(θ) within a range [1 − ε, 1 + ε]. Here, 

the objective function takes the minimum value between the original policy gradient and the 

expectation is computed over this selected value. 

 

                    (a)     (b) 

Figure 4.3.  Behavior of LCLIP  with 𝜀 = 0.25 for (a) A > 0, (b) A < 0. 

The behavior of LCLIP is shown on Figure 4.3. When the advantage is positive the 

selected action has affected the outcome better than expected, but loss function is flattened 

if the likelihood of the action gets too high when compared to the previous policy. Similarly, 

the loss function is also clipped if the likelihood of the action is much less than the previous 

policy. The pseudocode of PPO-Clip algorithm is available in Table 4.4. 

Table 4.4.  Pseudocode of PPO-Clip algorithm 

Algorithm PPO-Clip 

1: Input: initial policy parameters 𝛉𝟎, initial value function parameters 𝛗𝟎 

2: for 𝐤 = 𝟎, 𝟏, 𝟐, … 𝐝𝐨 

3:     Collect set of trajectories 𝐃𝐤 = {𝛕𝐢} by running the policy 𝛑(𝛉𝐤) in the environment 

4:    Compute rewards-to-go �̂�𝐭 

5:    Compute advantages �̂�𝐭 based on the current value function 𝐕𝛗𝐤
 

6:    Update the policy by maximizing the PPO-Clip objective by using slice length 𝑳𝒂 

       after every 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 timestep: 
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Table 4.4.  Pseudocode of PPO-Clip algorithm (cont.) 

         𝛉𝐤+𝟏 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝛉

𝟏

|𝐃𝐤|𝐓
∑ ∑ 𝐦𝐢𝐧 (𝐫(𝐭)(𝛉)𝐀𝛑𝛉𝐤(𝐬𝐭, 𝐚𝐭), 𝐜𝐥𝐢𝐩(𝐫𝐭(𝛉), 𝟏 − 𝛆, 𝟏 + 𝛆)𝐀𝛑𝛉𝐤(𝐬𝐭, 𝐚𝐭))

𝐓

𝐭=𝟎
𝛕∈𝐃𝐤

 

        typically with gradient ascent with Adam optimizer 

 7:    Fit value function by mean squared error and using slice length 𝑳𝒄:: 

𝛗𝐤+𝟏 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝛗

𝟏

|𝐃𝐤|𝐓
∑ ∑ (𝐕𝛗(𝐬𝐭) − �̂�𝐭)

𝟐
𝐓

𝐭=𝟎
𝛕∈𝐃𝐤

 

             typically by gradient descent algorithm. 

8: end for 

 

 

Figure 4.4.  Beta distribution for different α and β values. 
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If the policy and value function shares some parameters, squared loss of critic should 

also be included in the overall loss. If the policy a value functions are different networks, 

then they should be updated independently. Then the final form of the loss function becomes 

 Lt
CLIP+VF+S(θ) = Êt[Lt

CLIP(θ) − c1Lt
VF(θ) + c2S[πθ](st)],  (4.7) 

 where c1 and c2 are hyper parameters to tune, S is entropy bonus and Lt
VF(θ) is defined as 

 Lt
VF(θ) = (Vθ(st) − Vt

targ
)

2
.    (4.8) 

 The stochastic policy πθ may be model by probabilistic distributions such as 

Gaussian distribution or beta distribution. Chou et al. [41] has proposed to use the beta 

distribution for continuous control tasks with deep reinforcement learning. Unlike Gaussian 

distribution which can give out of range action values, beta distribution supplies a bounded 

action space between 0 and 1. If beta distribution is used in the policy, the neural network 

outputs α and β values which characterizes the shape of beta distribution which can be seen 

in Figure 4.4. 

 Beta distribution is expressed as 

 
h(x: α, β) =

Γ(αβ)

Γ(α)Γ(β)
xα−1(1 − x)β−1, 

 

  (4.9) 

where the function Γ(Gamma) is defined as 

 Γ(n) = (n − 1)!.  (4.10) 

When acting in a stocasthic manner in training phase, the outputs of the policy network, 

which are α and β, used to generate the distribution and the action value is sampled from the 

distribution within the range [0,1]. If a deterministic action is required, the action is taken 

according to 

 πθ =
α

α + β
 ,  (4.11) 

where α and β is the output of the policy network πθ. 

 In order to get α, β > 1, 1 is added to the output layer activations for both α, β. 

Petrazzini et al. [42] used beta distribution with PPO along with softplus activation at the 

output (with +1 offset) and stated that beta distribution outperforms Gaussian distribution 
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with PPO in terms of fast and stable convergence to an optimal solution. Another useful 

result that is reached in Petrazzini et al.’s study is that continuous control tasks where the 

action space is bounded and observation space is high dimensional are facilitated if the 

policy is described by beta distribution. Therefore, PPO with beta distribution is employed 

in the first part of this thesis where RaiSim is used as the physics simulator in order to provide 

a continuous control strategy for a lower limb robotic exoskeleton. In the later stages of this 

study, used PPO algorithm is also changed along with the transition from RaiSim to 

MuJoCo. During the MuJoCo trials, PPO algorithm implemented by OpenAI Baselines is 

used without any modification [43]. Therefore, Gaussian distribution is used in the later 

stage. 

4.2.2.  Twin Delayed Deep Deterministic Policy Gradient 

 Even though the value overestimation is studied in the literature, it is still a problem 

for most of the actor-critic family algorithms that is used for continuous control tasks. 

Overestimation bias is present in Q-learning method because of the noise in the value 

estimation. In a TD learning setup, this noise causes further problems as TD learning uses 

the noisy estimates to update which eventually leads to accumulation of noise. This 

accumulation of noise results in poor updates and being unable to converge to a desired 

policy. This overestimation caused by noisy estimates also poses a problem for deterministic 

policy gradient methods with continuous action and state spaces. Fujimoto et al. [33] 

proposed a solution to this problem by introducing a pair of independent critic networks. The 

idea of using multiple critic networks belongs to Van Hasselt et al. [44] Fujimoto et al. 

employed a few tricks such as target networks which is a frequently used concept in deep Q-

learning, delayed policy updates and a novel regularization strategy. These updates are 

applied to Deep Deterministic Policy Gradient (DDPG) [24] which is one of the modern 

deep reinforcement learning techniques. 

