
AN ITERATIVE APPROACH TO KEYWORD SEARCH IN SIGN LANGUAGE

by

Mansur Yeşilbursa

B.S., Electrical and Electronics Engineering, Ihsan Dogramaci Bilkent University,

2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Prof. Murat

Saraçlar for his invaluable advice and patience during my MSc study. His passion

and dedication to his job inspired me and kept me motivated during challenging times.

Needless to say, this thesis would not be possible without his immense knowledge and

guidance. I would like to extend my sincere thanks to Prof. Lale Akarun and Prof.

Engin Erzin for their valuable contributions.

I would like to also thank my family and friends. Their belief in me kept me

going during times when I doubted myself. Lastly, I am very grateful to my cat for her

companionship.

The work in this thesis was supported in part by the Scientific and Technological

Research Council of Turkey (TUBITAK) under the program 2210-A.

iv

ABSTRACT

AN ITERATIVE APPROACH TO KEYWORD SEARCH IN

SIGN LANGUAGE

Sign languages are the main medium of communication for the Deaf. However,

insufficient retrieval tools for sign languages restrict the Deaf’s access to information.

To address this issue, we tackle the problem of keyword search in sign language. Al-

though keyword search is a well-studied task for domains like speech processing, it

has not been extensively studied in the context of sign language. To this end, we

introduce improvements to an existing keyword search system for sign language and

a new iterative training approach. We adapt Graph Attention Networks (GAT) to

the sign language domain and extend its capabilities by employing a learnable mask

and a separate temporal attention mechanism. Moreover, we investigate the effec-

tiveness of the Pseudo-Relevance Feedback (PRF) technique in improving retrieval

accuracy. Additionally, it is demonstrated that the existing model can also be trained

with similarity-based methods using cosine and triplet losses, which can later be fused

with other models to boost performance. Finally, we introduce an iterative training

method similar to Expectation-Maximization (EM) that gradually improves its predic-

tions. This method employs a cross-modal attention mechanism and a query encoder

to discover subtle video-query interactions. The experiments are carried out on the

RWTH-Phoenix2014T dataset, where the effectiveness of the proposed methods is ver-

ified. The results show that the pose models trained with a GAT-based encoder and

in an iterative way significantly improve the retrieval performance.

v

ÖZET

İŞARET DİLİNDE ANAHTAR SÖZCÜK ARAMAYA

YİNELEMELİ BİR YAKLAŞIM

İşaret dilleri, Sağırlar için ana iletişim aracıdır. Ancak, Sağırların bilgiye erişimi

için gerekli geri getirme sistemleri henüz geliştirilmemiştir. Bu sorunun çözümüne

yönelik, bu tezde işaret dilinde anahtar sözcük arama sorunu ele alınmıştır. Anahtar

sözcük arama, konuşma işleme gibi alanlar için detaylıca çalışılmış bir problem olsa

da, işaret dili bağlamında kapsamlı bir şekilde çalışılmamıştır. Bu tezde, mevcut bir

işaret dilinde anahtar sözcük arama sisteminde yapılan iyileştirmelerin yanı sıra yeni

bir yinelemeli eğitim yaklaşımı önerilmiştir. Çizge Dikkatli Sinir Ağları (GAT) işaret

dili alanına uyarlanıp, öğrenilebilir maske ve ayrık bir zamansal dikkat mekanizması

kullanılarak geliştirilmiştir. Ayrıca, Sözde-İlişiklik Geri Bildirimi (PRF) tekniğinin geri

getirme performansına olan etkisi incelenmiştir. Bunun yanı sıra, mevcut modelin ben-

zerliğe dayalı yöntemlerle, kosinüs ve üçüz kayıpları kullanılarak eğitilebileceği ve daha

sonra performansı artırmak için diğer modellerle birleştirilebileceği gösterilmiştir. Son

olarak, tahminlerini kademeli olarak iyileştiren Beklenti-Enbüyütme (EM) tekniğine

benzer yinelemeli bir eğitim yöntemi önerilmiştir. Bu yöntem, incelikli video-sorgu

etkileşimlerini keşfetmek için bir sorgu kodlayıcının yanı sıra medyumlar arası bir

dikkat mekanizması kullanır. Deneyler, RWTH-Phoenix2014T veri kümesi üzerinde

gerçekleştirilmiş olup önerilen yöntemlerin başarımı gösterilmiştir. Sonuçlar, poz mod-

ellerinin GAT tabanlı kodlayıcılarla, yinelemeli bir şekilde eğitildiğinde geri getirme

başarımını önemli derecede iyileştiğini göstermiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. RELATED WORK . 5

2.1. Sign Language Recognition . 5

2.1.1. Feature Extraction . 5

2.1.2. Classification . 7

2.2. Sign Language Translation . 9

2.3. Keyword Search . 10

2.4. Sign Spotting . 12

3. METHODOLOGY . 13

3.1. Feature Extraction . 13

3.1.1. Pose Feature Extraction with OpenPose 13

3.1.2. Handshape Feature Extraction with DeepHand CNN 14

3.1.3. Handshape Feature Extraction with MultiTask CNN 14

3.2. Baseline System . 14

3.2.1. Encoder Architectures . 14

3.2.1.1. Graph Encoder . 15

3.2.1.2. Vector Encoder . 16

3.2.2. Keyword Search Module . 17

3.2.2.1. Query Embeddings . 17

3.2.2.2. Attention-based Selection Mechanism 17

3.2.3. Fusion Strategy . 18

vii

3.3. Pre-Trained Word Embeddings . 18

3.3.1. Word2Vec Embeddings . 18

3.3.2. FastText Embeddings . 19

3.4. Improving Graph Encoder with Graph Attention Networks 19

3.4.1. Graph Attentional Layer . 20

3.4.2. Spatial-Temporal Graph Attention Networks 21

3.5. Pseudo-Relevance Feedback . 23

3.5.1. Mathematical Background . 23

3.5.2. Pseudo-Relevance Feedback for SL-KWS 24

3.5.2.1. Query-Specific Distance Metric Learning 24

3.5.2.2. Score Normalization and Learning Mixing Coefficient . 25

3.6. Similarity-Based SL-KWS . 27

3.6.1. Cosine Similarity Loss . 27

3.6.2. Triplet Loss . 28

3.7. Iterative SL-KWS . 29

3.7.1. Query Encoder . 30

3.7.2. Cross-Modal Attention Layer 30

3.7.3. Training Strategy . 31

3.7.4. Inference . 32

4. EXPERIMENTS AND RESULTS . 33

4.1. Experimental Setup . 33

4.1.1. Dataset . 33

4.1.2. Evaluation Metrics . 34

4.1.2.1. Mean Average Precision (mAP) 34

4.1.2.2. Precision at N (p@N) 34

4.1.3. Implementation Details . 34

4.2. Improved Graph Encoder Results . 35

4.2.1. Comparison of Different Graph Encoder Architectures 35

4.2.2. Analysis of the Learned Mask 36

4.2.2.1. Investigating the Most Significant Nodes 36

4.2.2.2. Investigating the Least Significant Nodes 38

viii

4.3. Pseudo-Relevance Feedback Results . 39

4.4. Similarity-based Models . 40

4.5. Iterative SL-KWS Results . 42

4.5.1. Iterative and Default Training Methods 43

4.5.2. Prediction Refinement . 43

4.6. Cross-Lingual Search . 45

4.7. Fusion Results . 46

5. CONCLUSION . 47

REFERENCES . 49

ix

LIST OF FIGURES

Figure 3.1. General pipeline of the baseline system. 15

Figure 3.2. Spatial-temporal graph. 16

Figure 3.3. Handshape encoder architecture. 16

Figure 3.4. Graph encoder comprised of ST-GCN and ST-GAT layers. 23

Figure 3.5. Pseudo-Relevance Feedback Algorithm 26

Figure 3.6. Cosine loss configuration. Green represents positive and red repre-

sents negative examples. PC: positive context. PQ: positive query.

NC: negative context. NQ: negative query. 28

Figure 3.7. Triplet loss configuration. Green represents positive, red represents

negative and gray represents anchor examples. PC: positive con-

text. PQ: positive query. NC: negative context. NQ: negative

query. 29

Figure 3.8. Iterative SL-KWS pipeline. .

Figure 4.1. Handshape A, Handshape B and OpenPose hand keypoints layout. 38

Figure 4.2. Improvement over iterations. 44

x

LIST OF TABLES

Table 4.1. The effect of each modification. All the models are trained with

OpenPose features. Temporal Att. stands for temporal attention.

’+’ means included and ’-’ means excluded from the encoder. . . . 36

Table 4.2. The nodes with the most contribution and their corresponding scores.

RH stands for right hand. Numbers within parantheses denote the

index of the joint per Figure 4.1(c). 37

Table 4.3. Number of times a node is the most significant node for another.

RH stands for right hand. 38

Table 4.4. The nodes with the least contribution and corresponding scores.

Numbers within parantheses denote the index of the joint per Figure

4.1(c). 39

Table 4.5. PRF results. Scores are given in percentages. 40

Table 4.6. Results for cosine similarity-based models and their fusion with clas-

sification models. Rel. Impr. stands for relative improvement. . . . 41

Table 4.7. Results for triplet similarity-based models and their fusion with

classification models. Rel. Impr. stands for relative improvement. . 42

Table 4.8. AP difference between similarity and classification models for some

queries. 42

Table 4.9. Results for iterative and default training methods. Results are given

as percentages. 43

xi

Table 4.10. Prediction refinement progress. ST-GCN model is used for Open-

Pose features. 44

Table 4.11. Cross-lingual search results. Scores are given as percentages. The

models marked with ’*’ are baseline models. 45

Table 4.12. Fusion of iteratively trained OpenPose and DeepHand models. ST-

GCN + ST-GAT architecture is used for OpenPose models. . . .

xii

LIST OF SYMBOLS

A Self-connected adjacency matrix according to human anatomy

A Video-to-query attention

a Anchor example or exponential weight parameter

a⃗ Weights of shared attention mechanism

B Query-to-video attention

c Confidence score

c Context vector

D Diagonal matrix or feature dimension of input nodes

D′ Feature dimension of an output node

d(., .) Distance metric

D(PQ, X) Distance between example X and pseudo-positive set PQ

E Set of edges in spatial temporal graph

Es Set of spatial edges in spatial temporal graph

Et Set of temporal edges in spatial temporal graph

eij Excitation between node i and node j

f(., .) Score function

G Spatial-temporal graph

G Output set of nodes

Gin Input undirected graph

g⃗i Feature vector of an output node

H Input set of nodes

h⃗i Feature vector of an input node

l Number of frames per query constant

l2 Euclidian distance metric

M Mahalanobis matrix

m Tolerance margin

mij Mask coefficient between node i to node j

Ni Neighborhood set of node i

xiii

n Negative example

PQ Pseudo-positive set of examples for query Q

p Positive example

pQi Initial predictions for query Q

pQprf PRF predictions for query Q

Q Sequence of query embeddings

q Query embedding

S Similarity matrix for query and video sequence

Sc Similarity matrix after softmax applied along columns

Sr Similarity matrix after softmax applied along rows

S(Q,X) Prediction score of example X for query Q

SIM(PQ, X) Similarity between example X and pseudo-positive set PQ

si ith frame of the encoded video sequence

sj Significance score of node j computed from the learnable mask

V Set of vertices in spatial temporal graph

V Sequence of encoded video features

W Weight matrix

WH A linear transformation in cross-modal attention layer

WS A linear transformation in cross-modal attention layer

XQ A pseudo-positive example for query Q

x x-axis coordinate

y y-axis coordinate or similarity label

αij Attention coefficients

β Affine scale parameter

βkt Separated temporal attention coefficients

γ Mixing coefficient

∆ Temporal kernel size

θ Affine bias parameter

σ Non-linear activation function

xiv

LIST OF ACRONYMS/ABBREVIATIONS

1D-CNN One Dimensional Convolutional Neural Network

AP Average Precision

ASR Automatic Speech Recognition

BN Batch Normalization

C3D 3D CNN-based Action Recognition Network

CHMM Coupled Hidden Markov Model

CNN Convolutional Neural Network

CSLR Continuous Sign Language Recognition

CTC Connectionist Temporal Classification

DTW Dynamic Time Warping

EM Expectation-Maximization

EMG Electromyography

GAN Generative Adversarial Networks

GAT Graph Attention Network

GCN Graph Convolutional Network

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HMM Hidden Markov Model

I3D Inflated 3D Convolutional Network

ISLR Isolated Sign Language Recognition

KWS Keyword Search

LDA Latent Discriminant Analysis

LHMM Linked Hidden Markov Model

LR Learning Rate

LSTM Long-Short Term Memory

MS-G3D Multi Scale Spatial-Temporal Graph Convolution

mAP mean Average Precision

NCA Neighborhood Component Analysis

xv

NMT Neural Machine Translation

OOV Out of Vocabulary

PCA Principal Component Analysis

PE Pose Estimation

PHMM Parametric Hidden Markov Model

PRF Pseudo-Relevance Feedback

RELU Rectified Linear Unit

RNN Recurrent Neural Network

SIFT Shift-Invariant Feature Transform

SL Sign Language

SL-GCN Sign Language Graph Convolutional Network

SL-KWS Keyword Search in Sign Language

SLR Sign Language Recognition

SLT Sign Langauge Translation

SSTCN Separable Spatial-Temporal Convolution Network

ST-GAT Spatial-Temporal Graph Attention Network

ST-GCN Spatial-Temporal Graph Convolutional Network

SURF Speeded Up Robust Feature

SVM Support Vector Machine

TCN Temporal Convolutional Network

US United States

WPD-2 Two Dimensional Wavelet Packet Decomposition

1

1. INTRODUCTION

Sign languages are the primary mode of communication used by the Deaf com-

munity. They are developed through interactions among deaf people through a natural

process, much like spoken languages. Therefore, they are natural languages with unique

grammar, structure, and morphology. They are different from signed languages (e.g.,

Signed English), which were invented to convey exact spoken language content in a

visual medium and usually share the same grammar as the spoken language [1].

