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ABSTRACT 

THE MAXIMUM ACYCLIC MATCHING PROBLEM 

The aim of this thesis is to develop exact and heuristic methods to solve the 

Maximum Acyclic Matching problem, which deals with obtaining maximum matching 

such that the subgraph induced by saturated vertices is acyclic. The maximum match-

ing problem tries to find the most extensive possible matching set. it is a well-studied 

problem that can be solved with combinatorial algorithms. However, for the maximum 

acyclic matching problem, we are searching for not only a maximum size matching but 

also we require that the subgraph induced by saturated vertices does not contain any 

cycles. For this purpose, an additional acyclicity constraint is needed. Even though 

some exact and approximate algorithms are established for particular graph classes, 

there is no such algorithm applicable for general graphs to find a maximum acyclic 

matching. In this study, four algorithms are suggested. Randomly generated graphs 

with different density levels and sizes are used to analyze their performance. Two 

of the algorithms are exact algorithms, which are extensive and cutting plane formu-

lations. Based on experimental results, the cutting plane approach performs better 

since it works also with larger graphs. The other two algorithms are heuristics, which 

are modification and construction approaches. It is observed that the construction ap-

proach performs better than the modification approach in terms of both time efficiency 

and quality. The construction approach yields feasible and close-to-optimal results in 

a shorter period. When the results of the best exact and heuristics are compared, 

the cutting plane algorithm performs better based on optimality. However, it is not 

applicable for large graphs compared to the construction algorithm. Additionally, it is 

seen that the effect of acyclicity constraint is increasing while graph size and density 

are getting larger. 



OZET 

. .. .. .. . . 
AZAMI DONGUSUZ EŞLEŞTiRME PROBLEMi 

V 

Bu tezin amacı, doymuş düğümlerin herhangi bir döngü içermeyen indüklenmiş 

alt çizgelerinin olduğu Azami Eşleştirme anlamına gelen Azami Döngüsel Eşleştirmeyi 

bulmaktır. Azami Eşleştirme Problemi, mümkün olan en büyük eşleştirme kümesini 

bulmaya çalışır. Kombinatoryal algoritma ile çözülebilen literatürde sıklıkla rastlanan 

bir problemdir. Bununla birlikte, azami döngüsüz eşleştirme problemi için, sadece 

azami eşleştirmeyi değil, aynı zamanda doymuş düğümlerin indüklenmiş alt çizgelerinin 

herhangi bir döngüye sahip olmamasını istiyoruz. Bu amaçla, döngüsüzlük kısıtına 

ihtiyaç vardır. Belirli çizge sınıfları için oluşturulmuş bazı kesin ve yaklaşık algoritmalar 

olmasına rağmen, genel çizgeler için azami döngüsüz eşleştirmeyi bulan bir algoritma 

yoktur. Bu çalışmada dört algoritma oluşturulmuştur. Farklı yoğunluk seviyelerine ve 

boyutlara sahip rastgele oluşturulmuş çizgeler, bunların performanslarını analiz etmek 

için kullanılır. Algoritmalardan ikisi, Kompakt ve Ayrıştırma formülasyonları olan 

kesin algoritmalardır. Bunların verimliliğine bağlı olarak, Ayrıştırma daha iyi perfor-

mans sergilemiştir. Diğer iki algoritma ise Modifikasyon ve Konstrüksiyon yaklaşımı 

olan buluşsal yöntemlerdir. Hem optimale yaklaşma hem de zaman verimliliği açısından 

Konstrüksiyon yaklaşımının Modifikasyon yaklaşımından daha iyi performans gösterdiği 

gözlemlenmiştir. Kesin ve buluşsal yöntemlerin en iyileri karşılaştırıldığında Ayrıştırma 

formülasyonu optimallik yönünden en iyi performansı göstermiştir ancak büyük boyuta 

sahip çizgeler için uygulanabilir değildir. Konstrüksiyon yaklaşımı daha kısa zamanda 

optimala yakın makul sonuçlar verir. Ayrıca çizge boyutu ve yoğunluğu büyüdükçe 

döngüsüzlük kısıtının etkisinin arttığı görülmektedir. 
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1. INTRODUCTION AND LITERATURE REVIEW

1 

Graph theory originated more than 28 decades ago when mathematician Leonhard 

Euler solved the Königsberg bridge problem. The problem was a long-standing puzzle 

involving the possibility of crossing all seven bridges that span a forked river running 

past an island without crossing them twice. Euler claimed that it is impossible to 

find a patlı that travels along all the vertices of a given polygon. His proof of the 

first theorem in graph theory consisted of only the physical arrangement of the bridges 

without proving the theorem itself. [1, 2] 

Figure 1.1: The Königsberg's Bridge. 

