
USING MACHINE LEARNING TO IMPROVE AUTOMATED TEST

GENERATION

by

Yavuz Köroğlu

B.S., Computer Engineering, Boğaziçi University, 2014

M.S., Computer Engineering, Boğaziçi University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Prof. Alper Şen for guiding me with his

experience and skill, and fellow jury members Prof. Can Özturan, Assoc. Prof. Emre

Uğur, Assoc. Prof. Hasan Sözer, and Assoc. Prof. Feza Buzluca for their invaluable

feedback.

I would like to thank especially Dilara Nejad, my fiancée, for I would not find the

strength to finish this thesis without her.

This author was supported by TUBITAK Ph.D. Fellowship 2011-E and supported

in part by Bogazici University Research Fund 13662.

iv

ABSTRACT

USING MACHINE LEARNING TO IMPROVE

AUTOMATED TEST GENERATION

Underestimating the value of software testing had catastrophic results in recent

history. Automated Test Generation (ATG) is an approach that aims to minimize the

manual effort required for testing. This thesis aims to improve the effectiveness and

performance of ATG approaches via Machine Learning (ML) based guidance, and fo-

cuses on Android Graphical User Interface (GUI) testing using Reinforcement Learning

(RL), specifically. We propose four solutions, Q-learning Based Exploration (QBE),

Test Case Mutation (TCM), Fully Automated Reinforcement LEArning Driven (FAR-

LEAD), and FARLEAD2 test generators. QBE uses RL to crawl a set of applications

and learns an action generation policy while exploring. Then, it uses this learned pol-

icy to either detect more unique crashes or cover more activities in new applications.

TCM takes the tests QBE generates and replaces the well-behaving actions in those

tests with bad-behaving ones to detect even more crashes. FARLEAD uses RL to learn

how to verify a functional behavior that is given as a high-level test scenario in the form

of a monitorable formal specification. FARLEAD learns by trial-and-error like QBE

but it learns app-specific patterns instead of QBE’s app-generic patterns. To the best

of out knowledge, FARLEAD is the first engine fully automating the functional test-

ing of GUI applications. Finally, FARLEAD2 improves FARLEAD with Generalized

Experience Replay (GER) and human-readable Staged Test Scenario (STS) language.

Experimental results show that, QBE outperforms state-of-the-art test generators in

crash detection and coverage. Furthermore, executing QBE first and then switching to

TCM detects even more unique crashes. FARLEAD and FARLEAD2 expand the scope

of automated testing to verifying functional behavior. Overall, these test generators

elevate automated GUI testing closer to replacing manual GUI testing.

v

ÖZET

OTOMATİK TEST YARATIMINI İYİLEŞTİRME AMAÇLI

MAKİNE ÖĞRENMESİ KULLANIMI

Yazılım testinin değerini hafife almanın yakın tarihte yıkıcı sonuçları olmuştur.

Otomatik Test Yaratımı (OTY) test için gereken insan eforunun en aza indirilmesini

amaçlayan bir yaklaşımdır. Bu tez OTY etkililiği ve performansını Makine Öğrenmesi

(MÖ) tabanlı yönlendirme ile artırmayı amaçlamaktadır, ve spesifik olarak Takviyeli

Öğrenme (TÖ) kullanan Android Grafiksel Kullanıcı Arayüzü (GKA) testine odak-

lanmaktadır. Önerdiğimiz dört çözüm; Q-öğrenme Tabanlı Keşif (QTK), Test Du-

rumu Mutasyonu (TDM), Tam Otomatik Takviyeli Öğrenme Güdümlü (TOTÖG), ve

TOTÖG2 test yaratıcılarıdır. QTK bir dizi uygulamada TÖ kullanarak gezinir ve

keşif sırasında bir eylem yaratma ilkesi öğrenir. Sonra, bu öğrendiği ilkeyi yeni uygu-

lamalarda ya daha fazla özgün çökme bulmak ya da daha fazla aktivite kapsamak için

kullanır. TDM, QTK ile yaratılan testleri alır ve içlerindeki iyi huylu eylemleri daha

da fazla çökme tespit edebilmek için kötü huylularla değiştirir. TOTÖG ise TÖ kulla-

narak izlenebilir kurallı belirtimler formundaki yüksek seviyeli test senaryoları olarak

verilen fonksiyonel davranışları nasıl doğrulayacağını öğrenir. TOTÖG, QTK gibi

deneme-yanılma ile öğrenir ama uygulama-spesifik kalıplar öğrenmektedir. Bildiğimiz

kadarıyla, TOTÖG, GKA uygulamalarının tam otomatik fonksiyonel testini mümkün

kılan ilk motordur. Son olarak, TOTÖG2, TOTÖG’ü Genellenmiş Deneyim Tekrarı

(GDT) ve insan-okuyabilir Aşamalı Test Senaryosu (ATS) diliyle geliştirmektedir.

Deneyler QTK’nın en gelişkin test yaratıcılarından çökme tespiti ve kapsamada daha

performanslı olduğunu göstermektedir. Önce QTK çalıştırıp sonra TDM’ye geçmek

ise bundan da daha fazla eşsiz çökme bulmaktadır. TOTÖG, otomatik testin kap-

samını fonksiyonel davranış doğrulanmasına genişletmektedir. Sonuç olarak, bu test

yaratıcıları otomatik GKA testini elle testin yerine geçmeye yakınlaştırmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Contributions . 5

