
DATA-DRIVEN LOCAL SEARCH HEURISTICS FOR BILEVEL NETWORK

DESIGN PROBLEMS

by

İsmail Sevim

M.S., Industrial and Systems Engineering, İstanbul Şehir University, 2016

B.S., Industrial Engineering, Yıldız Technical University, 2013

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Industrial Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

This study was partially supported by Boğaziçi University Scientific Research

Project under the Grant number: BAP 18461.

iv

ABSTRACT

DATA-DRIVEN LOCAL SEARCH HEURISTICS FOR

BILEVEL NETWORK DESIGN PROBLEMS

In the Network Design Problem (NDP), one aims to design the configuration of a

network by installing links between a set of given nodes and determine the flow of a set

of commodities over these installed links. In this thesis, we work on two bilevel NDPs

where the sequential process of decision making approach is inherited. In the first

bilevel NDP we model the strategic flight NDP of a small airline carrier as a network

interdiction problem to analyse the maximum possible disruption in its flight network

in the wake of virtual attacks performed by a competitor. We call this problem the r -

Interdiction Network Design Problem with Lost Demand (RI-NDPLD). In the second

problem, namely Bilevel Optimization Model for the Reconfiguration of refugee camp

network (BOpt-RRC), the readjustment of configurations of refugee camp network are

studied under the case of new refugee flows and possible variations in the supply of pub-

lic service providers. We implement a set of generic local search matheuristics to solve

both problems. In the Tabu Search (TS) proposed for the RI-NDPLD, we enhance

the generic implementation with bound based pruning and regression based candidate

solution set generation procedures to reduce the computational burden of explicit eval-

uation of all neighboring solutions, and hence, enjoy better diversification. We also

implement a generic TS to solve the BOpt-RRC and devise an adaptive neighborhood

selection procedure to incorporate into this implementation. In addition to the generic

TS, we also implement a Variable Neighborhood Search (VNS) matheuristic and devise

an association rule based injection procedure to incorporate good solution components

to initial solutions obtained by usual random shaking. Experimental studies reveal

promising results for the proposed methods.

v

ÖZET

İKİ SEVİYELİ AĞ TASARIM PROBLEMLERİ İÇİN VERİ

GÜDÜMLÜ YEREL ARAMA SEZGİSELLERİ

Ağ Tasarım Problemi’nde (ATP), verili düğümler arasına bağlantılar kurularak

ve bu bağlantılar üzerindeki akışlara karar verilerek ağ yapısının tasarlanması amacı

güdülmektedir. Bu tezde, sıralı karar verme süreçlerini temel alan iki farklı iki se-

viyeli ATP üzerinde çalışılmıştır. Önerilen ilk iki seviyeli ATP’de, stratejik uçuş ağı

tasarımı problemi, yerleşik bir rakibin edimsiz saldırıları sonucunda küçük bir hava-

yolu şirketinin noktadan noktaya ağ yapılı uçuş ağında meydana gelebilecek olası en

ciddi aksaklığı incelemek amacıyla bir ağ saldırılı problem olarak modellenmiştir. Bu

problem, r -Saldırılı ve Talep Kayıplı Ağ Tasarım Problemi (RSTK-ATP) olarak ad-

landırılmaktadır. Mülteci Kampları Ağının Yeniden Kurulumu için İki Seviyeli Opti-

mizasyon Problemi (MKYK-İSO) olarak adlandırılan ikinci problemde, yeni mülteci

akışları ve kamplara sağlanan kamusal hizmetlerde değişiklikler olması durumunda,

mülteci kampları ağının yeniden yapılandırılması incelenmektedir. RSTK-ATP için

kodlanan Tabu Arama (TA), sınır tabanlı budama ve regresyon tabanlı aday çözüm

kümesi türetme izlekleri ile iyileştirilerek tüm komşu çözümlerin tek tek çözülmesinden

kaynaklanan işlem yükü azaltılmış ve daha iyi bir çeşitlendirme sağlanmıştır. MKYK-

İSO için de bir temel TA kodlanmış, ve bu kod geliştirilen bir uyarlamalı komşuluk

seçme izleği ile iyileştirilmiştir. Ayrıca, bir Değişken Komşuluk Arama (DKA) mat-

sezgiseli kodlanmış ve bu kod, karıştırma aşamasında elde edilen başlangıç çözümlerine

iyi çözüm bileşenlerinin dahil edilmesini sağlayan birliktelik kuralları tabanlı bir izlek

ile iyileştirilmiştir. Deneysel sonuçlar, önerilen çözüm yöntemlerinin olumlu katkısını

göstermiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xvii

1. INTRODUCTION . 1

2. PRELIMINARIES . 4

2.1. Bilevel Programming . 4

2.2. Local Search Heuristics . 5

2.2.1. Tabu Search . 6

2.2.2. Variable Neighborhood Search 8

2.3. Machine Learning . 10

2.3.1. Random Forests . 11

2.3.2. Clustering . 11

2.3.3. Association Rules . 12

3. LITERATURE REVIEW . 13

3.1. Bilevel Network Design Problems . 13

3.1.1. Bilevel Programming in Airline Network Design 15

3.2. Interdiction Problems . 16

3.3. Data-Driven Search Heuristics . 18

4. STRATEGIC FLIGHT NETWORK DESIGN 21

4.1. Problem Definition and Mathematical Models 22

4.1.1. Multi-Commodity Fixed-Charge Capacitated Network Design

Problem . 22

4.1.2. Multi-Commodity Fixed-Charge Capacitated Network Design

Problem with Lost Demand . 25

vii

4.1.3. The r -Interdiction Fixed-Charge Capacitated Network Design

Problem with Lost Demand . 26

4.2. Solution Methods . 28

4.2.1. A Generic Tabu Search based Matheuristic 32

4.2.2. Evaluation of Neighboring Solutions 34

4.2.2.1. Branch-and-Benders-cut implementation 35

4.2.2.2. A stronger NDPLD formulation 37

4.2.3. Pruning Procedure using Bounds 39

4.2.4. Data-Driven Procedures for Guiding the Search 41

4.2.4.1. Data-driven sorting and generation of candidate solu-

tion set . 41

4.2.4.2. Building a regression model to predict objective values 43

4.2.4.3. Using random forest as the regression model 47

4.2.4.4. Restart diversification procedure 48

5. RECONFIGURATION of REFUGEE CAMP NETWORKS 50

5.1. Problem Definition . 52

5.2. A Bilevel Mixed Integer Programming Formulation 53

5.3. Solution Methods . 57

5.3.1. Tabu Search Based Matheuristics 57

5.3.1.1. Tabu search with adaptive neighborhood selection . . . 61

5.3.2. Variable Neighborhood Search based Matheuristics 63

5.3.2.1. Shaking with association rules 65

6. COMPUTATIONAL RESULTS . 69

6.1. r-Interdiction Network Design Problem with Lost Demand 69

6.1.1. Experimental Settings and Instance Generation 69

6.1.1.1. Setting the parameters of the random forest 70

6.1.2. Numerical Results . 71

6.1.2.1. Analysis of the benefit of the pruning procedure . . . 72

6.1.2.2. Analysis of small-sized instances 73

6.1.2.3. Analysis of large-sized instances 75

6.1.2.4. Prediction accuracy of the random forest 77

viii

6.2. Bilevel Optimization Problem for Reconfiguration of Refugee Camp Net-

work . 79

6.2.1. Experimental Settings and Instance Generation 79

6.2.2. Numerical Results . 80

6.2.2.1. Analysis of TS/ANS 82

6.2.2.2. Analysis of VNS/AR 83

6.2.3. Analysis of Matheuristics . 86

6.2.4. Rationalization of the Bilevel Approach 89

7. CONCLUSION . 92

7.1. Summary of the Contributions . 92

7.2. Future Research Directions . 94

REFERENCES . 96

APPENDIX A: Random Instances for the BOpt-RRC 113

ix

LIST OF FIGURES

Figure 2.1. A generic Tabu Search template. 8

Figure 2.2. Basic Variable Neighborhood Search. 9

Figure 4.1. Illustration of the NDP. 23

Figure 4.2. Tabu Search. 33

Figure 4.3. Flowchart of TS. 34

Figure 4.4. Flowchart of TS/P. 41

Figure 4.5. Tabu Search with Data-Driven Neighbor Sorting. 42

Figure 4.6. Flowchart of TS/DDS. 43

Figure 4.7. Flowchart of TS/P+DDS. 44

Figure 4.8. Building the Initial Training Set. 47

Figure 5.1. Tabu Search - TS1. 60

Figure 5.2. Tabu search with adaptive neighborhood selection. 61

Figure 5.3. Variable Neighborhood Search. 64

Figure 5.4. Extracting association rule. 67

x

Figure 5.5. Variable neighborhood search with association rules. 68

Figure 6.1. Spearman’s ρ values at each TS-DDS iteration for the fifth instance

with |N | = 7, ζ = 50. 79

Figure 6.2. Average fraction of selected neighborhoods over the instances with

the same ω values. 82

Figure 6.3. Comparison of trajectories, ω = 150000: TS/4 and TS/ANS. . . . 83

Figure 6.4. Comparison of trajectories, ω = 200000: TS/4 and TS/ANS. . . . 84

Figure 6.5. Percent deviation of the SOpt-RRC solutions. 90

xi

LIST OF TABLES

Table 4.1. Sets, parameters and variables of NDP. 24

Table 4.2. Sets, parameters and variables of RI-NDPLD-AB. 27

Table 4.3. Sample dataset for training the regression model. 45

Table 4.4. Sample data extended with lower/upper bounds for training. . . . 46

Table 4.5. A sample output of Algorithm 4.8. 46

Table 6.1. Test instances. 70

Table 6.2. Pruning performance of the BP procedure. 72

Table 6.3. Performance comparison on small-sized instances when r = 3. . . . 74

Table 6.4. Performance comparison on small-sized instances when r = 5. . . . 75

Table 6.5. Performance comparison on large-sized instances when r = 3. . . . 76

Table 6.6. Performance comparison on large-sized instances when r = 5. . . . 77

Table 6.7. Properties of extracted rules for ωnew = 0.02. 85

Table 6.8. Properties of extracted rules for ωnew = 0.06. 85

Table 6.9. Properties of extracted rules for ωnew = 0.10. 86

xii

Table 6.10. Properties of extracted rules for ωnew = 0.20. 86

Table 6.11. Performance comparison on the instances with ωnew = 0.02. 87

Table 6.12. Performance comparison on the instances with ωnew = 0.06. 88

Table 6.13. Performance comparison on the instances with ωnew = 0.10. 88

Table 6.14. Performance comparison on the instances with ωnew = 0.20. 89

Table A.1. BOpt-RRC - Instances with ωnew = 0.02. 113

Table A.2. BOpt-RRC - Instances with ωnew = 0.06. 114

Table A.3. BOpt-RRC - Instances with ωnew = 0.10. 115

Table A.4. BOpt-RRC - Instances with ωnew = 0.20. 116

xiii

LIST OF SYMBOLS

A Set of arcs

Ae Amount of increase in the capacity of existing camp e

āe Upper limit on the capacity increase

C Set of candidate locations

C(s) A subset of N (s)

ckij The cost of unit flow of commodity k on arc (i, j)

ch Number of physicians located at hospital h

c′h Updated number of physicians located at hospital h

D(k) The destination of commodity k

dk The demand of commodity k

ds Number of refugees emanating from source s

E Set of existing refugee camps

E Set of edges

Fsc Fraction of refugee flow originating at s and destined at c

Fse Fraction of refugee flow originating at s and destined at e

f An objective function

f̂ Regression model of f

G An undirected graph

H Set of hospitals

hij The fixed charge of installing a unit link on arc (i, j)

I An interdiction pattern

I Set of BOpt-RRC instances

K Set of commodities

M Sufficiently large number

N Set of nodes

N (s) The set of neighboring solutions of s

O(k) The origin of commodity k

pk The cost of unit loss of commodity k’s demand

xiv

Q̄e Current capacity of an existing refugee camp e

Qe Capacity of an existing refugee camp e

qc Capacity of candidate camp c

qik Action value of the neighborhood k at iteration i

R+
eh An auxiliary variable indicating if e is reassigned to h

R−eh An auxiliary variable indicating if e is no more served by h

r Interdiction budget of the attacker

rik Reward gained at iteration i by the neighborhood k

S Set of refugee sources

s A solution vector

sbest Best solution found

sρ A solution vector obtained by rule injection

T̄e Number of current refugees located at camp e

Tc Total number of refugees located at candidate camp c

Te Total number of refugees located at existing camp e

Tij Binary variable indicating if arc (i, j) is interdicted

T The matrix of Tij values

T The set of interdicted arcs (i, j)

U The vector of Uk values

Uch Linearization variable for candidate camp c and hospital h

Ueh Linearization variable for existing camp e and hospital h

Uk Binary variable indicating if k’s demand is lost

Ūk Optimal values of Uk

V Set of vertices

w The capacity of a unit link installed on an arc

X̄eh Indicator value for hospital/camp assignment

Xch Binary variable indicating if camp c is assigned to hospital h

Xeh Binary variable indicating if camp e is assigned to hospital h

Xk
ij The fraction of dk that flows on arc (i, j)

X̄k
ij Optimal values of Xk

ij

XR The matrix of Xk
ij values

xv

Yc Binary variable indicating if candidate camp c is built

Yij The number of unit links installed on arc (i, j)

Ȳij Optimal values of Yij

YR The matrix of Yij values

z Optimal objective function value of a network design

z∗ Optimal objective function value of a bilevel program

α Linear coefficient of the reward function

αe Unit cost of capacity increase

β Coefficient as the power of the reward function

Γ Set of good solutions

γ Vector of a good solution

γmin Minimum allowed size for the set of good solutions

∆ Step size

δ Increment size

ζ Arc density

η Perturbation length

θ Constant value for the cooling schedule

κ Coefficient for neighborhood definition

Λ Set of visited solutions

λ Adaptation rate

µ A set of interdiction patterns

ν Fixed neighborhood size

ξ Cost of establishing candidate camp c

π Fraction of neighbors selected

ρ An association rule

ρeh Penalty of reassigning existing camp e to h

σ Minimum support parameter of Apriori algorithm

σmax Maximum allowed value for the minimum support

σmin Minimum allowed value for the minimum support

τ Temperature

xvi

υc Penalty of building candidate camp c

ϕce Total cost of refugee flow from source s to candidate camp c

ϕse Total cost of refugee flow from source s to existing camp e

χch Cost of assignment of candidate camp c to hospital h

χeh Cost of assignment of existing camp e to hospital h

ψ Maximum number of refugees a physician can take care of

ω Number of existing refugees

ωnew Average ratio of the number of new refugees to the number

of existing refugees

xvii

LIST OF ACRONYMS/ABBREVIATIONS

ANS Adaptive Neighborhood Selection

ARBI Association Rule Based Injection

AS Ant Systems

B&B Branch-and-Bound

B&BC Branch-and-Benders-Cut

BOpt-RRC Bilevel Optimization Model for the Reconfiguration of

Refugee Camp Network

BLS Basic Local Search

BMIP Bilevel Mixed Integer Programming

BP Bilevel Programming

BS Best Solutions

COP Combinatorial Optimization Problem

CV Cross Validation

DC Distribution Center

DDS Data-Driven Sorting

DDP Data-Driven Perturbation

DT Decision Tree

EA Evolutionary Algorithms

GA Genetic Algorithms

ILS Iterated Local Search

IP Interdiction Patterns

KKT Karush-Kuhn-Tucker

L-LRP Location-Location Routing Problem

LB Lower Bound

LLP Lower-Level Problem

LS Local Search

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Nonlinear Programming

xviii

ML Machine Learning

MP Master Problem

MOO Multi-Objective Optimization

NDP Network Design Problem

NDPLD Network Design Problem with Lost Demand

NSGA-II Non-Dominated Sorting Genetic Algorithm-II

OR Operations Research

OS Optimal Solutions

PD Percent Deviation

PSO Particle Swarm Optimization

RCND Refugee Camp Network Design

RD Restart Diversification

RF Random Forests

RI-NDPLD r-Interdiction Network Design Problem

RL Reinforcement Learning

RSM Response Surface Method

SA Simulated Annealing

SP Subproblem

SVM Support Vector Machines

TS Tabu Search

TSP Travelling Salesman Problem

UB Upper Bound

ULP Upper-Level Problem

UNHCR United Nations High Commissioner for Refugees

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

1

1. INTRODUCTION

In the Network Design Problem (NDP), one deals with installing links between

a set of given nodes of the network and determining the flow of a set of commodities

over these installed links to minimize the total cost of design and flow decisions [1].

However, starting from the late 1970s, the term gains a more comprehensive nature

in the progress of time and recently refers to the network optimization problems in

which the nodes are also subjected to installing decisions. For instance, in the hub

NDP [2], a hub-and-spoke configuration is designed in addition to the usual flow de-

cisions and in the wireless NDP [3], location of mobile sinks on a given set of nodes

are also decided. Regarding the current broader definition, the problem has a large

number of application areas including, but not limited to, planning of airline and

freight transportation, telecommunication, clean water supply, and wireless charging

stations. An NDP formulation is proposed in [4] to model a set of strategic and tacti-

cal planning problems encountered in freight transportation, and an NDP variant with

design-balance requirements is introduced in [5] and a mixed-integer linear program-

ming (MILP) formulation to model transportation systems involving consolidation is

devised. Besides freight transportation, the NDP is also used for designing wireless

charging stations in the context of urban transportation networks [6]. The authors

propose an MILP formulation for the problem at hand, and report a case study with

urban network data from Chicago, IL. In addition to model business-related problems,

the NDP is also used for humanitarian aid planning. Motivated by the rise in the

demand for refugee camps, [7] devise a bi-objective NDP formulation to model the wa-

ter distribution network design problem to assure the maximized accessibility to clean

water supplies. In another work from the humanitarian studies, an NDP for refugee

camps is proposed to model the decisions of locating refugee camps and the routing of

public service providers to serve these camps [8].

As opposed to the studies in the classical single-level operations research (OR)

literature, bilevel programming (BP) formulations are employed to model hierarchical

2

decision processes in which there exists two decision-makers and the decisions taken

at a hierarchical level affect the decisions of the other level. The hierarchical structure

of BP formulations makes them suitable candidates for modelling real-life situations

in which there exists several hierarchical decision levels. One straightforward example

is governmental policy-making, since a government agency has the power to dictate a

policy to the system users. Once the policy is announced, the system users make their

corresponding decisions. The interdiction models, as special cases of BP formulations

known as Stackelberg games [9], are used to model the scenarios in which one of

the decision-makers aims to attack the other decision-maker maliciously and in these

type of models, objective function values of both levels are exactly the same with

opposite directions. The interdiction models are used to model cases such as military

operations or competitive markets. The readers are referred to Sections 2.1, 3.1 and

3.2 for the details of BPs, and the corresponding literature reviews on bilevel NDPs

and interdiction problems.

In this thesis we introduce a couple of bilevel NDPs. In the first bilevel NDP

we propose, a competition between two airline carriers (AC) is modelled as an inter-

diction problem. In the r -Interdiction Network Design Problem with Lost Demand

(RI-NDPLD), a hypothetical small airline carrier (SAC) aims to enter the airline mar-

ket in which there exists a set of incumbent ACs. The SAC uses the RI-NDPLD as

a strategic flight network design tool to analyse the maximum possible disruption in

its point-to-point (PTP) flight network in the wake of virtual attacks performed by a

competitor. In the second bilevel NDP proposed here, namely the Bilevel Optimization

Model for Reconfiguration of refugee camp network (BOpt-RRC), we propose a BMIP

formulation to model the necessary updates on the current configuration of refugee

camp network under new refugee flows. The motivations, definitions and formulations

of both problems are thoroughly discussed in Chapters 4 and 5, respectively.

The NDP is an NP-hard problem [1]. Since, the NDP is employed in both RI-

NDPLD and BOpt-RRC, these problems are also NP-hard. Although, there exists a

set of exact solution methods for general BMIP formulations, it is not possible to opti-

3

mally solve the large-sized RI-NDPLD and BOpt-RRC instances with these methods.

Therefore, we propose a set of data-driven local search matheuristics to solve these

problems regarding new developments on ML embedded metaheuristics [10]. We im-

plement a generic Tabu Search (TS) matheuristic to solve the RI-NDPLD. However,

due to the excessive computational burden of individual objective function evaluations,

we improve this implementation with a pruning based and a data-driven candidate list

generation procedure. We also propose a data-driven perturbation procedure to de-

vise a restart diversification scheme for the implementation. For the BOpt-RRC, we

propose generic TS and Variable Neighborhood Search (VNS) matheuristics. Then,

we improve the TS with a data-driven, value function based adaptive neighborhood

selection procedure. We also improve the VNS implementation with a data-driven in-

jection procedure to find promising initial solutions for the local search components of

the VNS implementation.

The outline of the thesis is as follows. In Chapter 2, we discuss the basics of BP

and the details of local search (LS) metaheuristics and ML models employed in this

study. Chapter 3 is reserved for the reviews of bilevel NDP, bilevel NDPs in airline

flight networks, interdiction problems and data-driven metaheuristics literature. The

RI-NDPLD and its BMIP formulation as a network interdiction problem alongside with

the solution methods are discussed in Chapter 4. The formal problem definition of the

BOpt-RRC, the general BMIP formulation for the problem and the implementation of

solution methods are given in Chapter 5. The computational abilities of both problems

and a real-life case study of BOpt-RRC are analysed in Chapter 6. Lastly, the contri-

butions of this thesis are summarized and the future work opportunities are discussed

in Chapter 7.

4

2. PRELIMINARIES

2.1. Bilevel Programming

As opposed to the studies considered in the field of operations research (OR) that

consider classical optimization models involving a single decision maker, BP formula-

tions are utilized to model situations where two decision makers, called the leader and

the follower, have conflicting objective functions, and the decision of each player influ-

ences the other player’s decision. The interest in both modeling real-life situations as

BP models and solving them exactly or heuristically has significantly increased within

the last two decades [11]. This corresponds to a static Stackelberg game between two

players [9]. The formulation defined by the expressions

min
x∈X,y

ϕu(x, y), (2.1)

s.t. f(x, y) ≤ 0, (2.2)

min
y∈Y

ϕl(x, y), (2.3)

s.t. g(x, y) ≤ 0 (2.4)

is a general representation of the BP problems. In this bilevel formulation, the leader’s

problem is called the upper-level problem (ULP) and given by the objective function

(2.1) and constraints (2.2). The follower’s problem is referred to as the lower-level

problem (LLP) which consists of the objective function (2.3) and constraints (2.4).

The variables x ∈ X are the upper-level decision variables and controlled by the leader,

while the variables y ∈ Y are the lower-level decision variables that are determined by

the follower. The functions ϕu(x, y), ϕl(x, y), f(x, y), and g(x, y) can be linear or

nonlinear. If at least one set of decision variables are restricted to be integer and/or

binary, then the bilevel program is called a BMIP.

In a subset of BP formulations, the leader (or the follower) aims to attack a set

of resources of a follower (or a leader) to cause the maximum possible disruption in the

5

other player’s operations. Moreover, the objective functions of the leader and follower

turn out to be the same in value but opposite in terms of the sense of the optimiza-

tion. Such BP problems are called interdiction problems [12] and the corresponding

Stackelberg games are named as attacker-defender games. Interdiction models have

been proposed in the literature in different contexts. The earliest examples [13,14] are

related to network interdiction problems where the shortest path problem and the max-

imum flow problem are extended in such a way that an attacker, as the leader of the

bilevel model, interdicts (causes disruption in) the arcs and/or nodes of the underlying

network with the objective of maximizing the length of the shortest path or minimiz-

ing the flow. The system planner, who is the follower in the bilevel model, solves the

problems with an objective function opposite to that of the leader (i.e., minimizing the

length of the shortest path or maximizing the flow) given that some nodes/arcs of the

network are unusable. In fact, solving the interdiction problem with a virtual attacker

provides insights about the resilience of the network and the system operator obtains

valuable information about which nodes/arcs are critical in the network. Therefore, in-

terdiction models have been instrumental for the analysis of resilience and vulnerability

of critical infrastructure networks such as electricity transmission networks, transporta-

tion networks and supply chains. In this thesis, the introduced problems are modelled

as BPs where the RI-NDPLD is a network interdiction problem and the BOpt-RRC is

a general BP problem.

2.2. Local Search Heuristics

Finding optimal solutions for many kind of combinatorial optimization problems

(COP) of practical size is intractable. Due to this computational challenge, various ap-

proximate solution methods are proposed in the COP literature comprising the exact

optimality. On the one hand, in approximation algorithms as a subset of approximate

methods, a certain bound on the optimality is guaranteed and this guarantee of certain

bound has a computational price and necessitates a certain minimum computational

effort [15]. On the other hand, heuristic algorithms as approximate methods usually

find good solutions in a reasonable computational time [16]. This computational ad-

6

vantage of heuristic algorithms makes them preferable in practice and various heuristic

algorithms are proposed for COPs.

There are two types of heuristics. In a problem-specific heuristic, solution proce-

dures are devised for a certain problem, and they are not meant to solve other COPs.

Metaheuristics, on the other hand, offer general frameworks (hence the prefix meta)

to solve virtually all COPs with necessary modifications. In this sense, they offer a

search strategy rather than ways of manipulating the inherent structure of a particu-

lar problem to find a solution. Regarding the classification in [16], metaheuristics are

grouped into two classes as single-solution and population based methods. In single-

solution based metaheuristics such as Tabu Search (TS), Simulated Annealing (SA)

and Iterated Local Search (ILS), the quality of a single solution is improved iteratively,

and in population based metaheuristics like Genetic Algorithms (GA), Particle Swarm

Optimization (PSO) and Ant Systems (AS), a population of solutions are improved by

generating new sets of populations iteratively.

In this thesis, we work on a set of single-solution based matheuristics to solve

the RI-NDPLD and BOpt-RRC: various implementations of TS and Variable Neigh-

borhood Search (VNS) heuristics. This section is dedicated to briefly describe the

frameworks of the generic versions of these metaheuristics.

2.2.1. Tabu Search

Let S be the solution space of an instance of a COP, s be a solution in S and

f(s) be the objective function of the COP to minimized. The neighborhood N (s) is

defined as the set of all solutions can be reached from the solution s with a predefined

move such that N (s) ⊆ S. A basic local search (BLS) heuristic, starts with an initial

solution s0 ∈ S, and iteratively improves this solution by changing the current solution

with the best solution at the neighborhood of the current solution until finding a local

optima such that f(si) ≤ mins∈N (si) f(s). By deliberately exploiting a single basin of

attraction to find a local optima, a BLS then, resides at the intensification extreme

7

of the exploration/exploitation dilemma. To recover such a myopic approach, various

diversification procedures are devised and different single-solution based metaheuristics

with these procedures are proposed in the literature. TS is introduced in 1989 as one

of these single-solution based metaheuristics [17].

