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ABSTRACT

AIR CARGO REVENUE MANAGEMENT SPOT

ALLOCATION PROBLEM

The focus of Air Cargo Revenue Management (ACRM) is to best estimate cargo

capacity, forecast future demand, and take accept or reject decisions on the bookings

accordingly. ACRM is a different problem than passenger revenue management due

to uncertainty of cargo capacity, business, operations, and cargo booking behavior.

These factors add additional complexity to a problem and make traditional revenue

management approaches inadequate. Certain additional models need to be developed

to solve the ACRM problem. The purposes of this thesis are to discuss the processes

of air cargo revenue management and develop a spot allocation model.

In the thesis, we develop a spot allocation optimization model. In necessary

booking control conditions, this model is solved repetitively to decide on allocating

expected demand to cargo capacity. A simulation study is performed after the opti-

mization model to compare the results of our optimization model with a commonly

used heuristic, First-Come First-Served, under defined scenarios and other test prob-

lem settings. Finally, we conclude that our model performed better than 26 out of 27

scenarios according to t-test statistics with a 95% confidence level.
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ÖZET

HAVACILIK KARGO GELİR YÖNETİMİNDE SPOT

PİYASASI KAPASİTE ALOKASYONU PROBLEMİ

Kargo gelir yönetiminin en temel amacı kapasite ve talep tahmini ve bu tah-

minleri kullanarak rezervasyon kontrolü olarak anlatılabilir. Kargo gelir yönetimi

problemi, yolcu gelir yönetimi probleminden birçok faktörde farklılık gösterir. Bunlar

kargo kapasitesinin belirsizliği, yönetim operasyonları ve kargo rezervasyon davranışları

olarak özetlenebilir. Bu faktörler kargo gelir yönetimi problemine ilave zorluk kat-

maktadır ve geleneksel gelir yönetimi çözümlerini yetersiz kılmaktadır. Bu sebeple,

kargo gelir yönetimi modelleri ayrıca geliştirilmelidir. Bu tezin hedefleri kargo gelir

yönetimi süreçlerini tartışmak ve spot piyasası için alokasyon modeli geliştirmek olarak

özetlenebilir.

Bu tezde, bir spot alokasyonu optimizasyon modeli geliştirilir. Bu model rezer-

vasyon kontrolü için gerekli görülen durumlarda tekrar çözülüp beklenen talebin kargo

kapasitesine alokasyonunu gerçekleştirmektedir. Performans testleri için örnek test

havaalanı ağı, farklı senaryolar ve performans metrikleri oluşturulup test ortamında

geliştirilen model ile sektörde yaygınca kullanılan bir sezgisel yöntem olan “ilk gelen

ilk alır” karşılaştırması için simülasyon çalışması yapılır. Simülasyon sonucunda elde

ettiğimiz %95 güven aralığındaki t-testi istatistiklerine göre, geliştirilen optimizasyon

modeli sezgisel yönteme göre 27 test senaryosunun 26 sında daha iyi sonuç vermektedir.
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1. INTRODUCTION

Revenue management (RM) can be defined as a discipline of analyzing previous

analytics and performance data to draw future conclusions about consumer behavior.

In aviation, revenue management is mainly focused on passenger and cargo services.

Earlier in aviation history, airline revenue management was mainly focused on

passenger revenue management. Practical solutions obtained by experience were pop-

ular as the demand for Air-Cargo was much lower. Lower destination diversity and,

less often flight occurrences generated a smaller set of itineraries, which also helped to

work with practical methods easier.

With the help of growing institutional demand for international transportation

and the proliferation of internet booking, it has become more challenging to utilize

flight capacities. According to Boeing World Air Cargo Forecast for 2022-2041, which

is retrieved from [1], world air cargo traffic has been growing 4.3% in the last ten years

(2012-2021), and the growth is expected to be 4% per year over the next 20 years

(2022-2041). An increasing number of flights and count of destinations have made it

even more challenging to work with traditional methods. As such, air cargo revenue

management has become the center of focus in the aviation sector.

On the other hand, only a few significant airlines practice ACRM, and these

RM solutions are still in the early phases compared to passenger revenue management

systems. Hence, there is room for improvement in airline cargo revenue management

in the future.

1.1. Air Cargo Industry Background

There are three main types of users in Air Cargo, asset providers, shippers, and

intermediaries, as stated in [2]. Service providers are air carriers such as Lufthansa
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Cargo AG, FedEx Express, UPS Airlines, and Turkish Cargo. Customers that use

air-carrier services are called shippers. Unlike passenger RM, most air-cargo spaces are

purchased by institutions, namely HP, Dell, Samsung, etc. Institutions prefer to use

air transportation through freight forwarding companies called intermediaries. Inter-

mediaries operate with trucks and offer door-to-door service to shippers. Furthermore,

intermediaries provide cargo consolidation, packing, loading, and third-party logistics

services.

Cargo carriers sell their available capacity in two ways: guaranteed capacity

contracts and free sales. Guaranteed capacity contracts, also referred to as allotments

or long-term agreements, are the reservation agreement of cargo capacity, which is

usually predefined in weight and volume, between providers and shippers on a specific

flight. In addition to guaranteed capacity contracts, air cargo operators can sell their

cargo capacity on the spot market, sometimes referred to as the black market or free

sales. [3] mentions that free sales usually occur a few days before the flight and include

more uncertainty. As a result, spot prices are higher than long-term contracts.

Since free-sale does not guarantee capacity filling, airlines tend to sell more space

than the actual capacity to reduce the effect of variable tendering, no-shows, low-shows,

or cancellations. This part of business practice is named overbooking. Upon the arrival

of demand in the spot market, air cargo companies must decide whether to accept the

current booking or reserve the capacity for a more profitable booking that may arrive

in the future. It is stated in [3] that unit revenue of the booking, demand forecast, and

the current sales profile are essential factors affecting acceptance/rejection decision.

1.2. Air Cargo Revenue Management vs. Passenger Revenue Management

Even though Air Cargo Revenue Management and Passenger Revenue Manage-

ment are used in the same sector, they should be handled differently due to following

reasons:
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(i) Revenue from selling capacity is not only affected by the unit price but also

depends on weight and volume capacity.

(ii) Passenger RM is focused on retail passengers, whereas air cargo usually operates

with institutions. As a result, they have different demand curve patterns.

(iii) Intermediaries have detailed information on their hands and behave strategically.

In contrast, passenger RM is mainly used by myopic passengers.

(iv) Air cargo business consists of two different markets: the guaranteed contract

market and the spot market. These markets have diverse sales channels and

customers.

(v) Unlike passenger revenue management, there often is a list of available routes

to carry cargo. While choosing the optimal route, certain embargo restrictions

should be considered.

(vi) The capacity of air cargo depends on the number of passengers on the flight,

which is another stochastic information.

1.3. Thesis Organization

This thesis contains seven chapters. So far, the introduction to air cargo revenue

management and the comparison of passenger RM with cargo RM are covered in this

chapter. Chapter 2 contains a literature review related to the scope of our problem.