1.2. Organization . 6

2. RELATED WORK . 7

2.1. Android Test Generators . 7

2.2. Other GUI Test Generators . 9

2.3. Record and Replay . 9

2.4. Runtime Verifiers . 10

2.5. RL-LTL Studies . 10

3. BACKGROUND . 11

3.1. Android GUI Basics . 11

3.1.1. Android GUI State . 11

3.1.2. Android GUI Action . 12

3.1.3. Extended Labeled Transition System 13

3.2. Reinforcement Learning . 14

3.2.1. Update Equations . 16

3.2.2. Experience Replay . 17

3.3. Test Scenarios and Linear-time Temporal Logic 18

4. EXPLORING ANDROID APPLICATIONS WITH QBE 20

4.1. Method . 21

4.2. Evaluation . 22

vii

4.2.1. Experimental Environment . 23

4.2.2. State and Action Abstraction 24

4.2.3. Experimental Results . 25

4.2.4. Examples from QBE Studies . 26

4.3. Notes on QBE . 27

5. IMPROVING CRASH DETECTION WITH TCM 29

5.1. Android Crash Patterns and Mutation Operators 30

5.1.1. Android Crash Patterns . 30

5.1.1.1. C1: Unhandled Exceptions 30

5.1.1.2. C2: External Errors 30

5.1.1.3. C3: Resource Unavailability 30

5.1.1.4. C4: Semantic Errors 30

5.1.1.5. C5: Network-Based Crashes 31

5.1.2. Mutation Operators . 31

5.1.2.1. M1: Loop-Stressing 31

5.1.2.2. M2: Pause-Resume . 31

5.1.2.3. M3: Change Text . 31

5.1.2.4. M4: Toggle Contextual State 32

5.1.2.5. M5: Remove Delays 32

5.1.2.6. M6: Faster Swipe . 32

5.2. Test Suite Minimization and Test Mutation 33

5.3. Motivating Example . 35

5.4. Evaluation . 36

5.4.1. Experiments . 36

5.4.2. Case Studies . 39

5.4.2.1. Case Study 1 . 39

5.4.2.2. Case Study 2 . 39

5.4.2.3. Case Study 3 . 39

5.4.2.4. Case Study 4 . 41

5.4.2.5. Case Study 5 . 41

5.5. Notes on TCM . 41

viii

6. FUNCTIONAL TESTING WITH FARLEAD 43

6.1. FARLEAD Methodology . 45

6.2. Runtime LTL Monitoring via Progression 46

6.3. FARLEAD Example . 48

6.4. Evaluation . 51

6.5. Notes on FARLEAD . 56

7. FARLEAD2: IMPROVING FARLEAD WITH EXPERIENCE REPLAY . . 58

7.1. Staged Test Scenarios . 60

7.1.1. Monitoring an STS Stage . 62

7.2. Generalized Experience Replay (GER) 64

7.3. Evaluation . 66

7.3.1. Experimental Setup . 66

7.3.1.1. Witness Generators 66

7.3.1.2. Effectiveness . 66

7.3.1.3. Performance . 66

7.3.1.4. The Mobile Device . 67

7.3.1.5. Application Under Test (AUT) 67

7.3.1.6. Test Scenarios . 67

7.3.1.7. Generalized Experience Replay (GER) Setup 72

7.3.1.8. Overall . 72

7.3.2. Research Questions . 72

7.3.3. Experimental Results . 74

7.3.3.1. RQ1: Feasibility . 76

7.3.3.2. RQ2: Effectiveness . 76

7.3.3.3. RQ3: Performance . 77

7.3.3.4. RQ4: Witness Length 77

7.3.3.5. RQ5: Levels of Information 78

7.3.3.6. RQ6: Test Scenario Complexity 78

7.3.3.7. Summary . 79

8. DISCUSSION . 80

9. CONCLUSION . 82

ix

REFERENCES . 84

APPENDIX A: QBE’s Experimental AUT Characteristics 93

APPENDIX B: QBE’s Experimental Coverage Results 94

APPENDIX C: FARLEAD’s Experimental LTL Formulae 95

APPENDIX D: On the Figures of This Thesis 96

x

LIST OF FIGURES

Figure 3.1. Reinforcement Learning Overview. 15

Figure 3.2. Experience Database. 17

Figure 4.1. QLearning-Based Exploration (QBE) Overview. 20

Figure 4.2. Main Flow of QLearner. 21

Figure 4.3. AUT Characteristics of Training Set, Test Set and F-Droid Bench-

marks. 24

Figure 4.4. A Crashing Test Case of aagtl Application. 26

Figure 5.1. Test Case Mutation (TCM) Overview. 29

Figure 5.2. Test Mutation (TCM) Algorithm. 34

Figure 5.3. Motivating Example (mutations are bold). 35

Figure 5.4. Number of Total Distinct Crashes Detected Across Time. 37

Figure 5.5. An Example Crash Found Only by TCM. 38

Figure 5.6. Case Studies 1-5. 40

Figure 6.1. FARLEAD Overview. 44

Figure 6.2. FARLEAD Flowchart. 45

xi

Figure 6.3. Progression based LTL Monitoring with Reward Shaping. 47

Figure 6.4. Episode i = 1. 49

Figure 6.5. Episode i = 2. 49

Figure 6.6. Episode i = 3. 50

Figure 6.7. Experimental Performance Results. 55

Figure 7.1. FARLEAD2 Overview. 59

Figure 7.2. Staged Test Scenario (STS) Overview. 60

Figure 7.3. An Example Step of FARLEAD2. 63

Figure 7.4. Generalized Experience Replay (GER) Example. 65

Figure 7.5. A Witness for Test Scenario 014. 68

Figure 7.6. L1-L4 STSs for Test Scenario 014. 70

Figure B.1. Boxplots of Activity Coverages for Three Runs by Tool. 94

xii

LIST OF TABLES

Table 2.1. Android Test Generators. 8

Table 3.1. GUI Actions. 13

Table 3.2. Known Update Equations. 16

Table 3.3. Pointwise and Finite LTL Semantics. 18

Table 4.1. Emulators for Testing Tools. 23

Table 4.2. Experimental Results to answer RQ1 and RQ2. 25

Table 5.1. Relating Crash Patterns and Mutation Operators. 33

Table 6.1. FARLEAD Example. 49

Table 6.2. FARLEAD’s Experimental Test Scenarios. 52

Table 6.3. Test Generator Effectiveness. 54

Table 7.1. Experimental Results. 75

Table A.1. AUT Characteristics. 93

xiii

LIST OF SYMBOLS

t A test

v A GUI state

s A GUI-monitor state

TS Test suite

δ A Mutation Operator

∆ Mutation Operator Space

¬ Negation

⊤ True

¬⊤ False

∧ Conjunction

∨ Disjunction

⃝ Next

U Until

♢ Eventually

□ Globally

xiv

LIST OF ACRONYMS/ABBREVIATIONS

ARB Aging Related Bug

ATG Automated Test Generation

AUT Application Under Test

ELTS Extended Labeled Transition System

ER Experience Replay

FARLEAD Fully Automated Reinforcement LEArning Driven

GER Generalized Experience Replay

GUI Graphical User Interface

LTL Linear-time Temporal Logic

MATE Mobile Accessibility Testing

ML Machine Learning

NAM Non-Aging Related Mandelbug

PUMA Programmable UI-automation of Mobile Apps

QBE Q-learning Based Exploration

RE Random Exploration

RL Reinforcemenet Learning

RND RaNDom

STS Staged Test Scenario

TCM Test Case Mutation

1

1. INTRODUCTION

Testing ensures high quality and reliability in software. Costs of inadequate

testing can be catastrophic. For example, Knight Capital Group lost $440M dollars

due to a bug in their trading software in 2012 [1]. One of the first computer worms,

the Morris Worm, was developed in 1988 and exploited several holes in the Unix

operating system [2]. United States Government Accountability Office announced that

these bugs caused a huge damage, costing between $100K and $10M dollars. A division

by zero bug in early Intel Pentium processors cost $475M dollars in 1994 [3]. A study

conducted by National Institute of Standards and Technology (NIST) in 2002 reports

that software bugs cost the U.S. economy $59.5B dollars annually [4].

Adequate testing requires time and a lot of effort. Testing with manually gener-

ated inputs is the predominant technique in industry to ensure software quality. This

type of testing accounts for up to 80% of the typical cost of software development (e.g.

in Microsoft, 79% of developers are dedicated to writing unit tests [5]), but manual

test generation is expensive, error-prone, and rarely exhaustive.

Several techniques under the name of Automated Test Generation (ATG) have

been proposed to automatically generate test inputs [6]. Research on ATG dates back

to 1975 [7] and although there are many scientific works on the subject, real-world

applications are limited. Our research aims to find the challenges to bridge the gap

between the scientific research and the real-world application and improve the scientific

research to better fit the real-world requirements. Note that ATG is different than Test

Automation. In Test Automation, the focus is on libraries that help generating tests

manually. In ATG, tests are generated, executed and reported automatically with no

human intervention.

We started our research on ATG by first looking into mobile applications because

mobile applications are ubiquitous, in other words, accessible and used by everyone.

2

After 2020, there are over 30 billion smart mobile devices worldwide and this number

is expected to go up to 75 billion until 2025 [8].

Graphical User Interface (GUI) applications play a huge role in mobile devices.

Naturally, many GUI testing studies focus on mobile GUI applications. Statistics show

that between 2019 and 2021, on average, a hundred thousand new mobile applications

have been released on Google Play every month [9]. Reducing the time needed for

adequate testing of these applications is critical to ensure correct behavior while keeping

the rate of releases high.

A bibliometric analysis [10] shows that the study of automated GUI testing has

been continuously growing for the last 30 years. Automated GUI testing aims to reduce

the manual effort and time spent on testing. A comparative study on automated

testers [11] shows that black-box methods are the least time-consuming compared to

other alternatives. Considering the scarcity of time to test, black-box methods should

be preferable in GUI testing. Note that black-box methods work only on the executable

binary of an Application Under Test (AUT) and do not need the source code. However,

the same study also reveals that black-box methods often focus on external exceptions

and ignore functional behavior. In GUI testing, the developer/tester must ensure the

correct behavior, so automating the functional testing of GUI applications is essential

to reduce the manual effort and time spent on testing.

To the best of our knowledge, all scientific papers about Mobile GUI Testing in

the literature study Android GUI and not the other Mobile GUIs. This has several

reasons.

(i) Android applications have the largest share in the mobile application market,

where 82.8% of all mobile applications are designed for Android [8].

(ii) There are large databases of freely downloadable Android applications. F-Droid

[12] is one such database which consists 4521 Android applications.

(iii) Android OS is open source, which makes it easy to modify the OS to monitor the

3

application state.

(iv) Android SDK is freely accessible unlike SDKs for other mobile platforms such as

iOS.

Android GUI application developers face a pressure to develop many applications

in limited time. This pressure combined with the lack of test automation tools cause

most applications in the market to be buggy. There are many test generators for An-

droid GUIs [13–18]. These tools are fully-automated, in other words, they generate and

execute tests and produce reports for the developer without any human intervention.

We observed that these tools cannot achieve high coverage and cannot detect a high

number of crashes. In fact, previous testing tools fail to outperform a simple random

test generator called Monkey [14,17].

In this thesis, we first propose the usage of machine learning to improve testing.

We hypothesize that in the Android GUI Testing domain there are general patterns

which can be learned from a training set of applications and then used on new ap-

plications with improvement in crash detection and coverage. We applied a known

Reinforcement Learning (RL) technique called SARSA, which is an on-policy version

of Q-Learning on a training set of 200 applications, downloaded from the F-Droid web-

site. Then, we evaluated our approach by executing a test set of 100 applications,

again downloaded from the F-Droid benchmarks, and compared our results with the

previous tools. We published our work as QBE: QLearning-Based Exploration of An-

droid Applications [19] at 2018 IEEE International Conference on Software Testing,

Validation, and Verification (ICST).

Second, we propose the usage of Test Case Mutation (TCM) to improve crash

detection. After QBE, we observed that there are still many crashes that were not

detected. We investigated Android crash patterns described in the literature [20] to

uncover the methods to hit these crashes in our tests. We worked on five case studies to

relate the crash patterns with specific actions and developed six mutation operators.

These operators take the existing test cases and inject or modify specific actions in

4

the test case to produce a bad-behaving test case that is related to the Android crash

patterns. We published our work as TCM: Test Case Mutation to Improve Crash De-

tection in Android [21] at 2018 International Conference on Fundamental Approaches

to Software Engineering (FASE).

Third, we notice that all Android GUI test generators focus on crash/bug detec-

tion and structural coverage but the main goal of GUI testing is to verify functional

behavior. We propose the Fully Automated Reinforcement LEArning-Driven test gen-

erator (FARLEAD) that uses RL to fully automate functional testing of Android GUI

applications. Since FARLEAD aims to test application-specific functions, it becomes

unreasonable to investigate general patterns. Instead, FARLEAD takes a test scenario,

which is an example use case of a GUI function. Note that FARLEAD accepts Linear-

time Temporal Logic (LTL) specifications as test scenarios because LTL formulae are

unambiguously run-time monitorable. By trial-and-error, FARLEAD learns to gener-

ate the correct low-level GUI actions in the correct order such that the resulting test

witnesses a given test scenario, which verifies the functional behavior of the Application

Under Test (AUT). We published our work as Functional test generation from UI test

scenarios using reinforcement learning for android applications [22].

Finally, our experience with FARLEAD [23] shows that it may still be impractical

for large-scale real-world use due to two reasons: (i) FARLEAD witnesses simple test

scenarios but as the test scenario gets more complex, it fails to reach functional behavior

located deep in the AUT, and (ii) writing and maintaining test scenarios in a formal

specification language such as LTL remains a difficult task for the developer/tester.

For this reason, we propose FARLEAD2, an improvement to FARLEAD. We improve

FARLEAD by enhancing its Reinforcement Learning (RL) algorithm with Generalized

Experience Replay (GER). GER gathers experience while witnessing a test scenario

and then utilizes that experience for later test scenarios. We also propose the Staged

Test Scenario (STS), a test scenario type that divides the underlying tasks of a test

scenario into consecutive stages. These stages produce intermediate positive rewards

upon completion, enabling Reward Shaping. Note that Reward Shaping [24] is the

5

practice of generating intermediate rewards before reaching an objective to drive the

RL agent towards that objective. STS is an unambiguous and run-time monitorable

but still human-readable test scenario language with intuitive syntax and semantics.

STSs allow the developer/tester to easily incorporate apriori information on the AUT,

facilitating witness generation.

1.1. Contributions

Our key contributions in this thesis are as follows.

• We propose Q-learning Based Exploration (QBE) that implements a popular

semi-supervised Machine Learning (ML) technique called Reinforcement Learning

(RL) to improve coverage and crash detection of automated test generation tools.

• We propose Test Case Mutation (TCM) that mutates test inputs QBE generates

to further improve crash detection of automated test generation tools.

• An experimental environment for QBE/TCM which consists of

– 4521 Android applications downloaded and instrumented for collecting cov-

erage from the F-Droid benchmarks,

– 7 identical real-world Android devices,

– 14 Android-x86 VirtualBox guests,

– An environment that allows parallel execution of different techniques on

different applications simultaneously.

• Experiments involving 200 random applications as training set and 100 random

applications as the test set. Experiments show that QBE/TCM indeed improves

coverage and crash detection.

• We propose FARLEAD, the first fully automated mobile GUI test generator for

functional testing that uses RL.

• We evaluate FARLEAD via experiments on two applications from F-Droid. We

show that our approach is more effective and achieves higher performance in

generating satisfying tests than three known test generation approaches, namely

Monkey, Random, and QBEa.