Graph theory is the study of relationships in the sense of vertices and edges, which 

can help us understand and simplify the complex dynamic system. Also, graphs have 

many useful applications such as for finding shortest route to home at traffic [3] or in 

the recent days for possible spread of Covid-19 in the community through contacts [4,5]. 

Graph theory can provide answers to many questions about how things are connected, 

how to optimize networks, and how to match people or resources. 
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Matching problems involve a set of members where each member has a capacity 

and a subset of members ranks the other subset in order of preference. Matching 

implies the attempt to match each member to one ( or more) acceptable member in a 

way that does not overburden their capacity. Examples of matching include assigning 

new doctors to hospitals [6], students to schools, and transplantation of human organs 

to recipients [7,8]. Although other one-to-many matching is exist such as matching of 

students to school, for the rest of this thesis, one-to-one matching will be referenced 

by the means of matching. 

The classical matching problem is the maximum matching problem that searches 

for maximum number of nodes that are saturated by matchings [9]. Finding maximum 

matching is solvable in polynomial time in general graphs using Edmond's Augment-

ing Patlı Algorithm [10]. There are different variants of matching problems. Acyclic 

matching problem is a type of subgraph-restricted matching [11, 12]. Acyclic matching 

is a matching where the subgraph induced by the saturated vertices is acyclic [11]. 

lnduced matching [13] and uniquely-restricted matchings [14] are the other types of 

subgraph-restricted matching. The former one is a matching that satisfies the follow-

ing: there are no two edges in the matching that are connected by any other edge in 

the graph [11, 15]. The latter one is defined by Golumbic et al. a s a  matching whose 

subgraph induced by saturated vertices has only one perfect matching where a match-

ing is perfect matching, if and only if every vertex of it is saturated by a matching 

edge [11, 16]. 

Another matching problem is maximal matching that is also known as inclusion-

wise maximal matching and can be found easily by a greedy algorithm [11, 17]. l f  there 

are no additional edges can be added to matching set while preserving the matching 

property, the maximal matching on the graph is a inclusion-wise maximal matching. 

On the other hand, the minimum maximal matching problem is NP-hard in general 

which can be introduced as maximal matching in smallest size [18]. As minimum 

maximal matching, minimum weighted maximal matching is also an NP-hard problem 

which aims to obtain maximal matching which has lowest weight. 
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(a) Example graph with 5 node 6 edges. (b) Example subgraph.

( c) Example induced subgraph.

Figure 1.2: Examples of the concept of subgraph and induced subgraph. 

3 

Before reviewing the literature on the maximum acydic matching, it will be 

helpful to introduce some specific types of graph dasses which are the subject of these 

studies: 

• Based on Goddard et al., a graph is r-degenerate, if there exists a vertex in the

every subgraph of the graph which has order 1 at least and the vertex's degree is

at most r [12]. 

- A matching is r-degenerate matching if the subgraph induced by the set of

vertices incident to an edge in the matching is r-degenerate [12, 19]. 

- 1-degenerate matchings are defined as acydic matching [12]. 

• A graph is bipartite if and only if it does not involve an odd eyde [20]. 

• A graph whose vertices can be divided as a complete graph and independent set

is called as split graph [21]. 

• If every eyde of a graph, whose length is more than three, has a chord, then the

graph is chordal [22]. 
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• Dually-chordal graphs are the clique graphs of chordal graphs [23]. 

Panda and Chaudhary indicate that the decision version of maximum acyclic 

matching is NP-complete for some specifıc subclasses of graphs which are comb-convex 

bipartite graphs and dually-chordal graphs [24]. Fürst and Rautenbach suggested that 

the decision version of maximum acyclic matching for bipartite graphs whose maximum 

degree is less than or equal to four is NP-complete [25]. 

