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ABSTRACT 

 

RISK ASSESSMENT IN THE CONTEXT OF MODERN METHODS 

OF CONSTRUCTION LEVERAGING DATA ANALYTICS 

 

As the construction industry moves towards more innovative, sustainable, and faster 

construction techniques, Modern Methods of Construction (MMC) has been regarded as a 

solution for meeting these demands. Nonetheless, under immense pressure, decision-makers' 

opposition caused by oblivious stakeholders makes for tenuous circumstances for 

innovation. Yet, the literature lacks a comprehensive approach for cost overruns risk 

assessment of implementing MMC. The study, therefore, aims to encourage the further take-

up of offsite MMC in future projects of the housing sector by primarily soliciting opinions 

from experienced professionals. In achieving this endeavor, the study (1) identified and 

prioritized risk factors; (2) revealed the underlying categories; (3) proposed ways to 

prioritize risks; and lastly (4) developed an AI-based risk assessment model. Through the 

adoption of the generative adversarial networks, an Artificial Neural Networks (ANN) 

model will also be developed.  

 

Study findings revealed the significant dissimilar criticality levels of risk factors. The 

top seven most risky factors are Safety Hazards, Direct Costs, Poor Understanding, Quality 

Monitoring, Scheduling and Planning, Site Layout, and Machinery and Technology with an 

overall frequency of occurrence of 0.736, 0.733, 0.730, 0.725, 0.708, 0.705, and 0.702, 

respectively. The study brings to light the inadequacy of the current industry and indicates 

that future research opportunities lie in the adoption of MMC. The study adds value to the 

literature by exploring and capturing hidden trends and patterns related to conditional 

dependence between risk factors. The results aid the industry stakeholders to prioritize risk 

factors to develop risk response measures. Accordingly, decision-makers will be capable to 

distribute the contingency budget on more uncertain events, which will potentially facilitate 

achieving project objectives and avoid racking up substantial losses.   
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ÖZET 

 

VERI ANALITIĞI KULLANARAK MODERN INŞAAT 

YÖNTEMLERI IÇIN RISK DEĞERLENDIRMESI 

 

İnşaat sektörü daha yenilikçi, sürdürülebilir ve daha hızlı inşaat tekniklerine doğru 

ilerlerken, Modern İnşaat Yöntemleri (MİY) bu talepleri karşılamak için bir çözüm olarak 

görülmektedir. Bununla birlikte, paydaşların ilgisiz olması ve karar vericiler üzerinde 

yaratılan baskı ortamı inovasyon (yenilik) için zayıf koşullar yaratmaktadır. Bununla 

birlikteliteratür, MİY'nin uygulanmasının maliyet aşımları risk değerlendirmesi için 

kapsamlı bir yaklaşımdan yoksundur. Bu nedenle çalışma, öncelikle deneyimli 

profesyonellerin görüşlerini alarak konut sektörünün gelecekteki projelerinde saha dışı 

MİY'nin daha fazla ele alınmasını teşvik etmeyi amaçlamaktadır. Bu bağlamda tez çalışması 

kapsamında  (1) risk faktörleri önceliklendirme ile belirlenmekte 2) temel kategoriler ortaya 

çıkarılmakta; (3) riskleri öncelik sırasına koymak için çeşitli  yollar önerilmektedir; ve son 

olarak (4) yapay zeka tabanlı bir risk değerlendirme modeli geliştirilmektedir. Generative 

Adversarial Networks yönteminin benimsenmesiyle, bir Yapay Sinir Ağı modeli de 

geliştirilmektedir. 

 

Çalışma bulguları, risk faktörlerinin önemli derecede farklı kritiklik düzeylerini ortaya 

çıkarmaktadır. En riskli ilk yedi faktör, oluşum sıklığı sırasıyla  0.736, 0.733, 0.730, 0.725, 

0.708, 0.705 ve 0.736, 0.733, 0.730, 0.725, 0.708, 0.705 ve 0.702 olmak üzere İş Güvenliği 

Tehlikeleri, Doğrudan Maliyetler, Yetersiz Anlayış, Kalite İzleme, Programlama ve 

Planlama, Saha Yerleşimi, ve son olarak Makine ve Teknoloji olarak belirlenmiştir. Çalışma, 

mevcut endüstrinin yetersizliğine ışık tutmakta ve gelecekteki araştırma fırsatlarının 

MİY'nin benimsenmesinde yattığını göstermektedir. Çalışma, risk faktörleri arasındaki 

koşullu bağımlılıkla ilgili gizli eğilimleri ve örüntüleri keşfederek ve yakalayarak literatüre 

değer katmaktadır. Sonuçlar, sektör paydaşlarının risk yanıt önlemleri geliştirmek için risk 

faktörlerine öncelik vermelerine yardımcı olmaktadır. Buna göre, karar vericiler, potansiyel 

olarak proje hedeflerine ulaşmayı kolaylaştıracak ve önemli kayıpların önüne geçilmesini 

sağlayacak daha belirsiz olaylara beklenmedik durum bütçesini dağıtabilecektir. 

  



vii 

TABLE OF CONTENTS 

 

DEDICATION ............................................................................................................ iii 

ACKNOWLEDGEMENTS ........................................................................................ iv 

ABSTRACT ................................................................................................................. v 

ÖZET ........................................................................................................................... vi 

TABLE OF CONTENTS ........................................................................................... vii 

LIST OF FIGURES ..................................................................................................... ix 

LIST OF TABLES ....................................................................................................... x 

LIST OF SYMBOLS .................................................................................................. xi 

LIST OF ACRONYMS/ ABBREVIATIONS ........................................................... xii 

1. INTRODUCTION .................................................................................................... 1 

1.1. Research Motivation ......................................................................................... 1 

1.2. Background of the Research on Data Analysis in the Industry ........................ 2 

1.3. Problem Definition ............................................................................................ 3 

1.4. Aim and Objectives ........................................................................................... 9 

1.5. Research Methodology.................................................................................... 11 

1.5.1. Research Procedure ............................................................................... 11 

1.5.2. Research Methods .................................................................................. 12 

1.5.3. Research Questions ................................................................................ 13 

1.6. Scope, Limitations, and Significance of the Research .................................... 14 

1.7. Organization of the Study ............................................................................... 15 

2. INTRODUCTION TO MMC TECHNIQUES ...................................................... 16 

3. RESEARCH METHODOLOGY ........................................................................... 19 

3.1. Review of Literature on MMC ........................................................................ 20 

3.2. Step Two: Risk Identification ......................................................................... 24 

3.3. Step Three: Conducting Questionnaire Survey ............................................... 25 

3.4. Step Four: Conducting Univariate Statistical Analysis ................................... 27 

3.5. Step Five: Conducting Multivariate Statistical Analysis ................................ 28 



viii 

3.6. Step Six: Develop the Deep Learning ANN Model ........................................ 30 

3.7. Step Seven: Comparing the Risk Ranks of ANN and Univariate Analysis .... 35 

4. RESULTS AND FINDINGS ................................................................................. 36 

5. SCHOLARLY DISCUSSION OF STUDY FINDINGS ....................................... 45 

6. CONCLUSIONS AND FURTHER RECOMMENDATIONS ............................. 53 

7. ACKNOWLEDGEMENTS AND DECLARATION OF INTERESTS ................ 56 

REFERENCES ........................................................................................................... 57 

APPENDIX A ............................................................................................................ 64 

APPENDIX B ............................................................................................................ 65 

APPENDIX C ............................................................................................................ 66 

APPENDIX D ............................................................................................................ 67 

APPENDIX E: ORIGINAL LIST OF RISK SOURCES .......................................... 68 

APPENDIX F: MMC RISK ASSESSMENT QUESTIONNAIRE ........................... 74 

7.1. General Questions ........................................................................................... 75 

7.2. Please Specify the Degree of Impact on Project Cost and the Probability of 

Occurrence for the Following Risk Factors ..................................................................... 76 

 

  



ix 

LIST OF FIGURES 

 

Figure 1.1. Research framework flowchart …………………………………..………..11 

 

Figure 3.1. Overall methodology roadmap………………………………………….…19 

 

Figure 3.2. Various tools and techniques which facilitate the implementation of MMC.24 

 

Figure 3.3. Plotted scattered data points of the evaluation function………………….…34 

 

Figure 4.1. MMC techniques in the industry ……………………………………..36 

 

Figure 4.2. Comparison of citations / publication……………………………………...37 

 

Figure 4.3. Number of published articles / years………………………..……………...37 

 

Figure 4.4. Comparison of articles and citations / journal……………………………...38 

 

Figure 4.5. Number of publications and citations / country………………….………....39 

 

Figure 5.1. The four maximum score values for different epoch numbers and batch size50 

  



x 

LIST OF TABLES 

 

Table 3.1. Demographic Information of Focus Group Members…………...…………25 

 

Table 3.2. Research Team Background……………………………………………….26 

 

Table 3.3. Risk matrix table………………………………………………...………....31 

 

Table 4.1. Total Variance Explained………………………………………………….40 

 

Table 4.2. Rotated Component Matrixa …..…………………...………………………41 

 

Table 4.3. Descriptive Statistics………………………………...…………………….42 

 

Table 4.4. The most significant reported results from the research metrics……………43 

 

Table 7.1. Detailed Information about Selected Publications…………………………57 

 

Table 7.2. Sources of the selected 15 Publications………………………………….…58 

 

Table 7.3. Risk Sources from the Selected 15 Publications…………………………...59 

 

Table 7.4. Risk Codes, Factors, and Abbreviation List………………………………..60 

 

Table 7.5. Original List of Risk Factors……………………………………………………61 

  



xi 

LIST OF SYMBOLS 

 

Ɗ Data Set 

  

SD Standard Deviation 

  

𝛼𝑖
𝑗
 The likelihood of the occurrence of risk 𝑖 as assessed by respondent 𝑗 

  

𝛽𝑖
𝑗
 The degree of loss of risk 𝑖 if it occurs as assessed by respondent 𝑗 

  

𝛼𝑖  Rank of the risk factor 𝑖 as assessed by the ANN 

  

𝛽𝑖 Rank of the risk factor 𝑖 as assessed by the univariate analysis 

  

  

 

 

 

  



xii 

LIST OF ACRONYMS/ ABBREVIATIONS 

 

AEC Architecture, engineering, and construction 

AI Artificial intelligence 

AMDFR Adjusted Mean Difference of Factor’s Rank 

ANN Artificial Neural Networks 

BDA Big Data Analytics 

CSV Comma Separated Values 

CTGAN Conditional Tabular Generative Adversarial Network  

FA Factor Analysis 

GAN Generative Adversarial Network 

GDP Gross Domestic Product 

IBS Industrialized Building System 

IDE Integrated Development Environment 

KDD Knowledge Discovery from Data 

KMO Kaiser-Meyer-Oklin 

ML Machine Learning 

MDFR Mean Difference of Factor’s Rank 

MECE Mutually Exclusive and Collectively Exhaustive 

MMC Modern Methods of Construction 

OSC Off-Site Construction 

OSM Off-Site Manufacturing 

OSP Off-Site Production 

PCA Principal Component Analysis 

PAF Principal Axis Factoring  



xiii 

RSI Risk Significance Index 

R&D Research and Development 

SD Standard Deviation 

 



1 

1.  INTRODUCTION  

 

1.1.  Research Motivation 

 

Nowadays, the construction scene marks the development of most countries. The 

industry plays a key role in generating wealth and developing social infrastructure. 

Nonetheless, the industry has been known for lagging behind. For instance, the construction 

productivity rate has stagnated and continually declined over the past 50 years. Meanwhile, 

its counterpart, the manufacturing industry, witnessed an increase and almost doubled its 

productivity rate for the same time interval. This status quo is mainly attributed to the 

increased intricacy in processes, top management perception, and nature of projects. Having 

the highest potential for occupational injuries in the harsh working environment poses 

additional obstacles. The Architecture, engineering, and construction (AEC) industry is also 

fraught with rapidly arising obstacles that can jeopardize meeting project objectives and 

threaten the successful finalization. Construction projects suffered an alarming rate of 

increase in postponements, interruptions, and ultimately total abandonment.  

 

The industry is infamous for being overwhelmed with resource planning and logistic 

challenges which habitually result in cost overruns, delays, and contractual disputes. Hence, 

innovation strategies are of utmost importance. There is a surge in the number of attempts 

to innovate the industry processes. Still, most of these attempts never came to fruition. 

Among the plethora of published research, MMC is a prominent solution and has captured 

the attention of several scholars and witnessed a growing interest among industry 

practitioners. MMC is a form of innovation in the industry that opens up several 

advancement opportunities in processes and technologies. Because of its prominent proven 

potential benefits, MMC, has been adopted worldwide. Driven by a range of factors, MMC 

can meet the demands for faster construction and resolve skills shortages.  

 

Adoption of innovative building systems in a harsh environment poses a particular set 

of challenges. Besides, the industry knowledge and capabilities hinder innovation initiatives 

and contractors are still reluctant to innovate. The immense pressure placed on decision-

makers from situations of strenuous opposition caused by oblivious stakeholders makes for 

tenuous circumstances for innovation. This is mainly attributed to the fact that innovation in 
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the industry is accompanied by uncertainties that might hinder meeting projects objectives 

and threaten the financial stability of the projects. Decision-makers must adopt adequate 

measures to manage arising uncertainties. Though several attempts exist in the body of 

knowledge, what is lacking is the development of a risk management framework through a 

constructive methodology to wrestle the inherent obstacles. Fortunately, the Big Data 

Analytics (BDA) field of the data science discipline makes for a significant resolution.  

 

1.2.  Background of the Research on Data Analysis in the Industry 

 

Big Data Analytics borrows from multiple fields, resulting in a rich intellectual 

tradition. The wide variety of interconnected fields includes [1], Data Mining (1980), 

Predictive Analytics (1989) [2], Business Analytics (1997), Knowledge Discovery from 

Data (KDD) (2002), Data Analytics (2010), and now the Big Data era (2012). BDA are a 

mere broadening of existing data analytics disciplines that fall under the overarching 

umbrella of BDAs. The omnipresent computational power of computers facilitates saving 

those data that previously we would have trashed.  

 

To gauge the construction's overall long-term performance and avoid incurred 

damages, scholars have suggested numerous notable data analysis techniques. [3] identified 

multiple parameters for selecting appropriate methods, namely data availability, existing 

correlations, and output requirements. [4] analyzed the contractor project risks contingency 

allocation using linguistic approximation. Wasserman [5] acknowledged that the real 

significance of statistics comes from the fact that various disciplines are borrowing 

techniques from this field. [6] investigated using Factor Analysis (FA) to explore the factors 

that inhibit the promotion of the skeleton and infill housing system. [7] investigated the 

significant factors inhibiting Off-Site Construction (OSC) adoption. Despite the scholars’ 

positive attitude and growing interest in the industry, the literature lacks a comprehensive 

approach. To this end, this study will adopt not only a univariate statistical analysis but also 

a multivariate analysis.  

 

[8] implemented text mining, numerical data, and ensemble classifiers to perform cost 

prediction. Still, the industry did not witness a wide-scale adoption of similar data mining 

techniques for data analysis in the construction industry [9]. [10] categorized Machine 
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Learning (ML) tasks into one of three categories, namely supervised learning, unsupervised 

learning, and reinforcement learning. In the past decade, researchers have been intrigued by 

conducting studies on Artificial Intelligence (AI) in the AEC industry known as AI-in-the-

AECI [11]. [12] conducted an in-depth review of available AI applications within the 

construction manufacturing industry. [11] conducted a comprehensive scientometric study 

appraising AI-in-the-AECI. [13] developed a prediction model for construction incidents 

using the latent class clustering analysis. [14] developed two suitable ML models, utilizing 

decision trees and naïve Bayesian classification algorithms. [15] reviewed major accidents 

during excavation and conducts a bibliometric analysis of risk assessment methods in recent 

years.  