6

• We propose FARLEAD2, the first study that combines RL and Generalized Ex-

perience Replay (GER) for GUI test generation,

• We develop the Staged Test Scenario (STS) language to utilize readable and

unambiguously monitorable test scenarios.

• We made an experimental evaluation of RL with GER, showing that it fails fewer

times, witnesses more test scenarios, and is faster than RaNDom (RND) and pure

RL witness generators.

1.2. Organization

We organized this thesis as follows. We provide literature review in Chapter 2.

We describe the necessary background on Android GUI Testing and Reinforcement

Learning in Chapter 3. We describe our methods in Chapters 4-7. We discuss the lim-

itations of our test generators in Chapter 8. We conclude by making a short summary

of this thesis and stating future avenues of research in Chapter 9.

7

2. RELATED WORK

In this section, we discuss the published literature related to our work in five

categories:

(i) Android Test Generators in Section 2.1,

(ii) Other GUI Test Generators in Section 2.2,

(iii) Record and Replay in Section 2.3,

(iv) Runtime Verifiers in Section 2.4, and

(v) RL-LTL Studies in Section 2.5.

2.1. Android Test Generators

There are many test generators for Android mentioned in the published literature

since both Android systems are widespread and Automated Test Generation receives

some academic focus. Table 2.1 shows 23 automated test generators we investigated,

in chronological order. Although we cannot put a year on Google’s Monkey testing

tool, it is the oldest tool shipped in bundle with every Android OS version.

Black-box test generators are more practical than others because they do not

need the AUT’s source code. Table 2.1 shows that there are several black-box test

generators. All the test generators we implement during this thesis are also black-box.

Most Android Test Generators in the literature focus on crash detection and/or

structural coverage. A crash in Android is an abnormal termination of the Application

Under Test (AUT) followed by a FATAL EXCEPTION written in Android logs. Note

that a crash is a bug but a bug may not be crash. For example, if a banking application

executes a transfer without any crashes but sends a wrong amount of money, that is

a non-crashing bug. Structural coverage is a measure of how much of the AUT a

test suite explores. A typical structural coverage metric could be line, branch, or

8

Table 2.1. Android Test Generators.

Year # Name Black-box Goal

N/A 1 Monkey [25] ✔ Crash Detection

2012 2 ACTEve [26] ✖ Structural Coverage

2013

3 A3E [14] ✔ Structural Coverage

4 DynoDroid [18] ✖∗ Coverage & Crash

5 Orbit [27] ✖ Structural Coverage

6 SwiftHand [15] ✔ Structural Coverage

2014

7 EvoDroid [28] ✖ Structural Coverage

8 GreenDroid [29] ✖ Energy

9 MobiGUITAR [30] ✔ Crash Detection

10 PUMA [13] ✔ Coverage & Crash

11 Quantum [31] ✖ Common Bugs

2015 12 MonkeyLab [32] ✖ Structural Coverage

2016

13 CrashScope [17] ✔ Crash Detection

14 Sapienz [16] ✔ Coverage & Crash

15 TrimDroid [33] ✖ Structural Coverage

2017
16 DroidBot [34] ✔ Sensitive APIs

17 Stoat [35] ✔ Structural Coverage

2018

18 CrawlDroid [36] ✔ Crash Detection

19 MATE [37] ✔ Accesibility

20 SwiftHand2 [38] ✔ Structural Coverage

21 LAND [39] ✔ Structural Coverage

2019 22 Paraaim [40] ✔ Structural Coverage

2021 23 GENIE [41] ✔ Common Bugs
∗DynoDroid also instruments the Android OS.

method coverage. In Android, it is also common to use activity coverage, which roughly

measures the number of screens explored over the total number of screens available to

the AUT.

9

Exceptions to crash detection and structural coverage focus on common or spe-

cific bugs, specific bugs being related to triggering sensitive APIs, excess energy con-

sumption and accessibility issues. Overall, these test generators detect exceptions and

achieve high structural coverage, though it is unclear how many of the GUI functions

they test. In practice, a test generator may achieve high structural coverage and still

fail to test essential GUI functions, missing the mark on the main goal of GUI testing,

which is to verify functional behavior. Instead, our proposed test generators focus on

structural coverage, crash detection, and functional testing all together.

2.2. Other GUI Test Generators

In the larger domain of general GUI testing, the idea of Reinforcement Learning

(RL) is not new. To the best of our knowledge, AutoBlackTest [42] is the first study

on RL-driven GUI test generation. AntQ [43] uses advanced ant colony optimization

techniques along with reinforcement learning. These test generators learn app-specific

patterns while exploring, aiming to explore as many widgets as possible. In this thesis,

we propose several approaches, beginning from app-generic patterns in QBE to find

crashes or increase coverage and then switch to app-specific learning in FARLEAD

to verify functional behaviors. The advantage of using app-generic patterns is that

AutoBlackTest and AntQ have to spend some time to learn every new AUT whereas

once QBE learns enough, it does not need learning time for the new AUTs. Later

RL driven GUI test generators, namely TESTAR [44], and others [45, 46] continue to

optimize structural testing, whereas FARLEAD enabled fully automated functional

testing.

2.3. Record and Replay

One intuitive way to verify a crash, reachability of a screen (activity coverage),

or a functional behavior is to record a replayable test. To this end, a record and replay

tool records every manual user action as test steps and then replays those steps in the

recorded order. RERAN [47], VALERA [48], and BARISTA [49] are example record

10

and replay tools. These tools record GUI actions performed by hand and then replay

the same actions to reproduce the original test. We also reproduce our results the same

way, except recorded actions are not performed by hand but by the test generator.

2.4. Runtime Verifiers

A Runtime Verification (RV) tool monitors the AUT and reports if any given

specification is violated or not. RV-Droid [50], RV-Android [51], ADRENALIN-RV [52],

and Android-SRV [53] monitor Android AUTs given LTL specifications. However, these

tools monitor LTL properties on a source code level. Instead, the monitoring we have

developed during this thesis is at the GUI level. Also, runtime verification tools do not

generate tests whereas our proposed tools generate relevant tests while monitoring.

2.5. RL-LTL Studies

Several studies [54–57] develop RL-LTL systems. Using RL, these systems learn

to obey constraints specified in LTL language. These RL-LTL systems have to con-

tinuously perform their given task, without termination. Hence, as typical RL-LTL

approaches, they must converge to an optimal policy to guarantee the highest reliabil-

ity. Instead, FARLEAD is an RL-LTL system with a finite task, so it can terminate

once the task is complete. Therefore, FARLEAD does not have to converge to an opti-

mal policy, saving from the learning time. The overall result is that a typical RL-LTL

system may require around 100K steps [39,54–56] to learn whereas 1K steps is mostly

enough for FARLEAD.

11

3. BACKGROUND

In this chapter, we provide the background necessary for the understanding of

this thesis. We first provide information on Android GUIs in Section 3.1. Then, we

explain Reinforcement Learning (RL) in Section 3.2. Finally, we describe our test

adequacy criteria and their relation to Linear-time Temporal Logic (LTL) formulae.

3.1. Android GUI Basics

Android GUI is based on activities, events, and crashes. An activity is a container

for a set of GUI widgets. These GUI widgets are visible on the Android screen. Every

widget has properties describing its boundaries in pixels (x1, y1, x2, y2) or how the user

can interact with it (e.g. enabled, clickable, longclickable, scrollable, password). We

use the type and password properties to determine if a widget is something a user can

write on.

The Android system and the user can interact with GUI components using events.

We divide events in two categories, system events and GUI actions. We describe GUI

actions in Section 3.1.2. We assume that after every GUI action, the Android GUI goes

into what we call a GUI state, waiting for another GUI action. We discuss these GUI

states in Section 3.1.1. Finally, we model an Android GUI Application as a transition

system in Section 3.1.3.

3.1.1. Android GUI State

An Android GUI state is the state of an Android device between two GUI actions.

The contents of a GUI state depends on how fine-grained states the underlying test

generator needs. Test generators that rely on learning a policy of making similar actions

on similar states relax or abstract out the definition of a state, so similar states count

as the same. Otherwise, the definition of a state is as fine-grained as possible. The

12

most fine-grained definition of a state consists four components:

(i) The package name of the AUT,

(ii) The activity name of the current screen,

(iii) Contextual attributes (Crashed, Wi-Fi, Bluetooth, GPS, etc.), and

(iv) The widget tree.

Baek and Bae [58] define five levels of comparison between states, ignoring how

it is defined but grouping similar states together. The maximum comparison level

requires two states to be exactly equal according to its finest-grained definition.

A state is crashed if a fatal exception is recorded in Android logs [17,20]. Crashes

often result with the AUT terminating with or without any warning. Some crashes do

not visually affect the execution, but the AUT halts as a result.

3.1.2. Android GUI Action

A GUI action is based on user gestures interacting with the Android GUI. Ta-

ble 3.1 shows the GUI actions we support. The first 10 actions are non-contextual

GUI actions more or less supported by any test generator. Connectivity, Bluetooth,

Location, Planemode, and Doze change the contextual attributes of a state, so they

are contextual actions. These are not simple GUI actions, typically performing them

require multiple clicks. However, our test generators perform these actions in one go

by triggering system events to change contextual attributes. Finally, Reinit is a special

action that restarts the AUT.

Menu, Back, 2×Back, and the contextual actions are universal actions that are

always enabled. Click, Long-Click, Scroll-Up, Scroll-Down, Scroll-Left, Scroll-Right,

and Write have related GUI widgets, where a GUI widget is a GUI component visible

on the screen. These actions are enabled only if a related GUI widget appears on the

screen. Technically, a test generator determines the set of currently enabled actions by

13

Table 3.1. GUI Actions.

Action
Universal

Related
Parameters

Type Widget

N
o
n
-C

o
n
te
x
tu

a
l

Menu ✔ ✖ -

Back ✔ ✖ -

2×Back ✔ ✖ -

Click ✖ ✔ -

Long-Click ✖ ✔ -

Scroll-Up ✖ ✔ -

Scroll-Down ✖ ✔ -

Scroll-Left ✖ ✔ -

Scroll-Right ✖ ✔ -

Write ✖ ✔ text

C
o
n
te
x
tu

a
l

Connectivity ✔ ✖ on/off/toggle

Bluetooth ✔ ✖ on/off/toggle

Location ✔ ✖ gps/gps&network/off/toggle

Planemode ✔ ✖ on/off/toggle

Doze ✔ ✖ on/off/toggle

S
p Reinit ✖ ✖ -

parsing the XML hierarchy of the widget tree. Only the Write action has a parameter,

which is what text to write on its related GUI widget. In our early studies, we take

this parameter from a dictionary. But later, with the introduction of test scenarios, we

also started to deduce it from the test scenario.