The literature review is further grouped into passenger RM and cargo RM. Cargo

RM includes references for the qualitative overview, overbooking, demand forecast,

long-term demand allocation, short-term demand allocation, and simulation study. In

Chapter 3, the airline cargo revenue management process is defined in detail, a verbal

definition of the problem is given, and its scope is summarized in three different sub-

sections. In Chapter 4, solution methods, class diagram, data generation steps, and

mathematical model for spot allocation are introduced. Chapter 5 describes the nu-

merical experiments conducted. In this chapter, the performances of the mathematical

model, described in the previous chapter, and First Come First Served, a commonly

used heuristic method, are compared. Test problem data generation, scenario settings,

simulation steps, and performance metrics are defined, which leads to results obtained
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in the last part of this chapter. Chapter 6 summarizes the study and gives insight into

future studies.
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2. LITERATURE REVIEW

2.1. Airline Passenger Revenue Management

Revenue Management is defined in [3] as the method of appreciation, expectation,

and persuasion of consumer behavior to maximize profit or revenue of the resource. The

research on RM goes way back to 1972 and originates from the air carrier business,

according to [4]. On the other hand, the scope of the revenue management research in

reservations control was limited to overbooking in the past. According to [5], overbook-

ing estimations were based on predicting the probability distributions of the number

of passengers who would catch and successfully board the flight before flight time. [5]

remarks that studies of overbooking have also led to various valuable research on dis-

aggregate forecasting of passenger cancellations and no-shows. As a result, forecasting

and overbooking studies successfully established ground rules for today’s airline rev-

enue management processes and developed scientific approaches to reservations control

policies.

After the Airline Deregulation Act in 1978, air carriers gained control of prices

and could change their schedule and services accordingly. Air carriers offered various

products, such as business and economy class, to survive and develop in free market

conditions. This innovation has led to attracting more price-sensitive customers and

selling seats that would otherwise be empty. Littlewood’s rule was presented in [6],

which suggests that discounted bookings should be considered as long as it increases the

total expected revenue. Following Littlewood’s Rule, a single-leg allocation model with

multiple fare classes EMSR model was discussed in [6]. EMSR has been extensively in

demand for RM systems, and other models, such as EMSRb, have been developed.

All the literature involved above included restrictive assumptions, and these as-

sumptions created implementation difficulties. Since the 1980s, the expansion of the

Hub and Spoke network has increased the number of passengers that are involved in
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multiple flight legs. Origin-Destination Control problem, as defined in [7], includes the

interdependence of flights and deterministic passenger demands. The article formulated

a minimum-cost hub and spoke network, and its model was implemented at Frontier

Airlines. Furthermore, a multi-leg itinerary capacity allocation problem introduced

in [8] combines the fixed assignment of multi-leg itinerary seats and spot allocation of

the remaining seats to provide flexible assignment.

Finally, the above literature review is limited to the seat allocation problem in

passenger RM since it is relevant to our problem. For other research categories, includ-

ing forecasting, overbooking, pricing, and real-life implementations, we refer to [9].

2.2. Air Cargo Revenue Management

In this section, ACRM studies in the literature are discussed in detail. This sec-

tion comprises qualitative research, overbooking, demand forecast, long-term demand

allocation, short-term demand allocation, and simulation study subsections.

2.2.1. Qualitative Overview

Air Cargo RM and Passenger RM are studied as two different problems. Factors

including uncertain capacity, three-dimensional capacity, itinerary control, and allot-

ments increase the complexity of the ACRM problem. Characteristics and complexities

of cargo RM and differences with passenger RM are further discussed in [10] and [11].

The cargo revenue management process consists of four main steps. These steps

can be named capacity forecasting, allotment allocation, overbooking, and spot alloca-

tion. The Cargo RM process is also described in detail in [10].

The real-life implementation of cargo RM systems is another point of interest

in the literature. [12] shares their experience of implementing a live cargo RM system

in KLM Cargo and emphasizes the critical factors in ACRM success. Similarly, [13]
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describes the process of implementing Sabre’s CargoMax as the Revenue Management

system at various airlines, including Lufthansa Cargo, the benefits achieved from this,

and also the complexities and pitfalls. Critical success factors for future implementation

projects are derived from those experiences.

2.2.2. Overbooking

In ACRM, overbooking is defined as intentionally selling more space than avail-

able to compensate for no-shows, cancellations, and variable tendering. Regarding the

stochastic nature of the cargo capacity in cargo RM and show-up-rate-estimations,

an expected cargo capacity usage is calculated, and the expected remaining capacity

tends to be overbooked. [14] presents an economic overbooking model under stochastic

capacity, which minimizes the expected overage and underage cost. Although the ca-

pacity is assumed stochastic, the two-dimensional nature of cargo overbooking is not

addressed.

Offload of air cargo may be the result of exceeded weight capacity as well as

volume capacity. Therefore, a two-dimensional overbooking model must address the

show-up volume and weight dependency. This problem is first discussed in [15]. An

overbooking curve is introduced in this model, which obtains two different optimal

results in two dimensions.

2.2.3. Demand Forecast

Demand forecasting estimates future demand with the statistical analysis of past

data. [16] discusses a new secondary decomposition-ensemble approach with cuckoo

search optimization for air cargo forecasting. A new secondary decomposition-ensemble

method with a cuckoo search algorithm is defined in [16] for cargo demand forecasting.

In particular, the original air cargo time series is divided into parts by an enhanced

decomposition formwork. Enhanced decomposition formwork comprises variational

mode decomposition, sample entropy, and empirical mode decomposition.
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2.2.4. Long-Term Demand Allocation

Long-Term Demand (Allotment) Allocation is one of the cargo RM process steps.

According to [10], after cargo capacity forecasting and itinerary generation, the avail-

able capacity is first allocated to allotments (long-term contracts). The process then

continues with overbooking the remaining capacity and short-term (spot) allocation of

the overbooked capacity.

Long-Term demand is protected via options contracts between forwarders or

large-size customers and air carriers. These contracts intend to sell the cargo capacity

less expensive than the spot market as they sell the “guaranteed capacity” and decrease

the stochasticity-related risks of the process. [2] introduces a long-term agreement con-

tract of the cargo capacity. This contract suggests that each forwarder reports the

capacity use estimation and pays the reservation in advance. After the actual demand,

which should be smaller than the reserved capacity, is realized, an additional execution

fee is paid regarding the realized cargo capacity. Though it mainly shifts the risk from

air carriers to forwarders, [2] also focuses on reducing their default risks of them by

solving the unused capacity fee problem.

2.2.5. Short-Term Demand Allocation

Alternative to long-term agreements, air cargo operators observe short-term de-

mand through the spot market. Spot requests arrive quickly, usually 1-2 weeks before

the flight departure. Air carriers decide whether to accept or reject booking after

monitoring the demand capacity, available capacity, and offered price. Unlike long-

term contracts, counterparties do not agree on guaranteed capacity, so there may be

no-shows, low-shows, and variable tendering. Short-Term spot demands bring more

risk to air-carrier and are often more expensive than long-term contracts. As a result,

airlines that can sell more capacity on the spot market tend to generate more revenue

per unit capacity. Despite the dynamic state of the problem and the importance of

real-life implementation on the balance sheets, only a few studies in the literature are
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involved in this area.