Sign languages use hand movement, hand configuration, facial expressions, and

body pose to convey meaning. Some signs might consist of only hand movement or

hand shape, whereas others might also incorporate facial expressions and body pose.

Similar to pitch, prosody, and intensity in spoken languages, the way the signs are

performed (i.e., use of facial gestures, transitions between signs, and signing pace) can

alter the tone and the feeling attached to the plain meaning [1]. Furthermore, there

are sign language poems, much similar to written poems, that contort conventional

meaning to excite new perspectives and feelings. Deaf poets might utilize repetitive

hand movements and altered flow of the signs to create those effects. Therefore, one

might expect to see a significant difference between formal and informal use of the

language, pointing out the strong dependence on the context. Overall, it is clear that

sign languages are as complex as spoken natural languages and require meticulous

analysis whenever studied.

According to a survey [2], about 0.22% of the U.S population is ”functionally

deaf,” and more than half is above 65 years old. It is also reported that as opposed

to 82% of the hearing population between the age of 18 to 44, 58% of deaf or hard

of hearing people in the same age group participates in the labor force [2]. Similarly,

12.8% of the hearing population graduates from college, but this number drops to

5.1% for deaf or hard of hearing people [2]. These statistics demonstrate that the Deaf

community is still facing challenges in terms of joining the workforce, education, and

2

overall integration into the society in a developed country such as the U.S.. It is only

fathomable that the gap is even wider in developing and underdeveloped countries.

Since the percentage of deaf people in the population is relatively low, it is challenging

to raise awareness that could impact social change at the moment. Nevertheless, the

development of technology can alleviate a good portion of the problems faced by the

Deaf. For instance, a precise sign language translation system can mitigate many daily

issues for the Deaf and improve their integration into society. However, many sign

language problems are still open research subjects due to its aforementioned complexity.

With the growing amount of information and content online, access to informa-

tion retrieval systems is more critical than ever. However, a tremendous amount of

information remains inaccessible for deaf people due to the lack of widely available

sign language retrieval systems and low literacy in the Deaf community. Therefore, it

is crucial to develop retrieval systems that facilitate access to sign language content.

However, developing such systems is not trivial as they require advanced video pro-

cessing techniques with high computational costs. Hence, sign language research in

computer vision remained inert for a long time. The rise of GPUs and the following

revival of deep learning has attracted more attention to sign language research, espe-

cially to sign language recognition (SLR) and sign language translation (SLT). Even

though deep learning methods improve the state-of-the-art for both of these tasks by

a large margin, they still need improvement in performance and computational cost

before they become widely available on various edge devices. Along with SLR and SLT,

new deep learning based retrieval systems for sign language have also been introduced

in the last decade. However, it is still a relatively new field that demands much more

effort from the computer vision community.

One of the main challenges for sign language research is the scarcity of publicly

available general domain datasets. The majority of the datasets are collected from sign

interpretations of television broadcasts. As a result, obtained collections usually only

include formal use of sign language, leaving out informal use cases such as daily con-

versations and storytelling. Furthermore, the number of interpreters or native signers

3

is insufficient to label the vast amount of data required to train deep models. Due

to information being conveyed on multiple channels, annotating all attributes of sign

utterances is very expensive. On top of that, sign language research is usually under-

funded, even in developed countries. All the reasons listed above contribute to the

deceleration of the developments in the field.

In efforts to close the gap in the field, this thesis tackles keyword search for sign

language problem. Keyword search is a well-established research subject. Numerous

commercial systems are widely available, allowing easy and fast access to written or

audio-visual content. The keyword search can be defined as the retrieval of documents

related to a given query in a corpus. There are many different sub-definitions depending

on what is recognized as related and the medium of the documents. In this thesis, we

define the problem as retrieving sign utterances containing a given query. Queries are

given in the text form, and we do not retrieve the temporal position of the query within

the utterance. Queries can be sign glosses as well as cross-lingual words though our

work mostly focuses on gloss search. The system is trained with weak supervision, thus,

removing the need for strongly annotated datasets. The development of such a system

can significantly improve the navigation experience in databases/internet for the Deaf.

Using written queries instead of visual entries improves the accessibility of the system,

allowing users to perform a search without a camera. Moreover, non-signers can also

use the system to search in a sign language database by entering cross-lingual queries.

The work presented in this thesis is built upon the system proposed in [3–6]. The

main contributions of this thesis can be listed as:

• We propose a Spatial-Temporal Graph Attention Network (ST-GAT) based graph

encoder to replace/improve the baseline graph encoder [3]. We introduce novel

improvements to ST-GAT architecture by employing a learnable neighborhood

mask and a separate temporal attention mechanism to boost the temporal mod-

eling capabilities further. Even though ST-GAT architecture was used for action

recognition, no SL study employs ST-GAT architecture within our knowledge.

4

The effectiveness of ST-GAT is demonstrated with experiments.

• We adapt the Pseudo-Relevance Feedback (PRF) method, which is commonly

used for text and speech retrieval, to our problem to increase retrieval accuracy.

We experiment with query-specific distance metrics and standard distance metrics

such as cosine distance and l2 distance to compute PRF scores. In order to

combine PRF scores with original predictions, we apply score normalization and

learn a mixing coefficients.

• We introduce a new training method for the baseline models by employing similar-

ity losses. The similarity-based models can be employed to boost the performance

of handshape models via the fusion strategy introduced in [5]. The results are

published at a national conference.

• Finally, as the main contribution of this thesis, an iterative approach to keyword

search in sign language is proposed. By incorporating a query encoder and a

cross-modality attention module into the system, an iterative training method

similar to Expectation-Maximization (EM) is proposed. The effectiveness and

prediction refinements introduced by the method are demonstrated.

The rest of the chapters are organized as follows:

• In Chapter 2, the related work in sign language recognition, sign language trans-

lation and keyword search are reviewed.

• In Chapter 3, the methods are introduced:

– In Section 3.2, a summary of the baseline system is provided.

– In Section 3.4, the improved graph encoder architecture is explained.

– In Section 3.5, PRF algorithm is described.

– In Section 3.6, similarity-based models are introduced.

– In Section 3.7, an iterative training method is proposed.

• In Chapter 4, the experiments and results are reported.

• In Chapter 5, a conclusion is drawn, and possible future work is discussed.

5

2. RELATED WORK

In this chapter, we provide a summary of related works in sign language and

keyword search research.

2.1. Sign Language Recognition

Sign language recognition (SLR) has been the primary subject of sign language

research. It is studied under two main subtasks: isolated sign language recognition

(ISLR) and continuous sign language recognition (CSLR). In ISLR, the aim is to classify

the given video segment into predefined sign classes. Each video is known to contain

one sign utterance. On the other hand, the goal of CSLR is to identify every sign

in a continuous sign stream. There is no apriori information about the number of

signs or temporal alignment of the signs. Additionally, co-articulation of the signs in

a continuous stream introduces new challenging aspects to the problem. Despite its

challenges, CSLR is more relevant to real-life scenarios and has been studied extensively

in recent years.

In this section, we examine previous work in SLR. We analyze SLR as a two-step

problem: i) feature extraction, ii) temporal modelling and classification.

2.1.1. Feature Extraction

There is no universally accepted fundamental subunit of sign languages such as

phonemes in spoken languages. It is known that the signs may incorporate hand shape,

movement, orientation, facial expressions, mouthing, and body pose. However, none

of these channels can singlehandedly cover all signs (e.g., signs may share hand shape

and movement but might be performed with different facial expressions). A speaker

might also utilize different facial expressions and hand movements to emphasize some

portions of the speech. However, these are used as auxiliary methods; they are not

6

essential. We cannot disregard other channels in sign languages as we do in spoken

languages since they are integral to the meaning. However, it is safe to assume that

among all those channels, hands are the most informative channel. Hence, they are

always regarded as the primary channel of sign languages.

There are numerous ways to extract features from hands. Data gloves were preva-

lent in SLR and gesture recognition in early days [7]. These gloves are equipped with a

gyroscope and accelerometer to collect hands’ orientation, movement, and position in-

formation. Another sensor-based data acquisition method is Electromyography (EMG),

which is used to track muscle activities in hand. Sensor-based systems often perform

well in small sets of signs [7]. The primary advantage of sensor-based feature extrac-

tion is that they allow data acquisition with very little noise compared to vision-based

approaches. However, the proposed systems usually do not apply to real life due to the

inaccessibility of such sensors by the end-user.

Due to the limited accessibility of sensor-based systems, researchers have focused

on vision-based systems. Features are extracted using shift-invariant feature transform

(SIFT) and speeded up robust feature (SURF) methods [8, 9], principal component

analysis (PCA), and linear discriminant analysis (LDA) are applied for feature selection

and separation [9]. Other traditional machine learning techniques that are used for

sign and gesture recognition include Convexity defects and K-curvature [10], frequency

domain methods such as Fourier Descriptors (FD), 2-D Wavelet Packet Decomposition

(WPD-2), and Discrete Wavelet Transform (DWT) [11,12]. Multiple feature extraction

methods are often combined to achieve more robust features. Hu moments and SURF

performed better when joined than used separately [13].

CNN-based models attained impressive results in many vision tasks in the last

decade [14, 15]. They have become increasingly popular since they remove the need

for manual features. CNNs can learn visual representations from raw images without

any human intervention. They learn scale and rotation invariant representations when

employed together with pooling layers. Proposed systems showed that CNN could

7

learn more powerful representations than manual features. Following this trend, many

CNN-based models are used to extract features from hand pose estimation [16,17], and

hand shape [18] classification pipelines. Even though 2D CNNs are effective tools to

process still images, they are often insufficient to capture the temporal nature of the

videos. Therefore, they are often used together with recurrent neural networks (RNN)

such as long-short term memory (LSTM) and gated recurrent unit (GRU) to model

temporal relationships [19]. Alternatively, 3D CNN models can be employed to extract

features from videos [20,21].

Other prevalent SL features are obtained from human pose estimation systems.

Pose estimation (PE) aims to predict 2D or 3D positions of predefined human joints.

They are frequently used in human-computer interactions, augmented and virtual real-

ity systems and are essential to human action understanding [22]. For single-person 2D

PE, Newell et al. introduced the stacked hourglass model consisting of CNN layers that

work on different input scales [23]. Wei et al. proposed Convolutional Pose Machines

that iteratively improve keypoint estimations using 2D belief maps from the previous

iteration [24]. There are two main approaches in multi-person 2D PE: bottom-up and

top-down approaches. In the top-down approach, human bounding boxes are esti-

mated, then a single-person PE model is applied to each bounding box. In contrast,

bottom-up models first estimate all the joint locations in the image and then asso-

ciate joints with body parts and different people. Multi-person PE is practical when

extracting features for conversational SLR that include multiple people in the same

frame.

2.1.2. Classification

Before the emergence of deep neural networks, HMM was the primary method

for temporal modeling and classification [25], similar to speech recognition. The main

reason HMMwas so widely-adopted for recognition tasks is that HMM can capture tem-

poral relationships better than other traditional machine learning techniques. Cooper

et al. use HMMs to classify combined sub-unit features obtained from vision and

8

tracking data [26]. Elmezain et al. employed Gaussian Mixture Model (GMM) for seg-

mentation, and later on, segmented sequences were classified with HMM [27]. There

are many variants of HMM to mitigate various issues. Coupled HMM (CHMM) and

Linked HMM (LHMM) are developed to improve the scalability of HMM-based recogni-

tion systems [7]. Parametric HMMs (PHMM) incorporate global parametric variations

in output probabilities to better robustness against noise in the input [28]. As an al-

ternative to HMM, DTW was used for temporal alignment and classification of gesture

sequences [11]. Finite State Machines (FSM)s were employed for gesture classification

since they can learn the alignment of the data during training in contrast to static

states of HMMs [29].

