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ABSTRACT 

 

 

BAND STRUCTURE CALCULATION OF 3D ULTRAWIDE ELASTIC 

METAMATERIALS WITH EMBEDDED INERTIAL AMPLIFICATION 

MECHANISMS  

 

 

 In this study, phononic band structure of three dimensional (3D) ultrawide elastic 

metamaterials with embedded inertial amplification mechanisms are obtained. In order to 

achieve that, inertial amplification mechanisms with different sizes and geometries are 

considered by applying periodic boundary conditions, also known as Bloch’s boundary 

conditions, to the unit cells. First, typical wave propagation problems in one dimensional, 

two dimensional, and three dimensional periodic structures studied in the literature are 

investigated and benchmark studies are performed by COMSOL Multiphysics and 

ABAQUS/MATLAB programs. In this way, these models are tested and verified so that the 

phonon band structure of the 3D elastic metamaterials with embedded inertial amplification 

mechanisms can be calculated accurately. Inertial amplification mechanisms have complex 

geometries and their computational costs can be very high. Thus, analyses are done by using 

both COMSOL Multiphysics and ABAQUS/MATLAB programs. Also, the comparison of 

the results obtained using these programs with the FRF results of the 3 × 2 octahedron array 

enables the determination of the most accurate model. It is very likely to encounter many 

problems when applying Bloch’s theorem to a complex system such as a 3D elastic 

metamaterial with embedded inertial amplification mechanisms. Among many problems, 

four possible problems are explained and their solutions are presented. Thus, it is shown that 

the band structure of any geometry can be easily obtained, regardless of the complexity of 

the geometry. To sum up, in the literature, the widest band gap in 3D is achieved by this 

method, and the band gap is found to be in between 6.37 - 90.26 Hz, with a ratio of the upper 

limit to the lower limit of 14.17. Hence, it is demonstrated that the 3D elastic metamaterial 

with embedded inertial amplification mechanisms impedes waves coming from all directions 

in a very wide frequency range. 
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ÖZET 

  

 

GÖMÜLÜ ATALET ARTIRIM MEKANİZMALARINA SAHİP ÜÇ BOYUTLU 

AŞIRI GENİŞ BANT ARALIKLI ELASTİK METAMALZEMELERİN BANT 

YAPISININ HESAPLANMASI 

 

 

Bu çalışmada, gömülü atalet artırım mekanizmalarına sahip üç boyutlu ultra geniş 

bant aralıklı elastik metamalzemelerin fononik bant yapısı elde edilmiştir. Bunun için, Bloch 

sınır koşulları olarak da bilinen periyodik sınır koşulları birim hücrelere uygulanarak farklı 

boyut ve geometrilere sahip atalet artırım mekanizmaları ele alınmıştır. İlk olarak, literatürde 

incelenen bir boyutlu, iki boyutlu ve üç boyutlu periyodik yapılardaki tipik dalga yayılım 

problemleri incelenmiş ve COMSOL Multiphysics ve ABAQUS/MATLAB programları ile 

kıyaslama çalışmaları yapılmıştır. Bu sayede, gömülü atalet artırım mekanizmalarına sahip 

üç boyutlu elastik metamalzemelerin fonon bant yapısının doğru bir şekilde hesaplanabil- 

mesi için bu modeller test edilmiş ve doğrulanmıştır. Atalet artırım mekanizmaları karmaşık 

geometrilere sahiptir ve hesaplama maliyetleri çok yüksek olabilir. Bu yüzden, hem 

COMSOL Multiphysics hem de ABAQUS/MATLAB programları kullanılarak analizler 

yapılmıştır. Ayrıca bu programlar kullanılarak elde edilen sonuçların, 3 × 2 sekizyüzlü 

dizisinin frekans tepki fonksiyon sonuçları ile karşılaştırılması en doğru modelin 

belirlenmesini sağlamıştır. Bloch teoremini, gömülü atalet artırım mekanizmalarına sahip üç 

boyutlu elastik metamalzeme gibi karmaşık bir sisteme uygularken birçok sorunla 

karşılaşma olasılığı çok yüksektir. Birçok problem arasından dört olası problem açıklanmış 

ve çözümleri sunulmuştur. Böylece, geometrinin karmaşıklığından bağımsız olarak herhangi 

bir geometrinin bant yapısının kolayca elde edilebileceği gösterilmiştir. Özetlemek 

gerekirse, literatürdeki üç boyutta en geniş bant aralığı bu yöntemle elde edilmiş ve bant 

aralığı, üst sınırın alt sınıra oranı 14.17 olup 6.37 - 90.26 Hz arasında bulunmuştur. Bu 

sayede, gömülü atalet artırım mekanizmalarına sahip üç boyutlu elastik metamalzemenin 

çok geniş bir frekans aralığında her yönden gelen dalgaları engellediği gösterilmiştir. 
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1. INTRODUCTION 

 

 

Periodic structures are described as the infinite repetition of a particular part, known 

as unit cell, in one (1D), two (2D), or three dimensions (3D). There are, naturally, no infinite 

structures in the real world; yet, taking into consideration their infinite counterparts can 

provide valuable information regarding the behavior of the finite systems. There are some 

periodic structures called phononic crystals that impede wave transmission in specific 

frequency ranges known as phononic band gaps or stop bands. Band gaps can be obtained 

in both infinite and finite periodic systems. The number of unit cells in a periodic structure 

affects the amount of vibration attenuation in the band gap. That is, higher the number of 

unit cells, the greater the attenuation. Thus, there is no vibration transmission for the infinite 

periodic case [1,2]. In contrast to the infinite case, there is some vibration transmission in 

the finite periodic case. The level of vibration isolation provided by the system is determined 

by the depth of the gap (stop band) in a frequency response function plot of the finite periodic 

case [3-5]. Thanks to Bloch’s theorem, infinite periodic structures can be analyzed by taking 

into consideration only a single unit cell. Phonon band structure, also called dispersion 

diagram, explains the behavior of infinite periodic structures by describing the relationship 

between wave vector and frequency [6].   

 

There are various methods to calculate the phonon band structure of a periodic media, 

including the finite element (FE) method [7-12], finite element least square point 

interpolation (FE-LSPI) method [13], finite difference (FD) method [14,15], plane wave 

expansion (PWE) method [1,16-18], multiple scattering theory (MST) [19-21], finite-

difference time domain (FDTD) method [22-27], transfer matrix (TM) method [28-31], 

lumped mass (LM) method [32,33], and traveling wave analysis (TWA) method [34]. Each 

approach has its own drawbacks such as convergence, stability, computational complexity 

and so on. Therefore, when calculating the band structures of periodic systems, the geometry, 

complexity and dimensions of the structures should be considered.  

 

All in all, finite element method (FEM) is used to generate models in this thesis. In 

these models, by applying Bloch’s theorem, the wave propagation analysis turns into a 

generalized eigenvalue problem in which the natural frequencies are square roots of the 

https://www.sciencedirect.com/science/article/pii/S0888327019303693?casa_token=if8K_S1JuYgAAAAA:k_SL4emYZIVuD7cmZuJzU5P-g6Spd995bpBa4XU-YR5wFVNfUXHYjdlQIPsqKPstBQiWZdTuYqA#b0180
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eigenvalues and the mode shapes are the eigenvectors. Thus, the phonon band structures are 

obtained by solving the eigenvalue problems.  

 

1.1.  Literature Review 

 

In the literature, band gaps in periodic structures are often created by Bragg 

scattering, level repulsion, local resonance, and inertial amplification methods [35]. Band 

gaps can occur due to material, geometric, boundary or a combination of these periodicities 

[36]. Band gaps are formed by periodically changing mass and stiffness values in Bragg 

scattering method. The lowest band gap frequency obtained by this method is found by the 

ratio of the wave speed to the lattice constant [37,38]. Hence, high density/low elastic 

modulus materials or large scale structures are required to form band gaps at low frequencies. 

Periodic structures employing the Bragg scattering technique are frequently referred to as 

phononic crystals. In local resonance method, band gaps are generated by adding local 

resonators to a main structure and band gaps can be obtained below the Bragg limit [39,40]. 

Yet, this method cannot create band gaps at low frequencies without using heavy resonators 

[37,38]. Periodic structures that employ the local resonance technique are typically referred 

to as elastic metamaterials since band gaps can be obtained below the Bragg limit. In level 

repulsion method, band gaps are created by the coupling of various polarization modes. 

However, this method usually does not generate wide band gaps [41]. 

 

In inertial amplification method, band gaps are obtained by utilizing embedded 

amplification mechanisms to increase the effective inertia [42,43]. Thanks to the amplified 

inertia, the wave propagation in the structure becomes difficult and thus, wide band gaps at 

low frequencies are produced without changing the mechanism's overall mass or stiffness. 

Periodic structures that contain inertial amplification mechanisms are also regarded as elastic 

metamaterials because this method enables to create band gaps below the Bragg limit. These 

characteristics have led to an increase in interest in creating band gaps by using inertial 

amplification method [44-67]. In the literature, the widest band gaps in 1D [51] and 2D [54] 

have been generated by this method. In this thesis, the aim is to obtain the widest band gap 

in 3D. The comparison of 3D phononic crystals and elastic metamaterials with a ratio of 

upper limit to lower limit (𝜔𝑢/𝜔𝑙) greater than three in the literature is given in Table 1.1. 

As shown in Table 1.1, 𝐵𝑊𝑎 = 2(𝜔𝑢 − 𝜔𝑙)/(𝜔𝑢 + 𝜔𝑙) and 𝐵𝑊𝑔 = (𝜔𝑢 − 𝜔𝑙)/(√𝜔𝑢𝜔𝑙) 
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are arithmetic and geometric mean normalized bandwidths, respectively and the widest 

bandwidth ever generated is between 1292.5 Hz and 16875 Hz, with an upper and lower 

limit ratio of 13.06 [68]. The main purpose of this study is to analyze 3D ultrawide elastic 

metamaterials with embedded inertial amplification mechanisms by applying Bloch’s 

theorem and to obtain their phonon band structures of the infinitely periodic case. 

  

Table 1.1. Bandwidth comparison of 3D phononic crystals and elastic metamaterials with a 

ratio of upper limit to lower limit greater than three in the literature. 

References 𝜔𝑢 (Hz) 𝜔𝑙 (Hz) 𝜔𝑢/𝜔𝑙 𝐵𝑊𝑎 𝐵𝑊𝑔 

Current Study 1 90.26 6.37 14.17 173.6% 349.9% 

Current Study 2 457.5 33.7 13.58 172.6% 341.3% 

Muhammed and Lim (2021) [68] 16875 1292.5 13.06 171.5% 333.7% 

Martinez et al. (2021) [69] 7500000 600000 12.50 170.4% 325.3% 

Muhammad and Lim (2021) [70] 11319 1247.2 9.08 160.3% 268.1% 

Muhammad (2021) [71] 17890 2207.7 8.10 156.1% 249.5% 

D’Alessandro et al. (2019) [72] 2337 455 5.14 134.8% 182.5% 

D’Alessandro et al. (2016) [73] 18870 3850 4.90 132.2% 176.2% 

Taniker and Yilmaz (2015) [47] 242 50 4.84 131.5% 174.5% 

Lu et al. (2017) [74] 230000 75000 3.07 101.6% 118% 

     

Last but not least, the original contributions made by this study to the literature can 

be summed up as follows 

 

 The unit cell model of the 3D elastic metamaterial with embedded inertial 

amplification mechanism is obtained by combining six identical 1D inertial 

amplification mechanisms. 

 Triclinic Irreducible Brillouin Zone (IBZ) is used for the first time for the 3D elastic 

metamaterial with embedded inertial amplification mechanisms. 
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 Phononic band structures of 3D elastic metamaterials with embedded inertial 

amplification mechanisms are obtained for the first time. 

 When compared to 3D phononic crystals and elastic metamaterials, the widest band 

gap is obtained.   
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2. BACKGROUND 

 

 

2.1.  Principle of Wave Propagation in Periodic Structures 

 

Unit cells are described as the smallest repeated unit in a periodic structure which 

can repeat itself in 1D, 2D or 3D. As seen in Figure 2.1, each material is indicated with 

different colors and the red-white marked cell is called unit cell or primitive cell. The 

periodic structures of the unit cell generated by expanding the unit cell in 1D, 2D and 3D are 

shown in Figure 2.1a, b and c, respectively. 

 

                               
   

Figure 2.1. Schematic representations of (a) 1D, (b) 2D, and (c) 3D periodic 

structures, respectively. 

  

 The behavior of the infinite periodic structure can be predicted by applying Floquet 

Bloch Theory to a single unit cell. In this way, phonon band structure that explains the 

relationship between the wave vector and its frequency can be found. This diagram gives 

information about transmission of waves such as pass bands and band gaps. In the former 

case waves propagate, whereas in the latter case waves do not propagate [6]. 

 

2.1.1. Floquet-Bloch Theory 

 

Bloch’s theorem describes waves in periodic materials [75]. Bloch's theorem, which 

states the wave function of a periodically repeating particle, can be expressed in terms of 

displacements of neighboring unit cells as follows 

               (a)                                                (b)                                               (c)   
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 𝑢(𝑛+𝑗) = 𝑒𝑖𝛾𝑎𝑗𝑢(𝑛)                                           (2.1) 

where 𝑢(𝑛) and 𝑢(𝑛+𝑗) are the displacements of the 𝑛𝑡ℎ and (𝑛 + 𝑗)𝑡ℎ masses, respectively, 

𝑎 is the distance between two adjacent particles, 𝑖 = √−1 and 𝛾 is the wave number. An 

infinite periodic series of masses 𝑚 with distance 𝑎 is shown in Figure 2.2.   