3.1.3. Extended Labeled Transition System

Test generators model the Android GUI as a transition system where states are

the nodes and actions are the edges connecting them. Extended Labeled Transition

System (ELTS) [15] is a known construct that models the AUT. Formally, an ELTS

M = (S, s0, Z, ω, λ) is a 5-tuple, where

• S is a set of states (vertices),

• s0 ∈ S is the initial state,

• Z is the set of all actions (input alphabet),

14

• ω : S × S × Z is the state transition relation, and

• λ : S → ℘(Z) is a state labeling function, where ∀s ∈ S, λ(s) ⊆ Z denotes the set

of actions enabled at state s.

ELTS extends a typical finite state transition system by labeling every state.

SwiftHand [15] uses these labels for comparing states and picking a valid action at

every state. Later, with the introduction of test scenarios, we replace these labels with

Boolean propositions coming from the test scenario. Note that this modification allows

the same GUI state having different labels, depending on the previous actions of a test.

Hence, λ becomes not just a function of the GUI state, but also the monitor state of

the test scenario.

A transition in an ELTS is a triple, (s, s′, z). TCM mutates the time spent on a

transition, so define a delayed transition as a quadruple, (start-state, end-state, action,

delay in seconds), shortly (s, s′, z, d). A test t is a sequence of transitions (or delayed

transitions in the case of TCM), starting with the initial state s0. A test suite ts is a

set of tests.

3.2. Reinforcement Learning

Reinforcement Learning (RL) is a semi-supervised machine learning methodol-

ogy. It has lead to impressive advances in artificial intelligence, exceeding human

performance in areas including but not limited to resource management [59], traffic

light control [60], playing sophisticated games such as chess [61] and atari [62], and

chemistry [63]. Figure 3.1 shows that an RL agent dynamically learns to perform its

task by trial-and-error. After every action, the RL agent receives an immediate reward

from the environment. This reward can be positive, negative, or zero, meaning that

the last decision of the RL agent was good, bad, or neutral, respectively. Decisions

made according to the RL agent’s experience is said to follow the agent’s policy. After

enough iterations, the RL agent becomes proficient in its task. At this point, the RL

agent is said to have converged to its optimal policy. Upon convergence, the RL agent

15

Figure 3.1. Reinforcement Learning Overview.

is said to have minimized its expected number of bad decisions in the future. The

RL agent requires no prepared training data, which decreases the manual effort spent

preparing it. Therefore, RL is attractive amongst many machine learning methods.

Test generation is a search problem. Therefore, we could use any search algorithm

as an alternative to RL to generate candidate tests. For example, in Android GUI

Testing, EvoDroid [28] and Sapienz [16] use evolutionary search algorithms instead of

RL.

In this thesis, we use RL instead of evolutionary search because

(i) From Sutton and Barto [64, p.8], we know that the evolutionary search ignores

the fact that the states and actions are known, so it yields high execution costs.

We avoid these costs by prefering RL over evolutionary search. In contrast to

evolutionary search, RL learns while interacting with the environment and takes

individual behavioral interactions into account, which is more efficient than evo-

lutionary search in most cases.

16

(ii) The main difference between RL and evolutionary search is the adaptation scheme

[65]. In every episode, the evolutionary search generates a candidate population

and updates it by replacing bad candidates with better ones according to a fitness

function. Instead, in every episode, RL produces only one individual candidate

and updates its candidate generation policy after every step according to a reward

function. Our focus is to generate just one test for a specific UI test scenario,

and executing candidate tests as in evolutionary search is costly. So we prefer RL

because it has the potential to find the witness before learning the optimal policy

and it avoids generating large numbers of candidates as in evolutionary search.

3.2.1. Update Equations

Table 3.2. Known Update Equations.

TD-Learning δ = r + γV (sk+1)− V (s)

Q-Learning δ = r + γmaxaQ(sk+1, a)−Q(sk, ak)

SARSA δ = r + γQ(sk+1, ak+1)−Q(sk, ak)

Expected SARSA δ = r + γ
∑

a Ppol(a|sk+1)Q(sk+1, a)−Q(sk, ak)

Double TD-Learning δ = r + γV2(sk+1)− V1(s)

Double Q-Learning δ = r + γmaxaQ2(sk+1, a)−Q1(sk, ak)

Double SARSA δ = r + γQ2(sk+1, ak+1)−Q1(sk, ak)

Expected Double SARSA δ = r + γ
∑

a Ppol(a|sk+1)Q2(sk+1, a)−Q1(sk, ak)

Table 3.2 shows the well-known update equations for RL. At every kth step, RL

calculates the update amount δ using one of these equations, where r denotes the

immediate reward, Q and V denote the expected future reward of a state-action pair

and a state, respectively, and finally, Ppol denotes the probability of chosing an action

a given a next state sk+1 according to a learned policy pol.

In our thesis work, we use a simplification of all Q-matrix based equations in

Table 3.2 called Myopic Updates as

δ = r −Q(s, a) (3.1)

We discard the contribution of future states during updates by taking the discount

factor λ as zero. Hence only the immediate reward r and the old Q-value Q(s, a)

17

(s1, a1, s2, r1)

(s2, a2, s3, r2)

(st, at, st+1, rt)

⋮ ⋮ ⋮ ⋮

Figure 3.2. Experience Database.

remain relevant to the updates. We let the future rewards affect the Q-matrix via

backpropagating future Q-values on the state-action pairs of the latest execution trace.

This trace is also called Eligibility Trace e.

3.2.2. Experience Replay

Experience Replay (ER) [66] improves RL by using the experience collected in an

Experience Database from previous tasks instead of throwing it away. Figure 3.2 shows

an Experience Database as a list of unit experiences. A unit experience is a quadruple

(s, a, s’, r), meaning that the AUT goes from one state s to state s’ by executing

action a, getting reward r in the process. We never execute the unit experiences on the

environment since rewards are readily available. Instead, we update the RL’s initial

policy according to these rewards, allowing the RL agent to start with an initially better

action generation policy than a random one. So, the RL agent converges faster while

avoiding the execution costs of all the unit experiences. More unit experiences result in

faster learning. Note that introducing test scenarios make their monitor states relevant

to any experience. Hence, the state s in an Experiene Database is the concatenation

of the device state and the monitor state.

18

3.3. Test Scenarios and Linear-time Temporal Logic

A test scenario is an example use case of a software requirement, verifying a func-

tion’s behavior if a test witnesses it during execution. A test scenario is typically given

in natural language and therefore ambiguous. Test automation tools require test im-

plementation to disambiguate the semantics of a test scenario. However, implementing

extra code for a test is costly, impractical, and may introduce new bugs.

The reason for the large body of previous work is limited to bugs and coverage

is that such criteria have well-known automated test oracles. On the other hand, to

the best of our knowledge, a general automated oracle does not exist for functional

behavior. Such an automated oracle may be borrowed from the domain of formal

verification in the form of a co-safe Linear-time Temporal Logic (LTL) specification.

We define the syntax of an LTL formula ϕ where p ∈ AP is an atomic proposition

where AP is the set of all atomic propositions, as

ϕ := ⊤|p|¬ϕ|ϕ ∧ ϕ|⃝ϕ|ϕUϕ (3.2)

We interpret ϕ over a test t using the finite and pointwise semantics in Table 3.3(a).

Table 3.3. Pointwise and Finite LTL Semantics.
(a) Core Definitions.

(t, k) |= ⊤

(t, k) |= p iff p ∈ L(ak) ∪ L(sk)

(t, k) |= ¬ϕ iff (t, k) ̸|= ϕ

(t, k) |= ϕ ∧ ϕ′ iff (t, k) |= ϕ and (t, k) |= ϕ′

(t, k) |= ⃝ϕ iff (t, k + 1) |= ϕ

(t, k) |= ϕUϕ′ iff ∃j ∈ N, k ≤ j < |t|, (t, j) |= ϕ′,

and ∀i ∈ N, [k ≤ i < j → (t, i) |= ϕ]

t |= ϕ iff (t, 0) |= ϕ

(b) Additional Definitions.

ϕ ∨ ϕ′ ≜ ¬(¬ϕ ∧ ¬ϕ′)

ϕ → ϕ′ ≜ ¬(ϕ ∧ ¬ϕ′)

ϕ ↔ ϕ′ ≜ ¬(ϕ ∧ ¬ϕ′) ∧ ¬(¬ϕ ∧ ϕ′)

♢ϕ ≜ ⊤Uϕ

□ϕ ≜ ¬[⊤U¬ϕ]

We interpret ϕ over a (finite) trace t = a0s0a1s1 . . . a|t|−1s|t|−1 using the finite and

pointwise semantics in Table 3.3(a). We first define that (t, k) |= ⊤ because every

trace t, at any step k, entails true, denoted by ⊤. Second, we define that (t, k) |= p if

and only if the atomic proposition p is a label of the kth state or the kth action in the

trace t. Third and fourth, we define the unary negation (¬) and the binary conjunction

19

(∧) operators for LTL, respectively. Fifth, we define the temporal next operator (⃝),

where a trace t satisfies ⃝ϕ at a step k if and only if it satisfies ϕ at the subsequent

step k + 1. Sixth, we define the temporal until operator (U), where a trace t satisfies

ϕUϕ′ if and only if there exists a future step j in the (finite) trace at which the trace

t satisfies ϕ′, and in all steps from k up to j, the trace t satisfies ϕ. Finally, we define

that a trace t satisfies an LTL formula ϕ if and only if the trace t satisfies the formula

ϕ at the initial step k = 0.

The only difference of the finite semantics from the standard infinite semantics is

the definition of the Until (U) operator. The finite U operator must witness its final

condition ϕ′ before the test ends. We give additional definitions in Table 3.3(b). These

additional definitions are useful in monitoring LTL specifications through a technique

called progression. Progression techniques update the LTL formula after every step, in

other words, makes progress until the formula simplifies to ⊤ or ¬⊤.

An example LTL specification is

ϕ =⃝♢(p ∧⃝♢q), (3.3)

where p and q are Boolean propositions. A test t witnesses this specification if and

only if before the test ends, first p, then q becomes true (⊤). Note that the existence

of an order between p and q helps us defining the consecutive tasks of a test scenario,

and then monitor those tasks.