The first line of research often involved single-leg models focused on deterministic

dynamic programming problems. Later, these studies were extended to stochastic

dynamic programming models and Markov Chain processes. [17] develops a discrete-

time dynamic programming model for finding an optimal booking policy. Their solution

is discussed as a base case and extended in many articles.

Second, single-leg models with deterministic demand are covered. Another single-

leg model discussed in [18] aims to maximize the expected contribution. Since they

use Markov Decision Process, an exact solution is impractical, and they develop six

other heuristics to overcome this difficulty. The weight and volume of the demand

were approximated by average values in the heuristics to avoid the curse of dimen-

sionality. Similarly, [19] proposes a discrete-time Markovian model for the booking

request/acceptance/rejection process, which is followed by the bid-control policy. The

problem discussed in [19] possesses a dynamic control policy as they accept book-

ings only when the revenue from accepting it exceeds the opportunity cost, which is

calculated based on bid prices. Furthermore, [20] develops a single-leg solution by ap-

proximating the expected revenue function in the DP model while taking into account

the stochastic volume and weight of shipments. They obtain the results by de-coupling

weight and volume components.

Later, studies were extended to deterministic, multi-leg models. [21] improves the

single-leg model [17] discussed above to a multi-dimensional dynamic programming

model to present a network RM problem for air cargo. They proposed two models:

dynamic programming, which obtains the exact solution, and linear programming (LP)

approximation heuristic to overcome computational complexity. They assume finite

numbers of cargo and neglect the two-dimensional nature of cargo capacity. Similarly,

[22] formulated a deterministic dynamic programming approach that captures both

passenger and cargo revenue management. Although they consider weight, volume,

container capacities, and time dimensions, they assume that expected demand is used
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in the model.

Finally, probabilistic multi-leg models in the literature are covered. [23] takes

short-term demand allocation as the scope and uses a bid-price control policy. [23] also

claims that bid-price control policy is asymptotically optimal in short-term demand

allocation problems. However, they use bid prices which are the mean value of the

results of all simulations.

Multi-leg models have been extended from single-leg models to include more

complexity to the problem. The complexity is even more increased if the probabilistic

demands are used. Regarding the complexity in passenger RM, [24] came up with a

claim that simple deterministic approximation methods based on average demand often

outperform more advanced probabilistic heuristics. To test this phenomenon, [25] study

carefully examines the trade-off between computation time and the aggregation level

of demand uncertainty with examples of a multi-leg flight and a single-hub network.

2.2.6. Simulation Study

Simulation is performed to compare the performances of the policies under stochas-

tic control variables. The numerical experiment test problem settings are often commonly-

held in literature. Also, first-come-first-served (FCFS) is chosen as the base-case policy

while comparing the performance of the policies.

First of all, [18] develops a simulation environment to test the performance of the

six heuristics previously developed in their article. The test problem settings of this

study assumed random volume but deterministic weight. Also, each product category

followed a lognormal distribution. They also assumed ten different product categories

and that the revenue function is piecewise linear. Other parameters were sixty days of

the decision period, and capacity parameters were obtained from Boeing-747 technical

data. Finally, they used FCFS as a base policy to compare the heuristics. [20] conducted

a simulation study following the development of their approximate algorithm for the
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two-dimensional air cargo revenue management problem. First, [20] extends the 2-

D DP model at [18] and discusses its intractability for most practical problems and

proposes one of the six heuristics in [18], named as HD, to overcome the curse of

dimensionality. Later, they develop the Joint Approximation Heuristic and design a

numerical experiment to test the performance of their heuristic. Some settings of this

study were based on [18]. They also used FCFS as a base policy. They used three

rate classes, nine cargo product groups, and 60 days simulation period for test problem

settings and compared JAH, HD, and FCFS policies.

[19] uses a Markov model for single-leg air cargo revenue management under a

bid-price policy. First, they define the problem as a Markov process and use a bid-

price approach similar to that of [23] to manage the booking requests. Then, they give

a large-scale MIP formulation and a discrete-time Markov chain formulation with a

bid-price control policy. After providing a theorem for the airline’s expected revenue

until period n, they compare the results of different policies, namely the discrete-

time Markov-chain formulation described in this paper, algorithm in [23] and FCFS

policies. Comparison is made based on a simulation procedure based on Boeing-747

technical data, ten days of the simulation period, log-normally distributed demand

weight, inverse density, volume, and demand to arrive at non Homogeneous Poisson

Process.

The classic dynamic programming methods are not suitable for the ACRM prob-

lem of a realistic size due to the curse of dimensionality. Many heuristic approaches,

such as the well-known bid-price control method, approximate reservation control deci-

sions according to different static formulations. These mathematical formulations then

need to be solved again to take into account the dynamic features of the problem. [26]

discusses the asymptotic optimality of the randomized linear program for network rev-

enue management and then conducts a numerical experiment study. First, they define

the problem verbally and write the Hamilton–Jacobi–Bellman equation for the problem.

Then, they formulate the deterministic bid price heuristic and well-known randomized

LP. Finally, they compare the performance of three solution methods, Randomized bid
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price heuristic, Deterministic bid price heuristic, and Deterministic bid price heuristic

with finite differences.

Furthermore, a different method is presented in a simulation experiment summa-

rized in [27], where no problem re-solving is required. This method is defined as the

parameterized function approach. According to [27] results, the parameterized func-

tion method is an excellent alternative to the bid-price control method, which requires

frequent resolving of the problem for favorable outcomes. The numerical experiment

was performed in 18-time units. A small hub and spoke network with four nodes and

only one-way flight movement were considered, resulting in 5 origin and destination

pairs and 20 associated fares. In addition, they used a non-homogeneous Poisson pro-

cess, which led to a triangular-shaped demand intensity vs. time graphic, to simulate

booking arrivals and created a different peak arrival time for each fare class.
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3. PROBLEM DEFINITION

Air Cargo Revenue Management is interested in many factors, including flight

schedule, itinerary generation, demand allocation, and booking control. The process

chart of the problem environment can be seen in Figure 3.1 below.

Figure 3.1: Air Cargo Revenue Management Decision Process Flow

The process flow can be analyzed in detail in three different categories. The first

category generates route and cargo capacity estimations, the second process category

allocates allotment decisions, and the final process allocates spot decisions and alters

these allocations regarding the booking arrivals.

3.1. Determining Cargo Capacities and Itineraries

Given the flight schedule, assigned aircraft, and itinerary generation rules, this

section provides detailed information on capacity forecasts and itinerary generation.

3.1.1. Capacity Forecasting

Once the flight schedule is published, and aircraft are assigned to flights, ca-

pacity forecasts are generated. Each aircraft type has varying weight and volume

capacities. Aircraft weight components that are defined in [28] in detail mainly consist

of fuel weight, total payload, and empty operational weight. A brief diagram of aircraft

weights and components can be seen in Figure 3.2 below. Excluding what is neces-

sary for operation and fuel, each aircraft has a specific weight capacity called payload.
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Figure 3.2: Aircraft Weight Components

Payload is divided into cargo and passenger in passenger aircraft, whereas it is mainly

devoted to air cargo in cargo aircraft.

