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me throughout this thesis with an endless patience.
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ABSTRACT

PROJECTIVE CHARACTERS OF FINITE GROUPS

The purpose of this thesis to analyze the basic facts about projective characters

of finite groups and compare them to the facts about ordinary characters of finite

groups. We start with review of basic facts about the twisted group algebras and

projective representations of finite groups over a field. Then we study the properties

of the projective characters. Finally, we will study these properties on the complex

projective characters.
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ÖZET

SONLU GRUPLARIN PROJEKTİF KARAKTERLERİ

Bu tezin amacı sonlu gruplar üzerine tanımlanan projektif karakterlerin temel

özelliklerini analiz etmek ve bu özellikleri klasik karakter teorisindeki özelliklerle karşılaş-

tırmaktır. İlk olarak bükümlü grup cebirlerinin ve projektif temsillerin tanımları ve

özellikleri hatırlatılacak. Daha sonra projektif karakterlerin tanımları ve özellikleri

verilecektir.
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LIST OF SYMBOLS

B2(G,A) the set of 2-coboundaries of G with coefficients in A

G finite group

G′ the derived group of G

H2(G,A) the second cohomology group of G with coefficients in A

k field

k∗ the set of elements of invertible elements of k

kG the group algebra of G with coefficients in k

kαG the twisted group algebra of G

Z2(G,A) the set of 2-cocycles of G with coefficients in A
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1. TWISTED GROUP ALGEBRAS

Throughout this chapter we’ll assume that G is an arbitrary group and A is an

abelian multiplicative group where G acts on A from left, written as ag, where a ∈ A

and g ∈ G. All the results are from Markus Linckelmann’s book [1].

Definition 1.1. A map α : G× G → A is called a 2-cocycle of G with coefficients in

A if

α(xy, z)α(x, y) = α(x, yz)xα(y, z) (1.1)

for every x, y and z in G.

Notice that if G acts trivially on A, the equation (1.1) becomes

α(xy, z)α(x, y) = α(x, yz)α(y, z) (1.2)

for every x, y and z in G.

The set of all 2-cocycles of G with coefficients in A forms an abelian group, de-

noted by Z2(G,A), and the identity element is the constant map that is sending every

(x, y) ∈ G to the identity element 1A of A.

Proposition 1.2. Let G be a group and A be an abelian group on which G acts. Let

α ∈ Z2(G,A). Then we have α(1, x) = α(1, 1) and α(x, 1) = xα(1, 1).

Proof. Put x = 1, y = 1, z = x in the equation (1.1) to get α(1, x)α(1, 1) = α(1, x)α(1, x),

so we get α(1, x) = α(1, 1). Similarly, put x = x, y = 1, z = 1 in the equation (1.1) to

get α(x, 1)α(x, 1) = α(x, 1)xα(1, 1), and hence α(x, 1) =x α(1, 1).

Definition 1.3. Let G be a group and k be a commutative ring with unity on which G

acts. Let α ∈ Z2(G, k∗). The twisted group algebra of G by α is denoted by kαG and the
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product is defined by x.y = α(x, y)xy for all x, y ∈ G, where x.y is the multiplication

in kαG and xy is the usual group multiplication.

Note that in the twisted group algebra kαG, the unit element need not be equal

to the unit element 1 of the group G. For any g ∈ G, we have 1.g = α(1, g)g and

even though α(1, g) yields an identity element in kαG, it need not be equal to the unit

element of k∗.

Proposition 1.4. Let G be a group and k be a commutative ring with unity on which

G acts trivially. Let α ∈ Z2(G, k∗). For any g ∈ G we have

(i) α(1, g) = α(g, 1) = α(1, 1).

(ii) α(g, g−1) = α(g−1, g).

(iii) the unit element of kαG is equal to α(1, 1)−11G.

(iv) the inverse of g in kαG is equal to α(1, 1)−1α(g, g−1)−1g−1.

Proof. The statement (i) follow from Proposition 1.2 and the fact that G acts on k∗

trivially. If we put x = g, y = g−1 and z = g in Equation (1.2) we get α(1, g)α(g, g−1) =

α(g, 1)α(g−1, g). Using (i) we get the desired equality in (ii). Now consider α(1, 1)−11.g =

α(1, 1)−1α(1, g)g = g for all g ∈ G. Hence α(1, 1)−11 is the identity element in kαG. For

the last part, consider α(1, 1)−1α(g, g−1)−1g.g−1 = α(1, 1)−1α(g, g−1)−1α(g, g−1)gg−1 =

α(1, 1)−11 which is the identity element by (iii).