 

 

Figure 2.2. An infinite periodic series of masses 𝑚 in 1D. 

 

The displacement of the particle (𝑛 + 1) can be written in terms of 𝑢(𝑛) by applying Bloch's 

theorem as 

 𝑢(𝑛+1) = 𝑒𝑖𝛾𝑎𝑢(𝑛). (2.2) 

2.1.2. Lattice Symmetry, Reciprocal Lattice and Brillouin Zones 

  

A lattice can be described as an infinite set of mathematical points that are arranged 

in periodic order in space. Naturally, there are an infinite number of lattices that can exist 

depending on various periodicities. Point group symmetry and space group symmetry are 

the two types of lattice symmetry that are used to categorize these lattices. In point group 

symmetry, at least one point needs to be fixed. In other words, this group has all the 

symmetry operations except translations, since there is no fixed point in translation 

operations. Space group symmetry, on the other hand, has all symmetry operations, 

including translations. If lattices are grouped depending on point group symmetry, there are 

four types of lattice systems in 2D, and seven types in 3D, also called primitive unit cells. 

Primitive and conventional unit cells are subgroups of unit cells. Primitive unit cells have 

exactly one lattice point, composed of the lattice points at each corner. Conventional unit 

cells, however, may include more than one lattice point, either on a surface or within the unit 

cell. 

Unit Cell 
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Figure 2.3. Five possible 2D Bravais lattices (a) oblique, (b) square, (c) rectangular, (d) 

centered rectangular, (e) hexagonal. The only non-primitive (conventional) structure is 

the centered rectangular lattice structure and the rest are primitive lattices. 

  

 
 

 

 

Figure 2.4. 14 possible 3D Bravais lattices a) simple (primitive) cubic, b) body centered 

cubic, c) face centered cubic, d) simple tetragonal, e) body centered tetragonal, f) simple 

orthorhombic, g) base centered orthorhombic, h) body centered orthorhombic, i) face 

centered orthorhombic, j) trigonal, k) hexagonal, l) simple monoclinic, m) base centered 

monoclinic, n) triclinic. 

|𝑎1| ≠ |𝑎2|, 𝜃 ≠ 90
∘            |𝑎1| = |𝑎2|, 𝜃 = 90

∘      |𝑎1| ≠ |𝑎2|, 𝜃 = 90
∘                  |𝑎1| ≠ |𝑎2|, 𝜃 = 90

∘            |𝑎1| = |𝑎2|, 𝜃 = 120
∘ 
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                                         (l)                  (m)                  (n)         
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c 
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If lattices are categorized according to space group symmetry, there are five types of 

Bravais lattices in 2D, and 14 types in 3D [6]. The term Bravais lattice means that all lattice 

points are equal and seem the same regardless of the lattice from which they are viewed. The 

Bravais lattices in 2D are shown in Figure 2.3. As it can be seen in Figure 2.3, there are five 

Bravais lattices in 2D, four of which are primitive unit cells and one of which is conventional 

unit cell. The 14 possible 3D Bravais lattices, seven of which are primitive lattices, are shown 

in Figure 2.4. The angles 𝛼, 𝛽, 𝛾 are described based on usual geometrical convention and 

𝛼 is the angle between 𝑏 and 𝑐. The periodic structure of the inertial amplification 

mechanism in 3D will be a Triclinic lattice. All analyses in this thesis are performed in the 

light of this information. Details will be given in the next chapter.   

  

The real space lattice and the reciprocal lattice are two types of lattices that exist in 

every periodic structure. The former defines the periodic structure, while the latter describes 

the relationship between periodic structures and waves. Reciprocal space, also known as 𝑘 

space or momentum space, is the Fourier transform of real space [76]. Any real lattice can 

be defined by three primitive translational vectors 𝐚𝟏, 𝐚𝟐, 𝐚𝟑. The real space lattice vector 

can be written as   

 𝐑 = 𝑛1𝐚𝟏 + 𝑛2𝐚𝟐 + 𝑛3𝐚𝟑. (2.3) 

where 𝑛𝑖 are any integers. By using primitive vectors of the material lattice in real space, 

primitive vectors of the reciprocal lattice in reciprocal space can be found as 

 𝐛𝟏 = 2𝜋
 𝐚𝟐 𝑥 𝐚𝟑
𝐚𝟏.  𝐚𝟐 𝑥 𝐚𝟑

 ,   𝐛𝟐 = 2𝜋
 𝐚𝟑 𝑥 𝐚𝟏
𝐚𝟏.  𝐚𝟐 𝑥 𝐚𝟑

 , 𝐛𝟑 = 2𝜋
 𝐚𝟏 𝑥 𝐚𝟐
𝐚𝟏.  𝐚𝟐 𝑥 𝐚𝟑

.     (2.4) 

The real lattice primitive vectors and the reciprocal lattice primitive vectors have the 

following relationship 

 𝐛𝐢. 𝐚𝐣 = 2𝜋𝛿𝑖𝑗     (2.5) 

where 𝛿𝑖𝑗 is the Kronecker delta, which means that if 𝑖 = 𝑗, it takes the value 1, and 0 

otherwise. Reciprocal lattice vector can be defined with primitive vectors as follows  

 𝐆 = 𝑚1𝐛𝟏 +𝑚2𝐛𝟐 +𝑚3𝐛𝟑     (2.6) 

where 𝑚𝑖 are any integers. To summarize, real space lattice vectors are used to calculate the 

reciprocal lattice vectors and obtain the reciprocal lattice. Afterwards, any lattice point in the 
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reciprocal lattice can be used as the origin when constructing the Brillouin zone (BZ). This 

point should be the center of the BZ. The smallest volume completely surrounded by planes 

that are the reciprocal lattice vectors' perpendicular bisectors is known as the first BZ. The 

first BZ is a primitive cell in the reciprocal lattice and it is the geometric equivalent of the 

Wigner-Seitz cell in real space [6,76,77]. BZs diagram for the 2D square reciprocal lattice 

is shown in Figure 2.5. As it can be seen in Figure 2.5, the first BZ contains frequencies with 

wave vector values from 0 to 𝜋/𝑎, for frequencies that move in the  ±𝑥 and ±𝑦 directions.  

  

 

 

 
 

Figure 2.5. The first six BZs of a 2D square lattice. The green color denotes the first BZ, 

and each color indicates the next BZ. 

  

The first BZ has all the information of the whole structure and the other BZs are not 

used for band structure calculations. The first BZ is therefore frequently referred to as simply 

the BZ. The first BZ that cannot be minimized by any of the symmetries in the point group 

of the lattice is known as the Irreducible Brillouin Zone (IBZ). Instead of calculating the 

phonon band structure of the whole region in 2D or the volume in 3D, the band structure is 

analyzed by following a route around the edge of the IBZ. This method also reduces the 

computational cost. The BZ, IBZ, and the phonon band structure of a square unit cell with a 

circular inclusion is shown in Figure 2.6. Here, a graph showing the phonon band structure 

of the unit cell is obtained, considering waves with wave vectors in the triangular path 

𝛤, 𝑋,𝑀, 𝛤. The triangle with corners 𝛤, 𝑋,𝑀 represents the first BZ thanks to the symmetry 

operations.   

   

𝜋/𝑎 

 

𝛾𝑥 

 

𝛾𝑦 

 

𝜋/𝑎  
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           (a)                                (b)                                                      (c) 

Figure 2.6. (a) A square unit cell with a circular inclusion, (b) the corresponding BZ 

and IBZ of the unit cell, and (c) the phonon band structure of the unit cell calculated 

by following a route around the edge of the IBZ. 

   

2.1.3. 1D Uniform Periodic Structure 

 

The periodic structure of the 1D mass-spring structure is shown in Figure 2.7. 

  

 
 

Figure 2.7. 1D uniform periodic structure. 

 

The equation of motion for the 𝑛𝑡ℎ particle is written by using Netwon’s law as 

 𝑚�̈�(𝑛) = 𝑘(𝑢(𝑛+1) − 𝑢(𝑛)) − 𝑘(𝑢(𝑛) − 𝑢(𝑛−1))     (2.7) 

where 𝑚 is the mass, 𝑘 is the spring constant, and 𝑢(𝑛) is the displacement of the 𝑛𝑡ℎ particle. 

The equation of motion can be written assuming 𝑢(𝑡) = 𝑒𝑖𝜔𝑡 and �̈�(𝑡) = −𝜔2𝑒𝑖𝜔𝑡 as 

 𝜔2𝑚𝑢(𝑛) + 𝑘(𝑢(𝑛+1) − 𝑢(𝑛)) − 𝑘(𝑢(𝑛) − 𝑢(𝑛−1)) = 0.     (2.8) 

F
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Using Bloch's theorem in Equation (2.2), the expressions 𝑢(𝑛+1), 𝑢(𝑛−1) can be 

written in terms of 𝑢𝑛. After the substitutions, the equation of motion is found as follows 

 𝑘(2 − 𝑒𝑖𝛾𝑎 − 𝑒−𝑖𝛾𝑎)𝑢 − 𝜔2𝑚𝑢 = 0.     (2.9) 

When this eigenvalue problem is solved with the following parameters using 𝛾 values 

for 𝜔 in the range of −2𝜋/𝑎, 2𝜋/𝑎, the band structure of the system is found as in Figure 

2.8. As seen here, the band gap is not found for this system and first BZ is marked. 

 

 

Figure 2.8. Phonon band structure of a 1D uniform periodic mass spring system for the 

parameters 𝑚 = 1, 𝑘 = 2, 𝑎 = 1. 

 

2.2.  Band Gap Generation Methods 

  

In the literature, band gaps in periodic structures are often created by Bragg 

scattering, local resonance, and inertial amplification methods. In this section, these three 

band gap generation methods are explained and the comparison of the band structures of 

these methods obtained using the same parameters is given. 
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2.2.1. Bragg Scattering Method 

 

The 1D periodic structure formed by two different masses that repeat themselves 

periodically is shown in Figure 2.9. This is a typical Bragg scattering model. Also note that 

band gaps in this method can be created by changing the stiffness elements instead of the 

mass elements. 

 

 
 

Figure 2.9. 1D periodic structure with two different masses and uniform springs. 

 

The equations of motion for two masses can be expressed as follows, assuming 𝑢(𝑡) = 𝑒𝑖𝜔𝑡 

 
𝑘(𝑢1

(𝑛) − 𝑢2
(𝑛+1)) + 𝑘(𝑢1

(𝑛) − 𝑢2
(𝑛)) − 𝜔2𝑚1𝑢1

(𝑛) = 0    (2.10) 

 𝑘(𝑢2
(𝑛) − 𝑢1

(𝑛)) + 𝑘(𝑢2
(𝑛) − 𝑢1

(𝑛−1)) − 𝜔2𝑚2𝑢2
(𝑛) = 0.    (2.11) 

When these expressions are substituted in Bloch's theorem in Equation (2.2), the matrix form 

is obtained as follows 

     [
2𝑘 −𝑘(1 + 𝑒𝑖𝛾𝑎)

−𝑘(1 + 𝑒−𝑖𝛾𝑎) 2𝑘
] [
𝑢1
𝑢2
] − 𝜔2 [

𝑚1 0
0 𝑚2

] [
𝑢1
𝑢2
] = 0    (2.12) 

where 

     𝐌 =  [
𝑚1 0
0 𝑚2

]      ,     𝐊 =  [
2𝑘 −𝑘(1 + 𝑒𝑖𝛾𝑎)

−𝑘(1 + 𝑒−𝑖𝛾𝑎) 2𝑘
].    (2.13) 

The solution to the problem can be written in compact form (𝐊 − 𝜔2𝐌)𝐮 = 0 as  

 [
+2𝑘 − 𝜔2𝑚1 −𝑘(1 + 𝑒𝑖𝛾𝑎)

−𝑘(1 + 𝑒−𝑖𝛾𝑎) +2𝑘−𝜔2𝑚2

] [
𝑢1
𝑢2
] = [

0
0
].    (2.14) 

The result of this eigenvalue problem is found with det(𝐊 − 𝜔2𝐌) = 0.  

 

Unit Cell 
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When this eigenvalue problem is solved with the following parameters using 𝛾 values 

for 𝜔 in the range of −2𝜋/𝑎, 2𝜋/𝑎 the band structure of the system is found as shown in 

Figure 2.10. As seen in Figure 2.10, the band gap for this structure is between 1.41 and 2.00 

and the band gap and first BZ are marked. 

  

    

Figure 2.10. Phonon band structure of a 1D periodic structure with different masses and 

uniform springs system for the parameters 𝑚1 = 1,𝑚2 = 2, 𝑘 = 2, 𝑎 = 1. 

 

2.2.2. Local Resonance Method 

 

This method uses the effect of coupling oscillators to generate band gaps and 

therefore local resonators are added to a main structure. Band gaps occur around the natural 

frequencies of the resonators in this method. 1D periodic structure of the local resonance 

model is shown in Figure 2.11. A small mass that is connected to the host structure by a 

spring is an illustration of a local resonator. 
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Figure 2.11. 1D periodic structure of the local resonance model. 