 

1.3.  Problem Definition 

 

Nowadays, the construction industry plays a vital role in generating wealth for 

countries and contributes to the development of economic and social infrastructure. The 

construction scene also marks the nations’ economic development. According to (National 

Bureau of Statistics of China >> Annual Data, n.d.), it is proven that the Chinese construction 

industry employed about 55.5 million people in 95,400 construction-related enterprises and 

contributed to the nation’s economy, contributing an output value of more than 235,085 (in 

100 million yuan) equating to Gross Domestic Product (GDP) of 5.08% in the year 2018. 

Other studies revealed that the Malaysian construction sector contributed around 2.1% of the 

total Malaysian GDP with consistent growth of 5.3% in the year 2007 [16]. In addition, the 

Malaysian construction sector accounts for 8% of the total Malaysian workforce which 

represents an excess of 800,000 job opportunities for the years 2005 and 2006 [17]. A more 

recent analysis revealed that the Malaysian construction industry offers an additional 72,455 

job opportunities between the years 2017 and 2018 [18]. Yet, the harsh working environment 

in the construction industry poses many challenges for the industry participants, especially 

in less developed countries. Besides, the construction industry is expected to reduce total 

construction costs, reduce total project schedules, meet high-quality standards, and improve 

the construction work environment [19]. 

The construction industry is infamous for being overwhelmed with resource planning, 

logistic challenges, and risk management which habitually result in cost overruns, project 

delivery delays, design defects, and contractual disputes [20]. The Architecture, 
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Engineering, and Construction industry is also fraught with involved, challenging, and 

rapidly arising obstacles [11]. It has been argued that among the most pressing issues faced 

by construction projects are delays, which are attributed to the sector’s complexity and 

inherent interdependence of delay risk sources [14]. Tall building projects, in particular, have 

been regarded as risky and suffered an alarming rate of increase in postponements, 

interruptions, and ultimately total abandonment [21]. The construction projects also still 

have the highest potential for occupational injuries despite the enormous advancement in 

safety management practices. Those occupational injuries include high severe work events, 

which result in injuries or fatalities, and low severe work events, which cause near misses or 

nonserious injuries [13]. This status quo results in a significant decline in productivity rates.  

 

The construction industry has been known for lagging behind other sectors, especially 

in improving productivity rates. For instance, although the industry marks the nations’ 

economic development, according to the US Dept. of Commerce, Bureau of Labor Statistics 

[22], the construction productivity rate declined approximately 20% between the years 1964 

and 2003. Meanwhile, its counterpart, the manufacturing industry, witnessed a 120% 

increase in its productivity rate for the same time interval [23]. In addition, over the past 50 

years, more recent studies suggest that the productivity rate in the U.S. construction industry 

has stagnated, whereas manufacturing industries have almost doubled their productivity 

levels [12]. This status quo is mainly attributed to the increased complexity in construction 

processes [24], the top management decision-making approach, and the nature of 

construction projects. Yet, the success parameters of construction projects are in time 

completion, within budget, and with requisite performance [25]. The construction industry 

is also expected to, among other things, reduce carbon emissions, reduce environmental 

impacts of buildings, reduce defects, and eliminate accidents [26]. 

 

Scholars have addressed the issue of improving the performance of the construction 

industry. Several attempts were made to innovate in the industry. Most of these attempts 

never came to fruition. One prominent solution is in the implementation of the MMC. It was 

first defined as transferring the day-to-day site activities to a factory where a controlled 

environment can be attained. Recently, the exploitation of robotics and other novel tools are 

also considered in this approach. MMC is a form of innovation in the industry, and as with 

all innovative methods, it opens up several opportunities for advancement in the industry’s 
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processes and technologies. MMC has been regarded as a solution to meet the industry’s 

innovative, sustainable, and faster construction demands [27]. In a more literal sense, MMC 

is known for its ability to reduce total construction costs and total project schedules, meet 

high-quality standards, and improve the construction work environment [19]. It was also 

proven that wastage generation could be significantly reduced up to 100% after 

implementing prefabrication techniques, in which up to 84.7% can be saved on wastage 

reduction [28].  

 

Yet, the industry’s innovative approaches have not been fully exploited to 

revolutionize the construction process. Despite its indisputable benefits, contractors are still 

reluctant to embrace IBS [29]. Industry key players restrict MMC adoption to limited 

structural elements. Although several attempts were made to revolutionize the industry, most 

of these attempts never came to fruition. This is mainly attributed to the fact that innovation 

in the industry is accompanied by not only potential benefits but also uncertainties. Adoption 

of the smart manufacturing approach in the harsh environment of the construction industry 

poses a particular set of challenges. Just to name a few, among those challenges are the little 

replication in the configuration of components with the one-off designs [12]. This is mainly 

attributed to the nature of the project management discipline as it is widely acknowledged 

that “no two projects are the same”. It is also understandable that the industry innovation 

efforts to enhance the construction process face multiplying concerns as compared to other 

non-unique projects in other industries.  

 

Ideally, forecasting project future performance and tracking actual performance 

requires constant project coordination [30]. However, since uncertainties characterize 

innovation, these uncertainties will impact the overall project cost and, in turn, prevent top 

management support. Project cost analysis and control have been viewed as the main 

challenges of a project manager [31]. In a further research attempt, [32] stated that 

construction projects have uncertainties inherent in every phase of the project life cycle. 

Besides, for a long time, the success of enterprises for launching an innovation is hindered 

by risks [33]. However, significant developers have almost a consensus over the need for 

more innovation and prefabrication adoption in the industry in future undertaking [34]. Yet, 

MMC, in particular, faces increased uncertainties compared to the traditional conventional 

construction processes, and managers should be equipped with the necessary tools and 
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techniques to conduct a thorough risk management process [19]. Uncertainty of cost items 

is a central aspect of complex projects and cost uncertainty analysis aid in performing cost 

estimation. It allows decision-makers to account for potential funding exposure of 

construction projects by identifying risks existing in a particular context to prepare risk 

response measures [31].  

 

Construction managers, real estate developers, and designers are continuously trying 

to make a profitable business. Still, risks inherent in innovative methods can lead to 

potentially high risks and could threaten meeting the objectives and the successful 

finalization of construction projects. Especially for complex projects, cost analysis is 

characterized by the enormous uncertainties about different project cost items, namely price 

variations, productivity rates, technological development, severe inflation, and economic 

and market conditions, just to name a few. Meanwhile, the industry knowledge and 

capabilities hinder its ability to adopt MMC [35]. Hence, industry professionals will 

relinquish their interest in MMC and, in turn, limit their participation in the body of 

knowledge to add or benefit from studies. Besides, the traditional “brick and block” masonry 

construction technique is still used in the majority of homes.  

 

On the other hand, the data science discipline can tackle common arising uncertainties 

and afford a better way to understand, categorize, assess, and develop risk response measures 

by revealing hidden trends in the data. The data science discipline strengthens the 

capabilities of decision-makers to perform several types of estimation about projects’ 

success parameters including cost uncertainty analysis. In general terms, cost analysis refers 

to a discipline that attempts to forecast the total cost of a project. In addition, diagnostic and 

prescriptive analysis of causes and preventive measures increase the significance of 

implementing advanced data science techniques. Fortunately, these advancements in data 

science fields also provide tools and techniques to perform an uncertainty analysis and 

mitigate risks associated with construction projects in the industry. Still, uncertainties 

inherent in construction projects threaten the financial stability of projects, and decision-

makers must develop adequate measures to manage arising uncertainties. Planning is an 

essential function of project management [36], and developing a risk management plan is 

part of the responsibilities of project managers [37]. Moreover, the construction industry's 

performance is hindered by the stakeholders' awareness and inefficiency in tackling raising 
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problems [38]. Several factors that exist in construction projects can jeopardize meeting 

project objectives and threaten projects’ successful finalization. Construction project delays 

cause financial losses for stakeholders in the industry [39]. Besides, several cost items can 

drastically impact the industry, namely labor, material, operation, maintenance, disposal, and 

project life cycle [40]. Hence, to overcome uncertainties associated with MMC, industry 

decision-makers are encouraged to implement a risk management framework and use it to 

the advantage of construction projects. 

 

Scholars have suggested numerous notable data analysis techniques and analytical 

tools using statistical methods. [41] pioneered one of the first risk management systems to 

improve the procedure of risk identification, analysis, evaluation, and response management. 

Twenty-five years later, [30] suggested that one of the critical challenges of a project 

management discipline is in forecasting the actual project cost. [31] asserted that the 

increased risk levels in today’s construction projects and quantifying a project cost risk are 

becoming project participants' focus. Furthermore, [30] added that uncertainty in data-driven 

decision-making in contingency control, cash flow analysis, and timely project financing are 

hindering project managers from forecasting the actual project cost. This argument supports 

the prior claim that top management support is essential to conduct a proper risk 

management process. Several additional risk uncertainty analysis tools and techniques have 

been introduced and studied by scholars. Stochastic network analysis has been implemented 

in the literature to model variations in a project and produce more reliable estimations. In 

addition, multiple techniques were introduced to solve the uncertain nature of the networks, 

namely PERT (program evaluation and review techniques), MCS (Monte Carlo simulation), 

NRB (narrow reliability bounds methods), and PNET (probabilistic network evaluation 

technique).  

 

Simulation techniques are frequently adopted by practitioners to capture the 

probabilities of cost items and to evaluate the project's overall cost [42]. Other than the 

simulation techniques, numerous data analysis techniques are commonly adopted for 

modeling risks and uncertainties in project cost analysis including feature-based method, 

case-based reasoning, and regression modeling. In addition, in the deep learning discipline, 

several applications abound in almost every industry in general and in the construction 

industry in particular. These applications extend to several areas, namely construction cost 
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prediction, site planning and management, and health and safety, which are yet to be 

explored [20].  

 

Several studies have been conducted on risk assessment of estimating the construction 

project’s overall cost, and there has been a considerable growing interest of scholars about 

the implementation of a deep learning-based risk assessment approach. Besides, machine 

learning offers an ideal set of techniques capable of tackling the nature of complex systems 

[14]. In a more literal sense, Artificial Intelligence represents a powerful tool to assist in 

addressing estimation challenges of project cost items. In the past decade, therefore, 

researchers have been intrigued by conducting studies on AI in the AEC industry known as 

AI-in-the-AECI [11]. Yet, adopting such techniques within the construction domine remains 

at an initial stage [14]. 

 

Still, these approaches fall short of considering the dependence between different 

factors. In light of the above, developing a methodology to accurately account for conditional 

dependency and realistically predict project hinderers using risk management analysis is of 

utmost importance. Besides, none of these methods capture the conditional dependence 

between project cost items and are consistent with real-world settings [31]. Meanwhile, 

scholars acknowledged that conventional data analysis techniques have overlooked the 

significance of conditional dependence including existing deep learning techniques [43].  

 

Even the well-developed Bayesian Networks (which can outperform not only 

traditional probabilistic risk analysis techniques but also advanced techniques) did not have 

the potential to outperform most deep learning methods [43]. The literature also lacks a 

comprehensive approach for cost overruns risk assessment of implementing MMC in 

housing sector projects in developing countries. The industry professionals also lack a 

systematic approach to assess the reliability of their decisions. They are prone to heavily rely 

on their own experiences and knowledge for decision-making on risk assessment [44]. A  

comprehensive risk uncertainty analysis plan offers several solutions and can aid in 

encouraging the take up of MMC by altering existing misleading beliefs about the industry.  

 

Though several attempts exist in the body of knowledge, especially project delay 

analysis which predominate, these efforts are not the end of the field. What is lacking is the 
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development of frameworks through a constructive methodology to wrestle the inherent 

obstacles (Sanni-Anibire et al., 2020). Nonetheless, this research is intended to make for a 

significant resolution. Besides, currently, the body of knowledge lacks a comprehensive 

application for addressing the conditional dependence pertaining to various risk factors via 

available deep learning techniques [20]. Furthermore, To the best of our knowledge, there 

are not any reported significant studies about the implementation of AI in assessing the risks 

of MMC. The architecture of this study is well suited to the fragmented nature of the 

construction industry’s data. Data analysis will be implemented in this study to analyze the 

data from different aspects and further explain hidden knowledge. 

 

1.4.  Aim and Objectives 

 

As previously discussed, in the problem definition section, numerous data analysis 

techniques from BDAs are commonly adopted for modeling risks and uncertainty. 

Nonetheless, when used individually, none of these methods can capture all relevant hidden 

knowledge existing in the data. In light of the above, developing a methodology to accurately 

account for assessing risk criticality levels, address conditional dependency, and leverage 

the power of artificial neural networks make for prudent resolution.  

 

To the best of my knowledge, there is currently limited focus on a comprehensive risk 

identification and assessment framework using multiple Big Data techniques in the context 

of the construction industry especially Conditional Tabular Generative Adversarial Network 

(CTGAN). This study, therefore, attempt to address this deficiency and fills a void by 

presenting wide-ranging interdisciplinary research of the fields including the construction 

industry, data science, statistics, computer programing, Machine Learning, and BDAs all in 

the context of the construction industry. To this end, the study will present the current state 

of harnessing available computer computation techniques in risk management settings as 

well as discuss the future potential of tools across the multiple domain-specific sub-areas of 

the construction industry.  

 

The research comprises two parts that are broken into two distinct, yet interrelated, 

analyses. This section will address those aims along with their objectives. The study aims to 

conduct a cost overruns risk analysis of implementing MMC in housing sector projects in 
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developing countries to meet the industry needs and fill a gap in the literature. Shortly, the 

objectives of this study are  

 

• assess risks inherent in the construction industry along with;  

• proposing ways to efficiently prioritize risks to develop risk response measures; and 

finally  

• categorize the risk factors and prioritize risk categories.  

 

Study findings are expected to aid in encouraging the further adoption of MMC in the 

construction industry on future projects. In the interest of brevity of this analysis, the 

discussion here is confined to the analysis of univariate and multivariate statistics to deal 

with risk factors. 

 

Lastly, using artificial neural networks, the study simultaneously integrated the two 

concepts (AI and MMC). The study also implemented the process of updating a posterior 

belief (knowledge of state about the distribution of variables) of a subset of variables when 

other variables (evidence variables) are observed. The study, therefore, analyzed the 

conditional independence of different risk factors and explain how those risks will amplify 

one another. To encapsulate this endeavor,  the additional objectives of this study, among 

other things, are to (1) Develop an ANN-based deep learning model, (2) initiate a system of 

relevant metrics to compare the ANN variables, and (3) identify the most influencing factors 

for each variable in the model. Study findings facilitate and raise the level of awareness of 

the potential application areas in AI in the industry and find ways to extend our knowledge. 

Study findings are also expected to support industry practitioners in managing risks of 

complex projects.  

 

The overall objective of this study is to provide decision-makers with a comprehensive 

understanding of construction industrialization. The study will lead the industry innovation 

efforts about the implementation of novel solutions to existing problems. One of the main 

contributions of the study is that while there have been several available proposed data-

driven solutions, the literature lacks a comprehensive data analytics framework covering 

different aspects of BDAs in the context of the construction industry. The study will lead the 
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industry innovation efforts about the implementation of novel solutions to existing problems 

by assessing potential risks.   

 

1.5.  Research Methodology  

 

1.5.1. Research Procedure  

 

The research procedure used in this study comprises five main steps as shown in Figure 

1.1. Firstly, a review of the literature was conducted to identify the research problem in Phase 

01. Subsequently, after identifying the research area of interest, a comprehensive literature 

review about the current adoption of MMC in the housing sector of the construction industry 

was carried out. Literature sources were journals, conference proceedings, trade journals, 

book series, books, and reports. Literature search was performed primarily via the Scopus 

search engine which is a web-based search engine accessible using the institution contact 

information of the researcher and capable of identifying multi-disciplinary publications. 