Proposition 1.5. Let G be a group and α, β ∈ Z2(G, k∗). Then kαG is isomorphic to

kβG as k-algebras where g is mapped to γ(g)g for some γ(g) ∈ k∗ if and only if there

exists a map γ : G → k∗ such that α(g, h) = β(g, h)γ(g)γ(h)γ(gh)−1 for all g, h ∈ G.

Proof. The image of g.αh = α(g, h)gh under the given isomorphism is α(g, h)γ(gh)gh.

The product of the images of g and h under the isomorphism is γ(g)γ(h)g.βh =

γ(g)γ(h)β(gh)gh. These two elements are equal if and only if the equality α(g, h) =
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β(g, h)γ(g)γ(h)γ(gh)−1 holds for all g, h ∈ G.

Definition 1.6. Consider the set of all maps α ∈ Z2(G,A) such that there exits a map

γ : G → A such that α(g, h) = γ(g)gγ(h)γ(gh)−1 for all g, h ∈ G. This set is called

the set of 2-coboundaries of G with coefficients in A and denoted by B2(G,A). The set

B2(G,A) is a subgroup of Z2(G,A). The quotient group

H2(G,A) = Z2(G,A)/B2(G,A)

is called the second cohomology group of G with coefficients in A.

Definition 1.7. Let α, β ∈ Z2(G, k∗). If there exists a map t : G → k∗ such that

t(1) = 1 and α(g, h) = β(g, h)t(g)t(h)t(gh)−1 for all g, h ∈ G, then α and β are called

cohomologous.

Corollary 1.8. Let G be a finite group and α ∈ Z2(G; k∗). Then the followings are

equivalent:

(i) There is an algebra isomorphism between kαG and kβG.

(ii) The classes of α and β is are equal in H2(G, k∗)

(iii) α and β are called cohomologous.

Proof. It follows from Proposition 1.5.

Note that if α is in the trivial class of H2(G, k∗), then there is an algebra isomor-

phism between kαG and kG that sends g ∈ G to a nonzero scalar multiple of g. This

simple fact will be used later.

Proposition 1.9. Let G be a finite group and α ∈ Z2(G; k∗). The class of α in

H2(G; k∗) is trivial if and only if kαG has a module that is isomorphic to k as a k-

module.
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Proof. Assume that kαG has a module that is isomorphic to k as a k-module. Then we

can define an algebra homomorhism γ : kαG → k. Thus we have γ(g.h) = γ(g)γ(h) =

γ(α(g, h)gh) = α(g, h)γ(gh) for all g, h ∈ G. Therefore α(g, h) = γ(g)γ(h)γ(gh)−1 is

a 2-coboundary, implying that α is in the trivial class of H2(G, k∗). Now assume that

α is in the trivial class of H2(G, k∗), then kαG is isomorphic to kG. Considering the

trivial kG-module, it is isomorphic to k as a k-module.

Proposition 1.10. Let G be a finite group.

(i) Suppose that k is an algebraically closed field; consider k×with the trivial action of

G. Let Z be the group of |G|-th roots of unity in k×. The inclusion Z → k×induces

a surjective group homomorphism H2(G;Z) → H2 (G; k×); in particular, the

abelian group H2 (G; k×)is finite.

(ii) Suppose that k is a perfect field of prime characteristic p. Let P be a finite

p-group. Then H2 (P ; k×)is trivial.

Proof. The proof is omitted. It is Proposition 1.2.9 in [1].

Proposition 1.11. Let G be a finite cyclic group and k an algebraically closed field.

Consider k×with the trivial action of G. The group H2 (G; k×) is trivial.

Proof. The proof is omitted. It is Proposition 1.2.10 in [1].