On the other hand, according to Panda et al., maximum size of an acycling 

matching in split graphs can be found in polynomial time by an approximate algo-

rithm. Its complexity is declared as O(n7) [24]. it  is also proposed by Furst et al. that 

maximum acycling matching can be found in polynomial time for P4-free graphs and 

2 P3-free graphs [25]. Baste and Rautenbach declared that maximum acycling match-

ing can be found in polynomial time for chordal graphs by the help of r-degenerate 

matching [19]. By  the studies of Fürst and Rautenbach, acycling matching number 

for connected subcubic graphs cannot be lower than 3
n1 

G
) 

- c where n(G) is order of

graph G and c is the constant [26]. Another study carried on by Baste et al. provides 

a lower bound which is (1 - o(l)) !  fora  graph which has n non-isolated vertices and

maximum degree at most  - They also suggest that maximum acycling matching can 

be found by 3/2-factor approximation and (2(f  ı )) - factor approximation algorithms

for cubic and  -regular graphs, respectively [27]. 

Additionally, an exact algorithm (AM-PIG(G)) is provided by Panda and Chaud-

hary which can compute maximum acycling matching size in polynomial time for proper 

interval graphs which is subclass of chordal graphs. lts complexity is the same as com-

puting for split graphs [24]. 

For a given graph, G = (V, E), V stands for vertices, and E denotes the set of 

edges between vertices. When there is a common vertex between two edges, it can be 

declared that the edges are adjacent to each other [28]. Matching in graph G is a set 

of pairwise independent edges such that no two edges are adjacent [11, 24]. Matching 
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(a) The maximum matching. (b) The maximum acyclic matching.

Figure 1.3: Examples of matching. 

can be thought as node pairing with existing edges [29]. In other words, matchings 

cannot have common endpoints [19]. Vertices incident to edges in a matching M are 

called saturated [28]. 

In this study, we are interested in maximum acyclic matching problem which is 

another variant of maximum matching problem. If every induced subgraph incident to 

saturated vertices is acyclic, then the matching is acyclic [24]. 

There is an example with 8 vertices and 0.4 density shown in the Figure 1.3. 

While dealing with the maximum matching problem, the aim is to saturate all possible 

nodes as can be seen in the Figure 1.3a. On the other hand, while finding the maximum 

acyclic matching, an additional restriction is needed to avoid any eyde created by edges 

that are induced by saturated vertices. In the Figure 1.3a, the matching between the 

nodes 1 and 3 saturates its endpoints. With the existence of other saturated vertices, 

which are the nodes 2, 4, 5, 7 and 8, the subgraphs induced by the node 1 and the others 

have cycles. Therefore, while seeking maximum acyclic matching, the edge between 

the nodes 1 and 3 is not selected as matching so that the graph induced by saturated 

vertices in the Figure 1.3b is a patlı. These vertices are unsaturated and shown as 

grey in the Figure 1.3b. In other words, the graph given in the Figure 1.3b shows the 

maximum matching which also have the property of acyclicity. 
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The main focus of the study is to find a matching of maximum size such that the 

graph induced by saturated vertices has no cycle. Depending on the literature, it is 

seen that there is no such comprehensive study to get the maximum acyclic matching 

in general graphs. it  is known that the problem's challenging part is the acyclicity. 

However, in different areas, acyclicity constraint can be solvable in polynomial time. 

For instance, traveling salesman problem is a very well-known and studied problem 

that also deals with acyclicity constraint while trying to avoid subtours and there are 

several algorithms to solve in polynomial time. Therefore, the aim of the this study is 

to apply an polynomial time algorithm to the maximum acyclic problem by the help 

of literature. 

As far as we know, there is no integer programming formulation or mixed integer 

programming formulation created for maximum acyclic matching problem. Neverthe-

less, it exists for the other types of matching problems such as the minimum weighted 

maximal matching problem [30, 31]. In this study, exact algorithms and heuristics are 

developed to achieve maximum acyclic matching. The former consists of one integer 

programming formulation which is the extensive algorithm and mixed integer pro-

gramming formulation which is the cutting plane algorithm. The latter one contains 

modification and constructive approaches. 