Weight and volume of the cargo are the two most important factors affecting

the cost of shipment. Air carriers often use chargeable weight, which is the maximum

weight and dimensional weight. Dimensional weight is the weight equivalent value of

the volume. In air freight, 6000 cubic cm is equivalent to 1 kg in terms of the metric

units of measurement, defined by the International Air Transportation Association

(IATA) and accessible in [29].
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Although most of the aircraft components presented in Figure 3.2 are static

for aircraft, many components, including passenger weight, baggage weight, and fuel

weight, are changeable and hence forecasted. The left-off weight is referred to as the

cargo weight capacity forecast. Similar calculations can be made to generate cargo

volume capacity forecasts for an aircraft.

Weight and volume capacities also differ in aircraft types. Whether the aircraft

is a narrow body or wide body affects cargo capacity. Furthermore, some airplanes are

purely devoted to cargo, and cargo capacities for these aircrafts may be up to payload

level for weight and volume.

3.1.2. Itinerary Generation

Before going into detail about this section, specific aviation terminologies need

to be introduced. A leg, also known as a flight leg, is a direct flight from one airport to

another. A segment is a leg or combination of legs with the same airport number from

one airport to another. On the other hand, an itinerary is defined in [30] as a nonstop

or connecting path through an airport network to travel from origin to destination.

Itineraries include but are not limited to segments since various legs with different

flight numbers can be included in an itinerary.

The International Civil Aviation Organization (ICAO) is a multinational orga-

nization founded by 193 national governments for cooperation and diplomacy in air

traffic in 1944. Brief information about ICAO can be obtained in [31]. Two main

constraints of aviation nature apply while generating itineraries: fifth freedom and

minimum connection time. ICAO defines all nine of the freedom rights in [32] and

classifies beyond the Fifth as so-called since only the first five freedoms have been

agreed upon by international treaty. An airline needs to have fifth freedom rights to fly

from one country to another country if the airline is based in neither of these countries.

Fifth freedom flights are often less expensive and less crowded due to their positioning.

Every airport has set an amount of time, called minimum connection time, defined as
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the minimum time required to transfer from arriving to departing aircraft. Thus, we

generate itineraries considering these constraints.

A brief methodology of itinerary generation, which is used as input to an air-cargo

revenue management problem, is introduced in the data generation section. K-means

clustering may be used to generate k itineraries between a given origin and destination,

and it can be evaluated for all origin destinations in the network.

3.2. Allotments and Overbooking Processes

A detailed process flow is presented in Figure 3.3 to summarize the allotment

and overbooking decisions. This part of the process takes itinerary and flight legs with

capacity forecasts as input and gives the overbooked remaining weight and volume

capacities as output. This part of the process is not included in the scope of this

thesis.

3.2.1. Allotments Allocation

As mentioned in the introduction, there are mainly two types of air-cargo sales:

allotment and spot. Allotments are spaces reserved for big customers. These deals

often constitute most cargo capacity sales depending on the air-cargo provider. Cargo

capacity is reserved with long-term contracts. Sometimes, “low-show” or “no-show”

may occur, so each customer has a show-up rate estimation.

The allotment is often signed way before the flight time. Cargo providers must

consider allotment demand forecasts before deciding on the agreement for a long-term

contract. Airlines widely benefit from signing a capacity agreement since it resolves the

low-capacity utilization, increases the load factor, penalizes guaranteed capacity devi-

ations, and attracts more shippers because of long-term low-cost contracts. Further-

more, long-term agreements include a higher level of communication between airlines

and customers, and information sharing improves the efficiency of cargo allocation.
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Figure 3.3: Allotments Allocation and Overbooking

The allotment allocation process begins with estimating the show-up rate of each

customer. Show-up rate estimations of customers are often generated using the pro-

jection of past data. Allotment demand is another stochastic input of this process.

Some long-term agreements may have already been settled, but other allotments are

forecasted to date. Allotment demand forecasts are usually made regarding past data.

After allotment demand, itinerary and capacity forecasts are given for a flight, its al-

lotment allocation is determined. Allotment allocation is another part of the literature

interest, and the optimization model discussed in [3] gives excellent insight into the

problem.
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Whether to sell the cargo space for a long-term contract at a given price or to

save the area for the spot market is often the topic of broad interest among air-cargo

providers. Some carriers prefer lower levels of allotment allocation to aim large prof-

its at black market sales, while others minimize their risk and uncertainty by largely

allocating their sales capacity to allotments. Hence, deciding on the optimal allot-

ment/spot ratio is often considered part of this process and is usually included as a

decision parameter in mathematical models such as the model discussed in [2].

3.2.2. Overbooking

Like passenger overbooking, air carriers usually overbook cargo capacity to fill

expected empty capacity by low-show, no-show, cancellations, or variable tendering.

As the name implies, low-show refers to the case when a lower level of cargo than

the long-term agreement amount is realized. Similarly, a no-show describes the case

when an agreement is made, but the shipment does not show up. Variable tendering

describes cargo that shows up less or more than the agreed amount.

The optimal overbooking level should minimize the expected over-sale cost and

the underutilization caused by no-shows, cancellations, and variable tendering. A brief

discussion of air-cargo overbooking and a cost model under a specific capacity is pre-

sented in [10].

3.3. Demand Forecast, Spot Allocation and Booking Control

Given itineraries, flight legs, and remaining capacity forecasts after allotment

allocation and overbooking, this section provides the spot market demand forecast,

allocation, and booking control. Later in the next chapter, a mathematical model will

be developed for spot allocation. The process flow can be seen in detail in Figure 3.4.
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Figure 3.4: Demand Forecasting and Spot Allocation Updated

3.3.1. Demand Forecast

Unlike demand forecasting for allotments, spot market demand forecasting in-

cludes but is not limited to historical demand projection, short-term pre-departure
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booking information, historical realization profiles, and allocation feedback.

Various methods are used in demand forecast price parameter estimation, and

rate-class methodology is widely used in literature. In this method, unit prices are

divided into k price levels, called rate classes, and these price levels are located at

points where historical sales price data point distances are minimized.

Unit cost and revenue of cargo transportation depend on location and product

group. Small-distance flights consume less fuel and should have a lower unit cost.

Different product types have additional handling costs, and the carrying charge for live

animals or delicate products is much higher than for standard cargo. Hence, assuming

that the historical data sample is large enough to describe each factor independently,

generating a separate forecast for each should generate more accurate results.

3.3.2. Spot Allocation

After allotments are allocated, the remaining capacity of an aircraft is devoted to

spot allocation. Spot allocation is briefly the devotion of expected remaining capacity

to future booking sales. Its output directly affects and is affected by the booking control

policy. Bookings are accepted or rejected regarding different policy rules. Accepted

bookings require the assignment of an itinerary and a decrease in the itinerary’s leg

capacities.

The main objective of spot allocation is to find the optimal demand allocation

to maximize the expected total revenue. It requires capacity forecasts after allotment

allocation and overbooking, itinerary, and demand forecast. Its output should display

an allocated weight of each demand’s itinerary. It can also give allocated capacity in

each flight leg.
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3.3.3. Booking Control

Given the allocated capacities, booking control is the process that makes booking

accept/reject decisions and rate requests in the spot market according to a set of

predefined criteria. The spot market is where cargo providers and their customers

meet to find a settlement on the carrying price of a booking. Customers offer a bid

price for their cargo, and air carriers may make another price offer considering rate

classes. An airline may also put the empty cargo space for sale on the spot market to

utilize its capacity.