Theorem 1.12. Let α ∈ Z2 (G,F ∗) and let E be a field extension of F . Then the map

E ⊗ FFαG → EαG

λ⊗ ḡ 7→ λḡ

is an isomorphism of E-algebras.
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Proof. Let {ḡ | g ∈ G} be an F -basis of FαG with x̄ȳ = α(x, y)xy for all x, y ∈ G. For

each g ∈ G, put g̃ = 1 ⊗ ḡ. Then {g̃ | g ∈ G} is an E-basis of E ⊗F FαG and for all

x, y ∈ G,

x̃ỹ = (1⊗ x̄)(1⊗ ȳ) = 1⊗ α(x, y)xy

= α(x, y)(1⊗ xy) = α(x, y)x̃y

as required.
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2. PROJECTIVE REPRESENTATIONS

Definition 2.1. Let G be a finite group and let V be a finite dimensional vector field

over a field k. A map ρ : G → GL(V ) is called a projective representation (or an

α-representation) of G over k if there exists a map α : G×G → k∗ such that

(i) ρ(g)ρ(h) = α(g, h)ρ(gh)

(ii) ρ(1) = 1V , where 1V is the identity transformation

for all g, h ∈ G.

Observe that ρ((xy) z) = α((xy) , z)ρ(xy)ρ(z) = α((xy) , z)α(x, y)ρ(x)ρ(y)ρ(z).

Also ρ(x (yz)) = α(x, (yz))ρ(x)ρ(yz) = α(x, (yz))α(y, z)ρ(x)ρ(y)ρ(z). Therefore, in

order to have associativity of the action of G to hold, one can observe that α must be

an element of Z2(G, k∗) with the trivial action of G on k∗.

Definition 2.2. Two projective representations ρ1 : G → GL(V1) and ρ2 : G →

GL(V2) are called projectively equivalent if there exists a map µ : G → k∗ with

µ(1) = 1 and there exists a vector space homomorphism f : V1 → V2 so that ρ2(g) =

µ(g)fρ1(g)f
−1 for all g ∈ G. If µ(g) = 1 for all g ∈ G, they are called linearly

equivalent.

Here is an important relation between α-representations and kαG-modules. Let

ρ be an α-representation. Then we can define a homomorphism f : kαG → Endk(V )

such that ḡ 7→ ρ(g) for all g ∈ G. By extending it linearly, V becomes kαG-module

by
( ∑

g∈G xgḡ
)
v =

∑
g∈G xgρ(g)v. Conversely, let V be a kαG-module. Then there

exists a homomorphism f : kαG → Endk(V ). By defining ρ(g) = f(ḡ), ρ becomes

an α-representation of G. This gives a bijection between α-representations and kαG-

modules.
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Definition 2.3. Let g ∈ G such that α(g, h) = α(h, g) for all h ∈ CG(g), where CG(g)

is the centralizer of h in G. Then the element g is called an α-regular element of G.

We have g ∈ G is α-regular if and only if ḡh̄ = h̄ḡ for all h ∈ CG(g). Also if g is

an α-regular element, then so is any conjugate of it. Therefore, if an element g ∈ C is

α-regular, where C is the conjugacy class of g, then every element in C is α-regular.

In that case we say that C is α-regular.

Here are the two propositions that clarify some facts on the case where G is cyclic.

We omit the proofs.

Proposition 2.4. Assume that k is an algebraically closed field and α ∈ Z2(G, k∗). If

G is cyclic, then kαG is isomorphic to kG.

Proposition 2.5. Let G be a cyclic group of order m and generated by g ∈ G and let

α ∈ Z2(G, k∗). Also let λ =
∏m

i=1 α(g, g
i). Then kαG is isomorphic to k[x] /(xm − λ).

Lemma 2.6. Let ρ1 : G → GL(V ), ρ2 : G → GL(W ) be α and β representations of

G, respectively. Then the map ρ1 ⊗ ρ2 : G → GL (V ⊗k W ) defined by (ρ1 ⊗ ρ2) (g) =

ρ1(g)⊗ ρ2(g) is an αβ-representation of G.

Proof. For all x, y ∈ G, we have

(ρ1 ⊗ ρ2) (x) (ρ1 ⊗ ρ2) (y) = (ρ1(x)⊗ ρ2(x)) (ρ1(y)⊗ ρ2(y))

= (ρ1(x)ρ1(y)⊗ ρ2(x)ρ2(y))

= α(x, y)ρ1(xy)⊗ β(x, y)ρ2(xy)

= α(x, y)β(x, y) (ρ1(xy)⊗ ρ2(xy))

= α(x, y)β(x, y) ((ρ1 ⊗ ρ2) (xy))
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as desired.

