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Boğaziçi University

2022



iii

ACKNOWLEDGEMENTS

I would like to express my gratitude and deepest appreciation to my supervisor,

Sertan Alkan, who guided me throughout this project. I’m so thankful for his guidance

and persistent help for this dissertation. I would also like to thank my friends and

especially my family who supported me and gave me the encouragement I needed

throughout the study.



iv

ABSTRACT

A TWO PARAMETER CHARACTERIZATION OF EDGE

CRACKED NITI SHAPE MEMORY ALLOY UNDER

PLANE STRAIN CONDITIONS

Shape memory alloys (SMAs) are metallic systems that exhibit reversible, dif-

fusionless, martensitic phase transformation. Employing finite element analyses, the

stress fields and crack tip constraints generated are examined for a NiTi SMA which

exhibits superelastic behavior. For this purpose, a single edge cracked configuration

satisfying plane strain conditions is subjected to uniform loading. Both pure Mode I

and mixed mode (Mode I + Mode II) configurations are elaborated by changing the

crack inclination angle. As a novel step, a multi-parameter fracture mechanics ap-

proach is adapted to characterize the dependence of stress field components on both

asymptotic r−1/2 and radial ro terms around the crack tip. This task is accomplished

by generating closed-form fitting expressions for stress components via nonlinear least-

square regression of the full field data from finite element analyses. It has been shown

that ro term plays a significant role on the stress field around the crack tip in NiTi

SMAs.

In characterization of crack tip constraint in NiTi, stress triaxiality parameter,

Q, is utilized in the present work. To quantify the behavior of Q, the material char-

acteristics of NiTi such as transformation start and end stresses, hardening modulus

and transformation strain are varied under both pure Mode I and mixed mode con-

figurations. The results show that martensitic transformation has an effect of stress

constraint relaxation effect reflected by the decrease of Q parameter. Meanwhile promo-

tion of transformation start stress is found to have a strong contribution in constraining

crack tip, the transformation end stress is observed to have negligible effect.
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ÖZET

KENAR ÇATLAKLI NITI ŞEKİL HAFIZALI ALAŞIMIN

DÜZLEMSEL GERİNİM ALTINDA İKİ PARAMETRELİ

KARAKTERİZASYONU

Şekil hafızalı alaşımlar; tersinir, yayınımdan bağımsız, martensit faz dönüşümü

gösteren metalik alaşımlardır. Bu çalışmada, sonlu elemanlar analizi kullanılarak

süperelastik NiTi şekil hafızalı alaşımda çatlak ucu gerilmesi ve kısıtlaması tetkik

edilmiştir. Bu amaçla kenar çatlaklı düzlemsel gerinim şartlarını sağlayan bir nu-

mune homojen dağılımlı uzak gerilme alanına tabi tutulmuştur. Hem Mod I hem de

karışık modlu (Mod I + Mod II) yükleme rejimi incelenmiştir. Kırılma mekaniğinin

çoklu-parametre yaklaşımıyla çatlak ucu gerilmelerinin asimptotik r−1/2 ve radyal ro

terimlerine bağıntısı irdelenmiştir. En küçük kareler prensibiyle doğrusal olmayan re-

gresyon metodu, sonlu elemanlar verisi kullanılarak çatlak ucu gerilmelerinin kapalı

form olarak ifade edilmesinde kullanılmıştır. ro teriminin şekil hafızalı alaşımlarda

çatlak ucu gerilmelerinin doğru ifadesinde önemli rolü olduğu gösterilmiştir.

Bu çalışmada, NiTi çatlak ucu kısıtlamasının sayısal hesaplanmasında parame-

tre olarak üç boyutlu gerilme hali, Q, kullanılmıştır. Q parametresinin NiTi malzeme

özelliklerine bağımlılığı; faz dönüşüm başlangıç ve bitiş gerilmeleri, Mod I ve karışık

mod için pekleşme katsayısı ve faz dönüşüm gerinimi kontrollü değiştirilerek sap-

tanmıştır. Sonuçlar, Q parametresinin değerinin azalması itibariyle, martensitik faz

dönüşümünün çatlak ucu kısıtlamasını gevşettiğini göstermiştir. Faz dönüşüm ger-

ilmesinin artışı çatlak ucunu daha fazla kısıtlamış, ancak faz dönüşüm bitiş gerilmesinin

kısıtlama üzerine etkisi çok düşük seviye kalmıştır.
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1. INTRODUCTION

Shape memory alloys (SMAs) are metallic systems that exhibit reversible dif-

fusionless, martensitic phase transformation. Essentially, in martensitic phase trans-

formation, a high-symmetry austenite phase favors a low-symmetry martensitic phase

via mechanical or thermal stimulus [1]. Typical shape memory alloys can be listed as

NiTİ, CuZn, CuZnAl, NiCuAl, NiTiCu etc. [2]. They find a vast range of application

fields such as biomedical, aerospace, automotive and construction industries. Among

them: cardiovascular stents, turbine nozzles, dual shock absorbers can be listed [3].

Therefore, to characterize the performance of SMAs standsout as an important prob-

lem in material and mechanical engineering fields.The working regime of SMAs are

characterized by four specific temperatures which are called transformation tempera-

tures (As, Af , Ms, Mf ). As is the austenite start temperature and Af is austenite

finish temperature whereas Ms is martensite start temperature and Mf stands for

martensite finish temperature [4]. Below Mf temperature, SMA systems favor a self-

accommodated, multi-variant microstructure in which the variants are originated from

the same austenite crystal structure but exhibit different orientations in the martensite

crystal. If there is no applied load in martensitic phase but only temperature stimu-

lus, self-accommodation of multiple martensitic variants leads to no macroscopic strain

change [5]. With applied loading under constant temperature, these variants promote

to a single variant via reorientation and/or detwinning mechanisms which result in

macroscopic strain. Subsequently, heating an SMA to a temperature above As, the

martensite phase transforms back to austenite phase and a significant transformation

strain, on the order of 2-10 percentage depending on the alloy system, is recovered.

This mechanism is named as shape memory effect (SME) or one-way memory effect

[10]. In a closely related phenomenon, namely two-way shape memory effect, SMAs

subjected to a previous thermomechanical training cycle, favor a single variant under

sole stimulus of temperature unlike self-accomadating structure. The resulting mi-

crostructure still exhibits shape recovery if transformation is driven back to austenite

by heating above As [7].
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There is also another transformation mechanism driven by applied loading at a

temperature regime greater than Af which is named as pseudoelasticity. Pseudoelas-

ticity is a significant concept associated with stress-induced transformation and results

in stress-induced martensite accompanied by a substantial transformation strain favor-

ing one or two variants depending on the alloy system. Upon unloading, the reverse

transformation from martensite to austenite tends to recover the transformation strain

[8]. In the next section, these transformation mechanisms will be detailed.

1.1. Shape Memory Effect

A typical closed thermomechanical path 1-2-3-4-1, exemplifying SME is shown in

Figure 1.1.

Figure 1.1. Stress strain temperature schematic of the crystallographic changes

involved in the shape memory effect.
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As can be seen, starting with an initially austenite phase and subsequently cooling it

along the path (1-2), SMA transforms to twinned martensite (although there are some

exceptions) under the effect of temperature change (self-accommodated structure) with

no macroscopic strain. Subsequently, if SMA is loaded via (2-3) path, the applied load

at constant temperature initiates stress induced martensitic transformation and intro-

duces significant strain. In this particular configuration, the microstructure is com-

posed of a single variant consuming the other variants. The resulting microstructural

phase is denoted as detwinned martensite. As the very same SMA is unloaded by

following path (3-4), detwinned martensite is conserved and the corresponding strain

is not recovered except the elastic part. Completing the cycle by heating above Af

following (4- 1), the material favors austenite phase again and the detwinning strain is

usually recovered at a high extent [6]. This distinguishing property to accommodate

deformation reversibly is called one-way shape memory effect (SME) and employed in

sensor technologies successfully [10].

1.2. Two-Way Shape Memory Effect

Meanwhile, the two-way shape memory effect is very similar to one-way shape

memory effect, it differs by a thermomechanical training cycle before point I of Figure

1.1. To exemplify this, at a constant temperature (70o C),Ni50Ti50 (at. %) is subjected

to tensile loading cycle which is reported to exhibit single variant martensite structure

upon release of loading and lowering temperature below Mf unlike conventional SMAs

which exhibit multi-variant structure [12]. In contrast to conventional SMA samples,

this particular sample exhibits a macroscopic transformation strain by favoring a sin-

gle variant upon cooling below Mf instead of self-accommodated microstructure which

induces no macroscopic strain. This sample still exhibits shape recovery up on heat-

ing above As as in one-way SME. Based on this fact, the corresponding property is

distinguished as two-way shape memory effect. It is important to design training con-

ditions properly in achieving the desired SMA performance due to the fact that either

insufficient or over-training cycles lead to poor two-way SME [13].
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1.3. Pseudoelasticity

Pseudo elasticity is the property of SMAs to undergo a reversible stress-induced

martensitic transformation at a constant ambient temperature above Af [14]. As illus-

trated in Figure 1.2, applied load at an initially austenitic sample promotes austenite-

martensite transformation at martensite start stress level denoted by SMS. The trans-

formation introduces substantial transformation strain (on the order of 2-6 % ) in

general identified by the region between B point and C point in Figure 1.2. The

microstructure is transferred to martensite completely at point C corresponding to

martensite finish stress, SMF . Note that, elastic deformation of martensite is observed

up on further loading above SMF till plastic yielding. During unloading, the reverse

transformation initiates at the critical austenite start stress, SAS (point E) and com-

pletes at austenite finish stress, SAF (point F). At the end of the cycle A-B-C-D-E-F-A,

the resulting crystal structure favors austenite phase again with a substantial recovery

of transformation strain [15]. This phase transformation process exhibits a stress hys-

teresis, commonly defined as the difference between the stress levels corresponding to

50 percentage martensite volume fraction during forward and reverse transformation

reactions reflecting the energy dissipated throughout the cycle. In the next section,

in order to establish a strong background for the present proposal statement focusing

on fracture response of SMAs, as its title supplies, fundamental concepts in fracture

mechanics will be revisited. First of all, Griffith energy balance is described and ex-

amined under equilibrium conditions. Following this trend, modified Griffith equation

is explained. Further on, the goals of the present work will be detailed.
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Figure 1.2. Schematic stress-strain curve of super elastic shape memory alloy
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2. A REVISIT TO FUNDAMENTAL CONCEPTS IN

FRACTURE MECHANICS

2.1. Griffith Energy Balance

Mathematically, crack formation is associated with the removal of the surface

tractions acting on crack surfaces. Under quasi-static equilibrium conditions, the total

energy change of a closed system including both cracked material and applied loading

is zero [17]. From the thermodynamical perspective, critical fracture condition is de-

scribed as the point where crack grows under equilibrium conditions without any further

change in total energy, E. The early studies on fracture mechanics have started with

Inglis and Griffith [18,19]. The study of Griffith on glass whiskers have established the

underlying energy criterion on crack extension [18]. The subsequent subsection focuses

on the energy balance conditions for crack advance under equilibrium quantitatively

based on this early literature [19].