The outline of the thesis is ordered as follows. In Chapter 2, integer programming 

formulation for the maximum matching problem and, exact algorithms and heuristics 

for the maximum acyclic matching are given and explained. In Chapter 3, experimental 

results of all algorithms are compared in the terms of time efficiency, optimality, graph 

density, and derivation from maximum matching. In Chapter 4, significant outcomes 

of the study are explained. 
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2. PROBLEM FORMULATION

In this chapter, problem formulation for the maximum matching problem is for-

mulated and explained in Section 2. 1. Formulations of exact algorithms for the maxi-

mum acyclic matching problem are developed in Section 2.2. Heuristics for the maxi-

mum acyclic matching problem are explained in Section 2.3. 

2.1. Problem formulation for the Maximum Matching Problem 

In the model below, a i j  is adjacency matrix that takes value 1 if there exist an 

edge between i and j, otherwise it takes O. N(i) denotes the neighbours of vertex i. 

X i j ,  Yi  and r i j  are binary decision variables. X i j  represents the edges in the matching 

set. If edge < i, j > is selected in the matching, X i j  takes value 1. 

MaxMac Model: 

max L X i j  

( <i,j>EE) 

subject to L X i j    l 
(jEN(i)) 

X i j  E {0, l} 

(2.1) 

'ili E V  (2.2) 

(2.3) 

As an objective, Model Max:Mac tries to maximize selected edges and Eq.(2.2) 

enforce it to be a matching. In other words, for every vertex i, at most one edge 

incident to i can be selected in the matching. Therefore, the model ensures obtaining 

maximum matching. 
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2.2. Exact Algorithm for the Maximum Acyclic Matching Problem 

In this section, extensive and cutting plane formulations are interpreted. 

2.2.1. Extensive Formulation 

Starting from the description of the maximum acyclic matching, the subgraph 

induced by saturated vertices should be acyclic. For this purpose, the set C of all 

cycles in the graph is formed. In the Extensive Model below, Yi takes value 1 if node 

i is saturated by a matching. r i j  is a decision variable that is used to avoid any cycle 

in the subgraph induced by saturated vertices. Although Yi is defined as continuous, 

it is guaranteed that it can only take binary values by the Equation (2.5). As well as 

Yi, r i j  takes value 1 only if both Yi and Y} are 1 otherwise it takes O. 

Extensive Model: 

max L Xij (2.4) 
( <i,j>EE) 

subject to L Xij = Yi Vi E V (2.5) 
(jEN(i)) 

Xij s Yi Vi E V,j E N(i) (2.6) 

Xij s Yj Vj E V,i E N(j) (2.7) 

r i j  S Yi Vi E V,j E N(i) (2.8) 

r i j  S Y} Vj E V,i E N(i) (2.9) 

r i j  Yi + Y} - 1 Vi, j  E V,i S j (2.10) 

L r - - < I S l - 1  ıJ - VS c C, S-/- 0, iSi 3 (2.11) 
(iES,jES) 

Xij E {0, l }  Vi, j  E V (2.12) 

Yi   O Vi E V (2.13) 

r-- > OıJ - Vi,j  E V (2.14) 
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There are some constraints added to Model MaxMac to get the maximum acyclic 

matching. By  the definition of maximum acyclic matching, nodes saturated by the 

edges of the matchings are taken into account. Equation (2.5) forces that if no edge 

incident to a vertex i is selected in the matching then i is unsaturated, that is Yi = O. 

Equations (2.6) and (2. 7) guarantee that ifan edge is selected in the matching, its both 

end points i and j should be identified as saturated. 

Equations (2.8) and (2.9) provide that if Yi or Yj is unsaturated, then the corre-

sponding rij should be zero. Equation (2.10) satisfies that when both end points are 

saturated, rij can only take value 1 since it is a binary decision variable. As such, rij

takes value 1 only if ij is an edge induced by two saturated vertices. The Equation 

(2.11) ensures that the algorithm concludes with an acyclic solution by forcing sum-

mation of rij to be less than the order of the corresponding subgraph for every possible 

subgraph. 

Since all cycle subsets of vertices are taken into account, the Equation (2.11) 

provides potentially exponentially many constraints to the formulation. 
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2.2.2. Cutting Plane Formulation 

Another algorithm is established by cutting plane formulation to get optimum 

solutions for larger graphs. Extensive Model has an exponential number of constraints 

which is why it can only be applicable for small graphs. A cutting plane algorithm 

is developed so that the constraints related to acydicity can be added when needed. 

l f  the graph induced by saturated vertices is acydic, then the solution is optimal. l f

not, a new constraint expressing that the obtained solution should be changed to avoid

detected cydes is added to the formulation.