 

The equation of motion of the unit cell of the local resonance model can be written as follows 

 
𝑚𝑚�̈�𝑚

(𝑛) + 𝑘𝑚(2𝑢𝑚
𝑛 − 𝑢𝑚

(𝑛−1) − 𝑢𝑚
(𝑛+1)) + 𝑘𝑎(𝑢𝑚

𝑛 − 𝑢𝑎
𝑛) = 0    (2.15) 

 𝑚𝑎�̈�𝑎
(𝑛) + 𝑘𝑎(𝑢𝑎

𝑛 − 𝑢𝑚
𝑛 ) = 0.    (2.16) 

By applying Bloch's theorem to Equations (2.15) and (2.16), the equation of motion is 

written as follows 

 
𝑚𝑚�̈�𝑚

(𝑛) + 𝑘𝑚𝑢𝑚
𝑛 (2 − 𝑒−𝑖𝛾𝑎 − 𝑒𝑖𝛾𝑎) + 𝑘𝑎(𝑢𝑚

𝑛 − 𝑢𝑎
𝑛) = 0    (2.17) 

 𝑚𝑎�̈�𝑎
(𝑛) + 𝑘𝑎(𝑢𝑎

𝑛 − 𝑢𝑚
𝑛 ) = 0.    (2.18) 

The equation of motion of the system can be solved by assuming 𝑥(𝑡) = 𝑒𝑖𝜔𝑡. The 

band structure can be obtained by solving the eigenvalue problem with det(𝐊 − 𝜔2𝐌) = 0. 

When this eigenvalue problem is solved with the following parameters using 𝛾 values for 𝜔 

in the range of −2𝜋/𝑎, 2𝜋/𝑎 the band structure of the system is found as shown in Figure 

2.12. The band gap for this structure is between 1.02 and 2.12 and first band gap and first 

BZ are marked in the figure. 

  

Unit Cell 
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Figure 2.12. Band structure of the 1D periodic structure of the local resonance model for 

the parameters 𝑚𝑚 = 1, 𝑚𝑎 = 2, 𝑘𝑚 = 2, 𝑘𝑎 = 3, 𝑎 = 1. 

  

2.2.3. Inertial Amplification Mechanism 

  

The lumped parameter model that explains the fundamental idea of the mechanism 

is shown in Figure 2.13. As seen in Figure 2.13, there are two masses, 𝑚𝑥, that are attached 

to one another by a spring of stiffness 𝑘. Rigid linkages connect the masses, 𝑚𝑥, and the 

mass, 𝑚𝑎. The angle between the spring and the stiff links is represented as 𝜃.  

 

 

Figure 2.13. Lumped parameter of the inertial amplification mechanism. 

  

The displacement of 𝑚𝑎 can be calculated in terms of 𝑢1 and 𝑢2 by using 𝑢1 as the input 

displacement and 𝑢2 as the output displacement of the mechanism as 

mx 
k 

ma 
u2 

θ θ mx 

u1 

xa 

ya 
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 𝑥𝑎 =
𝑢1 + 𝑢2
2

    (2.19) 

 
𝑦𝑎 =

(𝑢1 − 𝑢2)

2
cot(𝜃).    (2.20) 

It can be seen that the DOF of the system is one. The equation of motion of the system 

is determined as follows by considering 𝑢1 and 𝑢2 displacements, which are very small in 

comparison to the size of the mechanism as [43, 54]  

 (
𝑚𝑎 (cot

2(𝜃) + 1)

4
+ 𝑚𝑥) �̈�2 + 𝑘𝑢2 = (

𝑚𝑎 (cot
2(𝜃) − 1)

4
) �̈�1 + 𝑘𝑢1.    (2.21) 

The resonance frequency can be written as 

 𝜔𝑝 = √
𝑘

𝑚𝑥 +𝑚𝑎 (cot2(𝜃) + 1)/4
.    (2.22) 

Similarly, the antiresonance frequency can be calculated as 

 𝜔𝑧 = √
𝑘

𝑚𝑎 (cot2(𝜃) − 1)/4
.    (2.23) 

The displacement transmissibility of the mechanism can be written as 

 𝑇(𝜔) =
𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡
=

𝑘 − (
𝑚𝑎 (cot

2(𝜃) − 1)
4 )𝜔2

𝑘 − ((
𝑚𝑎 (cot2(𝜃) + 1)

4 ) + 𝑚𝑥)𝜔2
.    (2.24) 

By dividing both the nominator and denominator by k, the displacement transmissibility can 

be calculated as 

 𝑇(𝜔) =
1 −

𝜔2

𝜔𝑧2

1 −
𝜔2

𝜔𝑝2

    (2.25) 

where 𝜔𝑝, 𝜔𝑧, and 𝜔 are the resonance, antiresonance, and excitation frequencies, 

respectively. When 𝑇(𝜔) is smaller than 1, it is called stop band or band gap. Band gap 

begins right above the resonance frequency and goes to infinity for the 1D lumped parameter 

of the inertial amplification mechanism, which will be detailed in the following pages. 
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The 1D periodic structure of the lumped parameter inertial amplification mechanism is 

shown in Figure 2.14. 

 

 

Figure 2.14. 1D periodic structure of the lumped parameter inertial amplification 

mechanism. 

 

The equation of motion of the unit cell of the inertial amplification mechanism can be written 

as  

(
𝑚𝑎 (cot

2(𝜃) + 1)

4
+ 𝑚𝑥) �̈�

(𝑛) + 𝑘𝑢(𝑛) = (
𝑚𝑎 (cot

2(𝜃) − 1)

4
) �̈�(𝑛−1)  

                                                                                                                             +𝑘𝑢(𝑛−1). 
   

(2.26) 

After applying Bloch's theorem, the equation of motion can be written as 

[(
𝑚𝑎 (cot

2(𝜃) + 1)

4
+ 𝑚𝑥) − (

𝑚𝑎 (cot
2(𝜃) − 1)

4
)𝑒−𝑖𝛾𝛼] �̈�(𝑛)   

                                                                                                 +𝑘(1 − 𝑒−𝑖𝛾𝛼)𝑢(𝑛) = 0. (2.27)    

The equation of motion of the system can be solved by assuming 𝑢(𝑡) = 𝑒𝑖𝜔𝑡. The 

band structure of the mechanism can be obtained by solving the eigenvalue problem with 

det(𝐊 − 𝜔2𝐌) = 0. When this eigenvalue problem is solved with the following parameters 

using 𝛾 values for 𝜔 in the range of 0, 𝜋/𝑎 the band structure of the system is found as shown 

in Figure 2.15. Note that total mass is 𝑚𝑡 = 𝑚𝑥 +𝑚𝑎. For easy interpretation of the figure, 

the total mass is set the same for all cases.  

 

As noted in Figure 2.15, it is clear that the band gap begins at lower frequencies when 

θ and mx are smaller. Moreover, the denominator of the resonance frequency of the 

mechanism has ma multiplied by (𝑐𝑜𝑡2(𝜃) + 1) /4. When θ decreases, (𝑐𝑜𝑡2(𝜃) + 1) /4  

increases. Therefore, a small mass, 𝑚𝑎, has a greater impact on the system than its static 

θ θ θ θ θ θ 
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value. Thanks to this technique, band gaps are created at lower frequencies that Bragg 

scattering or local resonance methods cannot achieve without increasing the overall mass of 

the system [42,43,45,47,54]. 

  

 

Figure 2.15. Band structure of the 1D periodic structure of the lumped parameter inertial 

amplification mechanisms for 𝑚𝑥/𝑚𝑡 = 1/3, 𝜃 = 𝜋/12, 𝑚𝑥/𝑚𝑡 = 2/3, 𝜃 = 𝜋/12, and 

𝑚𝑥/𝑚𝑡 = 1/3, 𝜃 = 𝜋/18. For all cases, 𝑘 = 2, 𝑎 = 1. 

2.2.4. Comparison of Band Gap Generation Methods 

 

Figure 2.16 illustrates the comparison of the band structures of the three methods for 

𝑚𝑥 = 𝑚1 = 𝑚𝑚 = 1, 𝑚2 = 𝑚𝑎 = 2, 𝜃 = 𝜋/12, 𝑘 = 2, 𝑘𝑎 = 3, 𝑎 = 1. As can be seen 

clearly, all parameters are chosen the same for easy comparison of the methods. 

  

Eigenvalue problem is solved with the parameters using 𝛾 values for 𝜔 in the range 

of 0, 𝜋/𝑎. As seen in Figure 2.16, band gaps created by inertial amplification mechanisms 

start at lower frequencies than that of Bragg scattering and local resonance methods. Also, 

both Bragg scattering and local resonance methods have two branches, whereas inertial 

amplification mechanism has only one branch because the mechanism has one DOF for the 

lumped model. The inertial amplification mechanism is therefore considered as a semi-
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infinite band gap [78]. Although there is only one resonance frequency in the lumped 

parameter model, finite element model of the mechanism will include many resonance 

frequencies. The ratio of the first two resonance frequencies (𝜔𝑝2/𝜔𝑝1) will thereby be 

maximized to obtain the widest band gap. 

 

 

Figure 2.16. Comparison of the band structures of the inertial amplification, 

Bragg scattering and local resonance methods for 𝑚𝑥 = 𝑚1 = 𝑚𝑚 = 1, 𝑚2 = 𝑚𝑎 = 2, 

𝜃 = 𝜋/12, 𝑘 = 2, 𝑘𝑎 = 3, 𝑎 = 1. 

2.3.  Bloch Boundary Condition in the Finite Element Method 

  

In this section, 1D, 2D, and 3D Bloch boundary conditions (BCs) are explained in 

the FEM. To apply Bloch's theorem, DOFs on the unit cell's boundaries must be connected 

to each other with phase terms relying on the wave vector. A 2D unit cell FE mesh showing 

the DOFs of the nodes required for applying the 1D Bloch BC is shown in Figure 2.17. The 

details of these derivations can be found in Refs. [13,79]. 
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Figure 2.17. A 2D unit cell FE mesh showing the DOFs of the nodes required to apply 

the 1D Bloch BC. In the unit cell, the subscript L denotes left, I=internal, R= right. All 

nodes that are not on the left and right boundaries are considered internal nodes. 

 

The DOFs on the right boundary are linked to the DOFs on the left boundary for the 

1D case. The corresponding DOFs are shown in Figure 2.17 with the same light blue color 

and Bloch BC can be written between these nodes as follows 

 𝑞𝑅 = 𝜆𝑥𝑞𝐿    (2.28) 

where 𝜆𝑥 = 𝑒
𝑖𝛾𝑥𝑎𝑥. 𝑎𝑥 and 𝛾𝑥 denote the translation vector component, and the wave vector 

component, respectively. The relations can be written in matrix form as follows          

 [

𝑞𝐿
𝑞𝑅
𝑞𝐼
]

⏟
𝐪

= [

𝐈𝐋 0
𝜆𝑥𝐈𝐋 0
0 𝐈𝐈

]

⏟      
𝐏

[
𝑞𝐿
𝑞𝐼
]

⏟
�̌�

    (2.29) 

where 𝐪, P, and �̌� indicate the free DOF vector, the Bloch periodicity matrix, and the reduced 

DOF vector, respectively. Note that 𝐈𝐋 and 𝐈𝐈 are identity matrices with subscript I and L 

indicating the boundary.  

 

 

 

 

 

 

qL qR 

qI 

x 
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Figure 2.18. A 2D unit cell FE mesh showing the DOFs of the nodes required to apply 

the 2D Bloch BC. In the unit cell, the subscript L denotes left, I=internal, R= right, 

T=top, B=bottom. All nodes that are not in the perimeter are conside”red internal nodes. 

 

In 2D, the DOFs on the boundaries and corners must be taken into account when 

applying Bloch's theorem. The corresponding DOFs marked with the same colors are shown 

in Figure 2.18. The DOFs with the same colors are connected to each other with Bloch BC, 

and Bloch BC can be written between these DOFs. 

 

The relations between the corresponding DOFs on the boundaries can be written as  

 𝑞𝑅 = 𝜆𝑥𝑞𝐿,  𝑞𝑇 = 𝜆𝑦𝑞𝐵.    (2.30) 

Similarly, the relationships between the corresponding corner DOFs can be written as 

follows 

 𝑞𝐵𝑅 = 𝜆𝑥𝑞𝐵𝐿,  𝑞𝑇𝐿 = 𝜆𝑦𝑞𝐵𝐿,  𝑞𝑇𝑅 = 𝜆𝑥𝜆𝑦𝑞𝐵𝐿    (2.31) 

where 𝜆𝑥 = 𝑒
𝑖𝛾𝑥𝑎𝑥, and 𝜆𝑦 = 𝑒

𝑖𝛾𝑦𝑎𝑦 . 𝑎𝑥, 𝑎𝑦 are the translation vector components, and 𝛾𝑥, 

𝛾𝑦 denote the wave vector components.  