The main search mechanism behind TS is similar to that of BLS, i.e., steepest

descent. However, it aims to escape from local optima by diversifying the search

through unexplored regions by accepting nonimproving solutions as current solutions.

At an iteration i, TS generates all the neighboring solutions at N (s). Then, it changes

the current solution with s′ such that f(s′) = mins∈N (si) f(s) although the condition

f(s′) < f(si) in BLS does not hold. Selecting nonimproving solutions as current

solutions may cause a cycling behaviour in which same solutions are visited repetitively.

To prevent this, tabu list is used as a short-term memory to avoid tabu moves to be

applied. Let s′ be a solution at the neighborhood N (s) and it is obtained by applying a

tabu move on s. Then, s′ is not accepted as the current solution although it is the best

solution in the neighborhood. The only exception to this scheme is that if s′ satisfies

an aspiration criteria. Depending on the implementation, an aspiration criteria may

be the condition that s′ is an improving solution or f(s′) < f(sbest) holds where sbest

is the best solution found so far.

In addition to the short-term memory usage in TS, also the medium-term and the

long-term memories are used for the sake of exploitation and exploration, respectively.

The medium-term memory stores the characteristics of good solutions to encourage

them in the generated solutions, i.e., it exploits the good solutions. The long-term

memory stores the attributes of all visited solutions to avoid the characteristics of

mostly visited solutions to direct the search into unvisited basins of attraction, i.e., it

assures the further exploration of the solution space. Regarding these definitions, a

generic TS is outlined in Figure 2.1.

Since its introduction in the late 80s, various TS implementations are proposed to

solve various COPs such as travelling salesman problem (TSP) [18,19], vehicle routing

8

problem (VRP) [20,21], NDP [22,23], network interdiction problems [24–26] and many

more.

Input: Initial solution s0

1: s← s0 ▷ Initial solution

2: while stopping criterion is not satisfied do

3: Generate N (s) ▷ Generate all the neighbors of the current solution

4: Evaluate all s′ ∈ N (s) ▷ Evaluate every neighboring solution

5: s← argmaxs′∈N (s) f(s
′) ▷ Accept the best non tabu or aspired neighbor.

6: Update short, medium and long-term memories

7: if intensification criterion holds then

8: Intensification

9: end if

10: if diversification criterion holds then

11: Diversification

12: end if

13: end while

Output: Best solution found so far.

Figure 2.1. A generic Tabu Search template.

2.2.2. Variable Neighborhood Search

In single-solution based metaheuristics such as BLS, TS and SA, geographical

metaphors are used for defining the solution space of a problem. From this perspec-

tive, a general local search (LS) seems analogous to devising a trajectory through a

landscape to find a stationary point, i.e., the lowest point of a valley (or basin) for

a minimization problem. The structure of a landscape directly depends on the prob-

lem, the instance, and the neighborhood definition. Let N 1 and N 2 be two different

neighborhood definitions to be employed in a general LS for the same instance of a par-

ticular problem. Then, N 1 and N 2 define two different landscapes, and a local optima

s∗ ∈ N 1 is not necessarily a local optima in N 2, and vice versa. Regarding this obser-

vation, VNS metaheuristic first proposed in [27], uses a set of variable neighborhood

definitions within a single-solution based metaheuristic, i.e., a set of neighborhoods are

systematically explored in the hope of finding better local optimal solutions.

9

The VNS necessitates a general LS procedure (BLS, TS, SA, etc.) and a set of

neighborhood definitions N k such that k = 1, 2, ..., kmax for shaking. Although there

is not a restriction on the set of neighborhood definitions and their orders, the usual

approach is to use nested neighborhoods and and the corresponding order from the

simplest to the most complex one [16, 28], i.e., N 1 ⊂ N 2 ⊂ ... ⊂ N kmax . The general

template of the basic VNS is outlined in Figure 2.2.

Input: s0, kmax.

1: s← s0 ▷ Initial solution

2: while stopping criterion is not satisfied do

3: k ← 1

4: while k ≤ kmax do

5: s′ ← pick a random neighboring solution from N k(s) ▷ Shaking

6: s′′ ← LocalSearch(s′) ▷ Apply local search

7: if f(s′′) < f(s) then

8: s← s′′

9: k ← 1

10: else

11: k ← k + 1

12: end if

13: end while

14: end while

Output: Best solution found.

Figure 2.2. Basic Variable Neighborhood Search.

The algorithm is initialized with s0 as the current solution s and k = 1. Posterior

to picking a random neighboring solution s′ fromN k(s), s′ is fed into the LS heuristic as

the initial solution to find the corresponding local optima s′′ in line 6. If the condition

f(s′′) < f(s) in line 7 holds, s′′ is accepted as the current solution s and the heuristic

returns to the first neighborhood, i.e., k = 1. Otherwise, s is not updated and the

value of k is increased by 1 in line 11. This inner loop continues until k > kmax. If

the stopping criterion in line 2 do not hold, the inner loop is initialized again with the

current s and k = 1.

10

The VNS and its variants are proposed for solving various COPs in the literature

such as the recent studies on berth-allocation and quay crane assignment [29], knapsack

problem [30], machine scheduling [31], NDP [32], bilevel NDP [33], network interdiction

[34,35] and many more.

2.3. Machine Learning

Machine learning (ML) is broadly defined as optimizing a set of performance

criteria through sample or historical data to devise a predictive/descriptive model, or

both [36]. The ML paradigms are classified into supervised, unsupervised and rein-

forcement learning (RL) [37]. In supervised learning, a data with readily available

labels for each data entry is used to train an ML model for extrapolation purposes. In

the classification problem as a supervised learning method, features of a set of entries

(i.e., inputs) and the corresponding classes (i.e., labels or outputs) are fed into an ML

model for training. Then, the trained model handles the prediction of classes of future

data entries. On the other hand, the aim of unsupervised learning models is to extract

hidden patterns in data with unlabelled (or partially labelled) entries. In clustering, for

instance, a set of data entries without labels/outputs are grouped into k clusters with

respect to the similarities/disparities between the data entries. Note that there is no

prior knowledge on the characteristics of clusters and their members. This knowledge

(i.e., hidden patterns) is extracted from the data.

In RL as the third paradigm, a learning agent interacts with an environment

through its actions and aims to maximize the total reward collected from the environ-

ment. Take the example of a robot in a maze [36]. The robot is left at the entrance

of the maze, and it is supposed to find the exit. In this setting, the maze is the en-

vironment and the robot as the agent aims to reach the exit, i.e., reward is defined

as finding the exit. At its current position, the robot takes one of the four actions of

going up, down, left or right. By taking these actions in a series of epochs and feeding

the collected information into learning, the robot finds its way out of the maze.

11

In this thesis, we embed various ML models into a set of single-solution based

metaheuristics to devise data-driven LS matheuristics to solve the RI-NDPLD and the

BOpt-RRC. This section is dedicated to introduce the preliminary knowledge on these

ML models. Random forests (RF) as a supervised ML model is presented in Section

2.3.1. Clustering and the association rules as unsupervised models are briefly described

in Sections 2.3.2 and 2.3.3.

2.3.1. Random Forests

A decision tree (DT) as an ML tool, uses a divide-and-conquer strategy for clas-

sification and prediction tasks. It consists of test and leaf nodes [38]. At each test

node a set of outcomes is computed based on the characteristics (i.e., inputs) of data

entries, and each outcome represents a branch emanating from the test node and ends

up at some other test node or a leaf node. A leaf node holds the label (i.e., output),

and hence returns the predicted class/value. DTs are known to be interpretable mod-

els. However, other ML methods usually return better prediction accuracy compared

to DTs. Regarding this observation the RF model in which a set of diverse DTs are

built to yield better prediction accuracy by reducing the variance of the predictions in

individual DTs is proposed in [39]. The diversity of the DTs assembled in an RF is at

the heart of this approach and the diversity is ensured by exploiting bootstrap aggre-

gation and random selection of a subset of predictors at each split point in the trees.

The disadvantage of using an RF model over a DT model is usually the computational

time and less interpretability. However, these disadvantages are usually negligible in

practice.

2.3.2. Clustering

One of the problems encountered in ML literature is the clustering problem. Let

D = {d1, d2, ...d|D|} be a set of data entries without labels. The aim of the clustering

problem in its simplest form is to partition the points in D into k distinct clusters.

In the k-means clustering algorithm initially proposed in [40], centers of the k clusters

12

and the members of each cluster are computed in an iterative manner. In a solution

to the algorithm, the total sum of squared distances between each point in D and the

center of the corresponding clusters are locally minimized. In this sense, the found

solution is not guaranteed to be the minimal solution. However, as discussed in [41],

finding a minimal solution for larger |D| and k values are impractical, and hence the

k-means clustering algorithm is used in practice as it is. In this thesis, the algorithm

is used for partitioning a set of visited solutions in an LS scheme with respect to their

objective values.

2.3.3. Association Rules

Let I be the set of items such that I = {i1, i2, ..., i|I|}, D be the set of transactions

where each transaction T ∈ D corresponds to an itemset such that T ⊆ I. ML models

to find association rules aim to find the common items in most of the transactions

where an association rule is a logical expression in the form of im =⇒ in such that

im, in ∈ I and m ̸= n holds [42]. This rule is true in c% of all transactions T ∈ D

such that im ∈ T and c is known as the confidence. The support s% is defined as the

ratio of the number of transactions containing both im and in to the number of all

transactions T ∈ D. The semantic version of these relations is as follows: In s% of all

transactions, if im is in a transaction T , then in is also in T with confidence c%. The

apriori algorithm proposed in [43], aims to find all of the association rules with given

minimum confidence and minimum support values. The algorithm is usually referred

in marketing context. In this thesis, we use the apriori algorithm to extract association

rules to detect the common components in a set of visited solutions in an LS scheme.

13

3. LITERATURE REVIEW

3.1. Bilevel Network Design Problems

Initial BP problems date back to the seminal paper of H. von Stackelberg in which

the leader-follower games are introduced and modelled [9]. Due to the inherent hierar-

chical decision process, various real-life applications are modelled as BP formulation in

the fields such as military operations [13], social networks analysis [44, 45], renewable

energy systems planning [46], electricity market [47], agriculture [48], marketing [49,50]

and many more. In this section, we review the BP studies in which the ULPs or the

LLPs are the variants of the NDP. For general reviews on BP problems readers are

referred to the review papers [11,51,52].

In [53], a bilevel discrete NDP model is introduced for transportation network

expansion problem and a branch-and-bound (B&B) method is proposed to solve the

problem. In the ULP of the problem, the system planner makes the expansion decisions

over an existing road network and the users at the LLP make routing decisions with

respect to the expansions. The system planner aims to increase the total performance of

the system even though the user equilibrium defined by the LLP reduces the efficiency

of some individual users. Another BP formulation including a network equilibrium

model as the LLP is introduced in [54]. The system planner as the decision-maker of

the ULP, aims to optimize the bus frequencies to decrease the total travel time of all

public transportation users in Dalian economic & technological development zone. The

LLP of the introduced model is a variant of the traffic assignment problem and finds the

user equilibrium as a multi-modal transport network equilibrium model. The authors

proposed a column generation and a B&B method to solve the given formulation.

In [55], maintenance planning problem of a road network is modelled as a dynamic

discrete NDP and a BP formulation is proposed for the problem. The government

agency at the ULP devises a maintenance plan for the road segments and the bridges

and the system users at the LLP aims to optimize their routes respecting the currently

14

closed arcs due to the planned maintenance. In addition these studies on road networks,

a railway NDP is studied in [56]. Following a similar manner with above BP studies,

the government agency as the decision-maker in the ULP, aims to design a railway

network by adding new lines and segments and the system users at the LLP optimizes

their routes. For the other selected BP studies on transportation networks readers are

referred to [57–59].

A BP formulation is introduced in [60] to model the hazmat transport NDP.

The aim of the problem is to minimize the total hazmat risk in a particular region by

forbidding transportation of hazardous materials in some set of road segments. The

ULP, then, corresponds to this governmental decision, and the LLP finds the least

cost routes for all hazmat carriers avoiding the closed links in the road network. The

BP formulation is solved as a single-level model by adding the Karush-Kuhn-Tucker

(KKT) optimality conditions of the LLP to the ULP. The introduced model is extended

later in [61]. The introduced BP formulation, in a similar manner with the approach

of [60], is transformed into a single-level mixed integer linear programming (MILP)

and is solved with a multi-cut Benders decomposition method.

A BP formulation for the location of relief distribution centers (DC) in humani-

tarian logistics is introduced in [62]. An aid agency as the ULP decision-maker aims to

locate a set of capacitated DCs to serve the demands of the beneficiaries by minimizing

the total cost of establishment and the uncovered demand. The beneficiaries as the

LLP decision-makers aim to choose a DC to be served. The authors proposed a set

of exact solution methods to find the Pareto optimal solutions to this bi-objective BP

formulation. As another study in the context of humanitarian logistics, the food aid

modality selection problem is introduced in [63] and modelled as a BP formulation.

As the application of the problem, an aid agency intends to design an aid program

in a predetermined area, and the beneficiaries decide the combination of basic, tasty

and temptation foods to receive with the provided aids. The authors work on a case

study in Kenya’s Garissa county to illustrate how the introduced problem can be used

in practice.

15

3.1.1. Bilevel Programming in Airline Network Design

Above, we discuss the literature on general bilevel NDPs and the studies on BP

models of humanitarian logistics. In this section, we review a set of BP studies with

applications in the airline industry. In [64], a one-to-one competition between an in-

cumbent airline company exploiting a hub-and-spoke network and an entrant exploiting

a low cost point-to-point network is modelled as a BP formulation. The model explic-

itly considers the number of flights at each link and the prices to find the market shares

of both companies. The authors employ a sensitivity analysis approach to solve the BP

model. A similar study on the competition between two airline companies employing

hub-and-spoke flight networks is reported in [65]. In the ULP of the proposed BP

formulation, an existing airline company adjusts its network and a potential entrant

designs its flight network in the LLP. Both companies aim profit maximization by in-

creasing market share. A random case study based on the regional market in Taiwan

and China is solved heuristically with a GA method.

In [66], the authors study the problem of airline flight scheduling under com-

petition. In the proposed modelling framework, an airline company designs its flight

schedule such that the total revenue and resource usage is maximized. The framework,

then, explicitly considers the passenger demand and the competition in the market in

which a simulation model is used for predicting the passenger behaviour. Regarding

the passenger behaviour, another BP formulation for the airline industry is introduced

in [67] as a general framework to analyse the effects of possible airline policies on passen-

ger behaviour. In the ULP, the regulative decisions are made by a government agency

as the market regulator and the LLP models the passengers’ route choice behaviour

under the implied policy. The authors consider a case study in which the allocation

of international/domestic flights to an urban and a remote airport of the same city is

analysed.

To the best of knowledge, the only interdiction study on the airline flight network

design is reported in [68]. A BP formulation based on the p-hub location problem to

16

analyse the resiliency of a hub-and-spoke flight network is introduced in the study.

The formulation is actually an interdiction problem in which the objective functions

at each level are same but in the opposite direction. By using the formulation under a

cardinality budget assumption (i.e., r -interdiction), the authors aim to find the worst-

case scenario out of all possible interdiction patterns.

3.2. Interdiction Problems

In the literature, interdiction models have been developed in different research

areas. One stream of research focuses on facility interdiction problems where the

attacker targets facilities in a network that provide service to customers. Since this type

of interdiction models is out of the scope of this thesis, we only mention the pioneering

work of [69] which sets the basis of a large number of facility interdiction models for both

median-type and coverage-type location problems studied later. Within the context of

facility interdiction problems, we can also mention problems that involve interdiction of

hub facilities that provide some sort of service for demand points over a hub-and-spoke

network [70]. There also exist studies that consider the interdiction versions of some

well-known problems in the field of OR. [71] and [72] focus on the binary knapsack

interdiction problem where the attacker tries to determine (interdict) the items that

cannot be selected by the defender so as to minimize the profit of the latter who solves

the binary knapsack problem to maximize the same objective function. Interdiction

models have been employed in graph theoretic problems as well. For example, [73]

investigate the problem of edge removal from an undirected graph such that the size

of a maximum clique is minimized. A linear binary program is proposed to solve this

clique interdiction problem. [74] examine the matching interdiction problem where the

attacker aims to minimize the weight of the maximum matching, while the defender

solves the maximum matching problem.

Contrary to facility interdiction models, in network interdiction models the at-

tacks are conducted to damage the arcs rather than the facilities in the network. The

pioneer work in network interdiction models is by [13]. In this study, the maximum flow

17

between an origin and a destination node is minimized by removing a certain number

of arcs from a network. [14] considers the same problem under a limited interdiction

budget and a limited number of interdicted arcs constraint. The first studies on net-

work interdiction usually focus on security applications. [75] propose two algorithms

to find the worst case scenario in a capacitated communication network in terms of re-

duced arc capacities and increased arc costs under attack. [76] present an algorithm to

find the optimal interdiction of a supply network under an attack of an opposing force

where the optimal interdiction is defined as the interdiction scenario that minimizes the

network flow capacity. [77] investigate the problem of finding critical arcs on a network

where critical arcs are defined as the arcs that maximize the length of the shortest

path if they are fully interdicted by an adversarial attack. The authors introduce a

MILP formulation and propose a decomposition algorithm for its exact solution. [78]

deal with a multi-commodity network flow problem, where the arc capacities can be

completely or partially decreased. [79] examine a shortest path interdiction problem in

which the attacker and the system operator do not share the same information on arc

lengths. In addition to these earlier studies focusing on arc interdiction, [80] develop

BP formulations to analyse the security of electric grids under terrorist threat. [81]

generalize this terrorist threat problem and propose a BP framework for the problem.

Other BP formulations for possible attacks on electricity distribution networks are

suggested in [82], and [83].

There also exist studies on network fortification-interdiction problems whose num-

ber is more limited than pure interdiction models. [84] try to determine the best alloca-

tion of protection resources, where the attacker aims the unprotected nodes and arcs in

a shortest path network. [85] formulate a three-level model to specify the components

of an electricity distribution network should be protected. [86] address an operator-

attacker-operator problem, in which the operator make fortification decisions for a

subset of arcs in the first level and the attacker damages a subset of unprotected arcs

in the second level. The operator then solves a TSP in the third level. There also exist

few multi-period network fortification-interdiction models in the literature [87,88]. The

interested reader can refer to the survey paper of [12] for network interdiction models.

18

3.3. Data-Driven Search Heuristics

Recently, there is an increasing interest in ML-assisted data-driven solution meth-

ods for the COPs and various data-driven approaches are proposed as exact and heuris-

tic methods to solve these NP-hard problems by the OR community. In this thesis, we

propose a set of data-driven heuristic methods to solve a couple of bilevel NDPs and

hence we review the corresponding heuristics literature in this review. The data-driven

exact approaches to COPs are out of scope of this study and the interested readers are

referred to most recent review paper [89] and the references therein.

According to the taxonomy introduced in [10], the ML methods “at the service of

metaheuristics” are classified into six groups: Algorithm selection, fitness evaluation,

initialization, evolution, parameter setting and cooperation. Our proposed metaheuris-

tic methods contribute to the literature of fitness evaluation and initialization classes.

To this extent, the reviewed papers are limited to these two classes.

In the fitness evaluation studies (or surrogate-assisted search), the ML methods

are used to predict the fitness values (i.e., objective function values) of given solutions

to a problem. The reason behind using predicted fitness values in a metaheuristic

implementation is twofold. First, calculating the exact fitness value can be computa-

tionally expensive and second, the fitness function cannot be represented in a closed

form at all (e.g., quarter car design simulation). All metaheuristic methods need at

least one solution to initialize the search and an initial solution can traditionally be

obtained in a random, greedy or a hybrid way [16]. Recently, the ML models are

proposed to find partial or complete initial solutions to start the metaheuristic search

and the initialization class of ML-assisted data-driven search literature discusses such

approaches.

Most studies of using surrogate models for fitness evaluation are on evolutionary

algorithms (EA) due to the necessity of large numbers of objective function evaluations

inherent to the population based metaheuristics. In [90], individuals in a population

19

are clustered into k groups by the k -means clustering algorithm and only the individu-

als closest to the centers of each clusters are evaluated. By exploiting these actual

objective function values, the fitness values of remaining individuals are predicted

by using an artificial neural network. A similar clustering approach is used in [91]

in multi-objective optimization (MOO) context for detecting individuals close to the

Pareto frontier. In [92], a global surrogate model is proposed as an evolutionary MOO

method. The authors use the support vector machines (SVM) to predict the actual

objective function values of each individual. Then, regarding the predicted objective

function values, the actual objective function values of non-promising individuals are

not calculated to reduce the total computational time. Another study incorporating a

SVM based surrogate-assisted EA is proposed in [93] to devise a computational tool for

aerodynamic shape design. The authors particularly work on the initial training data

and its effect on the quality of solutions. In addition to the data-driven search studies

on EAs, a surrogate-assisted SA method is discussed in [94] in the MOO context. The

authors employs a response surface method (RSM) to predict the objective function

values of solutions at each SA iteration.

The ML methods embedded into metaheuristics can be trained in an offline or

an online fashion. In offline learning, adequately large number of instances of the same

problem are optimally solved and the optimal objective values alongside with instance

properties are used to train a supervised learning model. Then, the supervised model

is incorporated into a search method to solve a new instance of the same problem.

Preprocessing of an offline method is time consuming, however, once the trained ML

model is obtained, the computational time of solving a new instance is reduced. The

offline methods are reported to work properly on the instances possessing similar fea-

tures. An example of an offline learning approach on EAs can be found in [95]. The

authors solve the combinatorial circuit design problem with a GA in which a set of

promising individuals extracted from the historical data are added into the initial pop-

ulation alongside with a set of random individuals. On the contrary, the training data

is collected during the solution of a problem in the online learning, i.e., the solution

and the training (or periodical training) are held simultaneously and the ML model

20

is not expected to have knowledge on the other instances of the problem. In [96], the

gene combinations of elite solutions in a GA implementation are extracted during the

solution. Then, these gene combinations are injected into the individuals of the future

populations as an initialization strategy. The authors reported promising results for

the TSPLIB instances. In [91], the individuals in the population are clustered by the

k -means clustering algorithm, and the most representative individuals of each clusters

are fed into an ILS implementation for the intensification purposes in a non-dominated

sorting GA-II (NSGA-II) framework to solve the hub-and-spoke NDP.

In an earlier study on data-driven initialization, the historical dispatching sched-

ules prepared by field experts are subjected to decisions trees and the key scheduling

components indicated by the trained DT are incorporated into the initial solutions of

a set of dispatching heuristics [97]. In addition to the traditional approach of using

historical dispatching rules, association rules are recently used for solving COPs. In

the method proposed in [98], set of association rules extracted from historical solutions

to job shop scheduling problems are used for generating the initial populations of GA

and PSO implementations for the problem.

Most of the studies in the data-driven search literature are on EAs proposed

for MOO, and the studies on single-solution based metaheuristics are scarce. In this

thesis, we devise a set of TS and VNS matheuristics relying on some ML models for

performance increase.

21

4. STRATEGIC FLIGHT NETWORK DESIGN

Most of the major airline passenger carrier companies utilize hub-and-spoke (HS)

network topology to benefit from scale economies [99]. For instance, when the ex-

pansions of the Middle Eastern based Qatar Airways, Etihad Airways, and Emirates

Airways (known as ME3) and USA based United Airlines are examined, the HS net-

work topology is regarded as the main reason for the success of these airline carriers

(ACs) [100, 101]. In HS networks, ACs establish a single or a few airports as their

hub airports, and aim to interconnect spoke airports through these hubs [102]. On

the contrary, point-to-point (PTP) network topology is preferred by those ACs whose

main flight network strategy is to establish direct flights between a set of airports. PTP

flight networks are generally inherited by low-cost airline companies such as USA based

Southwest Airlines and Ireland based Ryanair. The reason behind the preference of

establishing PTP flight networks and refusing the economic advantages of HS networks

is strategic positioning [103]. From this point of view, using PTP networks is about

differentiating the product and avoiding direct competition with the major ACs in the

industry [104]. For a detailed discussion of this topic, readers are referred to the case

study of Southwest Airlines’ entry to the USA market analysed in [105].

Interdiction models can be used to represent the competition between large and

small companies [50] including the one in the airline market in terms of flight network

design [65]. Regarding this literature, as the first bilevel NDP we propose here, the r -

Interdiction Network Design Problem with Lost Demand (RI-NDPLD) focuses on the

strategic flight network design of a hypothetical small airline carrier (SAC) adopting

the PTP approach which targets to enter an airline market with potential threats from

incumbent carriers and aims to analyse the maximum possible disruption in its flight

network in the wake of virtual attacks performed by a competitor. In the problem,

the disruption is measured by the number of disallowed flights and the loss of the

corresponding demand. A bilevel mixed integer program (BMIP) is formulated where

the decision maker in the upper hierarchical level (i.e., the upper level problem (ULP)

22

in a bilevel setting) is the virtual attacker that interdicts some of the links in the flight

network of the SAC. The SAC, on the other hand, is the decision maker in the lower

hierarchical level (i.e., the lower level problem (LLP) in a bilevel setting) that solves

the NDP to determine the best flight network given the information on which links are

interdicted, i.e., are disallowed for flight.

4.1. Problem Definition and Mathematical Models

This section is dedicated to the formal definitions and a set of arc based network

flow formulations for the NDP, NDPLD and RI-NDPLD. Alongside, an illustrative

example for the NDP is also given.

4.1.1. Multi-Commodity Fixed-Charge Capacitated Network Design Prob-

lem

Consider a flight network consisting of airports and potential flights between these

airports. In the context of our problem, the airports and potential flights represent

nodes and arcs of the flight network, respectively. Also, consider a set of passenger

groups representing commodities where each passenger group has an origin airport,

a destination airport, and associated demand. The NDP deals with (i) determining

whether or not to install a link (i.e., direct flight) on each arc, and (ii) deciding the

flow of passenger itineraries over these links with the objective of minimizing a cost

function incorporating the total cost of design and flow decisions [106]. For the sake to

keep the connection with other types of network we will use the terms node, potential

arc, link, and commodity in the sequel.

In terms of designing a capacitated network, the NDP takes a network with

no capacity on its arcs as input, and returns as output a network with nonzero arc

capacities by installing links over a subset of its arcs. An example of an input network

consisting of five nodes and nine potential arcs is illustrated in the leftmost part of

Figure 4.1 and a solution to the NDP for the input network is given in rightmost part

23

of Figure 4.1 with w denoting the capacity of a unit link. As can be seen, links are

established or installed on potential arcs {(1, 2), (1, 4), (2, 1), (3, 1), (4, 3), (4, 5), (5, 4)}.