 

 

Figure 1.1. Research framework flowchart. 

Phase 01 
Comprehensive 
review of the 

literature

Phase 02 Explore 
factors inhibiting the 
promotion of MMC

Phase 03 
Questionnaire survey 

preparation and 
distribution

Phase 04 Univariate 
and multivariate 

analysis

Phase 05 Deep 
learning artificial 
neural network
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Then, after reviewing the literature, in Phase 02 of the research, the study explored 

factors that inhibit the promotion of MMC and a list of 25 factors was obtained. Interviews 

with focus groups were held. Phase 03 consists of the questionnaire survey preparation based 

on the results of the literature review conducted in the prior phase. The 25 list of risk factors 

extracted from Phase 2 was included in the questionnaire survey to assess their level of 

impact and degree of occurrence related to the adoption of MMC in developing countries. 

The questionnaire survey was then distributed through Google Forms. The study adopts a 

nonprobability virtual snowball sampling technique to conduct a structured questionnaire 

survey investigating respondents’ attitudes towards risk factors. 

 

The following phase consist of analyzing the data generated from the survey 

participants using suitable statistical methods. To this end, in Phase 04, Risk Significance 

Index (𝑅𝑆𝐼) and 𝑀𝑒𝑎𝑛 𝑅𝑆𝐼 were then adopted to assess the relative significance of risk 

factors and risk factors categories. To test the existence of underlying categories, FA was 

adopted using Principal Component Analysis (PCA). Before proceeding to the next phase, 

using the risk matrix table, each risk factor was categorized into one of three levels of risk 

criticality represented by R1, R2, and R3 where R1 represents, comparatively, a lower risk 

level and R3 represents a higher risk level.  

 

Lastly, in phase 05, Results from the first analysis will be adopted here. ANN model 

was developed to model the conditional dependence between different risk factors using 

conditional tabular GAN. In this step, the model was optimized using two primary factors, 

namely the batch size and the epoch number. The results from the evaluation function of the 

200 iterations were then graphed in a 3D Cartesian coordinate system via a heat map-like 

approach. To test the stability of the conditional dependence behavior of the model, data 

were synthesized to observe the probability of occurrence of R3 for each risk factor. The 

same procedure is applied in the next step by updating a state of one evidence variable to 

observe the effect on the rest of the network. 

 

1.5.2. Research Methods  

 

In the body of knowledge, there are several useful data analytics tools that borrows 

from multiple techniques. This is the key reason that most of the existing work presented has 
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mostly focused on BDA. Hence, this research adopts a triangulated study. A combination of 

several methods, including a literature review followed by a questionnaire survey to analyze 

risk factors. The study also adopts qualitative and quantitative research techniques to assess 

the identified risks. The research will present three different data analysis techniques, namely 

univariate analysis (descriptive statistics), multivariate analysis (FA), and simulation 

modeling (GANs). Those enabling technologies will be addressed chronologically.  

 

1.5.3. Research Questions  

 

Some researchers are inclined to believe that “identifying research questions at the 

beginning is essential to ensure conveying the purpose of the research”. While I, to some 

extent, agree with this mindset, I will be deceiving the readers if I stated I had a clearly 

predefined list of questions. In the data analysis field, there is a field known as data mining. 

As the name suggests, it is a process where we search, extract, and capture hidden patterns 

in the data that we do not even know if it exists. This is referred to “the unknown unknowns.” 

Hence, depending on the nature of data, one analysis tool might be more advantageous than 

the other. Consequently, by setting a number of questions in advance, I am certainly limiting 

the potential of the research. Nonetheless, for the sake of clarity, I will address research 

questions that I would have arisen had I knew there is a potential in this area. I will also 

exclude questions that I have answers to but were beyond the scope of this research. I will 

also exclude questions that I still cannot confirm nor deny without additional effort.   

 

The research is intended to explore and present multiple tools and techniques 

facilitating the take up of MMC. To this end, the arising MMC related techniques will be 

discussed. Then the discussion will be focused on the literature. From the literature review, 

the most significant publications will be analyzed. The criterion is the number of citations 

per article. To understand the body of knowledge commonly occurring trends, the number 

of yearly published articles will be plotted against the progression of time. Another analysis 

will be directed to explore which journal and country contributes the most to the field. The 

number of published articles per journal and per country will be obtained. A more advanced 

search will analyze the underlying patterns of risk factors. Lastly, risk criticality levels will 

be discussed to comprehend how they compare between categories and within categories.  
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1.6.  Scope, Limitations, and Significance of the Research 

 

The research scope is divided into two parts. The objectives of the first part are to (1) 

assess risks inherent in the construction industry along with; (2) proposing ways to 

efficiently prioritize risks to develop risk response measures; finally (3) categorize the risk 

factors and prioritize risk categories. The study aims at identifying and assessing risk 

criticality levels between groups as well as within groups. In a further attempt to analyze the 

data the second part utilized deep learning-based technique. By simultaneously integrating 

the two concepts (AI and MMC), the study, therefore, encourage the further take-up of MMC 

in the construction industry by accounting for conditional dependence of different risk 

factors. In doing so,  five objects were set namely, (1) Develop an ANN-based deep learning 

model, (2) initiate a system of relevant metrics to compare the ANN variables, and (3) 

identify the most influencing factors for each variable in the model.  

 

Despite the remarkable potential research promises, this research, too, has its own 

limitations. The analysis of causality graphs was left for another study. This includes the 

analysis of the influence of the existence and absence of the back door criterion (back-door 

path) and front door criterion (front-door path) that will affect the dependency model.  

Without such analysis I cannot confirm the existence of causation. I am limited to 

correlations. Besides, in Generative Adversarial Network (GAN) model of risk assessment 

turned the thinking to the machine. Scholars and industry professionals are advised to never 

do what is referred to as “move the thinking to a machine”. Practitioners’ intuition should 

always be present to question the results to interpret better and reason from the data. 

Although it sounds a little ambitious, future research ideas will be directed towards 

developing a holistic risk assessment framework that compares between several available 

frameworks. 

 

The study encourages the further take-up of offsite MMC in the construction industry 

in future projects by assessing uncertain events. The study facilitates and raises the level of 

awareness of the potential application areas in AI in the industry and finds ways to extend 

our knowledge. Study findings are expected to support industry practitioners in managing 

risks of complex projects. The study will lead the industry innovation efforts about the 

implementation of novel solutions to existing problems. The findings of the study are 
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expected to lead to cost reduction on construction projects. Besides, scholars have asserted 

that the analysis of factors, that are relevant to one economy, affecting the uptake of off-site 

production may also encourage future involvement in other developing economies. Open 

issues and directions for future work will also be discussed along with possible pitfalls 

associated with the mere adoption of univariate and multivariate analysis in the industry.  

 

1.7.  Organization of the Study  

 

The organization of the study cannot be expressed better without the research 

framework flowchart. Figure 1.3 briefly depicts the overall framework. The research will 

begin with an introduction to different MMC techniques. In the 3rd chapter, the research 

methodology will be introduced along with a comprehensive review of literature on MMC. 

In the 4th chapter, results and findings will be reported. Scholarly discussion of study findings 

is another essential part of the study which will be addressed in the 5th chapter. Lastly, 

conclusions and further recommendations will be drawn in the 6th.  

Figure 1.3. Research framework flowchart.  

Literature review MMC-related techniques Research methodology 

Results and findings
Scholarly discussion of 

study findings
Conclusions and 
recommendations
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2.  INTRODUCTION TO MMC TECHNIQUES 

 

MMC was first pioneered in the UK. Although several UK houses have a brick outer 

layer and look like traditional houses, several materials are employed for MMC application, 

the most common being steel, wood, and concrete. In essence, MMC can be thought of as 

manufacturing house parts offsite in a specially designed factory [45]. Among other things, 

the two specific products of MMC are (1) panels – including ready-made walls, floors, and 

roofs and (2) modules – ready-made rooms, also known as pods.  

 

Afterward, the manufacturing panel pods are transported to the site and assembled 

instantly, often within a day. In addition, electrical and mechanical systems (wiring and 

plumbing) could be already incorporated inside the panels, making construction even faster. 

Modules can be pieced together to make a whole house or flat but are most commonly used 

for restrooms or kitchens, where all the fittings are added in the factory. Other innovative 

site-based methods could also be part of MMC, such as the use of concrete molds, robotics, 

and other new technologies.  

 

As documented in previous literature, Off-Site Production (OSP) falls under the 

overarching umbrella of MMC [35]. Hence, it is necessary to acknowledge that all OSP may 

be considered MMC, but not all MMC can be regarded as OSP [46]. OSP should be 

considered with both the product and the process of construction. In this respect, OSP aims 

to enhance business efficiency, sustainability, environmental performance, the predictability 

of delivery timescales. Hence, it is more “broadly” based than merely confined to a particular 

product [35].  

 

In the same sense, it is argued that OSP may be seen as a “more realistic” means of 

reducing time spent on-site, improving site safety, improving quality, and addressing skills 

shortages. Nevertheless, for the successful implementation of OSP, strategic planning is 

required to change the project process from “traditional brick and block masonry” to 

“manufacturing and installation” [46]. Consequently, OSP is closely interwoven with the 

“industrialization” concept. Industrialization is defined as a production process that exploits 

available technologies to reduce the cost associated with manual labor, improve production, 

and final product quality [47]. This definition is in line with [48], who defined 
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industrialization as involving machines and repetition for mass production and economies 

of scale. 

 

There are many similarities in terms of prefabrication and pre-assembly of Off-Site 

Manufacturing (OSM) with off-site construction, off-site fabrication, and off-site production 

[34]. Nonetheless, as the term was used in the Construction 2020 Report, the term OSM was 

adopted by the Australian construction industry for consistency purposes. All of Australia, 

the U.K., and the U.S. have achieved the modular building standard. When it comes to off-

site preassembly, the three countries bear many similarities in common, but only the first 

two have classified off-site preassembly into non-volumetric and volumetric. Thus, Australia 

and the U.K. share the same similar categorization of off-site systems where most Australian 

researchers referred to the U.K. [49]. 

 

To expand upon our understanding of MMC I will use the MMC definition framework. 

The framework consists of seven categories of regularized terminologies. It spans multiple 

types of pre-manufacturing, site-based material, and process innovation. The first five 

categories are the off-site and pre-manufacturing components. The first of which addresses 

the 3D primary structural systems. The 3D volumetric units might be a mere basic structure 

or fully equipped with internal and external finishes and services. The 3D units are either 

full volumetric units or mini volumetric. The second category is the 2D primary structural 

systems. The systems consist of flat panel units including floors, walls, and roof structures. 

[50] 

 

The third category is the non-systemized primary structure. The category includes 

framed or mass engineered timber, cold/hot rolled steel or pre-cast concrete. The units range 

from load bearing beams, columns, walls, core structures and slabs. The category focuses 

more on superstructure elements than sub-structure elements. The fourth category is the 

additive manufacturing including structural and non-structural. The category involves the 

use of digital designs and manufacturing techniques to print building elements. The approach 

might be site-based or remote using various materials. The last category of pre-

manufacturing is the nonstructural assemblies and sub-assemblies. This includes non-

structural walling systems, roofing finish cassettes or assemblies, non-load bearing mini-
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volumetric units, utility cupboards, risers, plant rooms, pre-formed wiring looms, and 

mechanical engineering composites.  

 

The last two categories are the site-based process improvement. The second to last 

category is the traditional building product led site labor reduction/ productivity 

improvements. The category includes single building products manufactured in large format, 

pre-cut configurations, or with easy jointing features to reduce extent of site labor required 

to install. Lastly, site process led site labor reduction/productivity/assurance improvements. 

It is the implementation of site-based innovative construction techniques. It encompasses 

lean construction techniques, physical or digital worker augmentation, workface robotics, 

exoskeletons and other wearables, drones, verification tools and adoption of technology led 

plant and machinery.  
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3.  RESEARCH METHODOLOGY 

 

As [51] suggested, triangulated studies can be powerful in gaining insights and 

obtaining results. This research, therefore, adopts a combination of several methods, 

including a comprehensive review of the literature followed by a questionnaire survey to 

assess risk criticality levels of risk factors. In addition, the study also adopts qualitative and 

quantitative research techniques. In the quantitative part, linguistic terms were used to assign 

a degree of impact and frequency of occurrence for each risk factor. In the qualitative part, 

however, the Likert scale was used to prepare the data to be further analyzed and quantify 

the significance of each factor. Figure 3.1. depicts the overall roadmap of the study 

methodology.  

 

 

Figure 3.1. Overall methodology roadmap. 
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3.1.  Review of Literature on MMC 

 

The study was initiated with a comprehensive review of relevant literature to 

understand the industry standards and trends. To this end, the Scopus search engine was 

utilized to look through various publications from multiple journals and several publishers. 

The inclusion criteria were the discussion of the implementation of modern methods of 

construction in general and off-site construction in particular. The keywords list was 

prepared and the search operators “AND” and “OR” were determined. To be more precise, 

the search was limited to three parts of the publications, namely document title, abstract, and 

author keywords. At this stage of the research, there was not any specific consideration for 

the publication dates. Nonetheless, the earliest reported study dates back to 1972 and the 

newest dates back to 2022 with 50 years of elapsed time between the two publications. There 

is a clear trend of interest in the body of knowledge which will be discussed later on in this 

study. Nonetheless, this step yields a total of 793 publications published in several sources 

including journals, conference proceedings, trade journals, book series, books, and reports 

with a total number of publications of 428, 307, 27, 23, 7, and 1, respectively.  

  

Leveraging the power of deep learning and recurrent neural networks, bibliometric 

analysis was conducted using VOS viewer software. The analysis comprises two stages. The 

first of which is to visually analyze the scholars’ interests by analyzing the co-occurrence of 

research keywords. Two networks were obtained, namely the MMC implemented techniques 

and the adopted methodology to facilitate the implementation. The prior will be discussed 

later. The latter is depicted in figure 3.2. The figure demonstrates how various tools and 

techniques are being considered to facilitate the implementation of MMC. The relative 

importance is captured by the cluster size. By reading the colors and dimensions of factors, 

we can witness how the industry is shifting its focus to newer techniques, namely 

sustainability, project stockholders, life cycle, logistics, lean construction, information 

theory, and finally risk assessment, the gist of the study. Secondly, a more detailed analysis 

of publications was conducted. Results of this step can aid in answering questions about the 

publication country of origin, publication date, number of citations, and number of 

publications per journal.  
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Scholars have addressed the issue of improving the performance of the construction 

industry. Several attempts were made to innovate in the industry. Most of these attempts 

never came to fruition. One prominent solution is in the implementation of the MMC. It was 

first defined as transferring the day-to-day site activities to a factory where a controlled 

environment can be attained. Recently, the exploitation of robotics and other novel tools are 

also considered in this approach. MMC is a form of innovation in the industry, and as with 

all innovative methods, it opens up several opportunities for advancement in the industry’s 

processes and technologies. MMC has been regarded as a solution to meet the industry’s 

innovative, sustainable, and faster construction demands [27]. In a more literal sense, MMC 

is known for its ability to reduce total construction costs and total project schedules, meet 

high-quality standards, and improve the construction work environment [19]. It was also 

proven that wastage generation could be significantly reduced up to 100% after 

implementing prefabrication techniques, in which up to 84.7% can be saved on wastage 

reduction [28].  