  

The relations can be written in matrix form as follows 

qL qR 

qT 

qB 

qBL qBR 

qTL qTR 

qI 

x 

y 
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[
 
 
 
 
 
 
 
 
𝑞𝐿
𝑞𝑅
𝑞𝐵
𝑞𝑇
𝑞𝐵𝐿
𝑞𝐵𝑅
𝑞𝑇𝐿
𝑞𝑇𝑅
𝑞𝐼 ]
 
 
 
 
 
 
 
 

⏟  
𝐪

=

[
 
 
 
 
 
 
 
 
 
𝐈𝐋 0 0 0
𝜆𝑥𝐈𝐋 0 0 0
0 𝐈𝐁 0 0
0 𝜆𝑦𝐈𝐁 0 0

0 0 𝐈𝐁𝐋 0
0 0 𝜆𝑥𝐈𝐁𝐋 0
0 0 𝜆𝑦𝐈𝐁𝐋 0

0 0 𝜆𝑥𝜆𝑦𝐈𝐁𝐋 0

0 0 0 𝐈𝐈]
 
 
 
 
 
 
 
 
 

⏟                  
𝐏

[

𝑞𝐿
𝑞𝐵
𝑞𝐵𝐿
𝑞𝐼

]

⏟  
�̌�

    (2.32) 

where 𝐈𝐋, 𝐈𝐁, 𝐈𝐁𝐋, and 𝐈𝐈 are identity matrices with subscripts representing the left, bottom, 

bottom left corner, and internal.  

 

In 3D, Bloch's theorem can be tricky to implement because DOFs exist not only on 

the boundaries and corners but also on surfaces, and they all need to be considered. The 

corresponding DOFs marked with the same colors are shown in Figure 2.19. The DOFs with 

the same colors are connected to each other with Bloch BC.  

 

 

 

Figure 2.19. A 3D unit cell FE mesh showing the DOFs of the nodes required to apply 

the 3D Bloch BC. The subscript l represents left, R=right, f=front, r=rear, b=bottom, 

t=top, I=internal. All nodes not explicitly specified are considered internal nodes. 

 

Surface nodal DOFs are indicated by single subscripts, boundary nodal DOFs by 

double subscripts, and corner nodal DOFs by triple subscripts. Note that surface nodes are a 

y 

qlfb 
qfb 

qRfb 

qlb 

qlrb 

qb 

qrb 

qRb 

qRrb 
qlf 

qlft 

qlt 

qlrt 

qt 

qRf 

qRft 

qRrt 

qRt 

qR 

qRr 

qf 

ql 
qr 

qft 

qlr 

qI 
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qrt 
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group of nodes that do not include nodes on the boundaries and corners. Similarly, boundary 

nodes are a group of nodes with no nodes on the corners. Bloch BCs can be written between 

the corresponding DOFs on the surfaces, boundaries, and corners.  

 

The relations between the corresponding DOFs on the surfaces can be written as 

 𝑞𝑅 = 𝜆𝑥𝑞𝑙,           𝑞𝑟 = 𝜆𝑦𝑞𝑓,           𝑞𝑡 = 𝜆𝑧𝑞𝑏.    (2.33) 

Likewise, the relations between the corresponding DOFs on the boundaries can be written 

as follows 

   

 
𝑞𝑅𝑓 = 𝜆𝑥𝑞𝑙𝑓 ,           𝑞𝑙𝑟 = 𝜆𝑦𝑞𝑙𝑓 ,           𝑞𝑅𝑟 = 𝜆𝑥𝜆𝑦𝑞𝑙𝑓 

𝑞𝑟𝑏 = 𝜆𝑦𝑞𝑓𝑏,           𝑞𝑓𝑡 = 𝜆𝑧𝑞𝑓𝑏,          𝑞𝑟𝑡 = 𝜆𝑦𝜆𝑧𝑞𝑓𝑏 

 𝑞𝑅𝑏 = 𝜆𝑥𝑞𝑙𝑏,           𝑞𝑙𝑡 = 𝜆𝑧𝑞𝑙𝑏,            𝑞𝑅𝑡 = 𝜆𝑥𝜆𝑧𝑞𝑙𝑏. 

   (2.34) 

   (2.35) 

   (2.36) 

  

Similarly, the relationships between the corresponding corner DOFs can be written as 

follows  

 𝑞𝑅𝑟𝑏 = 𝜆𝑥𝜆𝑦𝑞𝑙𝑓𝑏,      𝑞𝑅𝑓𝑡 = 𝜆𝑥𝜆𝑧𝑞𝑙𝑓𝑏,      𝑞𝑙𝑟𝑡 = 𝜆𝑦𝜆𝑧𝑞𝑙𝑓𝑏 

𝑞𝑅𝑓𝑏 = 𝜆𝑥𝑞𝑙𝑓𝑏,     𝑞𝑙𝑟𝑏 = 𝜆𝑦𝑞𝑙𝑓𝑏,      𝑞𝑙𝑓𝑡 = 𝜆𝑧𝑞𝑙𝑓𝑏,     𝑞𝑅𝑟𝑡 = 𝜆𝑥𝜆𝑦𝜆𝑧𝑞𝑙𝑓𝑏 
   (2.37) 

(2.38) 

where 𝜆𝑥 = 𝑒
𝑖𝛾𝑥𝑎𝑥,𝜆𝑦 = 𝑒

𝑖𝛾𝑦𝑎𝑦 ,𝜆𝑧 = 𝑒
𝑖𝛾𝑧𝑎𝑧, and 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 are translation vector 

components, and 𝛾𝑥, 𝛾𝑦, 𝛾𝑧 denote the wave vector components.  

  

The relations can be written in matrix form as follows 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑞𝑙
𝑞𝑅
𝑞𝑓
𝑞𝑟
𝑞𝑏
𝑞𝑡
𝑞𝑙𝑓
𝑞𝑅𝑓
𝑞𝑙𝑟
𝑞𝑅𝑟
𝑞𝑓𝑏
𝑞𝑟𝑏
𝑞𝑓𝑡
𝑞𝑟𝑡
𝑞𝑙𝑏
𝑞𝑅𝑏
𝑞𝑙𝑡
𝑞𝑅𝑡
𝑞𝑙𝑓𝑏
𝑞𝑅𝑓𝑏
𝑞𝑙𝑟𝑏
𝑞𝑙𝑓𝑡
𝑞𝑅𝑟𝑏
𝑞𝑅𝑓𝑡
𝑞𝑙𝑟𝑡
 𝑞𝑅𝑟𝑡
𝑞𝐼 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟  
𝐪

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐈𝐥 0 0 0 0 0 0 0
𝜆𝑥𝐈𝐥 0 0 0 0 0 0 0
0 𝐈𝐟 0 0 0 0 0 0
0 𝜆𝑦𝐈𝐟 0 0 0 0 0 0

0 0 𝐈𝐛 0 0 0 0 0
0 0 𝜆𝑧𝐈𝐛 0 0 0 0 0
0 0 0 𝐈𝐥𝐟 0 0 0 0
0 0 0 𝜆𝑥𝐈𝐥𝐟 0 0 0 0
0 0 0 𝜆𝑦𝐈𝐥𝐟 0 0 0 0

0 0 0 𝜆𝑥𝜆𝑦𝐈𝐥𝐟 0 0 0 0

0 0 0 0 𝐈𝐟𝐛 0 0 0
0 0 0 0 𝜆𝑦𝐈𝐟𝐛 0 0 0

0 0 0 0 𝜆𝑧𝐈𝐟𝐛 0 0 0
0 0 0 0 𝜆𝑦𝜆𝑧𝐈𝐟𝐛 0 0 0

0 0 0 0 0 𝐈𝐥𝐛 0 0
0 0 0 0 0 𝜆𝑥𝐈𝐥𝐛 0 0
0 0 0 0 0 𝜆𝑧𝐈𝐥𝐛 0 0
0 0 0 0 0 𝜆𝑥𝜆𝑧𝐈𝐥𝐛 0 0
0 0 0 0 0 0 𝐈𝐥𝐟𝐛 0
0 0 0 0 0 0 𝜆𝑥𝐈𝐥𝐟𝐛 0
0 0 0 0 0 0 𝜆𝑦𝐈𝐥𝐟𝐛 0

0 0 0 0 0 0 𝜆𝑧𝐈𝐥𝐟𝐛 0
0 0 0 0 0 0 𝜆𝑥𝜆𝑦𝐈𝐥𝐟𝐛 0

0 0 0 0 0 0 𝜆𝑥𝜆𝑧𝐈𝐥𝐟𝐛 0
0 0 0 0 0 0 𝜆𝑦𝜆𝑧𝐈𝐥𝐟𝐛 0

0 0 0 0 0 0 𝜆𝑥𝜆𝑦𝜆𝑧𝐈𝐥𝐟𝐛 0

0 0 0 0 0 0 0 𝐈𝐈]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟                                          
𝐏

[
 
 
 
 
 
 
 
𝑞𝑙
𝑞𝑓
𝑞𝑏
𝑞𝑙𝑓
𝑞𝑓𝑏
𝑞𝑙𝑏
𝑞𝑙𝑓𝑏
𝑞𝐼 ]
 
 
 
 
 
 
 

⏟  
�̌�

(2.39)   

where 𝐈𝐥, 𝐈𝐟, 𝐈𝐛, 𝐈𝐥𝐟, 𝐈𝐟𝐛, 𝐈𝐥𝐛,  𝐈𝐥𝐟𝐛 and 𝐈𝐈 are identity matrices. After writing the Bloch BC in 

one, two and three dimensions in matrix form, the Bloch periodicity matrix, P, can be divided 

into parts for easy computation.  

  

The 1D Bloch periodicity matrix written in Equation (2.29) can be divided into parts as 

 𝐏 = 𝐏𝟎 + 𝐏𝐱𝜆𝑥.    (2.40) 

Similarly, the 2D Bloch periodicity matrix found in Equation (2.32) can be written as  

 𝐏 = 𝐏𝟎 + 𝐏𝐱𝜆𝑥 + 𝐏𝐲𝜆𝑦 + 𝐏𝐱𝜆𝑥 + 𝐏𝐱𝐲𝜆𝑥𝜆𝑦.    (2.41) 

Likewise, the 3D Bloch periodicity matrix stated in Equation (2.39) can be written as  
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  𝐏 = 𝐏𝟎 + 𝐏𝐱𝜆𝑥 + 𝐏𝐲𝜆𝑦 + 𝐏𝐳𝜆𝑧 + 𝐏𝐱𝐲𝜆𝑥𝜆𝑦 + 𝐏𝐱𝐳𝜆𝑥𝜆𝑧 + 𝐏𝐲𝐳𝜆𝑦𝜆𝑧 + 𝐏𝐱𝐲𝐳𝜆𝑥𝜆𝑦𝜆𝑧.   (2.42) 

Mass and stiffness matrices are then pre-multiplied by 𝐏𝐓 and post-multiplied P to obtain 

reduced mass and stiffness matrices as    

 
𝐊𝐑 = 𝐏

𝐓𝐊𝐏 
   (2.43) 

   𝐌𝐑 = 𝐏
𝐓𝐌𝐏    (2.44) 

where 𝐏𝐓 is the Hermitian transpose of 𝐏, the 𝐊 and 𝐌 are the stiffness and mass matrices 

generated by a commercial finite element software package.  

 

The eigenvalue problem can then be solved by assuming the time harmonic solution 

�̌� = �̅̌�𝑒𝑖𝑤𝑡. Then, the phonon band structure frequencies can be calculated as follows 

 (𝐊𝐑 −𝜔
2𝐌𝐑)�̌� = 0    (2.45) 

where 𝐌𝐑, 𝐊𝐑, 𝜔 and �̌� indicate the reduced mass matrix, reduced stiffness matrix, 

frequency, and the reduced DOF vector, respectively.  

 

2.3.1. Implementation of Bloch Boundary Condition in the FEM 

 

In the literature, there are three different methods that are used to apply Bloch’s 

theorem in the FEM. All three different methods are explained below.  

 

 The first method is to take mass, 𝐌, and stiffness, 𝐊, matrices from a finite element 

software (e.g. ABAQUS) and use them in a computer program (e.g. MATLAB), then 

implement Bloch’s theorem between the corresponding nodes and solve the 

eigenvalue problem [45,47,51,79]. This is the most common method used for band 

structure calculations. 

 The second method is to apply Bloch’s Theorem directly between the corresponding 

nodes in a finite element software (e.g. in the Solid Mechanics module in COMSOL 

Multiphysics program). This method does not need to import 𝐊 and 𝐌 matrices from 

other FE package programs. All analyses including obtaining the phonon band 

structure can be performed by using COMSOL Multiphysics [68,70-73]. 
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 The third method is to implement Bloch BCs using a user-defined subroutine 

multipoint constraints (MPC) in ABAQUS. Note that this method requires to 

duplicate mesh to take into account the real and imaginary parts [78,80-84]. Details 

will be given on the following pages. 

 

As a first method, 𝐊 and 𝐌 matrices are generated from ABAQUS. The following 

lines are written at the end of the Input file as 

 

 *STEP 

 *MATRIX GENERATE, STIFFNESS, MASS 

 *MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX INPUT 

 *END STEP. 