2.2. Griffith Energy Balance Under Equilibrium

Consider a plate of width thickness (B=1) that contains a crack of length 2a under

constant far field stress, as shown in Figure 2.1. For this 2-D case,plate dimensions

are assumed to be much greater than crack size. For stable crack growth, potential

energy associated with internal strain energy and applied loading should be sufficient

enough to overcome surface energy of the material. Then, the energy balance for

an incremental projected crack area growth, dA, under equilibrium conditions can be

formulated based on the work of Griffith as

dE

dA
=

dΠ

dA
+

dWs

dA
= 0, (2.1)

where Ws represents the work required to create the new crack surfaces with extension.
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Figure 2.1. A through-thickness crack in an infinitely wide plate subjected to a

remote tensile stress.

At this stage, the projected area, A, of the crack is expressed as

A = 2aB. (2.2)

The total surface area, TA, of the crack is expressed as

TA = 4aB. (2.3)

In order to calculate the critical levels of energy transferred or stress field generated

for the system to initiate crack extension, we need precise knowledge on the potential

energy stored in the system. However, in general this is a difficult task requiring numer-

ical techniques. On the other hand, in this section, we want to focus on the particular

case shown in Figure 2.1 for which Inglis introduced an analytical solution. Note that,

this approach assumes linear elastic, homogeneous, isotropic material behavior. Then,

the potential energy of the system shown in Figure 2.1 is given explicitly as

Π = Π0 −
ΠS2a2B

E
. (2.4)
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In this equation, Π0 is uncracked plate potential energy and E is Young’s Modulus.

Since crack formation requires two new surfaces created, Ws term is expressed as

Ws =
4aB

γs
, (2.5)

where γs is the surface energy per unit area and related with Ws as such

γs =
Ws

TA

. (2.6)

As we focus on infinitesimal crack extension, differentiating Ws term leads to

dWs = 4γsBda. (2.7)

Therefore, the rate of change in Ws with respect to the projected area A is expressed

as

dWs

dA
=

(4γsBda)

(2Bda)
. (2.8)

For unit thickness (B=1), equation (2.8) is simplified to

dWs

dA
= 2γs. (2.9)

Then, as the uncracked potential energy, Π0 does not change with crack extension, the

potential energy release rate −dΠ
dA

is expressed as

−dΠ

dA
=

πS2a

E
. (2.10)

Therefore, following Griffith energy balance leads to the condition

−dΠ

dA
=

dWs

dA
. (2.11)
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This equation dictates that the potential energy release rate with crack extension must

be equal to the crack surface energy formation rate. In Griffith approach, a single

parameter G is introduced to capture −dΠ
dA

term. Based on this perspective, the crack

propagation is governed by the critical level G, namely Gc. For the given particular

example, the far-field applied load level promoting G to Gc level corresponds to a

far-field stress of S = Sf which is explicitly given as

Sf = (
2Eγs
πa

)1/2. (2.12)

2.3. Modified Griffith Equation

Theoretically, equation (2.12) is valid only for ideally brittle solids in which plastic

effects are neglected. Thus, Orowan and Irwin modified Griffith equation for materials

that exhibit plastic flow [20,21]. Derivation of a critical fracture stress, Sf , for metals

exhibiting plasticity is extended as

Sf = (
2E(γp + γs)

πa
)1/2, (2.13)

where γp ( plastic work per unit area) term is included to capture crack tip plasticity.

In fact, modified Griffith equation can be generalized for any type of energy dissipation

as expressed

Sf = (
2Ewf

πa
)1/2, (2.14)

where wf stands for the combination of energy terms related to plastic, viscoelastic,

viscoplastic effects depending on the material type. By appropriate modification, other

energy dissipative phenomena such as martensitic transformation can be also incorpo-

rated into the model. On the other hand, quantification of the related energy terms is

a formidable task and needs elaborate experimental and numerical techniques.
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The elastic stress field approach of stress intensity factor is taken into account for

linear elastic, homogeneous materials and this fracture mechanics theory is examined

elaborately in the following chapter.

2.4. Stress Intensity Factor Approach:

Up on evaluation of the fracture mechanics theory, following Inglis and Griffith

[18,19]; Westergaard [22], Williams [23,24] and Irwin [21] have put forward efforts to

designate an approach which can capture the stress field generated ahead of the crack

tip. To achieve this task, asymptotic techniques within the scope of linear elasticity

theory is adopted to cracked bodies in which case the crack tip is regarded as a geo-

metric singularity. Within this framework, the possible loading configurations acting

far-field on the cracked samples are classified into three modes: Mode I (opening),

Mode II (sliding) and Mode III (tearing) as illustrated in Figure 2.2.

Figure 2.2. Three loading modes of crack surface displacements.

Near the crack tip, each loading mode generates the 1/
√
r singularity at the crack

tip with an angular dependence, θ, captured by fij (θ) function based on the polar

coordinate frame attached to the crack tip in Figure 2.3.

The general form of stress fields ahead of crack tip for Mode I are expressed as

lim
r→0

SI
ij =

KI√
2πr

f I
ij(θ). (2.15)
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The general form of stress fields ahead of crack tip for Mode II are expressed as

lim
r→0

SII
ij =

KII√
2πr

f II
ij (θ). (2.16)

The general form of stress fields ahead of crack tip for Mode III are expressed as

lim
r→0

SIII
ij =

KIII√
2πr

f III
ij (θ), (2.17)

where each of the parameters KI , KII , KIII are denoted as stress intensity factor for

the corresponding loading mode. Note that K parameter is linearly proportional to

applied loading S. On the other hand, the exact relation between S and K requires

the solution of the boundary value problem associated with the crack configuration at

hand.

Figure 2.3. Stress normal to the crack plane S22 with respect to the distance from the

crack tip (r).

Singular stress fields and crack tip displacements for Mode I and Mode II in linear

elastic, isotropic materials are tabulated in Table 2.1 and Table 2.2 in terms of Cartesian

coordinates (with origin at the crack tip).
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Table 2.1. Crack tip displacement fields for modes I and II (linear, elastic materials)

MODE I MODE II

ux
KI

2µ

√
r
2π
cos( θ

2
)[κ− 1 + 2sin2( θ

2
)] KI

2µ

√
r
2π
sin( θ

2
)[κ+ 1 + 2cos2( θ

2
)]

uy
KI

2µ

√
r
2π
sin( θ

2
)[κ+ 1− 2cos2( θ

2
)] -KI

2µ

√
r
2π
cos( θ

2
)[κ− 1− 2sin2( θ

2
)]

In Table 2.1, κ is calculated by the formula of 3-4ν under plane strain conditions

and (3-ν)/(1+ν) under plane stress conditions.

Table 2.2. Stress and displacement fields ahead a crack tip for modes I, II.

Mode I Mode II

(Sxx)
KI√
2πr

cos( θ
2
) [1-sin( θ

2
)sin(3θ

2
)] − KII√

2πr
sin( θ

2
) [2+cos( θ

2
)cos(3θ

2
)]

(Syy)
KI√
2πr

cos( θ
2
) [1+sin( θ

2
)sin(3θ

2
)] KII√

2πr
sin( θ

2
) cos( θ

2
)cos(3θ

2
)

(τxy)
KI√
2πr

cos( θ
2
) sin( θ

2
)cos(3θ

2
) KII√

2πr
cos( θ

2
) [1-sin( θ

2
)sin(3θ

2
)]

(Szz) v(Sxx+Syy)(Plane Strain) v(Sxx+Syy) (Plane Strain)

(Szz) 0 (Plane Stress) 0 (Plane Stress)

(τxz) 0 0

(τyz) 0 0

Within the scope of engineering implementations, usually a combination of these three

modes are encountered which is denoted as mixed mode. In a mixed-mode problem,

linear superposition principle is invoked and contribution of each loading mode is su-

perposed in calculating the resultant stress tensor acting at the crack tip and it is

expressed as

Stotal
ij = SI

ij + SII
ij + SIII

ij . (2.18)

The corresponding approach leads to a critical K value concept to describe the crack

extension which is denoted as fracture toughness Kcritical. Note that Kcritical values are

determined from experiments under plane strain conditions. The underlying reasons

will be detailed in the following sections.
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2.5. Effect of Finite Size

At this stage, we should emphasize that the asymptotic analysis introduced so far

governs on the crack tip region and it is derived based on an infinite domain assump-

tion. However, it does not consider the free surface boundaries existing in finite size

samples. This implies that the disturbance in the stress-strain-displacement fields must

be accommodated by adjusting the independent K factors properly for these general

configurations. Below, Figure 2.4 illustrates the effect of finite and infinite width on

the crack tip stress distribution, which is represented by lines of force. In the Figure

2.4, the local stress state is directly related to the spacing between lines of force. It

is salient that local stress near the crack tip is higher than far-field value. Also, due

to the fact that a tensile stress cannot be transmitted through a crack, the lines of

force are diverted around the crack. In Figure 2.4a, the line of force at a distance W

from the crack centerline has force components in x and y directions. On the other

hand, if the plate width is restricted to 2W as in Figure 2.4b, the traction along x

direction is to be trivially zero at the free edge; this boundary condition causes the

lines of force to be localized, which results in higher stress magnitude at the crack

tip. As exemplified in Figure 2.4, the effect of finite size should be taken into account

for accurate K factor calculations. Meanwhile, analytical approaches are successful

in certain cases; in general, numerical methods need to be implemented to solve for

stress, strain and displacement fields. We should note that the theory we revised so far

considers no dissipative mechanisms such as plasticity or martensitic transformation.

As the main focus of the present study is on SMA fracture response, in the following

section plasticity effects on crack tip fields will be discussed briefly.
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Figure 2.4. Stress concentration effects due to a through crack in finite and infinite

width plates: (a) infinite plate and (b) finite plate
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3. PLASTICITY EFFECTS IN FRACTURE MECHANICS

The asymptotic K field is disturbed by the presence of plastic deformation.

Therefore, it is important to provide a background on the earlier studies in this section,

as the effects of plasticity exhibit close resemblence to the martensitic transformation.

Therefore, developing an understanding on crack tip plasticity effects stands out as

an important step towards understanding the change of K with dissipative processes.

Based on this perspective, we are going to list the prominent studies in the field below

emphasizing the main contributions of them in the theory.

Table 3.1. Plasticity theories

Irwin Model Strip-Yield (Dugdale) Model

Keff = S
√
πa√

1− S2

2(Sys)2

Keff = S
√

πasec( πS
2Sys

)

δ = 4
π

K2
I

SysE
δ = 8Sysa

πE
In sec( πS

2Sys
)

ry =
1
2π
(KI

Sys
)2 ρ = π

8
(KI

Sys
)2

rp =
1
π
(KI

Sys
)2

In Table 3.1; Keff defines effective stress intensity factor, δ defines crack tip opening

displacement, ry defines nominal crack tip, rp and ρ defines plastic zone size within

the scope of plasticity theories conducted by Irwin and Dugdale [26]. Following the

establishment of K field approach, Cherapanov [29] and Rice [31] have proposed an

integral line, called J integral, which stands out to be of constant value taken around

a crack tip for elastic systems and is capable of characterizing the crack tip conditions

by using elastic far field values. Below, the mathematical background for J Integral

is briefly discussed as it is of significant use in characterizing crack tip fields within

presence of plasticity effects.
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3.1. J as a Path-Independent Line Integral

J integral is formulated using repeating indices summation convention

J =

∫
wdy − Ti

∂ui

∂x
ds. (3.1)

In this expression, w is strain energy volumetric density, Ti is traction vector compo-

nents, ui is displacement vector components where i is varying from 1 to 3 and ds is

length increment along the contour as illustrated in Figure 3.1.