In Actor-Critic reinforcement learning methods, the policy network is updated based 

on the equation 

 ∇𝜃𝐽(𝜃) = 𝐸𝑠~𝑝𝜋
[∇𝑎𝑄𝜋(𝑠, 𝑎)|𝑎=𝜋(𝑠)∇𝜃π𝜃(𝑠)],   (4.12) 

where 𝑄𝜋(𝑠, 𝑎) is the critic or value function. It is defined as 
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 𝑄𝜋(𝑠, 𝑎) = 𝐸𝑠~𝑝𝜋,𝑎~𝜋[𝑅𝑡|𝑠, 𝑎],   (4.13) 

which is the expected return after 𝜋 taking the action 𝑎 in the state 𝑠. As explained earlier in 

2.4.7., the value function 𝑄𝜋(𝑠, 𝑎) can be learned by Bellman equation which establishes the 

bridge between values of state-action pairs belonging to subsequent time samples. 

For large state spaces, neural networks can be used as function approximators in order 

to estimate the value function. In this case, the value function becomes 𝑄𝜑(𝑠, 𝑎) where 𝜑 is 

the parameter set of the neural network. Another network called frozen target network 

𝑄𝜑′(𝑠, 𝑎) is used along with TD-learning. Hence a fixed objective value is obtained as 

 𝑦 = 𝑟 + 𝛾𝑄𝜑𝑡+1
(𝑠𝑡+1, 𝑎𝑡+1),   (4.14) 

where 𝑎𝑡+1~𝜋𝜃𝑡+1(𝑠𝑡+1). Since there are two critic networks in Twin Delayed Deep 

Deterministic Policy Gradient (TD3) algorithm, sometimes 𝑄𝜑2
(𝑠, 𝜋𝜃(𝑠)) will be greater 

than 𝑄𝜑1
(𝑠, 𝜋𝜃(𝑠)). This situation may introduce problems, because 𝑄𝜑1

will overestimate 

values most of the time. The larger 𝑄𝜑2
value estimate will increase the degree of 

overestimation. Fujimoto et al. suggested to use the minimum value between 𝑄𝜑1
 and 𝑄𝜑2

 

for calculating the target update such that 

 𝑦1 = 𝑟 + 𝛾 min
𝑖=1,2

𝑄𝑡+1,𝜑𝑖
(𝑠𝑡+1, 𝜋𝜃(𝑠𝑡+1)),  (4.15) 

where min function picks the smaller value between 𝑄𝑡+1,𝜑1
 and 𝑄𝑡+1,𝜑2

. Even though the 

equation 4.15 may introduce underestimation, it is not more dangerous than overestimation 

as it will not propagate throughout the update sequence. If there is only one actor network 

the same target 𝑦2 = 𝑦1 will be used for updating 𝑄𝜑2 and this option is more preferable if 

computation cost is important. 

Apart from the variance introduced by the overestimation, variance itself is addressed 

in TD3 algorithm as well, since high variance estimates results in noisy gradients. Using 

these noisy gradients in policy update reduces learning speed according to Sutton et al. [6] 

and may cause poor performance. Variance causes the estimation error to grow as training 

progresses. By using a stable target network, convergence behavior can be improved. 

Fujimoto et al.[33] states that the high variance in policy updates causes divergence if there 

is not any target network is used. Therefore, target networks can be used to decrease the 
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estimation error whereas policy updates on the states with high error may cause the policy 

to diverge. One of the main ideas of TD3 algorithm is to update value network more 

frequently than the policy network. This approach ensures that the error is decreased before 

optimizing the policy network. 

Table 4.5.  Pseudocode of TD3 

Algorithm TD3 

1: Input: initial policy parameters 𝛉𝟎, initial critic network parameters 𝛗𝟏and 𝛗𝟐, initial 

target networks 𝝋𝟏
′ ← 𝝋𝟏, 𝝋𝟐

′ ← 𝝋𝟐 and 𝜽′ ← 𝜽, initial empty replay buffer 𝔹 

2: for 𝐭 = 𝟏, 𝟐, … 𝐓 𝐝𝐨 

3:    Select action with exploration noise  𝒂𝒕 = 𝝅𝜽(𝒔𝒕) + 𝝐 where 𝝐 =  𝜷𝓝(𝟎, 𝝈) and 𝜷  

       is exploration coefficient 

4:    Update exploration coefficient: 𝜷 ← 𝜷 ∗ 𝜷𝒅𝒆𝒄𝒂𝒚 

4:    Implement the action 𝒂𝒕 on the environment 

5:    Observe 𝒔𝒕+𝟏, 𝒓𝒕 and store transition information (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝔹  

6:    Sample N number of random transitions from 𝔹 

7:    �̃� ← 𝝅𝜽′(𝒔𝒕+𝟏) + 𝝐 , where 𝝐 = 𝒄𝒍𝒊𝒑( 𝓝(𝟎, �̃�), −𝒄, 𝒄) 

       𝒚 ← 𝒓 + 𝜸 𝐦𝐢𝐧
𝒊=𝟏,𝟐

𝑸𝝋𝒊
′(𝒔𝒕+𝟏, �̃�) 

8:    Update critics 𝛗𝐢 ← 𝒂𝒓𝒈𝒎𝒊𝒏𝝋𝒊
𝑵−𝟏 ∑ (𝒚 − 𝑸𝝋𝒊

(𝒔𝒕, 𝒂𝒕))
𝟐

 

9:    if t mod policy_delay then 

           Compute policy gradients for 𝜽 and update policy: 

           𝛁𝜽 𝑱(𝜽) =  𝑵−𝟏 ∑ 𝛁𝒂𝑸𝝋𝟏
(𝒔𝒕, 𝒂𝒕)|𝒂=𝝅𝜽(𝒔𝒕)𝛁𝜽𝝅𝜽(𝒔𝒕) 

           Update the target networks: 

           𝝋𝒊
′ ← 𝝉𝝋𝒊 + (𝟏 − 𝝉)𝝋𝒊

′ 

           𝜽′ ← 𝝉𝜽 + (𝟏 − 𝝉)𝜽′ 

10:   end if 

11: end for 

 

 

Another contribution that is introduced by Fujimoto et al. [33] is target policy 

smoothing regularization. Deterministic policies often induce an inaccuracy caused by 

function approximation errors. The resulting high variance should be regularized. The 

approach introduced in TD3 ensures that similar actions have similar value. Fitting the value 

within an area around target action 

 𝑦 = 𝑟 + 𝐸𝜖[𝑄𝑡+1,𝜑(𝑠𝑡+1, 𝜋𝑡+1,𝜃(𝑠𝑡+1) + 𝜖)],   (4.16) 

smooths the value estimate, where 𝜖 is the noise parameter clipped between an upper and 

lower limit pair. Using Equation 4.16 over mini batches and averaging reduces the variance. 
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TD3 is an off-policy algorithm that trains a deterministic policy. In order to facilitate 

the exploration, some amount of noise is added to the actions generated by the policy. The 

magnitude of the noise may be reduced gradually as the training progresses to have better 

quality of training data. Overall algorithm for TD is available in Table 4.5. 