 

After that, the following line is written in Windows PowerShell to execute the process  

 

 abaqus j= Job-1 int 

 

where Job-1 is the name of the input file. In this way, ABAQUS generates two text files 

named Job-1_MASS2.mtx and Job-1_STIF2.mtx. ABAQUS or any other FE software 

package program generates the mass and stiffness matrices by using the direct stiffness 

method, also called the matrix stiffness method. After exporting 𝐊 and 𝐌 matrices from 

ABAQUS, a MATLAB code is written to load the matrices into MATLAB and solve the 

eigenvalue problem by applying Bloch's theorem between the nodes. The pseudo code for 

applying Bloch’s theorem to corresponding DOF sets for 2D case can be found in Appendix 

A. This code can also be developed for the 3D case.   

 

As a second method, Bloch’s theorem can be applied between the corresponding 

nodes under the Structural Mechanics module in COMSOL Multiphysics program. In the 

program, Bloch BC can be found under the Solid Mechanics → Physics → Boundaries → 

Periodicity Settings → Floquet periodicity. Note that the wave vectors must be specified in 

the parameters section, following a route around the edge of the corresponding IBZ. Then 

the study can be performed with parametric sweep and eigenfrequency analyses. After 

completing the analyses, phonon band structure can be obtained under the Results  → 1D 
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Plot Group → Dataset: Parametric Solutions → Global → y-Axis Data: Expression: solid.freq 

→ x-Axis Data: Outer solutions and Parameter value → Plot. 

 

As a third method, Bloch BC can be applied using a user-defined subroutine MPC in 

ABAQUS. This method does not need to import 𝐊 and 𝐌 matrices from other FE package 

programs and all analyzes are conducted by using ABAQUS. The difficulty in applying this 

method is that the complex valued relations of the Bloch BC specified in Equation (2.2) can 

be handled. Complex valued eigenvalue problem can be solved by dividing all fields into 

real and imaginary parts [85]. Thus, this method requires to duplicate mesh to take into 

account the real and imaginary parts.  

 

Bloch BC can be applied as follows 

 𝑅𝑒𝑎𝑙(𝑢𝑖
𝐵) = 𝑅𝑒𝑎𝑙(𝑢𝑖

𝐴) cos[𝛾. 𝑎𝐴𝑖𝐵𝑖 ] − 𝐼𝑚𝑎𝑔(𝑢𝑖
𝐴) sin[𝛾. 𝑎𝐴𝑖𝐵𝑖 ] 

𝐼𝑚𝑎𝑔(𝑢𝑖
𝐵) = 𝑅𝑒𝑎𝑙(𝑢𝑖

𝐴) sin[𝛾. 𝑎𝐴𝑖𝐵𝑖 ] + 𝐼𝑚𝑎𝑔(𝑢𝑖
𝐴) cos[𝛾. 𝑎𝐴𝑖𝐵𝑖 ]    (2.46) 

where 𝑢𝑖
𝐴, 𝑢𝑖

𝐵 are the displacements, 𝑎𝐴𝑖𝐵𝑖 = 𝑥𝑖
𝐵 − 𝑥𝑖

𝐴 represents the distance between the 

two nodes Ai and Bi and 𝛾 is the wave vector. Equation (2.46) can be implemented using a 

user defined subroutine MPC in ABAQUS. 

 

In this thesis, the first two methods (i.e., COMSOL Multiphysics, and 

ABAQUS/MATLAB) are used. The purpose of using the second method is to apply Bloch's 

theorem in COMSOL Multiphysics much faster and to compare the accuracy of band 

structure graphs obtained using two different programs. Note that COMSOL Multiphysics 

is very useful for simple geometries, but can be tricky to mesh complex geometries. The 

inertial amplification mechanism developed in the TUBITAK project (218M475) has a 

complex geometry and analysis time can be very long. In order to determine the most 

accurate model by comparing it to the FRF results of the 3 × 2 octahedron array, band 

structures are computed using both the COMSOL Multiphysics and ABAQUS/MATLAB 

programs.  
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2.4.  Benchmark Solutions of the Wave Problems in Periodic Structures 

  

In this section, wave problems in 1D, 2D, and 3D periodic structures previously 

studied in the literature [7,13,31] are investigated and the same results are obtained with the 

help of COMSOL Multiphysics and ABAQUS/MATLAB programs. In this way, it is shown 

that COMSOL Multiphysics and ABAQUS/MATLAB models which will be used for 

inertial amplification mechanisms are tested and verified.  

 

2.4.1. Benchmark Solution of the Wave Problem in 1D Periodic Structure 

 

A sample model in Ref. [31] is investigated to obtain and verify the phonon band 

structure in 1D, and the unit cell model is shown in Figure 2.20. In this study, local resonators 

are added to a main structure and band gaps are created by local resonance method. The 

structure has a shaft with torsional resonator that is periodically connected. Resonator has a 

soft rubber ring surrounded by an outer ring. The material of the shaft is epoxy (𝜌 = 1180 

kg/m3, 𝐸 = 1.59 × 109 Pa, 𝜐 = 0.37) and the materials of the resonator are rubber (𝜌 =

1300 kg/m3, 𝐸 = 3.4 × 105 Pa, 𝜐 = 0.47) and lead (𝜌 = 11600 kg/m3, 𝐸 = 1.49 × 1010 

Pa, 𝜐 = 0.37). The radii are r0 = 5 mm, r1 = 8 mm, r2 = 10 mm. The length of the ring is l = 

25 mm and the lattice constant is a = 75 mm. 

 

   
                                                             

Figure 2.20. (a) Periodic structure, and (b) unit cell model of the sample model 

investigated in Ref. [31].  

  

(a) (b) 
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The band structure of the sample model is shown in Figure 2.21 [31]. In order to 

apply Bloch BCs between corresponding nodes or faces in 1D, the sample model shown in 

Figure 2.22 is created and analyzed in COMSOL Multiphysics. 

 

 

Figure 2.21. Phonon band structure showing 1D wave propagation of the model 

investigated in Ref. [31]. 

  

 

Figure 2.22. The corresponding faces in the x direction of the sample model created in 

COMSOL Multiphysics. 
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The band gap of the sample model is between 198 Hz and 1138 Hz in Ref. [31], while 

the band gap obtained by COMSOL Multiphysics is between 198 Hz and 1082 Hz. The band 

structure obtained by COMSOL Multiphysics is shown in Figure 2.23. There is 4.9% 

deviation at the upper limit of the band gap of the sample model investigated in Ref. [31]. 

This deviation is small and the COMSOL Multiphysics model is validated. 

  

 
  

Figure 2.23. Phonon band structure showing the 1D wave propagation of the sample 

model investigated in Ref [31], obtained by using COMSOL Multiphysics. 

 

2.4.2. Benchmark Solution of the Wave Problem in 2D Periodic Structure 

 

A sample model in Ref. [7] is examined to obtain and verify the phonon band 

structure in 2D. The periodic structure of the unit cell is given in Figure 2.24a, and the 

geometries of the unit cell are given in Figure 2.24b and c. The region marked in blue in 

Figure 2.24a represents Figure 2.24b, and the region marked in red represents Figure 2.24c. 

The sample models shown in Figures 2.24b and c both represent the same periodic structure 

and give the same result when the two unit cells are used separately.  

 

The material of the unit cell is copper (𝜌 = 8900 kg/m3, 𝐸 = 120 GPa, 𝜐 = 0.3) and 

the dimensions are 𝑏/𝑎 = 0.6, 𝑐/𝑎 = 0.3, 𝑑/𝑎 = 0.6. The phonon band gap of the sample 

model is between 0.32 and 1.12 and the band structure is shown in Figure 2.25 [7].  

 

Wave vector 
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Figure 2.24. (a) Periodic structure, (b) and (c) unit cell of the sample model investigated 

in Ref. [7]. 

 

 

Figure 2.25. Phonon band structure showing the 2D wave propagation of the model 

investigated in Ref. [7]. 

 

The unit cell in Ref. [7] is designed, modeled and analyzed in ABAQUS, taking into 

account the same geometric and material properties. As a result of the modal analysis, K and 

M matrices are taken from ABAQUS and transferred to MATLAB. In order to obtain the 

phonon band structure for the 2D case, Bloch's theorem is applied between opposing nodes 
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as shown in Figure 2.26a and b, and the necessary MATLAB code is written for the 2D case. 

The pseudo code for applying Bloch’s theorem to the corresponding DOF sets for 2D case 

can be found in Appendix A. 

 

 

                 (a)                                                (b)                                         (c) 

Figure 2.26. (a) The corresponding nodes in the x direction, (b) y direction of the sample 

model created in ABAQUS. (c) IBZ of the unit cell investigated in Ref. [7]. 

  

Figure 2.26a shows the relationship between opposing nodes in the x direction, and 

Figure 2.26b shows the relationship between opposing nodes in the y direction. In order to 

find the phonon band structure of the mechanism, the wave vector should follow a path 

around the IBZ. Since the periodic structure of the unit cell creates square symmetry and is 

periodic in the x-y directions, the IBZ of the system is as seen in Figure 2.26c [7].  

 

The phonon band structure of the sample model obtained with the help of 

ABAQUS/MATLAB is shown in Figure 2.27. The phonon band structure of the sample 

model in Ref. [7] (see Figure 2.25) and the phonon band structure obtained in 

ABAQUS/MATLAB (see Figure 2.27) are similar. The band gap is between 0.32 and 1.12 

in Ref. [7], whereas the band gap obtained by ABAQUS/MATLAB is between 0.32 and 

1.09. It is not possible to obtain the exact mesh structure of the sample model in Ref. [7], 

and there is deviation of 2.7% at the upper limit of the band gap. This deviation is negligible 

and the developed MATLAB code is validated. 
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Figure 2.27. Phonon band structure showing the 2D wave propagation of the sample 

model investigated in Ref. [7], obtained by using ABAQUS/MATLAB. 

  

As a second method, the same system in Ref. [7] is designed and modeled using 

COMSOL Multiphysics. The phonon band structure of the sample model obtained using 

COMSOL Multiphysics is shown in Figure 2.28. 

  

 

Figure 2.28. Phonon band structure showing the 2D wave propagation of the sample 

model investigated in Ref. [7], obtained by using COMSOL Multiphysics. 
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The band gap is between 0.32 and 1.12 in Ref. [7], while the band gap obtained by 

COMSOL Multiphysics is between 0.32 and 1.08. The upper limit of the band gap have 

3.6% deviation. This deviation is small and the COMSOL Multiphysics model is validated. 

 

2.4.3. Benchmark Solution of the Wave Problem in 3D Periodic Structure 

 

A sample model in Ref. [13] is examined to obtain and verify the phonon band 

structure in 3D. The periodic structure of the unit cell is given in Figure 2.29a and the 

geometry of the unit cell is given in Figure 2.29b. As seen in Figure 2.29a, the periodic 

structure is obtained with the symmetry of the unit cell in the x, y and z directions. 

 

 

Figure 2.29. (a) Periodic structure, and (b) unit cell of the sample model in Ref. [13]. 

 

 

 

 

Figure 2.30. IBZ of the unit cell studied in Ref. [13]. 
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There are two materials in the unit cell, the material of the small cube (red) is lead 

(𝜌 = 11600 kg/m3, 𝜆 = 4.23 × 1010, 𝜇 = 1.49 × 1010), and the material of the large cube 

(white) which surrounds the small cube is epoxy (𝜌 = 1180 kg/m3, 𝜆 = 4.43 × 109, 𝜇 =

1.59 × 109). Notice that 𝜆 = 𝐸𝜈/(1 + 𝜈)(1 − 2𝜈) and 𝜇 = 𝐸/2(1 + 𝜈) where 𝐸 is 

Young’s modulus and 𝜈 is Poisson’s ratio. In this model, the epoxy acts like a spring, while 

the lead acts like a mass because it is harder and heavier, and this model is a classic example 

of Bragg Scattering. The dimensions of the model are 𝑏 = 0.06 m and a = 0.10 m. The IBZ 

geometry of the sample model is shown in Figure 2.30 and the phonon band structure is 

shown in Figure 2.31. The phonon band gap of the sample model is between 6900 Hz and 

9100 Hz [13]. 

  

 

Figure 2.31. Phonon band structure showing the 3D wave propagation of the model 

studied in Ref. [13]. 

 

The unit cell in Ref. [13] is designed and modeled in ABAQUS using the same 

geometric and material properties, and the modal analysis results are obtained. As a result of 

the modal analysis, K and M matrices are taken from ABAQUS and transferred to 

MATLAB. The necessary MATLAB code is written for the 3D wave propagation case. The 

pseudo code for the 2D case given in Appendix A is developed for the 3D case and the 

phonon band structure is found by any numerical program. The phonon band structure of the 

sample model obtained with ABAQUS/MATLAB is shown in Figure 2.32. As seen in Figure 

2.32, the phonon band structure of the sample model in Ref. [13] is similar to the phonon 

band structure obtained in ABAQUS/MATLAB. The band gap is between 6900 Hz and 9100 
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Hz in Ref. [13], whereas the band gap obtained by ABAQUS/MATLAB is between 6893 

Hz and 9080 Hz. It is not possible to have the exact mesh structure of the sample model in 

Ref. [13], and there are deviations less than 1% at the upper and the lower limit of the band 

gap. These deviations are quite small and the developed MATLAB code is validated. 

 

  

Figure 2.32. Phonon band structure showing the 3D wave propagation of the sample 

model investigated in Ref. [13], obtained by using ABAQUS/MATLAB. 

  

As a second method, the same structure in Ref. [13] is designed and modeled using 

COMSOL Multiphysics. The phonon band structure of the sample model obtained using 

COMSOL Multiphysics is shown in Figure 2.33. The band gap is between 6900 Hz and 9100 

Hz in Ref. [13], while the band gap obtained by COMSOL Multiphysics is between 6850 

Hz and 9050 Hz. The deviations at the upper and lower limits of the band gap are less than 

1%. These differences are negligible, and the COMSOL Multiphysics model is validated. 