Figure 3.1. Arbitrary contour around the tip of a crack.

Among these terms, strain energy density, w, is expressed as

w =

∫ ϵ

0

Sijdϵij, (3.2)

where Sij is the stress tensor and ϵij is the strain tensor. Similarly, the traction vector

components Ti are defined as

Ti = Sijnj, (3.3)

where nj is the ith components of the unit vector normal to Γ .
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As aforementioned, J integral is independent of the path of integration around

the crack for linear elastic, isotropic, homogeneous systems. Furthermore, it can be

shown that J integral and energy release rate, G, are equal to each other and expressed

for Mode I explicitly as

J =

∫
wdy − Ti

∂ui

∂x
ds = G =

K2
ı

E
. (3.4)

3.2. Evaluation of the J Integral as a Domain Integral

Precise quantification of the fracture metrics at the crack tip for materials under-

going dissipative deformation processes such as metal plasticity or martensitic transfor-

mation still stands out as a major challenge in fracture mechanics community. Among

different techniques proposed, J integral is classified as a prominent figure with its

broad capability in capturing the energy release rate with crack extension, especially

for monotonic loading conditions in dissipative media under the conditions frequently

named as J dominant zone. J dominant zone is located outside the process zone, where

the HRR field accurately describes the deformation. On the other hand, adaptation

of the line integral definition of J integral into finite element analysis framework is of

limited success due to its high sensitivity with the interpolated field variables. Thus,

domain integrals are incorporated to achieve accurate computation of energy release

rate at the crack tip. Within this context, we will be focusing on the quasi-static (where

the inertial effects are assumed to be equal to zero) problems with a general dissipative

constitutive response encompassing both elastic and plastic as well as transformation

induced deformation mechanisms. The generalized definition of J integral, stated in

equation (3.5) requires that the contour Γ0 surrounding the crack tip be vanishingly

small in order to characterize the crack tip fracture mechanics metrics where T is the

kinetic energy density and w is the stress work density. J Integral is expressed as

J = lim
Γ0→0

∫
Γ0

[(w∗ + T )δ1i − Sij
∂uj

∂x1

]nidΓ. (3.5)
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In the particular case of materials undergoing a reversible martensitic transformation,

within the absence thermal and inertial effects (T=0) and unloading, total strain,

ϵi
t
j
otal , can be assumed to be linearly decomposed as elastic, ϵi

e
j , and transformation

induced, ϵi
t
j
r, portions in equation (3.6).

ϵi
t
j
otal=ϵi

e
j + ϵi

t
j
r. (3.6)

Thus, the stress work term can be formulated as

w∗ =

∫ ϵ

0

Sijdϵi
t
j
otal. (3.7)

Figure 3.2. Inner (Γo) and outer (Γ1) contours, which form a closed contour around

the crack tip when connected by Γ+ and Γ− on the crack surfaces.

The generalized formulation of J Integral is not appropriate for numerical fracture

mechanics analyses as obtaining an accurate mechanical field poses a challenging task

along with the presence of crack tip singularity. To overcome this problem, two closed

contours, excluding but near the crack tip named as inner Γ0 and outer Γ1 contours,

are traversed and connected by Γ+ and Γ− as illustrated in Figure 3.2.
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Noting that, outer Γ1 contour is finite and Γ0 is imposed to be vanishingly small,

the J integral along the closed contour Γ ∗, (Γ ∗ = Γ1 + Γ+ + Γ− - Γ0), is stated as

J =

∫
Γ ∗
[Sij

∂uj

∂x1

− wδ1i]qmidΓ −
∫
Γ++Γ−

[S2j
∂uj

∂x1

]qdΓ, (3.8)

where mi is the outward unit normal on Γ ∗. Note that q=0 on Γ1 and q=1 on Γ0.

Furthermore, mi=-ni on Γ0. Additionally, m1=0 and m2=±1 on Γ+ and Γ−. When

there are no tractions on crack faces, second integral vanishes in second equation.

Invoking for the divergence theorem, leads to equation (3.9) as

J =

∫
A∗

∂

∂xi

([Sij
∂uj

∂x1

− wδ1i]q)dA, (3.9)

where A∗ is the area enclosed by Γ ∗. In the end, J integral is expressed as

J =

∫
A∗
[Sij

∂uj

∂x1

− wδ1i]
∂q

∂xi

dA+

∫
A∗
[
∂

∂xi

(Sij
∂uj

∂x1

)− ∂w

∂x1

]qdA. (3.10)

3.3. Crack Tip Triaxiality

So far, only a 2D specimen geometry is considered but no thickness effect is taken

into account. Consider a cracked plate with thickness B subject to in-plane loading

in Figure 3.3. Hence, the material at the crack tip tries to contract in the x and z

directions because of the large stress normal to the crack plane. However, contraction

is prevented by the surrounding material. This constraint results in a triaxial state

of stress near the crack tip as a function of thickness (z coordinate) which is not

considered in detail in the earlier discussion. The variation of S33 versus z is shown

in Figure 3.4. At the interior plate, triaxial stress effect is high and the stress state

essentially converges to plane strain state (i.e. S33 = v(S11+S22)). In contrast, triaxial

stress effect is suppressed at free surface and the stress state converges to pure plane

stress state such that S33 = 0.
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Figure 3.3. Three-dimensional deformation at the tip of a crack.

Figure 3.4. Schematic variation of transverse stress and strain through the thickness

at a point near the crack tip.

3.4. Effect of Thickness on Apparent Fracture Toughness

As aforementioned, thickness dependence of fracture toughness levels are critical

in material design. Kcrit which is a measure of critical fracture toughness value asso-

ciated with crack advancement, is a function of specimen thickness and reaches to a

steady-state level which is named as plane strain fracture toughness Kıc.
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In general, Kıc value is employed as the critical level based on the thickness depen-

dence of Kcrit. The decreasing trend in Kcrit with thickness is attributed to triaxiality

effect governing on crack tip response in ductile materials. To this end, the material

is said to exhibit crack tunneling effect. The underlying mechanism can be detailed

such that as a specimen is loaded monotonically, the mid-section of the crack front

will advance first,and the free surfaces lead to 45o angle to the applied load as seen in

Figure 3.5. The resulting fracture model exhibits a flat region in the center and 45o

shear lips on the edges. Fractography of brittle materials do not exhibit any shear lips

as plastic mechanisms are suppressed.

Figure 3.5. Effect of specimen thickness on fracture surface morphology for materials

that exhibit ductile crack growth.

3.5. Plastic Zone Effect

There is no direct relationship between the plastic zone size and the plane strain

conditions near the crack tip. According to 3D elastic-plastic finite element analysis

for fracture toughness specimens, high degree of triaxiality persists near the crack tip

even the entire specimen cross-section yields [28]. Since both plastic and elastic zones

contribute to K level, the single parameter approaches based on small-scale yielding

cannot be directly employed under fully plastic conditions. In order to overcome this

difficulty, more elaborate criterion covering the plastic energy dissipation needs to be

incorporated in calculations.
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On physical grounds, J integral or crack tip opening displacement (CTOD) terms

can be used as they are directly related with potential energy release rate. At low K

values, the plastic zone shape exhibits dominantly plane strain character and at higher

K values plastic zone converges to a plane-stress shape. It is known that plane strain

conditions exist near the crack tip inside the interior plate. This corresponds to the fact

that plastic zone shape exhibits plane strain character as plasticity effects dominate

approximately half the plate thickness. This trend illustrates that high triaxiality zone

at the crack tip can persist even in the presence of large-scale plasticity conditions.

Based on this perspective, a single parameter approach either considering solely plane-

strain or plane-stress is not sufficient to capture the crack tip fracture response in

presence of large-scale plasticity. As SMA systems tend to exhibit large transformation

strain levels around the crack tip zone, a similar behavior for SMAs are expected as

observed in ductile materials. This introduces a necessity for a two parameters analysis.

In Figure 3.6, the general crack tip field is characterized based on the dominance

of yielding conditions such as large strain region enclosed by J dominated zone which

in turn surrounded by K dominant field. Among these, the region where stress varies

with 1 /
√
r singularity is called K-dominated region. Linear elastic fracture mechanics

techniques prevail in this outermost domain. Closer to the crack tip, J dominated region

occurs inside a plastic region which on theoretical grounds, can be approximated by a

strain-hardening plastic model enabling explicit calculation of the critical J value, Jc

associated with crack advancement.

Figure 3.6. Effect of plasticity on the crack tip stress fields: (a) small-scale yielding.
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Closer to crack tip, a large strain zone of fully plastic forms. In this zone, the presence

of large-scale yielding exceeds the capabilities of single parameter fracture mechanics

and necessitates additional parameters. In this case, use of T stress or Q term is

suggested in the earlier literature [33]. In the next section, these approaches will be

introduced briefly.

3.5.1. T-Stress

Meanwhile, the asymptotic r−0.5 term in in crack tip stress field is governed by

K term, as detailed by the work of Williams [28], the following term of 0o captures the

S11 term and this term is expressed as

S11 =
KI√
2πr

f11(θ) + T. (3.11)

Considering the plane-strain conditions governing at the interior of the cracked samples

of finite thickness, T stress term has a direct contribution on S33 field. This contribution

in T stress magnitude promotes strong triaxiality effects at the crack tip. Therefore, T

stress term can be employed to consider triaxiality governing at the crack tip accurately.

The promotion of T stress, increases crack-tip triaxiality. At this stage, it should be

emphasized, T stress term exhibit strong dependence on geometry similar to K term.

3.5.2. J-Q Theory

The second approach in developing two-parameter fracture mechanics involves

J-Q theory. J-Q theory is valid for nonlinear material response embracing crack tip

plasticity. In this theory, Q parameter is added as a hydrostatic stress field shift in front

of crack tip. It is very similar to T stress which considers r0 term but the significant

point is that Q parameter dominates only in front of crack tip while T stress prevails

over a larger domain and stress field is expressed as

Sij ≈ Sij(T=0) +QS0δij | θ |≤ π

2
. (3.12)
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In this equation, Q term is defined as

Q =
S22 − (S22)T=0

S0

(3.13)

at (r,θ) = (r∗, 0). The radial coordinate r∗ satisfies

r∗ =
2J

S0

. (3.14)

3.6. Fracture Mechanics of SMAs

With the emerging need for functional materials in industrial, military and trans-

portation applications, the fracture behavior of SMAs has been a popular research area

[2-4], [15]. The crack tip stress components, Sij, based on linear elastic fracture me-

chanics (LEFM) theory for mode I loadings can be expressed in terms of the cylindrical

coordinates as following equation, (3.15),

Sij(r, θ) =
KI√
2πr

fij(θ). (3.15)

In this perspective, KI is explicitly denoted as K∞
I standing out as remote stress

intensity factor based on LEFM [43]. This is important in a sense that the crack tip

martensitic transformation is likely to introduce toughening effect that reduces the ac-

tual tip stress intensity factor compared to remote stress intensity factor. Figure 3.7

shows that stress induced martensite (SIM), occurring near crack tip of NiTi alloys,

results in a rather complicated stress distribution with a constant stress regime stem-

ming from the transformation plateau. Three different regions are observed near the

crack tip. The first region is austenitic or untransformed region for r > rA, (Se<Str).