20

4. EXPLORING ANDROID APPLICATIONS WITH QBE

Even with the ongoing development in the state-of-the-art, a simple black-box

random testing tool, Monkey [25], proved to perform better than complex tools in terms

of coverage and the number of crashes detected [14,17]. The downside of Monkey is that

tests it generates are hard to reproduce and faults are hard to localize. Furthermore,

Monkey may cause a crash because it’s generating an unrealistic action sequence that

is not reproducible by hand.

Training Set (Apps)

Random

Training Set (Models)

AUT

QLearner

QBE

Test Results +

AUT Model

Q-Matrix

Figure 4.1. QLearning-Based Exploration (QBE) Overview.

We propose QLearning-Based Exploration (QBE) [19], a test generator that ex-

plores GUI actions using QLearning [67]. Figure 4.1 shows the overview of QBE. First,

QBE crawls through every application in a training set of applications (Apps) by in-

stalling, running, and executing random actions on them (Random). During execution,

QBE uses a variant of L∗ algorithm called PassiveLearn [15] to infer a finite transition

system (Model) that approximately fits the AUT. After generating a model for every

training application, QLearner samples transitions from these models. Every sampled

transition yields a reward value that is either zero and one, meaning the transition is

not achieving any objective and accomplishes an objective, respectively. QBE trains

21

a Reinforcement Learning (RL) agent using these rewards. Note that the Applica-

tion Under Test (AUT) is not included in the training set. Hence, we say that QBE

performs offline learning.

QBE learns an action generation policy in the form of a Q-Matrix from all the

finite transition models. When Q-Matrix is ready, QBE switches to full exploitation

mode, stops learning, and generates tests for the AUT using this policy. Finally, QBE

outputs coverage and the number of unique crashes detected (Test Results) along with

the inferred transition system of the AUT (AUT Model). Later, we can include the

AUT in the training set to improve QBE’s performance for newer applications.

QBE needs an automated test generator and executor to crawl the training set

and then generate tests for the AUT. For this purpose, we create a modular Android

testing and automation framework called AndroFrame. AndroFrame implements not

just QBE, but Random Exploration (RE) and Depth-First Exploration (DFE) strate-

gies, as well. Furthermore, AndroFrame reproduces any test it generates, enabling us

to verify test results. AndroFrame collects both coverage and unique crash information

for evaluation purposes.

4.1. Method

Choose action
from Q-matrix

Perform
the action

Measure
the reward

Update
Q-matrix

Figure 4.2. Main Flow of QLearner.

Figure 4.2 shows the main flow of QLearner. QLearner keeps a table of values

called Q-matrix, which is initially all zeros. Every row and column of a Q-matrix

denote a state and action, respectively. Hence, every value in a Q-matrix represents

the expected future reward of picking the given action at the given state.

The total number of distinct states and actions in an Application Under Test

(AUT) is huge, leading to a very large Q-matrix. A large Q-matrix is not just hard to

22

store but also takes longer to approximate the true values for expected future rewards.

For this reason, we abstract out states and actions to a few categories to keep the

Q-matrix small. Throughout this section, we denote a state and an abstract state as v

and s, respectively. Similarly, we denote an action and an abstract action as z and a.

At every state, QLearner first chooses one abstract action category a with a

probability propotional to that abstract action’s Q-value. Initially, every Q-value is

zero, meaning that every abstract action has the same chance of being chosen. Then

QLearner randomly picks an action z whose abstract action is a. Then, QLearner

performs z on the device and measures the immediate reward according to an objective

function o(v, z), which gives 1 if the objective is reached or 0, otherwise. This objective

is either discovering a unique crash or an activity. Finally, QLearner updates its Q-

matrix as

Q⃗[s, a]︸ ︷︷ ︸
Next

Q-Value

← Q⃗[s, a]︸ ︷︷ ︸
Previous
Q-Value

+ N⃗ [s, a]−1︸ ︷︷ ︸
History
Value

 o(v, z)︸ ︷︷ ︸
Objective
Function

+ γQ⃗[s′, a′]︸ ︷︷ ︸
Future

Expectancy

− Q⃗[s, a]︸ ︷︷ ︸
Previous
Q-Value

 (4.1)

To calculate updates, QLearner keeps a history matrix called the N-matrix. Every

value in the N-matrix is the count of occurences of the given abstract state and action

over the number of steps taken so far. Furthermore, QLearner choses a future abstract

state and action (s′, a′). Finally, it keeps a discount factor λ to decrease the effect of

future rewards with the distance of that reward. After enough updates, the Q-matrix

converges to the true expected future rewards, which is the optimal action selection

policy.

4.2. Evaluation

In this section, we evaluate our new exploration strategy QBE when trained for

increasing activity coverage (QBEa) and when trained for detecting crashes (QBEc)

by answering two research questions:

23

RQ1: Activity Coverage. What is the performance of QBEa compared to other

black-box Android testing tools in terms of activity coverage?

RQ2: Crash Detection. What is the performance of QBEc compared to other

black-box Android testing tools in terms of detection of distinct crashes?

We perform experiments on 300 AUTs we randomly selected from F-Droid bench-

mark suite [12]. We train QBE algorithm on 200 AUTs for both crash detection and

increasing activity coverage. Using the remaining 100 AUTs as test set, we compare

QBE with Monkey, PUMA, SwiftHand, Sapienz, DynoDroid, and Depth-First Explo-

ration (DFE) and Random Exploration (RE) strategies of AndroFrame. Note that we

never use any applications from the test set in the training set.

4.2.1. Experimental Environment

Table 4.1. Emulators for Testing Tools.

Tool Emulator Image

AndroFrame Android 4.4.r5 x86 VirtualBox Guest

A3E Android 4.4.r5 x86 VirtualBox Guest

Monkey Android 4.4.r5 x86 VirtualBox Guest

PUMA Android 4.4.r5 x86 VirtualBox Guest

SwiftHand Android 4.4.r5 x86 VirtualBox Guest

Dynodroid ARM (v2.3.3, API 10)

Sapienz Intel (v4.4.2, API 19)

We performed experiments on an Intel x86 machine with 1TB harddisk, 8x1.6

GHz CPUs containing 8MB L3 cache and running Ubuntu 12.04 operating system. We

installed A3E, Dynodroid, PUMA, SwiftHand, and Sapienz as the state-of-the-art for

Android testing tools. We use Android SDK version 25.2.4 and an Android 4.4.r5 x86

image on VirtualBox, since this configuration is compatible with most of the testing

24

tools. The publicly available versions of Sapienz and Dynodroid are designed to work

with the standard Android Emulator [68] and not the VirtualBox image. Hence, we

used the Android Emulator to execute Sapienz and Dynodroid. Table 4.1 summarize

our experimental environment.

Training Test

0
5

10
15

20
25

SI
ZE

 (M
B)

Training Test

0
50

10
0

15
0

20
0

25
0

KI
ns

tru
ct

io
ns

Training Test
0

5
10

15
20

KM
et

ho
ds

Figure 4.3. AUT Characteristics of Training Set, Test Set and F-Droid Benchmarks.

We downloaded a total of 300 random AUTs from F-Droid benchmark suite [12].

We formed a training set of 200 AUTs out of 300 with random selection. Then, we

formed our test set using the remaining 100 AUTs. We compare the characteristics

of our training and test sets in Figure 4.3. Box plots show that both the training set

and the test set have similar characteristics in terms of application size (in megabytes),

number of instructions (in thousands), and number of methods (in thousands). Finally,

Table A.1 shows more details on the AUT characteristics of QBE experiments.

4.2.2. State and Action Abstraction

The strength of QBE comes from its ability to learn common patterns across

different Android applications to generate tests for more coverage or more crashes.

We abstract out GUI states and actions to facilitate learning these common patterns.

We divide the state space into 5 abstract states according to the number of enabled

actions in the state using the functions on left side of Equation (4.2). We propose these

25

abstract states by inspecting the mean and variance of the states that we encounter

while executing Random Exploration (RE). Similarly, we divide actions into 7 abstract

actions as

β(v) =



1, |λ(v)| ≤ 1

2, |λ(v)| ≤ 3

3, |λ(v)| ≤ 8

4, |λ(v)| ≤ 15

5, |λ(v)| > 15

α(z) =



1, z is a menu

2, z is a back

3, z is a click

4, z is a longclick

5, z is a text

6, z is a swipe

7, z is a contextual

(4.2)

4.2.3. Experimental Results

Table 4.2. Experimental Results to answer RQ1 and RQ2.

RQ1: Coverage RQ2: Crash

Tool Activity # Crashes

DFE 63 3

RE 58 3.2

QBEa 78 7.8

QBEc 65 12.6

A3E 41 8

DynoDroid 50 5.2

Monkey 60 9

PUMA 64 6

Sapienz 76 4

SwiftHand 40 0

We execute all testing tools, each for 10 minutes for every AUT in the test set.

We also repeat every execution five times, to eliminate the effect of randomness on

our experimental results. Table 4.2 shows the resulting coverages and the number of

26

unique crashes found, averaged over five executions.

Table 4.2 shows that QBEc does not achieve as much coverage as QBEa. Still,

QBEa and QBEc achieve the best results in their respective objectives, activity cover-

age and unique crash detection.

Overall, QBE achieves the highest activity coverage, given that the QLearning

algorithm is trained for increasing activity coverage. Also, QBE detects the largest

number of unique crashes, given that the QLearning algorithm is trained for crash

detection.

4.2.4. Examples from QBE Studies

→ →

→ →

Figure 4.4. A Crashing Test Case of aagtl Application.

We investigate a crashing test case for aagtl application generated by QBEc within

10 minutes in Figure 4.4. First, we execute a menu action to open up the bottom pop-

up menu. Then, we click on More button to the bottom-right of the screen. Then,

we click on show arrow view from the list. Now, a black screen with a circle on it

27

appears. From here, we again execute a menu action and click on cache view button.

Only after these operations, aagtl crashes. None of the other tools (PUMA, SwiftHand,

Sapienz, Monkey, DynoDroid), including our other methodologies (QBEa, RE, DFE)

could detect this crash in 10 minutes. QBEc has a higher chance of finding this crash

because it gives higher priority to the menu action when there are lots of enabled

actions on a screen.