Although HMMs and other mentioned methods obtain significant results in dy-

namic gesture recognition and ISLR, they are often seen as insufficient to model com-

plex temporal dynamics of CSLR [30]. Studies in the last decade have shown that

Connectionist Temporal Classification (CTC) methods usually outperform HMM and

DTW-based recognition systems. However, CTC-based systems introduce new issues

as well. They are susceptible to overfitting, and while training end-to-end models,

gradients from CTC loss may not be optimal for feature extraction modules [30]. Sub-

sequently, various modifications to CTC loss were introduced to address the issues

above [31, 32]. CTC with entropy regularization was proposed to distribute the error

among alternative paths in a balanced way, preventing overconfident peaks [31]. Now,

we will introduce current deep learning methods for SLR.

Koller et al. [33] proposed a CNN-HMM network for CSLR where hand features

extracted with 2D CNN networks are classified with the help of HMM. They extend

their work by incorporating LSTM layers to the feature extractor and using multiple

data channels, including full-frame, hand, and mouth crops [34]. Cui et al. introduced

2D CNN-LSTM architecture that includes a regularization network for weakly super-

vised training [35]. Afterward, they proposed a module comprised of 1D CNN layers,

connecting the feature extractor and LSTM layers [36]. 3D CNN-based networks are

also employed for SLR to process depth images or model temporal segments of the

9

sequence. Pu et al. adapted a 3D CNN-based action recognition network (C3D) [37]

to ISLR [20]. Later on, C3D architecture was utilized in a two-stream CSLR system

combined with a hierarchical attention network [38]. Similarly, pre-trained I3D archi-

tecture [39] from the action recognition domain was applied to ISLR [40]. Other deep

3D CNN networks, such as 3D-ResNet architecture, were employed as feature extractor

modules [41]. In order to reduce the complexity of LSTM layers, they also developed a

dilated temporal convolutional network and trained the network with CTC loss in an

iterative manner [41].

In addition to RGB-based models, there are also skeleton-based SLR systems that

use pose estimation outputs as the main features. Spatial-temporal graph convolutional

networks (ST-GCN) were initially proposed for action recognition [42] and later on

adapted to SLR [43]. Numerous versions of ST-GCN are developed for SLR, including

attention-enhanced GCN (AEGCN) [44], sign language GCN (SL-GCN), and separable

Spatial-Temporal Convolution Network (SSTCN) [45] to work on pose features. Parelli

et al. introduced a CSLR framework trained with Guided CTC [46]. The proposed

method combines ST-GCN with BiLSTM networks to capture short and long-term

dynamics [46]. Enriquez et al. adopted the MS-G3D network [47], enabling multi-scale

graph operations and skip connections for direct information flow across layers to the

ISLR task [48].

2.2. Sign Language Translation

Sign language translation (SLT) can be defined in two ways: i) converting written

language to sign language video, conveying the same meaning in a target sign language,

and ii) generating written translations in the target spoken language from sign language

videos. The former task includes producing high-quality videos from written text

which is a challenging task even for spoken languages and existing language models

for them. Stoll et al. translate spoken language data to gloss level annotations via an

encoder-decoder network, then the model learns a mapping between glosses and their

corresponding skeleton representation [49]. Sign language production is only performed

10

on an avatar based on skeleton data with the help of generative adversarial networks

(GAN) [49]. Afterward, they extend their work by eliminating the gloss recognition

step and directly associating written text with pose representations [50]. This task is

still very much dependent on the ability of generative networks to produce high-quality

videos from skeleton representations.

The latter problem is more attainable and relevant in the current literature.

Camgoz et al. proposed an attention-based encoder-decoder architecture inspired from

neural machine translation (NMT) literature [51]. They experiment with three settings:

i) translating gloss ground truths to spoken language, ii) directly converting sign lan-

guage videos to spoken language, iii) performing CSLR as an intermediate step, then

converting recognition predictions to spoken language. As expected, the first scenario

results in better translation outputs. Comparing the other two settings shows that

obtaining intermediate gloss representations from the sign video significantly surpasses

the performance of direct conversion from sign videos. This is mainly due to the insuf-

ficiency of RNNs to model long-term relationships, as the number of frames in a sign

video is much higher than the number of glosses. However, recognizing glosses as an

intermediate step creates an undesired information bottleneck. The authors adopted

the popular transformer architecture [52] to mitigate the bottleneck, which significantly

improved NMT performance for spoken languages partly due to its superior ability to

recognize longer dependencies than the previous RNN-based NMT systems. The trans-

former architecture trained jointly and end-to-end to simultaneously recognize glosses

in the sign sequence while translating sign videos to spoken language [52].

2.3. Keyword Search

Keyword search is a well-established research area, especially for text and speech

data. Written content retrieval has been the backbone of the internet since the rise of

search engines. As keyword search for written data mainly depends on string matching

and deterministic algorithms, we will focus on keyword search in spoken content in this

chapter.

11

Spoken content retrieval can be achieved by applying text retrieval techniques to

the output of automatic speech recognition (ASR) systems such as lattice search [53].

The systems based on this principle can attain very high performance given that the

underlying ASR module is accurate enough [54]. However, such ASR systems can

only be trained in the presence of vast annotated corpora, which is available for a

few languages in the world. Therefore, researchers focused on other methods that do

not rely on the performance of an ASR system. One of such approaches is to match

speech segments at the acoustic level. The most popular method for this approach is

DTW. Anguera et al. used subsequence DTW to match speech segments in every scale,

alleviating the problems related to significant differences in the duration of queries and

document segments [55]. Acoustic subunit matching techniques work well for out-of-

vocabulary (OOV) queries since there is a direct correlation between an utterance of

a word and its written form. However, it is not feasible to apply such techniques to

SL-KWS as there is no relationship between a written query and its sign articulation.

Even though DTW is a very effective tool, it may fail to capture high-level linguis-

tic features. Hence, model-based approaches are developed to incorporate high-level

semantic information in the search. Most work in model-based search consists of three

steps: i) segmentation, ii) clustering and iii) model training. Segmented speech units

are clustered together, and patterns are learned for each cluster [54]. After learning

acoustic patterns, DTW-based matching can be applied to the posteriorgrams [56].

Furthermore, ASR-based and DTW-based methods can be fused together to improve

retrieval accuracy, especially for out-of-vocabulary (OOV) queries [57].

The recent DL-based keyword spotting (closely related to keyword search) sys-

tems consist of three main components: i) feature extractor, ii) DL-based acoustic

modeling, and iii) posterior processing [58]. Different architectures are employed for

acoustic modeling, fully connected layers [59], RNN variants for their temporal mod-

eling capability [60], and CNNs for their low computational complexity [61]. RNN

models are usually trained with CTC loss to generate posterior probabilities [60]. The

conditional independence assumption of CTC is not a realistic approach for speech

12

signals. Thereof, sequence-to-sequence (Seq2Seq) [62] models used in NMT attracted

KWS researchers. He et al. proposed an end-to-end Seq2Seq model that jointly learns

acoustic and language models [63]. This model predicts subword units, eliminating

OOV related issues. DL-based models drastically improved the state-of-the-art key-

word spotting and search in terms of accuracy and computation complexity.

2.4. Sign Spotting

The objective of sign spotting is to find and localize query signs in a continuous

sign stream. It differs from CSLR as it is not aimed to recognize every sign in the

sequence but only a pre-defined set of queries. Viitaniemi et al. proposed a DTW-

based sequence matching method on skin distribution histograms [64]. Hierarchical

Sequential Patterns were used to spot signs in a continuous stream. However, these

methods rely on strong gloss-level annotations, usually unavailable for large datasets.

Hence, the systems trained with weak supervision have been proposed. Buehler et

al. proposed a method that groups signs per visual feature distance using Multiple

Instance Learning (MIL) framework by only using cross-lingual subtitles [65].

Similarly, a multiple instance SVM classifier was employed to spot signs by in-

corporating mouthings [66]. Recently, Momeni et al. introduced a MIL-based sign

spotting method [67]. This method utilizes automatic mouthing annotations as strong

supervision on top of weak cues collected from subtitles. The model is trained with

a noise contrastive loss by computing the cosine distance between candidate windows

and sign entries in a dictionary.

Sign spotting is very similar to keyword search in sign language definition put

forward beforehand. The main difference is that keyword search does not aim to localize

query signs temporally but instead decides on their presence in an utterance.

13

3. METHODOLOGY

In this chapter, we introduce the novel contributions of this thesis. We first

introduce the features that are used in both baseline and the other proposed models.

Then we provide a summary of the baseline system introduced in [3–5] and then propose

improvements upon the existing system. Afterward, we introduce an iterative approach

to keyword search in sign language (SL-KWS).

3.1. Feature Extraction

Two different types of features are extracted, handshape and pose features. Pose

features are obtained using OpenPose framework [68] and hand shape features are

extracted from the intermediate layers of deep CNN networks; MultiTask CNN [69]

and DeepHand CNN [18]. Both baseline and the models introduced in this thesis are

trained with these features.

3.1.1. Pose Feature Extraction with OpenPose

OpenPose is an open-source human pose estimation framework [68]. The model

uses confidence maps to estimate keypoint positions and part affinity maps to associate

keypoints with body parts, and the people in the image [68]. The framework outputs

21 keypoints for each hand and 25 keypoints for the body, including general points of

interest in the face and the feet. The keypoints below the waistline are eliminated since

they are not informative for SL. For each keypoint, (x, y) coordinates are provided along

with confidence score c, which is a number between 0 and 1. The confidence score is

incorporated as a feature since it informs the model about the accuracy of the keypoint.

14

3.1.2. Handshape Feature Extraction with DeepHand CNN

DeepHand CNN is trained with multiple SL corpora to classify each hand crop

into one of 60 pre-defined handshape classes or a junk class [18]. The model is trained

in a weakly-supervised way, iteratively improving temporal alignment via HMM to

label sequences. 1024-dimensional features are taken from the second-last layer of the

network.

3.1.3. Handshape Feature Extraction with MultiTask CNN

MultiTask CNN model was developed as a tokenization layer to be used before

encoder-decoder-based SLT networks [69]. The model is trained with multiple SL

corpora. One of them is a small but strongly annotated dataset that includes hand

context information along with handshape labels [70]. The model learns to classify

handshapes and identify hand context simultaneously [69]. 2048-dimensional features

are taken from shared layers of the network.

3.2. Baseline System

The baseline system was introduced in [3] and extended in [4] by adding cross-

lingual search capabilities to the system. Lastly, hand-shape features were incorporated

on top of pose-based features to improve fusion performance [5]. In this section, we

introduce the components of the baseline system. The flowchart of the baseline system

is given in Figure 3.1.

3.2.1. Encoder Architectures

There are two types of encoder architectures used in the baseline model. When

pose features are utilized, an ST-GCN-based encoder is employed. Handshape features

are encoded with a 1D CNN network.

15

Figure 3.1. General pipeline of the baseline system.

3.2.1.1. Graph Encoder. The human skeleton can be seen as an undirected graph if we

assume joints as nodes and bones as edges. Each joint’s connectivity can be expressed

with an adjacency matrix. Since pose features contain 2D spatial positions of the

joints, they can be processed as graphs. Even though vanilla CNN networks can be

trained with pose features as they could be expressed in the grid form, the underlying

structure can be learned more effectively if a graph-based network is utilized. For this

purpose, ST-GCN architecture was proposed for action recognition [42].

Pose features are expressed as a spatial-temporal graph. Joints represent nodes

in the graph. There are two types of edges: i) spatial edges that represent anatomical

bone connections between joints, and ii) temporal edges that connect the same node

across time steps. This way, the whole sequence is collected into a single graph. Figure

3.2 illustrates an instance of the spatial-temporal graph.

ST-GCN layers apply graph convolutions in spatial and temporal directions.

Graph convolution is defined as

Gout = σ(D− 1
2AD− 1

2GinW), (3.1)

where A is the self-connected adjacency matrix, Gin is the input undirected graph, D

is a diagonal matrix computed as D =
∑

j Aij, W is the learnable weight matrix and

σ is a non-linear activation function.

16

Figure 3.2. Spatial-temporal graph.

The encoder network consists of 12 ST-GCN layers with a temporal kernel size

of three. Between each layer, batch normalization and ReLU activation functions are

applied. In order to represent each encoded frame with a single vector, an average

pooling layer is employed in the keypoint dimension.

3.2.1.2. Vector Encoder. Whenever handshape features are used, it is convenient to

utilize CNN layers since handshape features represent each frame with a fixed di-

mensional vector. In order to capture the relationship between consecutive frames,

temporal modeling is required. Therefore, 1D-CNN architecture was chosen as they

discover temporal relationships and computationally inexpensive [5]. The length of the

sequence is preserved using padding. No temporal pooling is applied. The architecture

of the vector encoder is illustrated in Figure 3.3.

Figure 3.3. Handshape encoder architecture.

17

3.2.2. Keyword Search Module

The keyword search module is the component responsible for deciding on the

input query’s presence. It takes the encoded sequence as input and combines it with

the query embedding such that the model can be trained end-to-end.

3.2.2.1. Query Embeddings. The system admits queries in the text form. The network

learns embeddings from scratch for each query. This way, the selection mechanism can

recognize the relationship between queries and the sequence frames.