The second region is transformation zone for rM < r < rA, (Se≈Str). The third region

is martensitic or fully transformed region for r < rM , (Se>Str).
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In these regions, Se is defined as an equivalent stress based on the transformation

criterion employed with rA and rM representing the boundaries of fully martensitic and

fully austenitic regions connected with a partially transformed domain. Within this

scope, principal stress components in the austenitic region for θ=0 under plane stress

condition denoted by SAi(r) is formulated [42].

SA1(r) is expressed as

SA1(r) =
KIe√
2πr

. (3.16)

SA2(r) is stated as

SA2(r) =
KIe√
2πr

. (3.17)

SA3(r) is identified as

SA3(r) = 0, (3.18)

where KIe is defined as Mode I effective stress intensity factor defined based on an

artificial effective crack length ae that is expressed as a function of transformation stress

and transformation zones. Based on this approach, the principal stress components in

the martensitic region for θ=0, denoted by SMi(r) is formulated.

SM1(r) is expressed as

SM1(r) =
1

2(1− v) + (α−1 − 1)
[2(1− v)

KIe√
2πr

+ (α−1 − 1)Str − ϵLEA]. (3.19)

SM2(r) is defined as

SM2(r) =
1

2(1− v) + (α−1 − 1)
[2(1− v)

KIe√
2πr

+ (α−1)Str − ϵLEA]. (3.20)
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SM3(r) is evaluated as

SM3(r) = 0. (3.21)

In these equations, α is expressed as

α =
EM

EA

. (3.22)

Figure 3.7. Schematic depiction of the stress distribution and phase transformation in

the crack tip region of NiTi alloys

Within the scope of this analytical approach, the martensitic transformation re-

sults in a lower effective stress intensity factor resulting from the energy dissipation

during transformation at the crack tip.
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Therefore, the martensitic transformation contribution on the crack tip fields is

substantial and needs to be considered in any rigorous design effort. Moreover, the

results in the literature have mainly focused on Mode I configuration. On the other

hand, mixed mode problems are also frequently encountered in real-life engineering ap-

plications. Based on this motivation, within the scope of the present study, pure Mode

I and mixed mode (Mode I+ Mode II) stress fields for NiTi SMA will be elaborated

employing finite element analysis in the following section.
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4. METHODOLOGY AND RESULTS

4.1. Problem Geometry

As an initial step towards characterizing the stress fields evolved around the

crack tip in an SMA material of NiTi, using finite element modelling environment of

ABAQUS software, a single edge cracked specimen under plane strain conditions of

height h = 100 mm and the width W = 100 mm is introduced. A straight edge crack

of size a = 25 mm is included in the model. The plate is made of an isotropic linear

elastic material with a Young’s modulus of E = 70 GPa and Poisson’s ratio v = 0.35. A

symmetric, uniform far-field tensile stress field of S∞ = 40 MPa is applied. Additional

displacement boundary conditions are imposed such that no in-plane displacement or

rotation about the out-of plane axis is allowed at the far-field edge point lying at the

intersection of the crack plane extension and specimen surface as illustrated in Figure

4.1.(a).

Figure 4.1. (a) Single edge notch specimen geometry and dimensions are illustrated.

(b) Meshed configuration of the specimen. (c) Square meshes around the crack tip

zone.
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ABAQUS calculations provided the displacement and stress fields as well as the J

contour integral values. As demonstrated in the earlier sections, the contour integral

values can be expressed in terms of elastic constants and stress intensity factor values

for linear elastic materials. In order to calibrate the model parameters in ABAQUS,

the analytical geometric factor, F, formulation proposed by Gross (1964) and Brown

(1966) based on the least square fitting given as [45]

F = 0.265(1− a

W
)4 + (0.857 + 0.265

a

W
)/(1− a

W
)3/2. (4.1)

Noting that (a/W) ratio is equal to 0.25 for the configuration focused, the corresponding

geometric factor is calculated as F=1.505. Similarly, the resulting theoretical stress in-

tensity factor,Ktheo
I , is evaluated as 533.609 MPa

√
m. On the other hand, noting that J

contour integral values are path independent in the present configuration, the resulting

J value from ABAQUS modelling is calculated as 3.530 J/mm2. This value corresponds

to a stress intensity factor of KI= 530.663 MPa
√
m. As can be seen, the analytical

and the numerical ABAQUS solutions for Mode I stress intensity factor differs only by

0.552 %. This result exhibits the accuracy level of the modelling parameters embodied

in ABAQUS environment. Based on this high level of agreement between theoretical

prediction and finite element calculations, the present meshing scheme is adopted also

for the following analyses.

4.2. Inclined Crack Configuration

As a second step in modelling efforts of the linear elastic (identical properties as

with the straight cracked geometry) sample (similarly exhibiting austenite NiTi elastic

response) using ABAQUS, an inclined edge crack in a rectangular plate under plane

strain conditions of height h = 100 mm and width W = 100 mm is subjected to the

same far-field stress field and displacement boundary conditions as in the straight crack

which is illustrated in Figure 4.2 (a). As in the previous case, the crack size a is set to

be equal to 25 mm making an angle of α = {10o, 20o, 30o} in clockwise sense.
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For non-zero α values, the elastic conditions at the crack tip exhibit both Mode I

and Mode II, i.e. mixed mode, characteristics. Thus, neither KI nor KII terms vanish

in the asymptotic expansion formulation discussed above.

Figure 4.2. (a) Single edge specimen geometry of an inclined edge crack. (b) Meshed

configuration for the specimen with an inclined crack. (c) Square meshes around the

crack tip zone.

On the other hand, the contour independent J Integral stands out as an instru-

mental tool in describing the potential energy release rate for both straight and inclined

crack configurations in linear elastic, homogeneous materials. Based on this motiva-

tion, the J contour integral values are evaluated for the set of α angles of {10o, 20o, 30o}

and tabulated in Table 4.1. For comparison reasons, α = 0 case is also invoked. The

results indicate that the J contour integral values, being equal to the potential energy

release rates also for this material, exhibit a decreasing trend up on increasing the crack

inclination angle α.
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Table 4.1. The variation of J contour integral with the crack inclination angle α for

various transformation strain levels. The J integral units are in J/mm2.

Crack Angle α 0o 10o 20o 30o

J for ϵL = %4 3.592 3.431 2.990 2.373

J for ϵL = %6 3.595 3.430 2.990 2.375

J for ϵL = %8 3.597 3.436 2.993 2.375

4.3. Modelling Single Edge Crack Behavior for NiTi Shape Memory Alloy

In adaptation of superelastic response in ABAQUS platform, the built-in supere-

lastic NiTi SMA constitutive material model, based on Auricchio’s model, is employed.

The austenite phase behaves as an isotropic, linear elastic material with a Young’s mod-

ulus of EA = 70 GPa and Poisson’s ratio v = 0.35. The martensitic phase starts to

form at SMS and arrives at a completion by the stress level of SMF . The Young’s

modulus of martensite phase, EM , is set equal to 35 GPa meanwhile the Poisson ratio

is taken as same as austenite.

From a mechanical point of view, the elastic predictor-plastic corrector algorithm

is employed to solve for the multiaxial stress tensor, S, the total strain tensor ϵ and

the martensite phase volume fraction ξ. In the material model utilized (based on small

strain approach), in 3D the total strain increment tensor, ∆ϵ, is composed of the elas-

tic strain increment, ∆ϵel, and the transformation strain increment ∆ϵL such that

(using repeating index summation convention with i, j = 1 to 3)

∆ϵij = ∆ϵelij +∆ϵLij. (4.2)

The transformation strain increment tensor ∆ϵL is evaluated based on the gradient of

the transformation flow potential Gtr which is defined as

Gtr = Seq − CtrT. (4.3)
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In this expression, Seq is von-Mises equivalent stress, Ctr is a material parameter depen-

dent on the hardening modulus H, martensite start stress SMS as well as transformation

strain ϵL. Based on the normality condition, ∆ϵLij components are determined as

∆ϵLij = ∆ξ
∂Gtr

∂Sij

(4.4)

with an increment of martensite volume fraction ∆ξ. The model follows generalized

plasticity framework and the corresponding austenite-martensite transformation sur-

face, F tr, is adapted as

F tr = σeq − CMT = 0. (4.5)

In this expression, CM is a material parameter dependent on temperature sensitivity of

SMS and T is the ambient temperature chosen as 40oC in the present work. The iden-

tical geometry introduced earlier for the single edge cracked plate under plane strain

conditions of the height h = 100 mm and the width W = 100 mm height is used. A

straight edge crack of size a = 25 mm is included in the model. A symmetric, uni-

form far-field tensile stress field of S∞ = 40 MPa is applied. The same displacement

boundary conditions as in the linear elastic case is adapted in order to restrict rigid

body rotation. It is to be noted that no unloading is considered throughout the present

work. Thus, martensite to austenite transformation does not come in to play.

As conventional linear elastic fracture mechanics do not provide a direct method-

ology for the stress intensity factor and the other higher order stress field terms around

a crack tip in an SMA undergoing martensitic transformation, the stress data eval-

uated by finite element analysis are employed generate a closed-form approximation.

For this purpose, a 10 x 10 square element cluster surrounding crack tip is generated

forming eleven node paths as shown in Figure 4.3. Stress components in the default

ABAQUS coordinate frame (S11, S12, S21, S22, S33), varying with the corresponding

radial distance, r, and azimuthal angle, θ, are obtained in finite element model for each

node.
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Figure 4.3. 10 x 10 square element cluster contains eleven node path shown with red

marks.

The non-zero stress tensor components of S11, S12 (= S21), S22 and S33 in default

ABAQUS Cartesian coordinate frame defined with the base vectors e∗1 − e∗2 − e∗3 are

transformed into a locally defined Cartesian coordinate frame having base vectors of

e1−e2−e3 by rotating a clockwise angle of α equal to 0o, 10o, 20o, 30o as the illustrated

in Figure 4.3 and Figure 4.4 for the particular case of 20o.

Figure 4.4. Example of transformed coordinate system for 20o case.
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Figure 4.5. Inclined crack configuration of NiTi

Following the transformation operation, the collected discrete stress component

data are cast into a continous form using the asymptotic function set. In the computa-

tional scheme employed, stress transformation operations are conducted by firstly by

expressing the crack tip coordinates of (X0, Y0) as illustrated in Figure 4.5. Afterwards

node coordinate positions, except crack tip, are denoted as (X, Y). Radial distance, r

values of each node inside path are calculated as

r =
√

(X −X0)2 + (Y − Y0)2. (4.6)

Similarly the azimuthal angle, θ, is defined as below

θ = arctan(
Y − Y0

X −X0

) +
2πα

360
, (4.7)

where α is crack inclination angle.