Booking arrival is a stochastic process defined in [33] as a non-homogeneous

Poisson process that peaks at 3-5 days before take-off. Weight, inverse density, and

volume of a booking are distributed lognormally, as stated in [4], [20], [34].

Many bid price control algorithms are presented in the literature. For instance,

[33] presents a two-phase formulation; phase 1 includes the static formulation of the

optimal allocation of the cargo capacity under a non-homogeneous Poisson process

of demand arrival, and phase 2 demonstrates a dynamic programming model which

accepts/rejects spot orders as they arrive. The formulation is only solvable for small

problem sizes due to computational complexity. [20] presents a bid price control policy

by joint approximation heuristic and compares it with other policies in the numerical

experiment section.

Finally, comparisons of policies are made under certain numerical experiment

settings in [18] is used as a base setting for many other articles. Three different models

are presented in the previous sections. They are compared with First Come First

Served Policy, a widely used policy by most air-cargo providers, and many articles as

base policy. Furthermore, [27] compares the performance of different policies in a test

environment similar to [18].

The processes, summarized in the three sections above, contain complete infor-
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mation on air-cargo revenue management. This thesis focuses mainly on the third

section, Demand Forecast, Spot Allocation and Booking Control. As explained above,

the problem has a dynamic solution, and some factors, including demand, capacity,

weight, and volume, are stochastic. Furthermore, airport network, flight schedule,

aircraft assignment, and itinerary sample data are necessary to construct a multi-leg

network optimization problem. The generation of sample data for the optimization

model and booking control policies are discussed in the data generation section in

detail.

To draw a more clear perspective on the problem, the following assumptions and

simplifications are made:

� Time horizon for the test problem setting is set as 30 days. On day 0 of the

simulation, all cargo capacities that are open to free-sale bookings are available.

� Inverse Demand Density is distributed as log-normal with mean µ1/d and variance

σ2
1/d.

� Demand Weight is distributed as log-normal with mean µw and variance σ2
w.

Then, Demand Volume is also distributed as log normal.

� Unit Revenue from a booking is calculated as the summation of rate classes of

the flight/s of selected itinerary. RateClass capacities are determined. Booking

requests start to be committed from the smallest to the largest until the capacity

is reached.

� Cargo weight and cargo volume capacity of each flight are assumed to be Trun-

cated Exponential(λ) in the interval [0,1].

� It is assumed that every cargo has a 100% Show-Up Rate.

� It is assumed that the air-cargo provider does not apply overbooking.

� Each flight has three different rate-class levels. Unit revenue from a booking is

calculated as the summation of the selected flights’ rate classes evaluated over

these levels.

A small airport network is described in Figure 3.5 below. This network is also



23

used in spot allocation and numerical experiment chapters. It makes it possible to

apply many concepts to the problem, including itinerary generation, fifth freedom in

international flights, and a summary of the significant air traffic in İstanbul Airport,

which is taken as a hub station. Please note that it is not a pure hub-and-spoke

network. The network is defined as small as possible since a large network size affects

problem complexity drastically.

There are ten airports and 13 different flight routes in the network. It is possible to

connect 45 different origin-destination pairs using itineraries. Flights in both directions

are possible, and the network is classified as an undirected graph.

Figure 3.5: Sample Airport Network
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In light of the above information, the definition of the problem is to find a revenue

management approach that:

� Maximizes the expected allocated total revenue of spot sales

� Minimizes the effect of uncertainty

� Maximizes the revenue per unit capacity

� Utilizes air cargo effectively
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4. SOLUTION METHODS

4.1. Class Diagram and Data Generation

Given the cargo capacities and demand forecasts, the objective of the spot alloca-

tion model is to allocate the cargo demand to a set of itineraries so that total revenue

is maximized.

4.1.1. Class Diagram

Figure 4.1: Class Diagram of Data Used in Optimization Model

A class diagram for the spot allocation problem is introduced in Figure 4.1 above.

A FlightLeg class has Origin, Destination, FlightDate, and FlightNo fields described in

LegID and capacity forecasts for weight and volume, demonstrated as WeightCapacity

and VolumeCapacity. The itinerary class is created by the meaningful connection of

routes in FlightLeg class. Each Itinerary is then assigned a StartTime and EndTime

from the minimum departure dates and maximum arrival dates of the FlightLegs in the
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Itinerary. Then, ItineraryLeg, the joining class of Itinerary and FlightLeg, is created to

describe capacity forecast information for each leg item in an itinerary. Demand class

is a descriptive form of demand forecast created for spot demand. Demand forecast

data contains the weight, volume, and density forecast for each origin, destination,

product type, rate class, and day. The origin and destination airports do not have

to have a direct route. DemandItinerary class is created as a join of Demand and

Itinerary classes to match each demand with possible itineraries. Finally, the allocated

capacity weight field in the DemandItinerary class is set as a decision variable. The

data generation procedure of each class is explained in the following subsection.

4.1.2. Data Generation

A data generation algorithm is created to generate statistically consistent data for

each class. Sample flight schedule data set is taken from Turkish Airlines. The pseudo-

code of steps taken for each class is briefly summarized below. Steps to generate flight

legs given airport network and flight schedule sample:

(i) Pick a random origin and destination from the Origin Destination list, which is

created considering fifth freedom rights and direct flight availability.

(ii) Generate departure time, randomly selected within the time horizon. Then, as-

sign arrival time by adding E(Flight Time) + ϵ where the error term ϵ is dis-

tributed as Normal(0, σ2)

(iii) Randomly pick an aircraft from the previously used aircrafts list of the flight leg.

(iv) Generate weight and volume capacity forecast. The ratio of cargo capacity to

total capacity is distributed exponentially with the rate λ, which is based on [35]

reference. Truncated exponential distribution, defined in [35], is used to limit

generated random variables in [0,1] intervals.

To generate itineraries from previously generated flight legs and airport pair networks:

(i) Determine possible paths from a given origin to destination by using flight dis-
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tances as a weight parameter.

(ii) Order by total weight and take up to the k-th shortest path to be added to

itineraries.

(iii) Apply (i) and (ii) for all possible origin destinations.

Finally, demand forecasts are generated from previous bookings samples as fol-

lows:

(i) Group past bookings in each day per origin, destination, and product type and

summarize the weight and volume of the grouped bookings; call it Demand Sam-

ple. Then generate n rate classes from previous rates by using k-means clustering

centroids.

(ii) For given origin, destination, product type, day, and rate class, generate demand

weight and volume using the lognormal distribution of previously constructed

Demand Sample.

(iii) Repeat (i) and (ii) for all days, origin destinations, product types, and rate classes.