Here are some theorems that will be referred to later on the next chapter.

Theorem 2.7. (Karpilovsky 1985) Let N be a normal subgroup of a finite group

G, let k be an algebraically closed field of an arbitrary characteristic and let α ∈

Z2 (G, k∗).Then, for any simple kαG-module W , dimkW divides (G : N)d, where d is

the dimension of a simple submodule of WN .

Proof. Proof is omitted. (Theorem 5.3.1 in [2]).

Theorem 2.8. (Mangold 1966, Tappe 1977). Let G be a finite group, let k be an

algebraically closed field of characteristic p ≥ 0 and let α ∈ Z2 (G, k∗). Then the

number of projectively nonequivalent irreducible α-representations of G over k is equal

to the number of α-regular conjugacy classes of p′-elements of G contained in G′.

Proof. Proof is omitted. (Theorem 6.4.1 in [2]).

Theorem 2.9. Let G be a finite group, let k be an algebraically closed field of charac-

teristic p ≥ 0 and let α ∈ Z2 (G, k∗). Denote by r the number of nonisomorphic simple

kαG-moudles. Then

(i) r equals the number of α-regular conjugacy classes of G if p = 0.

(ii) r equals the number of α-regular conjugacy classes of p′-elements of G if p ̸= 0.

Proof. Proof is omitted. (Theorem 6.1.1 in [2])
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3. PROJECTIVE CHARACTERS

Definition 3.1. Let α ∈ Z2(G, k∗) and ρ : G → GL(V ) be an α-representation. The

character of ρ is the map χ : G → k defined by χ(g) = tr(ρ(g)) for all g ∈ G, where

tr(ρ(g)) is the trace of the linear transformation ρ(g) of V. We call χ the α-character

of G over k (or projective character) of the α-representation of G over k.

Let V be a kαG-module. Then the map f : kαG → Endk(V ) is a homomorphism.

Now the character of V is χV : kαG → k as χV (g) = tr(f(g)) for all g ∈ G. Then the

map χ : G → k, where χ(g) = χV (ḡ) for all g ∈ G is the α-character of G afforded by

V . Conversely, if χ is a character of an α-representation ρ : G → GL(V ), then χ is

afforded by the kαG-module V corresponding to ρ. It follows from the equality

χV

(∑
g∈G

xgḡ

)
=
∑
g∈G

xgχV (ḡ) =
∑
g∈G

xgχ(g)

where xg ∈ k. In conclusion, the character of a kαG-module V is determined by the

α-character of G afforded by V.

Definition 3.2. If the α-character χ is the character of an irreducible α-representation

of G over the field k, then it is called an irreducible α-character of G over k.

Let V and W be two kαG-modules, and let χV and χW be their α-characters

respectively. Define χV + χW the sum of two characters as

( χV + χW ) (g) = χV (g) + χW (g)

for all g ∈ G. Therefore, we have χV⊕W = χV + χW which is in fact an α-character.
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However, we will see that the product of two α-characters may not be an α-

character.

Lemma 3.3. Suppose that V is a kαG-module and that

V = Vm ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = 0

is a chain of submodules of V . Denote by χi the α-character of G afforded by Vi/Vi−1, 1 ≤

i ≤ m, and let χ be the α-character of G afforded by V . Then

χ = χ1 + χ2 + · · ·+ χm.

In particular, every α-character of the group G is a sum of irreducible α characters of

G.

Proof. Define f and fi as the representations of kαG afforded by V and Vi/Vi−1 respec-

tively. For g ∈ kαG, we can choose an k-basis of V such that

f(g) =


f1(g)

f2(g)

...

fm(g)


where the blank entries of the above matrix are zero. Therefore, for g ∈ G, χ(g) =

tr(f(ḡ)) = tr(f1(ḡ)) + tr(f2(ḡ)) + ... + tr(fm(ḡ)) = χ1(g) + χ2(g) + ... + χm(g). If we

choose the above chain as a composition series of V , then the last part of the lemma

follows.

