
RESILIENT DISTRIBUTED ALGORITHMS FOR SOLVING LINEAR

ALGEBRAIC EQUATIONS IN FAULTY NETWORKS

by
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ABSTRACT

RESILIENT DISTRIBUTED ALGORITHMS FOR

SOLVING LINEAR ALGEBRAIC EQUATIONS IN FAULTY

NETWORKS

Various methods have been developed to solve linear algebraic equations distribu-

tively over multi-agent networks. Most studies consider that all agents are trustworthy

and utilize all the received data from their neighbors throughout the process. Nev-

ertheless, cooperation between non-faulty agents is disrupted if faulty agents intrude

into the network. This thesis aims to develop algorithms to detect all faulty agents in

the network without prior knowledge of the number of faulty agents. We study four

fault models: random-state, fixed-state, single-faced, and double-faced and propose fault

detection procedures according to the characteristics of these fault models. First, we

introduce a method in which each agent can determine its neighbors’ system of equa-

tions if it receives sufficient solution estimations from neighboring agents. By utilizing

this method, we propose a synchronous discrete-time distributed detection algorithm

for the perfectly synchronized agents in terms of their event times. On the other hand,

the event time sequences of different agents are not always assumed to be synchronized.

Therefore, we also propose an asynchronous discrete-time distributed fault detection

algorithm to analyze the effect of the asynchronous event times of agents. Also, we dis-

cuss the applicability of our detection algorithm in continuous-time systems. Moreover,

complexity analyses for the proposed algorithms are carried out. Theoretical results

are also illustrated by numerical examples.
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ÖZET

DOĞRUSAL CEBİR DENKLEMLERİNİN HATALI

AĞLARDA ÇÖZÜMÜ İÇİN DİRENÇLİ DAĞITIK

ALGORİTMALAR

Doğrusal cebir denklemlerini çok etmenli ağlar üzerinden dağıtık olarak çözmek

için çeşitli yöntemler geliştirilmiştir. Çoğu çalışma, tüm etmenlerin güvenilir olduğunu

ve süreç boyunca komşulardan alınan tüm verilerin kullanıldığını kabul eder. Bununla

birlikte, hatalı etmenlerin ağa sızmaları durumunda, hatalı olmayan etmenler arasındaki

işbirliği de bozulmaktadır. Bu tezde, hatalı etmenlerin sayısı hakkında önceden bilgi

sahibi olmadan, ağdaki tüm hatalı etmenlerin tespit edilmesi için algoritmalar geliştiril-

mesi amaçlanmıştır. Bunun için, dört hata modeli sunulmuştur: rastgele-durum, sabit-

durum, tek-yüzlü ve çift-yüzlü. Bu hata modellerinin özelliklerine göre hata tespit

prosedürleri önerilmiştir. Öncelikle, her bir etmenin komşusundan yeterli çözüm verisini

almasıyla, komşusunun denklem sistemini belirleyebildiği bir yöntem tanıtılmıştır. Bu

yöntemden faydalanılarak, olay zamanları açısından mükemmel bir şekilde senkro-

nize edilmiş etmenler için senkronize ayrık-zamanlı dağıtık bir hata tespit algoritması

önerilmiştir. Öte yandan, farklı etmenlerin olay zaman dizilerinin her zaman senkro-

nize olduğu varsayılamaz. Bu nedenle, etmenlerin eşzamansız olay zamanlarının et-

kisini analiz etmek için eşzamansız ayrık-zamanlı dağıtık bir hata tespit algoritması

da önerilmiştir. Ayrıca, hata tespit algoritmamızın sürekli zamanlı sistemlerde uygula-

nabilirliği de tartışılmıştır. Önerilen algoritmalar için karmaşıklık analizleri yapılmıştır.

Teorik sonuçlar aynı zamanda sayısal örneklerle doğrulanmıştır.
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1. INTRODUCTION

Although almost all systems in nature (reproduction of bacteria habitats, flight

dynamics of UAVs, etc.) exhibit non-linear behavior, the systems that involve numer-

ical computations can be modeled by using a set of linear equations of the form

Ax = b (1.1)

where A ∈ Rm×n denotes the system matrix, x ∈ Rn denotes the solution vector, and

b ∈ Rm denotes the system’s constants.

Many different approaches and algorithms have been developed to solve such

equations for decades [1, 2]. However, most early suggested algorithms consider that

there is only one centralized solver to compute a solution to the given system of linear

equations [3–6].

The centralized methods can be considered practical and cost-efficient for small-

scale systems. However, having a single processor to solve a large-scale system of linear

equations by using centralized algorithms may lead to catastrophic issues. First, it may

be computationally expensive to apply centralized algorithms for applications with

many unknowns since all the computations to solve Ax = b occur in a single solver [7].

Secondly, a system with a single solver would be vulnerable to cyber-attacks, and

hostile parties can easily interfere in the system to reach private information. Thirdly,

conventional centralized methods may not directly apply to over-determined systems

where a feasible solution cannot be achieved [7–9]. Last but not least, the set of linear

equations may not even be solvable by using centralized algorithms since the constraints

on the forms of the system matrix A in (1.1) may be pretty strict in some centralized

algorithms [1, 2].

Meanwhile, a considerable amount of effort has been given to developing dis-

tributed algorithms in the parallel processing community over the past decades. The

main motives for using distributed algorithms rather than centralized methods are to
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achieve both efficiencies in computational workload for the processors and improve

information security by decomposing a large system of linear equations into smaller

ones [7, 8, 10].

On the other hand, distributed algorithms seem more prominent in meeting to-

day’s needs than centralized algorithms. For instance, a robot swarm can be char-

acterized by a network of multiple mobile and autonomous robots moving around an

area to execute collaborative tasks. We assume only wireless communication links are

assigned between the robots so that they can transmit information through these wire-

less links [11]. Also, different energy resources harvested from plants (nuclear plants,

solar panels, wind turbines, etc.), can be optimally coordinated using distributed algo-

rithms [12–15]. Thus, we can utilize distributed algorithms to achieve common goals

that are hard to be attained by an individual agent using a centralized algorithm.

Many other practical applications are reviewed in [16–20].

In distributed algorithms, we think of m > 1 autonomous agents in the network,

and each agent can compute an initial estimate solution for its own set of equations

and exchange information with its neighboring agents at each event time. Neighboring

relationships among the agents can be shown by a graph representation with m nodes,

and a set of edges that illustrates the communication links between the nodes. The

graph representation can be a directed graph on which the direction of edges indicates

the direction of the information flow. Furthermore, most studies assume that each

agent owns only a subset of the overall equation set [21–26].

Nevertheless, most earliest suggested distributed algorithms to solve linear alge-

braic equations in the literature presume that all the agents are trustworthy. Therefore,

agents undoubtedly utilize the states of their neighboring agents. However, if some of

the agents send erroneous information to their neighboring agents, faulty agents may

drag the normal agents to a solution that is an infeasible solution to Ax = b. In the

worst case, the faulty agents may even lead the non-faulty agents to diverge to infinity

in total error. Therefore, an algorithm for solving a large system of linear equations
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in a distributed manner should be somehow resilient to faulty agents [27–30]. In this

way, normal agents can identify and remove the faulty ones from their neighbor list.

Thus, they can aggregate on the same feasible solution to Ax = b.

As described above, each agent broadcasts information to its neighboring agents

at each event time. However, it is not apparent whether the provided event time

for the agents is in perfect synchrony. Therefore, the distributed algorithms can be

characterized in line with the timing of events of the agents, namely synchronous

or asynchronous distributed algorithms. Agents can use the synchronous distributed

algorithms if all the agents perform their computation and communication in a fully

synchronized way. In most of the synchronous distributed algorithms, transmission

delays are ignored [7, 23]. On the other hand, we observe that all agents spend some

time on computation and transmission in real applications. Therefore, in this study,

we also consider the asynchronous models in which each agent has its own event time

to determine and send its solution estimate to its neighbors.

1.1. Motivations of the Thesis

In this thesis, we concentrate on the resilient distributed algorithms to solve linear

algebraic equations of the form (1.1) in faulty networks. It is crucial to eliminate the

effects of all faulty agents in order to achieve consensus on a feasible solution to Ax = b.

Most existing studies on resilient distributed consensus only consider reaching a

common value as we have for voting and rendezvous problems. Nevertheless, achieving

consensus on the same state will not suffice to have a feasible solution for Ax = b, which

is the problem of interest here. Therefore, we study to develop a resilient distributed

algorithm that ensures all non-faulty agents aggregate on the same feasible solution

to Ax = b, after suppressing the effects of faulty agents. Moreover, we discuss fault

detection in continuous-time networks as well.

Most of the studies in the literature assume that the equation systems of neigh-
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boring agents are private due to security concerns [7, 22, 23]. On the other hand, we

propose an approach to reveal an equivalent equation system of neighboring agents by

using received linearly independent solution estimates.

On the other hand, we know the synchronization among the agents’ event times af-

fects the distributed solution estimation of the linear equation systems of the form (1.1)

[24]. Thus, we propose resilient distributed algorithms to study the effects of asynchro-

nization on the agents’ event times.

1.2. Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2: We first provide some fundamental concepts about graph theory.

Then we review two pioneering centralized methods to solve linear algebraic equations.

Afterward, we continue to review some existing studies on distributed algorithms for

solving linear algebraic equations and distributed fault tolerant consensus algorithms.

Finally, we provide basics about the complexity analysis of the algorithms.

Chapter 3: We introduce four fault models in multi-agent systems: random-

state, fixed-state, single-faced, and double-faced. Note that the first three models can be

described as Symmetric faults while the last is an Asymmetric (Byzantine) fault. Then

we define fault detection procedures that are directly applicable in the discrete-time

distributed algorithms. Furthermore, we discuss the extension of these fault detection

procedures to continuous-time distributed algorithms.

Chapter 4: We propose a synchronous fault-resilient discrete-time distributed

algorithm for solving linear algebraic equations. Then we introduce pseudocode for

the suggested algorithm and analyze the algorithm in terms of the time and space

complexities. Lastly, we present a numerical example to illustrate our findings.
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Chapter 5: We suggest an asynchronous fault-resilient distributed algorithm in a

discrete-time setting. We provide pseudocode for the studied algorithm. Furthermore,

we discuss the time and space complexity analyses of the algorithm. Finally, some

simulation results regarding the proposed algorithm are presented.

Chapter 6: We present concluding remarks about the topics discussed in this study.
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2. MATHEMATICAL PRELIMINARIES AND

LITERATURE REVIEW

In this chapter, we introduce some mathematical preliminaries about graph rep-

resentation. Then we discuss the critical aspects of some pioneering studies on solving

linear algebraic equations in centralized systems and distributed systems. Moreover,

we will comment on other studies that consider the resiliency of the distributed algo-

rithms in the presence of faulty attacks in the network. Lastly, we comment on the

complexity analysis methods.

2.1. Fundamentals of Graph Theory

Communication channels between the agents in a multi-agent network can be

expressed mathematically by using graph theory. In this thesis, we consider the terms

node and agent in the same sense. We consider a directed graph G = (V , E), where

V = {1, 2, . . . ,m} is the set of nodes and E ⊂ V×V is the set of directed edges between

the nodes. We assume node i and node j are adjacent to each other if a communication

link exists between them, i.e., (i, j) ∈ E . These nodes are also called neighbors.

Furthermore, we define the set of nodes that sends information to node i as in-

neighbors of node i, i.e., N+
i = {j ∈ V : (j, i) ∈ E}. Likewise, the set of nodes that

receives information from node i is defined as out-neighbors of node i, i.e., N−
i =

{j ∈ V : (i, j) ∈ E}. We also consider that each node i ∈ V has a self-link, i.e.,

i ∈ N+
i .

It is important to note that the individual nodes do not necessarily share their

information with all agents. Therefore, the direction of the information flow has a

significant role in graph theory. Node i only receives information from the agents in

its neighboring set N+
i .
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The order of the nodes reveals the direction of the information flow. For instance,

(i, j) ∈ E illustrates that node i sends its data to node j. If the information flow is

bidirectional, we consider the graph as undirected, such that

i, j ∈ V : (j, i) ∈ E ⇔ (i, j) ∈ E , ∀ i, j ∈ {1, 2, . . . ,m}. (2.1)

Conversely, a directed edge between any two nodes in G indicates that the information

flow is unidirectional.

As mentioned above, connectivity among the nodes is vital in networked systems.

Therefore, the following definitions are provided to help understand some essential

network topologies [10].