Having generated data necessary for the problem, the mathematical model is

defined in the next section.
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4.2. Spot Allocation Model

Table 4.1: List of Symbols

Sets

I set of itineraries, indexed by i

F set of flight legs, indexed by f

D set of demands, indexed by d

I(d) ⊆ I set of itineraries to which demand d ∈ D can be assigned

D(i) ⊆ D set of demands that can be assigned to itinerary i ∈ I

F (i) ⊆ F set of flight legs that is contained in itinerary i ∈ I

Parameters

pdi unit price of using itinerary I(d) to satisfy Demand d ∈ D

DWd forecasted demand weight of demand d ∈ D

dd average density of demand d ∈ D

CWif weight capacity of the flight leg f ∈ F (i) which is included in itinerary i ∈ I

CVif volume capacity of the flight leg f ∈ F (i) which is included in itinerary i ∈ I

Decision Variables

xdi allocated weight capacity of itinerary i ∈ I(d) to demand d ∈ D

4.2.1. Optimization Model

In this section, we introduce an LP model which maximizes the total allocated

revenue regarding the demand forecast of each origin-destination and the weight and

volume capacities of each flight leg constraint. Model sets, parameters, and decision

variables are described in Table 4.1. in detail. Optimization model outputs are used

in the booking control process to accept the booking if the corresponding capacity

is available, and committed booking capacities are deducted from allocated capacity
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weight and volumes. The problem can be formulated as

max
∑
d∈D

∑
i∈I(d)

xdipdi, (4.1)

s.t.
∑
i∈I(d)

xdi ≤ DWd ∀d ∈ D, (4.2)

∑
d∈D(i)

xdi ≤ minf∈F (i)(CWif ) ∀i ∈ I, (4.3)

∑
d∈D(i)

(
xdi

dd
) ≤ minf∈F (i)(CVif ) ∀i ∈ I, (4.4)

xdi ≥ 0 ∀i ∈ I,∀d ∈ D. (4.5)

Sets, parameters, and decision variables are defined in Table 4.1. Objective (4.1) max-

imizes the total allocated revenue of all demands and all itineraries of demands. Con-

straint (4.2) ensures that the total allocated weight of specific demand to its available

itineraries is not greater than the forecasted weight. It is evaluated for all demands.

Constraint (4.3) guarantees that the total allocated weight to a specific itinerary from

all of its demands cannot be greater than the leg capacity with the minimum cargo

weight capacity. Constraint (4.3) is written over all itineraries. Constraint (4.4) en-

sures the same condition for capacity volume. Allocated weight capacity is divided by

volume on the left-hand side of the equation, and the minimum volume capacity of

flight legs is taken on the right-hand side.

The entire process of spot allocation and booking control is a stochastic dynamic

problem with uncertain demand, weight, and volume capacities. There exist a max-

imum count of DxI decision variables in the model. Besides, the Constraint (4.2)

count is equal to the number of demands in D. Counts of Constraints (4.3) - (4.4) are

equivalent to the number of itineraries in I, but each inequality is evaluated a total of

F (i) times due to the right-hand side min() expression. Hence, these constraints are

evaluated for each flight leg in each itinerary. The size of the set of itineraries (I), set

of demands (D), and set of flight legs (F ) depend on the number of origin-destination

pairs. If a new node and an edge are added to the problem, its complexity increases
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dramatically. Problem size is also dependent on the number of flights that are gener-

ated for an O&D pair as it does not only increase the size of set F but also the sizes

of sets I and D. Other factors, such as increasing the count of product groups also

increase the problem size, but it only affects the set’s count D.

The optimization model introduced above needs to be resolved frequently to

respond to the changes in stochastic parameters. A set of internal or external factors

affect demand and capacity. For instance, a new passenger booking or cancellation is

not a part of the cargo RM decision process. Still, it may affect the available cargo

capacity of a flight in real-life. On the other hand, problem resolution requires a lot

of computational time and effort for complex networks with a high degree. Hence, for

an O&D network with less than 20 nodes and 30 edges, the optimization model can be

resolved upon the arrival of each booking to ensure optimality. In contrast, it could be

resolved on a regular time basis, with a frequency that holds the computational time

vs. optimality trade-off.
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5. NUMERICAL EXPERIMENTS AND RESULTS

In this chapter, the performances of two policies, Spot Allocation and FCFS, are

evaluated under different scenarios. Spot Allocation sets aside a specific capacity for

each flight to cargo demand expected to arrive in the upcoming days before the flight.

Allocation decisions are based on the output of the mathematical model (4.1) - (4.5).

It assumes the static bid price of the demand.

First Come First Served (FCFS), on the other hand, is considered as another

policy as it is a base case used in many air-cargo providers with simple revenue man-

agement policy and is also used in [19] and [21] to evaluate performances of different

policies. First Come First Served presents the lowest available rate-class for the book-

ing upon their arrival time and commits every booking until the capacity of available

itinerary/s is full. It can be viewed as zero bid price control policy with no previous

allocation.

Both policies assume a 100% Show-Up Rate for the committed bookings and no

overbooking. In the first section of this chapter, test problem settings for the simulation

runs and simulation steps are introduced.

5.1. Test Problem Settings

Our test problem consists of the following:

� 10 nodes, 13 edges

� 45 Origin & Destination Pairs

� 3 Product Types

� 3 Rate Classes

� 30 days of booking horizon before the flight date
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The same airport network, shown in Figure 3.5 in Problem Definition, is used

to test FCFS and Spot Allocation policies. Next, test problem data generation and

scenario settings are described in detail.

5.1.1. Test Problem Data Generation

Bookings arrive with a Non-Homogeneous Poisson Process with rate λmax. Λmax

is calculated different for each Origin & Destination pair. Demand arrivals display a

triangular-shaped Demand Intensity Pattern. The arrival rate starts from 0 on day 0

(30 days before the flight), reaches the maximum, and declines after the peak. Peak

day is randomly chosen in each simulation run and origin & destination pair.

Three levels of rate class allocations are introduced, and the ratio of each group

is chosen as different in scenario settings. The first level of the rate class defines the

lowest possible acceptance rate, while the third level implies the highest rate for the

flight. Early arrived bookings have the advantage of getting the first level of rate class.

After a certain percentage of flight capacity is filled with committed bookings, second

and third-level rate classes can be offered, respectively. Both policies start to fill flight

capacity from the lowest available rate class.

Unit revenue of a booking is calculated as the summation of the minimum rate

classes from flights of an itinerary that can be assigned to the booking. Even though

rate classes are generated similarly in each policy, unit revenue of the same booking

may differ in FCFS and Spot Allocation as FCFS starts filling the bookings from the

itinerary with the highest available capacity. In contrast, spot allocation chooses the

itinerary with the lowest available unit to first satisfy demand.

The generated data size largely depends on the test network and time horizon

selected. Thus, forming a modest-sized but representative problem size is crucial re-

garding the problem’s complexity and solution time.
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5.1.2. Test Problem Scenario Settings

Different scenarios are presented for the test problem. Each scenario consists of

a different combination of the following three factors; demand arrival intensity, peak

demand time, and the ratio of the flight capacity allocated to the rate class scale. Each

element has three key levels adding up to 27 different scenario settings.

Demand arrivals are categorized as low-intensity (smaller λmax), medium-intensity

(regular λmax) and high-intensity demand arrival (larger λmax). Medium-intensity uses

regularly generated λmax of each origin and destination. Regular λmax are multiplied

by 0.8 and 1.25 to create low-intensity and high-intensity demand arrival, respectively.