3.2.2.2. Attention-based Selection Mechanism. The selection mechanism enables end-

to-end system training by combining encoded sequence and query embeddings using

the attention technique [3]. The relevant parts of the sequence with respect to the

query are detected via attention. The scoring function f(q, si) calculates a score for

the relationship between query q and ith frame of the sequence si. Squared cosine

similarity with learnable affine parameters (β, θ) is selected as the scoring function

f(q, si) = β

[
q · si

∥q∥ · ∥si∥

]2
+ θ. (3.2)

The score between q and all sequence frames is normalized with the softmax function

to obtain attention coefficients. Afterward, attention coefficients are used to compute

the sequence’s weighted average so that the sequence’s relevant parts are emphasized.

The resulting vector is called a context vector. For each query in the vocabulary, a

context vector c is computed as

c =
∑
i

[
exp (f(q, si))∑
i′ exp(f(q, si′))

]
· si. (3.3)

Obtained context vectors are fed to a single layer perceptron with sigmoid activation

to decide on the presence of the query in the video. The perceptron classifies every

context vector corresponding to queries in the vocabulary for a single video. The

system is trained with binary cross-entropy loss.

18

3.2.3. Fusion Strategy

As explained above, two different feature types are used; pose features and hand-

shape features. Models trained with different feature types might show varying perfor-

mance depending on the articulation of the sign. For instance, a sign performed with

a combination of right and left hands may not be detected by handshape models since

the hand features are extracted from only the right hand. Therefore, by combining

the predictions of pose and handshape models, one can attain a better performing

ensemble. For this reason, a cold fusion approach is adopted [5] as

log p = (1− γ) · log k + γ · log h. (3.4)

Here k denotes the prediction of the pose keypoint-based model and h denotes the

prediction of the handshape model, and γ is the mixing coefficient. γ is learned on the

development set.

3.3. Pre-Trained Word Embeddings

Query embeddings hold a crucial role in the system as they are used to detect

the relevant parts of the feature sequence. Even though learning the query embeddings

from scratch works well for the baseline system, incorporating pre-trained word embed-

dings might improve the representational power of the query embeddings. However,

pre-trained word embeddings are learned from written languages, and they might not

be representative of the gloss queries since sign languages, and written languages have

different grammar and word orderings. Therefore, it is not guaranteed to obtain better

representations by fine-tuning pre-trained embeddings. Nevertheless, we experiment

with two types of word embeddings, word2vec, and fastText.

3.3.1. Word2Vec Embeddings

Word2vec model was proposed to learn distributed representations of the words

[71]. It is trained in a self-supervised manner, meaning that the model tries to predict

the words in the vicinity of the input word token. By doing so, the network discovers

19

positive and negative correlations between words. They employ hierarchical softmax,

which reduces the computation for large vocabulary systems [71]. Additionally, the

frequent words are intentionally subsampled since they are not as informative as the

rare words. This model has been shown to improve the word representations at the

time drastically.

A word2vec model trained on German Wikipedia was made available by deepset

[72]. We use this model to initialize queries in the vocabulary. However, the vocabulary

of this word2vec model does not include all the words in our vocabulary. Since there is

no way to produce embeddings for out-of-vocabulary (OOV) queries with the word2vec

model, those queries are initialized with random values sampled from a Gaussian dis-

tribution.

3.3.2. FastText Embeddings

Inspired by the skip-gram model introduced in [73], Bojanowski et al. proposed a

method to learn word embeddings by incorporating subword information [73]. Instead

of learning representations at the word level, they split each word into n-grams and

learn their representations. Afterward, word representations are produced by summing

its sub-units [73]. One significant advantage of this method is that it can generate word

embeddings even for OOV words.

A fastText model trained on German Wikipedia and Common Crawl is used to

initialize query embeddings [74]. Since the fastText method can generate representa-

tions for OOV queries, all the entries are initialized by the model.

3.4. Improving Graph Encoder with Graph Attention Networks

The baseline model employs an encoder with 12 ST-GCN layers. However, ST-

GCN architecture is very memory exhaustive for a large number of channels. Therefore,

Graph Attention Networks (GAT) are studied as a replacement for ST-GCN layers.

20

GAT was initially proposed for node classification of graph-structured data [75]. After-

ward, Huang et al. proposed Spatial-Temporal Graph Attention Networks (ST-GAT)

for skeleton-based action recognition that can work on spatial-temporal graphs [76].

They report superior performance compared to ST-GCN [76]. It is also shown that

the inference speed of ST-GAT architecture is higher [76]. Even though ST-GAT

demonstrates superior results in action recognition, no study within our knowledge has

investigated the effectiveness of ST-GAT for SL tasks. In this section, we first intro-

duce the mathematical background of GAT layers, then investigate ST-GAT networks

and their implementation.

3.4.1. Graph Attentional Layer

The layer takes a set of nodes as the input H = {h⃗1, h⃗2, .., h⃗N}, h⃗i ∈ IRD with

feature dimension D and outputs a set of nodes G = {g⃗1, g⃗2, .., g⃗N}, g⃗i ∈ IRD′
with

feature dimension D′. A linear transformation, W ∈ IRD×D′
, is applied to input fea-

tures. Then, ”excitation” between every node is computed by using a shared attention

mechanism

eij = a⃗T (Wh⃗i ||Wh⃗j), (3.5)

where a⃗ ∈ IR2D′
and || is the concatenation operation. Then, attention coefficients are

computed as

αij =
exp(σ(eij))∑

k∈Ni
exp(σ(eik))

, (3.6)

where Ni is first degree neighborhood matrix of the ith node and σ is LeakyReLU

activation function. Non-neighbor nodes are masked before applying softmax to only

include first-degree neighbors in attention calculation. Hence, each output node is the

weighted average of linearly transformed neighbor nodes for a single attention head.

Optionally, a non-linearity σ can be applied as

g⃗i = σ

(∑
j∈Ni

αijWh⃗j

)
. (3.7)

In the case of multi-head attention, output features can be concatenated or averaged

across heads. In our implementation, we average across multiple heads to reduce the

memory requirements of the layer. Unlike the original implementation, we employ a

21

learnable adjacency matrix initialized with 1’s for first-degree neighbors and a zero-

mean small variance Gaussian noise for the other nodes. This adjacency is updated

during training, and adjacency values are used as a scaling factor for excitations before

computing attention coefficients with softmax. Thus, the effect of irrelevant nodes is

reduced. The purpose of learnable adjacency instead of hard selection is for the network

to discover relationships between joints that are not directly connected. For instance,

the wrist joint is not connected to keypoints in the head. However, there might be a

correlation between them in terms of sign articulation that is not obvious from human

anatomy. With this modification, attention coefficients are computed as

αij =
exp(σ(eij) ·mij)∑N
k=1 exp(σ(eik) ·mik)

, (3.8)

where mij is the adjacency factor between node i and j. By introducing a learnable

mask, we alter the graph structure from undirected to directed since it is not guaranteed

to have the same weights in both directions (i.e., mij ̸= mji).

3.4.2. Spatial-Temporal Graph Attention Networks

After establishing the mathematical background for graph attention, we can ex-

pand our discussion to applying GAT to spatial-temporal graphs. ST-GAT model pro-

posed by [76] extends the GAT network by simply re-defining neighborhood function

such that temporal and spatial connections are included as the first order neighbors.

They employ hard selection for adjacency and increase the temporal ability of the

model by incorporating a temporal convolutional network (TCN) and residual connec-

tions between each ST-GAT layer [76].

We have experimented with three versions of ST-GAT:

(i) an ST-GAT architecture with only residual connections

(ii) an ST-GAT architecture with TCN and residual connections

(iii) an ST-GAT architecture that disentangles spatial and temporal attention mech-

anisms

22

Since the first two settings are trivial, we will discuss the third setting. Let G

be a spatial-temporal skeleton graph G = (V,E). The nodes of the graph V = {vij :

i = 1, .., N, j = 1, .., T} where N is the number of spatial nodes in each timestep

and T is the number of timesteps. Similarly, the edges comprised of two disjoint

sets E = Es ∪ Et, Es ∩ Et = ∅. Es = {vitvjt : (i, j) ∈ A} where A is the set

of bone connections in accordance with the human anatomy and Et = {vitvi(t+1) :

t = 1, .., T}. The information encoded in these two types of edges is not from the

same modality. Therefore, computing temporal and spatial attention separately and

then combining them might increase the expressive power of the network compared to

aggregating spatial and temporal relationships into a single attention mechanism. To

this end, the adjacency matrix is divided into two parts corresponding to spatial and

temporal connections. Temporal adjacency is applied as hard selection as opposed to

learned neighborhood coefficients for spatial connections. The modified output of a

node representing ith joint in kth timestep is

g⃗ik = σ

(
N∑
j=1

αijW1h⃗jk +
∑
t∈Nk

βktW2h⃗it

)
, (3.9)

where αij is spatial attention coefficients, βkt is temporal attention coefficients and

Nk = {k, k − 1, .., k − ∆} where ∆ is the temporal kernel size. Attention coefficients

are computed using Equation (3.8).

Separating temporal and spatial attention mechanisms increases the network’s

computational cost significantly due to the number of parameters getting doubled.

Due to memory limitations of the GPU, this setting could not be exhaustively tested.

However, the effect of each modification to GAT architecture and the results obtained

from each listed setting are comparatively discussed in Section 4.2.

Instead of employing only ST-GCN or only ST-GAT in the graph encoder, they

can be joined together to leverage the advantages of both architectures. In fact, the

experiments showed that optimal performance is achieved when these two architectures

are combined. In the final graph encoder, ST-GAT is used together with TCN and

residual connections. This graph encoder is illustrated in Figure 3.4.

23

Figure 3.4. Graph encoder comprised of ST-GCN and ST-GAT layers.

3.5. Pseudo-Relevance Feedback

Relevance feedback is a known beneficial strategy that has been applied for text

information retrieval [77]. By receiving feedback from the user, the search system

improves itself. It has also been applied in spoken content retrieval [78]. In pseudo-

relevance feedback (PRF), the system generates feedback for itself without any user

interaction. Since our system has not been tested with users, we chose to adapt PRF

to SL-KWS. Let us review the mathematical background of example-based PRF [79]

that is used in speech retrieval.

3.5.1. Mathematical Background

Let PQ be the pseudo-positive set of examples for query Q and XQ ∈ PQ. The

distance between an example X and a positive example set is defined as

D(PQ, X) =
∑

XQ∈PQ

d(XQ, X), (3.10)

where d(., .) is a distance metric used for calculating the distance between positive

example XQ and X feature vectors. DTW is a common choice for speech applications.

After computing the total distance of a query to the positive set, we calculate the

similarity score

SIM(PQ, X) = 1− D(PQ, X)

MQ

, (3.11)

24

where MQ is the maximum possible value of D(PQ, X). Now the original prediction

scores S(Q,X) are updated to obtain new predictions S1(Q,X),

S1(Q,X) = S(Q,X)(SIM(PQ, X))a, (3.12)

where a is an exponential weight parameter. The pseudo-positive set is obtained by

selecting K examples with the highest scores for the given query. This selection entails

a problem of confidence in the system’s initial predictions. If the system’s retrieval

performance is low, the application of PRF might even worsen the results as the top

K examples might belong to the negative class. Therefore, fine-tuning K is crucial.

Additionally, we do not apply PRF to low-confidence queries.

3.5.2. Pseudo-Relevance Feedback for SL-KWS

Upon establishing the mathematical background for example-based PRF, its ap-

plication to our problem can be discussed. Instead of sequential features, we use

context vectors that are produced by the selection mechanism. We introduce three

modifications to the original algorithm as presented in [80]:

(i) We experiment with three distance metrics:

• Cosine distance.

• l2 distance.

• Query-specific Mahalanobis distance.

(ii) Score normalization for distribution matching between the initial predictions and

PRF scores.

(iii) Learning a mixing coefficient for combining the initial and PRF predictions.

3.5.2.1. Query-Specific Distance Metric Learning. Even though cosine and l2 distance

metrics work well for most scenarios, the performance can be improved by learning a

new distance metric that maximizes the distance between positive and negative ex-

amples. To this end, we learn a distance metric for each query in the training set

vocabulary. All the positive examples of the query and the same number of nega-

25

tive examples are combined to form the input and the labels from the training set

provided to the metric learning algorithms. We use Neighborhood Component Anal-

ysis (NCA) [81] method to learn Mahalanobis distance. NCA tries to maximize the

performance of the leave-one-out k-Nearest Neighbors (kNN) algorithm by learning a

transformation matrix that separates positive and negative examples in a new space.

After learning Mahalanobis matrix M , the distance between two points is com-

puted as

dM(x1, x2) =
√
(x1 − x2)TM(x1 − x2) . (3.13)

This is equivalent to the Euclidian distance between two points in a new space.

3.5.2.2. Score Normalization and Learning Mixing Coefficient. The initial prediction

scores lie between 0 and 1, representing the probability of the query being present in

a specific video. However, Mahalanobis distance is unbounded like Euclidian distance.