4.3. Reward Shaping 

4.3.1.  Reward Shaping for RaiSim 

During the trials made on RaiSim, the reward function is designed in order to make 

the human-exoskeleton system walk in the straight direction without diverging through left 

or right, without tilting the body too much and without falling. The terms that shape the 

reward function are 𝑟𝑤𝑎𝑙𝑘, 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙, 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 and 𝑟𝑎𝑐𝑡𝑖𝑜𝑛. During the first 

trials, simple expressions are used to shape the reward, but after failing to converge to a 

useful policy, exponential functions are adopted. Due to the shape of the exponential 

functions, undesired actions are penalized more when compared to linear functions. The 

position of the exoskeleton is based on the root attached to the middle section of the 

exoskeleton model as seen in Figure 4.5.  

 

Figure 4.5.  Position of the root attached to the hip section of the exoskeleton. 

Walking reward encourages the human-exoskeleton system to translate its root 

position in the forward direction. It is defined as 

 
𝑟𝑤𝑎𝑙𝑘 = 𝑒−50(100(�̇�𝑥−�̇�𝑥,𝑑𝑒𝑠))

2

, 
  (4.17) 
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where �̇�𝑥 is the derivative of the root position in x coordinate based on the x coordinate of 

the previous state, whereas �̇�𝑥,𝑑𝑒𝑠 is the desired forward velocity and it is set as 0.0005 m/s. 

Walk straight reward discourages the system to walk to left or right side. It is defined 

as 

 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = 𝑒−50𝑝�̇�
2
,  (4.18) 

where 𝑝�̇� is the difference between the position in y coordinate of current state and position 

in y coordinate of the previous state. 

Do not fall reward encourages the human-exoskeleton system to keep the height of the 

root close to the desired height. It is defined as 

 
𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 = 𝑒−50((𝑝𝑧−𝑝𝑧,𝑑𝑒𝑠))

2

, 
 (4.19) 

where 𝑝𝑧 is the position in z coordinate of current state, whereas 𝑝𝑧,𝑑𝑒𝑠 is the desired root 

height and it is set as 0.75 m. 

Orientation reward discourages the human-exoskeleton system to tilt the body forward 

too much.  It is defined as 

 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑒−20𝑎𝑥
2
,   (4.20) 

where 𝑎𝑧 is the angle of the body to the forward direction. 

Action reward discourages the exoskeleton to generate exaggerated actions.  It is 

defined as 

 
𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑒−

‖𝑎𝑐𝑡𝑖𝑜𝑛‖
50  , 

  (4.21) 

where 𝑎𝑐𝑡𝑖𝑜𝑛 is the joint torques generated by the neural network. 

The sub-rewards described above are combined and an overall reward function is 

shaped as 

 𝑟 = 𝑤1𝑟𝑤𝑎𝑙𝑘 + 𝑤2𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡+ 𝑤3𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙+ 𝑤4𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛+ 𝑤5𝑟𝑎𝑐𝑡𝑖𝑜𝑛,   (4.22) 
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where 𝑤1, 𝑤2, 𝑤3, 𝑤4and 𝑤5 are 0.8, 0.05, 0.05, 0.05, 0.05 respectively. This reward 

function is used along with the PPO and TD3 algorithms on RaiSim simulation environment 

in order to obtain a natural looking crutched gait. 

4.3.2.  Reward Shaping for MuJoCo 

During the trials made on MuJoCo, the reward function is shaped in a similar way as 

done during the trials on RaiSim. On the contrary to the trials made with RaiSim, the 

termination criteria for episode length has not been used. Expressions which are 

mathematically simpler worked, so exponential functions are not used as done during the 

trials on RaiSim. After observing that the agent has learnt to walk as desired, additional terms 

to optimize the gait are added. The terms that shape the reward function are  

𝑟𝑤𝑎𝑙𝑘, 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, 𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙, 𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 , 𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒 

and 𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 . 

As in the trials made on RaiSim, walking reward encourages the human-exoskeleton 

system to translate its root position in the forward direction. It is defined as 

 𝑟𝑤𝑎𝑙𝑘 = 1.25(2 − 25(�̇�𝑥 − �̇�𝑥,𝑑𝑒𝑠))2,   (4.23) 

where �̇�𝑥 is the derivative of the CoM position in x coordinate of current state based on the 

CoM position in x coordinate of the previous state, whereas �̇�𝑥,𝑑𝑒𝑠 is the desired forward 

velocity and it is set as 0.25 m/s. 

Walk linear reward discourages the system to walk to left or right side. It is defined as 

 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = −|𝑝𝑦|,   (4.24) 

where 𝑝𝑦 is the position in y coordinate. 

Do not fall reward encourages the human-exoskeleton system to keep the height of the 

root within an acceptable height range. It is defined as 

 
𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 = {

     5  ,   𝑖𝑓 𝑚𝑖𝑛𝑧 < 𝑝𝑧 < 𝑚𝑎𝑥𝑧

0  ,   𝑒𝑙𝑠𝑒                             
 , 

  (4.25) 
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where 𝑝𝑧 is the position in z coordinate of current state, 𝑚𝑖𝑛𝑧 is 0.65, 𝑚𝑎𝑥𝑧 is 3, whereas 

𝑝𝑧,𝑑𝑒𝑠 is the desired root height and it is set as 0.75 m. 

Action reward discourages the exoskeleton to generate exaggerated actions.  It is 

defined as 

 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −3‖𝑎𝑐𝑡𝑖𝑜𝑛‖,   (4.26) 

where 𝑎𝑐𝑡𝑖𝑜𝑛 is the joint torques generated by the neural network. 