They are highlighted as solid lines.

Figure 4.1. Illustration of the NDP.

In the literature, the NDP is modelled using three different formulations [107]:

(i) arc based, (ii) path based, and (iii) tree based. In this study, we use the arc based

formulation and obtain the model referred to as NDP which is adapted from [108].

Using the definitions of the sets, parameters, and variables given in Table 4.1 the

formulation is given as

min
∑

(i,j)∈A

hijYij +
∑
k∈K

∑
(i,j)∈A

ckijd
kXk

ij, (4.1)

s.t.
∑
k∈K

dkXk
ij ≤ wYij (i, j) ∈ A, (4.2)

∑
j∈N\{i}

Xk
ij −

∑
j∈N\{i}

Xk
ji =

1 if i = O(k)

0 if i ̸= O(k), D(k)

−1 if i = D(k)

i ∈ N, k ∈ K, (4.3)

0 ≤ Xk
ij ≤ 1 (i, j) ∈ A, k ∈ K, (4.4)

Yij ∈ Z+ ∪ {0} (i, j) ∈ A. (4.5)

The objective function (4.1) aims to minimize the total cost consisting of two

components. The first component represents the fixed cost of link installation, while the

24

Table 4.1. Sets, parameters and variables of NDP.

Set Description

N Set of nodes

A Set of arcs where each arc is represented as (i, j)

K Set of commodities where each commodity k ∈ K is

defined as the triplet {Origin,Destination,Demand}.

Parameter Description

hij The fixed charge of installing a unit link on arc (i, j)

ckij The cost of unit flow of commodity k on arc (i, j)

dk The demand of commodity k.

w The capacity of a unit link installed on an arc.

Variable Description

Xk
ij The fraction of the commodity demand dk that flows on

arc (i, j)

Yij The number of unit links installed on arc (i, j)

second one is the cost of commodity flows on installed links. Constraints (4.2) ensure

that the flow on arc (i, j) does not exceed the designed capacity of the arc. Constraints

(4.3) are the flow conservation constraints and guarantee that each commodity flows

from its origin to its destination. Constraints (4.4) and (4.5) are restrictions on the

decision variables. It is worthwhile to emphasize that the integrality restriction on Y

variables allows the model to design a network whose arc capacities are multiples of w.

Actually, this is what separates the NDP from its uncapacitated version [109].

25

4.1.2. Multi-Commodity Fixed-Charge Capacitated Network Design Prob-

lem with Lost Demand

In the general setting, the NDP assumes that there exists a decision maker who

decides on both the installation of links and the flows of individual commodities over

these links. However, in practice, the decision maker may choose not to satisfy the

demand of some commodities and exclude them from the problem unless they are

economically viable. In addition to this deliberate decision, the decision maker may

sometimes be forced to forgo the demand (i.e., demand loss) due to possible disruptions

that can occur in the network. For example, airline companies may loose customers

because of competition or find themselves in a situation in which certain flights are

canceled. To incorporate such decisions into the NDP, we introduce an extended version

of the NDP referred to as the NDPLD, where the decision maker also deals with lost

demand of a subset of commodities in addition to the design and flow decisions. The

arc based MILP formulation of the NDPLD is given below. The set, parameter, and

variable definitions of NDPLD are inherited from NDP with two additional definitions:

(i) a binary variable Uk that is equal to one if the demand of commodity k is lost,

and zero otherwise, and (ii) the parameter pk that represents the cost of unit loss of

commodity k’s demand. Using these definitions, the NDPLD is modelled as

min
∑

(i,j)∈A

hijYij +
∑
k∈K

∑
(i,j)∈A

ckijd
kXk

ij +
∑
k∈K

pkdkUk, (4.6)

s.t.
∑

j∈N\{i}

Xk
ij −

∑
j∈N\{i}

Xk
ji =

1− Uk if i = O(k)

0 if i ̸= O(k), D(k)

Uk − 1 if i = D(k)

i ∈ N, k ∈ K, (4.7)

Uk ∈ {0, 1} k ∈ K, (4.8)

Constraints (4.2), (4.4), (4.5). (4.9)

The objective function (4.6) aims to minimize the total cost of design and flow

decisions as well as demand loss. Constraints (4.7) are the modified flow conservation

26

constraints which make sure that if demand of a commodity is lost, then NDPLD does

not deal with the flow of that commodity. Mathematically speaking, if Um = 1 such

that m ∈ K, then the right-hand side of the corresponding constraint is equal to zero

for origin, destination, and all transshipment nodes. Finally, constraints (4.8) ensure

that Uk variables take binary values.

4.1.3. The r-Interdiction Fixed-Charge Capacitated Network Design Prob-

lem with Lost Demand

The bilevel mathematical model RI-NDPLD developed in this study tries to an-

swer an important question from the perspective of an airline company that wants to

enter an already existing passenger air transport market: which direct flights to oper-

ate given that an established airline company in the market will not allow the market

entrant to operate flights for some itineraries. To answer this question, a bilevel inter-

diction model is formulated to mimic a static Stackelberg game between two players

in which the leader of the game is the virtual attacker (referred to as the attacker in

the sequel) representing the established airline company and the follower is the market

entrant company (referred to as the airline operator). The attacker determines a set of

adversarial attacks on a subset of potential arcs A to fully interdict the flows on these

arcs (i.e., eradicate the airline operator from the market corresponding to the direct

flight along the potential arc) provided that the number of attacks does not exceed

the available budget. Given the interdicted arcs by the attacker, the airline operator

aims to solve the NDPLD in the LLP of the RI-NDPLD. Regarding the additional set,

parameter, and decision variable definitions are provided in Table 4.2 in addition to

those included in Table 4.1, the BMIP formulation of the RI-NDPLD is given as

max
T

∑
(i,j)∈A

hijYij +
∑
k∈K

∑
(i,j)∈A

ckijd
kXk

ij +
∑
k∈K

pkdkUk, (4.10)

s.t.
∑

(i,j)∈A

Tij ≤ r, (4.11)

Tij ∈ {0, 1}, (i, j) ∈ A, (4.12)

27

min
X,Y,U

∑
(i,j)∈A

hijYij +
∑
k∈K

∑
(i,j)∈A

ckijd
kXk

ij +
∑
k∈K

pkdkUk, (4.13)

s.t.
∑
k∈K

dkXk
ij ≤ wYij, (i, j) ∈ A, (4.14)

∑
j∈N\{i}

Xk
ij −

∑
j∈N\{i}

Xk
ji =

1− Uk if i = O(k)

0 if i ̸= O(k), D(k)

Uk − 1 if i = D(k)

, i ∈ N, k ∈ K,

(4.15)

Yij ≤Mij(1− Tij), (i, j) ∈ A, (4.16)

0 ≤ Xk
ij ≤ 1, (i, j) ∈ A, k ∈ K, (4.17)

Yij ∈ Z+ ∪ {0}, (i, j) ∈ A, (4.18)

Uk ∈ {0, 1}, k ∈ K, (4.19)

where T is the matrix of interdiction variables, X is the matrix of flow variables, Y is

the matrix of design variables and U is the vector of lost demand variables.

Table 4.2. Sets, parameters and variables of RI-NDPLD-AB.

Parameter Description

pk The cost of unit loss of commodity k’s demand

r The maximum number of arcs that can be interdicted

by the attacker

M A sufficiently large number

Variable Description

Uk Binary variable which is equal to one if the demand of

commodity k is lost, zero otherwise

Tij Binary interdiction variable which is equal to one if arc

(i, j) is interdicted by the attacker, zero otherwise

In RI-NDPLD, the ULP consists of expressions (4.10)–(4.12) while the LLP is

represented by expressions (4.13)–(4.19). The objective function of the attacker given in

28

(4.10) is equivalent to the objective function (4.13) of the airline operator with different

sense of optimization. It consists of the total cost of link installation, commodity

flow, and lost demand decisions. Constraint (4.11) ensures that the total number of

interdictions cannot exceed the threshold value r. This constraint makes RI-NDPLD

an interdiction problem with a cardinality-constrained budget, which is based on [69]

where r-interdiction median problem is defined. In this seminal paper, the authors

considered facility interdiction in a service network and formulated two models from

an attacker’s viewpoint given that there are p existing facilities serving the customers.

The objective is to maximize the demand-weighted total distance by attacking r out

of p facilities where the customers of the disrupted facilities have to be reassigned to

undamaged facilities to get service. All constraints of the LLP are the same as those

existing in the NDPLD formulation with the exception of constraints (4.16). They

ensure that if arc (i, j) is interdicted by the attacker, the operator cannot install a

link on that arc. The values of the big-M parameters Mij in these constraints are

determined by computing the largest amount of flow that can pass over each arc (i, j)

based on the commodity demand values dk.

4.2. Solution Methods

Reformulating bilevel programs as single-level programs is a typical strategy for

optimally solving them. To do so, the KKT optimality conditions of the LLP are

added to the ULP as a set of constraints [110]. However, such an approach requires

that the LLP be convex [12]. Unfortunately, the LLP of the RI-NDPLD is an MIP,

i.e., it is nonconvex, and we cannot exploit such an approach. Elaborated solution

techniques such as branch-and-cut algorithm [111] and Benders-decomposition based

methods [112] are needed to solve the BMIP formulation of the RI-NDPLD. Hence, we

first implement a sampling-based exact (SBE) algorithm [113] to solve the RI-NDPLD.

Let

max
x∈Hx,y

ϕu(x, y), (4.20)

s.t. g1j (x) + h1j(y) ≤ b1j j = 1, 2, ...,m1, (4.21)

29

max
y∈Hy

ϕl(x, y), (4.22)

s.t. g2j (x) + h2j(y) ≤ b2j j = 1, 2, ...,m2 (4.23)

be an BMIP formulation. Let also X(y) = {x|g1j (x) ≤ b1j−h1j(y), j = 1, . . . ,m1;x ∈ Hx}

be the set of feasible solutions to the ULP for a fixed vector y and Y(x) = {y|h2j(y) ≤

b2j − g2j (x), j = 1, . . . ,m2; y ∈ Hy} be the set of feasible solutions to the LLP for a fixed

vector x. Define Ω = {(x, y)|x ∈ X(y), y ∈ Y(x)} as the region obtained by relaxing the

optimality requirement of the LLP, and define Ω(X) as the projection of Ω onto ULP’s

decision space. Let Ψ(x) = argmax{ϕl(x, y)|y ∈ Y(x)} be the lower-level problem’s

rational reaction set for a given vector x, i.e., the optimal solution (or set of alternative

optimal solutions) of the LLP for a fixed x. Finally, define Y = ∪x∈Ω(X)Y(x) be the set

of all feasible LLP responses. The BMIP can be restated as

z∗ = max
(x,y)
{ϕu(x, y) : x ∈ X(y), y ∈ Ψ(x)}. (4.24)

A single-level problem obtained by relaxing the optimality requirement of the LLP, i.e.,

the high point problem (HPP), is given as

zHPP = max
(x,y)∈Ω

{ϕu(x, y)}, (4.25)

and an optimal solution to this problem returns a valid upper bound on z∗. In [113],

authors formulate the so-called extended high point problem (EHPP) and prove that

the EHPP is equivalent to the BMIP given in (4.20)–(4.23). The name of the formula-

tion arises from the idea that the formulation is actually the HPP with an additional

set of binary varaibles and a couple of additional set of constraints to ensure the bilevel

feasibility. Define γŷj = ⌊b2j − h2j(ŷ)⌋ + 1 for every ŷ ∈ Y, j = 1, . . . ,m2. Then, define

B(ŷ,Y) = {(y′, q)|γy′q ≥ γŷq, y
′ ∈ Y, q = 1, . . . ,m2}. Also, let wŷj be a binary variable

equals to one if a constraint j blocks solution ŷ; otherwise a solution may or may not

be blocked. Next, let the Big-M values be adequately large numbers. Then,

max
x,y

ϕu(x, y), (4.26)

s.t. g2j (x) ≥ −M1
j +

∑
ŷ∈Y

(M1
j + γŷj)wŷj j = 1, . . . ,m2, (4.27)

30

ϕl(x, y) ≥ ϕl(x, ŷ)−M2
ŷ

∑
(y′,q)∈B(ŷ,Y)

wy′q ŷ ∈ Y, (4.28)

(x, y) ∈ Ω, (4.29)

wŷj ∈ {0, 1} ŷ ∈ Y, j = 1, . . . ,m2 (4.30)

is the EHPP formulation. The objective function at (4.26) maximizes the objective

function value of the ULP. Constraints (4.27) together with constraints (4.28) ensure

the bilevel feasibility. Constraints (4.29) enforce the constraints of both levels. Last,

constraints (4.30) are the binary restrictions on wŷj variables. Solving the EHPP

requires the complete enumeration of all solutions to build the set Y. Authors denote

that the size of this set could grow exponentially. Therefore, they propose an iterative

solution algorithm similar to a column generation procedure. To this end, the relaxed

extended high point problem (REHPP) is defined as the EHPP with an exception on

Y. Instead of using all solutions, REHPP uses a restricted set of solutions Ŷ.

The solution algorithm starts with an initial set Ŷ0. The REHPP with Ŷ0 is

optimally solved, and an upper bound on the EHPP (i.e., the BMIP formulation)

and an interdiction set is obtained. Given the set, response of the LLP is found by

optimally solving the lower-level problem. A solution ŷi and a lower bound on the

EHPP (i.e., BMIP) are obtained, where i is the index of an iteration. Next, restricted

set of solutions is updated, i.e., Ŷi+1 ← Ŷi ∪ ŷi. The algorithm iterates in this fashion

until the REHPP is found to be infeasible or lower and upper bounds are equal. If, the

REHPP at an iteration i is infeasible then the EHPP (hence BMIP) is also infeasible,

and if the bounds are even then the optimal solution z∗ is equal to the lower/upper

bound. For the proof of convergence and further discussions, readers are referred to

the aforementioned study.

In this study, we first implement this exact algorithm to solve the RI-NDPLD.

The implementation details of the algorithm are as follows:

• Initial Solution: The lower-level problem is optimally solved for a random set of

r-interdictions, and a solution for yij variables are obtained. Our implementation

31

starts with Ŷ including only this solution.

• Bilevel Feasibility: There are two issues to point out: (i) Constraints (4.27) of

the EHPP refer to the LLP constraints including the ULP decision variables. In

our implementation, constraints (4.16) of the RI-NDPLD satisfy this condition,

and (ii) Since the RI-NDPLD is a max-min problem and the EHPP is a max-max

formulation, we need to modify the constraints (4.28). To do so, we replace it

with

ϕf (x, y) ≤ ϕf (x, ŷ) +M2
ŷ

∑
(y′,q)∈B(ŷ,Y)

wy′q ŷ ∈ Y.

Preliminary computational experiments on the implementation reveal that the

gap between lower/upper bounds are significantly large at earlier iterations and a

stagnating behavior is common for the RI-NDPLD. Moreover, the NP-hardness of the

LLP and the necessity of LLP solutions at each iteration pose a challenge in terms

of computational time. Actually, these issues would cause computational inefficiencies

for most of the exact BMIP solution techniques. Therefore, we resort to matheuristic

methods to solve the RI-NDPLD. To this end, we implement a generic TS matheuristic

for the RI-NDPLD and propose a set of strategies to increase the efficiency of the

implementation.

TS is a single-solution based metaheuristic. Since its introduction to the literature

in the mid-eighties [114], it is used for solving various COPs including BMIPs. In [24],

a matheuristic method incorporating TS and a MILP based exact solution technique to

solve a leader-follower game involving facility location-protection-interdiction decisions

are proposed . A trilevel r-interdiction median model for a facility location problem is

introduced in [25] which is solved via a TS heuristic. In a more recent paper, a TS based

matheuristic is employed for the r-interdiction selective multi-depot VRP [26]. Based

on these successful implementations we first opt to develop a generic TS implementation

as a matheuristic to solve the RI-NDPLD. Then, we introduce a set of valid inequalities

for the LLP to have a stronger formulation and reduce the computational time to

optimally solve the neighboring solutions. Then, the performance of the matheuristic

32

is improved by incorporating various candidate solution set generation procedures to

reduce the number of exact solution calls for solving the LLP. Last, we propose a

data-driven perturbation operator and devise a restart diversification scheme.

4.2.1. A Generic Tabu Search based Matheuristic

In this section, we introduce a generic TS matheuristic and briefly discuss its

components. The pseudocode of the matheuristic is provided in Figure 4.2 and a

flowchart of the algorithm is given in Figure 4.3. The details of the valid inequalities,

candidate solution set generation procedures and the restart diversification scheme are

discussed in the remaining sections. The main components of the TS matheuristic are

as follows:

• Solution Representation: Each solution s is represented with a |A|-bit string

with each bit representing a link (i, j) ∈ A. The value of a bit is equal to

one if the corresponding link is interdicted, and zero otherwise. For example,

s = [1, 0, 0, 1, 0] indicates that links 1 and 4 are interdicted, and the others are

operational.

• Neighborhood Structure: The SWAP operator used in the implementation re-

moves the interdiction status of a link and creates disruption in a noninterdicted

link, i.e., for s = [1, 0, 0, 1, 0] SWAP (s) generates a neighbor s′ = [0, 1, 0, 1, 0] by

exchanging the interdiction status of link 1 and link 2.

• Neighborhood Evaluation: The objective value of a neighboring solution is com-

puted by optimally solving the LLP of the RI-NDPLD using an off-the-shelf MILP

solver. Further details are described in Section 4.2.2.

• Selection of the Neighbors: At each iteration, TS enlists all solutions in the

neighborhood of a current solution s, i.e., N (s). Then, it selects a subset of the

neighboring solutions to generate a candidate list of solutions (s), i.e., C(s) such

that C(s) ⊆ N (s), and computes the objective value of each s′ ∈ C(s). The best

solution s∗ among all evaluated neighbors is chosen as the next solution. In this

study, we devise two elimination procedures to remove some of the neighboring

33

solutions to generate candidate lists. In the section where we present computa-

tional results, we provide the analysis on the performance of these procedures.

• Initial Solution: A subset of all possible solutions is constructed systematically,

and the best one among them is chosen as the initial solution. Details are given

in Section 4.2.4.2.

• Tabu Structure: We use a hash list to avoid cycling.

• Termination Criterion: The algorithm terminates if a time limit is exceeded.

Input: Initial solution s0, empty hash list of solutions

1: s← s0 ▷ Initial solution

2: while stopping criterion is not satisfied do

3: Generate C ⊂ N ▷ Generate the candidate list

4: Evaluate s′ ∈ C(s) ▷ Evaluate every solution in the candidate list

5: s∗ ← argmaxs′∈C(s) f(s
′) ▷ Pick the best neighbor

6: s← s∗ ▷ Accept the best neighbor as the current solution

7: Update the hash list of solutions ▷ Add currently visited solutions

8: end while

Output: s∗

Figure 4.2. Tabu Search.

Let s be the current solution, and N (s) be the neighborhood of the current

solution. If the evaluation (i.e., objective value computation) of each neighbor s′ in

N (s) requires a significant computational effort as is the case in solving the LLP of

the RI-NDPLD, one may work on reducing the computational time of the evaluation

and/or avoiding exhaustive search of the neighborhood N (s). Regarding this claim, we

first devise a set of valid inequalities to reduce the computational time of the neighbor

evaluation. To overcome the issue of exhaustive search, we introduce two strategies.

First, we implement a pruning procedure to discard a subset of neighboring solutions

without optimally computing their objective value. Second, we propose a data-driven

neighbor sorting procedure. Both procedures help us to reduce the whole neighborhood

N (s) to C(s) ⊆ N (s), and optimally solve only those solutions that are in the candidate

list C(s). We discuss the details of valid inequalities in Section 4.2.2. The details of

34

the the pruning procedure is discussed in Section 4.2.3, while the data-driven sorting

procedure is explained in Section 4.2.4.1.

Figure 4.3. Flowchart of TS.

4.2.2. Evaluation of Neighboring Solutions

TS based matheuristics we propose in this study for the RI-NDPLD are iterative

in nature and need to solve the LLP of the RI-NDPLD with given ULP variable values

for neighbor evaluation. This fact, together with the NP-hardness of the LLP for

given ULP variable values, makes the solution of the LLP, i.e., neighbor evaluation,

the bottleneck operation of our implementation. In light of this observation, we here

formulate two strategies of accelerating individual LLP solutions.

Let T be the set of interdicted arcs determined by the values of the ULP variables.

Due to the full interdiction assumption, the LLP of the RI-NDPLD is equivalent to the

LLP where the constraints (4.16) are interchanged with
∑

(i,j)∈T Yij = 0. Instead of

35

making this transformation, it is possible to find an equivalent problem by defining the

NDPLD over the network GT = (N,A\T). We implement all matheuristic methods in

a way that whenever a solution of an LLP with given ULP variable values is needed, it

is obtained by solving the NDPLD over GT . The rationale behind this decision is that

the NDPLD has a similar structure with the NDP and there is a body of literature on

the solution methods of the NDP starting back at early 70s [115]. To accelerate the

solution of the LLP, we devise a branch-and-Benders-cut (B&BC) implementation in

Section 4.2.2.1 and introduce a set of valid inequalities adapted from this literature in

Section 4.2.2.2.

4.2.2.1. Branch-and-Benders-cut implementation. Inspired by the Benders decompo-

sition literature on the NDP, we define the master problem with only design and lost

demand variables, i.e., Y and U . Let θ be a nonnegative continuous variable represent-

ing the objective value of the subproblem. Then, the master problem (MP) is defined

as

min
∑

(i,j)∈A

hijYij +
∑
k∈K

pkdkUk + θ, (4.31)

s.t. Yij ∈ Z+ ∪ {0} (i, j) ∈ A, (4.32)

Uk ∈ {0, 1} k ∈ K, (4.33)

θ ≥ 0. (4.34)

The objective function of the master problem given in Expression (4.31) aims

to minimize the sum of design cost, cost of lost demand, and θ. The constraints of

the formulation are reserved for the nonnegative integrality restriction on variables

Y, binary restriction on variables U, and the nonnegativity restriction on θ. Let

{Ŷij : (i, j) ∈ A} and {Ûk : k ∈ K} be the optimal values of the decision variables in

the master problem. Then, the subproblem (SP) is obtained as

min
∑
k∈K

∑
(i,j)∈A

ckijd
kXk

ij, (4.35)

36

s.t.
∑
j

Xk
ij −

∑
j

Xk
ji =

1− Ûk if i = O(k)

0 if i ̸= O(k), D(k)

Ûk − 1 if i = D(k)

i ∈ I, k ∈ K, (4.36)

∑
k∈K

dkXk
ij ≤ wŶij (i, j) ∈ A, (4.37)

0 ≤ Xk
ij ≤ 1 (i, j) ∈ A, k ∈ K. (4.38)

The objective function of SP aims to minimize the total cost of flows. Constraints

(4.36) act as the flow conservation constraints if Ûm = 0 for a particular m ∈ K.

Otherwise, together with the sense of optimization, it does not allow positive flows on

corresponding arcs, as is the case in the NDPLD. Constraints (4.37) are the capacity

constraints on arcs. The set of constraints (4.38) ensures that all flow variables take

continuous values within [0, 1].

In classical Benders decomposition implementations, the dual of the subproblem

is solved to obtain the extreme points and extreme rays to generate Benders cuts. When

this is the case, the feasible solution space of the subproblem remains the same whatever

values are assigned to the MP variables, which allows an efficient implementation. In

our case, we decide to solve the subproblem as is, i.e., the primal subproblem SP, with

an off-the-shelf MIP solver. The reason behind this decision is threefold and related

to the properties of the MIP solver used in the implementation. First, the SP is a

multicommodity network flow problem and the MIP solver is able to solve it efficiently.

Second, the MIP solver allows us to update the right-hand side of the SP easily and

is able to exploit the solution of the previous subproblem as a warm start. Last, the

extreme points (in case of optimality of the primal subproblem) and the extreme rays

(in case of infeasibility of the primal subproblem) are directly reported along with

optimal (or infeasibility status of the) solution to the SP.

A generic Benders decomposition implementation works in an iterative fashion.

At each iteration, the MP is solved optimally and the solution {Ŷij : (i, j) ∈ A} and

37

{Ûk : k ∈ K} is inserted into the SP. If the SP is solved optimally, then an optimality

cut is added to the MP. If the SP is infeasible (or equivalently, the dual of the SP is

unbounded), then a feasibility cut is added to the MP. The new MP is solved optimally

from scratch and this fashion goes on until the termination. However, it is evident in the

literature that such an implementation is inefficient and this is what we also face during

preliminary experiments. One of the solutions to this inefficiency is to implement the

algorithm on a single branch-and-cut tree to devise a B&BC method [116–118]. In

the B&BC method, whenever an integer feasible solution is obtained in a node of the

branch-and-bound tree of the MP, the SP is solved and a Benders cut (optimality or

feasibility cut) is generated. Then, this cut is added to MP as a lazy constraint.

To speed up the Benders decomposition method, we also decide to implement the

B&BC method. Computational results of our experiments on this method reveal that

such an implementation is four times faster than the generic Benders decomposition

framework on average. However, as another revelation of our experiments, the method

returns poor optimality gaps within the time limit whenever an off-the-shelf MIP solver

finds optimal solutions. To further accelerate the B&BC, we make use of the following

observation: Benders cuts obtained by solving the subproblem are low density cuts, i.e.,

in a single Benders cut, a small portion of Y and U variables have nonzero coefficients.

To overcome this issue we inherit the covering cut bundle generation mechanism of [119]

and implement it in our B&BC method. Instead of a single Benders cut, the mechanism

adds multiple cuts in an iteration. These multiple cuts are generated systematically

to assure that a predefined portion of Y and U variables have nonzero coefficients in

at least one of the cuts. Unfortunately, this effort yields no significant improvement

in the efficiency, and we decide not to explore Benders decomposition for the NDPLD

any further. Instead, we devise a set of valid inequalities to enhance the problem

formulation to better exploit the abilities of the off-the-shelf MIP solvers.