Because of the exponential number of constraints (2.11), the constraint is removed 

from the master problem and generated as needed by cuts. Master Problem aims to 

obtain maximum matching. The feasibility of the problem is checked by the subproblem 

which is a depth-first search(DFS) algorithm. Detecting cydes is briefly shown with 

pseudo-codes in Algorithm 2. l f  DFS algorithm cannot find any eyde in the induced 

subgraph by saturated vertices, then the solution is feasible and optimal. l f  else, 

vertex sets leading cydes are detected and related cuts are added by Equation (2.11). 

After adding cuts related to cydes, the master problem works again to find maximum 

matching. The algorithm stops when there is no eyde found by DFS. Hence, the 

process continues by adding cuts one by one until the solution becomes acydic. 

To devise a cutting plane algorithm, Equation (2.11) is relaxed. By  this relax-

ation, the problem can be solved with cutting plane. in the subproblem, cydes in the 

subgraph induced by saturated vertices are detected by depth first search algorithm. 

l f  there is no eyde detected, then the solution is optimal. l f  any eyde is detected in

the subproblem which means current solution is not feasible. Based on detected cydes,

eyde set C is updated and cuts are generated. After cut generation, algorithm returns

to master problem and procedure continues as given in Algorithm 1. 

Depth first search algorithm is also known as backtracking relies on labeling 

principle. Initially, all nodes are unlabelled. Starting from the initial nodes, successive 
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Algorithm 1 Cutting Plane Formulation 

lnput: G = (V, E), S = 0

1: Solve Extensive Model with relaxed constraint (2.11). Let (x,y) be the optimal 

solution and G[y] be subgraph induced by y. 
2: Detect cycles in G[y] by DFS if exist; 

3: i f  There is no cycle in G[y] t h e n  

4: x is a maximum acyclic matching, STOP ;

5: else 

6: Generate cuts (2.11) for all cycles detected in Step 2 and add it to the Extensive 

Model; 

7: Go to the Step 1; 

8: end i f  

nodes are discovered through the edges and marked. l f  successive vertex is already 

marked as visited, then there is a cycle. [32] 



Algorithm 2 Depth-first Seareh Algorithm to Find Cydes. 

Input:  fı, ai,j, S = 0 , s = O

Output:  The set S of all eydes indueed in G by saturated vertiees fı 
D F S ( s ,  i) 

Marki  as "visited" and add to s; 

for j in N(i) do 

i f  j is not marked as "visited" t h e n  

DFS(s, j) 

else 

i f  eard( s)   3 then  

There is a eyde. Add s to S; 

end i f  

end for 

2.3. Heuristics for t h e  Maximum Acyclic  Matching Problem 

12 

In this seetion, further strategies will be explained to aehieve the maximum aeydie 

matehing. These are the heuristies that developed by modifieation and eonstruetion 

approaehes. 

2.3. 1. Modification Algori thm 

Modifieation algorithm is one of the heuristies. In this heuristie, maximum mateh-

ing is given as input whieh is found by Model MaxMae. Thus, the maximum number 

of vertiees are saturated at first. If the subgraph indueed by saturated vertiees eauses 

any eyde, the modifieation algorithm removes one of the edges from the matehing set 

until there is no eyde exists. We remove edges depending on their deereasing degree 

where the degree of an edge is the summation of the degrees of its end vertiees in the 

original graph. After the removing proeedure is eompleted, the modifieation algorithm 

eheeks if there is any edge whose end vertiees do not form a eyde with existing ones; 
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such an edge is added to the matching. in other words, the acyclic matching is made 

maximal in a greedy fashion by adding edges as long as they do not form new cycles. 

Algorithm 3 Modification Algorithm. 

lnput: G = (V, E) 

Take a maximum matching M using MaxMac; 

i f  The subgraph induced by saturated vertices is acyclic t h e n  

M is optimal ; 

else 

while  The subgraph induced by saturated vertices is cyclic do 

Pick an edge e of M with highest degree in the original graph where degree 

of an edge is the sum of its endpoints; 

Remove e from M; 

end while 

while  There is an edge which does not lead to a cycle with existing saturated 

vertices do 

Add edge to M 

end while 

end i f  
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2.3.2. Constructive Algorithm 

Another heuristic is developed with constructive approach. As opposed to the 

Modification Algorithm, it starts with an empty matching set. While selecting the 

edge to be added to the matching set, the process starts with the edge that has the 

lowest degree. Then, the algorithm continues selecting edges with respect to ascending 

degree of edges that incident to unsaturated vertices. Here the intuition is that edges 

with low degree are less likely to create cycles. Adding proceeds one by one as long as 

end nodes of the newly added edge do not lead to cycle with existing ones. 