Orientation reward discourages the human-exoskeleton system to tilt the body forward 

too much.  It is defined as 

 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = −8(𝑎𝑧 − 0.35)2,   (4.27) 

where 𝑎𝑧 is the angle of the body to the forward direction. 0.35 rad which corresponds to 20 

degrees is selected based on the observations done on exoskeleton users. 

Flat contact reward encourages the exoskeleton to keep the feet parallel to the ground 

in order to avoid tripping.  It is defined as 

 𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = −10(𝑟𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 + 𝑙𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡)2,   (4.28) 

where  

 𝑟𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 = (𝑎𝑧 + 𝑎𝑟𝑖𝑔ℎ𝑡_ℎ𝑖𝑝 + 𝑎𝑟𝑖𝑔ℎ𝑡_𝑘𝑛𝑒𝑒 + 𝑎𝑟𝑖𝑔ℎ𝑡_𝑎𝑛𝑘𝑙𝑒)2,   (4.29) 

 𝑙𝑓𝑜𝑜𝑡_𝑓𝑙𝑎𝑡 = (𝑎𝑧 + 𝑎𝑙𝑒𝑓𝑡_ℎ𝑖𝑝 + 𝑎𝑙𝑒𝑓𝑡_𝑘𝑛𝑒𝑒 + 𝑎𝑙𝑒𝑓𝑡_𝑎𝑛𝑘𝑙𝑒)2,   (4.30) 

and 𝑎𝑥_𝑦 is the angle of related foot-joint combination. 

Crutch reaction force reward discourages the human-exoskeleton system to have too 

much ground reaction force on the crutches. It is defined as 

 𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = −𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒( 𝑑𝑐𝑟𝑢𝑡𝑐ℎ𝑟

2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ𝑙

2),  (4.31) 

where 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 and 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙 are the displacements on the tip of the right crutch and left 

crutch, respectively. These displacements represent the ground reaction forces on the crutch 

tips. 
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Hip angle reward discourages the exoskeleton to extend the hip angle backwards with 

respect to the upper body as the hip angle always stays positive during a natural looking 

lower body exoskeleton gait. This reward term is defined as 

 
𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒 = {

−2 ,                𝑖𝑓 𝑎ℎ𝑖𝑝_𝑟 < 0 𝑎𝑛𝑑 𝑎ℎ𝑖𝑝_𝑙 < 0

0 ,                𝑒𝑙𝑠𝑒                                          
 , 

(4.32) 

where 𝑎ℎ𝑖𝑝_𝑟 and 𝑎ℎ𝑖𝑝_𝑙 are the angle of right hip and left hip, respectively. 

Ensure crutch contact reward discourages the human-exoskeleton system to stop the 

contact of the two crutches on the ground at the same time. It is defined as 

 
𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = {

−2,     𝑖𝑓 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 < 0.003 𝑎𝑛𝑑 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 < 0.003 

0,     𝑒𝑙𝑠𝑒                                                                    
, 

  (4.33) 

where 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟 and 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙 are the displacements on the tip of the right crutch and left 

crutch, respectively. The value 0.003 is selected as the threshold to infer the contact 

information with the ground. 

The sub-rewards described above are combined and an overall reward function is 

shaped as 

 𝑟 = 𝑟𝑤𝑎𝑙𝑘 + 𝑟𝑤𝑎𝑙𝑘_𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 +  𝑟𝑑𝑜𝑛𝑡_𝑓𝑎𝑙𝑙 + 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 +

𝑟𝑓𝑙𝑎𝑡_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 +  𝑟𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 + 𝑟ℎ𝑖𝑝_𝑎𝑛𝑔𝑙𝑒+ 𝑟𝑒𝑛𝑠𝑢𝑟𝑒_𝑐𝑟𝑢𝑡𝑐ℎ_𝑐𝑜𝑛𝑡𝑎𝑐𝑡. 

 

  (4.34) 

4.4. Overall Implementation 

4.4.1.  Implementation for RaiSim 

By using the reward scheme shown in Equation 4.22, TD3 algorithm has been 

implemented by using the RaiSim as the simulator. 6 different training runs have been made 

with different parameters sets and a maximum episode length of 7000 timesteps. The 

hyperparameters in Table 4.6 are kept constant throughout the TD3 training runs. The other 

hyperparameters are varied across the different training runs. These varied parameters are 

available in Table 4.7. Network properties for actor and critic networks are shown in Table 

4.8. 
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                      Table 4.6.  Varied hyperparameters for TD3 method 

Parameter 

Set 
𝜸 𝜷𝒅𝒆𝒄𝒂𝒚 Actor 

LR 

Critic 

LR 

1 0.9900 0.999 1e-4 1e-4 

2 0.9996 0.9996 1e-4 1e-4 

3 0.9900 0.9996 1e-4 1e-4 

4 0.9900 0.9996 5e-4 5e-4 

5 0.9900 0.9996 5e-5 5e-5 

6 0.9999 0.9996 5e-5 5e-5 

 

Table 4.7.  Constant hyperparameters for TD3 method 

 N c 𝝉 𝝈 𝜷 Network 

Width 
policy_delay 

Parameters 256 160 0.005 0.25 0.25 200 2 

 

Table 4.8.  Network properties for TD3 method 

Network Hidden 

Layer 

Number 

Hidden 

Layer 

Width 

Input Layer 

Activation 

Hidden 

Layer 

Activation 

Output 

Layer 

Activation 

Actor 1 200 Tanh Tanh Tanh 

Critic 1 1 200 ReLu ReLu Linear 

Critic 2 1 200 ReLu ReLu Linear 

 

After being unable to reach a satisfactory result with TD3, the algorithm is changed. 

The same reward function is used along with the PPO algorithm and RaiSim. In a similar 

manner to TD3 implementation, different parameters sets are tried with a maximum episode 

length of 7000 timesteps. The actor and critic network architecture is built by using the 

network parameters in Table 4.11. The hyperparameters in Table 4.10 are kept constant 

whereas the hyperparameters in Table 4.9 are varied as shown in the table. 