Definition 2.1. (Time-varying and fixed graphs) A graph G(t) = (V , E(t)) is defined

as the time-varying graph if the edge set E(t) is altered in time while the set of vertices

V remains the same. On the other hand, a digraph G = (V , E) is called a fixed graph if

there is no change in the edge set or vertex set over time.

Definition 2.2. (Strongly connected graph) A graph G is a strongly connected graph

if it is a directed graph and a directed path is formed between each pair of distinct

nodes in V.

Definition 2.3. (Connected graph) A graph G is described as a connected graph if it

is an undirected graph and a path is formed between each pair of nodes in V.

Definition 2.4. (Complete graph) A graph G is defined as a complete or fully connected

graph if it is an undirected graph, and an edge is formed between each pair of distinct

nodes. In graph G, there should be a total of m(m − 1)/2 undirected edges between

m nodes.

Example 2.1. Consider the graph representations G1, G2, and G3 in Figure 2.1.

G1 is a directed graph consisting of five nodes and nine directed edges. The arrows

on the tip of the edges identify the information flow direction between the nodes. As

can be seen from the figure, the edges e1, e3 and e5 can carry information bilaterally

while the others can carry only in one way. For instance, node 1 shares its information
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1
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1
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(c) G3

Figure 2.1. 3 different graph topologies

with node 4 but not vice versa since the arrow on tip of e6 only points to node 4.

Furthermore, graph G1 is not strongly connected since there is no directed path from

node 2 to node 4.

G2 is an undirected graph with four nodes and five undirected edges. We note that

the communication links between the nodes are bidirectional since there is no arrow on

the tip of the edges. For instance, node 2 and node 3 share their information bilaterally.

Since all the nodes in G2 are connected with undirected edges, G2 is called a connected

graph.

G3 is an undirected graph that consists of five nodes and ten undirected edges. The

significance of the given graph is that all the distinct nodes are connected bilaterally.

Thus G3 is a complete graph.

Since the connectivity relations among the nodes can be more cumbersome in

real-world applications, the above graph definitions might not be sufficient to analyze

the networked systems. Therefore, we shall introduce the following graph-theoretical

properties.



9

Definition 2.5. (Union of graphs) The union of two graphs G1 = (V1, E1) and G2 =

(V2, E2) can be represented as follows:

Gu = (Vu, Eu) = G1 ◦ G2 (2.2)

where Vu = V1 ∪ V2 and Eu = E1 ∪ E2.

Example 2.2. Consider the given three graph topologies in Figure 2.2. The two on

the left are the individual graph topologies G1 and G2 with the same node set V. The

union of these two graphs G1 ◦ G2 is illustrated in Figure 2.2(c).

1 2 3

456

(a) G1

1 2 3

456

(b) G2

1 2 3

456

(c) G3 = G1 ◦ G2

Figure 2.2. The union of graphs.

Definition 2.6. [22] (Jointly strongly connected graphs) Sequence of a finite number

of graphs with the same node set V forms a jointly strongly connected graph if the union

of the given sequence is a strongly connected graph.

Definition 2.7. [22] (Repeatedly jointly strongly connected graphs) An infinite se-

quence of directed graphs G1, G2, . . . with the same node set is called repeatedly jointly

strongly connected if there exist finite positive integers l and τ such that for any integer

k > 1, the finite sequence Gkl+τ−1 ◦Gkl+τ−2 ◦ . . . ◦G(k−1)l+τ is jointly strongly connected.
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2.2. Centralized Methods

In this section, two of the most recognized centralized methods, the Jacobi method

and the Gauss-Seidel method, are briefly introduced [1]. Most techniques in the lit-

erature are based on partitioning the square system matrix A in (1.1) with non-zero

diagonal elements to devise consistent centralized methods.

2.2.1. Jacobi Method

The Jacobi method was used by solving the ith equation in (1.1), to obtain

x = [x1, x2, . . . , xn]
T ∈ Rn in an iterative manner [1]. First of all, we have the linear

system of equations as follows

a11x1 + a12x2 + a13x3 + . . .+ a1nxn = b1,

a21x1 + a22x2 + a23x3 + . . .+ a2nxn = b2,

...

an1x1 + an2x2 + an3x3 + . . .+ annxn = bn.

(2.3)

By manipulating the above linear equations individually, each of the unknowns

can be expressed as follows:

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − . . .− a1nx

(k)
n ),

x
(k+1)
2 =

1

a22
(b2 − a21x

(k)
1 − a23x

(k)
3 − . . .− a2nx

(k)
n ),

...

x(k+1)
n =

1

ann
(bn − an1x

(k)
1 − an2x

(k)
2 − . . .− ann−1x

(k)
n−1)

(2.4)

where x
(k)
i is the solution of ith equation at kth iteration, k ≥ 0, and the initial state

x0
i is an arbitrarily chosen initial solution of the ith equation.



11

Hence, x
(k+1)
i can be iteratively computed by the equation of

x
(k+1)
i =

1

aii

bi − n∑
j=1
i ̸=j

aijx
(k)
j

 , k ≥ 0 (2.5)

with an arbitrarily chosen initial solution x0
i .

Remark 2.1. (i) This method can be utilized if and only if aii ̸= 0,∀i ∈ {1, 2, . . . , n}.

(ii) Let D be the diagonal matrix of the diagonal entries of matrix A, and N be formed

by the off-diagonal elements of matrix A. We can rewrite (2.5) in a general form

as follows [1]:

Ax = b

(D +N)x = b

Dx = −Nx+ b

x = D−1(−Nx+ b)

x(k+1) = −D−1Nx(k) +D−1b.

(2.6)

2.2.2. Gauss-Seidel Method

The main distinction from the prior Jacobi Method is that the Gauss-Seidel

method also uses the (k + 1)th iteration in the latter equation [1], i.e.

x
(k+1)
1 =

1

a11
(b1 − a12x

(k)
2 − a13x

(k)
3 − . . .− a1nx

(k)
n ),

x
(k+1)
2 =

1

a22
(b2 − a21x

(k+1)
1 − a23x

(k)
3 − . . .− a2nx

(k)
n ),

x
(k+1)
3 =

1

a33
(b3 − a31x

(k+1)
1 − a32x

(k+1)
2 − . . .− a3nx

(k)
n ),

...

x(k+1)
n =

1

ann
(bn − an1x

(k+1)
1 − an2x

(k+1)
2 − . . .− ann−1x

(k+1)
n−1 ).

(2.7)

In the Gauss-Seidel method, x
(k+1)
i can be computed iteratively from

x
(k+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
, k ≥ 0 (2.8)

with an arbitrarily chosen initial solution vector x0
i .
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Remark 2.2. (i) This method can be applied if and only if aii ̸= 0,∀i ∈ {1, 2, . . . , n}.

(ii) Let U be the strictly upper triangular matrix formed from the matrix A and L be

the lower triangular matrix formed from the matrix A, such that A = U +L. We

can rewrite (2.8) in a general form as follows [1]:

Ax = b

(U + L)x = b

Lx = −Ux+ b

x = L−1(−Ux+ b)

x(k+1) = −L−1Ux(k) + L−1b.

(2.9)

2.3. Distributed Algorithms to Solve Linear Algebraic Equations

In this section, we briefly discuss some of the pioneering studies in distributed

algorithms for solving the linear algebraic equations of the form (1.1) in multi-agent

networks. It is assumed that each agent can perform necessary vector and matrix

operations such as matrix inversion and vector multiplication and store the necessary

data in its memory. Moreover, each agent sends its data of solution estimate to its

neighbors. It should also be noted that each agent i knows one or more rows of the

augmented matrix [A b] but not the entire equation set.

In order to analyze multi-agent networks, we consider that each individual agent

is presented as a node in the graph representation. Moreover, the communication links

among the nodes at time step t describe the edge set of the network, i.e. E(t). Also, we

comment on the topology definitions for the reviewed algorithm since the convergence

analysis of the algorithms may differ in line with the graph definitions.

Distributed algorithms to solve an equation of the form (1.1) in multi-agent net-

works can be categorized into two time settings: discrete-time and continuous-time.
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2.3.1. Discrete-time Distributed Algorithms

In the discrete-time distributed algorithms, we consider that each agent broad-

casts its solution estimate to its neighboring agents at discrete time-steps. Therefore,

we may presume that there is no time latency in the data transmission among the

agents, and the event times for all agents are perfectly synchronized. However, if there

is no common clock for all agents, it is claimed that the agents’ event times may differ

in [24]. Therefore, discrete-time distributed algorithms must be investigated for both

of the synchronization conditions.

2.3.1.1. Synchronous Algorithms. In [21], a distributed algorithm to solve the prob-

lem of (1.1) was suggested by Pasqualetti et al. for fixed and connected graphs. It is

stated that the initial estimate for all agents, x i(0), should be explicitly chosen. Oth-

erwise, the consensus cannot be assured among the agents. During the process, each

agent synchronously publishes three particular data: its current estimates x i(t), the

projection matrices of ker(Ai) and ker(Aj) where j ∈ Ni, which is very expensive in

terms of the communication load. However, the propagation of its private information

violates the privacy requirements.

Another synchronous discrete-time distributed algorithm has been proposed by

Mou et al. [22] to solve (1.1) in a repeatedly jointly strongly connected network. The

initial estimates of agent i should refer to its own problem set Aix i(t) = bi. Then, each

agent sends only the current estimate of itself at each iteration t, namely x i(t). The

synchronous distributed algorithm suggested in [22], has the following form:

xi(t+ 1) = xi(t)− Pker(Ai)

∑
j∈N+

i (t)

wij(t)
(
(xi(t)− xj(t)

)
, t ≥ 1 (2.10)

where wij(t) is the weighting coefficient which was designed to be
∣∣N+

i (t)
∣∣−1

, ∀ i ∈ V ,

Pker(Ai) is the projection matrix onto the kernel of Ai which can be computed as follows:

Pker(Ai) = In − AT
i

(
AiA

T
i

)−1
Ai. (2.11)
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Algorithm (2.10) originates from the agreement principle articulated in [22]. This

principle expresses the necessity for each agent i ∈ V to achieve a state that solves its

own problem set [Ai bi] at each iteration t, and to aggregate on the same state altogether

with the other agents that solve the whole system of equations, Ax = b by using a

consensus algorithm.

When there is a unique solution for Ax = b in a repeatedly jointly strongly

connected network, algorithm (2.10) is proved to be convergent. Furthermore, when

there are infinitely many solutions for Ax = b, the convergence of the algorithm (2.10)

is still guaranteed under the same assumptions on the network topology.

Some studies [23, 24, 31, 32] in the literature analyze the convergence rate of the

algorithm (2.10) in terms of different types of communication topologies. For example,

the effect of time-varying topologies on the convergence rate is studied in [31]. Fur-

thermore, the gossip communication effect on the convergence rate is analyzed in [23].

In addition, it is shown in [32] that the linear convergence rate can be achieved by the

algorithm (2.10) in a more general communication topology with some extensions on

other conditions. On the other hand, the condition on the initialization of the estimates

of individual agents was relaxed to be selected arbitrarily in [24].

2.3.1.2. Asynchronous Algorithms. In asynchronous distributed algorithms, each agent

may deliver its data in delayed time sequences, which specify the computation and

transmission delay of the information exchange among the neighboring agents. These

time delays are considered as asynchrony in the agent’s event times in [24]. The au-

thors proposed two asynchronous distributed algorithms in [24]. In order to have a

consensus on the same feasible solution to the equation of the form (1.1) exponentially

fast, both algorithms in [24] require the underlying network topology to be repeatedly

jointly strongly connected. Furthermore, each agent knows only its own equation set

Aix i(t) = bi and broadcasts only the estimate that solves its equation set at each event
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time. The first algorithm is formed as follows:

x i(ti(k+1)) = x i(tik)− Pker(Ai)

∑
j∈Ni(tik)

(
x i(tik)−

1

µi(tik)
x j

(
tik − δij(k)

))
, k ≥ 1 (2.12)

where µi(tik) is the number of neighbors of agent i at event time tik, and δij(k) is the

delay time defined as the sum of the hold time and the transmission time. Moreover,

the algorithm (2.12) requires each agent to have an initial state vector x i(ti1) which is

a solution to its own equation set, i.e., Aix i(ti1) = bi.

On the other hand, the second algorithm suggested in [24] offers relaxation on

the requirement imposed in the algorithm (2.12) for the initialization scheme. In the

second algorithm, each agent can initialize its state vector at its first event time x i(ti1)

as an arbitrary vector in Rn.