The demand arrivals table can be seen below for reference. Regular demand intensity

for each origin-destination can be seen in Table 5.1.
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Table 5.1: Regular (Medium) Demand Intensities of Each O&D

Origin Destination λmax Origin Destination λmax

JFK IST 31.1755 ORD NBO 1.8051

IST JFK 25.1335 EZE GRU 1.6806

IST HKG 13.7254 JFK NBO 1.5038

ORD IST 11.3623 MIA HKG 1.6198

HKG GRU 8.2445 EZE IST 1.2672

HKG IST 8.2005 GRU EZE 1.2433

MIA GRU 15.3453 MST IST 1.1040

MIA IST 13.6636 HKG ORD 1.1028

IST ORD 12.3388 NBO IST 1.0025

IST MIA 10.7340 NBO JFK 0.9501

IST GRU 10.1864 NBO MIA 1.1053

IST ATL 9.9084 GRU NBO 0.7680

GRU IST 9.8090 ATL NBO 0.7676

ATL IST 7.9341 JFK HKG 0.7405

HKG EZE 4.8829 EZE HKG 0.5726

NBO MST 7.7727 ATL HKG 0.5410

HKG MIA 6.6123 HKG NBO 0.5090

IST EZE 3.2490 GRU MIA 0.4818

MIA NBO 2.8466 NBO ATL 0.4251

IST NBO 2.5401 HKG ATL 0.3930

GRU HKG 1.9793 ORD HKG 0.3287

HKG JFK 1.9720 NBO HKG 0.0050

IST MST 1.8111 ORD GRU 0.0050

Peak booking arrival times are divided into three key levels: early, regular, and

late peak times. Early peak times can happen (10-15) days before the flight. Regular

peak times occur within (3-7) days before the flight. Finally, late peak times happen

in the last three days (0,3) before the flight.
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Rate class capacity allocation can be defined as allocating a flight’s percentage

capacity weight and volume to a previously determined rate. Three different scenarios

are presented for rate-class allocation. First, in the low rate class allocation scenario,

80% of weight and volume capacities are allocated to first-level rate-class sales, 15% of

the capacities are allocated to the second-level rate-classes sales, and the remaining 5%

is allocated to the third-level rate-classes. Second, in the medium rate class allocation

scenario, 70% of weight and volume capacities are allocated to first-level rate class

sales, 20% of the capacities are allocated to the second-level rate class sales, and the

remaining 10% is allocated to the third level rate-classes. Finally, in the high rate class

allocation scenario, 50% of weight and volume capacities are allocated to first-level

rate-classes sales, 30% of the capacities are allocated to the second-level rate-classes

sales, and the remaining 20% is allocated to the third-level rate-classes.
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Table 5.2: Demand Intensity, Peak Time and Rate Allocation Settings

Scenario Demand Intensity Peak Demand Time Rate-Class Allocation

1 Low Early Low

2 Low Early Medium

3 Low Early High

4 Low Regular Low

5 Low Regular Medium

6 Low Regular High

7 Low High Low

8 Low High Medium

9 Low High High

10 Medium Early Low

11 Medium Early Medium

12 Medium Early High

13 Medium Regular Low

14 Medium Regular Medium

15 Medium Regular High

16 Medium High Low

17 Medium High Medium

18 Medium High High

19 High Early Low

20 High Early Medium

21 High Early High

22 High Regular Low

23 High Regular Medium

24 High Regular High

25 High High Low

26 High High Medium

27 High High High
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5.2. Simulation Steps

The simulation study is necessary since booking decisions must be made fre-

quently. Individual solution time and objective function are not relevant policy behav-

iors over a finite period matters. Besides, simulation gives clear insights on complex

real-life problems. ACRM is a difficult problem to make progress with static problem

testing.

The stochastic environment of the problem also makes it difficult for static prob-

lem testing. Some stochastic random variables, such as inter-arrival times between

bookings, need to be regenerated in each simulation run. In contrast, other variables

are used in the same random state for all runs.

Flight schedules, available itineraries, and demand forecasts are generated using

the data generation algorithm in each simulation run. 27 different simulation runs

for each scenario setting are conducted. Regarding the scenario setting, booking ar-

rivals, their rate classes, and their allocations are created. Unit revenues are assigned

regarding the policy rules previously discussed in test scenario data generation.

At least 100 samples of each simulation run are taken to stabilize output. Simu-

lation steps can be summarized as follows:

(i) Booking Control: After flight dates and itineraries are generated using the test

problem network and booking horizon, flight capacities and rate classes and their

capacity allocations are generated. For booking acceptance, allocated demand

capacities and rate class capacities are controlled.

For Spot allocation, upon the arrival of each booking, solve the optimization

problem and determine allocated capacities. If there exists allocated capacity

available, booking is accepted. Bookings start to be filled from the itinerary with

the lowest unit revenue possible.

For FCFS, use flight and rate class capacities for acceptance. If an itinerary
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is available, booking is accepted. Bookings start to be filled from the highest

itinerary possible. Partial allocation is not available for this policy.

(ii) Generate the demand scenarios (different demand intensities and peak times)

for which the booking will arrive accordingly. Accept the arrivals regarding the

constraints of various policies and update the corresponding allocated demand

weight as committed booking. If rate class capacity is reached, search for the

next lowest rate class. For Spot Allocation, if all rate classes capacities are

committed, solve the Spot Allocation, including the last arrived booking, and

give accept/reject decision accordingly. Upon booking arrival, after all available

itinerary capacities are filled, partial allocation of the booking to itineraries is

checked. For FCFS, reject the booking in that case.

(iii) Calculate and record the average of performance metric which is used in the

comparison of policies.

(iv) Repeat steps 1-3 in each simulation run. Calculate average metrics and draw

histograms for each scenario. Compare the histograms.

5.3. Performance Metrics

Total revenue, revenue per unit capacity, and cargo capacity utilization metrics

are used to track the performances of FCFS and Spot Allocation policies. The first

metric, total revenue, as the name implies, is the total revenue generated within a

defined time horizon. The second metric, revenue per unit capacity, is calculated as

the total revenue/total used capacity. The third metric, cargo capacity utilization,

tracks the average utilization of each flight in each run.

The results of each simulation run are stored separately for both policies. The

following section presents a heat map and histogram drawing of the simulation re-

sults. Results are expressed in terms of policy differences (Spot Allocation - FCFS) for

comparative visualization and t-testing.



39

5.4. Results

The results section is divided into two different subsections. The first part gives

histogram results of total revenue differences. We perform a t-test after the histogram

results, while the second part briefly discusses scenario settings’ effects on other per-

formance metrics.

5.4.1. Histograms of Total Revenue Differences

The total revenue of Spot Allocation - FCFS histogram results are shown in

Figures 5.1, 5.2, and 5.3. Each figure has a 3x3 matrix of rate class allocation and

peak time scenarios for low, medium, and high demand intensities, respectively.

Simulation study results are displayed under each scenario in separate histograms.