 

0 
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Figure 2.33. Phonon band structure showing the 3D wave propagation of the sample 

model investigated in Ref. [13], obtained by using COMSOL Multiphysics. 
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3. ANALYSIS OF THE 3D INERTIAL AMPLIFICATION 

MECHANISMS 

 

  

In this chapter, 3D inertial amplification mechanisms with different sizes and 

geometries are analyzed and their band structures are obtained. In order to obtain the widest 

band gap in 3D, many iterations are performed with the help of COMSOL Multiphysics and 

ABAQUS/MATLAB programs. Four different cases are explained among many different 

iterations. Each of them has problems and these problems are solved with different 

techniques. The design and optimization of the mechanisms is beyond the scope of this 

thesis. Note that the inertial amplification mechanisms are designed and optimized by Sedef 

Nisan Otlu [86] and Berkay Acar [87], working on the same TUBITAK project (218M475).  

 

3.1.  FEM Model of the 3D Inertial Amplification Mechanism 

 

 The unit cell model of the 3D inertial amplification mechanism is shown in Figure 

3.1. As seen here, the unit cell model is obtained by combining six identical mechanisms 

shown in Figure 3.2.  

 

               

(a)                                                                          (b) 

Figure 3.1. (a) Front view and (b) top view of the designed inertial amplification 

mechanism unit cell model. 
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Each mechanism has seven thin flexures, all of which are the first (𝑥1) and second 

(𝑥2) remote center flexures, horizontal flexure (𝑥3), cross flexures (𝑥4, 𝑥5) which make a 45 

degree angle between horizontal axis, middle long (𝑥6) and short flexures (𝑥7). These 

flexures are quite important for the mechanism and their thicknesses are found by 

optimization to achieve the widest band gap in 3D. Detailed explanations of these flexures 

can be found in Ref [86]. The total length of the mechanism is 157 mm and the material of 

the mechanism is steel (𝜌 = 7800 kg/m3, 𝐸 = 210 GPa, 𝜐 = 0.3). The thicknesses of all 

flexures shown in Figure 3.2 are initially determined as 0.15 mm [86].  

 

 
(a) 

 

 

 
(b) 

Figure 3.2. Seven thin flexures of the inertial amplification mechanisms. (a) First (𝑥1) 

and second (𝑥2) remote center flexures, horizontal flexure (𝑥3), and cross flexures 

(𝑥4, 𝑥5). (b) Middle long (𝑥6) and short flexures (𝑥7) of the mechanism. 

 

The periodic structure of the inertial amplification mechanism is shown in Figure 

3.3a and b. As seen easily in Figure 3.3a and b, in order to obtain the periodic structure of 

𝑥1 𝑥2 

 

𝑥4 

 
𝑥3 

 

𝑥5 

 

𝑥6 

 

𝑥7 
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the mechanism, the mechanism is first translated in the x-y plane at the mechanism length 

and then offset by half the mechanism length in the x and y directions and by √2/2 of the 

mechanism length in the z direction. Assuming that an infinite periodic structure is obtained 

by continuing to repeat in these directions, the behavior of the infinite periodic structure can 

be analyzed by applying Bloch’s theorem to the single unit cell. Bloch's theorem must be 

applied to the corresponding nodes of the unit cell model one by one to obtain Figure 3.3. In 

this way, the phonon band structure graph of the mechanism is obtained to understand the 

behavior of the infinite periodic case.  

 

               

(a)                                                                          (b) 

Figure 3.3. (a) Front view and (b) top view of the periodic structure of the designed 

inertial amplification mechanism. 

 

In order to obtain the band structure, another essential point is to obtain the IBZ 

geometry of the mechanism. The IBZ geometry used in the geometry investigated in Ref. 

[13] cannot be used, as the system does not have simple cube geometry. The IBZ geometry 

of the inertial amplification mechanism is in triclinic crystal structure and the IBZ geometry 

is as in Figure 3.4. While analyzing the system, waves with wave vectors tracing the path B, 

Г, F, Γ, G are considered and the phonon band structure graph of the mechanism can be 

obtained. 
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Figure 3.4. High symmetry points of the triclinic crystal structure and the IBZ of the 

inertial amplification mechanism. 

 

The mesh used in the modal analysis of the inertial amplification mechanism is 

shown in Figure 3.5. In order to mesh the mechanism, the partition toolset in ABAQUS is 

used because it divides the geometries into simpler regions that ABAQUS can mesh by using 

different element types. It also provides more control over the meshing by improving the 

mesh quality. Hexahedral elements with the structured technique is used for the mechanism 

since the hexahedral elements have the highest accuracy of the solutions. The element type 

used is C3D8R, which is an eight-node linear brick with reduced integration.  

 

The mechanism has very thin parts that can easily deform and relatively thick parts 

that almost do not deform. Hence, different size mesh is used in different regions considering 

the computational cost. Finer mesh is used for very thin deformable parts, and the coarser 

mesh is used for non-deformable parts. Unlike Euler Beam Theory, Timoshenko Beam 

Theory takes into account shear deformation and rotational bending effects. Thus, when 

meshing, the thin parts are also divided into several layers through the thickness to have high 

accuracy of the solution. Bloch's theorem is applied separately to the nodes on the yellow 

and red marked surfaces to obtain the infinite periodic structure of the mechanism. As can 

be seen in Figure 3.5, the regions marked with red and yellow must be symmetrical and the 

number of nodes must be equal in order to obtain the phonon band structure of the 

mechanism. Otherwise, Bloch's theorem cannot be applied and thus the band structure of the 

system whose node numbers do not match cannot be found. Therefore, matching of the node 

numbers and surfaces is the most important criterion when meshing the mechanism. 
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Figure 3.5. The mesh structure of the inertial amplification mechanism. 

  

A detailed view of the surfaces marked in yellow in Figure 3.5 is shown in Figure 

3.6a. As can be seen in Figure 3.6a, the number of nodes on the surfaces do not match, hence 

the band structure of the mechanism cannot be found. As six identical mechanisms are 

combined at a certain angle to create the inertial amplification mechanism, the corners of the 

mechanism marked in red and yellow in Figure 3.5 can only be meshed by partitioning the 

tetrahedron regions. Otherwise, it is not possible to partition the corners and mesh the 

mechanism. After using partitioning, different number of edges are automatically created at 

the corners of the mechanism, and symmetrical structures at the corners cannot be obtained 

by using hexahedral elements with the structured technique all over the geometry. Thus, the 

number of nodes on the surfaces do not match, and unsymmetrical surfaces are shown with 

red and yellow arrows in Figure 3.6a. As seen here, all surfaces indicated by the yellow and 

red arrows must be the same and the number of nodes on the surfaces must match as shown 

in Figure 3.6b.  
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(a)                                                                          (b) 

Figure 3.6. Detailed view of the surface marked with yellow circle in Figure 3.5. (a) 

Unsymmetrical matching surfaces of the 3D inertial amplification mechanism obtained 

using the structured mesh technique, and (b) symmetrical matching surfaces obtained 

using the sweep mesh technique. 

 

                

(a)                                                                         (b) 

Figure 3.7. (a) Detailed view of the surface shown in Figure 3.6. (a) Red circles show 

hexahedral mesh structures obtained using the structured mesh technique, and (b) yellow 

circles show distorted mesh structures obtained using the sweep mesh technique. 

 

In order to overcome the problem, either different mesh element types must be used 

for the mechanism or the number of edges at the corners must be made equal. Due to 

partitioning, too many edges are automatically created at the corners. Equalizing the number 

of each edge is a very complex task and takes a lot of time. Therefore, different mesh element 

types are used. More specifically, first hexahedral elements with the sweep mesh only on 

matching surfaces, and then hexahedral elements with the structured mesh for the rest of the 
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mechanism are used. Thanks to this approach, symmetrical mesh structures are first created 

on the matching surfaces regardless of the number of the edges at the corner. Thus, the 

distorted mesh structures marked with yellow circles in Figure 3.7b are created in the regions 

adjacent to the corners, which are the undeformed parts. The distorted mesh structures of 

these undeformed regions do not cause any difference in the analysis result. The proper 

hexahedral mesh structures marked with red circles obtained using the structured mesh 

technique and the distorted mesh structures marked with yellow circles adjacent to the 

corners obtained after using the sweep mesh technique are shown in Figure 3.7a and b, 

respectively. In the latter, each surface is the same and the node numbers of the surfaces 

match. As a result, matching problem is solved with this approach. 

 

After solving the matching problem, the mechanism is analyzed in ABAQUS 

program. As a result of the modal analysis, K and M matrices are taken from ABAQUS and 

transferred to MATLAB. The size of the K and M matrices is very large, in particular, the 

size of the K matrix exceeds eight gigabytes (GB). The number of nodes in the mechanism 

is approximately 2 million 600 thousand. 

 

The MATLAB code, previously validated for 3D wave propagation in Ref. [3], is run 

on a workstation with Intel Xeon Gold 5122 CPU @ 3.60 GHz (2 processors), 256 GB RAM 

and an out-of-memory warning is received. For this reason, the MATLAB code is optimized 

again. As a result of different iterations, results are obtained by using MATLAB in models 

with a maximum of 500 thousand nodes. At this stage, although the system includes detailed 

parts, the number of nodes is reduced to 500 thousand considering a certain margin of error 

in order to get results. In Table 3.1, the modal analysis results of the model with 2 million 

600 thousand nodes and the model with 500 thousand nodes are compared, and the 

percentage deviations from the original model are given.  

 

Before applying the periodic boundary condition (PBC), the unit cell is investigated 

under free-free BCs. In this case, the first six modes are values close to zero and are known 

as rigid body modes. When the unit cell is examined under free-free BCs, a large gap is 

generated between 15th mode and 16th mode. This frequency gap is similar to the band gap, 

and its exact limits can only be found when PBCs are applied. However, since the analysis 

takes too long when PBCs are applied, it is first investigated how the frequencies in the free-
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free BCs of a single unit cell change according to the number of nodes in the model. As can 

be seen in Table 3.1, error rates are below 5% in the expected band gap. The ratio of the 16th 

mode to the 15th mode is 4.46 in the model with 2.600.000 nodes and 4.49 in the model with 

500.000 nodes. The difference between the rates of the two models is less than 1% and is 

negligible. 

 

Table 3.1. Natural frequencies of the model with the reduced number of nodes and the 

percentage deviations from the original model. 

 

Natural frequencies 

(Hz) of the original 

model 

(2.600.000 nodes) 

Natural frequencies (Hz) 

of the model with the 

reduced number of nodes 

(500.000 nodes) 

Frequency deviation rates 

(%) of the model with the 

reduced number of nodes 

(500.000 nodes) 

7.mode 19.55 19.40 0.74 

8.mode 20.44 20.30 0.64 

9.mode 23.02 22.32 3.01 

10.mode 23.43 22.73 2.95 

11.mode 27.10 26.02 4.00 

12.mode 29.94 28.65 4.30 

13.mode 36.75 34.18 6.98 

14.mode 39.09 37.38 4.35 

15.mode 54.76 52.08 4.89 

16.mode 244.48 234.06 4.26 

17.mode 293.65 281.63 4.09 

18.mode 310.6 297.19 4.31 

19.mode 396.44 387.06 2.36 

20.mode 402.35 388.85 3.35 
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As a result of the improvement in the number of nodes, the MATLAB code is run 

again and the analysis takes approximately 13 days. In order to reduce the run time, the 

MATLAB code is rewritten for parallel computing with MATLAB and the analysis time is 

reduced to 10 hours for the first six modes. The phonon band structure of the model obtained 

with ABAQUS/MATLAB is shown in Figure 3.8. The band gap is between 34 Hz and 341 

Hz, and the ratio of the upper limit to the lower limit is 10.03. This ratio is much larger than 

the ratio of the 16th mode to the 15th mode (4.49) in the free-free boundary conditions. 

 

 

Figure 3.8. Phonon band structure showing the 3D wave propagation of the inertial 

amplification mechanism obtained using ABAQUS/MATLAB. 

 

In addition, the same system is modeled in COMSOL Multiphysics and the modal 

analysis results are obtained. In COMSOL Multiphysics, phonon band structure is obtained 

directly in the program, without the need for an additional numerical program. While 

performing modal analysis, COMSOL Multiphysics also calculates the frequency values for 

each wave vector value with its parametric sweep feature. This, of course, causes the analysis 

to take longer and the program becomes unresponsive when the number of nodes is high. 

Therefore, as a result of the different iterations, models up to a maximum of 350 thousand  

nodes can be analyzed in COMSOL Multiphysics.  
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In Table 3.2, the modal analysis results of the COMSOL Multiphysics model with 

350 thousand nodes and the modal analysis results of the ABAQUS model with 2 million 

600 thousand nodes are compared, and the percentage deviations from the ABAQUS model 

(original model) are given. 

 

Table 3.2. Natural frequencies of the models created using ABAQUS and COMSOL 

Multiphysics, and the percentage deviations from the ABAQUS (original) model. 