Hence, the resulting distances lie in a much wider range than (0, 1). Even though the

distance values can be mapped into the (0, 1] range by dividing its maximum value, the

distribution of the scores still needs to be normalized before mixing them so that the

relative meaning of the scores is comparable. Thus, we applied two score normalization

techniques adopted from [82], namely, Gaussian normalization and Median normaliza-

tion defined as

sz =
s− µ(s)

σ(s)
(3.14)

sb =
s−median(s)

σ(s > median(s))
. (3.15)

Then, the normalized prediction scores are than mixed together as

pQ = γ · pQi + (1− γ) · pQprf , (3.16)

where pQi and pQprf denote original and PRF prediction scores for query Q, respectively.

γ is learned with a linear search on the training set by choosing the value that maximizes

mean average precision (mAP). The overall PRF algorithm is described in Figure 3.5.

26

INPUT:

C : Context vectors of the target corpus

P : Initial prediction for the target corpus

V : Selected subset of the vocabulary of the target corpus

N : The number of utterances in the target corpus

d(x1, x2) ⇐ Choose cosine, l2 or Mahalanobis distance as the distance metric

K : The number of queries with the highest scores that are assumed to be correct

γ : Mixing coefficient learned from tranining set

OUTPUT:

S : PRF scores.

F : Final predictions after combined with PRF.

FUNCTION PRF(C, P, V, N, d, K, γ):

for q in V do

if max(Pq) < 0.9 then

continue {skip the low confidence queries}

end if

p ⇐ argsort(Pq)

for i = 1 to N do

for k = 0 to K − 1 do

j ⇐ p[k]

Sq
i ⇐ Sq

i + d(Cq
j ,C

q
i)

end for

Sq
i ⇐ Sq

i/N

end for

Fq = γ ·Pq + (1− γ) · Sq

end for

return F,S

end FUNCTION

Figure 3.5. Pseudo-Relevance Feedback Algorithm.

27

3.6. Similarity-Based SL-KWS

The system explained in the baseline section is trained with binary cross-entropy

loss by classifying context vectors via perceptron. However, it is possible to train

a model with similarity loss functions by establishing a relationship between context

vectors and query embeddings and removing perceptron. Even though such models are

not expected to perform as well as the models trained with classification loss, they can

still explore different relationships between queries and context vectors. Hence, they

might perform better for some queries than classification models. The fusion strategy

can improve retrieval accuracy by combining similarity-based and classification-based

models. After the fusion of those two types of models, the fusion strategy can still be

applied to join handshape and pose models. Therefore, introducing an intermediate

fusion step where each type of model is fused with its similarity counterpart before

combining cross-feature models can be beneficial. To this end, we develop two training

techniques based on cosine similarity loss and triplet loss.

3.6.1. Cosine Similarity Loss

Cosine loss is frequently used for learning high dimensional non-linear represen-

tations. It is defined as

Lcos(x1, x2, y) =

1− cos(x1, x2), y = 1

max(0, cos(x1, x2)−m), y = −1,
(3.17)

where x1 and x2 are input vectors, y is the similarity label and m denotes tolerance

margin. This method is illustrated in Figure 3.6.

Using cosine loss, the context vectors of positive queries are brought closer to

corresponding query embeddings, while the context vectors of negative queries are

separated from corresponding query embeddings. Thus, the similarity of the positive

queries increases, whereas the negative similarity scores are suppressed. The weighting

coefficients of the two terms are equal.

28

Figure 3.6. Cosine loss configuration. Green represents positive and red represents

negative examples. PC: positive context. PQ: positive query. NC: negative context.

NQ: negative query.

3.6.2. Triplet Loss

Triplet loss is frequently used for few-shot learning problems in computer vision

[83]. It aims to make the distance between positive and anchor examples smaller than

the distance between negative and anchor examples by a margin. It is defined as

Ltrip(p, a, n) = max{d(a, p)− d(a, n) +m, 0}, (3.18)

where p, a, and n are positive, anchor, and negative examples, respectively, and m is

the minimum margin between the difference of distances. d(., .) is the distance metric

chosen as cosine distance. This method is illustrated in Figure 3.7.

Triplet loss is applied to two sets of inputs. In the first setting, positive context

vectors as anchors, positive query embeddings as positive examples, and negative query

embeddings are selected as negative examples. In the second setting, negative context

vectors as anchors, positive context vectors as positive examples, and negative query

embeddings are given as negative examples. The first setting increases the similarity

between positive context vectors and positive query embeddings. Thus, leading to the

detection of positive queries. The second setting broadens the gap between negative

query embeddings and negative context vectors, helping to prevent false alarms.

29

During inference, both methods’ predictions are generated by computing cosine

similarity between the embedding of given query and context vectors corresponding to

the same query in all utterances of the corpus. The similarity scores are then ranked

and presented to the user as the retrieval result for the given query.

Figure 3.7. Triplet loss configuration. Green represents positive, red represents

negative and gray represents anchor examples. PC: positive context. PQ: positive

query. NC: negative context. NQ: negative query.

3.7. Iterative SL-KWS

In the baseline model, each query is assumed to be independent, and the rela-

tionships between queries are not exploited. Including a query encoder that captures

queries’ interactions may yield better retrieval results. Therefore, we have implemented

a Transformer-based [84] query encoder. Transformer architecture is shown to be supe-

rior to RNN-based encoder-decoder models in Neural Machine Translation (NMT) [84].

After obtaining encoded query representations, they must be combined with the en-

coded video sequence. We employed a cross-modal attention mechanism that is used for

temporal sentence localization in videos [85]. This module utilizes a two-way attention

technique whose details are explained in Section 3.7.2. The remaining components of

the system are kept the same. The training and the inference strategies of this model

are explained in Sections 3.7.3 and 3.7.4. The overall flowchart of the system is given

in Figure 3.8.

30

3.7.1. Query Encoder

Transformer architecture takes a sequence of inputs. The input length is decided

by the longest sequence in the dataset. After determining the longest sequence, other

sequences are padded to match this length. Later on, they are masked according to

their length to ensure proper computation of the backpropagation. Positional encoding

is usually used to preserve the sequential nature of the input in Transformers. However,

we do not apply any positional encoding as our model works in a bag-of-words manner.

The selection of the bag-of-words method will be explained in Section 3.7.3 where we

discuss the training strategy of the model.

Transformer architecture employs self-attention on the inputs, normalizes them,

and feeds the result into a dense network. Residual connections between layers are also

used to mitigate vanishing gradient problems. The resulting query encoder architecture

consists of 3 Transformer encoder layers.

3.7.2. Cross-Modal Attention Layer

Cross-modal attention is an effective method for discovering interactions between

two sequences from different modalities. It is often used in video-text applications. It

establishes two-way attention between queries and the video sequence.

The encoded query Q ∈ IRN×D and video V ∈ IRT×D sequences are first carried

into a shared space via WS ∈ IRD×D. Then, the similarity matrix S is computed as

S = V(QWS)
T ∈ IRT×N. (3.19)

In this matrix, each column holds a similarity score between query qi and all the

frames in the video sequence. Similarly, the rows store the similarity score between

video frame vf and all the queries in input. Similarity scores are masked according to

the video and query lengths.

F
igu

re
3.8.

Iterative
S
L
-K

W
S
p
ip
elin

e.

31

Then, two attention weights are computed as

A = Sr(QWS) ∈ IRT×D (3.20)

B = SrSc
TV ∈ IRT×D, (3.21)

where Sr and Sc are obtained by applying the softmax function on rows and columns

of S, respectively. Here, A stores video-to-query attention whereas B holds query-to-

video attention.

The final output of this layer is obtained as

H = WH [V;A;V ⊙A;V ⊙B] ∈ IRT×D, (3.22)

where WH is used to map the concatenated output of the layer back into the original

dimensions IRT×D, and ⊙ stands for the element-wise multiplication.

3.7.3. Training Strategy

Unlike the original model, this system configuration admits a set of queries as

input. The selection of those queries is crucial to the model’s training. Initially,

query inputs were directly taken from the labels of the input videos. However, this

approach trivializes the model’s training since it simply learns to repeat query inputs

at the output. Upon this observation, we have decided to move forward with two other

approaches. The first approach is to input the top predictions of a pre-trained model

for a given video. The other approach is to train the model similar to the Expectation-

Maximization (EM) method. In the latter technique, the model first generates its

predictions without updating model parameters and then uses those prediction results

as input to the query encoder. This iterative approach is the primary reason behind the

selection of the bag-of-words technique since the system does not output any sequential

information about the queries. Therefore, it is not advantageous to employ positional

embeddings. In the first epoch, queries are randomly sampled from the vocabulary.

The queries to be inputted are selected by ranking scores of all queries for the

given video. Top K query is selected as the input. K is decided by dividing the

32

number of frames in the video by a number of frames per query constant l. l is decided

by sweeping integer values between 5 and 30. The number that minimizes the mean

squared error is selected as l. Additionally, the ranked query inputs are shuffled to

ensure the stochasticity further. The experiments prove the superiority of the latter

training approach.

3.7.4. Inference

Another advantage of iterative training is to have a natural way of combining

different models’ predictions by simply feeding one with the other’s predictions. This

attribute can be exploited to refine the predictions of the system further. Thus, we

store two models during training, one that leads to a maximum mean AP (mAP) score

and the one that yields the best loss in the development set. During inference, we

randomly initialize the best loss model’s inputs and then feed its outputs to itself for

N times. Then, the resulting predictions are fed into the best mAP model as the initial

predictions and are refined for N ′ iterations. This way, we can transfer information

from the best loss model to the best mAP model, leveraging multiple checkpoints.

33

4. EXPERIMENTS AND RESULTS

In this chapter, conducted experiments and their results are explained and dis-

cussed. We first introduce an experimental setup that includes the dataset, evaluation

metrics, and the implementation details in Section 4.1. In Section 4.2, we present the

results for improved graph encoder. In Section 4.3, PRF results are reported and dis-

cussed. Results of the similarity-based models are given in Section 4.4. We report and

discuss the results of the new iterative training method in Section 4.5. In Section 4.6,

we present the results for cross-lingual search. Lastly, we report the best performing

models obtained by the fusion of iterative pose and handshape models in Section 4.7.

4.1. Experimental Setup

In this section, we introduce the dataset in which the experiments are carried out,

and we define the evaluation metrics used to measure the success of the experiments.

Lastly, the details regarding the implementation are explained.

4.1.1. Dataset

All the experiments are carried out on RWTH-PHOENIX-Weather 2014T dataset

[86]. The dataset contains 9.2 hours of training, 37 minutes of development, and

43 minutes of test footage of weather forecast in German sign language, signed by

nine different signers, in 25 fps videos. The dataset also includes sentence-level gloss

transcriptions without temporal annotations and cross-lingual (German) translations

of the sentence, which are utilized to form vocabularies for gloss and cross-lingual

search, respectively.

Gloss vocabulary contains 1085 queries in the training set, and 398 of those are

also present in the test set. Similarly, German keyword vocabulary contains 2887

queries in the training data, and 942 of those are also encountered in the test data.

34

Since there is no correlation between the written form of a query and its sign, the

search can only be done on in-vocabulary queries. Consequently, results are reported

on queries present in both training and test sets, which share 398 queries for gloss

search and 942 queries for cross-lingual search.

4.1.2. Evaluation Metrics

4.1.2.1. Mean Average Precision (mAP). Average precision (AP) for a query q can be

written as

AP =
1

N

N∑
n=1

Precision@n(q), (4.1)

where N is the number of occurrences of query q in the dataset. Upon computing AP

scores for all the queries in the vocabulary, mean AP (mAP) score is calculated by

averaging all the queries.

4.1.2.2. Precision at N (p@N). p@N is calculated by computing the precision for the

first N retrieved items, where N is the number of occurrences of a query in the target

set.

4.1.3. Implementation Details

The code is written in Python 3.8. The neural networks are implemented and

trained using PyTorch 1.8. Nvidia GeForce GTX 1080Ti and RTX 2080Ti are used

for training. The models are trained using AdamW optimizer with a 0.003 learning

rate and weight decay. Learning rate scheduling is also applied. If the development

loss does not decrease for three consecutive epochs, then the learning rate is halved.

After every halving, three epoch cooldown period is introduced. The halving process

continues until the lower bound for the learning rate is reached, which is determined

as 10−5. Training stops when no improvement is observed in the mAP score of the

development set for six consecutive epochs. The model with the best mAP score

on the development set is saved and used for testing. Both models with the best

35

development loss and the best mAP score are saved for the iterative training method.

The videos over 225 frames (9 seconds) are removed from the dataset to reduce memory

requirements. They approximately correspond to 1.5% of the videos in the dataset.

4.2. Improved Graph Encoder Results

The modifications to the graph encoder were introduced in Section 3.4.2. In

this section, we provide an ablation study for the graph encoder that emphasizes the

individual contribution of each proposed modification. We also analyze the learned

mask to deduce underlying relationships within pose keypoints.