The x-axis refers to Spot Allocation - FCFS total revenue, while the y-axis represents

the count of simulation runs corresponding to the bar.
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Figure 5.1: Total Revenue Differences in Low Demand Intensity
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Figure 5.2: Total Revenue Differences in Medium Demand Intensity
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Figure 5.3: Total Revenue Differences in High Demand Intensity

As mentioned before, 100+ simulation runs are conducted so that outputs are

stable. When we analyze histograms, their distributions look close to normal and

we can assume that simulation results are stable. Low demand intensity histograms

have some negative results, which indicates that FCFS policy performed better in that

scenario in that simulation run. On the other hand, medium and high-demand intensity

scenario histograms have almost zero nonpositive values.
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Next, a t-test is performed to comment on the significance of the results. A hy-

pothesis of total revenue difference is greater than zero is tested under a 95% confidence

level. The results of the test are shared in Table 5.3.

When t-value results are analyzed in the table, only one scenario, scenario 8, has a

t-value smaller than the critical value t1−α,df , and the other 26 out of 27 scenarios have

significantly greater mean values than 0. Thus, test results have statistically confirmed

that spot allocation in 26 out of 27 scenarios has significantly more mean total revenue

value than First Come First Served policy under a 95% significance level.

On the other hand, in scenario 8, there is no stochastical evidence indicating that

spot allocation is a better-performing policy than the FCFS policy.
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Table 5.3: Mean, Standard Deviation and t-Value for Different Scenarios

Scenario Mean (µ) Standard Deviation (σ) t-value

1 768158.97820 940274.72436 7.38362

2 658985.15230 937754.97827 6.22093

3 636498.38540 1036883.32675 7.65073

4 396708.70890 911580.88416 5.15585

5 388923.19520 918499.12354 5.10572

6 402508.78510 989548.24609 2.55494

7 258956.10800 881206.78324 3.69487

8 213878.99500 1069882.87861 0.69319

9 227895.84520 986078.45496 2.95589

10 2024579.70510 1020473.06739 18.25823

11 1897257.02550 853765.18482 22.26685

12 1922248.66230 931158.84382 19.82956

13 1789545.46400 964047.97279 19.53653

14 1883598.23100 885108.62673 20.49676

15 1831581.55500 855716.85723 21.39063

16 2010082.11230 893010.23632 24.03292

17 1994199.27120 986788.33856 19.69676

18 2131507.88950 862739.13149 25.79499

19 3571408.18850 887908.62684 40.59597

20 3548515.19080 919881.49624 38.18258

21 3556875.00980 970263.38607 35.99795

22 3880782.08910 929420.52505 42.81520

23 4017280.01850 949270.07109 41.68209

24 3979298.50610 986993.95899 41.73575

25 4256712.50610 911766.39638 45.84919

26 4695308.98050 865367.10030 55.27474

27 4682775.11520 974089.35739 48.52670
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5.4.2. Heat Map Matrix of Results

The heat map matrix shown in Figure 5.4 summarizes the results. Each heat

map cell consists of the mean differences in performance metrics. Heat map results are

not normalized. The coloring range of each heat map is taken as [−x, x] for each row

so that 0 is the medium point and positive and negative results are in different color

groups. Also, positive numbers (denoted by red color) imply that the Spot Allocation

policy performs better. In contrast, negative results (shown in blue) mean FCFS gives

better outcomes for the given performance metric in that scenario.

Each square in the heat map corresponds to a mean of simulation runs score of

the performance metric, shown in the outer vertical axis. The inner horizontal, inner

vertical, and external horizontal axes show peak demand time, rate-class allocation,

and demand intensity scenarios, respectively.

We can conclude from the following statements when heat map results are ana-

lyzed. The total revenue difference is positive in all scenarios. The most considerable

average difference occurs in high demand intensity, late peak time medium allocation

with an average value of 4695308,9805. Furthermore, demand intensity significantly

impacts determining the total revenue difference. Peak time and Rate Class Allocation

have more minor impacts.

Revenue per capacity is the second metric analyzed. It has a mixed color distri-

bution, and 8 out of 27 scenarios have resulted in negative average revenue per capacity

difference value. The most significant average difference occurs in low demand inten-

sity, late peak time, and low allocation scenarios with a value of -68792,1215. The main

reason behind this difference could be the result of the two policies’ unit revenue gap

under low capacity utilization, as spot allocation assign bookings to itineraries with

the lowest possible rate. Furthermore, all three factors seem to impact determining

revenue per capacity significantly.
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Figure 5.4: Heat Map of Spot Allocation - FCFS Performance Metrics

Cargo capacity utilization, calculated as filled cargo capacity / total capacity,

is the final performance metric analyzed. All 27 average utilization differences have

a positive sign, implying that spot allocation performed better in all scenarios. The

highest difference occurred at high demand intensity, high rate class allocation, and

late peak time scenario with 0,0923. Furthermore, demand intensity seems to impact

utilization rates, while others have less significant effects.
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6. CONCLUSIONS AND FUTURE WORK

Air cargo revenue management includes determining cargo capacities and avail-

able itineraries, allocating allotments and overbooking regarding the show-up rate es-

timations, demand forecasting, spot allocation, and booking control processes. The

primary purpose of an air-cargo provider is to maximize the total profit generated by

the system by minimizing its operational requirements and making booking bid price

and allocation decisions.

A mathematical model definition of spot allocation is given in Chapter 4. Its

objective is to maximize the total revenue regarding demand, capacity forecasts, and

available itineraries. Allocation results of this model are then put into booking control.

The process is also briefly shown in Figure 3.4.

Furthermore, after the test problem is constructed, performance metrics and sce-

nario settings are defined. As mentioned before, a simulation study is conducted in

Chapter 5. This study compares the performances of spot allocation and first come

first served policies under different scenario settings. Comparing spot allocation with

FCFS, it can be concluded that the difference in total revenue is significantly greater

than zero in 26 out of 27 scenarios. Spot allocation optimization model generates more

revenue according to t-test results. Also, a heat map of all performance metrics under

all defined scenarios has summarized the expected differences for each. The heat map

has shown that 72 out of 81 results were significantly greater than zero, indicating that

the spot allocation has better results in these regions.

Having concluded the thesis about Air Cargo Revenue Management (ACRM),

some concepts are left out of this study and may be a good point for future research.

The definition of cargo revenue management, as explained in Chapter 3, is quite broad,

so several assumptions and simplifications have been made. Some processes, including

allotment allocation, were left out of this study’s scope.
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To begin with, allotments are an essential part of ACRM, and fewer studies are

conducted about allotments compared to spot market allocation. This may be mainly

due to the deterministic nature of long-term contracts, which makes the problem less

complex and exciting. Nevertheless, its solution should provide an important output

for revenue management decisions.

Second, show-up rate estimation and overbooking is other important part of

ACRM. Cargo overbooking may look similar to passenger revenue management at first

look. On the other hand, there is a slight difference in show-up rate estimations. Cargo

transportation is usually popular among big customers. A show-up rate estimation is

made for each customer in cargo RM, whereas passenger RM estimates the show-up rate

metric for each flight. Hence, the difference in show-up rate metrics should separate

these two problems, and more future work containing air cargo revenue management

overbooking could be conducted.

Finally, capacity forecasting is another important problem that is often over-

looked. Many decisions are made in cargo revenue management based on these fore-

casts, including allotment, spot allocations, and booking control. Furthermore, many

components of cargo capacity, such as passenger, baggage, and fuel weights and vol-

umes, are estimated, and these estimations depend on each other. More research on

cargo capacity forecasting would shed light on the decisions of booking control, spot,

and allotment allocations.
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