4.2.2.2. A stronger NDPLD formulation. Let T be the set of interdicted arcs in the

ULP. Then, the constraints (4.16) in the NDPLD for interdicted arcs (i, j) with Tij = 1

can be rewritten as
∑

(i,j)∈T Yij = 0. A better way is, however, to remove the interdicted

38

arcs altogether from the network to reduce the size of the NDPLD. We carry out this

removal operation and also add valid inequalities to strengthen the formulation. Let

S ⊂ N be a nonempty subset of the nodes in N , and S̄ the complement of S, i.e.,

S̄ = N \ S. Then, cut sets are defined as (S, S̄) = {(i, j) ∈ A : i ∈ S, j ∈ S̄}. Let

K(S, S̄) be the commodity subsets associated with (S, S̄) such that K(S, S̄) = {k ∈

K : O(k) ∈ S,D(k) ∈ S̄}. Let us define d(S,S̄) =
∑

k∈K(S,S̄) d
k be the total flow of

commodities demanded by the nodes in S̄ from the nodes in S, i.e., commodities with

a source node in S and destination node in S̄. A cutset inequality for a particular cut

set (S, S̄) is given with the constraint∑
(i,j)∈(S,S̄)

wYij ≥ d(S,S̄). (4.39)

and can be added to the NDP as a valid inequality [120]. However, this inequality is

not valid for the NDPLD due to the variables Uk that are used due to keeping track of

the demand loss. Let Um = 1 for a particular commodity m such that O(m) ∈ S and

D(m) ∈ S̄, and let U l = 0 : l ∈ K \{m} in an NDPLD solution. Then, Xm
ij = 0, (i, j) ∈

A holds. This indicates that the demand of commodity m is lost and this commodity

does not flow on any arc of the network. Hence, the total flow of commodities demanded

by the nodes in S̄ from the nodes in S is equal to
∑

k∈K(S,S̄) d
k−dm. By generalizing this

observation, a modified version of the cutset inequality can be obtained by redefining

d(S,S̄) as

d(S,S̄) =
∑

k∈K(S,S̄)

dk(1− Uk), (4.40)

and we conclude that the inequality (4.39) with the right-hand side defined by (4.40)

is a valid inequality for the NDPLD.

In addition to the modified cutset inequalities, we also devise a couple of other

valid inequalities. Note that if the demand of a particular commodity m is lost, then

{Xm
ij = 0, (i, j) ∈ A}, as discussed before. In a similar vein, the inequalities∑

(i,j)∈A:i=O(k)

Xk
ij + Uk ≤ 1 k ∈ K, (4.41)

39

∑
(j,i)∈A:i=D(k)

Xk
ji + Uk ≤ 1 k ∈ K (4.42)

can be written and these expressions are valid inequalities for the NDPLD.

To obtain a stronger formulation for the NDPLD, we directly add the valid in-

equalities (4.41) and (4.42) to the NDPLD formulation. However, it is a time consuming

effort to enlist all S and S̄ sets and add the corresponding cutset inequalities to the

NDPLD. Hence, we follow the common approach of choosing a subset of all cutsets

such that {|S|, |S̄|} ∈ {{1, 1}, {1, 2}, {2, 1}, {2, 2}}. We call this stronger formulation

NDPLDS and the formulation is optimally solved by an MILP solver whenever an exact

solution of the LLP is needed as neighbor evaluation.

4.2.3. Pruning Procedure using Bounds

This procedure helps the TS heuristic to find at each iteration the best neighbor

s∗ by pruning or eliminating some of the neighbors that can be proven to be not the

best solution in N (s). This is made possible by using lower and upper bounds for

the objective value of each neighbor. Let sbest denote the incumbent solution for the

bilevel problem, i.e., the best solution found throughout the iterations, and f(sbest)

its objective function value. Note that the ULP is a maximization problem and thus

f(sbest) provides a lower bound on the optimal objective value of the RI-NDPLD. Let

LBs′ and UBs′ denote a lower bound and an upper bound on the optimal objective

value of the neighboring solution s′ in the LLP, which is a minimization problem. The

pruning procedure using bounds has two stage. The first stage involves the comparison

of the lower bound UBs′ of each neighbor s′ with the objective value f(sbest) of the

incumbent solution. When UBs′ < f(sbest), then this neighbor cannot be better than

the incumbent solution, and there is no need to optimally compute the objective value

of this neighbor.

The second stage consists of comparisons between the lower bounds and upper

bounds of different neighboring solutions. By recalling that the ULP has a maxi-

40

mization objective and the objective functions of the ULP and LLP are the same,

UBs′i
< LBs′j

implies that solution s′i can be eliminated from further consideration

since its optimal objective value is smaller than that of solution s′j. Using the pruning

procedure, the number of the neighboring solutions can be reduced, which gives rise to

a smaller computational effort required for optimally solving the LLP for all neighbors.

This, in turn, increases the efficiency of the matheuristic.

An important issue to be explained is how to obtain LBs′ and UBs′ for the

objective value f(s′) of each neighboring solution s′ ∈ N (s). This is achieved by

using linear programming (LP) relaxation of the LLP and a rounding heuristic. For

a given interdiction pattern in the ULP of the RI-NDPLD, the LP relaxation of the

LLP is obtained by relaxing the integrality restrictions on the decision variables Yij and

binary restrictions on decision variables Uk. The solution of the LP relaxation provides

a lower bound. An upper bound is generated by converting the solution provided by

the LP relaxation and transforming it to a feasible solution for the LLP by rounding

up the fractional values of the decision variables Yij to the nearest integer number. The

objective value corresponding to the newly obtained solution is a valid upper bound

because

i. If
∑

k∈K d
kX̄k

ij ≤ wȲij holds, then
∑

k∈K d
kX̄k

ij ≤ w⌈Ȳij⌉ also holds since Ȳij ≤

⌈Ȳij⌉ where X̄k
ij and Ȳij are the optimal values of the decision variables in the LP

relaxation.

ii. Due to the minimization objective of the LLP, the optimal solution of the LP

relaxation allows either a positive flow or complete lost sales for each commodity.

This means that the optimal values Ūk are always integral and thus Ūk = ⌈Ūk⌉.

The first TS based matheuristic, which is called TS/P (P stands for Pruning),

incorporates the pruning procedure using bounds into the basic TS matheuristic out-

lined in Figure 4.2 as a candidate list generation method with the goal of decreasing the

computational time of the basic TS implementation. A flowchart for the matheuristic

is given in Figure 4.4.

41

Figure 4.4. Flowchart of TS/P.

4.2.4. Data-Driven Procedures for Guiding the Search

4.2.4.1. Data-driven sorting and generation of candidate solution set. A basic TS im-

plementation (a best improvement local search procedure as well) that performs an

exhaustive search in the neighborhood of the current solution is destined to be ineffi-

cient for the RI-NDPLD due to the computational complexity of optimally solving the

LLP. In such cases, a commonly adopted strategy is to randomly generate and evaluate

a fraction of the existing solutions in the neighborhood. Unfortunately, random sam-

pling (RS) of the neighborhood does not guarantee the selection of the best neighbor

at each iteration and may deteriorate the intensification component of the search. To

find a trade-off between these two neighbor selection procedures, i.e., exhaustive search

and random sampling, we propose a data-driven sorting (DDS) procedure. In this pro-

cedure, we make use of a regression model f̂(s) that predicts the objective function

values of all the neighboring solutions of the current solution. After sorting them in

42

nonincreasing order, a certain fraction of the solutions in the sorted list denoted by π

are selected, which form the list of candidate solutions. The LLP is solved to optimality

only for these solutions. Obviously, as the predictive accuracy of the regression model

becomes better, the probability of selecting the best neighbor increases.

Input: s0, hash list of solutions

1: s← s0 ▷ Initial solution

2: Train f̂(s) ▷ With initial hash list of solutions

3: while stopping criterion is not satisfied do

4: Generate C(s) ⊂ N (s) by predicting obj. values using f̂(s)

5: Evaluate s′ ∈ C(s) by optimally solving the LLP ▷ Evaluate every solution in C(s)

6: s∗ ← argmaxs′∈C(s) f(s
′) ▷ Pick the best neighbor

7: s← s∗ ▷ Accept the best neighbor as the current solution

8: Update the hash list of solutions ▷ Add currently visited solutions

9: if retraining criterion holds then

10: Revise f̂(s) ▷ Retrain with updated hash list of solutions

11: end if

12: end while

Output: Best solution found.

Figure 4.5. Tabu Search with Data-Driven Neighbor Sorting.

The second TS based matheuristic in this thesis, referred to as the TS/DDS,

uses the procedure of data-driven neighbor sorting as a candidate list strategy. Since

the LLP is solved only a predefined fraction of the neighbors in terms of the decision

variables of the ULP, we expect to save some computational time in the basic TS

implementation. The details of TS/DDS is given in Figure 4.5 and the flowchart of

the routine is given in Figure 4.6. As can be seen, the major deviation from TS/P is

using a candidate list strategy based on DDS rather than pruning using bounds. As a

matter of fact, both strategies can also be combined so as to obtain another version of

the TS based matheuristic, which is called TS/P+DDS in the sequel. A flowchart for

TS/P+DDS is given in Figure 4.7.

43

Figure 4.6. Flowchart of TS/DDS.

As mentioned earlier, an important component of TS/DDS is the regression model

f̂(s) which is explained in the next subsection. Accurate predictions have the potential

to discriminate the neighboring solutions in terms of their true objective value without

solving their associated LLP. The latter is optimally solved only for the best 100 × π

neighbors that are selected based on the predicted objective values.

4.2.4.2. Building a regression model to predict objective values. As is the case for all

predictive analytics models, there is a need for a training dataset consisting of ob-

servations (also called instances or records) with input attributes (also called features

or predictors or independent variables), and an output attribute (also called outcome

variable or response variable or dependent variable). In our case, each observation is a

solution s with the binary interdiction variables Tij of the ULP representing the input

attributes and the optimal objective value of the LLP computed with the given values

of the interdiction variables (interdiction pattern) representing the output attribute.

44

Figure 4.7. Flowchart of TS/P+DDS.

A sample training dataset for an RI-NDPLD instance with four arcs (|A| = 4)

and two interdictions (r = 2) is given in Table 4.3. There are five solutions each of

which corresponding to an observation, and the number of input attributes is equal to

the number of interdiction variables which, in turn, is determined by the number of

arcs.

The first observation represents interdiction pattern s = [1, 0, 0, 1] with the op-

timal objective value z∗s = 60 that is obtained by solving the LLP when the first and

fourth arcs are interdicted by the leader. It is possible to add new features to the

dataset to possible improve the accuracy of the regression model as can be seen in

Table 4.4. We use a lower bound LBs given by the solution of the LP relaxation as

45

input attribute I5 and an upper bound UBs obtained by the rounding heuristic as

input attribute I6 for a given interdiction pattern s.

Table 4.3. Sample dataset for training the regression model.

I1 I2 I3 I4 O

s1 1 0 0 1 60

s2 0 1 0 1 45

s3 1 0 1 0 40

s4 1 1 0 0 50

s5 0 0 1 1 65

In a recent review on embedding ML methods into combinatorial optimization

[89], it is stated that ML methods can be trained in two ways. First, a universal

ML model can be used to solve a particular problem with abundant data. To do

so, a set of features are defined for a problem (e.g., TSP) and the features of many

instances of the same problem with various sizes are extracted. The extracted features

alongside with optimal solutions are fed to an ML model for training. Then, this ML

model can be used to predict the objective values of new instances. Second, an ML

model can be trained on-the-fly while solving a given instance of a particular problem.

The framework is similar to the universal ML model. However, since the features

are extracted from a given instance and the ML model is trained with these features,

the corresponding ML can be used to predict the objective value of this particular

instance. It is more likely that such an ML model is obsolete for other instances of the

same problem. In TS/DDS, we adopt the latter idea and train the regression model

in two phases. The first phase involves the creation of an initial training set. Recall

that the optimal objective value is needed for each interdiction pattern as the output

attribute to supervise the learning process. On the other hand, it is time-consuming

to solve the LLP with a given interdiction pattern s, and it is inefficient to have many

observations in the dataset. To make a compromise, the training dataset is initialized

with a small number of interdiction patterns where each arc in the network is interdicted

46

at least once. Moreover, exactly r interdicted arcs must exist in each pattern. Table

4.5 contains a sample initial training dataset for an RI-NDPLD instance |A| = 6 and

r = 3.

Table 4.4. Sample data extended with lower/upper bounds for training.

I1 I2 I3 I4 I5 I6 O

s1 1 0 0 1 50 65 60

s2 0 1 0 1 30 60 45

s3 1 0 1 0 35 45 40

s4 1 1 0 0 40 70 50

s5 0 0 1 1 60 70 65

The procedure is outlined in Figure 4.8. Please note that the size of the initial

training set is calculated as |A| − r + 1.

Table 4.5. A sample output of Algorithm 4.8.

I1 I2 I3 I4 I5 I6 I7 I8 O

s1 1 1 1 0 0 0 50 70 60

s2 0 1 1 1 0 0 40 55 50

s3 0 0 1 1 1 0 35 45 40

s4 0 0 0 1 1 1 50 80 70

Apart from obtaining an initial training dataset as the output of the procedure,

it is also possible to select the solution with the highest objective value as the initial

solution i.e., s0 ← argmaxsi(zsi). For all the matheuristic implementations (e.g.TS/P

and TS/DDS) in this study, we use this strategy for the sake of comparison.

The size of the initial training dataset can be enlarged by adding new solutions

that remain in the candidate list and have their optimal objective values computed by

47

solving their LLP. In order to utilize the growth of the dataset in superior regression

models we incorporate periodic retraining into the TS/DDS. Newly visited solutions are

stored in a hash list of solutions, and these solutions are used to fit a new regression

model periodically. Please, see lines 9–11 of Figure4.5. By doing so, we expect the

regression model to yield smaller prediction errors and the probability that the DDS

procedure selects the best neighbor is increased.

Input: r and |A| ▷ Number of interdictions and number of arcs

1: µ← ∅ ▷ Initialize the set of interdiction patterns

2: i← 0

3: while i ≤ |A| − r do

4: µ← µ ∪ {si} ▷ Add the next interdiction pattern

5: i← i+ 1

6: end while

7: Initial Solution s0 ← argmaxsi (zsi)

Output: Initial training set, and the initial solution for the matheuristics.

Figure 4.8. Building the Initial Training Set.

4.2.4.3. Using random forest as the regression model. An ML method has to be se-

lected for the regression model explained in the previous subsections. Since most of

the input attributes in the dataset (the interdiction variables) are binary-valued, we

opt for using tree based regression methods. Following the tendency in the related

literature [121], we conduct preliminary experiments by fitting regression models us-

ing DT and RF. Despite the fact that the RF models are less interpretable than DT

models, the experimental results revealed that the RF model makes better predictions

compared to the RT model, on average. Actually, this result is expected because the

RF models are usually preferred as they can reduce the variance of the predictions in

DT models by using many trees exploiting bootstrap aggregation and random selection

of a subset of predictors at each split point in the trees. Therefore, they are known to

be robust models [122]. The disadvantage of using an RF model over a DT model is

usually the computational time. However, the difference between the computational ef-

forts becomes insignificant for relatively larger RI-NDPLD instances considered in this

48

study. Thus, we decide to continue with the RF model in the DDS implementation

without suffering from computational burden.

The third TS based matheuristic TS/P+DDS proposed in this study combines

the pruning procedure using bounds and the data-driven neighbor sorting and selection

procedure.

4.2.4.4. Restart diversification procedure. A local search algorithm performs search in

a restricted region of the solution space to determine a local optimal solution. In addi-

tion to this intensification or exploitation process, there is a need for diversification or

exploration procedures which direct the search into unexplored regions of the solution

space to find better solutions. Different mechanisms are utilized in various metaheuris-

tics for this purpose. A basic TS heuristic, for example, allows non-improving neighbor-

ing solutions to be visited and employs tabu moves that also prevents cycling. However,

it is not always possible to escape a local optimal solution which represents a strong

basin of attraction. A remedy that is used in the TS implementations to overcome

this problem is the so-called long-term memory structure which is used to direct the

search to unexplored regions of the search space to achieve diversification. There exist

three major techniques applied in the literature [123]. The first one, restart diversifi-

cation (RD), aims to force the inclusion of rarely visited components in the incumbent

solutions obtained so far and restart the search from the best incumbent solution. In

continuous diversification, a penalty term is added to the objective function to penalize

frequently generated components of the solutions. The third one, strategic oscillation,

allows the acceptance of infeasible solutions by using additional penalty terms in the

objective function for infeasibility.

In Section 4.2.4.2, we mentioned that a regression model is fit at the beginning

with an initial set of solutions, and it is periodically revised throughout the iterations

with additional data obtained during the search. Since the model with the best predic-

tive power is the one obtained most recently, it can be used to restart the search from

the best solution obtained so far to explore the unvisited regions of the solution space

49

with more accurate neighbor sorting. Based on this observation, we propose here an

RD procedure as a diversification scheme for the RI-NDPLD.

In the tree based regression models such as DT and RF methods, the importance

of each feature/input attribute can be calculated. In the context of RI-NDPLD and

the DDS, the importance of each feature (recall that each feature represents a directed

arc) measures the effect of interdicting the corresponding arc on the objective function

value of the LLP. Hence, feature importance measures can be used as a proxy for the

long-term memory usage in TS matheuristics for the RI-NDPLD. In this study, we

propose a data-driven perturbation (DDP) operator to be incorporated into the RD

scheme described above. Suppose that an RI-NDPLD instance with |A| = 6 and r = 3.

Let s∗ = [1, 0, 1, 0, 1, 0] be an incumbent solution, and the perturbation length is set

to η = 2. The DDP operator perturbs s∗ in the following way. First, the operator

removes the interdiction status of η = 2 interdicted arcs that have the most feature

importance values. Then, it interdicts two η = 2 most important non-interdicted arcs.

If [0.20, 0.20, 0.15, 0.25, 0.05, 0.15] is a vector of importance values, the DDP removes

the interdiction status of arcs 1 and 3, and interdicts arcs 2 and 4 to obtain a perturbed

solution as s′ = [0, 1, 0, 1, 1, 0]. In summary, the RD procedure starts by taking an

incumbent solution s∗ found by TS/DDS given in Figure 4.5. Then, if diversification

is invoked, s∗ is perturbed with the DDP operator to generate a new solution s∗′ from

which search is restarted using TS/DDS.

50

5. RECONFIGURATION of REFUGEE CAMP

NETWORKS

According to the “Global Trends: Forced Displacement in 2021” report published

by United Nations High Commissioner for Refugees (UNHCR), 89.3 million people

are forcibly displaced worldwide due to “persecution, conflict, violence, human rights

violations and events seriously disturbing public order” [124]. This number is twice as

high as that in 2012 and an increasing trend is expected for the following years. 69% of

all current refugees in the world originate from Syria, Venezuela, Afghanistan, South

Sudan and Myanmar, and 72% of the refugees are hosted by neighboring countries [124].

As a neighboring country of the Syrian Arab Republic, Turkey has the largest refugee

population with 3.8 million refugees among all of the hosting countries, and 3.7 million

of these refugees have Syrian origin [125].

When people in their home country are forced to leave, they are displaced and

move to the host country as an asylum seeker. However, it is not possible to imme-

diately gain a refugee status in the host country and an asylum seeker is located at

refugee camps that provide short-term accommodation. If people do not have a chance

to go back to their home country, they are settled in the host country by gaining a

refugee status or resettled in a third country [126]. As the statistics given above in-

dicate, Turkey as the neighbor of the Syrian Arab Republic, accepts Syrian asylum

seekers, hosts them in the refugee camps, and then settles them in urban or suburban

regions [127]. Currently, 50,736 Syrian refugees are located at eight refugee camps in

the southeast region of Turkey [128].

Despite the fact that refugee camps are initially meant to be temporary shelters

(or refugee warehouses [129]), the camps have become long-term accommodation places

since 2008 due to the steady increase in the total number of refugees worldwide [130].

Such a paradigm shift in refugee camps leads in the planning approaches of refugee

camps. In the current approach, the planning of public services offered in refugee camps

51

made based on long-term decisions [131]. Turkey is not an exception. For instance,

Sarıçam refugee camp at Adana was established in 2013 with tents as houses. In 2017,

the tents were replaced with containers as more durable housing options, and the

camp is still hosting 16,575 refugees. As an OR study for refugee camp network design

(RCND), a location-location routing problem (L-LRP) is introduced in [8] for locating

refugee camps in the southeast region of Turkey considering long-term accommodation.

The routing part of the study involves the planning of the routes of the service providers’

periodical visits to the established camps .

In this study, we introduce the BOpt-RRC as an RCND problem for the recon-

figuration of the current refugee camp network. Assume that a set of refugee camps

is already established in a host country and public services provided in these camps

are planned accordingly. Hence, there is a current refugee camp network configuration

as a predetermined solution to an RCND problem. Also assume that new waves of

refugees are expected in the host country in the future based on projections made by

UNHCR. In the BOpt-RRC, we deal with minimum revision of the current configu-

ration of the refugee camp network when assigning the new refugees into the existing

camps. The reconfiguration decisions are based on increasing the capacities of these

camps. However, it is not always possible to assign the new refugees to existing refugee

camps by only increasing the capacities because of the practical upper limits on the

capacity increase. In that case, the BOpt-RRC establishes new refugee camps in can-

didate locations to cover the total housing demand. In addition to the new refugees,

the supply of the public service providers may evolve over time. Then, the BOpt-RRC

also aims to update the public service provision plans to cover both the existing and

the additional demand.

Reconfiguring an existing refugee camp network necessitates the cooperation of

various government agencies. The tasks such as registration of new refugees, provid-

ing tents/containers and managing subcontractors for infrastructure construction are

usually under the responsibility of different bodies. Hence, a set of hidden costs of

cooperation also incur for the reconfiguration of the camp network in addition to the

52

foreseen expenses, e.g., cost of camp building and cost of capacity increase. It is possi-

ble to reduce the hidden costs by ensuring the minimum change in the configuration of

an existing network. To this end, we formulate the BOpt-RRC as a bilevel optimiza-

tion model to reconfigure a refugee camp network. In the LLP of the BOpt-RRC, the

decisions building new refugee camps, the allocation of refugees to camps, and hospi-

tal assignments are determined by minimizing the corresponding cost components. A

virtual coordinator as the decision maker of the ULP forces the smallest change in the

network configuration by minimizing an objective function that consists of the sum of

capacity increase costs and various penalty costs associated with changes.

The formal definition of the problem is given in Section 5.1 and a BMIP formu-

lation is introduced in Section 5.2. The details of a set of generic and data-driven LS

matheuristics proposed are given in Section 5.3.

5.1. Problem Definition

Let G = (V , E) be an undirected graph whose vertex and edge sets are given

as V and E , respectively. V is given as the union of four type of vertices, i.e., V =

E ∪ C ∪ S ∪ H. The set of vertices in e ∈ E represents the existing refugee camps.

The current capacity of an existing camp e is given as Q̄e and there are T̄e refugees

currently located in e. Medical services for existing refugees are covered by physicians

located in hospitals h ∈ H, and each physician is allowed to take care of ψ refugees

at most. To satisfy this restriction, each existing camp e ∈ E is currently assigned to

one or more hospitals h ∈ H with respect to the number of physicians, ch, located at

h ∈ H. This information is stored in the indicator variables X̄eh. However, in case of

new refugee flow originating at sources s ∈ S, the decision maker has to readjust the

current configuration of the built refugee camp network and hospital assignments.

Let ds be the number of new refugees originating at source s. Then,
∑

s∈S ds

refugees must be allocated to existing refugee camps E provided that the capacity

restrictions are respected. However, if there is not adequate camp capacity, the de-

53

cision maker has to increase the total capacity of refugee camps either by increasing

the capacity of existing camps up to an upper limit āe or by building new camps at

candidate locations defined by the set C. In addition to changes in the total number

of refugees, the number of physicians at hospitals may also evolve over time. Let c′h

be the current number of physicians at hospital h. Then, the BOpt-RRC is formally

defined as follows. Let G = (V , E) be an undirected graph such that V = E∪C∪S∪H,

E be the set of existing refugee camps, C be the set of candidate locations for new

refugee camps, S be the sources of new refugee flows, and H be the set of hospitals.

The BOpt-RRC is defined as a bilevel optimization problem in which the ULP aims

to readjust the current configuration of refugee camp network with smallest change

by increasing the capacities of existing camps and the LLP deals with locating new

refugees either in existing camps or in camps at candidate locations by building them

and assigning/reassigning the refugee camps to hospitals whose resources are defined

by the parameter c′h. The problem ensures that (i) current locations of all existing

refugees remain unchanged, (ii) all new refugees are located, (iii) all refugees are pro-

vided with necessary healthcare services and (iv) the cost related to the change in the

current configuration is minimized.

5.2. A Bilevel Mixed Integer Programming Formulation

The BOpt-RRC is modeled using a BMIP formulation. The definitions of the

sets, parameters and decision variables used in the formulation are given as follows.

Sets:

E Set of existing refugee camps.

C Set of candidate refugee camps.

S Set of sources of refugees.

H Set of hospitals.

V Set of all vertices, i.e., V = E ∪ C ∪ S ∪H.

E Set of all edges.

54

Parameters:

αe Unit cost of increase in the capacity of existing camp e ∈ E.

υc Penalty of building candidate camp c ∈ C.

ρeh Penalty of reassigning existing camp e ∈ E to h ∈ H.

Q̄e Current capacity of existing camp e ∈ E.

āe limit on the capacity of existing camp e ∈ E.

χch Cost of assignment of candidate camp c ∈ C to h ∈ H.

χeh Cost of assignment of existing camp e ∈ E to h ∈ H.

ξc Cost of establishing candidate camp c ∈ C.

ϕse Total cost of refugee flow from source s ∈ S to existing camp e ∈ E.

ϕsc Total cost of refugee flow from source s ∈ S to candidate camp c ∈ C.

qc Capacity of candidate camp c ∈ C

T̄e Current number of refugees located in existing camp e ∈ E.

ds Total number of refugees originating at source s ∈ S.

ch Total number of physicians located at hospital h ∈ H.

X̄eh Indicator variable of assignment of existing camp e ∈ E to hospital h ∈ H.

ψ Maximum number of refugees that can be assigned to a physician.

Decision Variables:

Qe Capacity of existing camp e ∈ E.

Ae Amount of increase in the capacity of existing camp e ∈ E.

Yc Binary variable which is equal to one if c ∈ C is built, and zero otherwise.

R+
eh Continuous variable to check if e ∈ E is reassigned to h ∈ H in the new

configuration.

R−eh Continuous variable to check if e ∈ E is no more served by h ∈ H in the new

configuration.

Xch Binary variable which is equal to one if c ∈ C is assigned to h ∈ H, and zero

otherwise.

Xeh Binary variable which is equal to one if e ∈ E is assigned to h ∈ H, and zero

otherwise.

Fsc Fraction of refugee flow originating at s ∈ S and destined at c ∈ C.

55

Fse Fraction of refugee flow originating at s ∈ S and destined at e ∈ E.

Tc Total number of refugees located at candidate camp c ∈ C.

Te Total number of refugees located at existing camp e ∈ E.