We describe an example case where QBEa reaches more activities. In this case,

the AUT is cz.hejl.chesswalk, a chess engine application. This application has 10 activ-

ities, where QBEa reaches 9 and Sapienz reaches 8 activities. The ninth activity QBE

explores is a settings activity. Other testing tools fail to find this activity. Exploration

methodologies implemented in RE, PUMA, Sapienz, Dynodroid, and Monkey can not

reach the settings activity in the given time, because reachability of the settings ac-

tivity requires a specific sequence of transitions to be executed, which is hard to hit

by random exploration or genetic algorithms. Systematic exploration techniques im-

plemented in DFE and SwiftHand also fail to reach these activities, since they have to

exhaust many other sequences before reaching these activities. Similarly, while QBEa

is focused on getting to a specific settings activity, Sapienz plays the game more. Hence,

since most of the instructions concentrate on the game activity, Sapienz achieves higher

instruction coverage. This example leads us to believe that the skewness of distribution

of instructions over activities of an application is a possible important characteristic

for directing test execution.

4.3. Notes on QBE

QBE’s ELTS generator (PassiveLearn) is almost the same as SwiftHand’s [15]

ELTS generator. The main difference is that QBE’s PassiveLearn heavily avoids cre-

ating new states and attempts to connect existing states as much as possible. QBE’s

PassiveLearn achieves this by comparing states using cosine similarity as in PUMA [13].

RE coverage results are similar to Monkey results. This shows us that our testing

28

framework has no significant flaws compared to Monkey, which also performs random

exploration. A3E and SwiftHand have the worst coverage. We believe one reason

for this is because the number of actions supported by A3E and SwiftHand is small

compared to other tools.

The closest competitors of QBE in terms of coverage and crash detection are

Sapienz and Monkey, respectively. Statistical tests [19] on the experimental results

strengthens the argument that QBE significantly outperformed Sapienz and Monkey.

29

5. IMPROVING CRASH DETECTION WITH TCM

The main idea of Test Case Mutation (TCM) [21] is to mutate existing test cases

to produce richer test cases in order to increase the number of unique crashes detected.

We start by investigating typical crash patterns for Android GUI applications. Then,

we propose six mutation operators based on these crash patterns. These mutation

operators modify actions of a test, which is different than a typical mutation operator

that modifies the source code. TCM’s mutations convert well-behaving tests into bad-

behaving ones, increasing the probability of uncovering a crash.

Unhandled Exceptions, External Errors, Resource Unavailability, Semantic Er-

rors, and Network-Based Crashes are well-known crash patterns for Android GUI ap-

plications [20]. TCM’s mutation operators are all related to these crash patterns

AUT

AndroFrame

Minimization

TCM

AndroFrame

Test Results

Test Results

Generated Test Suite + AUT Model

Minimized Test Suite

Mutated Test Suite

Figure 5.1. Test Case Mutation (TCM) Overview.

Figure 5.1 presents the overview of TCM. First, TCM generates a test suite for the

Application Under Test (AUT) using AndroFrame. Note that AndroFrame itself is just

a framework, for example, it uses QBE to generate this test suite. Then, AndroFrame

obtains an AUT Model as an Extended Labeled Transition System (ELTS). Then, we

eliminate tests that do not fit TCM’s coverage criteria (Minimization). We perform

30

this minimization to optimize the execution costs and enable more mutations within a

fixed testing time. We apply Test Mutation (TCM) on the Minimized Test Suite and

obtain a Mutated Test Suite. Finally, AndroFrame executes the Mutated Test Suite

and collects Test Results in terms of the number of unique crashes detected.

5.1. Android Crash Patterns and Mutation Operators

In this section, we first explain known crash patterns for Android applications [20].

Then, we propose six mutation operators related to these patterns.

5.1.1. Android Crash Patterns

5.1.1.1. C1: Unhandled Exceptions. An AUT may crash due to misuse of libraries or

GUI components, e.g. overuse of a third party library (stressing) may cause the third

party library to crash.

5.1.1.2. C2: External Errors. This error occurs while the AUT is communicating with

other applications using Inter Process Communication (IPC), if the AUT

(i) does not have the necessary permissions,

(ii) recieves an invalid message,

(iii) sends an invalid message and crashes other applications, or

(iv) accesses a shared memory segment another application freed.

5.1.1.3. C3: Resource Unavailability. An Android AUT may pause and send itself to

background at anytime. The onPause() event depends on the AUT’s implementation.

So, a buggy AUT may crash when paused and resumed, especially if done repeatedly.

5.1.1.4. C4: Semantic Errors. An AUT may crash if it recieves unexpected user input.

For example, AUT may crash due to a necessary text field being empty, if the input is

31

not handled correctly.

5.1.1.5. C5: Network-Based Crashes. An AUTmay make remote connections via blue-

tooth or wifi. The AUT may crash if it does not handle unreachable servers or disabled

WiFi.

5.1.2. Mutation Operators

We now present the six mutation operators for TCM.

5.1.2.1. M1: Loop-Stressing. Loop-stressing repeats all looping actions of a test t

multiple times with a mutated delay. Note that shortening the delay of an action

may change its nature. For example, a repeated single-click with no delay becomes a

double-click.

Our case studies show that stressing an action nine or more times may lead to a

crash. So, this operator repeats the mutated action nine times.

Loop-stressing may lead to an unhandled exception (C1) due to stressing the

third party libraries by invoking them repeatedly. Loop-stressing may also lead to an

external error (C2) if it stresses another application until it crashes.

5.1.2.2. M2: Pause-Resume. This mutation inserts doze off -doze on actions between

every delated transition of a test, with two seconds delay for both inserted actions.

Pause-resume may trigger a crash due to resource unavailability (C3).

5.1.2.3. M3: Change Text. We assume the text inputs of original tests are well-beha-

ving. The main idea of this mutation operator is to replace those text inputs with

unexpected ones.

32

This mutation operator randomly

(i) Empties a textbox instead of writing something to it,

(ii) Tries to put a dot character (.) instead of the expected input, or

(iii) Tries to put an extraordinarily long text (longer than 200 characters).

This operator may crash an AUT because the corresponding onTextChange()

method of the AUT throws an unhandled exception (C1). The AUT may also crash if

the content of the text is an unexpected kind of input, which causes a semantic error

later (C3).

5.1.2.4. M4: Toggle Contextual State. Our experience shows that some well-behaving

tests unexpectedly crash an AUT under different contextual attributes. Hence, this mu-

tation randomly toggles a contextual attribute (GPS, bluetooth, WiFi, etc.) between

every transition. Toggling contextual attributes of a state requires system events that

take a long time to execute, so we set the delay for every toggle to 10 seconds.

Toggling the contextual states of the AUT may result in an external error (C2),

or a network-based crash if the connection failures are not handled correctly (C5).

5.1.2.5. M5: Remove Delays. This mutation operator removes delays from every tran-

sition. If the AUT is communicating with another application, removing delays may

cause the requests to crash the other application. If this case is not handled in the

AUT, the AUT crashes due to external errors (C2). If the AUT’s background process

is affected by the GUI actions, removing delays may cause the background process to

crash due to resource unavailability (C3). If the GUI actions trigger network requests,

having no delays may cause a network-based crash (C5).

5.1.2.6. M6: Faster Swipe. This mutation modifies the delays of only Scroll actions.

If the information presented by the AUT is downloaded from a network or another

33

application, swiping too fast may cause a network-based crash (C3) due to the network

being unable to provide the necessary data or an external error (C2). If the AUT is a

game, swiping too fast may cause the AUT to throw an unhandled exception (C1).

Overall, Table 5.1 shows the relation between crash patterns and TCM mutation

operators. Note that some mutations may trigger the same crash pattern.

Table 5.1. Relating Crash Patterns and Mutation Operators.

Crash Patterns Mutation Operators

C1. Unhandled Exceptions M1, M3, M6

C2. External Errors M1, M4, M5, M6

C3. Resource Unavailability M2, M5

C4. Semantic Errors M3

C5. Network-Based Crashes M4, M5, M6

5.2. Test Suite Minimization and Test Mutation

Minimizing a test suite has two stages; (i) eliminating unnecessary tests and

(ii) trimming the unnecessary actions from the remaining tests. Starting from an empty

minimized test suite, we consider every test t of the original test suite. We add t to the

minimized test suite only if it improves the overall edge coverage of the minimized test

suite. Otherwise, we ignore t. So, the only thing we need for minimization is the edge

coverage information. We know that AndroFrame infers an approximate finite state

transition system of the AUT. We calculate the edge coverage over this approximated

model.

Second, after we pick a test, we eliminate its last action while it does not hinder

edge coverage. We trim the test t from its end because otherwise the test t may become

invalid with respect to the AUT. We do not wish to make the test bad-behaving at

this point, that will be the responsibility of the mutation operators, M1-M6. After the

first and second steps, we get a minimized test suite, ready to be mutated.

34

Require:

TS : A Test Suite

X : Timeout of the New Test Suite

∆: Mutation Operators

Ensure:

TS ′ : New Test Suite

1: TS ′ ← {}

2: x← 0

3: repeat

4: t← random t ∈ TS ▷ Pick a random test case

5: δ ← random δ ∈ ∆ s.t. t ̸= δ(t) ▷ Pick a random effective mutation operator

6: t′ ← δ(t) ▷ Apply the mutation operator on the test case

7: TS ′ ← TS ′ ∪ {t′} ▷ Add the mutated test case to the New Test Suite

8: x← x+
∑

(vs,ve,z,d)∈t′ d ▷ Calculate the total delay

9: until x > X ▷ Repeat until the total delay is above the given timeout

Figure 5.2. Test Mutation (TCM) Algorithm.

Figure 5.2 shows our Test Mutation approach. We start with an initially empty

mutated test suite TS ′ and total delay (x) of zero. Then, we consider a random test t

in the minimized test suite TS in Line 4. Then, we pick a random effective mutation

operator δ from the set of all mutation operators ∆= {M1,M2,M3,M4,M5,M6}. A

mutation operator δ is effective only if it changes the underlying test, i.e. t′ ̸= δ(t). We

mutate t with δ and add the mutated test case t′ to TS ′ until the total delay of TS ′

exceeds the given timeout X. After the timeout X is reached, we terminate because

we assume the time given for testing is constant.

35

Test Case A

1 v1 reinit 10

2 v1 v2 click 1

3 v2 v1 back 1

4 v1 v2 click 1

5 v2 v1 back 1

Test Case B

1 v1 reinit 8

2 v1 v3 menu 2

3 v3 CRASH menu 1

Test Case C

1 v1 reinit 9

2 v1 v1 back 0

3 v1 v2 click 1

4 v2 v3 click 2

5 v3 CRASH menu 2

Test Case D

1 v1 reinit 15

2 v1 v1 back 0

3 v1 v2 click 2

4 v2 v1 back 1

5 v1 v3 menu 3

(a) Test Cases. (b) AUT Model.