2.3.2. Continuous-time Distributed Algorithms

Most of the proposed continuous-time distributed algorithms for solving linear

algebraic equations work similarly as the discrete-time algorithms [7]. They combine

the conventional consensus algorithms with data of local equations Aix = bi. The

generic form of the continuous-time distributed algorithms is as follows:

ẋ i = −Gi

(
Aix i − bi

)
−

∑
j∈Ni

(
x i − x j

)
(2.13)

where Gi is an algorithm-specific matrix.

A projected consensus algorithm is suggested in [33] for solving Ax = b distribu-

tively in continuous time setting as follows:

ẋ i = −Pker(Ai)

∑
j∈Ni

(
x i − x j

)
(2.14)

where the consensus term is defined as
∑

j∈Ni(k)

(
x i − x j

)
and Pker(Ai) is the projec-

tion matrix onto ker(Ai). Each agent initializes their estimates at a solution to its

local equation. Moreover, a linear rate convergence in the fixed connected graphs is

shown in [33].
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On the other hand, an initialization-free algorithm is proposed in [33] as follows:

ẋ i = −AT
i

(
AiA

T
i

)−1(
Aix i − bi

)
− Pker(Ai)

∑
j∈Ni

(
x i − x j

)
. (2.15)

In order to achieve this initialization-free algorithm, information of local equations is

added to the projected consensus term in algorithm (2.14). The communication topol-

ogy for the network is defined as fixed and connected as provided in (2.14). Moreover,

continuous-time systems were analyzed in [34] when the topology is assumed to be a

piecewise-constant switching directed graph.

2.4. Distributed Fault Tolerant Consensus Algorithms

In this section, we review the algorithms developed to eliminate faulty agents’ ef-

fect in a network. We first examine the resilient Weighted-Mean-Subsequence-Reduced

algorithm proposed in [27]. Secondly, we review the method of achieving a resilient

convex combination (RCC) suggested in [35].

2.4.1. Weighted-Mean-Subsequence-Reduced (W-MSR) Algorithm

The fault tolerant W-MSR Algorithm is suggested by Leblanc et al. [27]. In the

W-MSR Algorithm, each normal agent i ∈ Vn receives the states of its neighboring

agents at time-step t. The maximum number of faulty agents is limited by F , but

initially identities of agents are not known by the normal agent i. In order to elimi-

nate the effect of the faulty agents, normal agent i erases the extreme agents from its

neighboring set. In this way, agent i can update its value without having to utilize the

faulty state. The algorithm was organized as follows:

(i) At each time step t, each normal agent i receives the states of its neighbors and

generates a list which is sorted in decreasing order.

(ii) If there are less than F values, strictly larger than its own state, x i(t), then

normal agent i erases all states that are strictly larger than its own. Otherwise,

it erases precisely the largest F states in the sorted list (breaking ties arbitrarily).
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Likewise, if there are less than F states strictly smaller than its own state, then

agent i erases all states that are strictly smaller than its own. Otherwise, it erases

precisely the smallest F states.

(iii) SupposeRi(t) indicates the set of agents whose states are erased by normal agent i

in step (ii) at time-step t. Each normal agent i performs the consensus update as

x i(t+ 1) =
∑

j∈Ni(t)\Ri(t)

wij(t)x j(t), (2.16)

where the weights wij(t) meet the conditions as follows:

• wij(t) = 0 whenever i ∈ V , j ̸= Ni(t), t ∈ N;

• wij(t) ≥ α > 0, i ∈ V ,∀j ∈ Ni(t), t ∈ N;

•
∑n

j=1wij(t) = 1,∀i ∈ V , t ∈ N.

2.4.2. Resilient Convex Combination (RCC) Method

The Resilient Convex Combination or RCC method is a method introduced by

Wang et al. [35]. The key idea of this method is to achieve a convex combination of

the states of the normal agents in the presence of the faulty agents. The normal agents

only know the upper limit to the number of faulty agents in G.

Definition 2.8. [35] (Resilient convex combination) Let xA = {x1,x2, . . . ,xm} denote

a set of vectors in Rn, where A = {1, 2, . . . ,m}. Suppose each agent knows that at the

utmost a number of H vectors in xA are faulty with the identity tags of the faulty ones

hidden. Then there are at least a number of p = m−H normal vectors in xA. A vector

is a resilient convex combination of vector set of xA, if it is a convex combination of

at least p normal vectors in xA.

Although the RCC of the normal agents is well-defined, it is not obvious enough

to achieve a convex combination. Therefore, Tverberg points method introduced in [36]

may be used to achieve an RCC. However, the Tverberg point approach deemed inef-

ficient since the computational complexity of computing Tverberg points grows expo-

nentially with n. Therefore, it was indicated that an RCC can be achieved through

the intersection of convex hulls of the vectors in xA. In order to achieve an RCC,
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an algorithm based on an optimization problem is introduced in [35]. Since the pro-

posed quadratic optimization problem is somehow cumbersome to represent here, we

recommend reviewing the study in [35] for more details.

2.5. Complexity Analysis

In order to compare different algorithms, we can analyze their complexities in

terms of run time and space allocation in the memory of the processor. It should be

noted that the exact operation count is not necessary and possible for the algorithms.

Instead, we can perform an approximation with the highest degree on the total time

and space costs. This concept is known as Big-O notation, i.e., O(·) [10].

Definition 2.9. [10] (Time Complexity) Time complexity analysis can be utilized to

determine the amount of time spent on executing an algorithm in terms of the length

of the inputs. However, it does not indicate the actual run time of the processor to

execute the whole algorithm.

Definition 2.10. [10] (Space Complexity) Space complexity of an algorithm deter-

mines the total amount of allocated memory space in the processor during the execution.

Also, the input values should be included in the total cost.

Example 2.3. Consider Figure 2.3, which presents an algorithm to find the sum of

all elements in an input array A of size n× 1.

Input: An array A of size n× 1

Output: sum

1: sum← 0

2: for i← 0 to n− 1 do

3: sum← sum+ A[i]

4: end for

Figure 2.3. Algorithm to sum of all elements in an array.

We compute the total cost to run the given algorithm by analyzing each statement

in the code line by line. We calculate the time cost of assigning a single element to a
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variable is 1, in line 1. In the second line, the “for” loop condition is checked n+1 times

with a cost of 2, thus 2n+ 2 times in total. In the third line, addition and assignment

operations will be repeated n times because of the “for” loop. The total time cost to

execute the given algorithm is found as follows:

1 + 2(n+ 1) + 2n = 4n+ 3. (2.17)

If we approximate the total time cost using the Big-O notation, we compute the time

complexity of the algorithm as O(n).

In the given algorithm, we assume the input array has only integer values and the

size of integer data type is four-byte for the processor used. We have an input array

that has n elements. Therefore, the input array allocates 4n bytes in the memory.

Moreover, we have integer variables named sum, i and n each occupying four bytes in

the memory. Thus, the algorithm’s total space allocated in the memory is 4n + 12.

Accordingly, we present the space complexity as O(n).

2.6. Summary of the Chapter

In this chapter, we briefly presented some of the graph theoretic concepts in the

literature. These concepts are vital to the understanding of distributed algorithms

and they will be utilized throughout this thesis. We also discussed two pioneering

centralized methods to solve linear algebraic equations. Then, we reviewed several

distributed algorithms for solving linear algebraic equations proposed in the literature.

We also briefly mentioned about the fault-tolerant distributed consensus literature.

Lastly, we reviewed algorithm complexity analysis methods regarding time spending

and space allocation.
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3. DETECTION OF FAULTY AGENTS IN THE

NETWORK

In this chapter, we present four fault model definitions to analyze the impacts of a

faulty agent on the networks. Then, we propose procedures to detect the different types

of faulty behaviors in the network. We provide the necessary condition for the equation

determination method which is crucial for fault detection. Moreover, we discuss the

determination of linear equations in continuous-time systems.

3.1. Fault Models

Numerous fault model definitions for networks are introduced in the literature.

However, the fault classifications may differ depending on the security needs in appli-

cations. For example, two sub-modes for faulty agents have been defined in [37, 38]:

completely arbitrary mode and Byzantine mode. The Byzantine mode was first sug-

gested by Lamport and originated from the informal problem statement explaining

Byzantine generals’ inconsistent behavior in a battlefield scenario [10, 38]. On the

other hand, we consider the fault model classifications defined in [39] in this thesis. We

briefly explain the main types of fault models depicted in [39] as follows:

• Benign faults are globally diagnosable by all normal agents in the system.

• Symmetric faults can deliver similar erroneous data to all receiving agents.

• Asymmetric (Byzantine) faults can transmit any form of erroneous data to all

receiving agents.

Moreover, some studies suggest the hybrid fault models that are any mixture of

the previously defined fault models can be experienced in real-world systems [40]. In

other words, different severity levels might coexist in the system in the presence of

hybrid faults.
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Nevertheless, above definitions refer to a vast scope in fault model definitions.

Thus, we extend the fault models introduced above to suggest more reliable fault-

tolerant algorithms. Specifically, this thesis will focus on the following types of fault

models:

• Random-state Fault : an agent that belongs to this fault type delivers the same

arbitrary information to all its neighboring agents at all event times.

• Fixed-state Fault : an agent that belongs to this fault type sends a constant

information to all its neighboring agents at all event times.

• Single-faced Fault : an agent that belongs to this fault type transmits an erroneous

data generated in accordance with its function to all its neighboring agents at all

event times.

• Double-faced Fault : an agent that belongs to this fault type sends different er-

roneous data generated in accordance with a particular function to each of its

neighbors at all event times.

As mentioned before, we consider that all faults are categorized into three modes

in this thesis. Therefore, we categorize the random-state, fixed-state and single-faced

faults as sub-modes in the Symmetric fault model while the double-faced fault as a

sub-mode in the Asymmetric fault model. The more rigorous definitions of above fault

models are provided in the sequel.

Definition 3.1. (Random-state faulty agent) A random-state faulty agent j ∈ V sends

arbitrary state vectors xi
j(tj) to each neighboring agent i at each event time tj.

Example 3.1. A random-state faulty agent broadcasts arbitrarily chosen state vectors

to its neighboring agent i at each event time as illustrated in Figure 3.1.

Definition 3.2. (Fixed-state faulty agent) A fixed-state faulty agent j ∈ V publishes

a constant state xi
j(tj) to each neighboring agent i at each event time tj, i.e.,

xi
j(1) = xi

j(2) = · · · = c, where c ∈ Rn. (3.1)

Example 3.2. A fixed-state faulty agent j ∈ V sends the same state vector to its

neighbors at each event time tj as illustrated in Figure 3.2.
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Figure 3.1. States of a random-state faulty agent
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Figure 3.2. States of a fixed-state faulty agent
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Definition 3.3. (Single-faced faulty agent) A single-faced faulty agent j ∈ V sends

the same solution estimate xi
j(tj) to each neighboring agent i at each event time tj.

Moreover, the state xi
j(tj) is a solution to some function fj(·) that the normal agents

do not seek to solve originally.

Example 3.3. Assume that a single-faced faulty agent j seeks to solve the equation of

9x1 − 6x2 + 8x3 − 4x4 = 12. (3.2)

It sends the solution estimates illustrated in Figure 3.3 and the first five solution esti-

mates are provided in Table 3.1. It should be noted that the solution estimates presented

in Table 3.1 are approximated in MATLAB environment with truncation errors.

Table 3.1. Solution estimates of a single-faced faulty agent.

Event time, tj State Vectors

1 [1.1197,−0.7169,−0.0783, 0.4381]T

2 [0.2795,−1.6102, 0.6004. 1.2450]T

3 [0.9825,−0.8628, 0.0325, 0.5698]T

4 [1.7052,−0.0944, 0.5513, 0.1243]T
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Figure 3.3. States of a single-faced faulty agent
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Definition 3.4. (Double-faced faulty agent) A double-faced faulty agent j ∈ V trans-

mits different state vectors xi
j(tj) to each neighboring agent i at each event time tj. It

produces a state of xi
j(tj) in accordance with a different function f i

j(·) defined for each

neighboring agent i.

Example 3.4. Suppose that a double-faced agent j sends its state vectors to its three

neighboring agents at each event time tj. The double-faced agent j owns a different

equation set to solve for each neighbor, as given in Table 3.2. The state vectors that are

feasible solutions to the specific equations given in Table 3.2 are illustrated in Figure 3.4.

Table 3.2. The equations to be solved by the double-faced faulty agent j for each

neighboring agent i.