In Algorithm 4, f) represents saturated vertices and d( e) symbolizes the degree of 

edge e which is the sum of the degrees of its endpoints. G(V /f)) implies the subgraph 

induced by the unsaturated vertices and e' is an edge between unsaturated vertices. 

Finally, e" is the edge that has lowest degree in G (V / f)). 

Algorithm 4 Constructive Algorithm. 

lnput :  G(V, E) 

Initialize M = 0; 

Find e" = min{d(e')} > O where e' E G(V/f)); 

i f  M U e" is acyclic then  

M := M U e " ;  

else 

Find the next e' such that e' / e"; 

Update e" = min{d(e')}; 

i f  e" = 0 t h e n  

STOP 

end i f  

end i f  
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3. EXPERIMENTAL RESULTS

Random graphs are generated by Erdos-Renyi to test the performance of all al-

gorithms. For accuracy of the performance comparison, 10 samples are produced for 

each density and size level and their averages are reported in the given tables below. 

Densities are set to 0.2, 0.5 and 0.8. Through higher level of density, interaction be-

tween nodes increases. Exact algorithm and the maximum matching parts of study are 

conducted based on IBM ILOG CPLEX Optimization Studio 20.1 with Optimization 

Programming Language(OPL). Heuristics are implemented on RStudio. The perfor-

mance of algorithms is compared and reported based on their efficiency. in the result 

tables, ' l h + '  means that the algorithm is stopped when the timer hits 1 hour. The 

result of the objective function near the ' l h + '  is collected at that point. Additionally, 

when the algorithm exceeds its limits or needs more than an hour to process, results 

are given a s a  dash. 

3.1. Performance of Exact Algorithms on Maximum Acyclic Matching 

Table 3.1: Comparison of Exact Algorithms wrt Number of Nodes 

Extensive Cutting Plane 

n p Obj Time [s] Obj Time [s] 

0.2 3.50 1.81 3.50 1.75 

10 0.5 2.70 1.76 2.70 2.50 

0.8 2.00 2.09 2.00 1.92 

0.2 5.50 4.38 5.50 1.90 

15 0.5 3.50 10.50 3.50 1.84 

0.8 2.00 35.31 2.00 4.07 

0.2 6.20 78.86 6.20 3.09 

19 0.5 3.60 1267.63 3.60 7.72 

0.8 2.67 1036.07 2.67 6.01 
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Our two exact algorithms are given in the the first table below. Extensive formu-

lation is formed by direct definition of maximum acyclic matching. i t  can be said that 

cutting plane algorithm reaches the maximum acyclic matching in less time. Since they 

are both exact algorithms there is no difference observed in the values of the objective 

function. The limit of extensive algorithm is much smaller than cutting plane one since 

in the extensive algorithm all possible subsets of nodes are created at one which leads 

to huge memory load and makes it impossible to use this algorithm for larger graphs. 

3.2. Effect o f  S tar t ing  Point on Cutt ing  P l a n e  Algorithm 

To enhance the efficiency of the cutting plane algorithm, outputs of the construc-

tion approach are used as the initial solution since the output is feasible and close to 

the optimal. in Tables 3.2 and 3.3, the performing time of the algorithm with initial 

solution is slightly higher for small graphs because of additional input reading. On the 

other hand, while the graph getting denser, the benefit of initial solution is noticeable. 

in other words, when graph size is higher than 30, given input decreases process time. 
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Table 3.2: Effect of Starting Point on Cutting Plane Algorithm wrt Number of Nodes 

Cutting Plane Cutting Plane with Initial 

n p Obj Time [s] Obj Time [s] 