The BMIP formulation for the BOpt-RRC is given as

min
Q,A

∑
e

αeAe +
∑
c

υcYc +
∑
e,h

ρeh(R
+
eh +R−eh), (5.1)

s.t. Qe = Q̄e + Ae e ∈ E, (5.2)

Ae ≤ āe e ∈ E, (5.3)

Qe, Ae ∈ Z ∪ {0} e ∈ E, (5.4)

min
X,Y,F

∑
c∈C

∑
h∈H

χchXch +
∑
e∈E

∑
h∈H

χehXeh +
∑
c∈C

ξcYc+ (5.5)

+
∑
s∈S

∑
e∈E

ϕseFse +
∑
s∈S

∑
c∈C

ϕscFsc,

s.t.
∑
e∈E

Fse +
∑
c∈C

Fsc = 1 s ∈ S, (5.6)

T̄e +
∑
s∈S

dsFse = Te e ∈ E, (5.7)

∑
s∈S

dsFsc = Tc c ∈ C, (5.8)

Te ≤ Qe e ∈ E, (5.9)

Tc ≤ qcYc c ∈ C, (5.10)∑
c∈C

TcXch +
∑
e∈E

TeXeh ≤ ψc′h h ∈ H, (5.11)

∑
h∈H

Xeh ≥ 1 e ∈ E, (5.12)

∑
h∈H

Xch ≥ Yc c ∈ C, (5.13)

Xeh = X̄eh +R+
eh −R

−
eh e ∈ E, h ∈ H, (5.14)

Xeh ∈ {0, 1} e ∈ E, h ∈ H, (5.15)

Xch ∈ {0, 1} c ∈ C, h ∈ H, (5.16)

Yc ∈ {0, 1} c ∈ C, (5.17)

Te ∈ Z ∪ {0} e ∈ E, (5.18)

56

Tc ∈ Z ∪ {0} c ∈ C, (5.19)

Fse ∈ [0, 1] s ∈ S, e ∈ E, (5.20)

Fsc ∈ [0, 1] s ∈ S, c ∈ C, (5.21)

R+
eh, R

−
eh ≥ 0 e ∈ E, h ∈ H. (5.22)

In BOpt-RRC, expressions (5.1)–(5.4) represent the ULP, and expressions (5.5)–

(5.22) represent the LLP. The ULP deals with capacity increases of the built refugee

camps and the LLP readjusts the current refugee camp network configuration with

respect to given increased capacity values. The objective function of the ULP given

in (5.1) aims to minimize the total cost of capacity increase and the penalty cost of

changes in the current configuration. Equations (5.2) calculate the increased capacity

of each existing camp e ∈ E, whereas Constraints (5.3) ensure that the total increased

capacity of each camp e does not exceed the corresponding upper limit āe for the capac-

ity increase. Restrictions (5.4) define the domains of the ULP variables. The objective

function of the LLP (5.5) minimizes the sum of the costs of hospital assignments, build-

ing new refugee camps and refugee allocations to built/candidate camps. Equations

(5.6) guarantee that all new refugees are located. Equations (5.7)–(5.8) work as flow

conservation constraints. Constraints (5.9) prevent the total number of refugees Te lo-

cated in each existing camp e from exceeding the camp capacity. In a similar manner,

Constraints (5.10) assure that the total number of refugees located in each candidate

camp c do not exceed the camp capacity. Equations (5.11) are the resource constraints

for each hospital h and do not allow assignments of camps to hospitals if the current

number of physicians located at hospital c′h is not adequate. Constraints (5.12)–(5.13)

guarantee the assignment of existing and candidate refugee camps to at least one hos-

pital, respectively. Equations (5.14) keep track of the reassignment of each existing

camp e to hospitals. The remaining constraints of the LLP are domain restrictions for

LLP variables.

The resource constraints given in Equations (5.11) incorporate multiplications of

binary and integer variables, i.e., X and T , and hence the LLP is a Mixed-Integer

57

Nonlinear Program (MINLP). Fortunately, it is possible to linearize these equations

and transform the LLP into an MILP to reduce the computational complexity. To do

so, we introduce the variables Ueh and Uch such that Ueh = TeXeh and Uch = TcXch

and interchange Constraints (5.11) with∑
c∈C

Uch +
∑
e∈E

Ueh ≤ ψc′h h ∈ H,

Tc ≤
∑
h∈H

Uch c ∈ C,

Te ≤
∑
h∈H

Ueh e ∈ E,

Uch ≤ qcXch c ∈ C, h ∈ H,

Ueh ≤ QeXeh e ∈ E, h ∈ H,

Xch ≤ Uch c ∈ C, h ∈ H,

Xeh ≤ Ueh e ∈ E, h ∈ H.

and, thanks to this transformation, it is possible to solve the LLP with given ULP

variable values with an off-the-shelf MILP solver.

5.3. Solution Methods

In this study, we propose two TS based matheuristics and two VNS based matheuris-

tics to solve the BOpt-RRC. This section is dedicated to the details of the solution

methods. In Section 5.3.1 we discuss TS implementations where Section 5.3.2 is re-

served for VNS implementations.

5.3.1. Tabu Search Based Matheuristics

In this section, we propose two TS based matheuristics to solve the BOpt-RRC.

The first method called TS1 is a generic TS developed as a benchmark. The second

one incorporates an adaptive neighborhood selection procedure to TS1. The following

list provides the definitions of common components in both implementations:

58

• Solution Representation: Each solution s is represented by an integer vector of size

|e| in which each component represents the capacity increase in the existing camp

e ∈ E. For example, s = [0, 500, 1000, 0, 0] indicates that capacities of existing

camps 2 and 3 are increased by 500 and 1000, whereas the capacities of existing

camps 1,4 and 5 remain unchanged. Hence, s is the vector of [A1, A2, ..., A|E|] in

terms of decision variables such that Ae ∈ [0, āe] for all e = 1, 2, ..., |E|.

• Neighborhood Structure: Let δ be the increment size, and k be the number

of existing camps to be revised (i.e., their capacities are updated) such that

k ≤ |E|. Then, the neighborhood N δ
k consists of all combinations

(|E|
k

)
where

the capacities of k existing camps are changed by ±δ in each combination.

For instance, let s = [500, 0] be a solution and δ = 500. Then, N δ
1 (s) =

{[1000, 0], [500, 500], [0, 0], [500, 0]}. In the first neighbor [1000, 0], the capacity

of the first camp is increased by 500, and in the second neighbor [500, 500],

the capacity of the second camp is increased by 500. In a similar manner,

in the third neighbor [0, 0] we decrease the capacity of the first existing camp

by 500. For k = 2, the neighborhood N δ
2 (s) of a solution s is defined as

{[0, 0], [1000, 0], [0, 500], [1000, 500]}. In the first neighbor, the capacities of both

camps are decreased by 500 (capacity increase of the second camp remains un-

changed due to the nonnegativity). In the second neighbor, the capacity of the

first camp is increased and the capacity of the second camp is decreased by 500

(capacity increase of the second camp remains unchanged due to the nonnegativ-

ity). In the third neighbor, the capacity of the first camp is decreased and the

capacity of the second existing camp is increased by 500. In the last neighbor,

capacities of both camps are increased by 500. The size of the neighborhood as

a function of |E| and k is given by the formula

|N δ
k (s)| =

(
|E|
k

)
× 2k.

The size of the neighborhood N δ
k (s) for a given δ increases with the value of k.

Larger k values indicate more diverse neighborhoods. A concrete example can be

given as follows. Let |E| = 3 and s be the center of a cube with edge length 2δ.

Then, N δ
1 (s) is the set of centers of all faces, N δ

2 (s) is the set of middle points

59

of all edges and N δ
3 (s) is the set of all vertices of the cube and the sizes of these

neighborhoods are equal to δ,
√
2δ and

√
3δ, respectively.

• Neighborhood Evaluation: Let s = [A1, A2, A3, A4, A5] be a solution for the BOpt-

RRC. The revised capacities Qe are calculated by Equation Qe = Q̄e + Ae and

fed into the LLP. Then, the LLP of the BOpt-RRC is optimally solved by an

off-the-shelf solver, and the optimal variable values alongside with Ae values are

used to calculate the objective value of the solution s.

• Selection of the Neighbors: At each iteration, TS generates all members of the

neighborhood N δ
k (s) for given s, δ and k, and computes the objective value of

each s′ ∈ N δ
k (s). The best solution s

∗ among all evaluated neighbors is chosen as

the next solution.

• Initial Solution: A random vector of size |E| with values from the closed interval

[0,āe] as multiples of δ is generated and set as the initial solution s0.

• Tabu Structure: Let s be a solution and s′ be the next solution from N δ
k (s). The

reverse of any increase/decrease move to obtain s′ from s is stored in the tabu

list as the tabu move during the tabu tenure. In the implementation, we adopt a

static approach for the tabu tenure in which the size of the tabu list is fixed.

• Termination Criterion: The algorithm terminates if a time limit is reached.

Regarding the common components defined above, the pseudocode of the TS1

for BOpt-RRC is outlined in Figure 5.1. At each iteration, TS1 generates a candidate

solution set Cδk(s) as indicated in line 5. To do so, the set of all solutions in the

neighborhood N δ
k (s) is enlisted and a subset of this set is chosen as Cδk(s) prior to

the objective function evaluation. For a given δ, different k values return different

neighborhoods with various sizes. This fact makes the task of choosing k a challenge

from two perspectives. The number of solutions to be evaluated at each iteration varies

by k and each neighborhood N δ
k (s) introduces a different intensification/diversification

capability into the TS implementation.

Let |E| = 5, then the neighborhood size is 10, 40, 80, 80 and 32 for k = 1, 2, ..., 5,

respectively. To recover the complexity issues related to the neighborhood size differ-

60

ences, we propose the following candidate solution set generation procedure. Define ν

as the fixed neighborhood size for each k, and let ν = |N δ
1 (s)|. For a given k, gen-

erate the set Cδk(s) by random sampling without replacement from the corresponding

neighborhood N δ
k (s) such that |Cδk(s)| = ν. The procedure is valid because for |E| ≥ 2,

|N δ
1 (s)| ≤ |N δ

k (s)| holds for all k = 1, 2, ..., |E|, and N δ
1 (s) is the only neighborhood

for |E| = 1. By using this procedure, the number of objective function evaluations at

each iteration can be fixed by compromising some set of solutions. This procedure is

incorporated into TS1 implementation outlined in Figure 5.1.

Input: Initial solution s0, δ, k

1: s← s0 ▷ Initial solution

2: sbest ← s ▷ Initialize the best solution

3: TabuList← ∅

4: while stopping criterion is not satisfied do

5: Generate Cδk(s) ⊆ N
δ
k (s) ▷ Generate the candidate list avoiding tabu moves

6: Evaluate s′ ∈ Cδk(s) ▷ Evaluate every solution in the candidate list

7: s← argmaxs′∈Cδ
k
(s) f(s

′) ▷ Pick the best neighbor as the current solution

8: if f(s) < f(sbest) then

9: sbest ← s ▷ Update the best solution

10: end if

11: Update TabuList

12: end while

Output: sbest

Figure 5.1. Tabu Search - TS1.

Although the size of the candidate solution sets Cδk(s) is fixed for every k and

the number of objective function evaluations at each iteration is the same for all Cδk(s),

there is still an issue to be addressed. Each neighborhood definition has its own in-

tensification/diversification capability and each of them (possibly) leads the search to

different regions of the solution space. Hence, the following question should be asked.

What should be the fixed value of k, and hence the corresponding candidate solution

set Cδk(s)? Or, should k be dynamic in the sense that the value of k changes during the

iterations? One of the answers to this well-studied question resides in adaptive neigh-

borhood selection [132, 133]. This idea is adopted in the TS implementation where a

61

data-driven TS matheuristic is proposed. The TS heuristic and the newly introduced

components are described in detail in Section 5.3.1.1.

5.3.1.1. Tabu search with adaptive neighborhood selection. In this section, we intro-

duce a TS matheuristic for the BOpt-RRC, in which a value function based adaptive

procedure (VF/ANS) is used for neighborhood selection at each iteration. The details

of the implementation are outlined in Figure 5.2. The heuristic TS/ANS is an exten-

sion of TS1 outlined in Figure 5.1, where the value of k is dynamically changed by the

VF/ANS procedure instead of adopting the static approach applied in TS1.

Input: s0, Q0 τ0, α, β, θ, λ, δ, kmax

1: s← s0 ▷ Initial solution

2: sbest ← s ▷ Initialize the best solution

3: TabuList← ∅

4: i← 0

5: τ ← τ0 ▷ Initial temperature

6: while stopping criterion is not satisfied do

7: P i ← ActionProbabilites(Qi, τ) ▷ Equation (5.23)

8: k ← RouletteWheel(P i, {1, 2, ..., kmax}) ▷ Pick an action, i.e., select the neighborhood

9: Generate Cδk(s) ⊆ N
δ
k (s) ▷ Generate the candidate list without tabu moves

10: Evaluate s′ ∈ Cδk(s) ▷ Evaluate every solution in the candidate list

11: s← argmaxs′∈C(s) f(s
′) ▷ Accept the best neighbor as the current solution

12: rik ← CalcRew(f(s), f(sbest), α, β) ▷ Equation (5.24)

13: Qi+1 ← UpdRews(Qi, rik, λ) ▷ By only calculating qi+1
nk

with Equation (5.25)

14: if f(s) < f(sbest) then

15: sbest ← s ▷ Update the best solution

16: end if

17: Update TabuList

18: τ ← θτ ▷ Reduce temperature

19: i← i+ 1

20: end while

Output: sbest

Figure 5.2. Tabu search with adaptive neighborhood selection.

Before going into the details of the TS/ANS, it is useful to define the VF/ANS

with some terminology adapted from the RL literature [37]. In the VF/ANS procedure,

62

actions are defined as the set of neighborhood definitions N δ
k (s) for k ∈ {1, 2, ..., kmax},

action values are defined as the expected rewards if the corresponding actions are taken

and the reward is defined as the immediate outcome of an action.

The TS/ANS is initialized with a given solution and the initial vector of the

action values Q0 = [1, 1, ..., 1] such that |Q0| = kmax. In line 7, the action probabilities

pik are calculated via the equation

pik =
eq

i
k/τ∑

k∈N e
qik/τ

(5.23)

where i denotes the iteration number and qik represents the action value of k at iteration

i. At each iteration, action values of all k are stored in the vector P i such that

P i = [pi0, p
i
1, ..., p

i
kmax

]. The probability distribution defined by Equation (5.23) is known

as Boltzmann (or Gibbs) distribution. The function assures that all action probabilities

are between 0 and 1, and the summation of all probabilities adds up to 1. The term

τ is known as the temperature, which is used to avoid assigning disproportionately

large probability(ies) to a single action (or a few actions) at earlier iterations. After

calculating P i, the next action (the value of k) is selected with roulette wheel method

in line 8. Once k is selected, the heuristic finds the best solution in the neighborhood

N δ
k (s) and accepts it as the current solution through the lines 9–11. The reward for

action k is calculated using the objective value f(sik) of this currently found solution

by

rik = α
(
1− f(sik)− f(sbest)

f(sbest)

)β

. (5.24)

Once the reward rik is calculated, the corresponding action value is updated via the

value function formula

qi+1
k = qik + λ(rik − qik), (5.25)

while the values for all other actions remain unchanged. The term λ is the adaptation

rate [134], and it takes continuous values from the interval (0, 1]. In our implementation

the value of λ is fixed at throughout all iterations. In line 18, the temperature is

63

reduced by using the formula τθ, such that θ ∈ (0, 1). Using a decreasing function

for τ ensures smaller differences between action probabilities at earlier iterations and

larger differences at later ones. Such a structure helps the selection procedure to have a

diversification/intensification balance by favoring diversification at the initial iterations

and intensification at the later iterations of the heuristic.

5.3.2. Variable Neighborhood Search based Matheuristics

In this section, we propose two VNS based matheuristics for the BOpt-RRC.

The first one is a generic VNS, and the latter is a data-driven VNS in which an

association rule based injection (ARBI) procedure is used for shaking. In both VNS

implementations, the solution representation, neighborhood evaluation, initial solution,

and termination criterion components are adopted from the TS based matheuristics

defined in Section 5.3.1. In addition to these common components, the following is the

list of additional components used in both VNS implementations:

• Neighborhood Definition for Shaking: Recall the neighborhood definition N δ
k (s).

Let κmax be a positive integer such that δκmax ≤ max{āe : e ∈ E} for a given δ.

In the VNS implementation, we use the neighborhoods⋃
n∈{1,2,...,κ}

N nδ
|E|(s) (5.26)

for κ ∈ {1, 2, ..., κmax} for shaking. In the remainder of the text, we use N κ(s) to

represent the neighborhood defined by κ for the sake of readability. Using nested

neighborhoods are usually preferred in variable neighborhood descent (VND) and

VNS heuristics, if not always [16]. The structure of N κ(s) naturally implies a

nested neighborhood with increasing κ values for a given δ, i.e., N 1(s) ⊂ N 2(s) ⊂

... ⊂ N kmax(s).

• Local Search: In both implementations, we use the TS/ANS heuristic introduced

in Section 5.3.1.1 as the local search component.

64

The pseudocode of the generic VNS heuristic is outlined in Figure 5.3. The

search is started with an initial solution s0 and the neighborhood N 1(s) is selected

as the current neighborhood by choosing κ as 1. In line 5, a solution s′ is randomly

sampled from the current neighborhood and fed into the local search procedure in line

6. If the resulting solution s′′ of the local search is better than the current solution s,

s′′ is chosen as the current solution and the value of κ is updated as 1 through the lines

7–9. Elsewhere, κ is updated as κ+ 1 and the next neighborhood N κ+1(s) is selected

as the current neighborhood in line 11. The heuristic returns the best solution found

during the search.

Input: s0, κmax.

1: s← s0 ▷ Initial solution

2: while stopping criterion is not satisfied do

3: κ← 1

4: while κ ≤ κmax do

5: s′ ← pick a random neighboring solution from Nκ(s) ▷ Shaking

6: s′′ ← LocalSearch(s′) ▷ Apply local search

7: if f(s′′) < f(s) then

8: s← s′′

9: κ← 1

10: else

11: κ← κ+ 1

12: end if

13: end while

14: end while

Output: Best solution found.

Figure 5.3. Variable Neighborhood Search.

It is known in the literature that adding bias to the shaking step of a generic VNS

implementation may enhance the search capability [10, 135]. Hence, we introduce the

ARBI procedure as a data-driven pattern injection method (an example for routing

type problems is studied by [136]) and incorporate it into the VNS implementation for

the BOpt-RRC outlined in Figure 5.3. The details of the new matheuristic VNS with

Association Rules (VNS/AR) and its components are described in Section 5.3.2.1.

65

5.3.2.1. Shaking with association rules. In this section, we introduce the ARBI pro-

cedure and incorporate it into the generic VNS implementation outlined in Figure 5.3.

The ARBI is a three-step procedure in which a set Γ of good solutions is first filtered

from the set Λ of all visited solutions. A set of good solution components is extracted

from Γ as an association rule ρ and these components are injected into the shaken

solution s′ to obtain s′ρ to feed the local search. The details of these steps are as

follows:

• Filtering Good Solutions: Let Λi be a subset (details of generating this subset is

given below) of all visited solutions up to iteration i. The ARBI uses the k -means

clustering algorithm to cluster these solutions into c clusters by their objective

values. Then, the cluster of the solutions with minimum average objective values

is selected as Γi which is the set of good solutions at iteration i. After the filtering,

the ARBI forgets all other visited solutions and only stores the good solutions

to be expanded with newly visited solutions at iteration i + 1. By doing so, the

size of the set Λi of visited solutions is kept manageable in terms of memory

usage and computational time of the k -means clustering. From the heuristic

point of view, this scheme of storing visited solutions resembles the replacement

operators from EAs [137]. Filtering good solutions with clustering necessitates

a single parameter, i.e., number of clusters c, and we suggest smaller values

for c. The reason behind this suggestion is based on the ability of extracting

diverse patterns. Larger c values return a smaller set of good solutions (not

necessarily, but most of the time) and rules extracted from smaller sets favor

a few of the solution components. This may result in less-diverse solutions by

leading the search into similar regions, and hence the heuristic may end up at

local optimal solutions of low quality. The good solutions at iteration i is given

as the set {γ : γ ∈ Γi} and each γ is represented as an itemset in which the

items corresponding to each existing camp e has the information of the index e

and the value of Ae for all e ∈ 1, 2, ..., |E|. Following is an example of an itemset

in Γi for |E| = 3: γ = {500 1, 0 2, 1000 3}. The components of γ indicate that

A1 = 500, A2 = 0 and A3 = 1000.

66

• Association Rule Extraction: In ARBI, the common components in the good

solution set Γi is extracted by using the procedure outlined in Figure 5.4. The

procedure is based on the Apriori algorithm proposed by [43] used for extracting

association rules. The algorithm necessitates a set of parameters and the condi-

tions defined by these parameters may not generate a rule. The main idea of the

algorithm is to relax the conditions iteratively down to a limit in the hope of ex-

tracting a rule. To do so, the procedure chooses the minimum support parameter

σ of the Apriori algorithm as σmax in line 3. In the main loop starting at line 4,

the Apriori algorithm is called to extract the association rules P . If at least a

rule is extracted, which is checked in line 6, the procedure returns the association

rule ρ by filtering the rules with maximum size in line 7, then selecting one of

the filtered rules with the largest support value in line 8. If |P | = 0 after Apriori,

then σ is reduced by ∆ in line 11. The loop continues until at least a rule is

extracted or the value of σ drops below σmin. Depending on the value of σmin,

the procedure may return no rule at all, i.e., the output is ρ = ∅.

• Injection of Good Components: The components of a shaken solution s′ indicated

by the extracted rule ρ is replaced by the corresponding values in ρ. Let s′ =

[500, 0, 1000] and ρ = {1000 1, 0 3}. The ARBI injects the components given by

ρ into s′ and returns the resulting solution s′ρ = [1000, 0, 0] to initialize the local

search.

The generic VNS including the ARBI procedure as a pattern injection procedure,

VNS/AR, is outlined in Figure 5.5. The algorithm starts as the generic VNS. Lines

10–12 call the k -means clustering algorithm to obtain the set of good solutions Γi if

the size of Λi allows. If the size of the good solutions Γi returned by the clustering is

larger than γ, which is checked in line 13, the ARBI extracts the rule in line 14. If

the procedure returns an association rule ρ, the algorithm injects the good components

indicated by ρ into the shaken solution s′ to obtain s′ρ in line 16. Then, the solution

s′ρ is fed into the local search as the initial solution. If the conditions to call the ARBI

procedure is not satisfied in an iteration, the algorithm outlined in Figure 5.5 uses s′

as the initial solution of the local search instead of s′ρ in that iteration by calling the

67

lines 19 or 22. The heuristic returns the best solution found during the search as the

output. Please note that, whenever the local search is called, the algorithm feeds a set

of solutions (in the form of Λi or Γi) into the search alongside with the initial solution.

The search then, returns the set of visited solutions Λi+1 by adding the newly visited

solutions to the provided set of solutions in compliance with the ARBI procedure.

Input: Γ, σmin, σmax,∆.

1: P ← ∅ ▷ Set of association rules

2: ρ← ∅ ▷ Association rule

3: σ ← σmax ▷ Initial minimum support

4: while σmin ≤ σ ≤ σmax do

5: P ← Apriori(Γ, σ) ▷ Learn a set of rules for given minimum support

6: if P ̸= ∅ then

7: P ′ ← {r ∈ P : |ρr| = max{|ρr| : ∀r ∈ P}} ▷ Subset of rules with maximum rule size

8: ρ← {r ∈ P ′ : σr = max{σr : ∀r ∈ P ′}} ▷ The rule with maximum support

9: break

10: else

11: σ ← σ −∆ ▷ Reduce the minimum support

12: end if

13: end while

Output: ρ.

Figure 5.4. Extracting association rule.

68

Input: s0, δ, κmax.

1: s← s0 ▷ Initial solution

2: i← 0

3: Λi ← ∅ ▷ Set of visited solutions

4: Γi ← ∅ ▷ Set of good solutions

5: ρ← ∅ ▷ Association rule

6: while stopping criterion is not satisfied do

7: κ← 1

8: while κ ≤ κmax do

9: s′ ← pick a random neighboring solution from Nκ(s) ▷ Shaking

10: if |Λi| > c− 1 then

11: Γi ← Clustering(Λi, c) ▷ Filter good solutions

12: end if

13: if |Γi| > γmin then

14: ρ← RuleExtraction(Γi) ▷ Extract the association rule

15: if ρ ̸= ∅ then

16: s′ρ ← RuleBasedInjection(s′, ρ) ▷ Inject good components

17: s′′,Λi+1 ← LocalSearch(s′ρ,Γ
i) ▷ Apply local search and store newly visited solution

18: else

19: s′′,Λi+1 ← LocalSearch(s′,Γi) ▷ Apply local search and store newly visited solution

20: end if

21: else

22: s′′,Λi+1 ← LocalSearch(s′,Λi) ▷ Apply local search and store newly visited solution

23: end if

24: if f(s′′) < f(s) then

25: s← s′′ ▷ Update the current solution

26: κ← 1

27: else

28: κ← κ+ 1

29: end if

30: i← i+ 1

31: end while

32: end while

Output: Best solution found.

Figure 5.5. Variable neighborhood search with association rules.

69

6. COMPUTATIONAL RESULTS

All computational experiments are carried out on a workstation with Microsoft

Windows 7 Professional operating system and Intel Xeon CPU E5-1650 v3 @ 3.50 GHz

processor with 16.0 GB RAM. All procedures explained in Sections 4.2 are implemented

in a Python environment, and Python API of Gurobi (v9.1.2) is employed as the MILP

solver. We set a time limit of 600 seconds in the small-sized instances and 1800 seconds

in the large-sized instances for each matheuristic. The number of threads is set to eight

for Gurobi while keeping other settings at their default values.

6.1. r-Interdiction Network Design Problem with Lost Demand

6.1.1. Experimental Settings and Instance Generation

In order to analyse the effectiveness of the three matheuristics explained in Section

4.2, we randomly generate a set of RI-NDPLD test instances. The size of the test set

is determined by the number of nodes |N | and the arc density ζ. The number of arcs

|A| in each instance is determined as a fraction of the arcs that exist in a complete

network. Namely, |A| = ⌈ζ · |N | · (|N | − 1)⌉. If this value odd, then we increase the

number of arcs by one so as to obtain an even number. The number of commodities

|K| is set to
(|N |

2

)
. Table 6.1 includes the test instances and their properties.

In total, there are 80 instances in the test bed. They can be categorized as small-

sized (|N | = 7, 8) and large-sized (|N | = 9, 10) instances. The number of arcs, (i.e.,

|A|), in the largest instances of our test bed exceeds the number of direct flights by all

US based major/non-major carriers. We remark that the largest direct flight network

is operated by the Southwest Airlines with |A| = 58 [138]. In this sense, we can say

that the test bed is a realistic representation of the size of the problems encountered

in the industry. There exist two budget scenarios with r = 3 and r = 5 interdictions.