Equation, f i
j(·) Target Agent, i

6x1 + 6x2 + 7x3 + 3x4 = 117 Agent 1

−6x1 + 4x2 + 6x3 + x4 = 29 Agent 2

8x1 − 4x2 − x3 + 7x4 = 35 Agent 3
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Figure 3.4. States that double-faced faulty agent sends to a) neighbor Agent 1,

b) neighbor Agent 2, c) neighbor Agent 3
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3.2. Fault Detection

In the previous section, we introduced four fault models that can be observed

in faulty networks. Therefore, normal agents should be equipped to eliminate the

misbehaving effects of these faulty agents to achieve consensus on a solution to (1.1).

In this section, we propose fault detection procedures that any normal agent can use

to determine the intentions of its neighboring agents and cut ties with the detected

misbehaving neighbors.

Due to security and privacy concerns, most current literature on solving linear

algebraic equations in distributed systems presume that agents are not authorized to

share their equation sets, i.e., Aix = bi, with their neighbors. At first glance, this

assumption may seem reasonable. However, an agent can deduce a linear equation

system from received linearly independent solution estimates.

In Chapter 1, we mentioned that an equation system can be represented with

the form of (1.1). However, this system may include linearly dependent equations and

this may increase the complexity of the system. Therefore, we suggest a method to

determine a system with r linearly independent equations by using linearly independent

solutions of the original system. There are n−r+1 linearly independent solutions in the

complete solution set of a non-homogeneous system Ax = b where A ∈ Rm×n, x ∈ Rn

and b ∈ Rm with rank(A) = r and rank([A b]) = r, (r < n) [41]. Then we realized that,

this equation determination process may be implemented to a distributed algorithm

to identify the misbehaving agents. Thus, we propose that an agent can deduce an

equation system of its neighboring agent after receiving n− r+1 linearly independent

solution estimates from its neighbor. We indicated that the deduced equation system

is equivalent to the system of the neighboring agent.

However, there are n−r linearly independent solutions in the complete solution set

of a homogeneous system [41], we require to receive n−r linearly independent solutions

to deduce an equation system which is equivalent to the system of neighboring agent.
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In order to utilize this fact in fault detection phases, we introduce the following

assumptions on each agent. These assumptions ensure that the necessary conditions

for the detection phases are satisfied for each agent in the network.

Assumption 3.1. Each agent i solves a system of the form Aix = bi and transmits

(i) n− ri +1 linearly independent solutions to its neighbors in a finite time interval,

if bi ̸= 0r,

(ii) n − ri linearly independent solutions to its neighbors in a finite time interval, if

bi = 0r.

In order to study fault detection algorithms, we also make the following assump-

tions on each agent in the network.

Assumption 3.2. Each agent j has information on

(i) whether bi = 0n or bi ̸= 0n, ∀ i ∈ Nj, and

(ii) the number of linearly independent equations, ri, ∀ i ∈ Nj.

As indicated in Assumption 3.1, the system type determines the maximum num-

ber of linearly independent solutions to be deduced from a system of equations. Since

each agent requires to know the system type of its neighboring agent to be able to

specify the total number of linearly independent solutions received from its neighbor,

we introduced Assumption 3.2. These assumptions are also required to analyze the

complexity of the proposed algorithms in the next chapters.

Assumption 3.2 implies that each agent knows whether its neighbor tries to solve

a homogeneous or a non-homogeneous system. This assumption is required because the

maximum number of linearly independent solutions changes according to the system’s

type as indicated in Assumption 3.1. In addition, Assumption 3.2 helps to determine

the number of linearly independent solutions to be taken from neighboring agents.
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3.2.1. Detection of Random-state Faults

A random-state faulty agent i broadcasts an arbitrarily chosen state vector x i ∈

Rn to its neighboring agents at each event time. The main idea for detecting this

type of misbehavior in the network is realizing that the randomized solution estimates

cannot be a feasible solution to any equation. Therefore, the only equation that can

satisfy the randomized states is the zero equation set, i.e.,[
Ai bi

]
= 0ri×(n+1) (3.3)

where Ai ∈ Rri×n, bi ∈ Rri , and 0ri×(n+1) denotes the zero matrix.

Proposition 3.1. Each agent j can deduce a linear equation system with the same

solution set as system of neighboring agent i from n − ri + 1 linearly independent

solution estimates as stated in Section 3.2.

Above proposition implies that even if an agent publishes n− ri + 1 linearly in-

dependent solution estimates to its neighboring agent, all the other solution estimates

should also validate the equation system deduced from the linearly independent esti-

mates. Therefore, neighboring agent should receive at least n−ri+2 solution estimates

from which n − ri + 1 are linearly independent, in order to identify the random-state

faulty agents.

Theorem 3.2. Suppose agent i is a random-state faulty agent. Then the only equation

set that satisfies the solutions of agent i is

Aix = 0ri (3.4)

with Ai = 0ri×n.

Proof. Let Ci ∈ Rn−ri+1×n+1 be defined as

Ci =


x i(1)

T −1

x i(2)
T −1

...
...

x i(n− ri + 1)T −1


(n−ri+1)×(n+1)

(3.5)
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where x i(ti) ∈ Rn (ti = 1, 2, . . . , n−ri+1) are linearly independent solutions to system

Aix = bi. Then, we have the following:

Ci.



αi1

αi2

...

αin

βi


= 0 (3.6)

where αi1, αi2, . . . , αin are the coefficients and βi is the constant of ith equation of an

equivalent system to system Aix = bi.

We know that all solution estimates of agent i should satisfy the deduced equa-

tion system if it is a normal agent. Therefore, the neighboring agent can detect the

misbehavior of agent i after receiving another solution estimate from agent i since the

last solution estimate does not satisfy the deduced equation set for agent i. This yields

that the equation set of agent i is the zero system, i.e., [Ai bi] = 0ri×(n+1).

3.2.2. Detection of Fixed-state Faults

As described previously, an agent i is known to be a fixed-state faulty agent if it

publishes a constant vector in Rn to its neighbors for all event times.

Intuitively, if an agent i sends the same state vector xj
i ∈ Rn to its neighboring

agent j at each event time ti, this state can either be a faulty state or the unique

solution to Ax = b. Nevertheless, the unique solution can be achieved only in two

situations:

(i) all agents achieved a consensus on the unique solution to Axj
i = b or

(ii) agent i is aware of the whole system of equations, i.e., Ai = A and bi = b.

However, we cannot validate the former since only the asymptotic convergence

is guaranteed for the agents in algorithms (2.10) and (2.12). Likewise, the latter con-
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tradicts to our assumption in Section 2.3 that indicates that none of the agents know

the whole system of equations. Moreover, any agent can verify the uniqueness of the

solution it receives by implementing it to its equation system since unique solution

must be the solution that solves each private equation defined for agents.

In the sequel, we provide a theorem to examine the characteristics of fixed-state

faulty agents.

Theorem 3.3. Suppose agent i is a fixed-state faulty agent. Since agent i transmits

constantly the same solution estimates in consecutive time steps, the deduced equation

set of agent i will have a unique solution. Therefore, the projection matrix onto the

kernel of the agent i’s equation set can be computed as the zero matrix.

Proof. Without loss of generality, agent j receives solution estimates of agent i for

bounded B ≥ n− ri +1 time steps. We know that all solution estimates of agent i are

the same for the fixed-state faulty agents, i.e.,

xj
i (1) = xj

i (2) = . . . = xj
i (B) = c ∈ Rn. (3.7)

Then we let Ci ∈ RB×n+1 be denoted as

Ci =


c −1

c −1
...

...

c −1


B×(n+1)

. (3.8)

Since all rows of Ci are the same, we have rank(Ci) = 1. From Rank-Nullity Theo-

rem [2], we have the following

rank(Ci) + dim(null(Ci)) = n+ 1 (3.9)

which yields dim(null(Ci)) = n. Note that null(Ci) span linearly independent vectors

that indicate the equation system of agent i as [Ai bi]. This implies that rank(Ai) = n.

Again from Rank-Nullity Theorem, we have

rank(Ai) + dim(null(Ai)) = n. (3.10)

Since this indicates dim(null(Ai)) = 0, we conclude the projection matrix onto the
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kernel of Ai is the zero matrix, i.e., Pker(Ai) = 0n.

3.2.3. Detection of Single-faced Faults

In this section, we analyze a detection condition for single-faced faulty agents.

As mentioned in the previous section, agent i is known to be a single-faced faulty agent

if it shares the same erroneous data with each neighboring agent.

We consider that each agent utilizes the synchronous distributed algorithm pro-

posed in [22]. On the other hand, results can be directly extended to asynchronous

distributed algorithm developed in [24]. The underlying graph is defined as repeatedly

jointly strongly connected for asymptotic convergence in algorithm (2.10).

We suppose that each agent i sends two vectors to its neighboring agent j at

each event time: its solution estimate x j
i (ti) and the average of received solution esti-

mates di(ti). In addition, each normal agent j in network G knows only its own equation

set Ajx = bj. Thus, each agent j should accept all data it receives from agent i to

assess its reliability. We provide the following theorem to detect the misbehavior of a

single-faced faulty agent.

Theorem 3.4. Assume agent i is a single-faced faulty agent. Then, we have

xj
i (ti)− xj

i (ti − 1) ̸= −Pker(Ai)

(
xj
i (ti − 1)− di(ti − 1)

)
(3.11)

where xi(ti) is the solution estimate of agent i at event time ti, xi(ti−1) is the solution

estimate of agent i at event time (ti − 1), di(ti − 1) is the average of received state

vectors from in-neighbors of agent i, i.e., di(ti− 1) = 1
µi

∑
s∈N+

i
xs(ti− 1), and Pker(Ai)

is the projection matrix onto the kernel of the equation set of agent i.
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Proof. Without loss of generality, agent j forms Ci for its neighboring agent i as

Ci =


x i(1)

T −1

x i(2)
T −1

...
...

x i(n− ri + 1)T −1


(n−ri+1)×(n+1)

(3.12)

where x i(ti) ∈ Rn (ti = 1, 2, . . . , n − ri + 1) are linearly independent solutions to

system Aix = bi. Let ui = [αi1, αi2, . . . , αin, βi]
T ∈ Rn+1 where αi1, αi2, . . . , αin are the

coefficients and βi is the constant of the general form of ith equation of an equivalent

system to system Aix = bi. Then, we have

Ciui = 0. (3.13)

From the fact given in Section 3.2, agent j can deduce an equation set with the same

solution set as system Aix = bi from the null space of matrix Ci. Then, agent j

computes the projection matrix of agent i, Pker(Ai), by using (2.11).

Since each agent in G utilizes the same distributed algorithm (2.10) in order to

update its solution estimate, the following equality must be satisfied for agent i:

xj
i (ti)− xj

i (ti − 1) = −Pker(Ai)

(
xj
i (ti − 1)− di(ti − 1)

)
. (3.14)

On the other hand, this equality does not hold for a single-faced faulty agent since

the average of received neighboring estimates di(ti − 1) does not satisfy the required

update on consecutive time steps of faulty agent i.

Corollary 3.5. A single-faced faulty agent i can be detected when the following condi-

tion holds:

||hi(ti)|| =
∣∣∣∣xj

i (ti − 1)− xj
i (ti)− Pker(Ai)

(
xj
i (ti − 1)− di(ti − 1)

)∣∣∣∣
̸= 0

(3.15)

where || · || denotes the norm of its argument.

So far, we have assumed that the underlying topology was repeatedly jointly

strongly connected. Therefore, we require each agent to deliver two separate data at

each event time for verifying algorithm (2.10). On the other hand, it will be sufficient



33

for each agent to share only its solution estimate with its neighbors when the underlying

graph of the network is complete.

Corollary 3.6. For complete graphs, each agent i ∈ V is directly connected to every

other agent j. Therefore, we have

di(ti − 1) = dj(ti − 1) (3.16)

for all ti = 1, 2, . . .. Thus, agent j does not necessarily have to receive di(ti − 1) from

agent i.

3.2.4. Detection of Double-faced Faults

We assume that each agent utilizes the averaging-based distributed consensus

algorithm proposed in [22] to estimate a solution for its equation set. Therefore, the

underlying graph of the network is needed to be repeatedly jointly strongly connected,

as stated in algorithm (2.10).

Each agent i ∈ V should transmit two separate vectors to its neighbors for all

ti = 1, 2, . . .: estimated solution vector, x j
i (ti), and the average of received state vectors

of its neighboring agents, d i(ti). As described in the previous section, a double-faced

faulty agent i forms different solution estimate vectors, x j
i (ti), for each agent j ∈ N−

i

for all ti = 1, 2, . . .. Besides, each solution estimate should be a feasible solution to a

distinct equation set.