                      Table 4.9.  Varied hyperparameters for PPO method 

Parameter 

Set 
𝜸 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 Actor 

LR 

Critic 

LR 

1 0.9900 2048 2e-4 2e-4 

2 0.9900 2048 1e-4 1e-4 

3 0.9996 2048 1e-4 1e-4 

4 0.9996 2048 5e-5 5e-5 

5 0.9999 2048 5e-5 5e-5 

6 0.9999 7000 5e-5 5e-5 
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Table 4.10.  Constant hyperparameters for PPO method 

 𝜺 𝑲𝒆𝒑𝒐𝒄𝒉𝒔 𝑳𝒂 𝑳𝒄 Entropy 

Coefficient 

Network 

Width 

Entropy 

Coefficient 

Decay 

𝝀 

Parameters 0.2 10 64 64 1e-3 200 0.99 0.95 

 

 

Table 4.11.  Network properties for PPO method 

Network Hidden 

Layer 

Number 

Hidden 

Layer 

Width 

Input Layer 

Activation 

Hidden 

Layer 

Activation 

Output 

Layer 

Activation 

Actor 1 200 Tanh Tanh Softplus 

Critic 1 200 Tanh Tanh Linear 

 

4.4.2.  Implementation for MuJoCo 

Since the training runs have not yielded successful results with RaiSim, it has been 

decided to change the physics simulator. URDF file that models the system is transformed 

into XML format and MuJoCo is integrated to the training loop. As described in Section 

4.2.1, PPO implementation of OpenAI Baselines is used together with MuJoCo. Equation 

4.34 is used as the reward function. The properties of the used networks are tabulated in 

Table 4.14. PPO hyperparameters are kept constant as shown in Table 4.13 throughout the 

training runs in MuJoCo, because the trained RL agents exhibit desired behaviors for most 

of the cases.  

                   Table 4.12.  Varied weights for PPO method on MuJoCo 

RL Agent No 𝒘𝒄𝒓𝒖𝒕𝒄𝒉_𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏_𝒇𝒐𝒓𝒄𝒆 

1 40000 

2 30000 

3 20000 

4 10000 

 

The term 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 is varied in order to see the effect of different weights 

on the GRF’s on the crutch tips. These varied weights are tabulated in Table 4.12. Each 

different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value is tried with 5 different seeds and 4 different RL agents 

are trained for each 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value. However, the training runs are designed 
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without any termination criteria about average reward. In order to be able to plot the 

variances for different runs with different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameters, all average 

reward trajectories should be of equal length. Therefore, all training runs are conducted for 

8000 iterations. 

Table 4.13.  Constant hyperparameters for PPO method on MuJoCo 

𝜺 𝑲𝒆𝒑𝒐𝒄𝒉𝒔 𝑳𝒂 𝑳𝒄 Entropy  

Coefficient 

Net 

Width 

𝝀 𝜸 𝑻𝒉𝒐𝒓𝒊𝒛𝒐𝒏 Actor 

LR 

Critic 

LR 
0.02 10 64 64 0 64 0.95 0.99 2048 1e-4 1e-4 

 

                Table 4.14.  Network properties for PPO method on MuJoCo 

Network Hidden 

Layer 

Number 

Hidden 

Layer 

Width 

Input Layer 

Activation 

Hidden 

Layer 

Activation 

Output 

Layer 

Activation 

Actor 2 64 Tanh Tanh Linear 

Critic 2 64 Tanh Tanh Linear 

 

After developing RL agents based on a reward function with GRF minimization term, 

baseline RL agents have been also developed in order to assess whether the GRF’s are 

minimized or not. The same PPO implementation and exoskeleton-human system model is 

used. The reward function used for baseline is also the same as the other training runs on 

MuJoCo, but without any term for GRF minimization. The network properties and the PPO 

hyperparameters are also the same and these training settings for baseline have also been 

tried with 5 different seeds.  
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5. RESULTS 

 

The algorithms and reward function described in Section 4 are used together in order 

to train the human-exoskeleton system with crutches. The average values of the last 100 

episodic rewards are calculated (by moving average filter) and average reward versus 

episode plots are generated in the next subheadings. In section 4.4.1, six different trials with 

different parameters for each algorithm were done by using RaiSim. After each training run, 

the resulting policy is tried 10 times with an episode length of 7000 timestep and the average 

rewards for these 10 trials are also tabulated. 

In Section 5.3, the results of PPO implementation of OpenAI Baselines with different 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameter and MuJoCo are presented. Based on the observations 

during the rendering of the training process and resulting RL agents, an intuition about the 

reward amounts has been established. If the exoskeleton-human system walks in forward 

direction by using crutches in a reasonable, sequential and symmetric way without falling 

the reward amount is observed to be around 2000. Thus this value can be used as the success 

criteria for the training.  

In Section 5.4., a comparison between the resulting RL agents and the baseline agent 

is made based on the desired gait characteristics such as GRF’s on crutch tips and velocity 

tracking error.  

5.1.  Results for TD3 with RaiSim 

The average reward amounts of six different trials made with TD3 algorithm and 

RaiSim simulator have not reached a sufficient reward amount as the maximum reward has 

been designed as 7000 in the training setup, as seen in Figure 5.1, 5.2, and 5.3. Even though, 

there are some upward slopes in the average reward, the resulting RL agents have been 

observed to be unsuccessful in terms of moving forward, staying upright and other gait 

characteristics as can be seen from the low average test rewards in Table 5.1.  
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a) TD3 parameter set 1  b)  TD3 parameter set 2 

Figure 5.1.  (a) Result of TD3 parameter set 1, (b) The result of TD3 parameter set 2. 

 

a) Parameter set 3   b)  Parameter set 4 

Figure 5.2.  (a) Result of TD3 parameter set 3, (b) The result of TD3 parameter set 4. 

 

a) Parameter set 5         b) Parameter set 6 

Figure 5.3.  (a) Result of TD3 parameter set 5, (b) The result of TD3 parameter set 6. 

                                Table 5.1.  Test results for TD3 method. 

Trial No Average Test Reward 
1 392.66 

2 145.20 

3 654.05 
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Table 5.2.  Test results for TD3 method (cont.) 

4 441.39 

5 752.63 

6 62.72 

 

5.2.  Results for PPO with RaiSim 

The average reward amounts of six different training runs made with PPO algorithm 

and RaiSim simulator also have not reached a sufficient reward amount, as seen in Figure 

5.4, 5.5, and 5.6. Even though, there are some upward slopes in the average reward just as 

in Section 5.1, the resulting RL agents also have been observed to be unsuccessful in terms 

of moving forward and other gait characteristics. However, the RL agent trained with 

parameter set 6 surpassed the average reward value 3000, which is considerably higher than 

the other trials. This RL agent is also tested and the average test reward has been calculated 

as 3210.54, but it has been observed that the desired forward displacement is not achieved 

and the generated motions are redundant. The average test rewards for other trials are also 

tabulated in Table 5.2.  