4.2.1. Comparison of Different Graph Encoder Architectures

In this section, we investigate the effect of each component introduced to the

graph encoder. The resulting mAP score for the different configurations are given in

Table 4.1.

If we compare Setting 1 and 2, it is seen that the contribution of TCN is quite

significant. The temporal modeling power of the encoder severely degrades when TCN

is excluded. Similarly, it is observed that the contribution of TCN is more significant

than the introduced temporal attention mechanism when Settings 2 and 4 are com-

pared. However, the temporal attention mechanism still improves temporal modeling

significantly as the performance of Setting 4 is far greater than that of Setting 2. We

may also inspect the effect of employing a learnable mask instead of hard selection.

It is seen that the learnable mask introduces approximately 6% improvement to mAP

score when Setting 2 and 3 are compared. Lastly, when Setting 5 and 6 are compared,

it is seen that the joining ST-GCN and ST-GAT architectures yield the best results.

We also expect improvement in the performance if the temporal attention mechanism

were incorporated into the encoder. However, due to memory limitations of the GPU,

it is left out of the final architecture.

36

Table 4.1. The effect of each modification. All the models are trained with OpenPose

features. Temporal Att. stands for temporal attention. ’+’ means included and ’-’

means excluded from the encoder.

TCN Temporal Att. Learnable Mask ST-GCN mAP (%)

1 - - + - 12.89

2 + - + - 28.31

3 + - - - 22.51

4 - + + - 23.21

5 + - + + 34.91

6 - - - + 29.61

4.2.2. Analysis of the Learned Mask

In this section, we examine the learnable mask to explore some underlying dy-

namics between joints. As explained in Section 3.4.2, the learnable mask is used as a

scaling factor before the computation of the attention coefficients. If mij is big com-

pared to other coefficients in the matrix, it can be interpreted as the effect of the node

j on the node i is relatively significant. Keeping this in mind, we made the following

analyses:

(i) Learn the most significant nodes (i.e. ones that significantly contribute to other

nodes) by computing sj =
∑

i mij for each node and comparing them. The

greater the sj, the greater the significance on other nodes.

(ii) Learn the least significant nodes (i.e., ones that have a relatively low impact on

the computation of the others) by computing the sj as in (i). This analysis can

be used for feature selection.

4.2.2.1. Investigating the Most Significant Nodes. First we compute s⃗ where sj =∑
i/∈Amij and A is the set of natural connections. In other words, we exclude the

direct connections dictated by human physiology since those coefficients are inherently

37

large, and the nodes with many connections to others can skew the results. The nodes

with the highest contribution score are given in Table 4.2. The contribution scores

are normalized by dividing 52, which is the maximum possible value when we exclude

coefficients of the anatomical connections.

Table 4.2. The nodes with the most contribution and their corresponding scores. RH

stands for right hand. Numbers within parantheses denote the index of the joint per

Figure 4.1(c).

Joint Name (Joint Index) Contribution Score

1 RH - Thumb Middle (3) 0.193

2 RH- Thumb End (4) 0.168

3 RH- Ring Finger Start (14) 0.163

4 RH - Ring Finger End (16) 0.153

5 RH - Thumb Start (2) 0.150

6 RH - Index Finger End (8) 0.137

7 RH - Middle Finger Start (10) 0.136

8 RH- Middle Finger End (12) 0.133

9 RH- Ring Finger Middle (15) 0.128

10 RH - Middle Finger Middle (11) 0.112

It can be seen from Table 4.2 that the most significant nodes are the first four

fingers of the right hand. It is not surprising since it is known that the handshape is

the most informative SL channel and the positions of the first four fingers determine

the handshape to a great extent. However, a high contribution score can be obtained

if a joint is significant for a few nodes with a large coefficient. To answer this question,

we can also investigate how often a node is the most significant node for another node.

In other words, we ask that the node in question is the primary contributor for how

many nodes, excluding natural connections. The results are reported in Table 4.3 and

the results are consistent with Table 4.2. This way, we showed that these keypoints

are relevant for many others instead of having large coefficients for a few nodes.

38

Table 4.3. Number of times a node is the most significant node for another. RH

stands for right hand.

Joint Name (Joint Index) #Nodes

1 RH - Thumb Middle (3) 11

2 RH - Thumb Start (2) 8

3 RH- Thumb End (4) 7

4 RH- Ring Finger Start (14) 6

5 RH - Middle Finger Start (10) 4

4.2.2.2. Investigating the Least Significant Nodes. An analysis similar to Section

4.2.2.1 might be carried out for the least significant nodes. These nodes contribute very

little and might be removed from the feature set for future studies to reduce complexity.

In Table 4.4, sj scores of the least significant nodes are given. Contribution scores are

not normalized.

(a) (b) (c)

Figure 4.1. Handshape A, Handshape B and OpenPose hand keypoints layout.

These joints can be eliminated from the feature set as they contribute very little to

overall attention computation. The results are not surprising because the movement

of these parts does not convey much information about the sign articulation. For

example, rather than the position of the eyes, the information about blinking speed,

39

eye openness, or the blinking type is more informative for SL. Similarly, the position of

the nose is not very relevant. The most informative features of the face are mouthings,

facial expressions, and eye and eyebrow movements, none of which are included in this

study.

Table 4.4. The nodes with the least contribution and corresponding scores. Numbers

within parantheses denote the index of the joint per Figure 4.1(c).

Joint Name (Joint Index) Contribution Score

1 Left Ear (11) -1.834

2 Left Eye (12) -1.620

3 Right Ear (9) -1.467

4 Right Eye (10) -1.328

5 Nose (0) -0.390

4.3. Pseudo-Relevance Feedback Results

In order to evaluate the effectiveness of PRF, we take predictions from a Deep-

Hand model. We first select a subset of queries from the test that occurs more than

60 times in the training set to select better-performing queries. Afterward, PRF scores

for those queries are calculated in the training set and are used to learn an optimal

mixing coefficient. Using this mixing coefficient, the initial test predictions and the

test PRF scores are combined to obtain new predictions. Optionally, score normaliza-

tion is applied. The top three entries are assumed correct. We also experimented with

query-specific mixing coefficients learned on the training set. However, they worsen the

results due to overfitting in the mixing coefficient. The results are reported in Table

4.5.

The results show that PRF introduces negligible improvements. Now we will

hypothesize why this is the case. The main difference between our approach and the

conventional example-based PRF used in speech retrieval is that our features are not

40

sequential since our system does not produce temporal hypotheses. Therefore, we use

context vectors. However, it seems that we cannot infer any additional information from

the context vectors other than what was already inferred by the perceptron. This might

be due to the fact that the score distributions from our system are quite different from

the speech KWS systems. Therefore, the application of score normalization techniques

is not helpful as they are for speech retrieval.

Table 4.5. PRF results. Scores are given in percentages.

Distance Metric Score Normalization mAP Gain p@N Gain

cosine - 0.08 0.02

l2 - 0.09 0.02

Mahalanobis - -0.01 -0.05

cosine Median 0.05 0.03

l2 Median 0.05 0.03

Mahalanobis Median 0.02 0.03

cosine Gaussian 0.05 0.03

l2 Gaussian 0.05 0.03

Mahalanobis Gaussian 0.02 0.03

4.4. Similarity-based Models

The training of similarity-based models are explained in Section 3.6. We report

their performance and the fusion results in Table 4.6 and Table 4.7. It is seen in Table

4.6 that the models trained with DeepHand features outperform the models trained

with MultiTask features, as the DeepHand model was also trained on the RWTH-

Phoenix dataset which we use in our experiments. Fusion of Multitask classification

and Deephand similarity models achieve the highest gain and relative improvement.

Similarity models are expected to perform worse than classification models since the

prediction scores are computed by cosine similarity between query embeddings and

context vectors. Every query is represented with a single embedding that may not

41

be brought closer to every positive context vector in the corpus. It may be suggested

that learning a query representation similar to all positive context vectors limits the

expressive power of the model.

Table 4.6. Results for cosine similarity-based models and their fusion with

classification models. Rel. Impr. stands for relative improvement.

Classification Cosine Fusion

Feature mAP Feature mAP mAP Gain Rel. Impr.(%)

DeepHand 28.08 DeepHand 21.54 30.42 2.34 8.33

MultiTask 25.60 DeepHand 21.54 28.7 3.10 12.11

DeepHand 28.08 MultiTask 17.68 29.2 1.12 3.99

MultiTask 25.60 MultiTask 17.68 26.92 1.32 5.16

Similar observations can be made for triplet similarity results reported in Table

4.7. If we compare triplet and cosine loss, we see that they accomplish similar results

for both features. For DeepHand features, cosine similarity works better. In order to

analyze the performance of similarity-based models, we further investigate the query-

specific performances of similarity and classification models. We inspect the queries

that obtained higher retrieval scores when trained with cosine similarity loss. Some

of the queries with the most performance improvement under similarity training are

listed in Table 4.8. We subtract the baseline DeepHand model’s AP scores from the

AP scores of the cosine model for every query.

In order to discover why those queries listed in Table 4.8 performed better in

similarity training, their sign articulations are viewed from a sign dictionary [87]. The

primary handshape for the first four queries is determined as ”flat closed fingers”, which

we will refer to as handshape A and is illustrated in Figure 4.1(a). For the fifth query

”WENIG”, the primary handshape is given in Figure 4.1(b), and we refer to it as hand-

shape B for the rest of this section. When we check the classification performance of the

DeepHand model for these handshapes, it is observed that handshape B was identified

42

with 3.9% precision, and handshape A obtained a 41.7% precision score [18]. They are

the two handshapes with the lowest precision scores among the handshapes illustrated

in the given confusion matrix [18]. Hence, one may suggest that the similarity-based

models might be more robust to the noise in the feature embeddings assuming that

the features obtained for those handshapes were not very representative. In order to

verify this hypothesis, more analyses must be conducted, which is outside the scope of

this thesis.

Table 4.7. Results for triplet similarity-based models and their fusion with

classification models. Rel. Impr. stands for relative improvement.

Classification Triplet Fusion

Feature mAP Feature mAP mAP Gain Rel. Impr.(%)

DeepHand 28.08 DeepHand 20.39 29.61 1.53 5.45

MultiTask 25.60 DeepHand 20.39 28.45 2.85 11.13

DeepHand 28.08 MultiTask 17.76 29.14 1.06 3.77

MultiTask 25.60 MultiTask 17.76 26.66 1.06 4.14

Table 4.8. AP difference between similarity and classification models for some queries.

Query AP Difference (%)

1 DESHALB 56.4

2 OFT 50.0

3 WEITER 37.5

4 ANGENEHM 29.5

5 WENIG 28.7

4.5. Iterative SL-KWS Results

In this section, we report the results for the models trained with default and

iterative methods. Additionally, we investigate the improvement introduced to the

43

results by each iteration and model combination.

4.5.1. Iterative and Default Training Methods

We present the iterative and default training results in Table 4.9. The best

results are indicated in boldface. It is seen that the iterative approach has increased

the performance of all configurations. The most significant improvement is observed

for OpenPose features with approximately a 5% increase in mAP score. Note that the

default training results for handshape models are different from those initially reported

in [6]. This is due to improvements made in the 1D-CNN encoder and attention-based

selection mechanism. 1D-CNN encoder is further regularized with batch normalization

(BN). Additionally, layer normalization is applied to context vectors before they are fed

into perceptron. Furthermore, we obtained comparable results for OpenPose ST-GCN

architecture by reducing the number of layers from 12 to six.

Table 4.9. Results for iterative and default training methods. Results are given as

percentages.

Default Iterative

Feature Encoder mAP p@N mAP p@N

OpenPose ST-GCN 29.61 26.43 34.29 30.96

OpenPose ST-GCN + ST-GAT 34.91 29.95 39.55 35.18

DeepHand 1D CNN 30.04 27.90 31.76 28.19

MultiTask 1D CNN 27.06 24.52 29.34 25.81

4.5.2. Prediction Refinement

One of the advantages of iterative training is that the model can improve upon

its initial predictions. In Table 4.10, we listed how each iteration improves the retrieval

performance. The improvement over iterations can be observed in Figure 4.2 as well. In

the first iteration, the model is initialized with random queries. The previous iteration’s

44

predictions are used as query input in the following iteration. The first two iterations

are carried out by the model with the best loss on the development set, whereas in

the last iteration, the predictions of the best development loss model are given to the

model with the best mAP score on the development set. This number of iterations is

found to be optimal after carrying out experiments in the development set. Increasing

the number of iterations sometimes degrades the performance slightly. Additionally,

the results at the inference time are not deterministic as the first inputs are given as

random. This is why we observe different scores from what was reported in Table 4.9.

Table 4.10. Prediction refinement progress. ST-GCN model is used for OpenPose

features.

OpenPose DeepHand

Iteration mAP (%) p@N (%) mAP (%) p@N (%)

1 30.28 26.29 28.91 25.51

2 31.07 27.24 29.32 26.20

3 34.60 31.23 32.02 28.51

Figure 4.2. Improvement over iterations.