35

In order to accomodate for the angular variation of stress fields around the crack

tip, the set of trigonometric parameters {mij, nij, vij, wij} are introduced where the

subscripts i,j = 1,2. As a further step to embrace the radial term effect other than

asymptotic term, ro terms denoted as Aij, with i,j = 1,2, are introduced in the fit

functions. The fit functions of stress components are listed in equations (4.8), (4.9),

(4.10), respectively.

Sfit
11 is expressed as

Sfit
11 =

Keq√
(2πr)

[sin(m11θ)cos(n11θ) + sin(v11θ) + cos(w11θ)] + A11. (4.8)

Sfit
12 is expressed as

Sfit
12 =

Keq√
(2πr)

[sin(m12θ)cos(n12θ) + sin(v12θ) + cos(w12θ)] + A12. (4.9)

Sfit
22 is expressed as

Sfit
22 =

Keq√
(2πr)

[sin(m22θ)cos(n22θ) + sin(v22θ) + cos(w22θ)] + A22, (4.10)

where Sfit
12 component is equal to Sfit

21 due to symmetry of the stress tensor. The

corresponding error functions for each stress component are introduced as the difference

between the transformed stress component and the fit function value as expressed in

equation (4.11), (4.12), (4.13) and (4.14).

f 11
error is expressed as

f 11
error = S11 − Sfit

11 . (4.11)

f 12
error is expressed as

f 12
error = S12 − Sfit

12 . (4.12)
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f 21
error is expressed as

f 21
error = S21 − Sfit

21 . (4.13)

f 22
error is expressed as

f 22
error = S22 − Sfit

22 . (4.14)

The individual fitting operations are employed in order to extract the equivalent stress

intensity factor levels, Keq , evaluate the stress triaxiality, Q. These parameters are de-

pendent on the extent of hardening during transformation, the effects of transformation

start and end stresses and transformation strains.
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5. STRAIN HARDENING EFFECT

5.1. Role of Strain Hardening Modulus

In this chapter, strain hardening effect is elaborated to build an understanding on

the response in crack tip fields to the hardening level changes during transformation.

For this purpose, both the collected stress component data from ABAQUS S11, S12

and S22 and fit stress components Sfit
11 , S

fit
12 and Sfit

22 are visualized under different

hardening modulus conditions. Hardening modulus, H, is formulated as

H =
SMF − SMS

ϵL
, (5.1)

where SMS and SMF are martensite start and finish stresses along with the transfor-

mation strain ϵL of NiTi as illustrated in Figure 5.1 .

Figure 5.1. Uniaxial response of a superelastic material
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5.2. 625 MPa Hardening Modulus Case

To generate a hardening modulus, H, equal to 625 MPa, the start and end stress

levels of forward transformation are chosen as 200 MPa and 250 MPa for a given ϵL

magnitude of 0.08, summarized in Table 5.1. The hardening modulus is explicitly

calculated as

H =
250− 200

0.08
MPa = 625 MPa. (5.2)

Table 5.1. Superelastic material properties of H=625 MPa NiTi

Transformation Strain 0.08

Forward Transformation Start Stress 200 MPa

Forward Transformation End Stress 250 MPa

In order to extract Keq level as a function of varying levels and crack angle α, a

nonlinear fitting scheme is introduced in the previous section. For the fitting variables

{Keq,mij, nij, vij, wij} based on the algorithm followed, initial values are to be assigned.

In this case the set of initial values are chosen as {0.1MPa m−1/2, 1.1, 1.2, 1.5, 1}, re-

spectively. Stress intensity factor values for 625 MPa hardening modulus is tabulated

in Table 5.2 along with the tabulated fitting parameters as a function crack angle α in

Tables 5.3 to 5.6.

Table 5.2. Keq, A11, A12, A22 values with respect to crack angle α given H=625 MPa

α 0o 10o 20o 30o

Keq [MPa
√
m] 170 150 140 130

A11 [MPa] 1.9 3.4 3.9 2.7

A12 [MPa] -181.95 -151.55 -173 -161.62

A22 [MPa] 46.1 20.1 54.8 20.5
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Table 5.3. Fit parameter values for straight crack angle of H=625 MPa

m11 n11 v11 w11

0.0006 1.769 0.0004 -0.8182

m12 n12 v12 w12

2.9500 6.1000 9.0500 1.3400

m22 n22 v22 w22

−0.0006 2.653 -0.00047 0.000064

Table 5.4. Fit parameter values for 10o degrees crack angle of H=625 MPa

m11 n11 v11 w11

0.2800 1.3900 0.3500 -0.6100

m12 n12 v12 w12

2.6000 -1.4600 9.4000 1.0600

m22 n22 v22 w22

1.0800 1.0200 0.0600 -0.0003

Table 5.5. Fit parameter values for 20o degrees crack angle of H=625 MPa

m11 n11 v11 w11

0.0880 1.7300 0.1900 -0.8400

m12 n12 v12 w12

0.3500 0.0000 0.3500 1.1800

m22 n22 v22 w22

0.3800 -0.6700 -0.2800 0.2300
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Table 5.6. Fit parameter values for 30o degrees crack angle of H=625 MPa

m11 n11 v11 w11

0.1300 0.8700 0.1500 -0.8500

m12 n12 v12 w12

1.2800 0.0000 -2.2500 1.0700

m22 n22 v22 w22

1.7600 4.1900 2.4300 0.0000

Both the raw and fit data for stress components, Sij and Sfit
ij with i,j = 1,2 ,

for H=625 MPa level are plotted as function of radial coordinate, r and θ for each set

of crack inclination angle set of {0o, 10o, 20o, 30o}. In Figure 5.2 to 5.4, the raw and

fit stress components are plotted for a straight crack configuration, α = 0o. In the

following plots, the blue circles represents fit stress component values meanwhile red

points represent the raw stress component values collected from ABAQUS.

Figure 5.2. S11 in H=625 MPa case for straight crack.
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For Figure 5.2, the maximum difference between S11 and Sfit
11 is less than 1 MPa

and this corresponds to only 0.1 % relative difference with respect to maximum of S11

data. Similarly, for Figure 5.3, the maximum gap between S12 and Sfit
12 amounts less

than 1 MPa for which the relative error ratio is 0.3 % with respect to the maximum

S12. The error margins are also very similar between S22 and Sfit
22 data set as illustrated

in Figure 5.4.

Figure 5.3. S12 in H=625 MPa case for straight crack.
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Figure 5.4. S22 in H=625 MPa case for straight crack.

In Figure 5.5 to 5.7, the raw and fit stress components are plotted for a straight

crack configuration, α = 10o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. Meanwhile, for Figure 5.5, the maximum error between S11

and Sfit
11 is only 2 MPa; it is only 1.5 MPa in the case of S12 and Sfit

12 data sets.

Furthermore, the error does not exceed 1.4 MPa between S22 and Sfit
22 . To this end,

the fitting functions for stress components are regarded as sufficiently accurate around

the crack tip.
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Figure 5.5. S11 in H=625 MPa case for 10o degrees inclined crack.

Figure 5.6. S12 in H=625 MPa case for 10o degrees inclined crack.
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Figure 5.7. S22 in H=625 MPa case for 10o degrees inclined crack.

In Figure 5.8 to 5.10, the raw and fit stress components are plotted for a straight

crack configuration, α = 20o. In the following plots, the blue circles represents fit

stress component values meanwhile red points represent the raw stress component

values collected from ABAQUS. For these three stress components, S11, S12 and S22,

the maximum differences between the fit values do not exceed 1 MPa.
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Figure 5.8. S11 in H=625 MPa case for 20 degrees inclined crack.

Figure 5.9. S12 in H=625 MPa case for 20o degrees inclined crack.
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Figure 5.10. S22 in H=625 MPa case for 20o degrees inclined crack.

In Figure 5.11 to 5.13, the raw and fit stress components are plotted for a straight

crack configuration, α = 30o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. Similar to the previous discussions for other α values; in this

case, the maximum errors between stress components Sij and Sfit
ij for i,j = 1,2 are less

than 1 MPa.
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Figure 5.11. S11 in H=625 MPa case for 30o degrees inclined crack.

Figure 5.12. S12 in H=625 MPa case for 30o degrees inclined crack.
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Figure 5.13. S22 in H=625 MPa case for 30o degrees inclined crack.
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5.3. 833 MPa Hardening Modulus Case

To generate a hardening modulus, H, equal to 833 MPa, the start and end stress

levels of forward transformation are chosen as 200 MPa and 250 MPa for a given ϵL

magnitude of 0.06, summarized in Table 5.7. The hardening modulus is explicitly

calculated as

H =
250− 200

0.06
MPa = 833 MPa. (5.3)

Table 5.7. Super elastic material properties of NiTi with H=833 MPa

Transformation Strain 0.06

Forward Transformation Start Stress 200 MPa

Forward Transformation End Stress 250 MPa

For the fitting variables {Keq,mij, nij, vij, wij} based on the algorithm followed,

initial values are to be assigned. In this case the set of initial values are chosen as

{0.1MPa m−1/2, 1.1, 1.2, 1.5, 1}, respectively. Stress intensity factor values for 833 MPa

hardening modulus is tabulated in Table 5.8 along with the tabulated fitting parameters

as a function crack angle α in Tables 5.9 to 5.12.

Table 5.8. Keq, A11, A12, A22 values with respect to crack angle α given H=833 MPa

α 0o 10o 20o 30o

Keq [MPa
√
m] 180 140 160 130

A11 [MPa] 0.3 1.9 5.3 4.2

A12 [MPa] -166.9 -147 -178.3 -161.4

A22 [MPa] 33.4 27.1 15.3 38.1
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Table 5.9. Fit parameter values for straight crack angle of H=833 MPa

m11 n11 v11 w11

0.0007 1.9700 0.0006 0.8400

m12 n12 v12 w12

3.0936 3.9220 11.0780 1.3472

m22 n22 v22 w22

-0.0011 2.5700 -0.0009 0.0005

Table 5.10. Fit parameter values for 10o degrees crack angle of H=833 MPa

m11 n11 v11 w11

0.2300 1.4800 0.3200 -0.6500

m12 n12 v12 w12

1.5068 -7.8555 9.3623 1.0421

m22 n22 v22 w22

1.0300 0.9800 0.0500 0.0000

Table 5.11. Fit parameter values for 20o degrees crack angle of H=833 MPa

m11 n11 v11 w11

0.0900 2.1200 0.2100 0.9000

m12 n12 v12 w12

−9.0705 -9.7569 8.8848 1.1377

m22 n22 v22 w22

1.8200 5.9200 4.1000 -0.0001
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Table 5.12. Fit parameter values for 30o degrees crack angle of H=833 MPa

m11 n11 v11 w11

0.0800 1.9900 0.2800 0.8900

m12 n12 v12 w12

0.2297 0.0000 0.2297 1.0696

m22 n22 v22 w22

-3.5000 4.4800 -0.4900 0.0000

Both the raw and fit data for stress components, Sij and Sfit
ij with i,j = 1,2 ,

for H=833 MPa level are plotted as function of radial coordinate, r and θ for each

set of crack inclination angle set of {0o, 10o, 20o, 30o}. In Figure 5.14 to 5.16, the raw

and fit stress components are plotted for a straight crack configuration, α = 0o. In

the following plots, the blue circles represents fit stress component values meanwhile

red points represent the raw stress component values collected from ABAQUS. In each

fitting operation, the maximum error is confined to the interval [0.5, 2] MPa.