70

Table 6.1. Test instances.

|N | ζ |A| |K| |N | ζ |A| |K|

7 40 18 42 9 40 30 72

7 50 22 42 9 50 36 72

7 60 26 42 9 60 44 72

7 70 30 42 9 70 52 72

8 40 24 56 10 40 36 90

8 50 28 56 10 50 46 90

8 60 34 56 10 60 54 90

8 70 40 56 10 70 64 90

6.1.1.1. Setting the parameters of the random forest. The RF regression model is im-

plemented with the RandomForestRegressor class of the Python based ML package

Scikit-Learn (v0.24.2) [139]. We apply 5-fold cross validation (CV) to fix the parameter

values used in the RF models of the DDS procedure implemented in the TS/DDS and

TS/P+DDS matheuristics. To do so, we randomly select the smallest instance with

|N | = 7 and |N | = 8. Then, we enumerate all the interdiction patterns for r = 3,

and r = 5, and obtain the optimal LLP solutions using Gurobi and create a dataset

by calculating the lower and upper bounds for all interdiction patterns. Lastly, we

apply 5-fold CV for the RF model by only varying the number of trees. Other pa-

rameters of the RF model are set to their default values by respecting the observation

of [140], which declares that the RF regression models are known to work well under

default settings without elaborated parameter tuning. Among the three values tried

(50, 100, 150), the latter provided slightly smaller CV errors, and we decided to con-

duct all comparative experiments discussed in Section 6.1.2 with an RF model having

150 trees.

71

6.1.2. Numerical Results

The computational experiments are designed to analyse the efficiency of the

matheuristics developed in this study based on 80 randomly generated test instances

having interdiction budgets r = 3 and r = 5. However, we also aim to investigate the

effect of each component proposed, namely the pruning procedure using bounds, the

DDS procedure, and the RD procedure. To this end, we consider the following variants

of the TS based matheuristics:

(i) TS: Basic TS based matheuristic with the best improvement strategy, i.e., algo-

rithm outlined in Figure 5.1.

(ii) TS/P: TS that incorporates the pruning procedure using bounds where some

neighboring solutions are eliminated to generate a candidate list of solutions for

which the LLP is solved optimally.

(iii) TS/DDS: TS that incorporates the DDS procedure where the objective value of

every neighboring solution is first predicted and then sorted. The candidate list

of solutions is determined as the top 10% (π = 0.1) in the list for which the LLP

is solved optimally.

(iv) TS/P+DDS: TS that incorporates both the pruning procedure using bounds

and the DDS procedure.

(v) TS/P+RS: TS that incorporates the pruning procedure using bounds and ran-

dom sampling where 10% of the neighbors remaining after pruning are randomly

selected. The LLP is solved optimally only for these solutions.

(vi) TS/P+DDS+RD: TS/P+DDS that incorporates RD where feature importances

values are calculated by the RF regression model subsequent to training. These

values are used to detect the effect of the change in the interdiction status of each

arc on the objective value of solutions.

Since the efficiency of the DDS procedure and random sampling is directly af-

fected by the performance of the pruning procedure in TS/P+DDS, TS/P+RS, and

TS/P+DDS+RD, we first discuss the benefit of the BP procedure in Section 6.1.2.1.

72

Then, we analyse the performance of all matheuristics over small-sized and the large-

sized instances in Sections 6.1.2.2 and 6.1.2.3, respectively. Last, we analyse the pre-

dictive ability of RF models in Section 6.1.2.4.

6.1.2.1. Analysis of the benefit of the pruning procedure. We measure the benefit of

the pruning procedure in terms of the percentage of neighboring solutions eliminated

from the whole neighborhood N (s). In other words, for each instance considered we

compute the percent reduction 100× (|N (s)| − |C(s)|)/|N (s)| where C(s) is the set of

solutions in the candidate after pruning. The results are presented in Table 6.2 where

|N | represents the instance size in terms of number of nodes, and |A| is the number

of arcs, |N (s)| is the neighborhood size before pruning, and |C(s)| is the neighborhood

size after pruning. Note that each row is averaged over five instances. For example,

when |N | = 8 and |A| = 28, there are 75 interdiction patterns to be considered in the

neighborhood for r = 3 and 115 patterns for r = 5. After the pruning procedure, the

size of the neighboring solutions in the candidate list becomes 37.2 on average for both

r = 3 and r = 5.

Table 6.2. Pruning performance of the BP procedure.

r = 3 r = 5

|N | |A| |N (s)| |C(s)| % Pruned |N (s)| |C(s)| % Pruned

7 18 45 9.4 79.1 65 11.4 82.5

7 22 57 30.8 56.0 85 30.8 43.8

7 26 69 42.6 28.3 105 42.4 59.6

7 30 81 60.4 25.5 125 60.4 51.7

8 24 63 24.3 61.4 95 24.2 74.5

8 28 75 37.2 50.4 115 37.2 67.3

8 34 93 80.9 13.0 145 38.6 73.4

8 40 111 104.5 5.8 175 81.0 53.7

9 30 81 41.1 49.3 125 104.6 16.3

9 36 99 62.4 36.9 155 29.5 80.9

9 44 123 118.1 4.0 195 85.8 56.0

9 52 147 141.6 3.7 235 197.1 16.1

10 36 99 36.5 63.1 155 30.2 80.5

10 46 129 70.1 45.7 205 116.9 43.0

10 54 153 128.1 16.3 245 199.9 18.4

10 64 183 183.0 0.0 295 295.0 0.0

73

We can conclude that the pruning procedure is able to prune on the average 39.3%

and 27.4% of the neighboring solutions for small-sized and large-sized RI-NDPLD in-

stances with r = 3, respectively. When r = 5, the corresponding reductions amount

to 66.3% and 47.0% for small-sized and large-sized instances, respectively. These val-

ues indicate that the pruning procedure is indeed beneficial and makes it possible to

prune considerable portions of neighboring solutions with an increasing success for

larger interdiction budget and larger-sized instances. This shows that pruning is a

promising approach from the implementation point of view since the neighborhood

size grows with a large budget and network size. Recall that the pruning procedure

makes use of LP relaxation and a rounding heuristic for finding a lower bound and

upper bound, respectively. It could be possible to further increase the performance of

the procedure by developing more elaborate solution methods to calculate the bounds.

This idea presents a future research direction since the pruning performance reduces

with increasing number of arcs providing evidence that the LP relaxation the rounding

heuristic do not provide sufficiently tight bounds in those cases.

6.1.2.2. Analysis of small-sized instances. Due to the complexity of the RI-NDPLD,

it is possible to optimally solve only small-sized instances (|N | = 7 and |N | = 8)

with budget r = 3 within a reasonable computational time. This is accomplished

by enumerating all interdiction patterns in the ULP and solving the LLP using the

Gurobi solver given the interdiction pattern. Hence, we compare the quality of the

solutions generated by each matheuristic in terms of the percent deviation from the

optimal objective value (PD) using the formula 100 × (z∗ − zh)/z
∗ where zh is the

objective value found by matheuristic h. For small-sized instances with budget r = 3,

we compare the matheuristics on the basis of the best objective value obtained by any

matheuristic using the formula 100× (zbest − zh)/zbest where zbest = maxh(zh). For all

instances of the same size we also report the number of optimal solutions (#OS) or

the number of best solutions (#BS) found by heuristic h.

The performance of the matheuristics on small-sized instances for r = 3 are

displayed in Table 6.3. PD values are averaged over five instances. The third column

74

in the table represent the number of interdiction patterns (#IP) computed as
(
A
r

)
.

Table 6.3. Performance comparison on small-sized instances when r = 3.

TS TS/P TS/DDS TS/P+RS TS/P+DDS TS/P+DDS+RD

|N | |A| #IP PD #OS PD #OS PD #OS PD #OS PD #OS PD #OS

7 18 816 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

7 22 1540 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

7 26 2600 0.26 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

7 30 4060 6.95 1 0.00 5 0.34 4 0.34 4 0.34 4 0.00 5

8 24 2024 0.59 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

8 28 3276 0.59 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

8 34 5984 0.04 4 0.00 5 5.70 4 0.00 5 0.04 4 0.00 5

8 40 9880 7.23 0 0.40 2 4.86 3 6.40 1 4.86 3 0.00 5

Average: 1.96 3.38 0.05 4.63 1.36 4.50 0.84 4.38 0.65 4.50 0.00 5.00

On the basis of the average PD values given in the last row of Table 6.3, the only

method capable of attaining the optimal solutions for all the instances considered is

TS/P+DDS+RD, and it ranks the first among all matheuristics. TS/P shows a similar

performance with the TS/P+DDS+RD and ranks the second. In fact, we can observe

that all matheuristics incorporating the pruning procedure outperform the basic TS

matheuristic. Note that TS/P follows the very same trajectory with TS, but since a

number of neighboring solutions are eliminated in the TS/P it is expected to conduct

more iterations compared to TS. The average #OS value is 4.50 for both TS/DDS and

TS/P+DDS indicating their success is the same in attaining the optimal solutions.

Due to the same reasoning as before, as TS/P+DDS can carry out more iterations

compared to TS/DDS, its average PD value 0.65 is smaller than 1.36 of TS/DDS. The

comparison of TS/P+DDS and TS/P+RS reveals that the DDS procedure has a better

performance than random sampling which is also expected.

Table 6.4 provides the results when r = 5. Unfortunately, the optimal solutions

cannot be obtained due to the increase in the number of interdiction patterns in the

ULP and the LLP has to be optimally solved for each pattern to determine the opti-

mal solution and objective value. Therefore, we report the number of best solutions

75

(#BS) found by the matheuristics instead of optimal solutions, and the PD values are

computed based on the best objective values attained.

Table 6.4. Performance comparison on small-sized instances when r = 5.

TS TS/P TS/DDS TS/P+RS TS/P+DDS TS/P+DDS+RD

|N | |A| #IP PD #BS PD #BS PD #BS PD #BS PD #BS PD #BS

7 18 8568 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

7 22 26334 0.44 4 0.44 4 1.21 4 0.00 5 0.00 5 0.00 5

7 26 65780 3.06 2 0.01 4 0.17 4 0.01 4 0.00 5 0.00 5

7 30 142506 5.09 1 0.00 5 3.59 4 2.26 3 0.65 4 0.61 4

8 24 42504 1.29 3 0.12 4 0.12 4 0.00 5 0.00 5 0.12 4

8 28 98280 6.85 1 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

8 34 278256 8.20 2 0.00 5 5.80 2 1.14 3 1.90 4 2.71 3

8 40 658008 4.79 1 2.93 3 2.64 1 4.09 2 6.64 0 5.21 1

Average: 3.72 2.38 0.44 4.38 1.69 3.63 0.94 4.00 1.15 4.13 1.08 4.00

It can be observed that TS performs the worst due to the inferior diversification

capability among all matheuristics; it evaluates all neighboring solutions and thus

spends too much computation time without being able to diversify the search. Pruning

always helps as can be seen by the comparison between TS/P and TS as well as between

TS/P+DDS and TS/DDS. TS/P+DDS outperforms the later one due to the superior

intensification capability of the DDS procedure. TS/P performs the best and the

difference between TS/P+RS, TS/P+DDS, and TS/P+DDS+RD is not significant.

The analysis of large-sized instance are required to better assess the quality of the

DDS and RD procedures.

6.1.2.3. Analysis of large-sized instances. The performance of all matheuristics on

large-sized instances are presented in Table 6.5 when r = 3 and in Table 6.6 when

r = 5. The structure of the tables is the same as that of the table prepared for

small-sized instances with r = 5 in which the best feasible solution obtained among all

matheuristics is used for the basis of comparison.

76

Table 6.5. Performance comparison on large-sized instances when r = 3.

TS TS/P TS/DDS TS/P+RS TS/P+DDS TS/P+DDS+RD

|N | |A| #IP PD #BS PD #BS PD #BS PD #BS PD #BS PD #BS

9 30 4060 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

9 36 7140 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

9 44 13,244 10.34 3 10.34 3 6.13 4 2.44 3 0.00 5 0.00 5

9 52 22,100 0.66 3 0.66 3 0.00 5 0.65 2 0.00 5 0.00 5

10 36 7140 0.12 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

10 46 15,180 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

10 54 24,804 0.77 1 0.55 2 4.37 3 0.59 1 0.16 4 0.29 3

10 64 41,664 0.36 2 0.34 2 0.25 3 0.15 3 0.06 4 0.06 4

Average: 1.53 3.50 1.49 3.75 1.34 4.38 0.48 3.63 0.03 4.75 0.04 4.63

As can be observed, TS/P performs slightly better than TS in terms of both the

average PD and average #BS. Although the overall performance of TS/P is relatively

lower than that on small-sized instances, the incorporation of the DDS procedure re-

sulting in TS/P+DDS yields the best performance. The DDS procedure also increases

the efficiency of a TS implementation with random sampling, i.e., TS/P+RS. In ad-

dition to the overall superior performance of both TS/P+DDS and TS/P+DDS+RD,

these matheuristics are more robust to an increase in the number of arcs comparing

to other matheuristics as can be seen in the #BS columns corresponding to instances

with |A| = 54 and |A| = 64.

Table 6.6 includes the results obtained on the large-sized instances with r = 5.

As a matter of fact, they are the largest instances considered in this study, as is clear

by the numbers of interdiction patters given in the #IP column of the table.

The joint benefit of the pruning and DDS procedures is evident in the results. In

terms of the average PD and #BS values, TS/P+DDS outperforms other matheuristics

except TS/P+DDS+RD. As expected, TS performs poorly with a PD value of 9.23%

and is only able to find the best solution on 1.5 instances on average. Although TS/P

is one of the competitive matheuristics in other cases, its performance is rather inferior

on these largest instances and cannot compete with the best performing TS/P+DDS

77

and TS/P+DDS+RD. We believe that this outcome is due to the decreased pruning

capability of the pruning procedure with larger number of nodes and arcs (please see

Table 6.2). Following a trend similar to that in the results given in Table 6.5 on large-

sized instances with r = 5, TS/P+DDS outperforms both TS/DDS and TS/P+RS

indicating that the DDS procedure can successfully eliminate unpromising neighboring

solutions and allows the search to consider promising ones. TS/P+DDS+RD returns

the best results in terms of both performance criteria. As before, both TS/P+DDS

and TS/P+DDS+RD are less affected by the increase in the number of arcs, which

shows their robustness compared to other matheuristics. Hence, we conclude that

the proposed data-driven neighbor sorting and data-driven RD procedures are indeed

helpful in solving the RI-NDPLD instances.

Table 6.6. Performance comparison on large-sized instances when r = 5.

TS TS/P TS/DDS TS/P+RS TS/P+DDS TS/P+DDS+RD

|N | |A| #IP PD #BS PD #BS PD #BS PD #BS PD #BS PD #BS

9 30 142,506 0.36 4 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5

9 36 376,992 3.09 2 0.00 5 0.00 5 0.92 3 0.00 5 0.00 5

9 44 1,086,008 5.16 3 5.07 4 4.25 4 6.05 3 6.09 3 0.06 4

9 52 2,598,960 24.59 0 24.04 0 1.22 2 6.44 3 0.46 4 0.00 5

10 36 376,992 1.03 2 0.52 3 0.03 4 0.03 4 0.00 5 0.00 5

10 46 1,370,754 22.56 0 12.59 1 4.59 1 2.87 3 1.27 4 1.39 4

10 54 3,162,510 15.95 0 11.68 1 4.70 3 6.85 1 4.47 4 0.06 4

10 64 7,624,512 1.07 1 1.20 0 0.12 4 0.46 2 0.12 4 0.12 4

Average: 9.23 1.50 6.89 2.38 1.86 3.50 2.95 3.00 1.55 4.25 0.21 4.50

6.1.2.4. Prediction accuracy of the random forest. The efficiency of the DDS proce-

dure relies on its capability in sorting the real objective values. To measure the strength

of this capability, we work on an experimental setting in which we compare the ordered

lists of neighboring solutions sorted by actual and predicted objective function values

and represent the similarity of these lists with the Spearman’s rank correlation (also

known as Spearman’s ρ) calculated by

ρ = 1−
6
∑

i∈{1,2,...n} d
2
i

n(n2 − 1)
, (6.1)

78

where di is the difference between the rank of the neighbor i in the two lists and n is the

number of all solutions in the neighborhood of a solution s, i.e., |N (s)|. Spearman’s

ρ can take values from the interval [−1, 1]. If ρ = 1 for two sorted lists, each item

has the same rank in both lists. For instance, ρ = 1 for the lists A > B > C > D

and A > B > C > D. On the other extreme, ρ = −1 indicates a perfect negative

correlation, i.e., the sorted lists are A > B > C > D and D > C > B > A.

In our experimental setting, we calculate Spearman’s rank correlation values at

each iteration to analyse the sorting capability of the DDS procedure. Let N (s) =

{s′1, s′2, s′3} be the set of neighboring solutions of solution s at iteration i, and f(s) be

the actual objective value for s, and f̂i(s) be the objective value for s predicted by the

RF model retrained with all visited solutions up to iteration i. If f(s′1) > f(s′2) > f(s′3)

and f̂(s′2) > f̂(s′1) > f̂(s′3) holds, then d1 = −1, d2 = 1 and d3 = 0, and Spearman’s ρ

at iteration i is equal to 0.5. In this setting, if ρ = 1 at an iteration, the selection of the

best neighboring solution is guaranteed. However, this rarely occurs due to the fact

that the search visits unseen parts of the solution space at each iteration and RF is

supposed to predict the objective values of newly seen solutions. From an ML point of

view, this setting corresponds to the test error and errors in predictions are inevitable.

However, we expect positive ρ values to claim that DDS works properly. To this end,

we keep track of the ρ values through TS-DDS iterations (with π = 0.1) while solving

the fifth RI-NDPLD instance with |N | = 7, ζ = 50 in Figure 6.1 as an example. For

this instance, TS-DDS finds the optimal solution for r = 3 and finds the best known

solution for r = 5.

As can be seen in Figure 6.1, Spearman’s ρ values fluctuate around 0.54 for r = 3

and 0.43 for r = 5 with 0.27 as the minimum for r = 3 and 0.16 as the minimum for

r = 5 indicating the practicality of the proposed candidate set generation procedure

incorporating RF models. Since similar patterns are also observed in almost all of the

instances with |N | = 7 and |N | = 8 with a few exceptions, we believe that the quality

of the predictions is sufficient.

79

Figure 6.1. Spearman’s ρ values at each TS-DDS iteration for the fifth instance with

|N | = 7, ζ = 50.

6.2. Bilevel Optimization Problem for Reconfiguration of Refugee Camp

Network

6.2.1. Experimental Settings and Instance Generation

In order to assess the computational capabilities of the matheuristics proposed

for solving the BOpt-RRC, we randomly generate a set I of BOpt-RRC instances.

The instances are based on the structure of the large size real life dataset introduced

in [127]. The real life dataset represents the refugee camp network and public service

providers in the southeast region of Turkey including the cities Adana, Adıyaman,

Gaziantep, Hatay, Kahramanmaraş, Kilis, Malatya, Mardin, Osmaniye and Şanlıurfa.

There is a total of 244 nodes in the network: 74 candidate locations for refugee camps,

60 hospitals, 77 high schools and 33 municipality buildings. In all our instances, we

adopt a fixed subset G of this network: 74 candidate locations for refugee camps and

60 hospitals. We omit the high schools and municipality buildings for the sake of

simplicity and assume that the only public service is the healthcare. However, it is

a straightforward task to include the remaining nodes. In addition to the candidate

location and hospital nodes of [127], there are also source nodes in G and these nodes

represent the regions where the new refugees originate.

80

In all instances of I, the capacity of each candidate refugee camp is randomly

chosen from the set {5000, 15000, 25000} and the upper limits on the capacity in-

crease in the existing camps are set to 20% of the capacity of each camp. The num-

ber of physicians at each hospital is randomly generated from integer numbers in the

set {3, 4, 5, 6, 7, 8}, and the maximum number of refugees ψ that can be served by a

physician is selected as 2500. Each instance i ∈ I is characterized by the number of

current refugees ω located in the corresponding existing camp, and the ratio ωnew of

the number of new refugees to the number of existing refugees. We choose ω from

{50000, 100000, 150000, 200000} and generate a uniform random integer from the in-

terval [ω± 0.25×ω] and set it as the number of existing refugees. In a similar manner,

we determine ωnew from the set {0.02, 0.06, 0.10, 0.20} and generate a uniform random

integer from the interval [Ω−Ω×0.25,Ω+Ω×0.25] where Ω = ω×ωnew and choose it as

the number of new refugees originating at the source nodes. We fix āe values for all of

the existing camps as 20% of the current capacities. We determine the minimum value

of ω as 50000 regarding the current status in the Southeast region of Turkey: There

are 50,736 refugees located at seven refugee camps scattered within the region [128].

As discussed above, the BOpt-RRC updates the existing refugee camp network

configuration. Hence, the initial configurations of all instances are needed for the

analysis. We implement a modified version of the LLP of the BOpt-RRC given

in Equations (5.5)–(5.22). Then, we input the indices, capacities, and populations

of the existing camps and the current hospital assignments to the BOpt-RRC. Re-

garding the discussed experimental settings we generate 80 instances in which we

have five different instances of the same size defined by the Cartesian product of

{50000, 100000, 150000, 200000} × {0.02, 0.06, 0.10, 0.20}. The details of the instances

grouped by ωnew values are given in Tables A.1–A.4 in the Appendix.

6.2.2. Numerical Results

In this section, we assess the quality of each matheuristic method proposed for

the BOpt-RRC. The computational experiments are based on 80 randomly generated

81

BOpt-RRC test instances with various population parameters ω and ωnew. To this

end, we implement the following matheuristics where the increment size δ = 500 and

all methods are terminated after the CPU time of 1800 seconds:

(i) TS/4: TS1, i.e., Algorithm outlined in Figure 5.1, with the neighborhood N δ
4 (s).

On the basis of preliminary computational studies on various k values, we set

k = 4.

(ii) TS/ANS: Algorithm outlined in Figure 5.2 with kmax = 4. We set α = 0.01 and

β = 1 regarding a set of preliminary experiments.

(iii) VNS: Algorithm outlined in Figure 5.3 with κmax = 3. The LS procedure is

TS/ANS with kmax = 4 and it is terminated after 10 consecutive iterations with

no improving solutions.

(iv) VNS/AR: Algorithm outlined in Figure 5.5, with κmax = 3. The LS procedure

is TS/ANS with kmax = 4 and it is terminated after 10 consecutive iterations

with no improving solutions. The visited solutions are clustered into two groups,

i.e., k = 2. The minimum confidence c in the apriori algorithm is 80% and the

minimum support takes values between σmin = 0.20 and σmax = 0.90 with the

step size ∆ = 0.10.

Due to the complexity of the BOpt-RRC, it is not possible to obtain the optimal

objective values of all instances in a reasonable computational time. The optimal

solutions could only be obtained for instances with ω = 50000 by complete enumeration

method. These results ares used to assess the performance of all proposed heuristics

for the instances with ω = 50000. To this end, the percent deviation (PD) from the

optimal objective value is computed using the formula 100× (zh − z∗)/z∗ where zh is

the objective value found by matheuristic h, and z∗ is the optimal objective value. For

other instances without the optimal solution, the PD values are computed using the

formula 100× (zh − zbest)/zbest where zbest = maxh{zh}. For all instances of the same

size we also report the number of best (or optimal if exists) solutions (#BS) found by

heuristic h.

82

Before going into the details of the overall comparative study, we first analyse

the ML components of TS/ANS and VNS/AR in the Sections 6.2.2.1 and 6.2.2.2,

respectively.

6.2.2.1. Analysis of TS/ANS. In this section we briefly discuss the effect of the adap-

tive neighborhood selection procedure. The average fractions of selected neighborhoods

over the instances with the same ω values are given in Figure 6.2.

Figure 6.2. Average fraction of selected neighborhoods over the instances with the

same ω values.

Each column in the bar chart represents the average fraction of the corresponding

ω and k. A certain trend favoring k = 3 is evident in the figure. As discussed above, we

choose k = 4 for the generic TS implementation, i.e., TS/4, by experiment. However,

in TS/ANS solutions, k = 4 corresponds to the least selected neighborhood. This is

probably caused by the fact that the more diversified search provided by TS/ANS visits

the regions of the solution space which are not visited by TS/4 and these regions are

searched better by k = 3.

The reason behind using an adaptive neighborhood selection procedure is to in-

crease the diversification ability of metaheuristics by dynamically changing the neigh-

borhood definitions. Since all the components but the neighborhood selection proce-

dure are the same for TS/4 and TS/ANS, we compare the trajectories of TS/4 and

83

TS/ANS for a subset of instances to analyse the diversification capability of TS/ANS.

The trajectories of Instances #48 and #50 are given in the leftmost and the rightmost

parts of Figure 6.3 as the instances with ω = 150000.

Figure 6.3. Comparison of trajectories, ω = 150000: TS/4 and TS/ANS.

As indicated in Figure 6.3, the higher performance of TS/4 compared to that of

TS/ANS can be seen in earlier iterations. This is expected because TS/4, as a local

search algorithm, concentrates on intensification and exploits a basin of attraction.

However, TS/ANS spends the earlier iterations on exploring other basins of attractions,

and is therefore outperformed by TS/ANS. In later iterations, TS/4 is trapped at local

optimal solutions and TS/ANS enjoys the exploration and returns better solutions

eventually.

Similar patterns are observed in the trajectories of Instances #67 and #68, too.

In Figure 6.4, one may find the corresponding trajectories of these instances as the

subset of instances with ω = 200000. Regarding this trajectory based analysis, we

conclude that given a sufficient amount of time, TS/ANS is expected to outperform

TS/4 due to its diversification capability.

6.2.2.2. Analysis of VNS/AR. In the ARBI procedure, embedded into the generic VNS

to obtain VNS/AR, association rules are extracted at each iteration after the shaking

step. Since the rules are extracted by the Apriori algorithm with respect to minimum

confidence c = 80% and minimum support s = 20%, there is always a possibility of

obtaining no rules in an iteration.

84

Figure 6.4. Comparison of trajectories, ω = 200000: TS/4 and TS/ANS.

In Table 6.7, one may find a set of statistics related to the extracted rules of

VNS/AR that runs on BOpt-RRC instances with ωnew = 0.02. The first column gives

the ω values, and the remaining ones are reserved for the statistics. In the second

column, the number of shakings averaged over the instances of the same size is given.

For example, in all five instances with ω = 50000 and ωnew = 0.02 there are 54.8

shakings on average. The next column shows the number of empty rules averaged over

the instances of the same size. For instance, out of 54.8 Apriori algorithm calls, 1.6

of them returns no rule on average. The fourth column indicates the average rule size

and the last column is reserved for sharing average number of distinct rules averaged

over the instances of the same size.