Lemma 3.4. Let ρα : G → GL(V ) and ρβ : G → GL(W ) be α and β-representations

of G, respectively. If χα and χβ are the characters of ρα and ρβ, respectively, then the
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map

χαχβ : G → F

defined by

(χαχβ) (g) = χα(g)χβ(g) for all g ∈ G

is the character of the tensor product ρα ⊗ ρβ.

Proof. Let {v1, v2, ..., vn} and {w1, w2, ..., wm} be bases for V and W . Then we can

write ρα(g)vi =
∑n

j=1 ajivj and ρβ(g)wt =
∑m

r=1 brtwr, where aji, brt ∈ k and g ∈ G.

Thus, χα(g) =
∑n

i=1 aii and χβ(g) =
∑m

r=1 brr. Let’s denote the character of ρα ⊗ ρβ

as χ. Since (ρα ⊗ ρβ)(g)(vi ⊗ wt) = ρα(g)vi ⊗ ρβ(g)wt =
∑

j,r ajibrt(vi ⊗ wr), we have

χ(g) =
∑

i,t aiibtt =
∑

i aii
∑

t btt = χα(g)χβ(g).

Corollary 3.5. Let α, β ∈ Z2 (G, k∗) and let χα and χβ be α and β characters of G,

respectively. Then χαχβ is an αβ-character of G.

Proof. It follows from Lemma 2.6 and Lemma 3.4.

Lemma 3.6. The followings hold.

(i) The α-representations ρ1 and ρ2 have the same characters if they are linearly

equivalent.

(ii) The characters of V and W , namely χV and χW are equal if V is isomorphic to

W as kαG-modules.
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Proof. (i) is true since the conjugate matrices have the same trace. (ii) is equivalent

to (i).

The theory of α-characters of G over k can differ from β-characters of G over k

as the ordinary character theory can be different for two different groups. However, if

α and β are cohomologous, then there is a bijection between α and β-characters of G

over k. The following lemma illustrates this fact.

Lemma 3.7. Let α, β ∈ Z2(G, k∗) be cohomologous, meaning there is a map t : G → k∗

such that t(1) = 1 and α(g, h) = β(g, h)t(g)t(h)t(gh)−1 for all g, h ∈ G. Let χ be an

α-character and define χ′ : G → k such that χ′(g) = t(g)χ(g) for all g ∈ G. Then

the map that sends χ to χ′ gives a bijective correspondence between α and β-characters

that maps irreducible ones to irreducible ones.

Proof. Let χ be the character of an α-representation ρ : G → GL(V ). Define ρ′ : G →

GL(V ) such that ρ′(g) = t(g)ρ(g) for all g ∈ G. This map is clearly a β-representation

with character χ′. We know that ρ is irreducible if and only if ρ′ is irreducible, so that

is true for χ and χ′ as well. For the injectivity of the map, if χ′
1 = χ′

2, then clearly

χ1 = χ2 because the map t is nonzero for every g ∈ G. For the surjectivity, let δ

be a β-character. Then define χ : G → k∗ so that χ(g) = t(g)−1δ(g) for all g ∈ G.

Obviously, χ is an α-character and δ = χ′.

Now the following results illuminate the facts about the values of projective char-

acters.

For a given ordinary character χ of G over k, for any g ∈ G, χ(g) is equal to a

sum of roots of unity over k. This is no longer true for projective characters.
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Lemma 3.8. Let V be a kαG-module and g ∈ G. Let λ = α(g, g)α(g2, g)...α(gn−1, g),

where n is the order of g. Let χ be the α-character of G over k afforded by V . Then

the followings hold:

(i) χ(g) is a sum of nth roots of λ over k.

(ii) If k is an algebraically closed field with characteristic not dividing n, then there

is a basis of V , {v1, v2, ...vn}, such that ḡvi = λivi, where i = 1, 2, ..,m and each

λi is an nth root of λ.

Proof. (i) We can see that ḡn = α(g, g)α(g2, g)...α(gn−1, g)ḡn applying an induction on

n. Hence we get ḡn = λ1̄. Let f : kαG → Endk(V ) be the homomorphism afforded by

V . Then we have f(ḡn) = f(ḡ)n = λ1V . Since χ(g) is the sum of characteristic roots

of f(ḡ), we have χ(g) is a sum of nth roots of λ over k.