 

a) Parameter set 1             b) Parameter set 2 

Figure 5.4.  (a) Result of PPO parameter set 1, (b) The result of PPO parameter set 2. 
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a) Parameter set 3        b) Parameter set 4 

Figure 5.5.  (a) Result of PPO parameter set 3, (b) The result of PPO parameter set 4. 

 

a) Parameter set 5       b) Parameter set 6 

Figure 5.6.  (a) Result of PPO parameter set 5, (b) The result of PPO parameter set 6. 

                               Table 5.3.  Test results for PPO method. 

Trial No Average Test Reward 
1 447.67 

2 494.60 

3 502.42 

4 703.02 

5 1049.54 

6 3210.54 
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5.3.  Results for PPO with MuJoCo 

  

a) RL agent 1    b) RL agent 2 

Figure 5.7.  (a) Average reward plot for RL agent 1 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 40000, (b) Average reward plot for RL agent 2 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 30000. 

  

a) RL agent 3    b) RL agent 4 

Figure 5.8.  (a) Average reward plot for RL agent 3 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 20000, (b) Average reward plot for RL agent 4 with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 10000. 

In this section, the results of PPO implementation with MuJoCo is presented. As 

mentioned in the beginning of Results section, 2000 is a reward value that represents a 

successful training run. Even if a parameter set has not been successful, the same 

hyperparameters are tried multiple times, considering the stochastic nature of the PPO 

algorithm. This approach actually paid off and 4 successful agents have been trained after 

failing the first time. Even though the average reward drops drastically after starting from a 

value around 100, it generally reaches the value 4000 in all trials. As can be seen from the 

Figure 5.7 and 5.8, there is a huge variance across all the training runs and average reward 

does not converge to some specific value. Even if the average reward surpasses 4000, it 

drops significantly and recovers again. This problem can be overcome by setting a specific 
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training termination criteria for the average reward, but the average reward trajectories will 

not be of equal length, which makes it impossible to draw the variance plots. For this reason, 

all trainings are run for 8000 iterations. Additionally, the plot for the average and variance 

of the reward values obtained from baseline training runs with 5 different seeds is available 

in Figure 5.9. 

 

Figure 5.9.  Average reward plot for baseline agent training sessions with 5 different 

seeds. 

Among the 5 different trials made for different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 values, the best 

training results are given separately in Figure 5.10 and 5.11 for each different 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 value .  

  

a) RL agent 1    b) RL agent 2 

Figure 5.10.  (a) Average reward plot of the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 40000, (b) Average reward plot of the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 30000. 
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a) RL agent 3    b) RL agent 4 

Figure 5.11.  (a) Average reward plot for the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 =

 20000, (b) Average reward plot for the best trial with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 10000. 

5.4.  Comparison for PPO with MuJoCo 

The best RL agents selected for each different 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 parameters are 

tested by simulating the agents for 2000 timesteps. Performance metrics such as GRF’s 

exerted on the crutch tips, velocity tracking error, orientation tracking error are integrated 

over the 2000 timesteps and average values for this performance variables are plotted and 

tabulated in Table 5.3. 

Table 5.4.  Comparison of resulting RL agents with a baseline RL agent. 

RL Agent  Average 

Crutch 

Reaction 

Cost 

Average 

Absolute 

Velocity 

Error (%) 

Average 

Absolute 

Orientation 

Error (%) 

Average Absolute 

Lateral 

Displacement (m) 

Baseline-1 0.911 20.51 % 17.40 % 0.03 

Baseline-2 0.769 17.10 % 16.71 % 0.03 

Baseline-3 0.797 17.81 % 18.61 % 0.08 

1 0.501 11.11% 34.96 % 0.07 

2 0.588 17.26 % 12.19 % 0.17 

3 0.619 16.78 % 22.51 % 0.07 

4 0.665 15.58 % 23.82 % 0.05 

 

The average crutch reaction cost has been calculated based on the Equation 4.31 with 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 for all RL agents in each timestep. The average of these 

values from each timestep have been calculated and given as average crutch reaction cost in 

Table 5.3. Note that 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 selected as 40000 only during the testing in order 

to compare the GRFs of different RL agents, because we are interested in comparing the 
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term ( 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟
2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙

2) in Equation 4.31 for different RL agents. In order to calculate 

the average absolute velocity error in Table 5.3, center of mass velocities have been 

subtracted from the desired velocity, which was defined as 0.25 m/s for each timestep, and 

absolute values of these subtractions have been summed up over 2000 timesteps. Then these 

integrated values have been divided by 2000 to calculate the average absolute velocity error. 

The average absolute orientation error has also been calculated by the same method as used 

to calculate the average absolute velocity error. In order to calculate the average absolute 

lateral displacement, the absolute values of  lateral displacements in each timestep are 

summed up and the sum is divided by 2000. 

In the following parts, the performance plots for the best ones of the trained agents are 

presented. Baseline-2 is selected as the best baseline as it generates less crutch reaction cost, 

average absolute velocity error, average absolute orientation error and average absolute 

lateral displacement error compared to the other baseline RL agents. Baseline-2 is simulated 

for 2000 timesteps and GRF cost is calculated based on Equation 3.31 and with 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 as seen in Figure 5.12 (a). The percent velocity/orientation 

tracking error and lateral displacement are also plotted in Figure 5.12 (b), Figure 5.13 (a) 

and (b), respectively. 

  

                     a) Baseline - GRF                      b) Baseline - Velocity error 

Figure 5.12.  (a) GRF on crutch cost for PPO Baseline, (b) Percent velocity tracking 

error for PPO Baseline. 
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       a) Baseline - Orientation error                    b) Baseline - Lateral displacement 

Figure 5.13.  (a) Percent orientation error for PPO Baseline, (b) Lateral displacement 

error for PPO Baseline. 

The RL agent 1 is simulated for 2000 timesteps and GRF cost is calculated based on 

Equation 3.31 and with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 as seen in Figure 5.14 (a). The 

percent velocity/orientation tracking error and lateral displacement are also plotted in Figure 

5.14 (b), Figure 5.15 (a) and (b), respectively. 