As previously stated in Section 3.2, each agent j can deduce an equation system

with the same solution set as equation set of agent i from n−ri+1 linearly independent

solutions. Furthermore, agent j considers only the state vectors received from agent

i to identify its behavior is whether faulty. To do this, agent j can directly use the

condition proposed in Theorem 3.4.

Lemma 3.7. Assume agent i is a double-faced faulty agent. Then, we have

xj
i (ti)− xj

i (ti − 1) ̸= −Pker(Ai)

(
xj
i (ti − 1)− di(ti − 1)

)
(3.17)
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where xi(ti) is the solution estimate of agent i at event time ti, xi(ti−1) is the solution

estimate of agent i at event time (ti − 1), di(ti − 1) is the average of received state

vectors from in-neighbors of agent i, i.e., di(ti− 1) = 1
µi

∑
s∈N+

i
xs(ti− 1), and Pker(Ai)

is the projection matrix onto the kernel of the equation set of agent i.

Proof. The proof directly follows from Theorem 3.4.

3.2.5. Numerical Analysis of Fault Detection

In this section, we present numerical examples to analyze the validity of proposed

fault detection approaches.

Example 3.5. (Detection of Random-state faults) We assume that normal agent j ∈ V

receives solution estimates from agent i ∈ N+
j . Table 3.3 presents five different

solution estimates that agent j received from its neighboring agent i.

Table 3.3. Solution estimates of random-state faulty agent i.

Event time, ti State Vectors

1 [0.5377,−1.3077,−1.3499,−0.2050]T

2 [1.8339,−0.4336, 3.0349,−0.1241]T

3 [−2.2588, 0.3426, 0.7254, 1.4897]T

4 [0.8622, 3.5784,−0.0631, 1.4090]T

5 [0.3188, 2.7694, 0.7147, 1.4172]T

Normal agent j forms Ci as

Ci =



0.5377 −1.3077 −1.3499 −0.2050 −1

1.8339 −0.4336 3.0349 −0.1241 −1

−2.2588 0.3426 0.7254 1.4897 −1

0.8622 3.5784 −0.0631 1.4090 −1

0.3188 2.7694 0.7147 1.4172 −1


. (3.18)
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Then, agent j computes null(Ci) and finds

dim(null(Ci)) = 0 (3.19)

This result indicates that Ai = 0ri×n. Therefore, agent j labels agent i as a random-

state faulty agent.

Example 3.6. (Detection of Fixed-state faults) We assume an agent i ∈ V publishes

the constant state vector

[1.6285,−0.8712, 2.5237,−1.3152]T (3.20)

to its out-neighbor agent j at each event time. Then, agent j generates Ci as

Ci =



1.6285 −0.8712 2.5237 −1.3152 −1

1.6285 −0.8712 2.5237 −1.3152 −1

1.6285 −0.8712 2.5237 −1.3152 −1

1.6285 −0.8712 2.5237 −1.3152 −1

1.6285 −0.8712 2.5237 −1.3152 −1

1.6285 −0.8712 2.5237 −1.3152 −1


. (3.21)

Then, agent j computes null(Ci) and finds

dim(null(Ci)) = n (3.22)

which implies dim(null(Ai)) = 0. Since, the projection matrix onto the kernel of Ai

can be computed as zero matrix, we conclude that agent i is indeed a faulty agent.

Example 3.7. (Detection of single-faced & double-faced faults) Let agent i in G sends

its state vectors of xj
i (ti) and di(ti) to its out-neighbor agent j at each event time ti as

shown in Table 3.4.

Table 3.4. Solution estimates and average states of neighbors of agent i

ti Solution Estimates, xj
i (ti) Av. States of Neighbors of i, di(ti)

1 [0.6660, 1.5821, 3.0333, 4.1869]T [1.0638, 2.4597, 1.7143, 2.6093]T

2 [0.9255, 1.7645, 3.0910, 4.0349]T [1.2473, 2.6032, 2.2180, 3.1990]T

3 [0.9165, 1.3252, 3.3433, 4.0196]T [1.2536, 2.3101, 2.4502, 3.3920]T

4 [0.9182, 0.9177, 3.5837, 3.9991]T [1.2965, 2.2985, 2.5909, 3.5079]T
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Table 3.4. Solution estimates and average states of neighbors of agent i (cont.)

5 [0.9185, 0.6412, 3.7463, 3.9857]T [1.3847, 2.6041, 2.6372, 3.5569]T

6 [0.9926, 1.1326, 3.5047, 3.9633]T [1.4116, 2.7276, 2.6138, 3.5313]T

Then, agent j forms Ci as

Ci =



0.6660 1.5821 3.0333 4.1869 −1

0.9255 1.7645 3.0910 4.0349 −1

0.9165 1.3252 3.3433 4.0196 −1

0.9182 0.9177 3.5837 3.9991 −1

0.9185 0.6412 3.7463 3.9857 −1

0.9926 1.1326 3.5047 3.9633 −1


. (3.23)

Next, agent j computes null(Ci) as

null(Ci) =


α1



0.6136

−0.3303

−0.5258

0.4519

0.1833


+ α2



0.0939

−0.1160

−0.2021

−0.0555

−0.9663


: α1, α2 ∈ R


(3.24)

which implies the following linear equation set

−2x1 + 5x2 + 9x3 + 6x4 = 77

5x1 − 2x2 − 3x3 + 5x4 = 17.
(3.25)

Moreover, agent j computes the projection matrix of agent i by using (2.11) as

Pker(Ai) =


0.6002 0.1793 0.2758 −0.3630

0.1793 0.7958 −0.3536 −0.0731

0.2758 −0.3536 0.3828 −0.1876

−0.3630 −0.0731 −0.1876 0.2212

 (3.26)

utilizing the determined equation set of agent i. Agent j examines Corollary 3.5 to

identify the intention of agent i. Then agent j finds

||hi(ti)|| = 0.6352 ̸= 0. (3.27)

This result indicates that agent i is a faulty agent.
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3.3. Extension to Continuous-time Systems

So far, we have assumed that each agent utilizes discrete-time distributed algo-

rithms in fault detection schemes to identify faulty neighbors. Therefore, we know that

each agent shares its state vectors in discrete-time steps. On the other hand, proposed

fault detection schemes can directly be integrated into continuous-time distributed

algorithms.

We have shown that each agent can deduce an equivalent equation system to

the neighboring agent’s system provided that sufficient number of solutions to the

equation system is received. Therefore, we have proposed the idea that normal agents

can identify all neighboring faulty agents by examining the criteria regarding faulty

models’ characteristics.

In continuous-time systems, the distributed problem of solving linear algebraic

equations can be represented by a differential equation of the form (2.14) [7, 33, 34].

Thus, we conclude that each agent solves its system of equations using continuous-

time solution estimates of neighboring agents. On the other hand, the fault detection

schemes require n − r + 1 linearly independent solution estimates for the equation

system determination process. Therefore, each agent should send its state vectors to

its neighbors in line with a sampling time, τs > 0. In this way, each agent can collect

n− r+1 linearly independent solution estimates from its neighbors in a bounded time

interval.

3.4. Summary of the Chapter

We know that each agent in the network should be non-faulty for achieving con-

sensus by using an averaging-based distributed algorithm. If any intrusion of faulty

agents occurs into the network, faulty agents may prevent the consensus among the

normal agents unless the normal agents detect the faulty ones. Therefore, it is crucial

to eliminate the effects of faulty agents to achieve consensus.
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In this chapter, we have introduced four fault models that may be experienced

in multi-agent networks:

(i) Random-state fault model

(ii) Fixed-state fault model

(iii) Single-faced fault model

(iv) Double-faced fault model.

These fault models originate from the fault types defined in [39], and we can

consider the first three fault models as Symmetric faults while the last model is an

Asymmetric (Byzantine) fault. We consider that each of the fault models has its own

characteristics. In order to eliminate the effects of faulty agents, we have introduced

our fault detection schemes for each fault model. Furthermore, we have provided

simulation results for the detection phase of each fault model. We also discussed

equation determination process in continuous-time systems.
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4. SYNCHRONOUS FAULT RESILIENT DISTRIBUTED

ALGORITHM

In Chapter 3, we have introduced four different faulty agent models and the

detection algorithms to isolate these misbehaving agents from the network. In this

chapter, we propose a synchronous fault resilient discrete-time distributed algorithm

to solve linear algebraic equations in faulty networks. Secondly, we analyze the time

and space complexities of the suggested algorithm. Later on, we present a numerical

example to illustrate the theoretical results.

4.1. The Synchronous Algorithm

Consider a time-varying network G(t) = (V , E(t)) withm > 1 autonomous agents.

We also defined the set of nodes in the network as follows: V = Vn∪Vf where Vn denotes

the set of normal agents and Vf is the set of faulty agents in the network.

Initially, each agent i only knows its own equation set of the form [Ai bi] and is

unaware of the equations owned by other agents. Moreover, each agent i ∈ V seeks to

solve its own equation set with a synchronous discrete-time distributed algorithm, i.e.,

algorithm (2.10) proposed in [22]. Thus, the underlying topology for the network is

repeatedly jointly strongly connected as introduced in [22]. In addition, it is known that

each agent updates its solution estimate vectors and transmits them to its neighbors

at synchronous event times. Furthermore, each agent i receives two vectors at each

time-step t from agent j ∈ N+
i :

(i) the solution estimate at step-time t, i.e. x j(t) ∈ Rn and

(ii) the average of the solution estimates of the neighboring agents of the agent j,

i.e.,

d j(t) =
1

µj(t)

∑
s∈N+

j (t)

x s(t) ∈ Rn where µj(t) = |N+
j (t)| and t ≥ 1. (4.1)
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We presume that all state vectors that agent i receives from its in-neighbor agents

throughout the process are linearly independent. We stated in Section 3.2 that the

agent i must receive n − rj + 1 consecutive solution estimates from agent j ∈ N+
i to

determine an equation set with the same solution set as equation set of agent j.

4.2. Description of the Algorithm

In this section, we give a detailed description for the synchronous fault resilient

discrete-time distributed algorithm illustrated in Figures 4.1 and 4.2.

Phase #0 : Agent i chooses its initial state with a specific vector which is a

feasible solution to its own equation set. Then agent i computes the projection matrix

using (2.11). In addition, agent i counts the number of agents in its in-neighbor list

and initializes an empty matrix for each in-neighbor to be utilized in the next phases.

We also set a constant small precision value ϵc for the simulations.

Phase #1 : In this phase, agent i listens to each of its neighboring agent j for

n− ri + 1 iterations and constructs Cj matrices for all its neighbors with the received

solution estimates. Agent i utilizes matrix Cj to determine the equations of each

neighboring agent j in the following phases.

Phase #2 : In this phase, agent i labels each neighboring agent j as either a

normal or a faulty agent. We divide this phase into three sub-phases.

• In Phase #2.1, agent i computes a basis for the null space of Cj, which was

constructed in Phase #1, and appends each basis vector into the columns of

matrix Mj. As provided in Theorem 3.2, random-state faulty agents can be

identified when the norm of the matrix Mj is equal to zero. If the given condition

holds, agent i labels the corresponding agent j ∈ N+
i as a random-state faulty

agent and removes agent j from its in-neighbor set.
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1: x i(1)← AT
i (AiA

T
i )

−1bi ▶ Phase #0

2: PAi
← I − AT

i (AiA
T
i )

−1Ai

3: µi ← |N+
i |

4: ϵc ← a small precision value

5: foreach j ∈ N+
i do

6: Initialize Cj as an empty 2D array

7: end for

8: for t← 1 to n− rj + 1 do ▶ Phase #1

9: Initialize d i(t) as an empty vector in Rn

10: foreach j ∈ N+
i do

11: d j(t) received from j

12: x j(t) received from j

13: wij ← 1/µi

14: d i(t)← d i(t) + wijx j(t)

15: Append the rows of [x j(t)
T , − 1] to Cj

16: end for

17: x i(t+ 1)← x i(t)− PAi

(
x i(t)− d i(t)

)
18: end for

19: foreach j ∈ N+
i do ▶ Phase #2

20: Mj ← a basis for the null(Cj) ▷ Phase #2.1

21: if ||Mj||1 ̸= 0 then

22: N+
i ← N+

i \ j

23: continue

24: end if

Figure 4.1. Synchronous fault resilient distributed algorithm for solving linear

algebraic equations
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25: Āj ←Mj[1 : n][:]T ▷ Phase #2.2

26: P̄Āj
← I − Āj

T
(ĀjĀj

T
)−1Āj

27: if ||P̄Āj
||1 < n2ϵc then

28: N+
i ← N+

i \ j

29: continue

30: end if

31: hj ← x j(t)− x j(t− 1)− P̄Āj

(
x j(t− 1)− d j(t− 1)

)
▷ Phase #2.3

32: if ||hj||1 > nϵc then

33: N+
i ← N+

i \ j

34: continue

35: end if

36: end for

37: µi ← |N+
i | ▶ Phase #3

38: do

39: Initialize d i(t) as an empty vector in Rn

40: foreach j ∈ N+
i do

41: wij ← 1/µi

42: d i(t)← d i(t) + wijx j(t)

43: end for

44: x i(t+ 1)← x i(t)− Pi

(
x i(t)− d i(t)

)
45: t← t+ 1

46: while ||x i(t+ 1)− x i(t)|| > ϵc

Figure 4.2. Synchronous fault resilient distributed algorithm for solving linear

algebraic equations (cont.)
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• In Phase #2.2, agent i determines the equations of each of its neighbor agent j.