 

Because of its prominent proven potential benefits, MMC, or construction 

industrialization as defined in the Chinese construction industry, has been adopted 

worldwide [38]. Other studies revealed that the construction industry has started to embrace 

Industrialized Building Systems (IBS) as a method of reducing risks related to occupational 

safety and health, alleviating issues for skilled workers and dependency on manual foreign 

labor, attaining better construction quality and productivity, and achieving the ultimate goal 

of reducing the overall cost of construction. It is capable of reducing risk-related activities 

of occupational safety, health, and productivity of craftsmen. It was also argued that it is 

capable of achieving the ultimate goal of reducing the overall cost of construction [29]. Yet, 

MMC can aid in reducing the uncertainty that occurs for several reasons, namely uniqueness 

of project activities; variability resulted from the trade-off between performance measures 

like time, cost, quality, and safety; and ambiguity from the lack of clarity, data, structure, 

and biases in estimates [31]. 

 

Construction managers, real estate developers, and designers are continuously trying 

to make a profitable business. Still, risks inherent in innovative methods can lead to 

potentially high risks and could threaten meeting the objectives and the successful 

finalization of construction projects. Especially for complex projects, cost analysis is 
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characterized by the enormous uncertainties about different project cost items, namely price 

variations, productivity rates, technological development, severe inflation, and economic 

and market conditions, just to name a few. Meanwhile, the industry knowledge and 

capabilities hinder its ability to adopt MMC [35]. Hence, industry professionals will 

relinquish their interest in MMC and, in turn, limit their participation in the body of 

knowledge to add or benefit from studies. Besides, the traditional “brick and block” masonry 

construction technique is still used in the majority of homes.  

 

On the other hand, the data science discipline can tackle common arising uncertainties 

and afford a better way to understand, categorize, assess, and develop risk response measures 

by revealing hidden trends in the data. The data science discipline strengthens the 

capabilities of decision-makers to perform several types of estimation about projects’ 

success parameters including cost uncertainty analysis. In general terms, cost analysis refers 

to a discipline that attempts to forecast the total cost of a project. In addition, diagnostic and 

prescriptive analysis of causes and preventive measures increase the significance of 

implementing advanced data science techniques. Fortunately, these advancements in data 

science fields also provide tools and techniques to perform an uncertainty analysis and 

mitigate risks associated with construction projects in the industry.  

 

Still, uncertainties inherent in construction projects threaten the financial stability of 

projects, and decision-makers must develop adequate measures to manage arising 

uncertainties. Planning is an essential function of project management [36], and developing 

a risk management plan is part of the responsibilities of project managers [37]. Moreover, 

the construction industry's performance is hindered by the stakeholders' awareness and 

inefficiency in tackling raising problems [38]. Several factors that exist in construction 

projects can jeopardize meeting project objectives and threaten projects’ successful 

finalization. Construction project delays cause financial losses for stakeholders in the 

industry [39]. Besides, several cost items can drastically impact the industry, namely labor, 

material, operation, maintenance, disposal, and project life cycle [40]. Hence, to overcome 

uncertainties associated with MMC, industry decision-makers are encouraged to implement 

a risk management framework and use it to the advantage of construction projects. 
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Simulation techniques are frequently adopted by practitioners to capture the 

probabilities of cost items and to evaluate the project's overall cost [42]. In the past decade, 

therefore, researchers have been intrigued by conducting studies on AI in the AEC industry 

known as AI-in-the-AECI [11]. Yet, adopting such techniques within the construction 

domine remains at an initial stage [14]. Still, these approaches fall short of considering the 

dependence between different factors. In light of the above, developing a methodology to 

accurately account for conditional dependency and realistically predict project hinderers 

using risk management analysis is of utmost importance. Besides, none of these methods 

capture the conditional dependence between project cost items and are consistent with real-

world settings [31]. Meanwhile, scholars acknowledged that conventional data analysis 

techniques have overlooked the significance of conditional dependence including existing 

deep learning techniques [43].  

 

Though several attempts exist in the body of knowledge, especially project delay 

analysis which predominate, these efforts are not the end of the field. The industry 

professionals also lack a systematic approach to assess the reliability of their decisions. They 

are prone to heavily rely on their own experiences and knowledge for decision-making on 

risk assessment [44]. A  comprehensive risk uncertainty analysis plan offers several solutions 

and can aid in encouraging the take up of MMC by altering existing misleading beliefs about 

the industry. What is lacking is the development of frameworks through a constructive 

methodology to wrestle the inherent obstacles [21]. The literature also lacks a comprehensive 

approach for cost overruns risk assessment of implementing MMC in housing sector projects 

in developing countries.  

 

There is a gap in the body of knowledge on a comprehensive application for addressing 

the conditional dependence pertaining to various risk factors via available deep learning 

techniques [20]. To the best of our knowledge, there are not any reported significant studies 

about the implementation of AI in assessing the risks of MMC. The architecture of this study 

is well suited to the fragmented nature of the construction industry’s data. Data analysis will 

be implemented in this study to analyze the data from different aspects and further explain 

hidden knowledge. 
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3.2.  Step Two: Risk Identification 

 

This study aims to understand the development status of the implemented MMC in 

developing countries. For this reason, I explored factors that inhibit the promotion of MMC 

by following a research framework proposed by Cao et al. [6]. After reviewing the literature, 

I looked through the top 35 most cited publications. From which, I stumbled upon 15 

research articles published between the years 2002 and 2018. The highest cited publication 

has 242 citations and the lowest has 69. From these publications, I initially obtained a list of 

297 risk factors. Refer to Table 12 appendix E. A preliminary risk categorization system was 

created to categorize the 297 risks. The primary categorization system comprises 10 

categories including Site conditions & Environment, Legal concern, Cost & Economy, 

Quality, Safety, Time, Inbound/outbound Logistics, Knowledge & Skills, Design, and 

Equipment & Tech with a total number of risk factors of 17, 26, 31, 11, 17, 42, 52, 56, 25, 

and 20, respectively. This will facilitate comparing and combining similar risk factors. I 

applied 10 rounds to reduce the list from 297 to 25 risk factors.  

 

 

Figure 3.2. Various tools and techniques which facilitate the implementation of MMC. 
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Face-to-face interviews were then held with focus groups consisting of the industry 

professionals to validate the final list of risk factors. The three participants of the focus group 

had work experience of over 25 years in the industry. They are entrepreneurs, investors, and 

company directors. In addition, they have been engaging in at least two to three construction-

related activities in multiple companies in developing countries. Table 3.1 summarizes the 

demographic information of focus group members. 

 

3.3.  Step Three: Conducting Questionnaire Survey 

 

The study adopts a nonprobability sampling technique known as the snowball 

sampling technique [52]. The snowball sampling technique allows existing study 

participants to recruit future participants to represent the industry experts from among their 

acquaintances. The sample group is said to grow like a rolling snowball, and the sample 

builds up. Since the median through which the samples were collected was virtual social 

networks, this technique is called virtual snowball sampling [53]. A structured questionnaire 

survey investigating respondents’ attitudes towards risk factors was conducted in several 

developing countries, representing the overall development of the construction industry in 

developing countries, especially the development of MMC at the initial stage. The 

questionnaire survey comprises two sections. The first section was developed to gather 

information about the respondents’ background and experience and check the validity of 

their contribution to the study. The second section was devoted to collecting the data to be 

further analyzed and interpreted.  

 

Table 3.1. Demographic information of focus group members. 

Interviewee Years Countries of experience Current position 

Participant 01 31 Turkey,  Saudi Arabia, and Syria 
Chief operating officer and investor in real-

estate development 

Participant 02  29 Saudi Arabia, Egypt, and Turkey 
Chief executive officer and investor in pre-

cast concrete elements and modules factory 

Participant 03 26 China, Saudi Arabia 
Corporate relations manager and investor in 

construction materials supply and equipment 

 

The questionnaire was pre-tested to ensure that questions are well-defined, practical, 

and not overly burdensome to answer. A total of 149 valid responses were obtained from 
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experts operating in the industry, including 53 from site engineering, 39 from project 

management and procurement, 21 from quality and safety management, 18 from head office 

and consultancy, and 18 from real-estate design and development. The study participants 

had a minimum of 10 years of work experience and up to 28 years of experience. The 

participants had job positions in five different sectors in the industry, namely construction 

(contracting), consultancy (consultancy firms), manufacturing (manufacturer & supplier), 

design (architect, structure engineer, etc.), and real estate business (real estate developer). 

All of the questionnaire participants from or had worked in the construction industry of a 

developing country. In addition, they had also worked in some form of off-site construction 

in the housing sector of the construction industry. Details about the respondents are 

summarized in Table 3.2.  

 

Table 3.2. Research team background. 

Criteria  Category No. of Respondents 

Experience Range  

(In years) 

From 10 years to 15 66 

From 16 years to 20 51 

From 21 years to 25 22 

From 26 years to 30 10 

Industry Sector 

Construction (Contracting Companies) 102 

Consultancy (Consultancy Firms) 14 

Manufacturing (Manufacturers & Suppliers) 13 

Design (Architect, Structure Engineer, etc.) 12 

Real Estate Business (Real Estate Developers) 08 

Respondents’ 

Positions 

Site Engineering 53 

Project Management & Procurement  39 

Quality and Safety Management 21 

Head Office and Consultancy 18 

Real-estate Design and Development 18 

Respondents by 

region 

Gulf Region  98 

Asia & Pacific 72 

Middle East (Excluding the Gulf countries) 31 

Africa 04 
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In addition to the six general questions about the participants, the questionnaire had 

25 questions to assess the risk level of 25 risk factors. In each question, the participant is 

asked to identify the level of impact and frequency of occurrence of each risk factor. In doing 

so, the participants are asked to use a five-point Likert Scale. The level of impact intensity 

ranges from 1 to 5, representing very low, low, moderate, high, and very high, respectively. 

The degree of occurrence of Likert scale adopts the following linguistic terms rare (0%-

20%), unlikely (20%-40%), possible (40%-60%), likely (60%-80%), and certain (80%-

100%) to represent 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. 

 

3.4.  Step Four: Conducting Univariate Statistical Analysis 

 

In this step, the Risk Significance Index (RSI) from [54] was adopted to assess the 

relative significance among the 25 risk factors. RSI can be calculated by the following 

formula:  

RSIi =  
1

N
 ∑ 𝛼j

i
N

j=1
 𝛽j

i ,                                                     (3.1) 

where RSIi denotes the RSI value for risk i, 𝛼i
j
 is the likelihood of the occurrence of risk i as 

assessed by respondent j, 𝛽i
j
 is the degree of loss of risk i if it occurs as assessed by 

respondent j, and N is the total number of effective respondents. Table 4 represents the RSIi 

for each risk factor.  

 

Univariate statistical analysis was also implemented in the study after applying the 

multivariate statistical analysis and group risks to several constructs. By applying the mean 

of risk significance index, I can identify the risk significance index not only for certain risk 

factors but also for the overall risk level of a category. The Mean 𝑅𝑆𝐼 can be calculated by 

the following formula:  

Mean RSI =  
1 

N
∑ RSIi

N

i=1
 ,                                                 (3.2) 

where 𝑀𝑒𝑎𝑛 𝑅𝑆𝐼 denotes the mean risk value of RSI, RSIi is the RSI value for risk i, and N 

is the total number of constructs. 
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3.5.  Step Five: Conducting Multivariate Statistical Analysis 

 

The following step is performed to comprehend how risk factors inherent in the 

industry might affect the implementation of MMC and how they are related together. A 

powerful tool to address these concerns is FA. It was pioneered by the English psychologist 

Charles Spearman in 1904. FA is used for identifying groups of items, which in many cases 

are survey questions, that are strongly correlated. I assume that the strongly correlated items 

represent some reflective factor or construct because they move together consistently. In 

other words, I want to explore the underlying categories. There are three main applications 

for FA, namely data reduction, exploring data for patterns, and confirming a hypothesis of 

the factor structure. In this study, I am interested in exploring data for patterns as stated early 

on in this research. Among the three available extraction methods, Maximum likelihood, 

Principal axis factoring (PAF), and Principal Component Analysis, I adopted the latter. 

Accordingly, I utilized FA to group each number of factors and test if these risk factors load 

together and measure the same construct to form principal components, hence the name 

PCA.  

 

This can be achieved by comparing their factor loadings. Higher values indicate that 

the factors stick together and load on the same construct. Despite FA telling us if the items 

load together, it does not answer what constructs are being measured. This study did not 

have a hypothesis about how the factors will load, in what ways they will load together, or 

an idea formed in advance about how they will divide up. Nonetheless, I have some 

expectations in mind. I expect constructs to be formed to measure industry knowledge, the 

risk-return trade-off, and conflicts in time and cost of the MMC. Hence, I would find several 

constructs that some factors would load cleanly on those constructs in these data.  

 

The Statistical Package for the Social Science (SPSS, IBM Corporation, Armonk, NY, 

USA) was employed in this paper to test the reliability of the collected data and to perform 

the multivariate calculations. I gathered data about 25 risk factors from 149 respondents. 

PCA was used for the extraction method with 25 iterations. There is a slight difference 

between FA and PCA, but often, these terms are used interchangeably.  Researchers 

generally accept PCA as achieving the same goal as FA [55]–[58]. However, if I am 

interested in reducing the observed variables down to their principal components while 
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maximizing the variance accounted for in the variables by the components, then I should be 

using PCA [59]. In the first extraction attempt, I chose direct oblimin rotation from the 

oblique category of rotation methods. That is to say; the constructs are correlated together. 

The extraction did not converge with this type of rotation. I checked the component 

correlation matrix to determine the rotation method. When I took the absolute value of the 

values in the matrix, I found the results not exceeding 0.32. Then, it was clear that the 

rotation is orthogonal.  

 

In the second attempt, I set the varimax rotation method from the orthogonal category 

of rotations. In the literature, there is no obvious guidance about how many constructs to 

choose from. One argues it is enough to retain all factors with eigenvalues exceeding 1.0 and 

accept it as the default in most statistical software packages [59]. In contrast, scholars 

showed a broad consensus that this method is among the least accurate methods for 

determining the number of principal components to retain [57]. Others argue we need to not 

just rely on the eigenvalue but also observe how cleanly factors are loading on the constructs 

[57]. Hence, keeping everything constant, I repeated the extraction procedure nine times by 

only altering the number of constructs. I started with 2 up to 10. From the repetition, I found 

that eight constructs provide the cleanliest loading among the others and hence represent 

meaningful factors. The suppression factor was set to be 0.3. There are several theories, but 

the most common are suppress small coefficients less than 0.3 or 0.4. 

 

Lastly, the Kaiser-Meyer-Olkin (KMO) statistic (adequacy test) is used for measuring 

sampling adequacy and evaluates the correlations and partial correlations to determine if the 

variables are likely to merge into components. The measure of sampling adequacy test yields 

a 0.566 greater than a popular cut-off of 0.5 and is close to 0.6, which is considered perfect. 

Bartlett’s test of sphericity is carried out to test the null hypothesis that the correlation matrix 

is an identity matrix, i.e., all terms of the diagonal are equal to 1 and the other terms are 

equal to zero. A large value of Bartlett’s test statistic for sphericity with a small significance 

level (p<0.00) indicates that the correlation matrix is not an identity matrix and FA can be 

applied. The data passed Bartlett’s Test of Sphericity with a significance level of 0.001 and 

an approximate Chi-Square value of 378.291 and a degree of freedom of 300. 
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3.6.  Step Six: Develop the Deep Learning ANN Model 

 

For many years, the nonlinear relation between attributes has been investigated 

through the implementation of ANN to generate a logic between different variables. ANN 

and other statistical techniques are used to capture the common causes of hidden conditional 

dependence between different attributes in the model [13]. Not until the recent technological 

advancement has finally come in handy, analysis of big data was perceived to be costly. The 

term costly is used to refer to those operations which demand a lot of computational 

resources to be used, such as the CPU, GPU, memory cards, etc. The research methodology, 

however, did not necessitate the use of enormous computational power.  