  

               a) RL agent 1 - GRF                             b) RL agent 1 - Velocity error 

Figure 5.14.  (a) GRF on crutch cost for RL agent 1, (b) Percent velocity tracking 

error for RL agent 1. 
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       a) RL agent 1 - Orientation error               b) RL agent 1 - Lateral displacement 

Figure 5.15.  (a) Percent orientation error for RL agent 1, (b) Lateral displacement 

error for RL agent 1. 

The RL agent 2 is simulated for 2000 timesteps in the same way as the others. The 

performance plots for the RL agent 2 are presented in Figure 5.16 and Figure 5.17. 

  

           a) RL agent 2 - GRF                                 b) RL agent 2 - Velocity error 

Figure 5.16.  (a) GRF on crutch cost for RL agent 2, (b) Percent velocity tracking 

error for RL agent 2. 
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      a) RL agent 2 - Orientation error                 b) RL agent 2 - Lateral displacement 

Figure 5.17.  (a) Percent orientation error for RL agent 2, (b) Lateral displacement 

error for RL agent 2. 

The RL agent 3 is simulated for 2000 timesteps in the same way as the others. The 

performance plots for the RL agent 3 are presented in Figure 5.18 and Figure 5.19. 

  

           a) RL agent 3 - GRF                               b) RL agent 3 - Velocity error 

Figure 5.18.  (a) GRF on crutch cost for RL agent 3, (b) Percent velocity tracking 

error for RL agent 3. 
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       a) RL agent 3 - Orientation error               b) RL agent 3 - Lateral displacement 

Figure 5.19.  (a) Percent orientation error for RL agent 3, (b) Lateral displacement 

error for RL agent 3. 

The RL agent 4 is simulated for 2000 timesteps in the same way as the others. The 

performance plots for the RL agent 4 are presented in Figure 5.20 and Figure 5.21. Note that 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 selected as 40000 only during the testing in order to compare the GRFs 

of different trials, because we are interested in comparing the term ( 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑟
2 + 𝑑𝑐𝑟𝑢𝑡𝑐ℎ_𝑙

2) 

in Equation 4.31 for different trials. 

  

              a) RL agent 4 - GRF                                b) RL agent 4 - Velocity error 

Figure 5.20.  (a) GRF on crutch cost for RL agent 4, (b) Percent velocity tracking 

error for RL agent 4. 
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     a) RL agent 4 - Orientation error                b) RL agent 4 - Lateral displacement 

Figure 5.21.  (a) Percent orientation error for RL agent 4, (b) Lateral displacement 

error for RL agent 4. 

The screenshots from the gait generated by RL agent 1 is available as a sequence in 

Figure 5.22. 

 

Figure 5.22.  Gait sequence of RL agent 1 
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6. DISCUSSION 

 

It is important to have an intuition about the amount of reward in reinforcement 

learning techniques such that the results can be assessed properly. The reward function used 

throughout all the trials made in RaiSim have a mathematical upper limit of 1. In other words, 

the agent should get a reward of 1 in each timestep if it can generate perfect actions that can 

fulfill the reward function 100%. Since maximum length of each episode is 7000, it can be 

said that a perfect reinforcement learning agent should reach a reward of 7000 for each trial 

episode. However, this is not physically possible. Instead, expecting a reward around 4000-

5000 would be a more realistic approach for RaiSim trials. For MuJoCo trials, the reward 

amounts are observed along with the physical rendering of the system and it is concluded 

that a reward amount around 2000 corresponds to a reasonable gait with crutch usage. If the 

agent can reach these reward levels, it can be said that the agent generates actions that leads 

to a forward gait with crutch usage in a straight direction without falling and generating 

exaggerated joint torques. 

For results of TD3 trials, it is observed that most of the trials have converged to very 

poor local optima. The worst result for TD3 is obtained with parameter set 6 with an average 

test reward of 62.72 which is very far from the desired reward range of 4000-5000. 

Considering that the training may start from rewards around 100, it can be concluded that 

even a random RL agent can achieve this result. Thus, it is observed that training runs with 

parameter sets 1, 3, 4 and 5 have actually learned some non-random behavior. The best result 

for TD3 has been obtained with the parameter set 5 with an average test reward of 752.63. 

Even though this reward is larger than the other TD3 trials, it is still not enough for an 

efficient gait as it is quite far away from the desired reward range. In conclusion, TD3 

method failed to converge a meaningful and useful result in terms of crutched exoskeleton 

gait during RaiSim trials. 

For the results of PPO trials made by using RaiSim, it can be observed that the results 

are generally better than the results of TD3 if a comparison between Table 5.1 and Table 5.2 

is made. However, it is also visible that the most of the trials converged to poor local optima. 

The worst result has been obtained with parameter set 1 with an average test reward of 
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447.67. This reward score is far from a reward that a random RL agent is expected to achieve, 

but it is still very far away from the desired reward range. The best result for PPO trials 

belongs to parameter set 6 with an average test reward of 3210.54. This reward score is 

significantly higher than the other trials and it is also very close to the desired reward range. 

When the network trained with parameter set 6 is rendered and tested, it is observed that the 

agent actually translates to the forward direction without falling and by making use of the 

crutches in order to maintain the stability. However, the translation amount is quite small 

when compared to the expected forward displacement. The desired forward displacement 

was 0.0005 meters in between consecutive time samples. Since each episode is 7000 

timesteps long, the expected forward displacement is 3.5 meters in a perfect scenario. Even 

though this expected forward displacement is unachievable in a realistic scenario, it is 

plausible to expect a forward displacement around 2 meters. Nevertheless, the agent’s 

forward displacement is observed as around 0.5 meters at most. Moreover, joint torques 

generated by the agent may have some extreme values sometimes and this is observable from 

the rendering results. These unnecessarily high joint torque values manifest themselves in 

the form of unnecessary movements of the hip section. The solution for these kind of 

problems is to penalize the joint torques further in the reward function. Thus, a more natural 

looking gait may be obtained. 