0.2 3.50 1.75 3.50 3.57 

10 0.5 2.70 2.50 2.70 3.78 

0.8 2.00 1.92 2.00 4.05 

0.2 5.50 1.90 5.50 3.69 

15 0.5 3.50 1.84 3.50 6.00 

0.8 2.00 4.07 2.00 8.49 

0.2 6.20 3.09 6.20 7.57 

19 0.5 3.60 7.72 3.60 12.24 

0.8 2.67 6.01 2.67 14.08 

0.2 6.50 5.33 6.50 7.32 

20 0.5 4.10 6.55 4.10 12.28 

0.8 2.60 13.34 2.60 15.28 

0.2 8.50 12.07 8.50 10.25 

30 0.5 4.60 30.66 4.60 23.12 

0.8 2.90 51.02 2.90 30.13 

0.2 9.60 353.74 9.60 146.86 

50 0.5 4.70 909.42 4.70 475.15 

0.8 3.00 3182.12 3.00 1041.06 

0.2 10.70 2823.77 10.70 2010.65 

75 0.5 5.80 1+ 5.80 3079.31 

0.8 
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Table 3.3: Effect of Starting Point on Cutting Plane Algorithm wrt Graph Density 

Cutting Plane Cutting Plane with Initial 

p n Obj Time [s] Obj Time [s] 

10 3.50 1.75 3.50 3.57 

15 5.50 1.90 5.50 3.69 

19 6.20 3.09 6.20 7.57 

0.2 20 6.50 5.33 6.50 7.32 

30 8.50 12.07 8.50 10.25 

50 9.60 353.74 9.60 146.86 

75 10.70 2823.77 10.70 2010.65 

10 2.70 2.50 2.70 3.78 

15 3.50 1.84 3.50 6.00 

19 3.60 7.72 3.60 12.24 

0.5 20 4.10 6.55 4.10 12.28 

30 4.60 30.66 4.60 23.12 

50 4.70 909.42 4.70 475.15 

75 5.80 1+ 5.80 3079.31 

10 2.00 1.92 2.00 4.05 

15 2.00 4.07 2.00 8.49 

19 2.67 6.01 2.67 14.08 

0.8 20 2.60 13.34 2.60 15.28 

30 2.90 51.02 2.90 30.13 

50 3.00 3182.12 3.00 1041.06 

75 
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3.3. Effect of Acyclic Contraint on Algorithms 

Table 3.4 is given to analyze how acyclicity constraint affects our best algorithms. 

From the wider point of view, dramatic increase in process times are observed when 

number of nodes hits 75, 30 and 50 for MaxMac, Cutting Plane and Construction 

algorithms, sequentially. However, due to lack of acyclicity constraint, increase in span 

time for MaxMac model is not as steep as the others. Deviation from the objective 

value of MaxMac problem is also expected for the other models who aims to achieve 

the maximum acyclic matching configuration. 

Table 3.5 shows that when the density of graphs increases deviation from the 

maximum matching is also arising as expected. This is directly the result of acyclicity 

constraint. More precisely, when the graph becomes denser, acyclicity constraint be-

comes more binding constraint. That causes disclaiming from the number of matching 

achieved by MaxMac algorithm. Denser graphs contain large number of cycles, that is 

why induced graphs of saturated vertices tends to have eyde. Hence, number of subsets 

and also number of inequalities depending on acyclicity constraint leads to an increase 

in time which can be observed for both cutting plane and construction algorithms. 
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Table 3.4: Comparison with MaxMac wrt Number of Nodes 

MaxMac Cutting Plane with Initial Construction Approach 

n p Obj Obj Time [s] Obj Time [s] 