Then, agent i computes the projection matrix onto the kernel of equations of

agent j. Thus, agent i can identify the fixed-state faulty agents by the condition

defined in Theorem 3.3. Accordingly, agent i removes the faulty agent from N+
i

if this condition does not hold for the corresponding neighbor agent.

• Since the general detection algorithm for the single-faced and double-faced faulty

agents are similar, agent i can simultaneously detect such faults in Phase #2.3.

Firstly, agent i should compute the difference vector hj as described in (3.15).

Agent i checks the condition proposed in Theorem 3.4, i.e., ||hj(tj)||1 ̸= 0 to

determine whether neighbor j is normal agent or not. If agent i labels agent j as

a faulty agent, it removes agent j from its in-neighbor set.

Phase #3 : Until this phase, agent i has determined which of its neighboring

agents are trustworthy and which are not. Thus, agent i updates the number of neigh-

boring agents in accordance with the updated neighbor list. Since the updated neigh-

bor list includes only the normal agents, agent i executes the discrete-time distributed

algorithm (2.10) proposed in [22] to achieve consensus with the other normal agents.

4.3. Algorithm Complexity Analysis

In this section, we analyze the time and space complexities of the proposed algo-

rithm illustrated in Figures 4.1 and 4.2.

We first consider the time complexity of the given algorithm phase by phase. In

Phase #0, the state initialization takes O(r2jn) time because of the matrix inversion

method presented in [42]. Moreover, the projection matrix calculation requires O(rjn2)

times. Therefore, the total time cost of Phase #0 is O(rjn2).

In Phase #1, line 13 takes O(n) time, but the total time required for this oper-

ation is O(nµi) because of the “foreach” loop. Line 16 takes O(n2) time due to the

matrix and vector multiplications. Since we have a “for” loop, the total time required
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for Phase#1 is O(n3).

In Phase #2, a basis computation for the null space of an (n − rj + 1) × (n +

1) matrix Cj takes O(n3) for singular value decomposition (SVD) method suggested

in [43].

• In Phase #2.1, we have a conditional statement in line 20 that computes the

1-norm of an (n+ 1)× r matrix with the time cost of O(n) as described in [44].

• When we consider Phase #2.2, the projection computation takes O(n2) times.

Also, for the conditional statement in line 26, we compute the 1-norm of an n×n

matrix that costs O(n2) times.

• The difference vector computation in Phase #2.3 requires O(n2) owing to the

matrix and vector multiplications. The conditional statement in line 31 costs

O(n) times due to the 1-norm computation of a vector of size (n× 1).

It should be noted that all operations in Phase #2 are repeated µi times because of

the “foreach” loop. Therefore, Phase #2 requires O(n3µi) times in total.

Lastly, Phase #3 takes O(n2) times in total by cause of the matrix and vector

multiplication in line 41. On the other hand, we do not consider Phase #3 for the overall

complexity analysis since this phase is not related to the fault detection algorithm.

Hence, the total time required for the introduced phases is O(n3µi).

The space complexity of Phase #0 is O(n2µi) for the 2D array initialization for

each neighbor. In Phase #1, we also have several n×1 sized vector assignments for each

neighbor. Moreover, we have a “for” loop, which iterates n− ri + 1 times. Therefore,

the total space cost for Phase #1 is O(n2µi). In Phase #2, we have several vectors and

2D array assignments. Specifically, the projection matrix for each neighbor allocates

O(n2µi) space in the memory. Accordingly, the total space complexity for the overall

fault detection algorithm is O(n2µi).
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4.4. A Numerical Example

Consider the faulty network Gf illustrated in Figure 4.3. There are eight agents in

the network, and agents do not know the intentions of their neighbors. In addition, we

assume that the internal clocks of each agent are perfectly synchronized, and each agent

follows the synchronous discrete-time distributed algorithm (2.10) suggested in [22] af-

ter the fault detection phase. It should also be noted that each of the vectors presented

in this example has a truncation error since we utilize the MATLAB environment for

the simulations. Therefore, in this example, we set the precision value ϵc as 10
−15.

1 2 3

4

567

8

Figure 4.3. A faulty network Gf .

Each agent i ∈ V shares two vectors in Rn with its neighboring agents at each

event time ti: its solution estimate and the average of received solution estimates of its

neighbors, x i(ti) and d i(ti), respectively. The system of equations that normal agents

seek to solve cooperatively is provided as follows:

−x1 − 6x2 − 7x3 − 5x4 = −54

−4x1 + 8x2 − 5x3 + 2x4 = 5

8x1 + 9x2 − 2x3 + 4x4 = 36

−x1 − x2 + 2x3 − 5x4 = −17.

(4.2)

Each normal agent owns only one distinct equation in the given system. Furthermore,

the system has a unique solution of [1, 2, 3, 4]T . However, this is not known by the

agents primarily.
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In this example, we observe the procedure that Agent 5 follows to determine

the intentions of its neighbors. We consider Agent 5 in Gf is a normal agent and the

equation that Agent 5 seeks to solve is

8x1 + 9x2 − 2x3 + 4x4 = 36. (4.3)

According to Phase #0 of the procedure illustrated in Figure 4.1, Agent 5 initial-

izes its state vector as [1.3631, 1.4851,−1.0181, 2.4231]T by using the minimum norm

solution method and computes its projection matrix by the equation given in (4.3).

Also, Agent 5 counts the number of its in-neighbor agents and creates a 2D matrix Cj

for each of its in-neighbor agents.

Then, Agent 5 proceeds to Phase #1 to collect sufficient data for the fault detec-

tion scheme. All data that Agent 5 received from its neighbors during the process, are

given in Tables 4.1 and 4.2, respectively. Finally, agent 5 appends the received vectors

to matrix Cj for each of its neighbors separately.

Table 4.1. Solution estimates of the neighbor agents of Agent 5, x j(t).

Neighbor Agent, j Event time, t Estimated Solution, x j(t)

Agent 1 1 [1.7708, 2.8492,−0.7640, 2.1233]T

2 [1.7708, 2.8492,−0.7640, 2.1233]T

3 [1.7708, 2.8492,−0.7640, 2.1233]T

4 [1.7708, 2.8492,−0.7640, 2.1233]T

5 [1.7708, 2.8492,−0.7640, 2.1233]T

Agent 2 1 [0.8355,−0.3428,−0.4780,−0.8891]T

2 [1.2634, 0.3832,−0.1189, 0.4172]T

3 [1.0132,−0.8695,−0.7947, 0.6885]T

4 [1.5857, 1.2502,−0.1156,−1.3318]T

5 [−2.3428,−0.9266, 1.1296,−0.5491]T
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Table 4.1. Solution estimates of the neighbor agents of Agent 5, x j(t) (cont.)

Agent 3 1 [0.6539, 2.6391, 3.6541, 2.3865]T

2 [1.5377, 2.4908, 3.0490, 3.2348]T

3 [1.6652, 2.5273, 3.0033, 3.2296]T

4 [1.5658, 2.4891, 3.0320, 3.2552]T

5 [1.9867, 2.5850, 2.8634, 3.2918]T

Agent 4 1 [−0.4762,−0.3968, 0.6349, 0.0794]T

2 [0.1010, 0.1853, 1.4382, 0.0266]T

3 [0.3732, 0.3050, 1.7203, 0.0018]T

4 [0.5135, 0.5294, 1.9625, 0.0277]T

5 [0.5394, 0.8314, 2.1646, 0.0764]T

Agent 6 1 [1.0263, 0.6842, 1.3684,−1.0263]T

2 [1.2983, 1.0941, 1.2658,−0.6179]T

3 [1.2705, 0.9937, 1.4682,−0.4428]T

4 [1.2637, 1.1187, 1.5355,−0.2765]T

5 [1.0510, 1.2406, 1.7056,−0.1812]T

Table 4.2. Received state average vectors from the neighbor agents of Agent 5, d j(t).

Neighbor Agent, j Event time, t State averages, d j(t)

Agent 1 1 [3.5784, 0.7694,−1.3499, 3.0349]T

2 [3.5784, 0.7694,−1.3499, 3.0349]T

3 [3.5784, 0.7694,−1.3499, 3.0349]T

4 [3.5784, 0.7694,−1.3499, 3.0349]T

5 [3.5784, 0.7694,−1.3499, 3.0349]T

Agent 2 1 [−0.2360,−0.4365, 0.3356, 0.0688]T

2 [−1.5885, 0.9261, 0.4067, 1.6100]T

3 [−0.2572, 1.5680,−0.6218,−0.1870]T

4 [−0.0696, 1.2436,−0.0115,−0.7308]T

5 [0.1038,−0.2305,−0.5897, 1.3774]T
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Table 4.2. Solution estimates of the neighbor agents of Agent 5, x j(t) (cont.)

Agent 3 1 [−0.1835, 0.3670,−0.2294, 0.0917]T

2 [0.3645, 1.0028, 0.7683, 1.1386]T

3 [0.4936, 1.3209, 1.3492, 1.5768]T

4 [0.4437, 1.4501, 1.6783, 1.7829]T

5 [0.3174, 1.4613, 1.8500, 1.9146]T

Agent 4 1 [−1.4857, − 0.7601, 4.2906, 6.1563]T

2 [−2.0626, − 1.9683, 2.6744, 6.9943]T

3 [−1.6298, − 1.0619, 3.8870, 6.3656]T

4 [−1.2555, − 0.2782, 4.9353, 5.8220]T

5 [−1.3849, − 0.5491, 4.5728, 6.0100]T

Agent 6 1 [−0.6212, 0.8742,−0.1243, 0.1143]T

2 [0.2434, 1.5145, 1.5068, 1.8614]T

3 [0.5758, 1.7663, 2.1412, 2.5052]T

4 [0.7003, 1.8546, 2.3842, 2.7753]T

5 [0.7531, 1.8825, 2.4898, 2.9122]T

Next, Agent 5 continues with Phase #2. It first computes a basis for the null

space of matrix Cj and appends each basis vector to the columns of matrix Mj, as

presented in Table 4.3. Thus, Agent 5 discovers the equation sets of its neighboring

agents, as shown in Table 4.4.

In Phase #2.1, the agents check the condition for detecting all random-state

faulty agents. As can be inferred from Table 4.3, M2 was computed as a zero matrix

which led to the fact stated in Theorem 3.2. Therefore, Agent 2 is detected as a

random-state faulty agent and removed from the in-neighbor set of Agent 5.
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Table 4.3. Computed Mj matrices

N. Agent, j Mj N. Agent, j Mj

Agent 1



0.878 0.182 0.086 0.084

−0.194 −0.622 −0.262 0.194

0.215 −0.016 −0.881 −0.378

−0.378 0.746 −0.193 −0.044

0.031 0.147 −0.331 0.899


Agent 4



−0.3991

−0.3326

0.5322

0.0665

0.6652



Agent 2



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Agent 6



0.2085

0.1390

0.2780

−0.2085

0.9036



Agent 3



−0.3455

0.6911

−0.4319

0.1728

0.4319



Table 4.4. Equations of neighbors of Agent 5.

Equations Neighbor Agent, j

no equation available Agent 1

no equation available Agent 2

−4x1 + 8x2 − 5x3 + 2x4 = 5 Agent 3

−6x1 − 5x2 + 8x3 + x4 = 10 Agent 4

−6x1 − 4x2 − 8x3 + 6x4 = −26 Agent 6
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Agent 5 can also identify all fixed-state faulty agents in its in-neighbor set by

executing Phase #2.2. At first, the projection matrices, P̄ker(Aj), are computed for

each neighbor j using the computed matrices of Mj. Note here that the condition

given in Theorem 3.3 holds for Agent 1. Therefore, Agent 1 is labeled as a fixed-state

faulty agent.