 

Natural frequencies 

(Hz) of the ABAQUS 

original model 

(2.600.000 nodes) 

Natural frequencies 

(Hz) of the COMSOL 

Multiphysics model 

(350.000 nodes) 

Frequency deviation rates 

(%) of the COMSOL 

Multiphysics model 

(350.000 nodes) 

7.mode 19.55 19.11 2.26 

8.mode 20.44 19.51 4.51 

9.mode 23.02 23.34 1.38 

10.mode 23.43 24.49 4.53 

11.mode 27.10 28.66 5.76 

12.mode 29.94 31.24 4.34 

13.mode 36.75 39.85 8.44 

14.mode 39.09 41.38 5.87 

15.mode 54.76 58.48 6.79 

16.mode 244.48 259.12 5.99 

17.mode 293.65 310.92 5.88 

18.mode 310.6 329.3 6.02 

19.mode 396.44 406 2.41 

20.mode 402.35 423.34 5.22 
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When the unit cell is examined under free-free BCs, a large gap is generated between 

15th mode and 16th mode and the error rates for these modes are below 7%. The ratio of the 

16th mode to the 15th mode is 4.46 in the ABAQUS model with 2.600.000 nodes and 4.43 

in the COMSOL Multiphysics model with 350.000 nodes. The difference between the ratios 

obtained with these two models is less than 1% and is negligible. To sum up, three different 

modal analysis studies are performed in total. Two of them are carried out in ABAQUS with 

2 million 600 thousand nodes and 500 thousand nodes and the other one is performed in 

COMSOL Multiphysics with 350 thousand nodes. As can be seen here, obtaining the phonon 

band structure is only possible with the ABAQUS/MATLAB model with 500 thousand 

nodes and the COMSOL Multiphysics model with 350 thousand nodes. Analysis of the 

COMSOL Multiphysics model takes 30 hours and phonon band structure of the model 

obtained with COMSOL Multiphysics is shown in Figure 3.9. The band gap of the model is 

between 40 Hz and 395 Hz, and the ratio of the upper limit to the lower limit is 9.88. This 

ratio is very close to the 10.03 ratio obtained with the ABAQUS/MATLAB model with 500 

thousand nodes, and the difference between the ratios obtained with these two models is 

approximately 1.5%. 

 

 

Figure 3.9. Phonon band structure showing the 3D wave propagation of the inertial 

amplification mechanism obtained using COMSOL Multiphysics. 
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In order to verify the models analyzed, the frequency responses of the inertial 

amplification mechanism, which is periodically arranged in the form of 3 × 2 is created 

using Hypermesh [87]. As seen in Figure 3.10, unit displacement is given from the left end 

point of the mechanism, the output is taken from the opposite point, and the result of 

frequency response function (FRF) analysis is given in Figure 3.11. 

 

 

Figure 3.10. 3 × 2 octahedron array model of the inertial amplification mechanism [87]. 

 

 

Figure 3.11. Frequency responses of the 3 × 2 octahedron array model of the inertial 

amplification mechanism [87]. 

 

The FRF analysis result of the 3 × 2 system shows that the band gap is between 33.63 

Hz and 333.43 Hz and the ratio of the upper limit to the lower limit is 9.91 [87]. It is clear 

Input Output 
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that the ratio of the band gap limits of the model obtained using COMSOL Multiphysics, 

which is 395/40=9.88, and the ratio of the band gap limits of the 3 × 2 periodic system 

obtained in the FRF analysis, which is 333.43/33.63= 9.91, are close to each other. However, 

the upper and lower limits of the band gaps are quite different. The ratio of the band gap 

limits obtained with ABAQUS/MATLAB, which is 341/34= 10.03, and the ratio of the band 

gap limits of the 3 × 2 periodic system obtained in the FRF analysis, which is 333.43/33.63= 

9.91, are similar. The difference between the ratios of the band gap limits of the two models 

is about 1.2%. The upper and lower limits of the band gaps are also similar. As a result of 

these comparisons, it is seen that the model obtained with ABAQUS/MATLAB gives more 

accurate results than the COMSOL Multiphysics model. One reason for the small differences 

in the phonon band gap obtained by using ABAQUS/MATLAB and the FRF analysis of the 

3 × 2 periodic system is that the mesh types used for two models are different. The other 

important reason is that the phonon band gap found with Bloch's theorem in 

ABAQUS/MATLAB belongs to the infinite periodic structure, and the result of the FRF 

analysis is given only for the 3 × 2 periodic structure. If the number of unit cell is increased, 

the behavior of the finite periodic structure approaches the behavior of the infinite periodic 

system found with Bloch’s theorem. In conclusion, the result is a high level of consistency 

and the differences are negligible. 

 

3.2.  FEM Model of the First Optimized 3D Inertial Amplification Mechanism 

 

The model of the first optimized 3D inertial amplification mechanism is shown in 

Figure 3.12. The unit cell model is obtained by combining six identical mechanisms shown 

in Figure 3.13. This mechanism is quite different than the mechanism shown in Figure 3.2. 

It has seven thin flexures (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7), and three truss elements (𝑥8, 𝑥9, 𝑥10). 

Triangular blocks are supported with truss elements, rectangular blocks are added to the 

middle of the mechanism and the middle flexures are separated into two parts to widen the 

band gap of the mechanism. The total length of the mechanism is still 157 mm and the 

material of the mechanism is steel (𝜌 = 7800 kg/m3, 𝐸 = 210 GPa, 𝜐 = 0.3). The thicknesses 

of flexures shown in Figure 3.13 are determined as 𝑥1 = 𝑥2 = 0.16 mm, 𝑥3 = 0.13 mm, 

𝑥4 = 𝑥5 = 0.10 mm, 𝑥6 = 0.15 mm, 𝑥7 = 0.13 mm, 𝑥8 = 𝑥9 = 𝑥10 = 0.5 mm [87]. 
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(a)                                                                          (b) 

Figure 3.12. (a) Front view and (b) top view of the first optimized unit cell model. 

 

 
(a) 

 

 

 
 (b) 

Figure 3.13. (a) First (𝑥1) and second (𝑥2) remote center flexures, horizontal (𝑥3), and 

cross flexures (𝑥4, 𝑥5). (b) Middle long (𝑥6) and short flexures (𝑥7), and three truss 

elements (𝑥8, 𝑥9, 𝑥10) of the first optimized mechanism. 

𝑥1 𝑥2 

 

𝑥4 

 
𝑥3 

 

𝑥6 

 

𝑥7 
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In order to obtain the phonon band structure of the first optimized mechanism, 

Bloch's theorem must be applied to the nodes on the yellow and red marked surfaces shown 

in Figure 3.5. As stated before, in order to apply Bloch’s theorem, the number of nodes on 

the surfaces marked with red and yellow in Figure 3.5 must match. Since the first optimized 

geometry is different than the geometry shown in Figure 3.1, the corner geometries are 

partitioned in a different way. In this case, in order to match the corresponding surfaces and 

have the same number of nodes on the surfaces, first tetrahedral elements only on matching 

surfaces, and then hexahedral elements with the structured mesh for the rest of the 

mechanism are used. In the former case, the element type used is C3D4, which is a four-

node linear tetrahedron, whereas the element type used in the latter case is C3D8R, which is 

an eight-node linear brick with reduced integration. In this way, the surfaces have the same 

number of nodes. The geometry of the top matching surfaces of the first optimized 

mechanism and the C3D4 type tetrahedral elements used are shown in Figure 3.14a and b, 

respectively.  

 

                      
 

                              (a)                                                                               (b)  

Figure 3.14. (a) The geometry of the top matching surfaces of the first optimized inertial 

amplification mechanism, and (b) its mesh structure obtained using the C3D4 tetrahedral 

element type. 

 

After having the same number of nodes on the matching surfaces, Bloch's theorem 

can be applied in MATLAB. In order to obtain the phonon band structure using 

ABAQUS/MATLAB and not to receive an out-of-memory warning in MATLAB, the first 

optimized mechanism is modelled in ABAQUS with approximately 500 thousand nodes. If 

more nodes are used, the MATLAB program remains unresponsive and the phonon band 
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structure cannot be obtained. Therefore, the finer mesh is used for very critical parts that can 

deform, while the coarser mesh is used for non-deformable parts. The analysis time of the 

mechanism solved with the help of MATLAB parallel computation is 17 hours for the first 

10 modes. The phonon band structure of the first optimized 3D inertial amplification 

mechanism is shown in Figure 3.15. As can be seen here, the phonon band gap of the first 

optimized mechanism is between 39.25 Hz and 512 Hz, and the ratio of the upper limit to 

the lower limit is 13.04. 

 

 

Figure 3.15. Phonon band structure showing the 3D wave propagation of the first 

optimized inertial amplification mechanism obtained using ABAQUS/MATLAB. 

 

3.3.  FEM Model of the Second Optimized 3D Inertial Amplification Mechanism 

 

The model of the 3D inertial amplification mechanism obtained as a result of the 

second optimization is shown in Figure 3.16. The geometry is similar to the geometry shown 

in Figure 3.13, but the dimensions are different and shell elements in addition to solid 

elements are used in this geometry. The total length of the mechanism is still 157 mm and 

the material of the mechanism is steel.  
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The thicknesses of flexures are determined as 𝑥1 = 𝑥2 = 0.148 mm, 𝑥3 = 0.057 

mm, 𝑥4 = 𝑥5 = 0.074, 𝑥6 = 0.115 mm, 𝑥7 = 0.079 mm, 𝑥8 = 𝑥9 = 𝑥10 = 0.516 mm 

[87]. In Figure 3.16, the parts shown in cyan and red represent the shell and solid elements, 

respectively. In the second optimization, the dimensions of the mechanisms need to be 

changed many times until the optimum result is found, and therefore shell elements are used 

in addition to solid elements to model the inertial amplification mechanism. Otherwise, the 

mechanism must be modelled in each optimization study to find the optimum dimensions of 

the mechanism, resulting in a large amount of time wasted. Thus, the mechanism is modelled 

using solid and shell elements. Solid elements have three translational DOFs, whereas shell 

elements have three translational and three rotational DOFs at each node. The total number 

of DOFs of the model is much higher than the model using only solid elements. Because 

when only solid elements are used in any model, since each node has three DOFs, the total 

number of DOFs of the model is three times the number of nodes. Also, in the mechanism 

modeled in Hypermesh shown in Figure 3.16, shell elements enter a row into solid elements 

to prevent shell elements from rotating, and therefore some nodes are shared by both shell 

elements and solid elements. 

  

                        
(a)                                                                          (b)  

Figure 3.16. (a) Front view and (b) top view of the second optimized inertial 

amplification mechanism unit cell model. 

 

Node numbers in ABAQUS or any other FEM program are generated automatically, 

and their numbering varies depending on the type of elements used. Conventional node 

ordering in FEM is shown in Figure 3.17. The node numbering is very confusing when 

considering the inertial amplification mechanism as it has solid, shell elements and shared 
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nodes. It is not known which nodes are solid, shell or shared and in what order they are in 

the K and M matrices obtained from ABAQUS. Therefore, K and M matrices obtained from 

ABAQUS are very complicated to read in MATLAB. Implementing Bloch’s theorem by 

using K and M matrices in MATLAB also becomes very complicated and the MATLAB 

code previously written for the 3D case does not work in this case. In summary, two different 

problems need to be solved, reading K and M matrices by MATLAB and then implementing 

Bloch’s theorem in MATLAB. In order to solve the problem of reading K and M matrices, 

two different methods can be used for the model that has solid, shell and shared elements. 

 

 

Figure 3.17. Node numbering of 2D and 3D elements in FEM. 

 

The first method is to define the three different element sets, i.e., solid elements, shell 

elements and shared elements. K and M matrices for each element set are exported, then 

these matrices are merged to obtain the total matrix of the model. In order to do that, the 

code shown below should be written in the ABAQUS input file. 
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 *STEP, NAME=SOLID_ELEMENTS 

 *MATRIX GENERATE, STIFFNESS, MASS, ELSET=<element set with only 

solid elements> 

 *MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX INPUT 

 *END STEP 

 *STEP, NAME=SHELL_ELEMENTS 

 *MATRIX GENERATE, STIFFNESS, MASS, ELSET=<element set with only shell 

elements> 

 *MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX INPUT 

 *END STEP 

 *STEP, NAME=SHARED_ELEMENTS 

 *MATRIX GENERATE, STIFFNESS, MASS, ELSET=<element set with both 

solid and shell elements> 

 *MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX INPUT 

 *END STEP 

 

The alternative way is to generate K and M matrices by ABAQUS in the common 

mathematical coordinate format instead of the matrix input text format (default format). In 

order to get K and M matrices in the common mathematical coordinate format, the code 

shown below should be added in the ABAQUS input file.  

 

 *STEP 

 *MATRIX GENERATE, STIFFNESS, MASS 

 *MATRIX OUTPUT, STIFFNESS, MASS, FORMAT=MATRIX COORDINATE 

 *END STEP 

 

Thanks to this, ABAQUS automatically generates the matrices that can be read by 

mathematics programs such as MATLAB. In this method, there is no need to define solid, 

shell and shared elements and merge them to get global matrices. This method is very useful 

and easier to implement. Both methods are validated and they both give the same result. For 

simplicity, the second method is used to overcome the problem of reading K and M matrices 

by MATLAB. 
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After solving the problem of reading the matrices with MATLAB, the problem of 

applying Bloch's theorem in MATLAB should be solved. In order to solve the problem, 

nodes are renumbered. First the nodes of the solid elements, then the shared nodes and finally 

the nodes of the shell elements are renumbered from one to the maximum number of nodes. 

The element with the least DOFs must be used first to ensure a certain order. This order is 

significant and only works when this starts with solid elements and ends with shell elements. 