0.2 3.40 3.50 3.57 3.50 0.15 

10.00 0.5 5.00 2.70 3.78 2.60 0.28 

0.8 5.00 2.00 4.05 1.90 0.44 

0.2 6.50 5.50 3.69 5.30 0.31 

15.00 0.5 7.00 3.50 6.00 3.20 0.69 

0.8 7.00 2.00 8.49 1.80 1.91 

0.2 8.90 6.20 7.57 6.00 0.49 

19.00 0.5 9.00 3.60 12.24 3.40 1.83 

0.8 9.00 2.67 14.08 2.20 4.06 

0.2 10.00 6.50 7.32 5.80 0.52 

20.00 0.5 10.00 4.10 12.28 3.30 2.36 

0.8 10.00 2.60 15.28 1.80 6.04 

0.2 15.00 8.50 10.25 7.50 2.00 

30.00 0.5 15.00 4.60 23.12 3.70 9.35 

0.8 15.00 2.90 30.13 2.30 28.66 

0.2 25.00 9.60 146.86 9.00 12.08 

50.00 0.5 25.00 4.70 475.15 4.30 92.68 

0.8 25.00 3.00 1041.06 2.40 288.92 

0.2 37.00 10.70 2010.65 9.70 72.10 

75.00 0.5 37.00 5.80 3079.31 4.50 613.95 

0.8 37.00 2.50 1704.85 

0.2 50.00 10.80 275.06 

100.00 0.5 50.00 4.80 2165.99 

0.8 50.00 
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Table 3.5: Comparison with MaxMac wrt Graph Density 

MaxMac Cutting Plane Construction A pproach 

p n Obj Obj Time [s] Obj Time [s] 

10 3.40 3.40 1.75 3.50 0.15 

15 6.50 5.50 1.90 5.30 0.31 

19 8.90 6.20 3.09 6.00 0.49 

20 10.00 6.50 5.33 5.80 0.52 
0.2 

30 15.00 8.50 12.07 7.50 2.00 

50 25.00 9.60 353.74 9.00 12.08 

75 37.00 10.70 2823.77 9.70 72.10 

100 50.00 10.80 275.06 

10 5.00 2.70 2.50 2.60 0.28 

15 7.00 3.50 1.84 3.20 0.69 

19 9.00 3.60 7.72 3.40 1.83 

20 10.00 4.10 6.55 3.30 2.36 
0.5 

30 15.00 4.60 30.66 3.70 9.35 

50 25.00 4.70 909.42 4.30 92.68 

75 37.00 5.80 1+ 4.50 613.95 

100 50.00 4.80 2165.99 

10 5.00 2.00 1.92 1.90 0.44 

15 7.00 2.00 4.07 1.80 1.91 

19 9.00 2.67 6.01 2.20 4.06 

20 10.00 2.60 13.34 1.80 6.04 
0.8 

30 15.00 2.90 51.02 2.30 28.66 

50 25.00 3.00 3182.12 2.40 288.92 

75 37.00 2.50 1704.85 

100 50.00 
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4. CONCLUSION

The study focuses on maximum acyclic matching which aims to obtain the largest 

matching set such that subgraph induced by saturated vertices does not contain any 

cycle. The largest matching set is referred to as maximum matching, and it is well-

known that the maximum matching problem is a polynomial-time solvable problem. 

However, it is noticed from the literature that maximum acyclic matching problem is 

just examined on specific graph classes. Methods solving maximum acyclic matching 

problem are utilized to fulfill the purpose of this thesis. Therefore, two exact and two 

approximate algorithms are formulated and evaluated. 

Üne of the exact algorithms is an extensive one which process all the constraints 

at once. The other exact algorithm is a cutting plane formulation which contains 

relaxed acyclicity constraints that is where it differs from extensive formulation. Master 

problem of cutting plane formulation operates as a version of maximum matching 

algorithm while subproblem consists of detecting cycles in the subgraph induced by 

saturated vertices. Both exact algorithms are tested on the graphs which are randomly 

generated in different level of size and density. Based on the results of these tests, 

cutting plane formulation performed better than the extensive formulation with respect 

to running time. 

üne of the heuristics is modification approach which takes maximum matching 

set as an input so that tries to deselect some edges from matching set in order to 

achieve acyclicity. After that process, if there is an edge which can be selected as 

matching that does not cause any cycle, modification approach searches for that. The 

other heuristics, construction approach, pursuits edges depending on their degree and 

selects as matching while saturate vertices' induced subgraphs does not trigger any 

cycle. They are also tested with the same samples. it  is realized that construction 

approach predominates with regards to time efficiency and derivation from optimality. 
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The algorithms are also analyzed to understand how acyclicity constraint affects 

the derivation from optimal value of maximum matching problem based on graph 

size and density. it  can be concluded that when graphs get denser, optimal value 

of maximum acyclic matching problem diverge from the optimal value of maximum 

matching problem, as it is expected. As a conclusion, the cutting plane formulation 

wins in the sense of optimality in this study. However, from the time point of view, 

construction algorithm provides near-the-optimal solutions in smaller period of time, 

and it can process larger graphs. 

For future works, these methods can be compared with existing algorithms for 

specific graph classes. 
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