Figure 5.14. S11 in H=833 MPa case for straight crack.
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Figure 5.15. S12 in H=833 MPa case for straight crack.

Figure 5.16. S22 in H=833 MPa case for straight crack.
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In Figure 5.17 to 5.19, the raw and fit stress components are plotted for a straight

crack configuration, α = 10o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. In these plots, the maximum error remains less than 2 MPa.

Figure 5.17. S11 in H=833 MPa case for 10o degrees inclined crack.

Figure 5.18. S12 in H=833 MPa case for 10o degrees inclined crack.
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Figure 5.19. S22 in H=833 MPa case for 10o degrees inclined crack.

In Figure 5.20 to 5.22, the raw and fit stress components are plotted for a straight

crack configuration, α = 20o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. In each stress component, the maximum relative error does

not exceed 0.2% with respect to the maximum stress level.
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Figure 5.20. S11 in H=833 MPa case for 20o degrees inclined crack.

Figure 5.21. S12 in H=833 MPa case for 20o degrees inclined crack.
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Figure 5.22. S22 in H=833 MPa case for 20o degrees inclined crack.

In Figure 5.23 to 5.25, the raw and fit stress components are plotted for a straight

crack configuration, α = 30o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. The absolute value for the maximum error in fitting of each

stress component does not exceed 1 MPa.
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Figure 5.23. S11 in H=833 MPa case for 30o degrees inclined crack.

Figure 5.24. S12 in H=833 MPa case for 30o degrees inclined crack.
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Figure 5.25. S22 in H=833 MPa case for 30o degrees inclined crack.
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5.4. 1250 MPa Hardening Modulus Case

To generate a hardening modulus, H, equal to 1250 MPa, the start and end stress

levels of forward transformation are chosen as 200 MPa and 250 MPa for a given ϵL

magnitude of 0.06, summarized in Table 5.13. The hardening modulus is explicitly

calculated as

H =
250− 200

0.04
MPa = 1250 MPa. (5.4)

Table 5.13. Superelastic material properties of NiTi with H=1250 MPa

Transformation Strain 0.04

Forward Transformation Start Stress 200 MPa

Forward Transformation Start Stress 250 MPa

For the fitting variables {Keq,mij, nij, vij, wij} based on the algorithm followed,

initial values are to be assigned. In this case the set of initial values are chosen as

{0.1MPa m−1/2, 1.1, 1.2, 1.5, 1}, respectively. Stress intensity factor values for 1250

MPa hardening modulus is tabulated in Table 5.14 along with the tabulated fitting

parameters as a function crack angle α in Tables 5.15 to 5.18.

Table 5.14. Keq, A11, A12, A22 values with respect to crack angle α given H=1250

MPa

α 0o 10o 20o 30o

Keq [MPa
√
m] 200 150 170 130

A11 [MPa] 5.68 5.2 6.75 9.7

A12 [MPa] -185 -164.2 -196.5 -153

A22 [MPa] 25.44 27.6 11.05 34.94
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Table 5.15. Fit parameter values for straight crack angle of H=1250 MPa

m11 n11 v11 w11

0.0018 2.3700 0.0015 0.8870

m12 n12 v12 w12

3.1606 3.9075 11.0557 1.3469

m22 n22 v22 w22

−0.0006 2.4400 -0.0002 -0.0005

Table 5.16. Fit parameter values for 10o degrees crack angle of H=1250 MPa

m11 n11 v11 w11

0.3100 1.4200 0.3700 -0.6600

m12 n12 v12 w12

2.9742 -1.9683 9.2601 1.0715

m22 n22 v22 w22

1.0500 1.0000 0.0500 0.0000

Table 5.17. Fit parameter values for 20o degrees crack angle of H=1250 MPa

m11 n11 v11 w11

0.1740 2.3500 0.3000 0.9000

m12 n12 v12 w12

−0.8448 1.9023 -2.7472 1.0551

m22 n22 v22 w22

1.4600 4.1500 2.7000 0.0000
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Table 5.18. Fit parameter values for 30o degrees crack angle of H=1250 MPa

m11 n11 v11 w11

0.1400 -2.3400 0.3600 0.9200

m12 n12 v12 w12

−7.1637 16.1593 5.4754 -0.8564

m22 n22 v22 w22

1.8600 5.9700 4.1100 0.0000

Both the raw and fit data for stress components, Sij and Sfit
ij with i,j = 1,2,

for H = 1250 MPa level are plotted as function of radial coordinate, r and θ for each

set of crack inclination angle set of {0o, 10o, 20o, 30o}. In Figure 5.26 to 5.28, the raw

and fit stress components are plotted for a straight crack configuration, α = 0o. In

the following plots, the blue circles represents fit stress component values meanwhile

red points represent the raw stress component values collected from ABAQUS. The

maximum error levels do not exceed 1 MPa between the collected Sij and fitting values

of Sfit
ij , for i, j = 1,2.

Figure 5.26. S11 in H=1250 MPa case for straight crack.
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Figure 5.27. S12 in H=1250 MPa case for straight crack.

Figure 5.28. S22 in H=1250 MPa case for straight crack.

In Figure 5.29 to 5.31, the raw and fit stress components are plotted for a straight

crack configuration, α = 10o.
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In the following plots, the blue circles represents fit stress component values,

meanwhile red points represent the raw stress component values collected from ABAQUS.

The maximum absolute error between the fitting and full field finite element analyses

data for each stress component is less than 2 MPa.

Figure 5.29. S11 in H=1250 MPa case for 10o degrees inclined crack.

Figure 5.30. S12 in H=1250 MPa case for 10 degree inclined crack.
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Figure 5.31. S22 in H=1250 MPa case for 10o degrees inclined crack.

In Figure 5.32 to 5.34, the raw and fit stress components are plotted for a straight

crack configuration, α = 20o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. The maximum error levels do not exceed 1 MPa between the

collected Sij and fitting values of Sfit
ij , for i, j = 1,2. This result ensures the accurate

representation of crack tip stress field by the fitting function to be employed in the

subsequent discussion.
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Figure 5.32. S11 in H=1250 MPa case for 20o degrees inclined crack.

Figure 5.33. S12 in H=1250 MPa case for 20o degrees inclined crack.
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Figure 5.34. S22 in H=1250 MPa case for 20o degrees inclined crack.

In Figure 5.35 to 5.37, the raw and fit stress components are plotted for a straight

crack configuration, α = 30o. In the following plots, the blue circles represents fit stress

component values meanwhile red points represent the raw stress component values

collected from ABAQUS. In each of the regression plots, Figure 5.35 to 5.37, the

absolute maximum difference between the finite element analysis and fitting functions

is below 1 MPa.
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Figure 5.35. S11 in H=1250 MPa case for 30o degrees inclined crack.

Figure 5.36. S12 in H=1250 MPa case for 30o degrees inclined crack.
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Figure 5.37. S22 in H=1250 MPa case for 30o degrees inclined crack.
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6. STRESS TRIAXIALITY CALCULATIONS

6.1. Adaptation of Triaxiality Formulation for SMAs

Stress triaxiality, Q, plays a decisive role on the extent of plastic deformation at

the crack tip and in the following expression, it is expressed as

Q =
Sm − (Sm)SSY

SMS

. (6.1)

In this expression, Sm and (Sm)SSY are mean stress levels under the presence of marten-

sitic transformation and small scale yielding (SSY), respectively. The conditions of

SSY basically employ the linear elastic fracture mechanics with a single asymptotic

term neglecting any transformation effects. The mean stress levels are calculated by

the arithmetic average of the corresponding stress tensor traces. The pertinent mean

stress levels are evaluated at θ = 0 and a radial coordinate, r∗, which is expressed as

r∗ =
2J

SMS

. (6.2)

In general, r∗ value is not coincident with the nodal points along θ = 0; thus,

linear interpolation is used for evaluating Sm and (Sm)SSY values. In linear elastic,

homogeneous materials; J integral value is contour independent. On the other hand,

for shape memory alloys related with the on-going martensitic transformation, the J

integral values are contour dependent. For this purpose, J integral values at the tip,

namely J tip, are employed throughout the following triaxiality calculations in SMAs.

Note that SSY formulation is based on a single parameter, i.e. Keq, and excludes the

contributions of high order terms in the asymptotic stress field expansion such as T

stress. In this study, three different hardening moduli (H=625, 833 and 1250 MPa) are

examined and stress triaxiality effects are calculated.
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6.2. Variation of Stress Triaxiality with Hardening Modulus

6.2.1. 625 MPa Hardening Modulus Case

In this section, the triaxiality parameters Q are calculated and tabulated in Table

6.1 against J integral values at the crack tip, J tip, the radial distance r∗, mean stress

values, Sm and (Sm)SSY . The martensite start stress, SMS for NiTi is chosen as 200

MPa along with a hardening modulus H = 625 MPa which leads to a transformation

strain ϵL equal to 0.08.

Table 6.1. J tip, r∗, Sm, (Sm)SSY and Q values for hardening modulus H = 625 MPa.

Angle 0o 10o 20o 30o

J tip J/mm2 3.597 3.436 2.993 2.37

r∗ mm 0.035 0.034 0.030 0.023

Sm MPa 431 403 312 66

(Sm)SSY MPa 922 887 761 265

Q -2.45 -2.42 -2.24 -0.99

6.2.2. 833 MPa Hardening Modulus Case

In this section, the triaxiality parameters Q are calculated and tabulated in Table

6.2 against J integral values at the crack tip, J tip, the radial distance r∗, mean stress

values, Sm and (Sm)SSY . The martensite start stress, SMS for NiTi is chosen as 200

MPa along with a hardening modulus H = 833 MPa which leads to a transformation

strain ϵL equal to 0.06.
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Table 6.2. J tip, r∗, Sm, (Sm)SSY and Q values for hardening modulus H = 833 MPa.

Angle 0o 10o 20o 30o

J tip J/mm2 3.595 3.430 2.990 2.37

r∗ mm 0.036 0.034 0.030 0.023

Sm MPa 410 359 297 183

(Sm)SSY MPa 932 877 761 499

Q -2.61 -2.59 -2.32 -1.58

6.2.3. 1250 MPa Hardening Modulus Case

In this section, the triaxiality parameters Q are calculated and tabulated in Table

6.3 against J integral values at the crack tip, J tip, the radial distance r∗, mean stress

values, Sm and (Sm)SSY . The martensite start stress, SMS for NiTi is chosen as 200

MPa along with a hardening modulus H = 1250 MPa which leads to a transformation

strain ϵL equal to 0.04.

Table 6.3. J tip, r∗, Sm, (Sm)SSY and Q values for hardening modulus H = 1250 MPa.