45

4.6. Cross-Lingual Search

In addition to the gloss search, the system can be used to retrieve cross-lingual

queries. Since the cross-lingual labels are very noisy, the model’s performance is rel-

atively low compared to the gloss search. We also experiment with initializing query

embeddings with pre-trained word embeddings. The models are trained with the de-

fault training method. The results, including baseline scores, are reported in Table

4.11. It is seen that combining ST-GAT and ST-GCN encoders is beneficial for the

cross-lingual search even if the pre-trained embeddings are not used. Incorporating ST-

GAT and pre-trained embeddings boosts the mAP score by 2.9% compared to the best

baseline model. The results do not point to a superior pre-trained embeddings method

as the performance changes with the feature. However, incorporating the pre-trained

embeddings improved the results for all features.

Table 4.11. Cross-lingual search results. Scores are given as percentages. The models

marked with ’*’ are baseline models.

Feature Encoder Pre-Trained mAP p@N

OpenPose* ST-GCN - 13.14 10.39

OpenPose ST-GCN + ST-GAT - 14.35 11.21

OpenPose ST-GCN + ST-GAT word2vec 16.04 13.27

OpenPose ST-GCN + ST-GAT fastText 15.04 12.07

DeepHand* 1D CNN - 11.11 9.14

DeepHand 1D CNN word2vec 12.55 9.71

DeepHand 1D CNN fastText 13.74 10.50

MultiTask* 1D CNN - 10.44 8.75

MultiTask 1D CNN word2vec 12.88 10.02

MultiTask 1D CNN fastText 12.73 9.29

46

4.7. Fusion Results

Fusion strategy is introduced in [5] and explained in Section 3.2.3. It is possible

to combine the predictions of pose and handshape models using the fusion technique.

We report the combination of the best OpenPose and DeepHand models in Table

4.12. MultiTask models are left out as DeepHand models outperform them. γ is the

mixing coefficient. The values less than 0.5 point out higher reliance on the pose

model, and the values greater than 0.5 indicates higher reliance on the handshape

model. The best performing combination achieves 45.38% mAP score, which introduces

approximately 13% mAP improvement upon what was reported in the baseline study

[6]. It is seen in Table 4.12 that DeepHand models significantly benefit from the pre-

trained embeddings, yielding to 1.53% for fastText and 2.77% mAP score improvement

for word2vec embeddings.

T
ab

le
4.12.

F
u
sion

of
iteratively

train
ed

O
p
en
P
ose

an
d
D
eep

H
an

d
m
o
d
els.

S
T
-G

C
N

+
S
T
-G

A
T

arch
itectu

re
is
u
sed

for
O
p
en
P
ose

m
o
d
els.

O
p
e
n
P
o
se

D
e
e
p
H
a
n
d

F
u
sio

n

P
re
-T

ra
in
e
d

m
A
P

(%
)

p
@
N

(%
)

P
re
-T

ra
in
e
d

m
A
P

(%
)

p
@
N

(%
)

m
A
P

(%
)

p
@
N

(%
)

γ

-
39.55

35.18
-

31.76
28.19

44.07
38.48

0.4

-
39.55

35.18
w
ord

2vec
34.53

30.86
44.40

35.65
0.48

-
39.55

35.18
fastT

ex
t

33.29
29.23

44.13
38.33

0.56

fastT
ex
t

39.97
36.75

-
31.76

28.19
44.07

39.63
0.38

fastT
ex
t

39.97
36.75

w
ord

2vec
34.53

30.86
4
5
.3
8

4
0
.7
1

0.4

fastT
ex
t

39.97
36.75

fastT
ex
t

33.29
29.23

44.43
38.82

0.56

47

5. CONCLUSION

The Deaf lack the resources and tools to access information in the internet age

easily. This excludes hard-of-hearing people from the many essential aspects of life,

including education, getting and holding a job, and social relationships. Therefore,

developing information retrieval tools designed explicitly for sign languages is necessary.

The current state-of-the-art in the SL research must be pushed further to a point where

powerful sign retrieval tools can be used easily by the Deaf in their edge devices. To

this end, we studied the keyword search problem in sign language that can be utilized

to retrieve SL videos from an archive via a written query.

In this thesis, we presented improvements to an existing keyword search system in

sign language and proposed an iterative approach to the problem. We first introduced

a new graph encoder comprised of ST-GAT layers. We improve the existing architec-

ture by incorporating a learnable mask and a separable temporal attention mechanism.

Although ST-GAT architecture was explored for action recognition, this work is the

first to employ the architecture in an SL problem. Later on, we demonstrated the

superiority of the proposed modifications by an ablation study. The most and least

significant keypoints are determined by inspecting the learned coefficients in the mask,

which can be used for feature selection. The PRF method, used frequently in speech

retrieval, is adapted to the SL-KWS problem. The results are examined by discussing

the differences between speech and sign retrieval problems. Similarity-based training

methods are introduced, and it was shown that these models might be used to boost

handshape models since they yield better AP scores than the classification methods

for some queries depending on the sign articulation. As the main contribution of the

thesis, we proposed an iterative training approach that allows the model to refine its

predictions over time. Additionally, a query encoder and a cross-modal attention mech-

anism were incorporated into the system. They enable iterative training of the model

and the discovery of subtle interactions between the queries and the video sequence.

As an extension of this approach, a natural way of combining model predictions was

48

explored, and the improvement provided by each iteration were reported. It is shown

that the iterative training approach significantly improves the results compared to the

baseline system. In order to improve query embeddings, experiments were carried out

with pre-trained word embeddings for German.

The current system achieves good retrieval performance on the frequently oc-

curring queries in the training set, suggesting that the collection of sizeable general

domain datasets might alleviate a significant portion of the issues related to SL tasks.

Alternatively, few-shot training techniques can be utilized in the system to improve

the performance in the less-frequent queries. The current system does not provide any

information about the temporal position of the query within the utterance. Therefore,

the system might be advanced to localize the signs within the sequence.

49

REFERENCES

1. Sandler, W. and D. Lillo-Martin, “Natural Sign Languages”, The Handbook of

Linguistics , pp. 533–562, Oxford, UK, 2003.

2. “Deaf Employment Reports”, https://www.gallaudet.edu/office-of-international-

affairs/demographics/deaf-employment-reports/, accessed in June 2022.

3. Tamer, N. C. and M. Saraçlar, “Keyword Search for Sign Language”, IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

8184–8188, Barcelona, Spain, 2020.

4. Tamer, N. C. and M. Saraçlar, “Cross-Lingual Keyword Search for Sign Language”,

Proceedings of the LREC 9th Workshop on the Representation and Processing of

Sign Languages: Sign Language Resources in the Service of the Language Com-

munity, Technological Challenges and Application Perspectives , pp. 217–223, Mar-

seille, France, 2020.

5. Tamer, N. C. and M. Saraçlar, “Improving Keyword Search Performance in Sign

Language with Hand Shape Features”, Computer Vision – ECCV Workshops , pp.

322–333, Glasgow, UK, 2020.

6. Tamer, N. C., Keyword Search for Sign Language, Master’s Thesis, Bogazici Uni-

versity, 2020.

7. Cheok, M., Z. Omar and M. Jaward, “A Review of Hand Gesture and Sign Lan-

guage Recognition Techniques”, International Journal of Machine Learning and

Cybernetics , Vol. 10, No. 1, pp. 131–153, 2019.

8. Sykora, P., P. Kamencay and R. Hudec, “Comparison of SIFT and SURF Methods

for Use on Hand Gesture Recognition Based on Depth Map”, AASRI Procedia,

Vol. 9, pp. 19–24, 2014.

50

9. Tharwat, A., T. Gaber, A. E. Hassanien, M. K. Shahin and B. Refaat, “SIFT-Based

Arabic Sign Language Recognition System”, The Proceedings of Afro-European

Conference for Industrial Advancement , pp. 359–370, Addis Ababa, Ethiopia, 2015.

10. Shukla, J. and A. Dwivedi, “A Method for Hand Gesture Recognition”, Fourth

International Conference on Communication Systems and Network Technologies ,

pp. 919–923, Bhopal, India, 2014.

11. Rekha, J., J. Bhattacharya and S. Majumder, “Shape, Texture and Local Move-

ment Hand Gesture Features for Indian Sign Language Recognition”, 3rd Inter-

national Conference on Trendz in Information Sciences Computing (TISC), pp.

30–35, Chennai, India, 2011.

12. Karami, A., B. Zanj and A. K. Sarkaleh, “Persian Sign Language (PSL) Recogni-

tion Using Wavelet Transform and Neural Networks”, Expert Systems with Appli-

cations , Vol. 38, No. 3, pp. 2661–2667, 2011.

13. Rekha, J., J. Bhattacharya and S. Majumde, “Hand Gesture Recognition for Sign

Language: A New Hybrid Approach”, IPCV : Proceedings of the International

Conference on Image Processing, Computer Vision, & Pattern Recognition, pp.

80–86, Las Vegas, NV, 2011.

14. Krizhevsky, A., I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing Sys-

tems , Vol. 25, pp. 84–90, Lake Tahoe, NV, 2012.

15. Simonyan, K. and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition”, International Conference on Learning Representations ,

pp. 1–14, San Diego, CA, 2015.

16. Deng, X., S. Yang, Y. Zhang, P. Tan, L. Chang and H. Wang, “Hand3d: Hand Pose

Estimation using 3D Neural Network”, arXiv preprint arXiv:1704.02224 , 2017.

51

17. Escobedo Cardenas, E. J. and G. C. Chavez, “Multimodal Hand Gesture Recog-

nition Combining Temporal and Pose Information Based on CNN Descriptors and

Histogram of Cumulative Magnitudes”, Journal of Visual Communication and Im-

age Representation, Vol. 71, p. 102772, 2020.

18. Koller, O., H. Ney and R. Bowden, “Deep Hand: How to Train a CNN on 1

Million Hand Images When Your Data Is Continuous and Weakly Labelled”, IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3793–3802,

Las Vegas, NV, 2016.

19. Rastgoo, R., K. Kiani and S. Escalera, “Sign Language Recognition: A Deep

Survey”, Expert Systems with Applications , Vol. 164, p. 113794, 2021.

20. Pu, J., W. Zhou and H. Li, “Sign Language Recognition with Multi-modal Fea-

tures”, Advances in Multimedia Information Processing - PCM , pp. 252–261,

Xi´an, China, 2016.

21. Ge, L., H. Liang, J. Yuan and D. Thalmann, “Robust 3D Hand Pose Estimation in

Single Depth Images: From Single-View CNN to Multi-View CNNs”, Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3593–

3601, Las Vegas, NV, 2016.

22. Zheng, C., W. Wu, C. Chen, T. Yang, S. Zhu, J. Shen, N. Kehtarnavaz and

M. Shah, “Deep Learning-Based Human Pose Estimation: A Survey”, arXiv e-

prints , 2020.

23. Newell, A., K. Yang and J. Deng, “Stacked Hourglass Networks for Human Pose

Estimation”, European Conference on Computer Vision, pp. 483–499, Amsterdam,

The Netherlands, 2016.

24. Wei, S.-E., V. Ramakrishna, T. Kanade and Y. Sheikh, “Convolutional Pose Ma-

chines”, Proceedings of the IEEE Conference on Computer Vision and Pattern

52

Recognition, pp. 4724–4732, Las Vegas, NV, 2016.

25. Er-Rady, A., R. Faizi, R. O. H. Thami and H. Housni, “Automatic Sign Language

Recognition: A Survey”, International Conference on Advanced Technologies for

Signal and Image Processing (ATSIP), pp. 1–7, Fez, Morocco, 2017.

26. Cooper, H., E.-J. Ong, N. Pugeault and R. Bowden, “Sign language recognition

using sub-units”, Journal of Machine Learning Research, Vol. 13, pp. 2205–2231,

2012.

27. Elmezain, M., A. Al-Hamadi and B. Michaelis, “Real-Time Capable System for

Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image

Sequences”, Journal of WSCG , Vol. 16, pp. 65–72, 2008.

28. Wilson, A. and A. Bobick, “Parametric Hidden Markov Models for Gesture Recog-

nition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21,

No. 9, pp. 884–900, 1999.

29. Hong, P., M. Turk and T. Huang, “Gesture Modeling and Recognition Using Finite

State Machines”, Proceedings Fourth IEEE International Conference on Automatic

Face and Gesture Recognition, pp. 410–415, Grenoble, France, 2000.

30. Adaloglou, N., T. Chatzis, I. Papastratis, A. Stergioulas, G. T. Papadopoulos,

V. Zacharopoulou, G. J. Xydopoulos, K. Atzakas, D. Papazachariou and P. Daras,

“A Comprehensive Study on Deep Learning-Based Methods for Sign Language

Recognition”, IEEE Transactions on Multimedia, Vol. 24, No. 1, pp. 1750–1762,

2022.

31. Liu, H., S. Jin and C. Zhang, “Connectionist Temporal Classification with Max-

imum Entropy Regularization”, Advances in Neural Information Processing Sys-

tems , Vol. 31, pp. 839–849, Montreal, Canada, 2018.