In Phase #2.3, Agent 5 computes the difference vector, hj, for each neighbor j

and checks the condition claimed in Theorem 3.4. If the given condition holds, Agent

5 labels the neighboring agent as faulty. In this network, Agent 5 identifies Agent 4

and Agent 6 as faulty agents and removes them from its in-neighbor list.

Later, Agent 5 proceeds to execute the discrete-time distributed algorithm (2.10)

with its updated neighbor set, which only includes normal Agent 3. The evolution of

the solution estimates of Agent 5 is illustrated in Figure 4.4. As can be seen from

Figure 4.4, Agent 5 struggles for the first four time steps, which corresponds to fault

detection scheme. After the fifth time step, Agent 5 begins to coordinate with other

normal agents since the other normal agents could also detect the faulty agents in

their neighbor lists until t = 6. This coordination between the normal agents can be

observed in Figure 4.5. Moreover, the decline in the total error for the normal agents

which indicates the asymptotic convergence is illustrated in Figure 4.6.
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Figure 4.6. Total error of normal agents

4.5. Summary of the Chapter

In this chapter, we have introduced a synchronous fault-tolerant distributed al-

gorithm to solve linear algebraic equations of the form (1.1). Furthermore, we have

provided a detailed explanation for the suggested algorithm and analyzed the algo-

rithm in terms of time and space complexities. Lastly, we have illustrated a numerical

simulation in which the proposed fault detection algorithm identifies all faulty agents

in the neighbor list of each normal agent. Since all agents can label the faulty agents in

their neighbor list after an n− r + 1 time-steps, we have observed that normal agents

achieve asymptotic consensus on a feasible solution to Ax = b.
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5. ASYNCHRONOUS FAULT RESILIENT DISTRIBUTED

ALGORITHM

In Chapter 2, we reviewed different types of distributed algorithms to solve lin-

ear algebraic equations. However, most of the developed distributed algorithms in the

literature are not directly applicable to faulty networks. Therefore, we proposed addi-

tional fault detection schemes for averaging consensus-based distributed algorithms to

make them resilient to faulty behaviors.

On the other hand, the fault detection algorithm proposed in Chapter 3 cannot be

directly applied if each agent updates its state in asynchronous event time sequences.

Accordingly, we introduce an asynchronous fault resilient distributed algorithm to de-

tect faulty agents in this chapter. In addition, we provide time and space complexity

analysis for the proposed algorithm. Then, we present that normal agents are guar-

anteed to achieve consensus on a feasible solution to the system of equations of the

form (1.1) by using our algorithm.

5.1. The Asynchronous Algorithm

Consider m > 1 autonomous agents in the network G seek to solve the system of

the form (1.1) by implementing an averaging-based distributed algorithm such as (2.12).

Each agent i estimates a solution for its own equation by utilizing the estimates of

each in-neighbor agent j at its event time tik where k ≥ 1. However, each agent

j ∈ N+
i may transmit its updated solution estimate to agent i in asynchronous event

times. Therefore, we assume each agent has its own private event time sequence of

(ti1, ti2, . . .) to update and send information to its neighbors. It should be noted that

between two consecutive event times tik and ti(k+1), the solution estimate of agent i,

x i(tik), is remained constant.
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As a result of this private asynchrony among the agents, classical synchronized

distributed algorithms cannot be applied for solving linear algebraic equations in the

multi-agent network settings. Thus, we consider that each agent in G utilizes the

asynchronous distributed algorithm (2.12) developed in [23] to achieve consensus on a

feasible solution to a system of the form Ax = b.

On the other hand, bounded computation and communication delays are con-

sidered in [23]. They proposed that agent i can utilize the received data from its

in-neighbor agent j at delayed time sequences, δij(k), (k = 1, 2, . . .). This time delay

definition includes both the transmission time and the hold time. The transmission

time defines a bounded time delay on the communication channel between the agents.

The hold time specifies a bounded time delay in which agent i holds received data until

its event time tik.

Although the individual time delay is specific to each agent, all normal agents

know the maximum delay time, δmax, for the network. Therefore, it is ensured that

each normal agent receives and utilizes updated state vectors from their in-neighbors

at least once on each interval [tik, tik + δmax), (k = 1, 2, . . .).

We assume that each agent j ∈ V shares two state vectors with each neighboring

agent i:

(i) the solution estimate that solves its own equation set, i.e., x j(tjk) ∈ Rn and

(ii) the average of the solution estimates of its in-neighbor agents, i.e.,

v j(tjk) =
1

mj(tjk)

∑
s∈N+

j (tjk)

x s(tjk − δjs(k)) ∈ Rn (5.1)

where mj(tjk) = |N+
j (tjk)| and k ≥ 1.

Remark 5.1. Assume each agent j ∈ V publishes its data with neighboring agent

i ∈ N−
j with time delays. Then, agent i should receive

(n− rj + 1)δmax (5.2)

where rj denotes the number of equations of agent j, n denotes the number of unknowns,
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and δmax is the maximum delay time for the network, solution estimates from agent j

to guarantee for deducing a linear equation system with the same solution set as the

system of agent j.

5.2. Description of the Algorithm

In this section, we present the asynchronous fault-resilient discrete-time dis-

tributed algorithm for solving linear algebraic equations in detail. The algorithm is

provided in Figures 5.1 and 5.2.

Phase #0: In this phase, agent i initializes its solution estimate with a vector

that should solve the equation set of agent i. For the initialization, agent i uses

the minimum norm solution of the equation set [Ai bi]. Then agent i computes the

projection matrix onto the kernel of its equation set with (2.11). In addition, agent i

determines the number of its in-neighbor agents and assigns the maximum delay on

the network. Lastly, agent i generates an empty 2D array for each in-neighbor j to use

in the latter phases. We also set a constant small precision value ϵc for the simulations.

Phase #1: This phase is crucial for the fault detection phase. Agent i uses a

previously generated 2D array to compile the solution estimates of in-neighbors of

agent i. On the other hand, agent i receives data from its in-neighbors asynchronously.

Thus, agent i should append only the linearly independent state vectors received from

its in-neighbor agent j to rows of matrix Cj.
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1: x i(ti1)← AT
i (AiA

T
i )

−1bi ▶ Phase #0

2: PAi
← I − AT

i (AiA
T
i )

−1Ai

3: µi ← |N+
i (ti1)|

4: ϵc ← a small precision value

5: δmax ← maximum delay on the network

6: foreach j ∈ N+
i (ti1) do

7: Initialize Cj as an empty 2D array

8: end for

9: k ← 1

10: do ▶ Phase #1

11: Initialize d i(tik) as an empty vector in Rn

12: foreach j ∈ N+
i (tik) do

13: d j(tik − δij(k)) received from j

14: x j(tik − δij(k)) received from j

15: wij ← 1/µi

16: d i(tik)← d i(tik) + wijx j

(
tik − δij(k)

)
17: Append the rows of [x j(tik)

T , − 1] to Cj

18: end for

19: x i(ti(k+1))← x i(tik)− PAi

(
x i(tik)− d i(tik)

)
20: k ← k + 1

21: while rank(Cj) < n+ 1 or k < (n− rj + 1)δmax + 1

22: foreach j ∈ N+
i (tik) do ▶ Phase #2

23: Mj ← a basis for the null(Cj) ▷ Phase #2.1

24: if ||Mj||1 ̸= 0 then

25: N+
i (tik)← N+

i (tik) \ j

26: continue

27: end if

Figure 5.1. Asynchronous fault resilient distributed algorithm for solving linear

algebraic Equations
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28: Āj ←Mj[1 : n][:]T ▷ Phase #2.2

29: P̄Āj
← I − Āj

T
(ĀjĀj

T
)−1Āj

30: if ||P̄Āj
||1 < n2ϵc then

31: N+
i (tik)← N+

i (tik) \ j

32: continue

33: end if

34: hj ← x j(tj(k−1))− x j(tj(k))− P̄Āj

(
x j(tj(k−1))− d j(tj(k−1))

)
▷ Phase #2.3

35: if ||hj||1 > nϵc then

36: N+
i (tik)← N+

i (tik) \ j

37: continue

38: end if

39: end for

40: mi ← |N+
i (tik)| ▶ Phase #3

41: do

42: Initialize v i(tik) as an empty vector in Rn

43: foreach j ∈ N+
i (tik) do

44: wij ← 1/mi

45: d i(tik)← d i(tik) + wijx j

(
tik − δij(k)

)
46: end for

47: x i(ti(k+1))← x i(tik)− Pi

(
x i(tik)− d i(tik)

)
48: k ← k + 1

49: while ||x i(ti(k+1))− x i(tik)|| > ϵc

Figure 5.2. Asynchronous fault resilient distributed algorithm for solving linear

algebraic equations (cont.)
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Phase #2: In this phase, agent i identifies all faulty agents in its in-neighbor set.

We discuss this phase in three sub-phases.

• In Phase #2.1, agent i computes a basis of the null space of matrix Cj and

appends each basis to the columns of matrix Mj. Later on, agent i computes the

norm of Mj to identify whether agent j is a random-state faulty agent. If the

computed value is not equal to zero as proposed in Theorem 3.2, agent i labels

agent j as a random-state faulty agent and deletes agent j from its in-neighbor

set N+
i .

• In Phase #2.2, agent i computes the projection matrix P̄ker(Āj) used by agent

j ∈ N+
i with the help of the matrix Mj computed in the previous phase. Then,

agent i computes the norm of the projection matrix of agent j and checks the

condition stated in Theorem 3.3 to label agent j as a fixed-state faulty agent.

• Since we assume that each agent utilizes the asynchronous distributed algorithm

introduced in (2.12) to update its solution estimate, agent i checks the condition

provided in Theorem 3.4 to identify single-faced and double-faced faulty agents in

N+
i . Therefore, agent i computes the difference vector hj in Phase #2.3. Then,

agent i should confirm the condition stated in Corollary 3.5 with the difference

vector for labeling agent j as normal agent. Otherwise, agent i labels agent j as

faulty. Then, it removes agent j out of its in-neighbor set N+
i .

Phase #3: Until this phase, agent i identified all faulty agents in its in-neighbor

set and deleted them from its in-neighbor set, i.e., N+
i . Consequently, agent i can now

rely on each agent in its fault-free in-neighbor set. Therefore, agent i can update its

solution estimate by way of an asynchronous distributed algorithm (2.12) until it is

made sure consensus is reached among the normal agents to solve Ax = b.

5.3. Algorithm Complexity Analysis

In this section, we investigate the time and space complexities of the proposed

asynchronous fault resilient discrete-time distributed algorithm illustrated in Figures 5.1
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and 5.2. First, we analyze the algorithm’s time complexity for each phase individually.

In Phase #0, the initialization procedure includes matrix inversion which we

maintain the classical QR-decomposition method described in [42] for this operation.

Thus, this computation takes O(r2jn) times. On the other hand, the projection matrix

computation takes O(rjn2) times. Accordingly, the total time cost is O(rjn2) for

Phase #0.

In Phase #1, the condition for the “while” loop indicates that computation may

occur ((n − rj + 1)δmax) times. We observe this amount of iteration as the worst

case when analyzing the total time complexity. Thus, we find the total time cost as

O(n3δmaxµi) in the worst-case scenario.

In Phase #2.1, the singular value decomposition (SVD) method described in [43]

is used to compute a basis for the null space of matrix Cj of size ((n−rj+1)δmax×n+

1). This process takes O(n3δmax) times. Moreover, the computation of 1-norm of an

(n+1× rj) matrix takes O(rjn) times [44]. Later, the projection matrix is found with

the time cost of O(rjn2), and computation of the norm of this projection matrix takes

O(n2) in Phase #2.2. Phase #2.3 takes O(n2) times due to the matrix and vector

multiplications in the difference vector computation. Also, the computation of the

norm of an n×1 vector requires O(n). All computations are repeated µi times because

of the “foreach” loop. Thus, the total cost of Phase #2 is found as O(n3δmaxµi) in the

worst-case scenario of the maximum delay δmax being reached for each agent.

Finally, the matrix and vector multiplications take O(n2) time in Phase #3.

All in all, the total time cost for the asynchronous fault resilient discrete-time dis-

tributed algorithm is found as O(n3δmaxµi) in the worst case for bounded δmax.

We now examine the space complexities of each phase of the proposed asyn-

chronous fault resilient distributed algorithm. In Phase #0, the 2D matrix initializa-

tion requires O(n2µi) space as the maximum space among the other vector and matrix



60

initializations. In Phase #1, each assignment of the vector of size n × 1 in the “fore-

ach” loop requires O((n− rj + 1)δmaxµi) space in the worst-case scenario since δmax is

the upper bound for the condition of the “while” loop. Thus, the total space required

by Phase #1 is O(n2δmaxµi). Finally, in Phase #2, there are vector and 2D matrix

assignments, and the total space requirement is found as O(n2µi). In total, the space

complexity of the algorithm is O(n2δmaxµi).