Angle 0o 10o 20o 30o

J tip J/mm2 3.592 3.431 2.990 2.37

r∗ mm 0.036 0.034 0.030 0.023

Sm MPa 398 384 313 300

(Sm)SSY MPa 923 906 833 686

Q -2.62 -2.61 -2.60 -1.93
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6.2.4. Stress Triaxiality and Hardening Modulus Trend

The variation of stress triaxiality, Q, and hardening modulus, H, is plotted in

Figure 6.1 for different crack angles, α. As a first insight, it is to be noted that the

increase in crack angle α leads to a pronounced increase in stress triaxiality Q. This

trend is closely related with the fact that Keq levels increase with the angle α; and

therefore, the martensitic transformation effects are restricted in response to increase

in α magnitudes complying with the high transformation constraint measure Q. Fur-

thermore, The increase in hardening levels, suppress the completion of the martensitic

transformation leading to higher levels of elastic stress fields ahead of the crack tip.

This retarded transformation effect with a high value of H promotes Q levels.

Figure 6.1. Stress triaxiality, Q, versus crack angle α is plotted as a function of

hardening modulus, H = 650, 833 and 1250 MPa.
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6.3. Variation of Stress Triaxiality with Transformation Strain

In order to clarify the effect of martensitic transformation strain on stress triaxi-

ality parameter Q, the very same plane strain samples on ABAQUS are utilized. The

transformation strain levels, ϵL, are varied from 0.04 to 0.08 with 0.02 increments. The

forward martensitic transformation start and end stresses, SMS and SMF are set as 200

MPa and 205 MPa, respectively. These limiting stresses are chosen to minimize the

hardening effect.

6.3.1. 4% Transformation Strain

The variation of stress triaxiality, Q, for 0.04 transformation strain scenario is

illustrated under varying crack angles of α = {0o, 10o, 20o, 30o}. The variables employed

in calculations along with stress triaxiality ratio, Q, are tabulated in Table 6.4.

Table 6.4. J tip, r∗, Sm, (Sm)SSY and Q values are listed for ϵL = 0.04

Angle 0o 10o 20o 30o

J tip J/mm2 3.592 3.431 2.990 2.373

r∗ mm 0.036 0.034 0.030 0.023

Sm MPa 398 373 297 180

(Sm)SSY MPa 923 839 761 262

Q -2.62 -2.33 -2.32 -0.41

6.3.2. 6% Transformation Strain

The variation of stress triaxiality, Q, for 0.06 transformation strain scenario is

illustrated under varying crack angles of α = {0o, 10o, 20o, 30o}. The variables employed

in calculations along with stress triaxiality ratio, Q, are tabulated in Table 6.5.
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Table 6.5. J tip, r∗, Sm, (Sm)SSY and Q values are listed for ϵL = 0.06

Angle 0o 10o 20o 30o

J tip J/mm2 3.595 3.430 2.990 2.375

r∗ mm 0.036 0.034 0.030 0.024

Sm MPa 420 400 297 188

(Sm)SSY MPa 923 838 761 265

Q -2.51 -2.39 -2.28 -0.38

6.3.3. %8 Transformation Strain

The variation of stress triaxiality, Q, for 0.08 transformation strain scenario is

illustrated under varying crack angles of α = {0o, 10o, 20o, 30o}. The variables employed

in calculations along with stress triaxiality ratio, Q, are tabulated in Table 6.6.

Table 6.6. J tip, r∗, Sm, (Sm)SSY and Q values are listed for ϵL = 0.08

Angle 0o 10o 20o 30o

J tip J/mm2 3.597 3.436 2.993 2.375

r∗ mm 0.035 0.034 0.030 0.023

Sm MPa 431 403 312 207

(Sm)SSY MPa 922 838 761 265

Q -2.45 -2.37 -2.24 -0.28

6.3.4. Stress Triaxiality and Transformation Strain Trend

Based on the data provided in Tables 6.4 to 6.6, the variation of stress triaxiality,

Q, along with the transformation strain is illustrated as a function of crack angle α

in Figure 6.2. As can be seen, the triaxiality parameter Q does not exhibit a strong

dependence on the level of transformation strain.
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This is expected as in all scenarios the applied far-field stress ensures the completion of

transformation a head of the crack tip. Thus, the contour integral J tip encloses a fully

martensitic region irrespective of the extent of transformation. As a distinguishing

remark, the triaxiality Q is dependent on the crack angle, α, strongly related with the

stress intensity factor, Keq, effect as discussed earlier on.

Figure 6.2. Stress triaxiality, Q, versus crack angle α is plotted as a function of

transformation strain, ϵL.

6.4. Variation of Stress Triaxiality with Transformation Start Stress Level

In this section, the effect of transformation start stress level, SMS, on stress tri-

axiality, Q, is examined. For this purpose a set of SMS levels, SMS = {300, 400, 500}

MPa, is employed. In order to disregard any possible hardening effects, the transfor-

mation end stress, SMF , levels are chosen as only 5 MPa greater over the total extent of

transformation strain with a magnitude of 0.06 such that SMF = {305, 405, 505} MPa.
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The effect of stress triaxiality on transformation start stress levels are elaborated as a

function of crack angles α similar to the previous discussion.

6.4.1. SMS = 300 MPa

Below, J integral values at the crack tip, J tip, the radial distance r∗, and the mean

stress values, Sm and (Sm)SSY , along with stress triaxiality, Q, values are incorparated

into Table 6.7 for SMS = 300 MPa.

Table 6.7. J tip, r∗, Sm, (Sm)SSY and Q values are listed for SMS = 300 MPa

Angle 0o 10o 20o 30o

J tip J/mm2 3.543 3.385 2.950 2.344

r∗ mm 0.023 0.022 0.019 0.015

Sm MPa 267 147 -345 -1027

(Sm)SSY MPa 656 366 -1269 -932

Q -1.295 -0.728 -0.401 -0.316

6.4.2. SMS = 400 MPa

Below, J integral values at the crack tip, J tip, the radial distance r∗, and the mean

stress values, Sm and (Sm)SSY , along with stress triaxiality, Q, values are incorparated

into Table 6.8 for SMS = 400 MPa.

Table 6.8. J tip, r∗, Sm, (Sm)SSY and Q values are listed for SMS = 400 MPa

Angle 0o 10o 20o 30o

J tip J/mm2 3.537 3.379 2.940 2.339

r∗ mm 0.019 0.017 0.0147 0.011

Sm MPa 84.6 -418 -1000 -1416

(Sm)SSY MPa 143 -478 -1269 -2016

Q -0.146 0.150 0.672 1.50
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6.4.3. SMS = 500 MPa

Below, J integral values at the crack tip, J tip, the radial distance r∗, and the mean

stress values, Sm and (Sm)SSY , along with stress triaxiality, Q, values are incorparated

into Table 6.9 for SMS = 500 MPa.

Table 6.9. J tip, r∗, Sm, (Sm)SSY and Q values are listed for SMS = 500 MPa

Angle 0o 10o 20o 30o

J tip J/mm2 3.537 3.378 2.944 2.338

r∗ mm 0.014 0.0135 0.0196 0.0093

Sm MPa -6140 -893 -1422 -2441

(Sm)SSY MPa -602 -980 -1802 -3420

Q -0.024 0.173 0.759 1.95

Below, in Figure 6.3, the variation of stress triaxiality, Q, with the selected trans-

formation start stress, SMS, levels are ploted as a function of crack angle α. As can

be seen, the increase in SMS initially promotes Q levels significantly between 300 MPa

to 400 MPa. This is expected due to the fact that increasing stress barrier against

martensitic transformation suppresses transformation zone size evolution and related

toughening effects.This behavior promotes elastic stress components following linear

elastic Poisson effect. On the other hand, there is a saturation between 400 MPa to

500 MPa level. It is to be noted that crack angle α similar to the previous discussion

increases the stress triaxiality, Q.
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Figure 6.3. Stress triaxiality, Q, versus crack angle α is plotted as a function of

transformation start stress, SMS.

6.5. Variation of Stress Triaxiality with Transformation End Stress

In this section, the effect of transformation end stress level, SMF , on stress tri-

axiality, Q, is examined. For this purpose, a set of SMF levels, SMF = {350, 400}

MPa, is employed for a given transformation start stress level, SMS = 300 MPa. In the

following analysis, the transformation strain of 0.06 is employed. The effect of stress

triaxiality on transformation start stress levels are elaborated as a function of crack

angles α similar to the previous discussion.

6.5.1. SMF = 350 MPa

Below, in Table 6.10, J integral values at the crack tip, J tip, the radial distance

r∗, and the mean stress values, Sm and (Sm)SSY , along with stress triaxiality, Q, values

are incorparated for SMF = 350 MPa as a function of crack angles α.
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Table 6.10. J tip, r∗, Sm, (Sm)SSY and Q values are listed for SMF = 350 MPa

Angle 0o 10o 20o 30o

J tip J/mm2 3.542 3.384 2.95 2.344

r∗ mm 0.0236 0.0225 0.0196 0.0156

Sm MPa -3590 159 -381 -931

(Sm)SSY MPa -1905 373 -386 -931

Q -5.61 -0.713 0.016 0.31

6.5.2. SMF = 400 MPa

Below, in Table 6.12, J integral values at the crack tip, J tip, the radial distance

r∗, and the mean stress values, Sm and (Sm)SSY , along with stress triaxiality, Q, values

are incorparated for SMF = 400 MPa as a function of crack angles α.

Table 6.11. J tip, r∗, Sm, (Sm)SSY and Q values are listed for SMF = 400 MPa

Angle 0o 10o 20o 30o

J tip J/mm2 3.542 3.384 2.95 2.344

r∗ mm 0.0236 0.0225 0.0196 0.0156

Sm MPa -3579 164 -361 -1037

(Sm)SSY MPa -1905 373 -386 -931

Q -5.58 -0.69 0.08 0.35

Below, in Figure 6.4, the variation of stress triaxiality, Q, as a function of transfor-

mation end stress, SMF , and crack angle α based on the examined numerical scenarios.

The results show close resemblance to the observed increase trend with α angle in the

previous cases. This is again associated with the increase in Keq which suppresses the

transformation effects if promoted. On the other hand, the pronounced increase in

SMF leads to only a very minor increase.
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As under the applied far-field stress levels the martensitic volume fraction, ξ reaches

1 (complete transformation) in the simulations conducted, this result implies that the

completion of the transformation is prominent instead of the numerical value of the

end stress.

Figure 6.4. Stress triaxiality, Q, versus crack angle α is plotted as a function of

transformation end stress, SMF .
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7. DISCUSSION

The single parameter approach (K field) to describe fracture response at the

crack tip of SMAs have dominated the earlier literature. In small-scale yielding, there

assumed to be a J dominant zone a head of the crack-tip and this relation is related

by the elastic stress intensity parameter. Similarly J contour integral is also explicitly

evaluated for deformation plasticity (no unloading) and linked with stress fields a head

of the crack. Based on this perspective, under small scale yielding conditions, a single

parameter (e.g., K, J , or CTOD) characterized crack tip conditions allowing to use

single critical parameters such asKc or Jc. In such a case, any one of several parameters

(e.g., J, K, or CTOD) will suffice to characterize the crack tip conditions, provided the

parameter can be defined unambiguously.