32. Heymann, J., K. C. Sim and B. Li, “Improving CTC Using Stimulated Learning

53

for Sequence Modeling”, IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 5701–5705, Brighton, UK, 2019.

33. Koller, O., S. Zargaran, H. Ney and R. Bowden, “Deep Sign: Hybrid CNN-HMM

for Continuous Sign Language Recognition”, British Machine Vision Conference,

pp. 136.1–136.12, York, UK, 2016.

34. Koller, O., N. C. Camgoz, H. Ney and R. Bowden, “Weakly Supervised Learning

with Multi-Stream CNN-LSTM-HMMs to Discover Sequential Parallelism in Sign

Language Videos”, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, Vol. 42, No. 9, pp. 2306–2320, 2020.

35. Cui, R., H. Liu and C. Zhang, “Recurrent Convolutional Neural Networks for Con-

tinuous Sign Language Recognition by Staged Optimization”, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1610–1618, Honolulu, HI,

2017.

36. Cui, R., H. Liu and C. Zhang, “A Deep Neural Framework for Continuous Sign

Language Recognition by Iterative Training”, IEEE Transactions on Multimedia,

Vol. 21, No. 7, pp. 1880–1891, 2019.

37. Tran, D., L. Bourdev, R. Fergus, L. Torresani and M. Paluri, “Learning Spa-

tiotemporal Features with 3D Convolutional Networks”, Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pp. 4489–4497, Santiago,

Chile, 2015.

38. Huang, J., W. Zhou, Q. Zhang, H. Li and W. Li, “Video-Based Sign Language

Recognition without Temporal Segmentation”, Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications

of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational

Advances in Artificial Intelligence, pp. 2257–2264, New Orleans, LA, 2018.

54

39. Carreira, J. and A. Zisserman, “Quo Vadis, Action Recognition? A New Model

and the Kinetics Dataset”, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 4724–4733, Honolulu, HI, 2017.

40. Joze, H. V. and O. Koller, “MS-ASL: A Large-Scale Data Set and Benchmark for

Understanding American Sign Language”, The British Machine Vision Confer-

ence, p. 100, Cardiff, UK, 2019.

41. Pu, J., W. Zhou and H. Li, “Dilated Convolutional Network with Iterative Op-

timization for Continuous Sign Language Recognition”, Electronic Proceedings of

IJCAI , pp. 885–891, Stockholm, Sweden, 2018.

42. Yan, S., Y. Xiong and D. Lin, “Spatial Temporal Graph Convolutional Networks

for Skeleton-Based Action Recognition”, Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 32, pp. 7444–7452, New Orleans, LA, 2018.

43. de Amorim, C. C., D. Macêdo and C. Zanchettin, “Spatial-Temporal Graph Con-

volutional Networks for Sign Language Recognition”, Artificial Neural Networks

and Machine Learning – ICANN: Workshop and Special Sessions , pp. 646–657,

Munich, Germany, 2019.

44. Liang, W. and X. Xu, “Skeleton-Based Sign Language Recognition with Attention-

Enhanced Graph Convolutional Networks”, CCF International Conference on Nat-

ural Language Processing and Chinese Computing , pp. 773–785, Qingdao, China,

2021.

45. Jiang, S., B. Sun, L. Wang, Y. Bai, K. Li and Y. Fu, “Skeleton Aware Multi-

Modal Sign Language Recognition”, Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 3413–3423, Nashville, TN, 2021.

46. Parelli, M., K. Papadimitriou, G. Potamianos, G. Pavlakos and P. Maragos,

“Spatio-Temporal Graph Convolutional Networks for Continuous Sign Language

55

Recognition”, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 8457–8461, Singapore, 2022.

47. Liu, Z., H. Zhang, Z. Chen, Z. Wang and W. Ouyang, “Disentangling and Unifying

Graph Convolutions for Skeleton-Based Action Recognition”, Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–

152, Seattle, WA, 2020.

48. Vazquez-Enriquez, M., J. L. Alba-Castro, L. Docio-Fernandez and E. Rodriguez-

Banga, “Isolated Sign Language Recognition with Multi-Scale Spatial-Temporal

Graph Convolutional Networks”, IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pp. 3457–3466, Nashville, TN, 2021.

49. Stoll, S., N. C. Camgöz, S. Hadfield and R. Bowden, “Sign Language Production

Using Neural Machine Translation and Generative Adversarial Networks”, Proceed-

ings of the 29th British Machine Vision Conference (BMVC), p. 304, Newcastle,

UK, 2018.

50. Stoll, S., N. C. Camgoz, S. Hadfield and R. Bowden, “Text2Sign: Towards Sign

Language Production Using Neural Machine Translation and Generative Adver-

sarial Networks”, International Journal of Computer Vision, Vol. 128, No. 4, pp.

891–908, 2020.

51. Camgoz, N. C., S. Hadfield, O. Koller, H. Ney and R. Bowden, “Neural Sign

Language Translation”, IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 7784–7793, Salt Lake City, UT, 2018.

52. Camgöz, N. C., O. Koller, S. Hadfield and R. Bowden, “Sign Language Transform-

ers: Joint End-to-End Sign Language Recognition and Translation”, IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10023–

10033, Seattle, WA, 2020.

56

53. Saraçlar, M. and R. Sproat, “Lattice-Based Search for Spoken Utterance Re-

trieval”, North American Chapter of the Association for Computational Linguis-

tics , pp. 129–136, Boston, MA, 2004.

54. Lee, L.-s., J. Glass, H.-y. Lee and C.-a. Chan, “Spoken Content Retrieval—Beyond

Cascading Speech Recognition with Text Retrieval”, IEEE/ACM Transactions on

Audio, Speech, and Language Processing , Vol. 23, No. 9, pp. 1389–1420, 2015.

55. Anguera, X. and M. Ferrarons, “Memory Efficient Subsequence DTW for Query-

by-Example Spoken Term Detection”, IEEE International Conference on Multi-

media and Expo (ICME), pp. 1–6, San Jose, CA, 2013.

56. Zhang, Y. and J. R. Glass, “Towards Multi-Speaker Unsupervised Speech Pat-

tern Discovery”, IEEE International Conference on Acoustics, Speech and Signal

Processing , pp. 4366–4369, Dallas, TX, 2010.

57. Sarı, L., B. Gündoğdu and M. Saraçlar, “Fusion of LVCSR and Posteriorgram

Based Keyword Search”, INTERSPEECH , pp. 824–828, Dresden, Germany, 2015.

58. López-Espejo, I., Z.-H. Tan, J. H. L. Hansen and J. Jensen, “Deep Spoken Keyword

Spotting: An Overview”, IEEE Access , Vol. 10, pp. 4169–4199, 2022.

59. Chen, G., C. Parada and G. Heigold, “Small-Footprint Keyword Spotting Using

Deep Neural Networks”, IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 4087–4091, Florence, Italy, 2014.

60. Zhuang, Y., X. Chang, Y. Qian and K. Yu, “Unrestricted Vocabulary Keyword

Spotting Using LSTM-CTC”, INTERSPEECH , pp. 938–942, San Francisco, CA,

2016.

61. Rybakov, O., N. Kononenko, N. A. Subrahmanya, M. Visontai and S. Laurenzo,

“Streaming Keyword Spotting on Mobile Devices”, INTERSPEECH , pp. 2277–

2281, Shanghai, China, 2020.

57

62. Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to Sequence Learning with

Neural Networks”, Proceedings of the 27th International Conference on Neural

Information Processing Systems , Vol. 2, pp. 3104–3112, Montreal, Canada, 2014.

63. He, Y., R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin and I. McGraw, “Streaming

Small-Footprint Keyword Spotting Using Sequence-to-Sequence Models”, IEEE

Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 474–

481, Okinawa, Japan, 2017.

64. Viitaniemi, V., T. Jantunen, L. Savolainen, M. Karppa and J. Laaksonen, “S-

Pot - a Benchmark in Spotting Signs within Continuous Signing”, Proceedings of

the Ninth International Conference on Language Resources and Evaluation, pp.

1892–1897, Reykjavik, Iceland, 2014.

65. Buehler, P., A. Zisserman and M. Everingham, “Learning Sign Language byWatch-

ing TV (Using Weakly Aligned Subtitles)”, IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2961–2968, Miami, FL, 2009.

66. Pfister, T., J. Charles and A. Zisserman, “Large-Scale Learning of Sign Language

by Watching TV (Using Co-occurrences)”, British Machine Vision Conference, pp.

20.1–20.11, Bristol, UK, 2013.

67. Momeni, L., G. Varol, S. Albanie, T. Afouras and A. Zisserman, “Watch, Read and

Lookup: Learning to Spot Signs from Multiple Supervisors”, Asian Conference on

Computer Vision, pp. 291–308, Singapore, 2021.

68. Cao, Z., G. Hidalgo, T. Simon, S.-E. Wei and Y. Sheikh, “OpenPose: Realtime

Multi-Person 2D Pose Estimation Using Part Affinity Fields”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 43, No. 1, pp. 172–186, 2021.

69. Orbay, A. and L. Akarun, “Neural Sign Language Translation by Learning Tok-

enization”, 15th IEEE International Conference on Automatic Face and Gesture

58

Recognition, pp. 222–228, 2020.

70. Siyli, D., “HospiSign: A Framewise Annotated Isolated Turkish Sign Language

Dataset”, http://dogasiyli.com/hospisign/, accessed in June 2022.

71. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient Estimation of Word

Representations in Vector Space”, 1st International Conference on Learning Rep-

resentations Workshop Track Proceedings , pp. 1–12, Scottsdale, AZ, 2013.

72. “German Word Embeddings — Deepset”, https://www.deepset.ai/german-word-

embeddings, accessed in March 2021.

73. Bojanowski, P., E. Grave, A. Joulin and T. Mikolov, “Enriching Word Vectors

with Subword Information”, Transactions of the Association for Computational

Linguistics , Vol. 5, pp. 135–146, 2017.

74. Grave, E., P. Bojanowski, P. Gupta, A. Joulin and T. Mikolov, “Learning Word

Vectors for 157 Languages”, Proceedings of the Eleventh International Conference

on Language Resources and Evaluation, pp. 1–5, Miyazaki, Japan, 2018.

75. Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, “Graph

Attention Networks”, International Conference on Learning Representations , pp.

1–12, Vancouver, Canada, 2018.

76. Huang, Q., F. Zhou, J. He, Y. Zhao and R. Qin, “Spatial–Temporal Graph At-

tention Networks for Skeleton-Based Action Recognition”, Journal of Electronic

Imaging , Vol. 29, No. 5, pp. 1–15, 2020.

77. Rocchio, J. J., “Relevance Feedback in Information Retrieval”, The Smart Retrieval

System : Experiments in Automatic Document Processing , pp. 313–323, 1971.

78. Yan, R., A. G. Hauptmann and R. Jin, “Negative Pseudo-Relevance Feedback in

Content-Based Video Retrieval”, Proceedings of the Eleventh ACM International

59

Conference on Multimedia, pp. 343–346, Seattle, WA, 2003.

79. Chen, C.-p., H.-y. Lee, C.-f. Yeh and L.-s. Lee, “Improved Spoken Term Detection

by Feature Space Pseudo-Relevance Feedback”, INTERSPEECH , p. 4, Makuhari,

Japan, 2010.

80. Lee, H.-y., C.-p. Chen and L.-s. Lee, “Integrating Recognition and Retrieval With

Relevance Feedback for Spoken Term Detection”, IEEE Transactions on Audio,

Speech, and Language Processing , Vol. 20, No. 7, pp. 2095–2110, 2012.

81. Goldberger, J., G. E. Hinton, S. Roweis and R. R. Salakhutdinov, “Neighbour-

hood Components Analysis”, Advances in Neural Information Processing Systems ,

Vol. 17, pp. 513–520, Vancouver, Canada, 2004.

82. Gündoğdu, B. and M. Saraçlar, “Novel Score Normalization Methods for Key-

word Search”, 25th Signal Processing and Communications Applications Confer-

ence (SIU), pp. 1–4, Antalya, Turkey, 2017.

83. Hoffer, E. and N. Ailon, “Deep Metric Learning Using Triplet Network”, Interna-

tional Workshop on Similarity-Based Pattern Recognition, pp. 84–92, Copenhagen,

Denmark, 2015.

84. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention Is All You Need”, Neural Information Processing

Systems , pp. 5998–6008, Long Beach, CA, 2017.

85. Liu, D., X. Qu, J. Dong and P. Zhou, “Adaptive Proposal Generation Network for

Temporal Sentence Localization in Videos”, Empirical Methods in Natural Lan-

guage Processing , pp. 9292–9301, Punta Cana, Dominican Republic, 2021.

86. Koller, O., J. Forster and H. Ney, “Continuous Sign Language Recognition: To-

wards Large Vocabulary Statistical Recognition Systems Handling Multiple Sign-

ers”, Computer Vision and Image Understanding , Vol. 141, pp. 108–125, 2015.

60

87. “SignDict”, http://signdict.org/, accessed in June 2022.