Mutated 1

1 v1 reinit 15

2 v1 v1 back 1

3 v1 v1 back 1

4 v1 v1 back 1

5 v1 v1 back 1

6 v1 v1 back 1

7 v1 v1 back 1

8 v1 v1 back 1

9 v1 v1 back 1

10 v1 v1 back 1

11 v1 v1 back 0

12 v1 v2 click 2

13 v2 v1 back 1

14 v1 v3 menu 3

Mutated 2

1 v1 reinit 15

2 v1 doze off 2

3 v1 doze on 2

4 v1 v1 back 0

5 v1 doze off 2

6 v1 doze on 2

7 v1 v2 click 2

8 v2 doze off 2

9 v2 doze on 2

10 v2 v1 back 1

11 v1 doze off 2

12 v1 doze on 2

13 v1 v3 menu 3

(c) Mutated Test Cases.

Figure 5.3. Motivating Example (mutations are bold).

5.3. Motivating Example

Figures 5.3(a) and 5.3(b) show a test suite and an AUT model, respectively. We

generate this test suite and the AUT model by executing AndroFrame for one minute

on an example AUT. We limit the maximum number of transitions per test case to five

to keep the test cases small in this motivating example. The test suite has four test

cases; A, B, C, and D. Each row of every test case describes a delayed transition. We

disregard action parameters for the sake of simplicity.

Among the four test cases reported by AndroFrame, we take only the non-crashing

test cases, A and D. In our example, we include D since it increases the edge coverage

and we exclude A since all of A’s transitions are also D’s transitions, i.e. A is subsumed

by D. Then, we attempt to minimize test case D without reducing the edge coverage.

In our example, we don’t remove any transitions from D because all transitions in D

contribute to the edge coverage. We then generate mutated test cases by randomly

36

applying mutation operators to D one by one until we reach one minute timeout. Figure

5.3(c) shows an example mutated test suite. Test case Mutated 1 takes D and exercises

the back button for multiple times to stress the loop at state v1. Test case Mutated

2 clicks the hardware power button twice (doze off, doze on) between each transition.

This operation pauses and resumes the AUT in our test devices. We then execute all

mutated test cases on the AUT. Our example AUT in fact crashes when the loop on v1

is reexecuted more than eight times and also crashes when the AUT is paused in state

v2. When executed, our mutated test cases reveal these crashes both at their ninth

transition, doubling the number of detected crashes.

5.4. Evaluation

In this section, we evaluate TCM through experiments and case studies, showing

that how we detect crash patterns and improve crash detection.

5.4.1. Experiments

We used the QBE’s experimental test set of 100 AUTs. This time, we execute

every test generator 20 minutes instead of 10 because we aimed to reuse the AUT

models QBEc (QBE for crash) generated for the QBE experiments. Hence, for TCM,

we executed QBEc for only 10 minutes, and then switched to TCM.

Figure 5.4 shows the change in the number of total unique crashes detected by

TCM (10 mins QBEc + 10 mins TCM), ANDROFRAME (20 mins QBEc), SAPIENZ,

MONKEY, PUMA, and A3E. Our results confirm that pure QBEc detects more crashes

than any other tool from very early on. TCM detects the same number of crashes with

AndroFrame for the first 10 minutes (600 seconds) because we use QBEc for its first

10 minutes. At the point where we switch from QBEc to TCM (10 minute mark),

QBEc already have found 15 unique crashes. During the remaining 10 minutes, TCM

detects 14 more crashes whereas QBEc detects only 3 more crashes. As a result, TCM

detects 29 crashes in total whereas QBEc detects 18 crashes in total. As a last note,

37

Figure 5.4. Number of Total Distinct Crashes Detected Across Time.

all other tools including QBEc seem to stabilize after 20 minutes whereas TCM finds

many crashes near timeout. This shows us that TCM may find even more crashes when

timeout is longer. Overall, TCM improves unique crash detection even further than

QBEc.

We also investigate how much each mutation operator contributes to the number

of detected crashes. Our observations reveal that M1 detects one crash, M2 detects

four crashes, M3 detects two crashes, M4 detects two crashes, M5 detects four crashes,

and M6 detects one crash. These crashes add up to 14, which is the number of crashes

detected by TCM in the last 10 minutes. This result shows that while all mutation

operators contribute to the crash detection, M2 and M5 have the largest contribution.

We present and explain one crash that is found only by TCM in Figure 5.5.

Figure 5.5(a) shows an instance where AndroFrame generates and executes a test case

t on the Yahtzee application. Note that t does not lead to a crash, but only a warning

message. Figure 5.5(b) shows the instance where TCM mutates t and executes the

mutated test case t′. When t′ is executed, the application crashes and terminates. We

note that this crash was not found by any other tool. Mao et al. [16] also report that

Sapienz and Dynodroid did not find any crashes in this application.

38

(a) Execution of Test Case t.

(b) Execution of Test Case t′ = M3(t).

Figure 5.5. An Example Crash Found Only by TCM.

39

5.4.2. Case Studies

In this section, we verify that the crash patterns we use in TCM exist via case

studies, one case study for each crash pattern. These studies verify that all of our crash

patterns are observable in Android, facilitating the development and fine-tuning of our

mutation operators.

5.4.2.1. Case Study 1. Figure 5.6(a) shows a crashing activity of the SoundBoard ap-

plication included in F-Droid benchmarks. Basically, the coin and tube buttons activate

a third party library, AudioFlinger, to produce sound when tapped. AndroFrame gen-

erates test cases which tap these buttons. These test cases produce no crashes. Then,

we mutate the test cases with TCM. When we apply loop-stressing (M1) on any of

these buttons, AudioFlinger crashes due to overuse. AudioFlinger produces a fatal

exception (C1) in Android logs. This crash does not cause an abnormal termination,

but it causes the AUT to stop functioning (the AUT stops producing sounds until it

is restarted).

5.4.2.2. Case Study 2. Figure 5.6(b) shows a crashing activity of the a2dpVol applica-

tion included in F-Droid benchmarks, where AndroFrame fails to generate crashing test

cases. We mutate these test cases with TCM. When we activate bluetooth (M4), tap-

ping find devices button produces a crash in the external android.bluetooth.IBluetooth

application due to a missing method (C2) and the AUT terminates.

5.4.2.3. Case Study 3. Figure 5.6(c) shows a crashing activity of the importcontacts

application included in F-Droid benchmarks. The AUT handles the case that it fails

to import contacts, as we show in the leftmost screen. Pausing the AUT at this screen

causes the background process to abort and free its allocated memory (we show the

related screen in the middle). However, the paused activity is not destroyed. If the

user tries to resume this activity, the AUT crashes as we show in the rightmost screen,

since the memory was freed before. TCM applies a pause-resume mutation (M2) and

40

(a) Unhandled Ex. (C1). (b) External Error (C2).

(c) Resource Unavailability (C3) Example.

(d) Semantic Error (C4) Example.

Figure 5.6. Case Studies 1-5.

41

triggers this resource unavailability crash (C3).

5.4.2.4. Case Study 4. Figure 5.6(d) shows a crashing activity of the aCal application

included in F-Droid benchmarks. AndroFrame generates test cases with well-behaving

text inputs. These test cases produce no crashes. Then, we mutate the test cases with

TCM. When we apply change text (M3) on the last text box and then tap the configure

button, this produces a semantic error (C4). The AUT crashes and terminates.

5.4.2.5. Case Study 5. Finally, we studied a crashing activity of the Mirrored appli-

cation included in F-Droid benchmarks. When wifi is turned off, the AUT goes into

offline mode and does not crash as shown in the leftmost screen. When we toggle wifi

(M4), the AUT retrieves several articles but crashes when it fails to retrieve article

contents due to a network-based crash (C5).

5.5. Notes on TCM

There are two challenges about generalizing TCM to different environments (e.g.,

iOS, Web Browsers, etc.):

(i) Our crash patterns are Android-specific and may not be available on different

environments and

(ii) M1-M6 may not be applicable to those platforms,

Hence, every GUI environment may require its own TCM study to determine

patterns and related mutations.

One advantage of TCM is that it can be used in combination with any test

generator. However, TCM requires an initially generated test suite, so it cannot be a

stand-alone test generator.

42

We did not encounter any crash patterns other than the five crash patterns that

we describe in Section. However, it is still possible to observe other crash patterns with

our mutation operators due to emerging crash patterns caused by the fragmentation

and fast development of the Android platform.

Although TCM detects crashes, it does not detect all possible bug patterns. Qin

et al. [69] thoroughly classifies all bugs in Android. According to this classification,

there are two types of bugs in Android, Bohrbugs and Mandelbugs. A Bohrbug is

a bug whose reachability and propagation are simple. A Mandelbug is a bug whose

reachability and propagation are complicated. Qin et al. further categorize Mandelbugs

as Aging Related Bugs (ARBs) and Non-Aging Related Mandelbugs (NAMs). Qin et

al. also define five subtypes for NAMs and six subtypes for ARBs. TCM detects only

the first two subtypes of NAMs, TIM and SEQ. TIM and SEQ are the only kinds of

bugs which are triggered by user inputs. If a bug is TIM, the error is caused by the

timing of inputs. If a bug is SEQ, the error is caused by the sequencing of inputs.

Our mutation operators insert multiple transitions to the test case, creating an

issue of locating the fault inducing transition. Given that the mutated test case detects

a crash, fault localization can be achieved using a variant of delta debugging [70].

43

6. FUNCTIONAL TESTING WITH FARLEAD

A recent survey shows that 78% of mobile GUI application users regularly en-

counter bugs that cause the GUI application to fail at performing some of its func-

tions [71]. Testing if the GUI application performs its intended functions correctly is

essential for mitigating this problem.

We could perform model checking on an AUT Model to prove a functional be-

havior but model checking is costly and not scalable enough. So, we are left with only

one option, to verify the functional behavior through witnessing related a test scenario.

Previously, test generators use what we call an implicit test oracle [72] where no input

is needed to automate the evaluation of a test execution. Now, the test oracle must

monitor a test scenario in run-time. Then, the test scenario is an input to the test

oracle. In other words, the test oracle becomes specified instead of implicit and the

test scenario is the specification.

Typically, a test scenario is a human-readable, natural language description.

However, such test scenarios are bound to be ambiguous, therefore unmonitorable.

Hence, a run-time monitorable test scenario must be a formal specification.

Even if we have a formal specification as a test scenario and we can monitor it

in run-time, we still need a test generator driven towards witnessing the test scenario.