(ii) Let H =< g >, where g ∈ G. Since k is algebraically closed, by Proposition

2.4, we have kαH is isomorphic to kH. And since characteristic of k does not divide

the order of H, we have that kαH is semisimple, meaning all simple kαH-modules are

one-dimensional. Thus as a kαH-module, V is a direct sum of one-dimensional sub-

modules, say V = ⊕m
i=1Vi. Then for any nonzero vi ∈ Vi, the set {v1, v2, ...vm} is a basis

for V that satisfies ḡvi = λivi for some λ ∈ k. Since ḡn = λ1̄, each λi is an nth roos of λ.

Definition 3.9. The twisted group algebra kαG is itself a kαG-module which is called

the regular module. The corresponding α-representations are called the regular α-

representations of G and the α-characters are called the regular α-characters of G

over k.
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Lemma 3.10. Let k be a field and α ∈ Z2(G, k∗) and χ be the regular α-character of

G over k. Then

χ(g) =

0, if g ̸= 1

|G|, if g = 1

(3.1)

Proof. Choose the elements {x̄ | x ∈ G} as a k-basis for the regular module kαG.

Then, for each g ∈ G, left multiplication by ḡ permutes the basis elements up to

nonzero scalar factors. Thus, if ρ is the regular α-representation of G, then each ρ(x)

has precisely one nonzero entry in each row and column. Moreover, if g ̸= 1, then ḡx̄

is not a scalar multiple of x̄ for all x ∈ G, so that ρ(g) has only zero entries on its

main diagonal. Hence χ(g) = tr ρ(g) = 0 for all g ̸= 1. On the other hand, ρ(1) is the

identity matrix so that χ(1) = tr ρ(1) = dimk kαG = |G| as required.

For any group G ̸= 1, the ordinary regular character of G cannot be irreducible.

However, it is quite possible for the projective characters.

Example 3.11. Let G be a cyclic group of order 2. Then there is α ∈ Z2(G,Q∗) so

that the regular α-character of G over Q is irreducible.

Proof. By taking m = 2 and k = Q in the Proposition 2.5, we see that there exist

α ∈ Z2(G,Q∗) such that QαG is isomorphic to Q(
√
2). Since QαG is a field, it is

simple as the regular QαG-module. Hence, the corresponding regular α-character of G

over Q is irreducible.
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Let’s state an important theorem on linear independence of irreducible projective

characters. However we omit the proof. It is Theorem 1.3.1 in [3].

Theorem 3.12. Let k be a field with characteristic zero. Then the α-characters of

G afforded by all non-isomorphic simple kαG-modules, say χ1, χ2, ..., χr, are linearly

independent.

Theorem 3.13. Let k be a field with characteristic zero. Let V and W be kαG-modules,

and let ρV and ρW be their α-representations of G over k. Let χV and χW be their

α-characters. Then the following are equivalent:

(i) ρV and ρW are linearly equivalent.

(ii) χV = χW .

(iii) V is isomorphic to W .

Proof. We have (i) is equivalent to (iii) and (i) implies (ii) by Lemma 3.6. We only

need to show that (ii) implies (iii). So assume that χV = χW . Let V1, V2, ..., Vr be

the full set of non-isomorphic simple kαG-modules and let χ1, χ2, ..., χr be their cor-

responding α-characters of G over k. Let ni ≥ 0 (resp. mi ≥ 0) be the multiplicity

of Vi as a composition factor of V (resp. W). Then by Lemma 3.3, χV =
∑r

i=1 niχi

and χW =
∑r

i=1 miχi. Consider χV − χW =
∑r

i=1(ni − mi)χi = 0. Since the given

α-characters are linearly independent, we have ni = mi for all i = 1, ..., r. Since char k

= 0, it does not divide |G| and kαG is semi simple. Hence we have that V is isomorphic

to W .

Theorem 3.14. Let ρ1 and ρ2 be two α-representations of G and χ1 and χ2 be their

α-characters. Assume that characteristic of k is zero. Then ρ1 and ρ2 are projectively

equivalent if and only if there exists a homomorphism µ : G → k∗ such that χ2(g) =

µ(g)χ1(g) for all g ∈ G.