 

The only part of the methodology where the required computational power was 

comparatively high is in what I refer to as the model hyperparameters optimization, namely 

the epoch number and the batch size. This will be addressed in more detail in the subsequent 

sections. Consequently, the research follows [43] methodology of training an ANN model 

from existing data. Using the power of deep ANNs, [43] in their previous research developed 

a tabular generative adversarial network that generates high-quality and fully synthetic tables 

while simultaneously generating discrete and continuous variables. They then introduced the 

Conditional Tabular Generative Adversarial Network that enables us to use a conditional 

generator to address the challenges of imbalanced discrete columns that pose difficulties in 

the modeling phase.  

 

To encapsulate this endeavor, a computer-based approach that implements the python-

based CTGAN software package was used. The PyCharm Integrated Development 

Environment (IDE) Community Edition 2020.3.3 x64 was used to run the Python interpreter 

version 3.8.9 and perform the computations. After installing the sdv package using the pip 

installer package, CTGAN was imported from sdv.tabular package. For the evaluation 

process, the evaluate software package was imported from the sdv.evaluate package. The 

seed was set to be a random number of (10) to increase the possibility of reproducing 

comparable results. The collected data from 149 questionnaire surveys were imported as a 

Comma Separated Values (CSV) file format and saved as a Pandas Dataframe.  
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Out of the 149 questionnaire surveys, 100 surveys were used to learn and train the 

deep learning model. The remaining 49 samples will be then used in the validation process 

of the developed deep learning model. In the CTGAN learning model, all the parameters 

including epochs, batch size, dimension of the generator, and the dimension of the 

discriminator were initially set to be as follows 500, 100, (256, 256, 256), and (256, 256, 

256), respectively. None of the primary keys or anonymized fields were assigned to the 

model. Furthermore, all of the data have been discretized into one of three possible values 

ranging from L1 (lower risk level), L2 (moderate risk level), and L3 (higher risk level) as 

described in the previous step. Refer to table 3.3. 

 

In the next part of this step, I tried to optimize the procedure of learning the model. 

Two primary factors were considered, namely the batch size and the epoch number. For the 

prior, there are three available types mentioned in the literature including batch mode (the 

batch size equals the complete dataset),  mini-batch mode (the batch size is greater than 1, 

usually a number that is divisible by sample size), and stochastic mode (the batch size equals 

1). In the CTGAN, however, the batch size must be a multiple of 10 in order to use the 

CTGAN package.  Unlike the batch size, the epoch number does not have limitations. Out 

of the model, 100 thousand samples were synthesized.  

 

Table 3.3. Risk matrix table. 
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5th L2 L2 L3 L3 L3 

4th L2 L2 L2 L3 L3 

3rd L1 L2 L2 L2 L3 

2nd L1 L1 L2 L2 L2 

1st L1 L1 L1 L2 L2 

  1st 2nd 3rd 4th 5th 

  Degree of Impact 
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The synthesized data were then evaluated using the 49-testing data with the following 

metrics. These metrics evaluate the synthesized vs. real data via a score that should be 

maximized. In the evaluate function, the aggregate was set to be false to not only end up 

with an average score of all metrics but also to get the score of individual metrics. The 

evaluate function is based on four well-known metrics, namely chi-squared, inverted 

Kolmogorov-Smirnov d statistic, Bayesian network log-likelihood, log-likelihood, and 

discrete Kullback–Leibler divergence.  

 

The code performed 100 iterations of changing epoch size and batch size having 10 

possible values each starting from 50 up to 500 with an incremental increase of 50 for epoch 

number and 10 up to 100 with an incremental increase of 10 for the batch size. After 

performing the first 100 iterations, from the data, it was clear that an additional 100 iterations 

are necessary to cover the range starting from 550 up to 1000 with an incremental increase 

of 50 for epoch number. In both 100 iterations, a sample size of 100 thousand instances was 

synthesized and evaluated against the 49-testing data as previously illustrated.  

 

This allows us to better understand the model performance when changing its 

parameters. To automate the evaluation process, for every 100 iterations, a python code was 

developed. The code comprises two nested for loops that are capable of swapping between 

several learning parameters and performing learning, sampling, and testing for each one of 

the 100 iterations.  

 

After swapping between several ANN hyperparameters (a.k.a. learning parameters) 

and performing learning, sampling, and validating for several iterations, the hyperparameters 

of the CTGAN model, namely epoch number and batch size were optimized for the values 

of 300 and 10, respectively. The other learning hyperparameters, namely the dimension of 

the ANN generator and the dimension of the ANN discriminator were finally set to be as 

follows (25, 25, 25) for the generator neural network and (25, 25, 25) for the discriminator 

neural network (a.k.a. critic network). No primary keys or anonymized fields were assigned 

to the model. After inspecting the scores from the evaluation function, I realized that those 

hyperparameters will optimize the ANN model.  
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Lastly, the model was then saved with the filename extension using the .pkl extension 

to highlight that the serialization protocol used is Pickle. This will make it easier to be shared 

without sharing the questionnaire survey forms and breach the participants’ data privacy 

agreement. The generated sample was also saved but this time using the CSV file format to 

be easily imported to the IDE of programming languages.  

 

More detail will be addressed in the discussion section. The results from the evaluation 

function of the 200 iterations were then graphed in a 3D Cartesian coordinate system against 

the change in epoch number and the change in the batch size. The scattered points were then 

connected through the implementation of a special graphing tool from the Matplotlib 

package for the python programming language.  

 

To understand the model performance while changing the epoch number and the batch 

size, the scattered data points were plotted against the two axes as mentioned in the 

methodology section. A heat map-like approach was adopted to represent higher values of 

the evaluate function with different colors. Figure 4.6. illustrates the plotted scattered data 

points. Brighter colors indicate a more representative model that has higher scores. If I took 

a slice of the model to turn it into a 2D graph, I can start to observe that as the batch size 

increases, the epoch number decreases given that the overall fitness score is held constant. 

From a ML developer’s point of view, this is completely an expected behavior (interaction 

between the epoch number and the batch size). When the features are fed gradually to 

perform the training, the model will not need to see the data multiple times as compared to 

when I feed it all at once. In the first case, the learning computations will take a longer time 

because the data will be fed in multiple batches. Besides, the epoch number will be increased 

to result in an even longer training time.  

 

After training the model in multiple iterations, I generally did not feel the need to 

worry about improving the training time as it did not matter much especially when this is 

only performed once. On the other hand, I want to maximize the evaluation score while 

decreasing the epoch number. The increase in both the epoch number and the neural network 

dimension (nodes in each layer) will result in overfitting. This happens when the model starts 

to memorize the fed features instead of capturing existing trends in the data. The reason 

overfitting should be avoided is that when the model is evaluated on the training data, the 
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performance will be maximized. However, this performance cannot be maintained when the 

model is fed different real-world data. In the study, this is not an issue because the model 

validating data were not exposed to the model previously. In other words, the performance 

is determined in a way that overfitting is not common as I compare the fitness of the sampled 

data against the testing data (a sample of 49 instances). However, I chose to reduce the 

required training time by reducing the epoch number and the batch size. The final model was 

saved with the serialization protocol pickle.  

  

After calculating the probability of L3 risk level for each risk factor, I found that some 

risk factors have significantly higher risk frequency of occurrence. To choose from the list 

the riskiest risk sources I had two inclusion criteria in mind. The first of which is the relative 

occurrence of a risk criticality level of 3. Secondly, I looked for the risk that is significantly 

less than the previous one. As a result, a list of 7 risk factors was developed.  

 

  

Figure 3.3. Plotted scattered data points of the evaluation function 
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3.7.  Step Seven: Comparing the Risk Ranks of ANN and Univariate Analysis 

 

 In addition, a significant analysis is the analysis of comparing the results of ANN and 

multivariate analysis. Since each measure of risk criticality is different, the rank will 

constitute the comparison. In the body of knowledge, there are plenty of tools to be utilized. 

A very remarkable tool is the Kendall Rank Correlation Coefficient. The Coefficient is also 

referred to as Kendall’s tau. The coefficient measures the rank correlation by exploring the 

similarity of the orderings of the data when ranked [60].  

 

Kendall correlation methods are non-parametric rank-based correlation test to measure 

rank correlation. The coefficient ranges from 1 and -1, where 1 represents high Kendall 

correlation between the variables and -1 represents low Kendall correlation between ranks. 

If the tau coefficient is zero then this indicates there is not any association between the two 

ranks. Depending on the rank we can conclude whether the factors have similar of dissimilar 

ranks. In exploring the factor, the R programming language will be used. Unlike some 

previous analyses, here there is not any randomness. Hence, it was not necessary to set the 

seed and replication of the results is guaranteed. 
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4.  RESULTS AND FINDINGS 

 

From the body of knowledge, I gathered 793 related publications. From those 

publications, I analyzed them with VOS viewer to construct a network representing the 

available MMC techniques in the industry. Figure 4.1. illustrates those techniques. The size, 

color, and location of the techniques in the network represent the significance, adoption time, 

and relevance to neighboring techniques. From the graph, it is evident that the industry focus 

is shifting from traditional prefabrication techniques and IBS to robotics, automation, and 

lean construction between the years 2014 and 2016. Between the years 2016 and 2018, the 

industry focus is also shifting towards different techniques. The core of this focus is 

comprised of off-site construction, sustainable construction, BIM-enabled off-site 

construction, and modular construction. Modular construction, in particular, has rapidly 

captured the scholars’ interest. Successful implementation can be found in several industries 

including the Chinese industry and Singaporean industry.  

 

 

 

Figure 4.1. MMC techniques in the industry. 
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Another detailed comparison about the number of citations was made, but this time 

citations per publication was considered. The three most cited are [61], [62], and [63] with 

a total number of citations of 242, 201, and 178, respectively. Refer to figure 4.2. 

 

 

Figure 4.2. Comparison of citations/publication. 

 

To analyze the trend of the number of yearly published publications, the 793 

publications were categorized by the publication date. Then a linear regression analysis was 

performed to understand the underlying relationship between the number of documents and 

the year of publication. It was found out that there exists a strong linear relationship between 

the number and year of publications with the model’s R2 of  0.846. This indicates that the 

model explains about 84.60 % of the variation. More about that will be discussed in the 

subsequent sections. Refer to figure 4.3. 

 

 

Figure 4.3. Number of published articles/years. 
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 The study review of the literature also revealed additional interesting results. Firstly, 

a comparison of the number of citations for each academic journal was made. From which, 

I concluded that the most-cited journals in this area of research are Journal of Cleaner 

Production, Automation in Construction, Journal of Construction Engineering and 

Management, Journal of Management in Engineering, and Journal of Architectural 

Engineering with a total number of citations of 1213, 979, 629, 565, and 441, respectively. 

Figure 4.4. depicts the results. Lastly, the number of articles and citations per country was 

analyzed. It was found that the most contributing countries (by the number of citations) are 

the United States, the United Kingdom, China, Australia, and Malaysia with a total number 

of citations of 1833, 1807, 1777, 1647, and 1508, respectively. Refer to figure 4.5.  

 

 

Figure 4.4. Comparison of articles and citations/journal. 
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After reviewing the literature and looking through the top 35 most cited publications, 

15 research articles published between the years 2002 and 2018 were selected. Table 7.1 in 

Appendix A illustrates detailed information about the articles. The 15 publications were 

published in Journal of Cleaner Production, Building Research and Information, Journal of 

Management in Engineering, Journal of Construction Engineering & Management, Journal 

of Building Engineering, Engineering, Construction & Architectural Management, Journal 

of Architectural Engineering, and Canadian Journal of Civil Engineering. Refer to Table 7.2 

in Appendix B for detailed information about the publications’ source. Consequently, an 

initial list of 297 risk factors was developed. After reducing the list to 25 risk factors, face-

to-face interviews were held with focus groups to validate the final list. Refer to Table 7.3 

in Appendix C for detailed information about the risks’ sources and risk preliminary 

categories. Risk codes and abbreviations are illustrated in Table 7.4 in Appendix D. 

 

 

Figure 4.5. Number of publications and citations/country. 
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There are essential points to be clarified about the multivariant analysis results. First 

of all, the determinant was found to be 0.066, which is greater than 0.00001. Therefore, I 

can conclude that there are correlated items, so I can proceed with the analysis knowing that 

the data is suitable for applying FA. The correlation coefficients also do not fall in the range 

of 0.8 to 1.0, which means I do not have perfect correlation (singularity) or even multi-

collinearity. Hence none of the items should be removed from the analysis. The Kaiser-

Meyer-Olkin, the measure of sampling adequacy test, yields a 0.566 greater than a popular 

cut-off of 0.5 and is close to 0.6, which is considered perfect. The data also passed Bartlett’s 

Test of Sphericity with a significance level of 0.001 and had an approximate Chi-Square 

value of 378.291 and a degree of freedom of 300. 

 

Table 4.1. Total variance explained 

 Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Component Total Variance Cumulativ Total Variance Cumulativ Total Variance Cumulativ  

01 2.605 10.418 10.418 2.605 10.418 10.418 2.144 8.576 08.576 

02 1.766 7.063 17.481 1.766 07.063 17.481 1.748 6.990 15.566 

03 1.590 6.360 23.841 1.590 06.360 23.841 1.591 6.365 21.931 

04 1.507 6.028 29.869 1.507 06.028 29.869 1.512 6.046 27.978 

05 1.479 5.915 35.784 1.479 05.915 35.784 1.492 5.967 33.945 

06 1.319 5.275 41.059 1.319 05.275 41.059 1.468 5.871 39.816 

07 1.210 4.841 45.900 1.210 04.841 45.900 1.335 5.338 45.154 

08 1.143 4.571 50.471 1.143 04.571 50.471 1.329 5.316 50.471 

09 1.069 4.274 54.745      
  

10 1.028 4.112 58.857      
  

11 0.988 3.954 62.811      
  

12 0.962 3.850 66.660      
  

13 0.900 3.598 70.258      
  

14 0.837 3.349 73.607      
  

15 0.802 3.208 76.815      
  

16 0.770 3.080 79.895      
  

17 0.705 2.819 82.715      
  

18 0.703 2.811 85.525      
  

19 0.628 2.511 88.036      
  

20 0.578 2.313 90.349      
  

21 0.555 2.220 92.569      
  

22 0.526 2.103 94.672      
  

23 0.485 1.940 96.612      
  

24 0.454 1.815 98.427      
  

25 0.393 1.573 100.000      
  

Extraction Method: Principal Component Analysis. 
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From the communalities table, I found that all of the extraction values exceed 0.3. 

Hence, I do not have problems with any of the individual questions. However, when the total 

variance was analyzed, choosing 8 constructs could explain only 50.47% of the variance. 

Even though this situation is not ideal, it does not threaten the integrity of the research results. 

Table 4.1 illustrates the eigenvalues and other crucial results. The scree plot did not help 

choose the number of components because there was a precise elbow shape to set the cut-

off number. Therefore, I could finalize the new categorization system by looking at the 

rotated component matrix presented in Table 4.2 and group risk factors. 

 

Table 4.2. Rotated component matrix 

Risk Factors 
Components 

01 02 03 04 05 06 07 08 

R18 0.598         

R20 0.574         

R10 0.552         

R25 0.526         

R05 0.442         

R24 0.386         

R14  0.737        

R13  0.620        

R09  0.418        

R03  0.333        

R15   0.732       

R02   -0.581       

R07   -0.516       

R17    0.634      

R08    0.570      

R04    -0.533      

R23     0.709     

R22     0.639     

R11      -0.639    

R01      0.621    

R21      0.478    

R16       -0.736   

R19 0.346      0.576   

R12        0.818 

R06        0.441 
 

Extraction Method: Principal Component Analysis.  

Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 10 iterations. 
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From the univariate statistical analysis, I found that the most critical risk factor is 

scheduling and planning. Economies of scale and higher initial expenses came second and 

third in the list with close results of significant risk index. The survey participants were then 

concerned about Aesthetics & Tolerance and Staff’s Experience, respectively. Standard 

deviation results of risk factors were also close to the results from [54]. However, there was 

not any detected correlation between the RSI and its associated standard deviation. Table 4.3 

summarizes the findings. The table also summarized the categorization of the risk factors 

and the risk significance index for each risk category. I came up with an appropriate name 

for each category as the FA only tells us if the items load together but fail to answer the 

question of what construct is being measured.  

 

Table 4.3. Descriptive statistics. 

Rank ID Category  Risk Factor SD RSI Mean RSI 

02 R22 Project Initial Phases 

Rising Importance 

Economies of Scale 1.38 3.38 
3.30 

08 R23 Early Decisions  1.07 3.21 

05 R19 Project Participants’ 

Skills and Experience 

Staff’s Experience 1.10 3.26 
3.25 

06 R16 Suppliers’ Skills 1.08 3.23 

03 R07 
Process Initiation 

Difficulties 

Higher Initial Expenses 1.07 3.35 

3.10 09 R02 Site Space & Layout 1.48 3.03 

12 R15 Suppliers’ Capacity  1.34 2.92 

01 R14 

Time-Cost Conflicting 

Considerations 

Scheduling and Planning  0.93 3.52 

2.93 
07 R13 Lead Time 1.47 3.23 

10 R09 Direct Costs 1.02 3.01 

23 R03 Climatic Conditions 1.52 1.95 

13 R18 

Industry knowledge and 

Standards 

Poor Understanding 1.53 2.83 

2.65 

15 R20 Authorities Understanding  1.28 2.78 

16 R10 Quality Monitoring Process 1.38 2.56 

18 R25 Consultation Service Co. 1.43 2.45 

21 R05 Legal Framework  1.34 2.37 

20 R24 Machinery & Technologies 1.43 2.37 

04 R21 Meeting Desired 

Standards and 

Expectations 

Aesthetics &  Tolerance 0.93 3.29 

2.64 11 R11 Prefabrication Quality 1.44 2.96 

25 R01 Resources Handling 1.03 1.66 

14 R12 Risk-return Worthwhile 

trade-off 

Safety Hazards 1.31 2.83 
2.61 

19 R06 Preferential Policies 1.40 2.39 

17 R08 Local-global Impact of 

the Current Economic 

and Political Systems 

Currency Related Issues 1.20 2.55 

2.22 22 R17 Supply Chain 1.41 2.21 

24 R04 Policy Modifications 1.17 1.89 
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The top seven most risky factors are Safety Hazards, Direct Costs, Poor 

Understanding, Quality Monitoring, Scheduling and Planning, Site Layout, and Machinery 

and Technology with an overall frequency of occurrence of 0.736, 0.733, 0.730, 0.725, 

0.708, 0.705, and 0.702, respectively. These numbers can give us an overall idea about the 

riskiness of each factor. The second metric was used to measure the data dispersion is the 

standard deviation. This metric is essential to measures the accumulated variation 

(uncertainty) in the data regardless of if the change was positive or negative.  

 

Table 4.4 summarizes the reported results. The top seven most changing factors are 

Initial Expenses, Safety Hazards, Direct Costs, Poor Understanding, Site Layout, 

Preferential Policies, and Economies of Scale with corresponding values of 0.006, 0.005, 

0.005, 0.005, 0.005, 0.005, and 0.005, respectively. The average change of probabilities is 

also calculated, and the results were recorded. The top seven highest average change of 

factors are Safety Hazards, Supply Chain, Legal Framework, Site Layout, Direct Costs, 

Authorities Understanding, and Preferential Policies with average change values of 0.020, 

0.018, 0.016, 0.011, 0.011, 0.011, and 0.010, respectively. 

 

Lastly, the influence is calculated and reported in the table. The table is sorted by the 

average influence metric from most to least risky factors. The top seven highest average 

influence of factors are Site Layout, Preferential Policies, Initial Expenses, Poor 

Understanding, Direct Costs, Authorities Understanding, and Lead Time with average 

influence values of 0.008, 0.008, 0.008, 0.008, 0.007, 0.007 and 0.007, respectively.  

 

When the Kendall Rank Correlation Coefficient was study for the given rank of risk 

factors, the results were reported. First of all, there are 25 factors for each analysis technique 

and there are not any missing data. The reported tau coefficient was 0.08 and a p-value of 

0.5948. The test statistics is performed against an alternative hypothesis that true tau is not 

equal to 0. The two-sided test fails with significance level of 0.95. The meaning of the data 

will be discussed in the discussion section below. 
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Table 4.4. The most significant reported results from the research metrics. 

No. Risk Risk Factor L3 occurrence stdev  change idx influence idx 

01 R21 Safety Hazards 0.736 0.005 0.020 0.006 

02 R07 Direct Costs 0.733 0.005 0.011 0.007 

03 R16 Poor Understanding 0.730 0.005 -0.004 0.008 

04 R19 Quality Monitoring 0.725 0.004 0.009 0.005 

05 R22 Scheduling and Planning 0.708 0.004 0.010 0.005 

06 R23 Site Layout 0.705 0.005 0.011 0.008 

07 R14 Machinery and Technology 0.702 0.004 0.003 0.003 

08 R18 Preferential Policies 0.663 0.005 0.010 0.008 

09 R12 Lead Time 0.660 0.004 0.008 0.007 

10 R11 Initial Expenses 0.644 0.006 0.006 0.008 

11 R09 Economies of Scale 0.630 0.005 0.002 0.006 

12 R13 Legal Framework 0.626 0.005 0.016 0.006 

13 R20 Resources Handling 0.625 0.004 -0.006 0.007 

14 R02 Authorities Understanding 0.623 0.003 0.011 0.007 

15 R08 Early Decisions 0.611 0.004 -0.007 0.005 

16 R10 Experience of the Staff 0.602 0.004 0.005 0.007 

17 R15 Policy Modifications 0.581 0.005 0.007 0.007 

18 R06 Currency Related Issues 0.568 0.003 0.004 0.004 

19 R24 Skills of Suppliers 0.558 0.004 0.000 0.006 

20 R25 Supply Chain 0.517 0.004 0.018 0.006 

21 R05 Consultation Services 0.443 0.003 0.005 0.005 

22 R17 Prefabrication Quality 0.421 0.003 0.005 0.003 

23 R03 Capacity of Suppliers 0.321 0.003 -0.008 -0.004 

24 R04 Climatic Conditions 0.281 0.002 -0.005 -0.004 

25 R01 Aesthetics and Tolerance 0.247 0.003 -0.013 -0.007 

 

 

 

  



45 

5.  SCHOLARLY DISCUSSION OF STUDY FINDINGS 

 

The construction industry is infamous for being overwhelmed with resource planning, 

logistic challenges, and risk management which habitually result in cost overruns, project 

delivery delays, design defects, and contractual disputes [20]. Although several attempts 

were made to revolutionize the industry, most of these attempts never came to fruition. A 

prominent solution to the industry’s everlasting issue is in the implementation of the 

innovative approach of MMC. Yet, the literature lacks a framework that uses a constructive 

methodology to wrestle the inherent obstacles. As I aim to encourage the industry key 

players to implement available offsite MMC techniques, I conducted a study that adopts a 

triangulated approach. I started with a comprehensive literature review and then moved to 

conduct a questionnaire survey to analyze risk factors inherent in MMC finishing off with 

qualitative and quantitative research analysis techniques.  

 

Although scholars have made several attempts to comprehend the reasons for the 

industry’s reluctance in the adoption of MMC, the body of knowledge lacks a comprehensive 

approach for cost overruns risk assessment of implementing MMC in developing countries. 

Besides, the body of knowledge lacks a comprehensive extensive application for addressing 

conditional dependence using available deep learning techniques. The study, therefore, aims 

to encourage the implementation of MMC. In achieving this,  the objectives of this study are 

to develop the deep learning ANN model, analyze the convergence behavior of variables, 

initiate a system of relevant metrics to compare the ANN variables and identify the most 

influencing factors for each variable in the model. The risk analysis framework of potential 

risks provides an important tool for establishing an early warning system.  

 

From the literature review part of the research, I came to realize that although the 

review included publications that have been published with a time elapsed of 16 years (2002-

2018),  the majority of risk factors lists from different publications shared similar 

characteristics. That is to say, the industry adoption and learning from the previous 

undertaking is not fully exploited. Hence, the initial list of 297 risk factors coming out of the 

15 publications was reduced to a list of 25 risk factors. The MECE principle (Mutually 

Exclusive, Collectively Exhaustive) was implemented to ensure that there are no overlaps 

between the 25 risk factors and every factor is independent of each other. Also, all the list 
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factors must be collectively exhaustive and express the initial list of 297 factors in its 

entirety. The MECE principle was implemented during each round of reducing the list. Data 

collection is the primary concern of most researchers, and I was no exception. However, 

implementing the virtual snowball sampling technique suggested by [53], smoothened the 

process. A poster was designed that clearly states who we are, what we aim at, and who 

should participate in the study. The conditions of participating were added to not waste the 

participants’ time and filter out invalid responses. The poster was distributed in a pdf file 

format and the link to the questionnaire surveys was one click away.  

 

For the univariate analysis, two comments can be made. First of all, the standard 

deviations of the risk factors were slightly higher than previously reported in other studies 

[7], [62]. This is acceptable and predictable if I consider that the study includes several 

developing countries where only one developing country (China) was analyzed in those two 

publications. The second comment is concerned with the RSI. Out of the 25 risk factors, the 

value 2.5 of RSI (the mid-point of the RSI scale of 5) was located between the 32ed and 36th 

percentiles. This poses a question, after conducting a comprehensive literature review and 

identifying 297 risk factors, did I fail to come up with real risk factors considering that one-

third of the identified risk factors scored less than 50% on the RSI scale? Or can I conclude 

that the industry professional did not take the riskiness of the MMC activities seriously?  

 

Before I can jump to conclusions, I need to understand the RSI scale. In doing so, I 

need to consult principles from the measurement theory. According to the measurement 

theory, the scale is an interval scale. This means it fails to satisfy the ration scale conditions. 

For elaboration, let’s take an example where a study participant chooses to select a moderate 

level of impact with a possible degree of occurrence. According to the RSI, the value of 3 

from the level of impact and the value of 0.6 of the level of occurrence yields an RSI value 

of 1.80. Now, this value is the mid-point of the scale, not the assumed 2.50. If we look again 

at the table, we find that although the second to last factor is very close to 1.80, only one 

factor is less than the overall moderate level of RSI. These findings not only refute the 

previously proposed claims about the selection of risk factors and the seriousness of 

questionnaire participants but also signify the importance of the list of risk factors because 

almost all of them have RSI higher than the average. Besides, the values were significantly 

higher than reported in the literature in similar studies where RSI was adopted [54].  
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The research findings support previous studies in the literature and fill a research gap 

in the body of knowledge. Risk attributed to the industry of construction when MMC is used 

have been identified, categorized, and assessed. By conducting a compare and contrast 

analysis of the descriptive statistics the study revealed significant results. From the table, I 

found that compressed project schedule, timely design freeze, advanced project planning, 

and scheduling has comparable results from the literature. [64] emphasized the importance 

of prefabrication adoption on constructability that can be reflected by construction time. In 

their study, they suggested that to optimize the adoption of prefabrication slabs should be 

semi-prefabricated with in situ toppings, and all of the façade, staircases, balconies, beams, 

columns, and internal walls should be prefabricated. [65], in their list, prioritized 

construction time over every other factor with a mean score of 4.64 and Standard Deviation 

(SD) of 0.665. It was also proven that two of the top five CSFs are timely freeze of scoping 

and design and due recognition of possible early completion from modularization [66].  

 

Secondly, difficulty to achieve repetition of consistent layout and economies of scale. 

It matches previous results in the literature. [54] regarded Inappropriate design codes and 

standards for industrialized buildings as the second most significant factor with a mean of 

2.19 and SD of 0.91. [67] not only supported the findings and stated that standardization is 

considered as significant” or “very significant, but also added that the factor is more 

significant to developing countries. An average of 4.33 and SD of 0.769 were obtained. 

However, with established and sophisticated standardization systems in developed countries, 

this might not be a significant factor. The next factor in the list is higher initial capital cost, 

higher investment in fixed assets, and speed of return on investment. With a mean of 2.20 

and SD of 0.98  in one study, enormous difficulty in achieving a return on high initial 

investment was identified amongst the top five risk factors [54]. They added, to return the 

investment market demand for industrialized buildings must not be high as off-site factories 

require investment in fixed assets of the factory, fabricated molds, and Research and 

Development (R&D) activities. [19] perceived higher capital cost as the most important 

factor with 68% of participants' selection.  

 

Our fourth significant factor is complex interfacing between systems, tolerance issues, 

aesthetics, and monotony of structure. Similarly, in the list of [19], complex interfacing 

between systems came third. [35] showed that poor aesthetics is a concern of non-
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contractors; whereas contractors are less concerned about aesthetics than non-contractors. 

Finally, the lack of understanding of OSM by local authorities with inappropriate design 

codes and standards came fifth on the list. While the findings indicate that this factor is 

significant, [68] states that according to the industry surveys, lack of in-house expertise is 

ranked 10th. Likewise, case study project-oriented surveys ranked this factor in 9th place. 

Comparably,  the lack of experienced contractors was also ranked 9th [62]. Besides, the 

fragmented nature of the industry is reflected by the lack of prefabrication suppliers as well 

as experienced collaboration groups. 

 

The three least significant factors reported in the study also produced comparable 

results with existing reported studies. The least significant factor is Environmental 

sustainability, resources consumption, waste generation, and waste disposal. Looking at the 

[67] list, we find three factors related to the factor. If we take the average of the means of 

each factor, we end up with a mean of 4.34 which is placed after the first 10 significant 

factors. There is not a great prominence placed on this factor from developed countries, 

especially from the U.K. [65].  The second to last least significant factor is Unexpected 

Statutory modifications to existing policies. [19] did not report legal issues to be of any 

importance. In another study, it was only reported that restrictive regulations are a limiting 

factor by 32% of the response rate [69]. Change in the governmental regulations was also 

considered as the least frequent risk from the Malaysian contractors in the industry [70]. In 

the same study, it was indicated that acts of God the least frequent risk. Likewise, in the 

study, climatic conditions did not show much significance.  

 

The literature addressed several limitations to deep learning applications. The black 

box challenge, ethics, cybersecurity, and cost are all limitations that can be expected by 

industry practitioners and researchers when adopting some of these techniques [20]. I 

generally did not encounter any significant challenges from this list in the study. However, 

I did encounter problems in recording and the heterogeneity of incident data. The quality of 

records also affects the analysis of incidents. [13]. After careful analysis of the data, I tried 

to reduce the conflicts while analyzing the relationship between attributes. In order to 

increases the accuracy of risk assessment levels, I tried to collect a large amount of data [15]. 

I did not implement any special techniques to deal with the heterogeneity problem of the 

data such as the latent class clustering analysis proposed by [13]. 
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Choosing between different values of epoch number and the batch sizes and trying to 

understand the relationship between the two variables is not simple at first glance. However, 

as proposed in the methodology section, the 3D graphical representation of the cartesian 

coordinate system aided in the understanding. From the graph, it is clear that epoch number 

and batch size number are negatively correlated given that the score of the evaluation 

function is held constant. The second observation from the graph is that there are around 

four local maximum values. In the study, I did not find any particular value that I could 

consider to be the global maximum value. However, since the objective is to reduce the 

epoch number in order to avoid losing the ability to generalize the network, I tried to keep 

the epoch number as small as possible. Hence, I choose the epoch number and the batch size 

to be 300 and 20, respectively. Figure 5.1. illustrates the score values for different epoch 

numbers and batch sizes. The circles represent the four local minimum values.  