For the presence of significant plastic yielding a head of the crack tip in the case

of incremental plasticity, stress values are supposed to be collected from a full field

solution using finite element analysis. On the other hand, single-parameter fracture

mechanics breaks down in the presence of excessive plasticity or transformation, and

this leads to the fact that fracture toughness depends on the size and geometry of

the test specimen. This acts as a motivation to develop a more elaborate approach

to capture the conditions at the crack tip in a SMA system. The crack tip constraint

linked with the thickness effects has a significant role in fracture response of SMAs in

engineering applications similar to the samples exhibiting large plastic deformation in

the earlier literature. The decrease of fracture toughness values with specimen thickness

under excessive plastic deformation can be given as an example on that basis.

Current research aims to investigate constraint effects under Mode I (opening

mode) and mixed mode in plane strain condition by using finite element analysis. In

order to achieve this goal, two parameter fracture mechanics techniques were proposed

to be used. As a major point to be emphasized, the present approach utilizes multi-

parameter fracture mechanics methods and this is a novel step for SMAs.
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The T stress approach, J–Q theory are examples of two-parameter fracture the-

ories [46-48], and it these methods a secondary variable (e.g., T, Q) had been in-

troduced to characterize the crack tip environment. In this methodology, the first

parameter measures the degree of crack-tip deformation, as characterized by J (or

equivalently CTOD). The second parameter, characterizes the degree of crack tip con-

straint, which quantifies the level of deviation of stress/strain fields from HRR fields.

These approaches implicitly assume that the crack tip fields are characterized by two

independent parameters in contrast to single-parameter fracture mechanics which em-

ploys either Keq or J . It is to be noted that, a second parameter use (such as T stress)

under large scale yielding/martensitic transformation conditions, does not reflect the

full field stress around crack tip as T-stress originates from the linear elastic asymp-

totic expansion. On the other hand, large transformation or plastic strains violate the

assumptions employed in linear elastic fracture mechanics.

In the present work, the full field stress field collected from finite element analy-

sis have been fitted to a closed-form model for NiTi single edge cracked specimen such

that the equivalent stress intensity factor, Keq, and r0 terms coefficients Aij with (i,

j = 1,2). In this scheme, the multi-parameter field has been observed to successfully

capture the numerical stress component data around the crack tip. The parameter

Keq is employed to capture the asymptotic r−1/2 field effects and has been invoked in

the earlier studies in the literature primarily under fatigue loading in which case the

principal axes of the stress field is subjected to changes in effect of cyclic plasticity

[49,50]. On that basis, the cyclic plasticity effects around the crack tip resemble the

transformation induced stress modifications as principal stress directions also exhibit

change with the evolution of martensitic volume fraction, ξ. Following this rationale,

the variation of Keq parameter has been shown to strongly depend on the crack angle

α. The results lead to the fact that Keq decreases with increasing α indicating that the

driving forces around the crack tip suppressed with the promoted sliding mode (Mode

II).
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Subsequently, the effects of hardening modulus H, transformation strain, ϵL,

transformation start stress SMS, transformation end stress SMF , on crack tip stress

triaxiality, Q, of are quantified in detail for NiTi. Stress triaxiality, Q, is a param-

eter dependent on the mean stress levels; with transformation Sm and without any

transformation (Sm)SSY , as well as the martensite start stress SMS. The mean stress

levels are calculated at a particular radial coordinate of r∗ along the crack and depends

on J integral. In the present work, as the martensitic transformation induces contour

dependent J integrals, the tip value J tip at the crack tip is calculated based on domain

integral to determine r∗. On the other hand, in this work, we do note that the domain

integral definition has to be modified for SMAs as the potential energy release rate

depends on the motion of the crack tip singularity.

According to earlier works by Hutchinson [51], Rice and Rosengren [52], it is

pointed out that as the stress triaxiality increases, described by a positive T stress

in their discussions, the crack-tip field is likely to be captured by the HRR solution

scaled by one parameter: the J integral; which implicitly indicates the presence of a

J dominant zone. On the other hand, if stress triaxiality is reduced (means that the

T stress gets more negative), the crack-tip fields deviate from HRR solution sharply

and J dominance is lost. Thus, the asymptotic fields surrounding the crack tip can

not be specified in detail by solely HRR fields. Therefore, utilizing T stress to quan-

tify the triaxiality of the crack-tip stress state and using the J integral (obtained from

finite element model based on the actual elastic-plastic deformation field) provides a

two-parameter fracture mechanics theory to describe Mode I and mixed mode of an

elastic-plastic crack-tip stresses in plane strain. Noting that the presence of marten-

sitic transformation modifies the stress field and therefore introduces significant changes

from single parameter fracture mechanics, in the current study the behavior of stress

triaxiality effect is focused for SMAs.

Based on this motivation, stress triaxiality parameter denoted by Q is adapted to

the present problem within the presence of martensitic transformation strain. O’Dowd

and Shih approach is adopted for the calculation of the triaxiality parameter around

crack tip at a particular location r∗.
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They proposed a definition of stress triaxiality, named as Q, which is the normalized

difference of hydrostatic mean stresses generated by fully yielding conditions (Sm) and

linear elastic fracture mechanics solution with denoted small scale yielding (Sm)SSY

that is driven by stress intensity factor, K [48]. Subsequently, Henry and Luxmoore

employed Q parameter as a ductile fracture parameter for large plastic deformation

[46]. They stated that the extent of maximum plastic strain and triaxiality parameter

Q value exhibit inverse proportion for center edge crack samples. On the other hand,

Bao et al. showed that the pronounced constraint effect following the plastic necking

exhibits an opposite trend in aluminum alloys, such that the triaxiality values are pro-

moted. This shows that the presence of necking instability changes the variation of

parameter Q with plasticity.

In the present work, this definition is tailored for the martensitic transformation

by replacing the normalization factor of yield strength Sy with martensitic transfor-

mation start stress, SMS. As the data extracted from ABAQUS is not continuous,

a 10 x 10 element set is formed around the crack tip and the collected nodal data

are employed create a closed-form regression fit function of independent stress compo-

nents {S11, S22, S12} with respect to θ and r coordinates employing MATLAB method

lsqnonlin which depends on nonlinear least square regression. In fitting scheme, both

asymptotic r−1/2 and r0 terms are included with their corresponding factors of Keq and

Aij where i, j = 1, 2. As can be seen in the results presented in Chapter 5, the values

of Keq decrease with increasing crack angle α, on the other hand the parameters Aij

exhibit a more complex response. At this stage, it is emphasized that Aij terms are of

significant value and can not be neglected. The solution procedure clarifies that using

only T stress component is not sufficient to fully describe the stress fields generated

around the crack tips in SMAs. The hardening modulus, H, is observed to have an

effect on Keq not smaller than 5%. To this end, not only the transformation start

stress is important, but also the hardening modulus H also plays a role in Keq values.

Similarly A11 values are sensitive to H values. A22 values exhibit considerable drop

with promoted hardening. These indicate that higher order radial terms other than

asymptotic r−1/2 needs to be elaborated in quantification of stress field around crack

tip in the NiTi SMA.
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The stress triaxiality parameter Q varies with only slightly in negative regime

with hardening modulus H as presented in Chapter 6. This effect is attributed to the

completion of the martensitic transformation at the tip and therefore the elastic stresses

generated in martensitic phase govern on the tip zone suppressing the contribution of

H.

Another effect to be considered for the stress triaxiality, Q, constraint in SMAs is

obviously martensitic transformation strain, ϵL. In Chapter 6, ϵL is varied between 0.04

to 0.08 by 0.02 increments and it Q exhibits a minor increase with ϵL. This trend is

associated with the martensitic volume fraction, ξ evolution such that as ϵL increases,

the constant far-field stress work can transform smaller levels of austenite to marten-

site completely. Thus, the constraint effect owing to elastic stresses persist for larger

ϵL. This is reflected as a slight change in Q values considering the high stress gradient

around the crack tip region. The values of Q are still in negative regime owing the

relaxation effect of martensitic transformation.

The transformation start stress level, namely SMS, play a critical role in stress

triaxiality Q as shown in section 6.4 . An increase in SMS from 300 MPa to 400 MPa,

promotes Q from -1.295 to -0.146. This is an indication of pronounced crack tip con-

straint and it is related with the suppressed martensitic transformation by increasing

the start stress barrier effect. On the other hand, there is no significant increase of

constraint if SMS changed from 400 MPa to 500 MPa. This saturation trend implies

the martensitic transformation extent around the crack tip has already been highly

impeded with the amplifying effect of high stress gradients. Therefore, increasing SMS

further has no effect in practice and the material behaves almost like an linear elastic

austenite.

Lastly, the contribution of martensite finish stress level, SMF on stress triaxiality

Q is elaborated in section 6.5. As the results indicate SMF has a negligible role in

changing the crack tip constraint. To this end, the stress field in the tip zone exceeding

SMF acts as a linear elastic martensite phase and any transformation induced stress

relaxation effects tend to vanish with the accumulation of linear elastic stresses.
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8. CONCLUSION

In this dissertation, two parameter characterization of edge cracked NiTi shape

memory alloy under plane strain conditions are elaborated using finite element anal-

ysis. Single edge notch specimen geometry of NiTi rectangular plate subjected to

constant tensile far-field stress field is examined for a set of crack angles α varying as

{0o, 10o, 20o, 30o}. Therefore, both pure Mode I and mixed mode configurations are an-

alyzed. As a novel step, both asymptotic r−1/2 and the following r0 terms are employed

in stress field expansions. Meanwhile the asymptotic term r−1/2 is governed byKeq, the

higher order term r0 is governed by Aij where i,j varies from 1 to 2 in conjuction with

stress component Sij. In order to generate the governing terms, nonlinear least square

regression analyses are conducted with high accuracy. This acts as a comprehensive

approach in adapting multi-parameter fracture mechanics in SMAs.

The results can be clustered into two primary groups: (i) the effects of r−1/2

and r0 terms on the stress fields; (ii) the contributions of hardening modulus H, the

transformation strain extent ϵL, the martensite start and end stresses, namely SMS and

SMF . Among these items, the factors Aij governing on r0 is shown to be of significant

magnitude. Conventional two parameters fracture mechanics dealing with only T stress

component for r0 term is observed to be insufficient as other terms such as A11, A12

(= A21) and A22 are substantial in magnitude. To this end, any effort to characterize

the stress field governing around the crack tip in SMA NiTi is to consider these high

order terms.

Among the material parameters, the hardening modulus H, the transformation

strain ϵL and the martensite start stress SMS promote crack tip constraint under con-

stant applied far-field stress. This behavior confirms that any material parameter

change suppressing the extent of martensitic transformation, obviously promotes the

crack tip constraints. On the other hand, the martensite finish stress SMF exhibits no

significant effect on the crack tip constraint of SMA NiTi in our simulation results.
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As a last remark, our study shows that further analyses are necessary to contem-

plate on the necking effects. As during necking the stress states change significantly

and additional radial constraints come in to play, the results presented in this work

are not able to capture the crack tip stress field in case of necking. To this end, large

deformation and rotation effects are to be incorporated in any modelling efforts for

NiTi SMA in presence of necking.
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