The statistics in Table 6.7 reveal that, with larger ω values, the number of shak-

ings reduces. This is actually expected because the total computational time devoted

to the local search component in VNS/AR increases as ω increases. Since the number of

empty rules are insignificant for all instances with ωnew = 0.02, we are free to conclude

that it is valid to compare VNS and VNS/AR for the sake of performance analysis.

The average rule size also increases with larger ω values due to the necessity of larger

number of existing camps to serve larger populations. An increase in the number of

distinct rules with larger populations is also attributed to the same reasoning.

The statistics on the properties of extracted rules of VNS/AR obtained on BOpt-

RRC instances with ωnew = 0.06 are given in Table 6.8. A pattern similar to that in

Table 6.7 can be seen through the columns. We can conclude that the performance

85

comparison of VNS and VNS/AR is valid for BOpt-RRC instances with ωnew = 0.06,

too.

Table 6.7. Properties of extracted rules for ωnew = 0.02.

ω #Shaking #EmptyRules RuleSize #DistinctRules

50000 54.8 1.6 1.0 3.0

100000 18.4 0.0 1.1 3.8

150000 6.8 0.0 1.5 4.4

200000 6.2 0.0 1.6 4.4

Average: 21.6 0.4 1.3 3.9

Table 6.8. Properties of extracted rules for ωnew = 0.06.

ω #Shaking #EmptyRules RuleSize #DistinctRules

50000 61.6 0.6 1.0 2.6

100000 12.6 0.0 1.3 3.4

150000 7.8 0.0 1.3 4.4

200000 5.2 0.0 1.7 4.4

Average: 21.8 0.2 1.3 3.7

In Table 6.9, one may find the statistics on the ARBI calls in VNS/AR to solve

the BOpt-RRC instances with ωnew = 0.10. Though a pattern similar pattern to that

in both Tables 6.7 and 6.8 can be detected, there are two exceptions in Table 6.9. First,

all of Apriori algorithm calls return nonempty rules. Second, the number of distinct

rules extracted for the instances with ω = 200000 is smaller, comparatively.

Table 6.10 is reserved for the VNS/AR statistics over the BOpt-RRC instances

with ωnew = 0.20. The only empty rules are seen in the instances with ω = 50000, too.

In this sense, there is nothing new in terms of patterns seen in the other instances with

ωnew = 0.02, 0.06, 0.10. However, there is a decreasing trend in the number of distinct

rules with larger ω values, which is not seen in the remaining instances. During the

comparative analysis, we briefly discuss the possible effect of this trend and denote a

research question in Section 6.2.3.

86

Table 6.9. Properties of extracted rules for ωnew = 0.10.

ω #Shaking #EmptyRules RuleSize #DistinctRules

50000 35.4 0.0 1.1 4.0

100000 15.2 0.0 1.3 4.4

150000 7.0 0.0 1.6 4.6

200000 4.6 0.0 1.8 2.6

Average: 15.6 0.0 1.4 3.9

Table 6.10. Properties of extracted rules for ωnew = 0.20.

ω #Shaking #EmptyRules RuleSize #DistinctRules

50000 32.2 2.4 0.9 3.0

100000 9.0 0.0 1.2 3.2

150000 4.0 0.0 1.9 1.4

200000 2.2 0.0 1.4 1.0

Average: 11.9 0.6 1.3 2.2

6.2.3. Analysis of Matheuristics

The performance of the matheuristics on BOpt-RRC instances with ωnew = 0.02

is displayed in Table 6.11. The PD columns under all matheuristics are the PD values

averaged over the instances of the same size, i.e., average of five instances. For all the

instances of the same size, the columns #BS gives the total number of instances in

which the best found solutions (or optimal solutions for ω = 50000) are returned.

The results in Table 6.11 indicate that the performance of both TS implementa-

tions deteriorates with increasing ω values, i.e., existing refugee populations. However,

we cannot detect a certain performance trend in VNS and VNS/AR with changing

ω values. Overall, TS/4 is the worst method and VNS/AR outperforms all other

matheuristics significantly. The computational results reveal that the average #BS

values are equal to each other for TS/ANS and VNS. Although the average PD value

is lower for VNS, we cannot claim the superiority of VNS over TS/ANS. In summary,

the adaptive neighborhood selection and ARBI procedures perform better.

87

Table 6.11. Performance comparison on the instances with ωnew = 0.02.

TS/4 TS/ANS VNS VNS/AR

ω PD #BS PD #BS PD #BS PD #BS

50 8.1% 3 7.0% 3 3.0% 3 0.0% 5

100 42.1% 2 34.0% 2 68.7% 0 3.1% 2

150 128.0% 0 40.7% 1 2.8% 2 6.6% 2

200 171.2% 0 22.5% 0 12.6% 1 0.0% 5

Average: 87.3% 1.25 26.1% 1.50 21.8% 1.50 2.4% 3.50

A comparison of all matheuristics over the instances with ωnew = 0.06 is given

in Table 6.12. In the overall, TS/ANS significantly improves the results of TS and

the positive effect of using the adaptive neighborhood selection procedure is evident

in the table. However, both VNS implementations’ average PD values lead us to the

superiority of these implementations on the BOpt-RRC instances with ωnew = 0.06.

Adding the ARBI procedure to VNS significantly increases the performance in terms

of #BS. In addition, the average PD value of VNS/AR is lower than that of VNS. By

the comparison of TS/4 with TS/ANS and VNS with VNS/AR, we conclude that the

proposed data-driven LS matheuristics outperform the generic versions.

A pattern similar to that in Table 6.12, is also seen in the performance comparison

of all matheuristics over the instances with ωnew = 0.10 given in Table 6.13. The

superiority of VNS/AR is evident in the table in terms of both average PD and #BS.

Although the performances of both TS implementations are significantly below those

of VNS implementations, it is worth noting that the adaptive neighborhood selection

procedure considerably improves the performance of the generic TS implementation.

The performance of the matheuristics on BOpt-RRC instances with ωnew = 0.20

are given in Table 6.14. In all instances, we select the upper limits on the capacity

increase of existing camps as 20% of the existing capacity values. Since the number of

new refugees is generated with uniform random distribution with mean ω × ωnew, the

expected number of new refugees match with the limit on the capacity increase. Due

to this fact, we expect all the matheuristic methods to show similar performance, and

88

this is what happens in practice. Compared to the results of instances with ωnew =

0.02, 0.06, 0.10, the performance of all matheuristic methods are closer to each other.

However, VNS/AR still outperforms all other methods.

Table 6.12. Performance comparison on the instances with ωnew = 0.06.

TS/4 TS/ANS VNS VNS/AR

ω PD #BS PD #BS PD #BS PD #BS

50 40.0% 0 9.8% 2 1.1% 4 1.1% 4

100 132.8% 0 30.9% 1 13.0% 1 17.1% 3

150 125.9% 0 46.2% 0 3.4% 2 2.2% 4

200 60.2% 1 23.9% 1 9.7% 2 2.4% 3

Average: 89.7% 0.25 27.7% 1.00 6.8% 2.25 5.7% 3.50

Table 6.13. Performance comparison on the instances with ωnew = 0.10.

TS/4 TS/ANS VNS VNS/AR

ω PD #BS PD #BS PD #BS PD #BS

50 68.3% 1 2.6% 1 1.5% 2 1.2% 3

100 33.8% 0 28.7% 0 6.0% 1 1.0% 4

150 66.8% 0 28.2% 0 2.0% 3 0.8% 3

200 58.8% 0 13.9% 2 7.1% 1 1.6% 2

Average: 56.9% 0.25 18.4% 0.75 4.2% 1.75 1.1% 3.00

Please recall the discussion based on the results in Table 6.10. For all instances

except the ones with ωnew = 0.20, both the rule size and the number of distinct rules

increase with larger ω values. Also, the superiority of VNS/AR is more prominent

for all instances but the ones with ωnew = 0.20. Regarding this observation, we may

claim that there is a relationship between VNS/AR performance and the properties

of the extracted rules, intuitively. Hence, a further study is needed to analyse this

relationship and we keep this study as a future research opportunity.

89

Table 6.14. Performance comparison on the instances with ωnew = 0.20.

TS/4 TS/ANS VNS VNS/AR

ω PD #BS PD #BS PD #BS PD #BS

50 6.3% 1 9.9% 2 3.1% 2 3.1% 2

100 7.7% 1 3.7% 1 1.4% 1 0.6% 3

150 0.7% 1 0.8% 2 0.3% 4 0.5% 3

200 1.8% 0 0.6% 4 0.5% 2 0.7% 2

Average: 4.1% 0.75 3.8% 2.25 1.3% 2.25 1.2% 2.50

6.2.4. Rationalization of the Bilevel Approach

The decision maker at the ULP of the BOpt-RRC aims to readjust the refugee

camp network with smallest change in the current network configuration. To this end,

we incorporate a set of penalty terms into the upper-level objective function. Alongside

with the penalties, we also add the total cost of capacity increase. In this section, we

briefly analyse the effect of penalties on reconfiguration decisions by devising a single

level optimization model (SOpt-RRC) for the problem. The problem is obtained by

(i) discarding the penalty terms and adding the total cost of capacity increase to the

LLP objective function at (5.5), (ii) discarding constraints (5.2) and adding constraints

(5.3) and (5.4) into the constraint set of the LLP and (iii) manipulating constraints

(5.9) in the LLP. All of the set, parameter and variable definitions are directly adopted

from BOpt-RRC. The proposed single-level model is given as

min
∑
e

αeAe +
∑
c∈C

∑
h∈H

χchXch +
∑
e∈E

∑
h∈H

χehXeh +
∑
c∈C

ξcYc+ (6.2)

+
∑
s∈S

∑
e∈E

ϕseFse +
∑
s∈S

∑
c∈C

ϕscFsc,

s.t. 0 ≤ Ae ≤ āe e ∈ E, (6.3)

Te ≤ Q̄e + Ae e ∈ E, (6.4)

Ae ∈ Z ∪ {0} e ∈ E. (6.5)

Constraints (5.6)–(5.8) and (5.10)–(5.22). (6.6)

90

The objective function at (6.2) aims to minimize the total cost of capacity in-

crease, hospital assignments, building new refugee camps and refugee flows to existing

and/or candidate camps. Constraints (6.3) ensure that the total increased capacity of

each camp e ∈ E does not exceed the corresponding upper limit on the increase āe.

Domains of the capacity increase variables are defined by constraints (6.5). Remaining

constraints are adopted from the BOpt-RRC formulation and they are used as is.

Let s∗Bi
be the optimal solution of the BOpt-RRC for instance i, f(s) be the

objective function of the ULP of the BOpt-RRC and f(s∗Bi
) be the corresponding

optimal objective function value. Also, let s∗Si
be the optimal solution of the SOpt-

RRC for instance i. Here, we analyse the effect of the penalty terms on reconfiguration

decisions by comparing the objective values f(s∗Bi
) and f(s∗Si

). Percent deviations of

the SOpt-RRC solutions from the BOpt-RRC solutions are given in Figure 6.5 in which

the percent deviation is calculated by 100× (f(s∗Si
)− f(s∗Bi

))/f(s∗Bi
) for each instance

i. The computational study is based on the BOpt-RRC instances with ω = 50000,

since these are the only instances with optimal solutions at hand. The y-axis gives the

percent deviation where the x-axis gives the instance number in the figure.

Figure 6.5. Percent deviation of the SOpt-RRC solutions.

As indicated by the figure, the SOpt-RRC solutions return objective function

values larger than the BOpt-RRC solutions for all instances as expected, since all

91

solutions are evaluated by the objective function of the ULP of the BOpt-RRC. Percent

deviations averaged over the instances of the same size are calculated as 52.9% for

ωnew = 0.02, 46.4% for ωnew = 0.06, 77.6% for ωnew = 0.10 and 13.5% for ωnew = 0.20

and the overall percent deviation is 47.6%. These results indicate that the single-level

formulation, in which the objective of the smallest change is discarded, increase the

total cost of capacity increase and penalty almost by half on the average comparing

to the bilevel formulation. Hence, we conclude that the proposed bilevel formulation

significantly reduces the readjustment costs and should be preferred in NDPs where

the smallest change in the current configuration is prioritised.

92

7. CONCLUSION

7.1. Summary of the Contributions

In this thesis, two bilevel NDP problems are introduced. First, in the RI-NDPLD

as a network interdiction problem, we model the strategic flight network design deci-

sions of an SAC aiming to enter an airline market in which a set of ACs are already

operating. The problem is relevant in modelling the competitive environment of the

airline market. In the second problem, the BOpt-RRC, we model the readjustment de-

cisions of an existing refugee camp network configuration in case of new refugee flows.

The proposed model has a practical value due to the fact that the total number of

refugees are in an increasing trend and the refugee camps are no more temporary. We

propose BMIP formulations for both problems such that the LLPs are NDP variants.

In particular, RI-NDPLD is a contribution to the network interdiction literature and

the BOpt-RRC contributes to humanitarian logistics literature as a bilevel NDP.

From a methodological point of view, we propose a set of ML embedded data-

driven local search matheuristics to solve both problems heuristically. Metaheuristic

methods are already proposed for many COPs. However, in the recent literature, there

is an increasing interest on improving the search capabilities of metaheuristic methods

by exploiting ML models. ML models are used for a set of tasks such as algorithm

selection, fitness evaluation, initialization, evolution operators, parameter setting and

cooperation of multiple metaheuristics. In this study, we employ a set of ML models

and embed them into a set of TS and VNS metaheuristics. In the TS implementation

for the RI-NDPLD we rely on RF for fitness evaluation to reduce the total computa-

tional time of objective function evaluations in the form of a candidate solution set

generation procedure. We also embed RF models into a perturbation scheme as a sub-

stitute of the long-term memory usage. For the BOpt-RRC, we implement a TS and a

VNS matheuristic. In the TS implementation, we use a value function based adaptive

neighborhood selection procedure and in the VNS implementation, we use the Apriori

93

algorithm to generate a set of association rules to find the common components in

good solutions and we rely on these rules to find initial solutions for the local search

procedures in the VNS framework.

The generic TS heuristic implemented for the RI-NDPLD does not perform well

on large sized instances. The main reason behind this result is that the method spends

significant amount of time to evaluate all the neighboring solutions of a current solution

at each iteration, and hence it terminates after a few iterations. Adding a procedure

into the TS to prune a subset of neighboring solutions by bounds leads to more num-

ber of iterations. Thanks to this, a larger portion of the solution space is explored,

and hence the performance of the TS is increased. However, the computational study

reveals that the performance increase depends on the quality of the bounds and in the

larger instances the bounds are weak in a sense that a smaller portions of all neigh-

boring solutions are pruned. In the data-driven sorting procedure, a certain fraction

of neighboring solutions to be evaluated is guaranteed and the number of objective

function evaluations is fixed at each iteration. Hence, the issue of the weak bounds is

resolved by incorporating the data-driven sorting procedure into the TS implementa-

tion. However, due to the larger prediction errors of the RF models trained in earlier

iterations, the search may be directed into non-promising areas. To recover the prob-

lems of weak bounds and the prediction errors, we simultaneously incorporate both

procedures into the TS implementation and obtain a more robust method. By employ-

ing this TS heuristic into a data-driven restart diversification scheme, we finalize the

implementation and conclude that the proposed TS heuristic with restart diversifica-

tion is capable of solving practical size RI-NDPLD instances.

We implement a set of generic LS matheuristics to solve the BOpt-RRC and en-

hanced their search capabilities by embedding a couple of data-driven procedures into

these generic implementations. First, we define a new neighborhood definition for the

BOpt-RRC and propose a generic TS method. Second, we devise an adaptive neigh-

borhood selection procedure and incorporated into the generic TS. To do so, we resolve

the premature convergence issue of TS by dynamically changing the neighborhood def-

94

inition with a value function based approach. The computational study revealed that,

in almost all instances, the generic TS is outperformed by the implementation with the

adaptive procedure. Third, to obtain a more exploration-oriented LS matheuristic, we

implement a generic VNS to solve the BOpt-RRC in which the local search component

is the TS with adaptive neighborhood selection procedure. Regarding the computa-

tional study, the generic VNS performs better than the TS implementation with the

adaptive procedure in virtually all BOpt-RRC instances. Later, we devise an associ-

ation rule based injection procedure to add a set of good components into the initial

solutions obtained by the usual random shaking. The results of the overall comparison

of all matheuristics indicate that the VNS implementation with data-driven injection

procedure outperforms all other methods in terms of percentage deviations and total

number of instances in which the best found solutions are returned.

7.2. Future Research Directions

As a future research direction, we plan to work on increasing the computational

efficiency of solving the LLP by devising problem-specific heuristics. The benefit of

such a research study is to eliminate more neighboring solutions and thus increase the

pruning performance by obtaining better upper bounds. Another research opportunity

could be using data-driven procedures in developing metaheuristic methods to solve

various bilevel programming models that have a difficult combinatorial optimization

problem in the lower level which needs to be solved many times. Since resolving the LLP

significantly increases the computational effort, these generic data-driven procedures,

i.e., fitting a regression model to make predictions on the objective value of the LLP

given the decision in the ULP and using feature importance values calculated by tree

based regression models for restart diversification, can have a dramatic impact as they

can reduce the neighborhood size by eliminating solutions.

The studies on the BOpt-RRC also lead us to a set of future research questions.

In terms modelling, BOpt-RRC can be enhanced by including a set of additional deci-

sions such as closing a refugee camp, settling/resettling of existing refugees and explicit

95

inclusion of infrastructural resources into capacity increase in terms of budgetary re-

strictions. We also have a set of future research directions from a methodological

perspective. The adaptive neighborhood selection procedure in the TS implementa-

tion can be seen as a version of the single-state multi-armed bandit problem as an RL

model. We plan to investigate the usage of more elaborated RL models in the adaptive

neighborhood selection procedure for the sake of further performance increase. The

experimental results indicate that there is a possible relationship with the diversifica-

tion capability of the VNS implementation with association rule based injection and

the number of distinct rules extracted. We aim to analyse this relationship thoroughly

to obtain a more robust version of the aforementioned VNS implementation.

96

REFERENCES

1. Johnson, D. S., J. K. Lenstra and A. R. Kan, “The Complexity of the Network

Design Problem”, Networks , Vol. 8, No. 4, pp. 279–285, 1978.

2. O’Kelly, M. E. and H. J. Miller, “The Hub Network Design Problem: A Review

and Synthesis”, Journal of Transport Geography , Vol. 2, No. 1, pp. 31–40, 1994.

3. Keskin, M. E., I. K. Altınel, N. Aras and C. Ersoy, “Wireless Sensor Network

Design by Lifetime Maximisation: An Empirical Evaluation of Integrating Ma-

jor Design Issues and Sink Mobility”, International Journal of Sensor Networks ,

Vol. 20, No. 3, pp. 131–146, 2016.

4. Crainic, T. G., M. Hewitt, M. Toulouse and D. M. Vu, “Scheduled Service Net-

work Design with Resource Acquisition and Management”, EURO Journal on

Transportation and Logistics , Vol. 7, No. 3, pp. 277–309, 2018.

5. Katayama, N., “MIP Neighborhood Search Heuristics for a Service Network

Design Problem with Design-Balanced Requirements”, Journal of Heuristics ,

Vol. 26, No. 4, pp. 1–28, 2020.

6. Mubarak, M., H. Üster, K. Abdelghany and M. Khodayar, “Strategic Network

Design and Analysis for In-Motion Wireless Charging of Electric Vehicles”, Trans-

portation Research Part E: Logistics and Transportation Review , Vol. 145, p.

102179, 2021.

7. Karsu, Ö., B. Y. Kara, E. Akkaya and A. Ozel, “Clean Water Network Design

for Refugee Camps”, Networks and Spatial Economics , Vol. 21, No. 1, pp. 1–24,

2021.

8. Arslan, O., G. Ç. Kumcu, B. Y. Kara and G. Laporte, “The Location and

Location-Routing Problem for the Refugee Camp Network Design”, Transporta-

97

tion Research Part B: Methodological , Vol. 143, pp. 201–220, 2021.

9. von Stackelberg, H., The Theory of the Market Economy , Oxford University Press,

Oxford, 1952.

10. Karimi-Mamaghan, M., M. Mohammadi, P. Meyer, A. M. Karimi-Mamaghan

and E.-G. Talbi, “Machine Learning at the Service of Meta-Heuristics for Solving

Combinatorial Optimization Problems: A State-of-the-Art”, European Journal of

Operational Research, Vol. 296, No. 2, pp. 393–422, 2022.

11. Kleinert, T., M. Labbé, I. Ljubić and M. Schmidt, “A Survey on Mixed-Integer

Programming Techniques in Bilevel Optimization”, EURO Journal on Computa-

tional Optimization, Vol. 9, p. 100007, 2021.

12. Smith, J. C. and Y. Song, “A Survey of Network Interdiction Models and Algo-

rithms”, European Journal of Operational Research, Vol. 283, No. 3, pp. 797–811,

2020.

13. Wollmer, R., “Removing Arcs from a Network”, Operations Research, Vol. 12,

No. 6, pp. 934–940, 1964.

14. Wood, R. K., “Deterministic Network Interdiction”, Mathematical and Computer

Modelling , Vol. 17, No. 2, pp. 1–18, 1993.

15. Hochba, D. S., “Approximation Algorithms for NP-Hard Problems”, ACM Sigact

News , Vol. 28, No. 2, pp. 40–52, 1997.

16. Talbi, E.-G., Metaheuristics: From Design to Implementation, John Wiley &

Sons, New Jersey, 2009.

17. Glover, F., “Tabu Search—Part I”, ORSA Journal on Computing , Vol. 1, No. 3,

pp. 190–206, 1989.

98

18. Knox, J., “Tabu Search Performance on the Symmetric Traveling Salesman Prob-

lem”, Computers & Operations Research, Vol. 21, No. 8, pp. 867–876, 1994.

19. Schneider, J. J. and S. Kirkpatrick, “Tabu Search Applied to TSP”, Stochastic

Optimization, pp. 441–447, Springer, Berlin, 2006.

20. Cordeau, J.-F. and M. Maischberger, “A Parallel Iterated Tabu Search Heuristic

for Vehicle Routing Problems”, Computers & Operations Research, Vol. 39, No. 9,

pp. 2033–2050, 2012.

21. Barbarosoglu, G. and D. Ozgur, “A Tabu Search Algorithm for the Vehicle Rout-

ing Problem”, Computers & Operations Research, Vol. 26, No. 3, pp. 255–270,

1999.

22. Crainic, T. G. and M. Gendreau, “Cooperative Parallel Tabu Search for Capaci-

tated Network Design”, Journal of Heuristics , Vol. 8, No. 6, pp. 601–627, 2002.

23. Xie, C. and M. A. Turnquist, “Lane-Based Evacuation Network Optimization: An

Integrated Lagrangian Relaxation and Tabu Search Approach”, Transportation

Research Part C: Emerging Technologies , Vol. 19, No. 1, pp. 40–63, 2011.

24. Aksen, D. and N. Aras, “A Matheuristic for Leader-Follower Games Involving

Facility Location-Protection-Interdiction Decisions”, Metaheuristics for Bi-level

Optimization, pp. 115–151, Springer, Berlin, 2013.

25. Akbari-Jafarabadi, M., R. Tavakkoli-Moghaddam, M. Mahmoodjanloo and

Y. Rahimi, “A Tri-Level r-Interdiction Median Model for a Facility Location

Problem Under Imminent Attack”, Computers & Industrial Engineering , Vol.

114, pp. 151–165, 2017.

26. Sadati, M. E. H., D. Aksen and N. Aras, “The r-Interdiction Selective Multi-Depot

Vehicle Routing Problem”, International Transactions in Operational Research,

Vol. 27, No. 2, pp. 835–866, 2020.

99

27. Mladenović, N. and P. Hansen, “Variable Neighborhood Search”, Computers &

Operations Research, Vol. 24, No. 11, pp. 1097–1100, 1997.

28. Hansen, P., N. Mladenović, J. Brimberg and J. A. M. Pérez, “Variable Neighbor-

hood Search”, Handbook of Metaheuristics , pp. 57–97, Springer, Cham, 2019.

29. Cheimanoff, N., F. Fontane, M. N. Kitri and N. Tchernev, “Exact and Heuristic

Methods for the Integrated Berth Allocation and Specific Time-Invariant Quay

Crane Assignment Problems”, Computers & Operations Research, Vol. 141, p.

105695, 2022.

30. Luo, Q., Y. Rao, X. Guo and B. Du, “A Biased Genetic Algorithm Hybridized

with VNS for the Two-Dimensional Knapsack Packing Problem with Defects”,

Applied Soft Computing , Vol. 118, p. 108479, 2022.

31. Soares, L. C. and M. A. Carvalho, “Application of a Hybrid Evolutionary Algo-

rithm to Resource-Constrained Parallel Machine Scheduling with Setup Times”,

Computers & Operations Research, Vol. 139, p. 105637, 2022.

32. Olmez, O. B., C. Gultekin, B. Balcik, A. Ekici and O. Ö. Özener, “A Variable

Neighborhood Search Based Matheuristic for a Waste Cooking Oil Collection

Network Design problem”, European Journal of Operational Research, Vol. 302,

No. 1, pp. 187–202, 2022.

33. Tawfik, C., B. Gendron and S. Limbourg, “An Iterative Two-Stage Heuristic

Algorithm for a Bilevel Service Network Design and Pricing Model”, European

Journal of Operational Research, Vol. 300, No. 2, pp. 512–526, 2022.

34. Wu, Y., Z. Chen, H. Gong, Q. Feng, Y. Chen and H. Tang, “Defender–Attacker–

Operator: Tri-Level Game-Theoretic Interdiction Analysis of Urban Water Distri-

bution Networks”, Reliability Engineering & System Safety , Vol. 214, p. 107703,

2021.

100

35. Samanta, S., T. Mohandass, G. Sen and S. K. Ghosh, “A VNS-Based Metaheuris-

tic Approach for Escape Interdiction on Transportation Networks”, Computers &

Industrial Engineering , Vol. 169, p. 108253, 2022.

36. Alpaydin, E., Machine Learning , MIT Press, Cambridge, MA, 2021.

37. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, MIT

Press, Cambridge, MA, 2018.

38. Quinlan, J. R., “Learning Decision Tree Classifiers”, ACM Computing Surveys

(CSUR), Vol. 28, No. 1, pp. 71–72, 1996.

39. Breiman, L., “Random Forests”, Machine Learning , Vol. 45, No. 1, pp. 5–32,

2001.

40. MacQueen, J., “Classification and Analysis of Multivariate Observations”, 5th

Berkeley Symposium on Mathematical Statistics and Probability , pp. 281–297,

1967.

41. Hartigan, J. A. and M. A. Wong, “Algorithm AS 136: A k-Means Clustering

Algorithm”, Journal of the Royal Statistical Society. Series C (Applied Statistics),

Vol. 28, No. 1, pp. 100–108, 1979.

42. Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo et al., “Fast

Discovery of Association Rules.”, Advances in Knowledge Discovery and Data

Mining , Vol. 12, No. 1, pp. 307–328, 1996.

43. Agrawal, R., R. Srikant et al., “Fast Algorithms for Mining Association Rules”,

Proc. 20th Int. Conf. Very Large Data Bases, VLDB , Vol. 1215, pp. 487–499,

Citeseer, 1994.

44. Tanınmış, K., N. Aras and I. Altınel, “Influence Maximization with Deactivation

in Social Networks”, European Journal of Operational Research, Vol. 278, No. 1,

101

pp. 105–119, 2019.

45. Tanınmış, K., N. Aras, İ. K. Altınel and E. Güney, “Minimizing the Misinforma-

tion Spread in Social Networks”, IISE Transactions , Vol. 52, No. 8, pp. 850–863,

2020.

46. Martelli, E., M. Freschini and M. Zatti, “Optimization of Renewable Energy

Subsidy and Carbon Tax for Multi Energy Systems Using Bilevel Programming”,

Applied Energy , Vol. 267, p. 115089, 2020.

47. Wogrin, S., S. Pineda and D. A. Tejada-Arango, “Applications of Bilevel Opti-

mization in Energy and Electricity Markets”, Bilevel Optimization, pp. 139–168,

Springer, Cham, 2020.

48. Candler, W., J. Fortuny-Amat and B. McCarl, “The Potential Role of Multi-

level Programming in Agricultural Economics”, American Journal of Agricultural

Economics , Vol. 63, No. 3, pp. 521–531, 1981.

49. Küçükaydin, H., N. Aras and I. K. Altınel, “Competitive Facility Location Prob-

lem with Attractiveness Adjustment of the Follower: A Bilevel Programming

Model and Its Solution”, European Journal of Operational Research, Vol. 208,

No. 3, pp. 206–220, 2011.

50. DeNegre, S., Interdiction and Discrete Bilevel Linear Programming , Ph.D. Thesis,

Lehigh University, Bethlehem, PA, 5 2011.

51. Sinha, A., P. Malo and K. Deb, “A Review on Bilevel Optimization: From Clas-

sical to Evolutionary Approaches and Applications”, IEEE Transactions on Evo-

lutionary Computation, Vol. 22, No. 2, pp. 276–295, 2017.

52. Kalashnikov, V. V., S. Dempe, G. A. Pérez-Valdés, N. I. Kalashnykova and J.-F.

Camacho-Vallejo, “Bilevel Programming and Applications”, Mathematical Prob-

lems in Engineering , pp. 1–16, 2015.

102

53. Farvaresh, H. and M. M. Sepehri, “A Branch and Bound Algorithm for Bi-Level

Discrete Network Design Problem”, Networks and Spatial Economics , Vol. 13,

No. 1, pp. 67–106, 2013.

54. Yu, B., L. Kong, Y. Sun, B. Yao and Z. Gao, “A Bi-Level Programming for Bus

Lane Network Design”, Transportation Research Part C: Emerging Technologies ,

Vol. 55, pp. 310–327, 2015.

55. Fontaine, P. and S. Minner, “A Dynamic Discrete Network Design Problem for

Maintenance Planning in Traffic Networks”, Annals of Operations Research, Vol.

253, No. 2, pp. 757–772, 2017.

56. Lin, B., C. Liu, H. Wang and R. Lin, “Modeling the Railway Network De-

sign Problem: A Novel Approach to Considering Carbon Emissions Reduction”,

Transportation Research Part D: Transport and Environment , Vol. 56, pp. 95–109,

2017.

57. Di, Z., L. Yang, J. Qi and Z. Gao, “Transportation Network Design for Maximizing

Flow-Based Accessibility”, Transportation Research Part B: Methodological , Vol.

110, pp. 209–238, 2018.

58. Msigwa, R. E., Y. Lu and L.-W. Zhang, “A Perturbation-Based Approach for

Continuous Network Design Problem with Link Capacity Expansion”, Interna-

tional Journal of Operational Research, Vol. 37, No. 1, pp. 105–134, 2020.

59. Zhou, Z., M. Yang, F. Sun, Z. Wang and B. Wang, “A Continuous Transportation

Network Design Problem with the Consideration of Road Congestion Charging”,

Sustainability , Vol. 13, No. 13, pp. 1–16, 2021.

60. Kara, B. Y. and V. Verter, “Designing a Road Network for Hazardous Materials

Transportation”, Transportation Science, Vol. 38, No. 2, pp. 188–196, 2004.

61. Fontaine, P. and S. Minner, “Benders Decomposition for the Hazmat Transport

103

Network Design Problem”, European Journal of Operational Research, Vol. 267,

No. 3, pp. 996–1002, 2018.

62. Gutjahr, W. J. and N. Dzubur, “Bi-Objective Bilevel Optimization of Distribution

Center Locations Considering User Equilibria”, Transportation Research Part E:

Logistics and Transportation Review , Vol. 85, pp. 1–22, 2016.

63. Sahinyazan, F. G., M.-È. Rancourt and V. Verter, “Food Aid Modality Selection

Problem”, Production and Operations Management , Vol. 30, No. 4, pp. 965–983,

2021.

64. Takebayashi, M. and A. Kanafani, “Network Competition in Air Transportation

Markets: Bi-Level Approach”, Research in Transportation Economics , Vol. 13,

pp. 101–119, 2005.

65. Yang, T.-H., C.-H. Tang and H.-C. Hsiao, “Strategic Airline Network Design

Problem in a Duopolistic Market”, Transportation Planning and Technology ,

Vol. 43, No. 6, pp. 586–601, 2020.

66. Abdelghany, A., K. Abdelghany and F. Azadian, “Airline Flight Schedule Plan-

ning Under Competition”, Computers & Operations Research, Vol. 87, pp. 20–39,

2017.

67. Takebayashi, M., “Managing the Multiple Airport System by Coordinating

Short/Long-Haul Flights”, Journal of Air Transport Management , Vol. 22, pp.

16–20, 2012.

68. Parvaresh, F., S. M. Husseini, S. Golpayegany and B. Karimi, “Hub Network

Design Problem in the Presence of Disruptions”, Journal of Intelligent Manufac-

turing , Vol. 25, No. 4, pp. 755–774, 2014.

69. Church, R. L., M. P. Scaparra and R. S. Middleton, “Identifying Critical Infras-

tructure: The Median and Covering Facility Interdiction Problems”, Annals of

104

the Association of American Geographers , Vol. 94, No. 3, pp. 491–502, 2004.

70. Ullmert, T., S. Ruzika and A. Schöbel, “On the p-Hub Interdiction Problem”,

Computers & Operations Research, Vol. 124, p. 105056, 2020.

71. Caprara, A., M. Carvalho, A. Lodi and G. J. Woeginger, “Bilevel Knapsack with

Interdiction Constraints”, INFORMS Journal on Computing , Vol. 28, No. 2, pp.

319–333, 2016.

72. Fischetti, M., I. Ljubić, M. Monaci and M. Sinnl, “Interdiction Games and Mono-

tonicity with Application to Knapsack Problems”, INFORMS Journal on Com-

puting , Vol. 31, No. 2, pp. 390–410, 2019.

73. Mahdavi Pajouh, F., V. Boginski and E. L. Pasiliao, “Minimum Vertex Blocker

Clique Problem”, Networks , Vol. 64, No. 1, pp. 48–64, 2014.

74. Zenklusen, R., “Matching Interdiction”, Discrete Applied Mathematics , Vol. 158,

No. 15, pp. 1676–1690, 2010.

75. Wollmer, R. D., “Algorithms for Targeting Strikes in a Lines-of-Communication

Network”, Operations Research, Vol. 18, No. 3, pp. 497–515, 1970.

76. McMasters, A. W. and T. M. Mustin, “Optimal Interdiction of a Supply Net-

work”, Naval Research Logistics Quarterly , Vol. 17, No. 3, pp. 261–268, 1970.

77. Israeli, E. and R. K. Wood, “Shortest-Path Network Interdiction”, Networks: An

International Journal , Vol. 40, No. 2, pp. 97–111, 2002.

78. Lim, C. and J. C. Smith, “Algorithms for Discrete and Continuous Multicom-

modity Flow Network Interdiction Problems”, IIE Transactions , Vol. 39, No. 1,

pp. 15–26, 2007.

79. Bayrak, H. and M. Bailey, “Shortest Path Network Interdiction with Asymmetric

105

Information”, Networks: An International Journal , Vol. 52, No. 3, pp. 133–140,

2008.

80. Salmeron, J., K. Wood and R. Baldick, “Analysis of Electric Grid Security Under

Terrorist Threat”, IEEE Transactions on Power Systems , Vol. 19, No. 2, pp.

905–912, 2004.

81. Arroyo, J. M. and F. D. Galiana, “On the Solution of the Bilevel Programming

Formulation of the Terrorist Threat Problem”, IEEE Transactions on Power Sys-

tems , Vol. 20, No. 2, pp. 789–797, 2005.

82. Motto, A., J. Arroyo and F. Galiana, “MILP for the Analysis of Electric Grid Se-

curity Under Disruptive Threat”, IEEE Transactions on Power Systems , Vol. 20,

No. 3, pp. 1357–1365, 2005.

83. Salmerón, J., K. Wood and R. Baldick, “Worst-Case Interdiction Analysis of

Large-Scale Electric Power Grids”, IEEE Transactions on Power Systems , Vol. 24,

No. 1, pp. 96–104, 2009.

84. Cappanera, P. and M. Scaparra, “Optimal Allocation of Protective Resources in

Shortest-Path Networks”, Transportation Science, Vol. 45, No. 1, pp. 64–80, 2011.

85. Alguacil, N., A. Delgadillo and J. Arroyo, “A Trilevel Programming Approach

for Electric Grid Defense Planning”, Computers & Operations Research, Vol. 41,

No. 1, pp. 282–292, 2014.

86. Lozano, L., J. Smith and M. Kurz, “Solving the Traveling Salesman Problem with

Interdiction and Fortification”, Operations Research Letters , Vol. 45, No. 3, pp.

210–216, 2017.

87. Starita, S. and M. Scaparra, “Optimizing Dynamic Investment Decisions for Rail-

way Systems Protection”, European Journal of Operational Research, Vol. 248,

No. 2, pp. 543–557, 2016.

106

88. Malaviya, A., C. Rainwater and T. Sharkey, “Multi-Period Network Interdiction

Problems with Applications to City-Level Drug Enforcement”, IIE Transactions ,

Vol. 44, No. 5, pp. 368–380, 2012.

89. Bengio, Y., A. Lodi and A. Prouvost, “Machine Learning for Combinatorial Op-

timization: A Methodological Tour D’horizon”, European Journal of Operational

Research, pp. 405–421, 2020.

90. Jin, Y. and B. Sendhoff, “Reducing Fitness Evaluations Using Clustering Tech-

niques and Neural Network Ensembles”, Genetic and Evolutionary Computation

Conference, pp. 688–699, Springer, Seattle, 2004.

91. Karimi-Mamaghan, M., M. Mohammadi, A. Pirayesh, A. M. Karimi-Mamaghan

and H. Irani, “Hub-and-Spoke Network Design Under Congestion: A Learning

Based Metaheuristic”, Transportation Research Part E: Logistics and Transporta-

tion Review , Vol. 142, p. 102069, 2020.

92. Loshchilov, I., M. Schoenauer and M. Sebag, “A Mono Surrogate for Multiobjec-

tive Optimization”, Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation, pp. 471–478, Portland, 2010.

93. González-Juarez, D. and E. Andrés-Pérez, “Study of the Influence of the Initial a

Priori Training Dataset Size in the Efficiency and Convergence of Surrogate-Based

Evolutionary Optimization”, Evolutionary and Deterministic Methods for Design

Optimization and Control with Applications to Industrial and Societal Problems ,

pp. 181–194, Springer, Cham, 2019.

94. Singh, H. K., T. Ray and W. Smith, “Surrogate Assisted Simulated Annealing

(SASA) for Constrained Multi-Objective Optimization”, IEEE Congress on Evo-

lutionary Computation, pp. 1–8, IEEE, Barcelona, 2010.

95. Louis, S. J. and J. McDonnell, “Learning with Case-Injected Genetic Algorithms”,

107

IEEE Transactions on Evolutionary Computation, Vol. 8, No. 4, pp. 316–328,

2004.

96. Li, C., X. Chu, Y. Chen and L. Xing, “A Knowledge-Based Technique for Ini-

tializing a Genetic Algorithm”, Journal of Intelligent & Fuzzy Systems , Vol. 31,

No. 2, pp. 1145–1152, 2016.

97. Li, X. and S. Olafsson, “Discovering Dispatching Rules Using Data Mining”,

Journal of Scheduling , Vol. 8, No. 6, pp. 515–527, 2005.

98. Nasiri, M. M., S. Salesi, A. Rahbari, N. Salmanzadeh Meydani and M. Abdollai,

“A Data Mining Approach for Population-Based Methods to Solve the JSSP”,

Soft Computing , Vol. 23, No. 21, pp. 11107–11122, 2019.

99. Gelareh, S. and S. Nickel, “Hub Location Problems in Transportation Networks”,

Transportation Research Part E: Logistics and Transportation Review , Vol. 47,

No. 6, pp. 1092–1111, 2011.

100. Fan, T. P. C., “Strategic Response from Singapore Airlines to the Rapid Expan-

sion of Global, Full-Service Hub Carriers in the Middle East”, Airline Economics

in Asia, pp. 33–60, Emerald Publishing Limited, Bingley, 2018.

101. Števárová, L. and B. Badánik, “Performance of Hub and Spoke Networks of

Selected Airlines”, Transportation Research Procedia, Vol. 35, pp. 240–249, 2018.

102. Bryan, D. L. and M. E. O’Kelly, “Hub-and-Spoke Networks in Air Transportation:

An Analytical Review”, Journal of Regional Science, Vol. 39, No. 2, pp. 275–295,

1999.

103. Mintzberg, H., S. Ghoshal, J. Lampel and J. B. Quinn, The Strategy Process:

Concepts, Contexts, Cases , Pearson Education, Essex, 2003.

104. Porter, M. E., “What is Strategy?”, Harvard Business Review , Vol. 74, pp. 61–78,

108

1996.

105. Boguslaski, C., H. Ito and D. Lee, “Entry Patterns in the Southwest Airlines

Route System”, Review of Industrial Organization, Vol. 25, No. 3, pp. 317–350,

2004.

106. Burchett, D. L., Multi-Commodity Fixed-Charge Capacitated Network Design:

Polyhedral Characteristics, Network Resilience, and Algorithms , Ph.D. Thesis,

University of Florida, 2015.

107. Kim, D. and C. Barnhart, “Transportation Service Network Design: Models and

Algorithms”, Computer-Aided Transit Scheduling , pp. 259–283, Springer, Berlin,

1999.

108. Hewitt, M., G. L. Nemhauser and M. W. Savelsbergh, “Combining Exact and

Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem”,

INFORMS Journal on Computing , Vol. 22, No. 2, pp. 314–325, 2010.

109. Costa, A. M., “A Survey on Benders Decomposition Applied to Fixed-Charge

Network Design Problems”, Computers & Operations Research, Vol. 32, No. 6,

pp. 1429–1450, 2005.

110. Dempe, S. and A. B. Zemkoho, “The Bilevel Programming Problem: Reformula-

tions, Constraint Qualifications and Optimality Conditions”, Mathematical Pro-

gramming , Vol. 138, No. 1, pp. 447–473, 2013.

111. DeNegre, S. T. and T. K. Ralphs, “A Branch-and-Cut Algorithm for Integer

Bilevel Linear Programs”, Operations Research and Cyber-Infrastructure, pp. 65–

78, Springer, New York, 2009.

112. Saharidis, G. K. and M. G. Ierapetritou, “Resolution Method for Mixed Integer

Bi-Level Linear Problems Based on Decomposition Technique”, Journal of Global

Optimization, Vol. 44, No. 1, pp. 29–51, 2009.

109

113. Lozano, L. and J. C. Smith, “A Value-Function-Based Exact Approach for the

Bilevel Mixed-Integer Programming Problem”, Operations Research, Vol. 65,

No. 3, pp. 768–786, 2017.

114. Glover, F., “Future Paths for Integer Programming and Links to Artificial Intel-

ligence”, Computers & Operations Research, Vol. 13, No. 5, pp. 533–549, 1986.

115. Boyce, D., A. Farhi and R. Weischedel, “Optimal Network Problem: A Branch-

and-Bound Algorithm”, Environment and Planning A, Vol. 5, No. 4, pp. 519–533,

1973.

116. Şuvak, Z., İ. K. Altınel and N. Aras, “Exact Solution Algorithms for the Maxi-

mum Flow Problem with Additional Conflict Constraints”, European Journal of

Operational Research, Vol. 287, No. 2, pp. 410–437, 2020.

117. Gendron, B., M. G. Scutellà, R. G. Garroppo, G. Nencioni and L. Tavanti, “A

Branch-and-Benders-Cut Method for Nonlinear Power Design in Green Wireless

Local Area Networks”, European Journal of Operational Research, Vol. 255, No. 1,

pp. 151–162, 2016.

118. Taşkın, Z. C. and M. Cevik, “Combinatorial Benders Cuts for Decomposing IMRT

Fluence Maps Using Rectangular Apertures”, Computers & Operations Research,

Vol. 40, No. 9, pp. 2178–2186, 2013.

119. Saharidis, G. K., M. Minoux and M. G. Ierapetritou, “Accelerating Benders

Method Using Covering Cut Bundle Generation”, International Transactions in

Operational Research, Vol. 17, No. 2, pp. 221–237, 2010.

120. Chouman, M., T. G. Crainic and B. Gendron, “Commodity Representations and

Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Net-

work Design”, Transportation Science, Vol. 51, No. 2, pp. 650–667, 2017.

121. Baycik, N. O., “Machine Learning Based Approaches to Solve the Maximum Flow

110

Network Interdiction Problem”, Computers & Industrial Engineering , p. 107873,

2021.

122. Friedman, J., T. Hastie, R. Tibshirani et al., The Elements of Statistical Learning ,

Springer Series in Statistics, New York, 2009.

123. Gendreau, M., “An Introduction to Tabu Search”, Handbook of Metaheuristics ,

pp. 37–54, Springer, 2003.

124. United Nations High Commissioner for Refugees, Global Trends: Forced Displace-

ment in 2021 , https://www.unhcr.org/globaltrends.html, accessed on July

29, 2022.

125. Turkish Red Crescent, Göç Direktörlüğü Aylık Faaliyet Raporu,

https://www.kizilay.org.tr/Upload/Dokuman/Dosya/06-haziran-2022-goc

-direktorlugu-aylik-rapor-09-08-2022-50228995.pdf, accessed on July 29,

2022.

126. Cilali, B., K. Barker and A. D. González, “A Location Optimization Approach to

Refugee Resettlement Decision-Making”, Sustainable Cities and Society , Vol. 74,

p. 103153, 2021.

127. Kumcu, G. Ç., Location-Location Routing Problem and Its Application on Refugee

Camps , Ph.D. Thesis, Bilkent Universitesi (Turkey), 2019.

128. United Nations High Commissioner for Refugees, Syrian Refugee Camps and

Provincial Breakdown of Syrian Refugees Registered in South East Turkey -

April 2022 , https://data.unhcr.org/en/documents/details/92045, accessed

on July 29, 2022.

129. Ilcan, S. and K. Rygiel, ““Resiliency Humanitarianism”: Responsibilizing

Refugees through Humanitarian Emergency Governance in the Camp”, Inter-

national Political Sociology , Vol. 9, No. 4, pp. 333–351, 2015.

111

130. Jahre, M., J. Kembro, A. Adjahossou and N. Altay, “Approaches to the Design of

Refugee Camps: An Empirical Study in Kenya, Ethiopia, Greece, and Turkey”,

Journal of Humanitarian Logistics and Supply Chain Management , pp. 323–345,

2018.

131. Karsu, O., B. Y. Kara and B. Selvi, “The Refugee Camp Management: A General

Framework and a Unifying Decision-Making Model”, Journal of Humanitarian

Logistics and Supply Chain Management , Vol. 9, No. 2, pp. 131–150, 2019.

132. Li, J., P. M. Pardalos, H. Sun, J. Pei and Y. Zhang, “Iterated Local Search Em-

bedded Adaptive Neighborhood Selection Approach for the Multi-Depot Vehicle

Routing Problem with Simultaneous Deliveries and Pickups”, Expert Systems with

Applications , Vol. 42, No. 7, pp. 3551–3561, 2015.

133. Wang, J., Y. Sun, Z. Zhang and S. Gao, “Solving Multitrip Pickup and Delivery

Problem with TimeWindows and Manpower Planning Using Multiobjective Algo-

rithms”, IEEE/CAA Journal of Automatica Sinica, Vol. 7, No. 4, pp. 1134–1153,

2020.

134. Benlic, U., M. G. Epitropakis and E. K. Burke, “A Hybrid Breakout Local Search

and Reinforcement Learning Approach to the Vertex Separator Problem”, Euro-

pean Journal of Operational Research, Vol. 261, No. 3, pp. 803–818, 2017.

135. Thevenin, S. and N. Zufferey, “Learning Variable Neighborhood Search for a

Scheduling Problem with Time windows and Rejections”, Discrete Applied Math-

ematics , Vol. 261, pp. 344–353, 2019.

136. Arnold, F., Í. Santana, K. Sörensen and T. Vidal, “PILS: Exploring High-Order

Neighborhoods by Pattern Mining and Injection”, Pattern Recognition, Vol. 116,

p. 107957, 2021.

137. Holland, J. H., “Genetic Algorithms”, Scientific American, Vol. 267, No. 1, pp.

112

66–73, 1992.

138. Liu, C.-M., “Entry Behaviour and Financial Distress: An Empirical Analysis of

the US Domestic Airline Industry”, Journal of Transport Economics and Policy

(JTEP), Vol. 43, No. 2, pp. 237–256, 2009.

139. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-learn: Machine

Learning in Python”, Journal of Machine Learning Research, Vol. 12, pp. 2825–

2830, 2011.

140. Probst, P., M. N. Wright and A.-L. Boulesteix, “Hyperparameters and Tuning

Strategies for Random Forest”, Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery , Vol. 9, No. 3, pp. 1301–1315, 2019.

113

APPENDIX A: Random Instances for the BOpt-RRC

Table A.1. BOpt-RRC - Instances with ωnew = 0.02.

Instance rho rho% No. #Existing Ref. #New Ref. #ExistingCamps TotalCap

1 50 2 1 46298 916 4 50000

2 50 2 2 47882 1038 4 50000

3 50 2 3 46886 1001 4 50000

4 50 2 4 48482 932 6 50000

5 50 2 5 49832 955 6 50000

21 100 2 1 107466 2074 6 110000

22 100 2 2 91766 1863 7 95000

23 100 2 3 103266 2239 7 105000

24 100 2 4 107298 2240 8 110000

25 100 2 5 89699 1828 8 90000

41 150 2 1 142200 3177 13 145000

42 150 2 2 159800 2824 12 160000

43 150 2 3 153150 2855 15 155000

44 150 2 4 132250 3435 15 135000

45 150 2 5 147550 2768 10 150000

61 200 2 1 221733 3453 19 225000

62 200 2 2 194865 4164 15 195000

63 200 2 3 220732 3402 16 225000

64 200 2 4 197599 3616 14 200000

65 200 2 5 182866 3558 13 185000

114

Table A.2. BOpt-RRC - Instances with ωnew = 0.06.

Instance rho rho% No. #Existing Ref. #New Ref. #ExistingCamps TotalCap

6 50 6 1 51666 2809 7 55000

7 50 6 2 50249 2996 3 55000

8 50 6 3 54049 3384 5 55000

9 50 6 4 47899 2835 4 50000

10 50 6 5 57232 2933 4 60000

26 100 6 1 106833 5174 8 110000

27 100 6 2 106865 6868 10 110000

28 100 6 3 98066 5306 8 100000

29 100 6 4 111733 6086 11 115000

30 100 6 5 108166 5664 10 110000

46 150 6 1 137100 7323 8 140000

47 150 6 2 143700 9456 11 145000

48 150 6 3 150000 8757 12 150000

49 150 6 4 141700 7935 13 141700

50 150 6 5 146750 8883 12 146750

66 200 6 1 182732 11480 15 185000

67 200 6 2 188066 12280 14 190000

68 200 6 3 216599 12212 18 220000

69 200 6 4 193466 12948 15 195000

70 200 6 5 192199 13112 17 195000

115

Table A.3. BOpt-RRC - Instances with ωnew = 0.10.

Instance rho rho% No. #Existing Ref. #New Ref. #ExistingCamps TotalCap

11 50 10 1 47232 5482 4 50000

12 50 10 2 47633 4494 8 50000

13 50 10 3 52299 5141 7 55000

14 50 10 4 53549 5717 5 55000

15 50 10 5 48999 4636 6 50000

31 100 10 1 97799 9965 8 100000

32 100 10 2 103999 8746 9 105000

33 100 10 3 91566 9289 9 95000

34 100 10 4 95233 10442 10 100000

35 100 10 5 104098 11129 7 105000

51 150 10 1 157750 14495 11 160000

52 150 10 2 148750 14170 10 150000

53 150 10 3 156300 15350 14 160000

54 150 10 4 158800 14780 14 160000

55 150 10 5 153050 14895 15 155000

71 200 10 1 203865 18758 17 205000

72 200 10 2 180000 22485 20 180000

73 200 10 3 222465 17386 17 225000

74 200 10 4 154866 22499 15 155000

75 200 10 5 231132 18819 17 235000

116

Table A.4. BOpt-RRC - Instances with ωnew = 0.20.

Instance rho rho% No. #Existing Ref. #New Ref. #ExistingCamps TotalCap

16 50 20 1 59966 10676 6 60000

17 50 20 2 50783 10659 3 55000

18 50 20 3 44633 10739 3 45000

19 50 20 4 50800 11422 5 55000

20 50 20 5 54232 10789 5 55000

36 100 20 1 99432 16706 8 100000

37 100 20 2 99732 20886 10 100000

38 100 20 3 96899 20925 10 100000

39 100 20 4 109866 20759 10 110000

40 100 20 5 101432 18233 9 105000

56 150 20 1 125600 28890 10 130000

57 150 20 2 132750 31210 11 135000

58 150 20 3 137550 33420 10 140000

59 150 20 4 133100 30300 14 135000

60 150 20 5 141900 31610 9 145000

76 200 20 1 173066 39333 15 175000

77 200 20 2 221465 39732 15 225000

78 200 20 3 192532 37052 17 195000

79 200 20 4 197332 42292 16 200000

80 200 20 5 183799 45666 13 185000