The order is especially important on the matching surfaces where Bloch's theorem is applied. 

As seen in Figure 3.16, since only solid elements are used on the matching surfaces where 

Bloch's theorem is applied, the DOFs in these regions can be easily found for each node by 

multiplying three. After solving the problems, Bloch’s theorem is applied in MATLAB.  

 

 

Figure 3.18. Phonon band structure showing the 3D wave propagation of the second 

optimized inertial amplification mechanism obtained using ABAQUS/MATLAB. 

 

The phonon band structure of the second optimized 3D inertial amplification 

mechanism is shown in Figure 3.18. The analysis time of the mechanism solved with the 

help of MATLAB parallel computation is 15 hours for the first 10 modes. As can be seen in 

Figure 3.18, the phonon band gap of the second optimized inertial amplification mechanism 

is between 33.7 Hz and 457.5 Hz, and the ratio of the upper limit to the lower limit is 13.58. 

 



    58 

   

 

Figure 3.19. Frequency responses of the 3 × 2 octahedron array model of the second 

optimized inertial amplification mechanism. 

 

The 3 × 2 octahedron array is arranged the same as the structure shown in Figure 

3.10 for FRF analysis. Unit displacement is given from the left end point of the mechanism, 

the output is taken from the opposite point, and the FRF analysis result is given in Figure 

3.19.  As can be seen, the band gap is between 33 Hz and 459 Hz. The band gap limits of 

the 3 × 2 octahedron array and the infinitely periodic structure are thus demonstrated to be 

very similar. 

 

3.4.  FEM Model of the Optimized Large Scale 3D Inertial Amplification 

Mechanism 

  

The band structure of the inertial amplification mechanism whose dimensions are 

scaled up after the first optimization study (see Section 3.2) is calculated. This mechanism 

is slightly different than the mechanism shown in Figures 3.12 and 3.13. It has also seven 

thin flexures (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7), and three truss elements (𝑥8, 𝑥9, 𝑥10). The rectangular 

blocks next to the middle short flexures (𝑥7) are hollowed out, cross flexures (𝑥5) are 
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doubled, and M5 bolts are used at the end of the mechanism. In the first optimization study, 

the flexures are very thin and the minimum thickness is 0.1 mm. However, it is not likely to 

produce this mechanism with these thicknesses. Therefore, the length of the mechanism is 

increased by about 3.8 times to 600 mm in order to make the production feasible. 

 

                  
 

(a)                                                                         (b) 

Figure 3.20. (a) Front view and (b) top view of the optimized large scale inertial 

amplification mechanism unit cell model. 

 

The new thicknesses of flexures shown in Figure 3.21 are found as 𝑥1 = 0.44 mm, 

𝑥2 = 0.48 mm, 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 𝑥7 = 0.4 mm  𝑥8 = 2 mm, 𝑥9 = 1 mm, 𝑥10 = 3 mm 

[87]. As a result of scale up, it is aimed to decrease the natural frequencies of the system and 

to achieve isolation at low frequencies. It is aimed to provide vibration isolation in a wider 

frequency band by changing the limits of the first optimized parameters in the large scale 

mechanism.  

 

The model of the 3D inertial amplification mechanism obtained as a result of the 

optimization is shown in Figure 3.20, and the parts shown in cyan and red represent the shell 

and solid elements, respectively. Notice that only half is shown in Figure 3.21b since the 

mechanism is symmetrical.  
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(a) 

   

 

 

 
(b) 

Figure 3.21. (a) First (𝑥1) and second (𝑥2) remote center flexures, horizontal flexure 

(𝑥3), and cross flexures (𝑥4, 𝑥5). (b) Middle long (𝑥6) and short flexures (𝑥7), and three 

truss elements (𝑥8, 𝑥9, 𝑥10) of the large scale mechanism.  

 

The corner geometries of the newly designed optimized large scale unit cell are 

different from the designed unit cell shown in Figure 3.12. Figure 3.22a shows the left corner 

geometry of the newly designed model, while Figure 3.22b shows the left corner geometry 

of the previously designed model shown in Figure 3.12.  

 

In order to obtain the phonon band structure of the newly designed mechanism, 

Bloch's theorem must be applied to the corresponding nodes on the corner surfaces, which 

are the same as the locations shown in Figure 3.5. 
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(a)                                                                          (b) 

Figure 3.22. (a) Left corner geometry of the newly designed optimized large scale 

model, and (b) left corner geometry of the previously designed (see Figure 3.12) model 

of the inertial amplification mechanism. 

 

 

Figure 3.23. Phonon band structure showing the 3D wave propagation of the optimized 

large scale inertial amplification mechanism obtained using ABAQUS/MATLAB. 

 

The phonon band structure of the optimized large scale 3D inertial amplification 

mechanism is shown in Figure 3.23. The analysis time of the mechanism solved with the 

help of MATLAB parallel computation is 10 hours for the first six modes.  
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As can be seen in Figure 3.23, the phonon band gap of the optimized large scale 

inertial amplification mechanism is between 6.37 Hz and 90.26 Hz, and the ratio of the upper 

limit to the lower limit is 14.17. This is the widest band gap obtained when all the 3D 

phononic crystals and elastic metamaterials in the literature are considered (see Table 1.1).  
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4. CONCLUSION 

 

  

Three dimensional inertial amplification mechanisms with different sizes and 

geometries are analyzed to create the widest band gap in the literature. The band structures 

of the mechanisms are obtained by applying periodic boundary conditions, also called 

Bloch’s boundary conditions, to the unit cells. In the literature, the widest band gap in 3D is 

achieved by this method, and the band gap is found to be in between 6.37 - 90.26 Hz, with 

a ratio of the upper limit to the lower limit of 14.17. Hence, vibration transmission is 

prevented in all directions within this frequency range. 

 

First of all, typical wave problems in 1D, 2D, and 3D periodic structures studied in 

the literature are investigated and benchmark studies are performed with the help of 

COMSOL Multiphysics and ABAQUS/MATLAB programs. Thanks to the testing and 

validation of these models, the phonon band structure of the 3D elastic metamaterials with 

embedded inertial amplification mechanisms can then be precisely calculated. The inertial 

amplification mechanism developed in the TUBITAK project (218M475) has a complex 

geometry and analysis time can be very long. Therefore, phonon band structures are 

calculated by using both COMSOL Multiphysics and ABAQUS/MATLAB programs to 

obtain the most accurate model by comparing with the FRF results of the 3 × 2 octahedron 

array. 

 

Many problems are encountered while applying Bloch's theorem to the inertial 

amplification mechanisms. First, matching problems occur on surfaces of different inertial 

amplification mechanisms where Bloch's theorem is applied. They are solved by using 

different mesh techniques in ABAQUS. Second, since inertial amplification mechanisms 

have very thin and thick parts, they can only be modelled with approximately 2 million 600 

thousand nodes in ABAQUS. Thus, the size of the K and M matrices becomes very large, 

and only the K matrix exceeds eight gigabytes (GB). Even when using a workstation 

computer with a 16-core Intel Xeon Gold 5122 CPU 3.60 GHz and 256 GB RAM to calculate 

the phonon band structure, MATLAB gives an out of memory warning. To solve the 

problem, the MATLAB code is optimized and as a result of different iterations, results can 

only be obtained by using MATLAB in models with a maximum of 500 thousand nodes 
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modelled with ABAQUS. As a second method, COMSOL Multiphysics is used to calculate 

the band structure of the same geometries. Models up to a maximum of 350 thousand nodes 

can be analyzed in COMSOL Multiphysics. To sum up, only the ABAQUS models with 500 

thousand nodes and the COMSOL Multiphysics models with 350 thousand nodes can be 

used to calculate the phonon band structures of the 3D elastic metamaterial with embedded 

inertial amplification mechanisms. A certain margin of error is, of course, taken into account 

to get results. Otherwise, it is not possible to get any results. The error rates between both 

models and the ABAQUS model with 2 million 600 thousand nodes (original model) are 

less than 1% and are negligible. When the results obtained with COMSOL Multiphysics and 

ABAQUS/MATLAB are compared with 3 × 2 FRF results, ABAQUS/MATLAB gives 

more accurate results than COMSOL Multiphysics model. Therefore, ABAQUS/MATLAB 

is used for subsequent calculations. Third, the computational costs of the models are very 

high. The analysis takes about 13 days for the ABAQUS model with 500 thousand nodes 

solved with the help of MATLAB. Therefore, MATLAB code is optimized, and parallel 

computation is used. Thus, the analysis time of the same system is reduced to 10 hours. 

Finally, when mechanisms are modeled using only solid elements, the number of nodes 

becomes too large and phonon band structures cannot be computed due to memory shortage 

or a certain margin of error is taken. Also, in optimization study, the dimensions of the 

mechanisms need to be changed many times until the optimum result is found. Thus, the 

models containing both solid and shell elements are used. The use of models containing solid 

and shell elements, however, brings about some problems because the elements have 

different degrees of freedom. The problems are reading the K and M matrices by MATLAB 

and then implementing Bloch’s theorem in MATLAB. The easiest way to solve the former 

problem is to use the common mathematical coordinate format instead of the matrix input 

text format (default format) in ABAQUS. To solve the latter problem, on the other hand, 

nodes are renumbered. To conclude, the above mentioned problems are solved, and thus the 

widest band gap in 3D is calculated. 
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APPENDIX A: PSEUDO CODE THAT COMPUTES THE BAND 

STRUCTURE OF THE 2D STRUCTURES 

  

  

 Input: K and M matrices, node numbers, # Increments 

 Output: Eigenvalues and eigenvectors 

1 Determine node numbers: nL, nR, nB, nT, nBL, nBR, nTL, nTR, nI ← left, right,  

2 bottom, top, corner, internal nodes 

3 Determine each DOF: 𝑞𝐿 ← [2𝑛𝐿 − 1  2𝑛𝐿]  // Same procedure for each DOF                                               

4 Import: K and M matrices from ABAQUS with all free boundary conditions, K, M  

5 matrices should be 2𝑛 × 2𝑛 square matrices where n is the total number of nodes 

6 for i=1 to #Increments do // Determine each edge of the IBZ of the unit cell 

7  𝑘(𝑖) ← [𝑘1(𝑖)  𝑘2(𝑖)] // Wave vector                                                                     

8 end  

9 𝑞𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝐼) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝐿) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝐵) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝐵𝐿) // Reduced  

10 number of DOFs 

11 𝑃 ← 𝑧𝑒𝑟𝑜𝑠(2𝑛, 𝑞𝑛), 𝑃0 ← 𝑧𝑒𝑟𝑜𝑠(2𝑛, 𝑞𝑛), 𝑃𝑥 ← 𝑧𝑒𝑟𝑜𝑠(2𝑛, 𝑞𝑛),                         

12 𝑃𝑦 ← 𝑧𝑒𝑟𝑜𝑠(2𝑛, 𝑞𝑛), 𝑃𝑥𝑦 ← 𝑧𝑒𝑟𝑜𝑠(2𝑛, 𝑞𝑛) // Form Bloch periodicity submatrices 

13 for i=1 to 2n do // Find the locations of each DOF in the Bloch-periodicity matrix 

14   [𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛] ← 𝑓𝑖𝑛𝑑(𝑞𝐿 == 𝑖) 

15  𝑃0(𝑖, 𝑐𝑜𝑙𝑢𝑚𝑛) ← 1 // Same procedure for each DOF 

16 end 

17 for i=1 to #Increments do // Calculate the eigenvectors and eigenvalues 

18  𝑙𝑎𝑚𝑏𝑑𝑎1 ← 𝑒𝑥𝑝 (1𝑖 ∗ 𝑘1(𝑖) ∗ 𝑟1) // Multiplier of right and left  

19  𝑙𝑎𝑚𝑏𝑑𝑎2 ← 𝑒𝑥𝑝 (1𝑖 ∗ 𝑘2(𝑖) ∗ 𝑟2) // Multiplier of top and bottom                         

20  𝑃 ← 𝑃0 + 𝑙𝑎𝑚𝑏𝑑𝑎1 ∗ 𝑃𝑥 + 𝑙𝑎𝑚𝑏𝑑𝑎2 ∗ 𝑃𝑦 + 𝑙𝑎𝑚𝑏𝑑𝑎1 ∗ 𝑙𝑎𝑚𝑏𝑑𝑎2 ∗ 𝑃𝑥𝑦 

21  𝐾𝑅 ← 𝑃′ ∗ 𝐾 ∗ 𝑃  // Reduced stiffness matrix                                                          

22  𝑀𝑅 ← 𝑃′ ∗ 𝑀 ∗ 𝑃 // Reduced mass matrix                                                               

23  [𝑉, 𝐷] ← 𝑒𝑖𝑔𝑠(𝐾𝑅,𝑀𝑅) 

24 end 
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APPENDIX B: ELSEVIER LICENSE NUMBER 

5458851205096 

 

 

Figure B.1. Elsevier license of [31] for Figures 2.20 and 2.21. 
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APPENDIX C: JOHN WILEY AND SONS LICENSE NUMBER 

5458850506031 

 

 

Figure C.1. John Wiley and Sons license of [7] for Figures 2.24, 2.25 and 2.26. 
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APPENDIX D: ELSEVIER LICENSE NUMBER 

5458850899369 

 

 

Figure D.1. Elsevier license of [13] for Figures 2.29, 2.30 and 2.31. 

 

 

 

 