5.4. A Numerical Example

As for the numerical example, we reconsider the network Gf illustrated in Fig-

ure 4.3. There are eight agents in the network who are unfamiliar with the identities

of their neighboring agents at the beginning of the process.

In this example, the system provided in (4.2) has a unique solution of [1, 2, 3, 4]T .

However, none of the agents is aware of this unique solution to the system. Thus,

normal agents try to achieve this unique solution by interchanging their data through

the transmission channels illustrated in Figure 4.3. Nevertheless, the event time cycle

of each agent may differ from the other agents since we consider the asynchrony of the

event times. On the other hand, we assume that the maximum delay time for this

network δmax is bounded and known by each normal agent i ∈ Vn. It should also be

noted that each agent i shares two separate vectors: x i(tik) and d i(tik) ∈ Rn with its

out-neighbors at its event times.

We reconsider Agent 5 which is one of the normal agents in Gf illustrated in

Figure 4.3. Agent 5 knows only its own equation set given in (4.3). We monitor the

evolution of its solution estimate to achieve consensus with other normal agents. How-

ever, Agent 5 should ensure that each in-neighbor agent, N+
5 , is a normal agent before

applying an asynchronous discrete-time distributed algorithm such as algorithm (2.12)

to achieve asymptotic consensus. Therefore, Agent 5 should identify the true intentions

of all its in-neighbor agents using fault detection algorithm illustrated in Figures 5.1

and 5.2.



61

In Phase #0 of the algorithm illustrated in Figure 5.1, Agent 5 initializes its

solution estimate as a feasible solution to its equation set provided in (4.3). Moreover,

Agent 5 computes its projection matrix by using its equation set in line with (2.11).

However, Agent 5 determines the number of in-neighbor agents at the beginning of

the process and initializes a 2D matrix called Cj for each agent j ∈ V+
5 . Finally, the

maximum delay time is set to three, i.e. δmax = 3.

Next, Agent 5 listens to its in-neighbors at its event times for their data and

compiles them into the previously generated 2D matrix Cj in Phase #1. As mentioned

before, each in-neighbor of Agent 5 shares two separate vectors with Agent 5. The

solution estimates of each in-neighbor agent of Agent 5 are given in Table 5.1. In

addition, the state vectors d j published from the in-neighbors of Agent 5 are provided

in Table 5.2.

Table 5.1. Solution estimates of the neighbor agents of Agent 5, x j(t5k).

Neighbor Agent, j Event time, t5k Estimated Solution, x j(t5k)

Agent 1 1 [1.7708, 2.8492,−0.7640, 2.1233]T

2 [1.7708, 2.8492,−0.7640, 2.1233]T

3 [1.7708, 2.8492,−0.7640, 2.1233]T

4 [1.7708, 2.8492,−0.7640, 2.1233]T

5 [1.7708, 2.8492,−0.7640, 2.1233]T

Agent 2 1 [0.1825, 1.5651,−0.0845, 1.6039]T

2 [0.1825, 1.5651,−0.0845, 1.6039]T

3 [0.0983, 0.0414,−0.7342,−0.0308]T

4 [0.0983, 0.0414,−0.7342,−0.0308]T

5 [0.2323, 0.4264,−0.3728,−0.2365]T

Agent 3 1 [0.6539, 2.6391, 3.6541, 2.3865]T

2 [0.6539, 2.6391, 3.6541, 2.3865]T

3 [0.6539, 2.6391, 3.6541, 2.3865]T

4 [1.6989, 2.6894, 3.1007, 2.8919]T

5 [1.6989, 2.6894, 3.1007, 2.8919]T
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Table 5.1. Solution estimates of the neighbor agents of Agent 5, x j(t5k). (cont.)

Agent 4 1 [−0.4762,−0.3968, 0.6349, 0.0794]T

2 [−0.4762,−0.3968, 0.6349, 0.0794]T

3 [0.1010, 0.1853, 1.4382, 0.0266]T

4 [0.1010, 0.1853, 1.4382, 0.0266]T

5 [0.3732, 0.3050, 1.7203, 0.0018]T

Agent 6 1 [1.0263, 0.6842, 1.3684,−1.0263]T

2 [1.0263, 0.6842, 1.3684,−1.0263]T

3 [1.0263, 0.6842, 1.3684,−1.0263]T

4 [1.2983, 1.0941, 1.2658,−0.6179]T

5 [1.2983, 1.0941, 1.2658,−0.6179]T

Table 5.2. Average of received states from neighbor of Agent 5, d j(k).

Neighbor Agent, j Event time, t5k Average states, d j(k)

Agent 1 1 [3.5784, 0.7694,−1.3499, 3.0349]T

2 [3.5784, 0.7694,−1.3499, 3.0349]T

3 [3.5784, 0.7694,−1.3499, 3.0349]T

4 [3.5784, 0.7694,−1.3499, 3.0349]T

5 [3.5784, 0.7694,−1.3499, 3.0349]T

Agent 2 1 [0.8731, 0.1853,−2.4878, 0.1706]T

2 [0.8731, 0.1853,−2.4878, 0.1706]T

3 [−0.5254, 0.3493, 0.1980,−0.5998]T

4 [−0.5254, 0.3493, 0.1980,−0.5998]T

5 [1.4109, 1.0889,−0.7958, 1.2149]T

Agent 3 1 [0.6539, 2.6391, 3.6541, 2.3865]T

2 [0.6539, 2.6391, 3.6541, 2.3865]T

3 [0.6539, 2.6391, 3.6541, 2.3865]T

4 [1.5377, 2.4908, 3.0490, 3.2348]T

5 [1.5377, 2.4908, 3.0490, 3.2348]T
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Table 5.2. Average of received states from neighbor of Agent 5, d j(k). (cont.)

Agent 4 1 [−1.4857, − 0.7601, 4.2906, 6.1563]T

2 [−1.4857, − 0.7601, 4.2906, 6.1563]T

3 [−2.0626, − 1.9683, 2.6744, 6.9943]T

4 [−2.0626, − 1.9683, 2.6744, 6.9943]T

5 [−1.6298, − 1.0619, 3.8870, 6.3656]T

Agent 6 1 [−0.6212, 0.8742,−0.1243, 0.1143]T

2 [0.2434, 1.5145, 1.5068, 1.8614]T

3 [0.5758, 1.7663, 2.1412, 2.5052]T

4 [0.7003, 1.8546, 2.3842, 2.7753]T

5 [0.7531, 1.8825, 2.4898, 2.9122]T

In Phase #2, Agent 5 executes the faulty detection algorithm. First, it computes

a basis for the null space of matrix Cj for each of its in-neighbor agent j. Then it

appends the computed basis to the columns of the matrix Mj. The generated Mj

matrices are presented in Table 5.3.

In Phase #2.1, Agent 5 checks the condition for identifying the random-state

faulty agent. As can be observed from Table 5.3, the equation set of Agent 2 was

determined as the zero set by Agent 5. Thus, Agent 2 was identified as a random-state

faulty agent. Then Agent 5 broke ties with Agent 2.

In the next phase, Agent 5 determined the fixed-state faulty agents in its in-

neighbor set by checking the condition defined in Theorem 3.3. Agent 5 identifies

Agent 1 as faulty, since the computed projection matrix of Agent 1 did not satisfy

Theorem 3.3. Therefore, Agent 1 is also deleted from the in-neighbor list of Agent 5.

Lastly, Agent 5 made use of Theorem 3.4 in order to identify the single-faced

and double-faced faulty agents in Phase #2.3. For each of its remaining in-neighbors,

the difference vector hj was computed by Agent 5. Then, Agent 4 and Agent 6 are

detected as faulty agents and removed by Agent 5 from its in-neighbor list.
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Table 5.3. Computed Mj matrices

N. Agent, j Mj N. Agent, j Mj

Agent 1



0.878 0.182 0.086 0.084

−0.194 −0.622 −0.262 0.194

0.215 −0.016 −0.881 −0.378

−0.378 0.746 −0.193 −0.044

0.031 0.147 −0.331 0.899


Agent 4



−0.3991

−0.3326

0.5322

0.0665

0.6652



Agent 2



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Agent 6



0.2085

0.1390

0.2780

−0.2085

0.9036



Agent 3



−0.3455

0.6911

−0.4319

0.1728

0.4319



Table 5.4. Equations of neighbors of Agent 5.

Equations N. Agent, j

no equation available 1

no equation available 2

−4x1 + 8x2 − 5x3 + 2x4 = 5 3

−6x1 − 5x2 + 8x3 + x4 = 10 4

−6x1 − 4x2 − 8x3 + 6x4 = −26 6
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Up to now, Agent 5 has detected all faulty agents in its in-neighbor list and

removed them from this list. In Phase #3, Agent 5 executes the asynchronous discrete-

time distributed algorithm (2.12) with its updated in-neighbor list until a consensus

is achieved with the other normal agents. The evolution of the solution estimates of

Agent 5 is illustrated in Figure 5.3. Moreover, the consensus on the unique solution of

[1, 2, 3, 4]T among the normal agents can be observed in Figures 5.4 and 5.5.
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5.5. Summary of the Chapter

In this chapter, we have proposed a fault-resilient asynchronous distributed algo-

rithm to solve linear algebraic equations. We have split the process into four phases,

including the initialization phase. We have guaranteed that each normal agent identi-

fies all faulty agents in its neighbor set with the asynchronous fault detection phase.

Thus, normal agents achieve consensus in the presence of faulty agents even if they

do not have a common event time sequences. We have also implemented complexity

analysis for the suggested algorithm. Lastly, we have provided an example to illustrate

the feasibility of the suggested algorithm.
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6. CONCLUSION

In this thesis, we have studied fault resiliency in distributed algorithms to solve

linear algebraic equations in multi-agent networks. In multi-agent networks, we con-

sider that multiple autonomous agents endeavor to achieve consensus distributively on

the same feasible solution for a system of equations of the form (1.1). Since privacy

and security concerns arise as the number of agents increases, we discuss the effect of

faulty participants in the network throughout the thesis.

In most studies on distributed algorithms for solving linear equations, the equa-

tion system of neighboring agents are assumed private due to security and privacy

concerns [7, 22, 26]. However, a method developed in [45] reveals that this assumption

is not restrictive for agents to determine the equation sets of their neighbors. On the

other hand, the sufficiency condition proposed in [45] has been corrected to be n−r+1

when r ≥ 1 in Chapter 3 since the complete solution set of a non-homogeneous system

Ax = b with rank(A) and rank([A b]) = r, has at most n− r+ 1 linearly independent

solutions.

In Chapter 3, we have introduced four different fault models: random-state, fixed-

state, single-faced, and double-faced. Characteristics of these fault models originated

from the well-known fault definitions of Symmetric and Asymmetric (Byzantine) faults

described in [39]. Moreover, we have studied the theoretical basis for identifying these

faulty agents in line with their characteristics. On the other hand, we have also dis-

cussed the applicability of fault detection schemes in continuous-time systems. The

significance of the proposed fault detection procedures is that we do not require prior

knowledge of faulty agents in the network.

In distributed systems, agents communicate with each other via communication

channels to achieve consensus. However, data transmission between agents takes time,

depending on the distance between agents. Besides, agents might not share a com-
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mon event time sequence to update their states. Therefore, any delay in the data

transmission may influence the overall results adversely, and the faulty parties may be

impossible to detect in delayed networks. Thus, we have also studied the synchroniza-

tion of the agents’ event times.

In Chapter 4, we have proposed a fault-resilient distributed algorithm to solve

the linear equations while all the individual agents perform their tasks in perfect time

synchronization with the other agents. In addition, we have analyzed the time and

space complexities of the developed algorithm. Also, we have supported our findings

with numerical simulations.

In Chapter 5, we have developed an asynchronous fault resilient distributed al-

gorithm to deal with the adverse effects of communication delays. Moreover, the algo-

rithm complexity analysis has been presented for the proposed algorithm. It was shown

that the time and space complexities of the suggested algorithm are related to δmax.

In future studies, it is planned to develop fault detection algorithms of more

sophisticated fault models than those proposed here. In addition, further analyses of

the continuous-time fault detection algorithms will be performed. Moreover, we will

study to improve the time and space complexities of the proposed algorithms. Lastly, it

is planned to examine the extensions on fault detection schemes for cases where agents

utilize communication-efficient distributed algorithms.
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