 

The final issue I want to discuss is related to the network structure when columns in a 

row do not have a local structure. To capture existing correlations between columns, I used 

fully connected networks in generator and critic networks. The type of connection and the 

introduction of the hidden layer(s) makes it possible for the network to exhibit non-linear 

behavior. I also did not expect the network to learn the training set to perfection. At this stage 

of research, I am content with the network performance. In the methodology, I did not try to 

increase the number of nodes in order to secure the ability of the network to generalize the 

learning I kept it as low as possible. Hence, the network will not be treated as a memory 

bank that can recall the training set to perfection but does not perform well on testing samples 

that were excluded from the training set and the generalization will be lousy. It took the 

platform and the python interpreter around 8 hours to perform the learning, sampling, testing, 

and validating of the results. It was the longest time required to perform the computations in 

the methodology and also the longer than what I have experienced in the previous research 

about Bayesian Network and Bayesian inferences. Because ANN requires a relatively high 

computational power, there is no wonder why ANN has not been implemented not until 

recently.  

 

The list of identified seven risk factors shares multiple similarities and dissimilarities 

in common. To explore the shared characteristics, [62] study results will be utilized. This 
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study was chosen for two reasons. The first of which is that the study analyzes a developing 

country (China) and developing countries are known to share many similarities. The second 

reason is that the study is relatively new and can still represent the construction industry 

which gets developing slowly. The second study that will be considered is the [71]. The main 

advantage this study presents is the comparison between developing and developed countries 

(in this context we have the UK and China).  

 

By comparing the first factor in our list, we can conclude that the factor is not even 

listed in the two considered articles. Safety hazards (as a risk factor) are not considered a 

risk factor. It is self-evident that for the survey participants to assess the risks they are given 

a list of risk factors. If the researchers choose to not include a certain risk factor on a list, 

then it is understandable that the factor will not be included. Given that the survey 

participants could not (even if they wanted to) state that safety hazards are risky, then why 

the research did not include it? One possible answer is that they simply thought that by using 

MMC we can achieve a controlled environment. This is obvious, however, what about the 

unprecedented new safety-related risks that the industry participants might face? To this 

discussion, there will not be a definite answer. Future research initiatives might explain the 

reasons.  

 

 

Figure 5.1. The four maximum score values for different epoch numbers and batch sizes. 
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Moving on to the second risk factor, the direct costs. In [62] direct costs were not 

explicitly stated in the list. Still, lack of incentives (which might be in the form of cost 

reduction), higher initial costs, and high-cost pressure came first, second, and fifth on the 

list. Reflecting on the [71] paper, this factor was ranked first in the UK and seventh in China. 

From the results, we can conclude that the Chinese construction industry is using MMC 

without compromising on cost. Still, it is fascinating how developing countries can beat 

developed countries in taking advantage of MMC even when we know that labor expenses 

are higher in developed countries.  

 

Thirdly, we have a poor understanding of MMC. In one article it is ranked 8th [62]. 

Another article ranked the factor 6th in China. The fourth factor is the quality monitoring 

risk. [62] ranked it fourth in their list. In contrast, [71] ranked it 16th on the list. The fifth 

factor is scheduling and planning. [62] ranked the factor seventh. In another article, it was 

ranked fourth in China [71]. 

 

The second to last risk factor is site layout. [71] ranked it fifth in the UK and 27 in 

China. The hypothesis is that developing countries have more space because they construct 

their project in uninhabited areas while developed countries have more confined construction 

areas. Lastly, the machinery and technology. [62] research results support the study list. In 

their results, they ranked the lack of local R&D institutes and services 8th in riskiness. 

 

Although the univariate analysis was conducted to get the overall riskiness of risk 

categories, a comparison on the factors levels was initiated. When it comes to comparing 

between the univariate and ANN analysis techniques, a significant aspect is the rank of each 

risk factor. The riskiest factor Safety Hazards was ranked 14th using the proposed risk 

significance index. The second riskiest factor, Direct Costs, was ranked 10th using the RIS. 

Thirdly, Poor Understanding was ranked 13th. Quality Monitoring Process is ranked 14th. 

Scheduling and Planning was ranked 1st. second to last is the Site Space & Layout. It was 

ranked 9th. Lastly, Machinery & Technologies Was ranked 21st.  

 

In addition to the one-on-one comparison, the study implemented the Kendall Rank 

Correlation Coefficient. The reported 0.08 tau coefficient indicates that the ranks of the two 

analysis methods are in fact not associated. It is closer to zero than 1 (representing similarity) 



52 

and -1 (representing dissimilarity). Besides, given that the two-sided test statistics failed with 

a significance level of 0.95 means the true tau is equal to zero. 

 

From the one-on-one comparison and the tau coefficient it is clear that the use of 

multiple data analytics techniques present different perspective on the risk factors. If we 

rewind and remembered what each analysis represents, it is self-evident that the ANN 

focuses more on risk factors that have the tendency to have higher degree of impact and 

frequency of occurrence. Hence the utilization of ANN in this study brings additional 

findings that cannot be reached via traditional data analytics techniques. 
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6.  CONCLUSIONS AND FURTHER RECOMMENDATIONS 

 

The construction industry constitutes an important role in economic development. The 

body of knowledge is rich with studies that address topics relevant to construction 

management, MMC, risk management, data science tools, etc. The development of MMC is 

a self-driven process pushed by macro development. Besides, pilot programs are the most 

effective method to promote MMC, gain recognition by society, and accumulate experience. 

Hence, MMC is becoming the center of scholars’ attention and implemented in several 

strategies to innovate in the industry. Nevertheless, the introduction of the deep learning 

available tools and techniques never came to fruition. Especially the ML tools that 

particularly consider discovering and capturing conditional dependency relationships 

existing in the data.  

 

Accordingly, I implemented the CTGAN deep learning tool that considers the 

conditional dependence in the risk assessment data for implementing MMC. An ANN has 

been developed, validated, and applied in the risk assessment framework. Besides, after 

conducting a review of the literature, the number of yearly publications was linearly 

correlated with the progress of time. The downside of the situation is that the industry did 

not reach the exponential phase of the learning curve. The upside of the situation is that 

MMC has a great future potential for the industry and scholars alike.  

 

Lately, governments are now more aware of the significant impact of industrialization 

in the industry and how this will help achieve more sustainable buildings. This approach, 

however, is facing multifaceted risks. This paper, therefore, identified 15 risk-related 

research publications from the literature. First, I considered 297 risk factors that have been 

addressed in the literature out of 15 articles. Then, I shortened the list to a 25 risk factors list 

and distributed questionnaire surveys. 149 valid responses were collected and analyzed. 

Linguistic terms helped assign the degree of impact and frequency of occurrence for each 

risk factor. A qualitative approach was implemented afterward using the risk significance 

index to quantify and rank the overall risk level of each risk factor. The risk factors were 

also grouped into eight categories using the FA technique to identify factors measuring the 

same construct. I named these constructs according to what they are trying to measure. 
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Afterward, I applied the second round of univariate statistical analysis to each category to 

get the overall risk significance index within groups and compare it between groups. 

 

Our study also revealed several significant results. First of all, it was found that the 

epoch number and batch size number are negatively correlated when the evaluation of fitness 

score is held constant. Besides, a batch size of 10 with an epoch number of 300 optimizes 

the training process of the ANN model. After calculating the probability of L3 risk level for 

each risk factor, I found that the top five most risky factors are Safety Hazards, Direct Costs, 

Poor Understanding, Quality Monitoring, and Scheduling and Planning with an overall 

frequency of occurrence of 0.736, 0.733, 0.730, 0.725, and 0.708, respectively. I also found 

that the top five highest average influence of factors are Site Layout, Preferential Policies, 

Poor Understanding, Initial Expenses, and Lead Time with average influence values of 

0.008, 0.008, 0.008, 0.008, and 0.007, respectively. Inspecting the relationship and 

probability change table, I can observe the significant effect of the Initial Expenses risk 

factor on individual factors by counting the number of appearances in the table.  

 

The results can be used in the construction industry by stakeholders to identify the 

most significant risk factors and apply different risk management techniques. Accordingly, 

the total project cost can be reduced as the top management will distribute the money on 

more critical risks and only control the least essential risk factors. In addition, the grouping 

of risk factors will add more assistance to predict how different risk factors can act together 

and cause a significant risk in each of the eight categories. This research does not aim to 

create an artificial market for the implementation of MMC. However, the successful 

implementation will not be possible without the industries’ key players' involvement and 

awareness of available innovation techniques. The government can efficiently encourage 

implementing the method without creating an artificial market by applying preferential 

policies to the industry innovators.  

 

Another pitfall of this study is that it failed to address the relationship between 

different risk factors and how they can interact. As [41] stated, effective risk management 

programs must be dynamic and ongoing by nature, not static. Identifying the correlation or 

causation relationships are beyond the scope of this research. In a cost estimation context, 

this can be interpreted as follows, if a correlation exists between two variables, it does not 
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always necessarily mean causation exists as well. I also do not want to undermine the 

importance of descriptive statistics. It is considered as a pillar on which the methodology is 

based. Nonetheless, to my knowledge, this topic of research has not been addressed in the 

literature previously. In future research activities, I will build upon these results and 

implement conditional artificial neural networks to capture hidden conditional dependence 

between different risk factors. 

 

The uniqueness of this study lies in it being the first to adopt the latest available AI 

techniques that accounts for hidden conditional relationships in the data. The research has 

significant contributions to scholars and industry practitioners. The ANN structure can be 

considered as a model for scholars to adopt. The study approach enables industry 

practitioners to generate case-based reasoning and provides an in-depth understanding of 

research questions after modifying the model according to their work conditions. For the 

world of practice, the research provides a readily available point of reference for R&D 

entities  and for industry professionals, policymakers, and decision-makers. This study 

would inspire future efforts and provide directions into how to best implement deep learning 

to numerous intriguing similar industry challenges.  

 

Although it sounds a little ambitious, future research ideas will be directed towards 

developing a holistic risk assessment framework that compares between several available 

frameworks. Since the model only identifies and measured the risks with the proposed 

metrics, future studies might propose necessary preventative measures according to the risk 

results predicted in the model to avoid racking up losses on construction projects. Finally, 

practitioners’ intuition should always be questioning the existence of conditional 

dependence between the risk factors.  
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APPENDIX C 

 

Table 7.3. Risk sources from the selected 15 publications 
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Site Conditions 

and Environment 

Resources Handling         0   0 0   

02 Site Space & Layout   0 0 0 0 0 0     0  0 

03 Climatic Conditions    0      0    0  

04 

Legal concern 

Policy Modifications  0  0  0    0 0     

05 Legal Framework   0  0 0 0  0 0 0     0 

06 Preferential Policies  0    0         0 

07 

Cost and 

Economy 

Higher Initial Expenses  0 0 0 0 0 0 0 0  0 0    

08 Currency Related Issues      0    0    0  

09 Direct Costs 0  0   0 0 0  0  0 0  0 

10 
Quality 

Quality Monitoring 

Process 
 0  0  0          

11 Prefabrication Quality 0   0    0   0 0 0 0  

12 Safety Safety Hazards 0   0     0 0   0  0 

13 
Time 

Lead Time 0 0  0 0 0 0 0  0   0  0 

14 Scheduling and Planning     0 0 0 0 0 0 0 0 0 0 0 0 

15 
Inbound/Outboun

d 

Logistics 

Suppliers' Capacity  0 0  0 0 0  0  0 0    0 

16 Suppliers' Skills  0 0 0 0 0 0   0 0     

17 Supply Chain  0 0 0 0 0 0   0     0 

18 
Knowledge and 

Skills 

Poor Understanding 0 0   0 0     0  0   

19 Staff's Experience  0  0 0 0 0 0 0 0  0 0  0 

20 Authorities Understanding      0 0 0 0 0  0     

21 

Design 

Aesthetics &  Tolerance 0 0 0 0 0 0  0   0 0    

22 Economies of Scale  0  0 0 0    0 0    0 

23 Early Decisions   0        0      

24 Equipment  and 

Tech 
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Technologies 
  0 0      0  0    

25 Consultation Service Co.  0  0 0 0  0 0 0     0 
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APPENDIX D 

 

Table 7.4. Risk codes, factors, and abbreviation list 

 

ID Risk Factor Abbreviation 

R01 Environmental sustainability, resources consumption, waste generation, and waste disposal  Resources Handling 

R02 Restricted or unsuitable site layout or space  Site Space & Layout 

R03 Anticipated climatic conditions during construction Climatic Conditions 

R04 Unexpected Statutory modifications to existing policies Policy Modifications 

R05 Insufficient, outdated, or absence of a legal framework  Legal Framework  

R06 Few opportunities for obtaining preferential policies on tax, loan, subsidy, etc.  Preferential Policies 

R07 Higher initial capital cost, higher investment in fixed assets, and speed of return on investment  Higher Initial Expenses 

R08 Currency issues ( exchange, inflation, increased loan interest rates, etc.) Currency Related Issues 

R09 Material, labor, maintenance, and operation cost Direct Costs 

R10 Lack of a quality monitoring mechanism for the production process Quality Monitoring Process 

R11 Defective, damaged, or the durability of prefabricated elements are unproven Prefabrication Quality 

R12 Increased possibility of safety adverse events due to large units and heavy loads Safety Hazards 

R13 Increased lead times in design and construction Lead Time 

R14 Compressed project schedule, timely design freeze, advanced project planning, and scheduling  Scheduling and Planning  

R15 Inadequate capacity of suppliers for quantity, quality, and complexity  Suppliers' Capacity  

R16 Inadequate skills of suppliers for transporting and stocking of prefabricated elements   Suppliers' Skills 

R17 Lack of integration in the supply chain with a single-point supplier Supply Chain 

R18 Poor understanding with lack of market research (market forecast, valuation, product positioning) Poor Understanding 

R19 Lack of experienced construction teams, managers, and labors (skills, productivity, availability)   Staff's Experience 

R20 Lack of understanding of OSM by local authorities with inappropriate design codes and standards  Authorities Understanding  

R21 Complex interfacing between systems, tolerance issues, aesthetics, and monotony of structure  Aesthetics &  Tolerance 

R22 Difficulty to achieve repetition of consistent layout and economies of scale Economies of Scale 

R23 Early decisions and failure to freeze the design early on  Early Decisions  

R24 Lack of construction machinery and technologies and their associated costs Machinery & Technologies 

R25 Lack of consultation service Co, resource R&D, and communication channels Consultation Service Co. 
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APPENDIX E: ORIGINAL LIST OF RISK SOURCES 

 

Table 7.5. Original list of risk factors 

 

No. Risk Sources 

001 Productivity and sustainability-driven new urbanization 

002 Improved environmental sustainability 

003 Social sustainability 

004 Save in raw material 

005 Occupying extra space for accommodation of precast components 

006 Civil disturbances 

007 Site constraints and logistics 

008 Dominate importance of land acquisition in house building 

009 Site-specific constraints, e.g., access limitations and space for large loads 

010 modules’ dimensional constraints 

011 Restricted site layout (e.g. lack of storage space for PPVC modules/lack of space to unload and move the modules) 

012 
Logistics and site operations, Production facility logistics and stock management difficult (e.g. limited access onsite for 
maneuver, restricted access to site for delivery, size of components) 

013 Module envelop Limitations 

014 Inclement weather 

015 Impacts of weather conditions 

016 Temperature  

017 Wind Speed   

018 Legal issues 

019 Lack of design codes and standards for prefabricated components 

020 Uncertain governmental policies 

021 Land dominant to government 

022 Regulatory authorities: not yet included in planning regulations 

023 Inadequate policies and regulations 

024 Requirements to meet new regulatory or other imposed requirements 

025 Potential unemployment issues to workers "Added after in-depth interview" 

026 Inefficiency of design approval 

027 Excessive approval procedures 

028 Imperfect technological specifications on prefabrication 

029 Legal issues 

030 Fewer codes/standards available 

031 Market protection from traditional suppliers 

032 Complex code compliance and inspection process 

033 Top-to-down policy support 

034 Incomplete policies and standards 

035 Immature OSC development conditions 

036 Labor agreements or jurisdictional issues 

037 Local/Regional political considerations 

038 Regulatory requirements 

039 Operation and maintenance provisions  

040 Continuity through project phases 

041 Lack of governmental regulations and incentives 

042 Lack of incentives 

043 Alignment of drivers 

044 High initial cost 

045 Difficulty of bidding price from contractors "Added after in-depth interview" 

046 High initial cost (cost on new machinery, fabricate molds, and factories) 

047 Inadequate project funding 

048 Higher capital cost 

049 Higher initial (capital) cost to traditional approach 

050 need for large initial investment to run modular services  

051 Higher initial cost to conventional construction method 

052 Higher upfront cost 
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053 Higher initial cost 

054 Initial capital investment 

055 Difficulty in obtaining finance, because it requires higher initial cost 

056 Specific local economic factors 

057 Labor productivity 

058 Project goals that include financial incentives 

059 Economic condition  

060 Cost and Duration Risk Simulation  

061 Cost 

062 Extra labor cost on checking, counting, and sorting raw materials 

063 Potentially higher overall cost to traditional approach 

064 availability of cheap labor in the area  

065 Higher construction costs to the conventional construction method 

066 Overall project cost control 

067 Overall project cash flows 

068 Future reuse value 

069 Cost of construction 

070 
Cost/value, Perceived as expensive when compared to traditional methods. High initial and set-up costs [18]. Cranage costs can 
be very high [18]. Intercity or county transport can be very high and can negate any advantage [18] 

071 Cost issues 

072 Cost of transportation 

073 Stability of labor cost 

074 Multiple shifts of construction workers 

075 Durability of prefabricated unproven 

076 Custom check 

077 Slow quality inspection procedures 

078 Lack of quality assessment tools and accreditation 

079 Quality 

080 Need for additional protection materials for PPVC modules 

081 Quality problems 

082 Quality of building 

083 
Quality, The image of off-site manufacturing is coloured by the experiences of the past, especially around 1960s where some 

prefabricated buildings collapsed [128]. 