Another solution for making the solutions better may be redesigning the other parts of 

the reward function, because finding the optimal reward function depends on trial and error 

most of the time and this is a non-trivial process. In order to encourage the forward 

displacement more, the weight of forward walking reward may be increased. Another reason 

for not being able to reach the desired reward range and desired behavior may be the physics 

simulator. Even though RaiSim is rated better than the other available simulators for most 

of the aspects, it is still a new simulator which has not been tried extensively on 

reinforcement learning based locomotion studies. In the supporting direction of this doubt, 

there is a study that considers the usage of RaiSim and Mujoco for the purpose of simulating 

the contacts by legged robots during cat-like jumping and landing. Rudin et al. [45] states 

that even though RaiSim is quite good at simulating the hard contacts between feet and 

ground and is faster than Mujoco, it can have some problems when it comes to handle the 

problems with complex nonlinear dynamics. The reason of this situation is simply put as 

RaiSim’s integration method Euler method can diverge quickly in the study by Rudin et al. 
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This exact problem may be also present in the crutched exoskeleton gait as well, as it also 

depends on complex nonlinear dynamics. Therefore, the reason for failing during RaiSim 

trials may be the instability of the Euler integration method. 

In the latter part of this study, the simulation environment is changed to MuJoCo as its 

efficacy at locomotion tasks is shown in many different studies and examples. MuJoCo 

physics simulator is combined with high quality PPO implementation from OpenAI 

Baselines [30]. After seeing that locomotion patterns are achieved by some simple reward 

terms such as walking forward and not falling, the reward function is shaped further to 

capture an improved gait that includes reasonable crutch usage. Since the resulting gait is 

satisfactory, the last reward term for optimizing the ground reaction forces on the crutch tips 

is added. After numerous trials with different reward weights and seeds, 4 best results with 

optimized GRF’s on crutch tips are selected. 5 separate trainings are run for the baseline 

without GRF minimization term and 3 of them were successful in terms of exoskeleton gait 

with crutches. Baseline-2 can be regarded as the best baseline RL agent, because the GRF’s 

and other performance metrics in Table 5.3 are better than those of other two baseline 

versions. Based on the Table 5.3., it is observed that average crutch reaction cost for RL 

agent 1 is decreased around 34.85 % compared to the Baseline-2, which is the best baseline. 

Even though the average absolute orientation error of RL agent 1 is greater than the other 

RL agents, the orientation of the body does not seem very different compared to an 

exoskeleton user with crutches visually. Moreover, all of the other RL agents trained with 

different GRF minimization coefficients also minimize the GRF’s on the crutch tips when 

compared to the baselines. The GRF’s on the crutch tips tend to decrease as the parameter 

𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 increases, just as expected. The reason is that the GRF’s are penalized 

more as the parameter 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 increases. The GRF’s are minimized by 23.54 

%, 19.51% and 13.52% by RL agent 2, 3 and 4 respectively. As a result, it can be concluded 

that the RL agent 1 trained with 𝑤𝑐𝑟𝑢𝑡𝑐ℎ_𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑜𝑟𝑐𝑒 = 40000 yields best result which 

corresponds to 34.85 % improvement in GRF’s on the crutch tips, considering the 

observations made during the rendering and Table 5.3.  

In Table 5.3, it can be seen that GRF’s are minimized successfully. However, the 

tracking errors for orientation, velocity and lateral displacement errors are slightly higher 

than expected. By using some conventional control methods such as PID control, Linear 
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Quadratic Regulator or any kind other state-of-the-art optimal control method, these tracking 

errors and lateral displacement errors may be decreased with respect to the outcomes of this 

work. Then mathematically modeling a complex system such as exoskeleton gait with crutch 

usage would be the case. By using RL instead of these conventional methods, the burden of 

complex mathematical modeling is avoided, but greater tracking and lateral displacement 

errors should be tolerated in this case. Thus, the selection of the method can be regarded as 

an engineering consideration which requires an analysis of these trade-offs. 
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7. CONCLUSION 

 

In this study, we have developed a motion controller for a lower limb powered 

exoskeleton using deep reinforcement learning. The exoskeleton considered in this study has 

actuation only on its sagittal plane, which obligates the user to use crutches to keep the 

equilibrium. This situation results in increased metabolic energy consumption for the user. 

This issue has not been tackled in the literature yet as it is quite difficult to measure or 

formulize the metabolic energy consumption. However, there is a relation between the upper 

body metabolic energy consumption and GRFs on the crutch tips. By introducing a reward 

term about the GRFs exerted on the crutch tips, a minimization about these GRFs is aimed 

to decrease the upper body effort of the exoskeleton user. After trying different physics 

simulators and parameter sets, four different RL agents that can generate a gait with crutch 

usage and minimized GRFs are developed by using PPO algorithm and MuJoCo. These RL 

agents are compared with a baseline agent trained without any reward term about GRFs on 

crutch tips. It is shown that one of the developed RL agents can achieve 34.85 % 

minimization in GRFs on crutch tips, compared to the baseline RL agent. Thus, a 

contribution with respect to the state-of-the-art by means of minimizing the metabolic energy 

consumption is made in this study. Nevertheless, the findings in this thesis work are reached 

in simulation only.  

A shortcoming of this work is the coupling between the robot actuators and the human 

actuators. The goal of the part of actor network that generates the actions for the arm 

movements is providing a prediction about the human upper body movements during 

crutched exoskeleton gait. However, there is a common network for generating the human 

actuations and the robot actuations. This results in that the human actuations are also 

optimized during the training along with the robot actuators. This coupling may be an 

obstacle while transferring the simulation work to the real world. On the other hand, 

decoupling the human and robot actuators will result in a need of establishing a realistic 

bridge between robot actuations on the lower body and the human actuations in the upper 

body. 
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7.1.  Outlook and Future Work 

In this study, the findings are reached by simulation only. Thus, conducting real world 

experiments and comparing the developed RL agents with the baseline versions and some 

other lower-limb exoskeleton controllers would be beneficial to validate the findings of this 

thesis. 

Apart from the consideration of upper body metabolic effort, another gap in the area 

of lower-limb exoskeleton locomotion is the bridge between lower body movements 

generated by the exoskeleton and the arm movements of the user. If there have been more 

work that establish this connection between the upper and lower body movements of an 

exoskeleton user with crutches, this information could have been used to train a neural 

network. This pre-trained network would act as a human upper body motion predictor and 

could be used in the reinforcement learning loop. This approach would result in a better 

result in real world trials, but the essential problem is the need of a huge training data that 

includes lower body trajectories and upper body trajectories. Filling this gap would be a fine 

contribution to the state-of-the-art exoskeleton control methods. 
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