Proof. Assume that ρ1 and ρ2 are projectively equivalent. Then there exists a homo-
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morphism µ : G → k∗ and an invertible matrix A such that ρ2(g) = µ(g)Aρ1(g)A
−1

for all g ∈ G. By taking traces of both sides, we see that χ2(g) = µ(g)χ1(g) for all

g ∈ G. Now assume that χ2(g) = µ(g)χ1(g) for all g ∈ G. Define ρ(g) = µ−1(g)ρ2(g),

which is also an α-representation of G which has character χ1. If ρ2 is irreducible,

then so is ρ. Hence by Theorem 3.13, ρ and ρ2 are linearly equivalent. So we have

µ−1(g)ρ2(g) = ρ(g) = Aρ1(g)A
−1. Therefore, ρ1 and ρ2 are projectively equivalent.

Definition 3.15. Let p be a prime number or 0. An element g ∈ G is called a p′-

element if p = 0 or if p > 0 and does not divide the order of g.

Now we can look at the following results about the number of irreducible projec-

tive characters.

Theorem 3.16. Let F be a field of characteristic p ≥ 0 so that it is a splitting field of

FαG for some α ∈ Z2(G,F ∗). Then the number of irreducible α-characters of G over

F is equal to the number of α-regular conjugacy classes of p′-elements of G.

Proof. Let E be an algebraic closure of F . Viewing α as an element of Z2(G,E∗),

by Theorem 1.12, we have that E ⊗F FαG = EαG. Since F is a splitting field of

FαG, the number of non-isomorphic simple EαG-modules is equal to the number of

non-isomorphic simple FαG-modules, which is also equal to the number of irreducible

α-characters ofG. By Theorem 2.9, the number of non-isomorphic simple EαG-modules

is equal to the number of α-regular conjugacy classes of p′-elements of G. However, the

α-regularity of an element of G does not depend on whether α is viewed as an element

of Z2(G,F ∗) or Z2(G,E∗). Therefore, theorem follows.
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The following theorems are about the degree of an projective character.

Definition 3.17. Let χ be an irreducible α-character of G over k. Assume that k is

a splitting field of kαG or that chark = 0. Then the degree of χ is defined to be the

k-dimension of a simple kαG-module which affords χ, denoted by degχ.

Theorem 3.18. Let k be an algebraically closed field and let χ be an irreducible α-

character of G over k. Let A be an abelian normal subgroup of G such that restriction

of α to A× A is a coboundary. Then degχ divides (G : A).

Proof. Let W be simple kαG-module and let d be the dimension of a simple submodule

of WA. Since restriction of α is a coboundary, we have that kαA is isomorphic to kA by

Proposition 2.4. Since A is abelian and k is algebraically closed, we have that d = 1.

Then by Theorem 2.7, degχ divides (G : A).

Theorem 3.19. Let k be an algebraically closed field and let G be abelian. Then

all the irreducible α-characters of G over k have the same degree. In fact, if χ is

an irreducible α-character, then any other such character is of the form χλ for some

λ ∈ Hom(G,F ∗), where (χλ)(g) = χ(g)λ(g).

Proof. By Theorem 2.8, all irreducible α-representations of G are projectively equiva-

lent. The result follows from Theorem 3.13.

Lemma 3.20. Let k be a splitting field of kαG and let n1, ..., nr be the degrees of

irreducible α-characters of G over k. Then
∑r

i=1(ni)
2 = |G| − dimkJ(kαG). If charF

does not divide |G|, then
∑r

i=1(ni)
2 = |G|.

Proof. The first equation is given by Artin-Wedderburn. If chark does not divide the

order of G, then J(kαG) = 0 and the result follows.
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Theorem 3.21. Let G be an abelian group and let k be an algebraically closed field

with chark does not dividing the order of G. Let G0 be the subgroup of G consisting

of all the α-regular elements of G. Then (G : G0) is a square and for any irreducible

α-character χ of G over k, degχ =
√
(G : G0)

Proof. Let χ1, ... ,χr be all the irreducible α-characters of G over k. Then, by Theorem

3.16, r = |G0| and by Theorem 3.19, we have degχ1 = ... = degχr = n. Therefore, by

Lemma 3.20, we have |G0|n2 = |G| and the result follows.
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