084 Qualitative Factors  

085 Installation error of precast elements 

086 Special assembly requirements such as “clean room” conditions 

087 Electrical system density 

088 Electrical system routing requirements 

089 Safety 

090 Safety accident occurrence 

091 Ensured building quality and work safety 

092 Unusual site or regional hazards 

093 Ongoing facility operations 

094 On-site labor density 

095 Increased risk from high elevations, confined spaces, known toxic atmospheres 

096 Contractual monetary incentives for a better project safety record 

097 Reductions in insurance costs 

098 Heavy lifts 

099 Insurance and warranties during transport 

100 
People and Occupational safety and health (OHS), The need for cranes for transporting building components or whole buildings 
has safety issues associated with their use [18] 

101 

Process, Require more pre-planning on a project which can potentially increase lead times and may nullify any overall time 

advantages. Generally very low level of IT integration in the construction industry. Not flexible, does not allow changes as too 
expensive once manufactured [18]. 

102 Heavy lift and site 

103 Time 

104 Longer lead-in time during design stage 

105 Weak response to design change during construction 

106 Unable to freeze the design early on  

107 Early design freeze, due to the long lead-in time, and extensive planning 

108 hard to make changes later 

109 Requirement for early commitment 
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110 Equipment or materials with long lead-time 

111 Availability of key project team members in early project stages 

112 Time 

113 Preliminary module definition 

114 Owner-furnished long lead equipment specification 

115 Change in project scope 

116 Tight project schedule 

117 Design change 

118 Inadequate planning and scheduling 

119 Delay of the delivery of precast elements to site 

120 Nature of the UK planning system 

121 Inflexible/not suitable for late design changes 

122 need for more pre-project planning   

123 customs delays in borders when transporting internationally  

124 The need for additional project planning and design efforts 

125 Extensive coordination required prior to and during construction 

126 Reduced construction time and labour requirement 

127 Shortened schedules 

128 Planned shutdowns, outages, or turnarounds 

129 Late business decisions 

130 Early startup benefits 

131 Timing of environmental or other project permitting 

132 Time limitations related to shipping and transportation 

133 Risks associated with schedule penalties 

134 Rewards for early project completion 

135 Requirements to get product to market rapidly 

136 Requirement for early “freezing” of design 

137 Speed of construction 

138 Productivity 

139 Change in design/scope of work  

140 Owner's planning 

141 Timely design freeze 

142 Early completion recognition 

143 Owner delay avoidance  

144 Transport Delay avoidance  

145 Heavy lifts and related planning 

146 Complicated management 

147 Availability 

148 Lack of manufacturers and suppliers of prefabricated components 

149 Reapplication of custom declaration 

150 Manufacturing capacity  

151 Limited capacity of existing manufacturers 

152 Inadequate coordination: procurement, supply chain, site management 

153 Expensive long-distance transportation for large and heavy loads 

154 Increased transportation and logistics considerations 

155 Transportation restrictions due to rules and regulations 

156 Availability of transportation methods 

157 Transportation infrastructure 

158 Supplier availability 

159 Availability of qualified suppliers 

160 Supplier shop capacity 

161 Supplier’s availability of on-site representation 

162 Limited market demand 

163 Module fabricator capability 

164 Transport infrastructure  

165 Transportation of prefabricated elements and access to the building site 

166 Difficulty to the storage of prefabricated elements 

167 Additional procurement costs 

168 Additional transportation costs 

169 Inefficient verification of precast components because of ambiguous labels 
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170 Serial number recording error 

171 Precast components mistakenly delivered 

172 Remanufacturing because of quality control and damage during production 

173 Misplacement on the storage site because of carelessness 

174 Transportation vehicle damage 

175 Transportation road surface damage 

176 Logistics information inconsistency because of human errors 

177 Difficult identification of proper precast components 

178 Reluctance of manufacturers to innovate and change to MMCs 

179 hard to transport modules far away  

180 Local transportation costs 

181 Risks of loss during transportation 

182 Foundations required for prework items 

183 Level of sophistication of supplier’s information systems 

184 Ineffective Logistics 

185 Poor Manufacturing capability 

186 Fragmented industry structure 

187 Design information gap between designer and manufacturer 

188 Fragmented industry structure 

189 Poor integration and interface performance with traditional method 

190 High fragmentation in the industry 

191 Intermanufacturer rivalry and market protection 

192 time delays due to late transit permits for oversized components   

193 Protection of proprietary technology or methods 

194 Supplier/Contractor flexibility to provide a facility that meets owner’s performance requirements 

195 Permitting 

196 Vendor involvement 

197 Operation 

198 Uncertainty of market demand 

199 Lack of awareness of prefabrication by the market and public 

200 Lessons and attitudinal barriers due to historic failures 

201 Client conservatism and skepticism 

202 Dependence of traditional construction method 

203 Reluctance to innovation and driven 

204 Lack of local R&D institutes and services 

205 Risk averse culture 

206 Client skepticism 

207 Attitudinal barriers due to historic failures 

208 Reluctance to innovate  

209 Mindset of the industry (cultural problems) 

210 Lacking knowledge and expertise 

211 Inappropriate business model 

212 Industry market culture, A very conservative industry. Professionals very resistant to change. 

213 Special material assembly methods ~alloy welding, etc! 

214 Lack of practices and experiences from local projects 

215 Organizational mechanism and culture 

216 Lack of experienced contractors on prefabrication 

217 Lack of experienced collaboration groups 

218 Lack of experienced technicians of assembly on site 

219 Highly skilled workers 

220 Labor dispute and strikes 

221 Skills shortages 

222 Lack of previous experience 

223 Lack of experience and skills 

224 more engineering effort 

225 availability of knowledgeable engineers and designers in the area  

226 Lack of PPVC experiences in term of design 

227 Lack of PPVC experiences in term of installation 

228 
Increased organizational requirements (e.g. changing roles of project participants/increased complexity of procurement and 
contracting issues) 
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229 Ever-present need for reducing reliance on manpower 

230 Overall or peak labor density requirements ~quantity of workers! 

231 Local, regional, or national labor availability 

232 Availability of skilled labor 

233 Project-specific requirements such as licenses for craft workers 

234 Sufficiency of labor in a multiple project environment 

235 Total number of laborers 

236 Unskilled 

237 Skilled 

238 Expert 

239 
Lack of knowledge, Most professionals have not embarked on offsite manufacturing because of lack of knowledge about the 
benefits of off-site manufacturing [128]. 

240 Contractor leadership 

241 Contractor experience 

242 Management of Execution risks  

243 Unfavorable organizational mechanism  

244 Poor public acceptability: suspicion about meeting customer expectations 

245 Clients suspicious about performance, but build at good location for higher price 

246 negative perception of new construction methods  

247 need for an increased and more detailed coordination in all stages of a project   - more communication among all stakeholders   

248 Lack of awareness of PPVC's benefits among owners/developers 

249 Lack of market acceptance 

250 Lack of OSC expertise and stakeholder coordination 

251 Dominated traditional project process 

252 Lacking social climate & acceptance 

253 Limitations to design due to transportation restrictions (e.g. modules' size) 

254 Design 

255 Monotony of structure type 

256 Complex techniques 

257 Complex design 

258 Incomplete design drawing 

259 Redesign because of errors in design 

260 Complex interfacing between systems 

261 Less tolerance between factory made components and on-site assembly 

262 Problems with lightweight construction, e.g., overheating 

263 Decreased flexibility for design changes later 

264 Unsupportive decision made by designers 

265 Poor aesthetic performances 

266 Flexibility of design 

267 High cost pressure without economics scale effect 

268 Inefficient design data transition 

269 Difficult to achieve economies of scale 

270 Unsustainable: less durable/long-lived, so requires frequent refurbishing 

271 Limited market demand 

272 Not suitable for small projects, as they require bespoke design 

273 Replication on other projects 

274 Low standardization 

275 Data optimization  

276 Unable to modify design scheme  

277 Flexibility accommodating modifications or expansion 

278 Additional use of tower cranes (vertical transportation) 

279 Availability of 3D CAD or similar design technology 

280 Infrastructure ~hardware & software! for communications 

281 Software compatibility for design and for communication 

282 Tower crane breakdown and maintenance 

283 Size of equipment of assembly 

284 Availability of lifting and hauling equipment 

285 Heavy equipment 

286 Ease of erection 

287 Lack of technologies and testing institute to prefab. Components 
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288 Monopoly of techniques 

289 Lack of experienced design consultancy and designers 

290 Low information interoperability between different enterprise resource planning systems 

291 Inefficient communication between project participants 

292 Lack of long-term cooperation between project teams 

293 Low IT integration in the industry 

294 Require more communication among all stakeholders 

295 Lack of research and development practices and motive 

296 Project and/or Owner’s organizational structure 

297 Investment in studies 
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APPENDIX F: MMC RISK ASSESSMENT QUESTIONNAIRE 

 

As part of the ongoing efforts to revolutionize the construction industry, we, 

researchers from Boğaziçi University, would like you to contribute to the research. The main 

aim is to encourage stakeholders in the construction industry to adopt a new approach 

towards the implementation of more innovative modern methods of construction.  Your 

contribution to the research will make it possible to achieve this goal by allowing us to 

accurately construct a clear vision about how risks can be measured, analyzed, interpreted, 

and, most importantly, managed.   

 

I have developed the methodology based on expert judgments coupled with computer 

data mining and data analysis algorithms that, to my knowledge, has never been 

implemented in the research field.  The questionnaire consists of 6 general questions and 25 

risk-related questions. It is estimated that the questionnaire will not take more than 15 min 

to be completed. Now, I would like to stress how valuable your contributions are to the 

research. Your effort will be rewarded by, upon your request, sharing with you a summary 

of the research findings and conclusions.  

 

For further information, please let us know  

• Research Coordinator: Asst.Prof. Semra Çomu Yapıcı   

• Master's Candidate: M.Sc. candidate Ali Tatari, Ali.Tatari01@gmail.com  

 

Note: Any personal information about name, age, gender, etc. will not be collected. -

The use of the collected research data, findings are excluded, is limited to only the academic 

domain. Proceeding to the next step means you have read and accepted the terms and 

conditions mentioned in the consent form, 

https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp=shar

ing.  

 

  

https://drive./
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
https://www.google.com/url?q=https://drive.google.com/file/d/1GnnfHpqxkNcihqqk_P3zXQGj48EpGROa/view?usp%3Dsharing&sa=D&source=editors&ust=1624299221117000&usg=AFQjCNEfpczT6jzpE5yg5Uc50waTqDdXwA
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7.1.  General Questions 

 

Q1. Please list all the countries that you have worked in  

 

Q2. Please select the sector you are currently working for  

 

• Consultancy 

• Manufacturing (Supplier) 

• Construction (Contractor) 

• Design (Architect, Structure Engineer, etc.)  

• Real Estate Business (Real Estate Developer)  

• Other: 

 

Q3. Total years of experience  

 

Q4. Most recent job positions  

 

Q5. In your career, have you be involved with off-site construction projects (Steel 

structures are considered as off-site construction)?   

 

• Yes  

• No  

 

Q6. In your career, what are the type of construction projects that you were part of?  

 

• Industrial 

• Residential 

• Heavy Construction 

• Commercial or Institutional 
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7.2.  Please Specify the Degree of Impact on Project Cost and the Probability of 

Occurrence for the Following Risk Factors 

 

Q1. Environmental sustainability, resources consumption, waste generation, and waste 

disposal. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q2. Restricted or unsuitable site layout or space.  

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q3. Anticipated climatic conditions during construction.  

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q4. Unexpected Statutory modifications to existing policies. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 
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Q5. Insufficient, outdated, or absence of a legal framework. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q6. Few opportunities for obtaining preferential policies on tax, loan, subsidy, etc. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q7. Higher initial capital cost, higher investment in fixed assets, and speed of return on 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q8. Currency issues ( exchange, inflation, increased loan interest rates, etc.). 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q9. Material, labor, maintenance, and operation cost. 

 

• Very Low • Rare       (0%-20%) 
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• Low 

• Moderate 

• High 

• Very High 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q10. Lack of a quality monitoring mechanism for the production process. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q11. Defective, damaged, or the durability of prefabricated elements are unproven. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q12. Increased possibility of safety adverse events due to large units and heavy loads. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q13. Increased lead times in design and construction. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 
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• Very High • Certain   (80%-100%) 

Q14. Compressed project schedule, timely design freeze, advanced project planning, and 

scheduling. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q15. Inadequate capacity of suppliers for quantity, quality, and complexity. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q16. Inadequate skills of suppliers for transporting and stocking of prefabricated 

elements. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q17. Lack of integration in the supply chain with a single-point supplier. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 
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Q18. Poor understanding with lack of market research (market forecast, valuation, product 

positioning, etc.). 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q19. Difficulty to achieve repetition of consistent layout and economies of scale. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q20. Lack of understanding by local authorities with inappropriate design codes and 

standards. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q21 Early decisions and failure to freeze the design early on.. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 
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Q22. Lack of construction machinery and technologies and their associated costs 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q23. Lack of consultation service Co, resource R&D, and communication channels. 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q24. Complex interfacing between systems, tolerance issues, aesthetics, and monotony of 

structure 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

Q25. Lack of experienced construction teams, managers, and labors (skills, productivity, 

availability, etc.). 

 

• Very Low 

• Low 

• Moderate 

• High 

• Very High 

• Rare       (0%-20%) 

• Unlikely (20%-40%) 

• Possible (40%-60%)  

• Likely      (60%-80%) 

• Certain   (80%-100%) 

 

 