However, functional behaviors, in contrast to common crashes and activity patterns,

are AUT specific. Therefore, offline learning is not a solution as was in QBE. Any func-

tional test generator must derive AUT specific heuristics to be effective at producing

witnesses.

We propose Fully Automated Reinforcement LEArning Driven (FARLEAD) test

generator. FARLEAD is an online RL engine. In other words, it learns a new action

generation policy for every AUT, from scratch. FARLEAD infers a reward function

44

from its test scenario monitor. The test scenario monitor accepts a Linear-time Tempo-

ral Logic (LTL) formula as a formal specification. Note that we devise finite semantics

for LTL instead of the typical infinite semantics because the tests we deal with are all

finite.

Developer

Application
Under Test
(AUT)

FARLEAD-Android

Android
Device action

rlearnerSpecification
Test

installed on

observation

Figure 6.1. FARLEAD Overview.

Figure 6.1 shows the overview of FARLEAD. FARLEAD assumes (i) there is an

Android Device with the AUT installed on and (ii) the developer/tester inputs an LTL

test scenario. rlearner takes the test scenario as input, executes actions on the Android

Device, receiving observations from it, and producing reward values by monitoring the

test scenario. Once a candidate test satisfies the LTL specification according to its

finite semantics, FARLEAD outputs the test as a witness.

Typically, a reward function only rewards when a goal is achieved. This is too late

for FARLEAD because once a witness is generated, FARLEAD is no longer needed,

the developer/tester already has the witness. Hence, the underlying reward function

must reward the progress of the rlearner. So, we propose LTL-based Reward Shaping

that produces intermediate rewards for a test scenario, driving the execution towards

the goal before the goal is reached.

We summarize our contributions with FARLEAD as follows:

45

(i) To the best of our knowledge, FARLEAD is the first fully automated functional

mobile GUI test generator.

(ii) We implement a novel improvements in RL in the form of LTL-based Reward

Shaping.

(iii) We evaluate FARLEAD via experiments on two applications from F-Droid. We

show that our approach outperforms and is more effective than three known test

generation approaches, namely Monkey, Random, and QBEa.

6.1. FARLEAD Methodology

(1) E ← 0
else

E
≥

M
ax

E

Terminate

(FAIL)

(2) R ← 0.00

(3) E ← E + 1

(4) Empty Candidate

(5) Restart Monitor

N
o

Ac
tio

ns
el

se

(9) R ← -1.00

(10) Update Policy

(11) Select Action

(12) Execute Action

(13) Append Action to Candidate

(14) Calculate Labels

(15) R ← CalculateReward

(16) Update Policy

R = +1.00

R = -1.00

Witness ←
Candidate

(PASS)

(6) Get Propositions

(7) Get Enabled Actions

(8) Reduce Actions

else

Figure 6.2. FARLEAD Flowchart.

We explain the methodology behind FARLEAD with the flowchart in Figure 6.2.

First, Line (1) initializes the number of episodes (E) to zero. At every episode, FAR-

LEAD will produce one candidate test. If the number of episodes is equal to or larger

than a predefined maximum number of episodes (MaxE), FARLEAD terminates be-

cause it had failed to generate a witness within given limis. Otherwise, FARLEAD

begins a new episode between Lines (2)-(5). Line (2) sets the reward value R to zero.

46

Line (3) increments the number of episodes. Line (4) empties the candidate. Line

(5) restarts the monitor, so the monitor starts monitoring the test scenario from the

beginning. FARLEAD starts a new test step between (6)-(8). Line (6) gets the mon-

itored propositions. Line (7) gets the set of enabled actions from the AUT. Line (8)

reduces the set of enabled actions according to necessary and sufficient propositions.

FARLEAD-Android reaches a dead-end only if there are no enabled actions after reduc-

tion. In this case, Line (9) sets R = −1.00, and Line (10) updates the action selection

Policy according to R. Then, FARLEAD a new episode. Otherwise, Line (11) selects a

GUI action according to the Policy. Line (12) executes this GUI action, and Line (13)

appends it to the candidate test. Line (14) calculates the labels. Finally, Line (15)

calculates R from these labels, and Line (16) updates the action generation Policy. If

R = +1.00, the candidate is a witness, and FARLEAD terminates. If R = −1.00, it

starts a new episode. Otherwise, FARLEAD proceeds to generate a new step by going

to Line (6). FARLEAD eventually terminates because its monitor has an internal step

counter that produces a negative reward if there are too many steps in the episode.

6.2. Runtime LTL Monitoring via Progression

FARLEAD accepts LTL specifications as high level test scenarios. The advan-

tage of LTL is that it is run-time monitorable via a known technique called progres-

sion [50, 56]. However, a typical progression-based monitoring monitors LTL formulae

with infinite semantics. In this section, we provide an algorithm for monitoring LTL

specifications with finite semantics.

The algorithm in Figure 6.3 shows our monitor for an LTL specification in fi-

nite semantics. After every GUI action, this monitor calls calculateImmediateReward,

which in turn progresses the LTL specification for the kth step using the Boolean labels

L. After one progression, if the specification becomes true (⊤), we return a positive one,

indicating the test generated witnesses the LTL specification, completely. If the speci-

fication becomes (¬⊤), the test is a bad prefix and it will not witness the specification

no matter what the future GUI actions are. So we return a negative one. Otherwise,

47

1: procedure calculateImmediateReward(k ∈ N, L ⊆ AP)

2: ϕk+1 ← progress(ϕk, L)

3: return


1 ϕk+1 = ⊤

−1 ϕk+1 = ¬⊤
|N(ϕk+1)−N(ϕk)|
N(ϕk+1)+N(ϕk)

RS otherwise

▷ N: Atomic proposition count

4: end procedure

5: procedure progress(ϕ in LTL, L ⊆ AP)

6: return advance(restrict(expand(ϕ), L))

7: end procedure

8: procedure expand(ϕ in LTL)

9: return



¬expand(ϕ′) ϕ = ¬ϕ′

expand(ϕ′) ∧ expand(ϕ′′) ϕ = ϕ′ ∧ ϕ′′

expand(ϕ′′) ∨ (expand(ϕ′) ∧⃝ϕ) ϕ = ϕ′ Uϕ′′

ϕ otherwise

10: end procedure

11: procedure restrict(ϕ in LTL, L ⊆ AP)

12: return



⊤ ϕ = ⊤ or ϕ ∈ L

¬⊤ ϕ ∈ AP but ϕ ̸∈ L

¬restrict(ϕ′) ϕ = ¬ϕ′

restrict(ϕ′) ∧ restrict(ϕ′′) ϕ = ϕ′ ∧ ϕ′′

ϕ otherwise

13: end procedure

14: procedure advance(ϕ in LTL)

15: return



advance(ϕ′) ϕ = ¬ϕ′

advance(ϕ′) ∧ advance(ϕ′′) ϕ = ϕ′ ∧ ϕ′′

ϕ′ ϕ =⃝ϕ′

ϕ otherwise

16: end procedure

Figure 6.3. Progression based LTL Monitoring with Reward Shaping.

48

we return a value between zero and one, depending on the amount of change in the

LTL specification. Using partial reward values is called Reward Shaping [24].

The algorithm in Figure 6.3 modifies a given LTL specification at every kth test

step, using the progress() procedure. The progress() procedure consecutively applies

(i) expand(), (ii) restrict(), and (iii) advance() on the LTL specification. The expand()

procedure expands every U operator with a ⃝ operator as

ϕ′ Uϕ′′ = ¬(¬ϕ′′ ∧ ¬(ϕ′ ∧⃝(ϕ′ Uϕ′′)) (6.1)

The restrict() procedure replaces all the current state variables with ⊤ or ¬⊤ according

to the current state labels L. This procedure may minimize the whole formula to ⊤

or ⊤. Finally, the advance() procedure just removes one level of ⃝ operators from the

specification because all the next states become current states at the (k + 1)th step.

6.3. FARLEAD Example

We now demonstrate how FARLEAD works with a small example on a chess

game called ChessWalk. The GUI function that we need to witness is the ability to

go from MainActivity to AboutActivity and then return to MainActivity. We specify

an LTL test scenario for it as ϕ0 = ⃝(pU(q ∧ ⃝(q Up))), where p and q are true if

and only if the current activity matches with the word Main and the word About,

respectively. According to ϕ0, the activity of the second state must be MainActivity

until it is AboutActivity and then it must be AboutActivity until it is MainActivity.

Note that we start from the second state and not the first because we assume the first

state is a don’t care state from which we reinitialize the AUT.

In our example, FARLEAD finds a witness in three episodes. An episode starts

with a reinit action and ends with the final action of a candidate test. Table 6.1

shows these episodes with screenshots in Figures 6.4-6.6. Note that the reinit ac-

tion is the only choice at a don’t care state, so every episode begins with a0 =

reinit chesswalk MainActivity. At k = 0, FARLEAD executes a0, observing a set

of labels (Boolean propositions) L. Then, it computes a ϕk+1 from ϕk using LTL pro-

49

Table 6.1. FARLEAD Example.
AP = {p = [activity ∼ Main], q = [activity ∼ About]}

EPISODE i = 1 ϕ0 =⃝(pU(q ∧⃝(q Up)))

k = 0 a0 = reinit ChessWalk MainActivity L = {p} ϕ1 = pU(q ∧⃝(q Up)) r = 0

k = 1 a1 = click Chess L = {p} ϕ2 = pU(q ∧⃝(q Up)) r = 0

k = 2 a2 = back L = {} ϕ3 = ¬⊤ r = −1

EPISODE i = 2 ϕ0 =⃝(pU(q ∧⃝(q Up)))

k = 0 a0 = reinit ChessWalk MainActivity L = {p} ϕ1 = pU(q ∧⃝(q Up)) r = 0

k = 1 a1 = click About L = {q} ϕ2 = q Up r = .33

k = 2 a2 = click Link L = {} ϕ3 = ¬⊤ r = −1

EPISODE i = 3 ϕ0 =⃝(pU(q ∧⃝(q Up)))

k = 0 a0 = reinit chesswalk MainActivity L = {p} ϕ1 = pU(q ∧⃝(q Up)) r = 0

k = 1 a1 = click About L = {q} ϕ2 = q Up r = .33

k = 2 a2 = back L = {p} ϕ3 = ⊤ r = 1

click

Chess
−−−−→ back−−−−−→

Figure 6.4. Episode i = 1.

click

About
−−−−−→

click

Link
−−−−→

Figure 6.5. Episode i = 2.

50

click

About
−−−−−→ back−−−−−→

Figure 6.6. Episode i = 3.

gression with these labels L. Since a0 is always the same, the resulting L is always

the same too, where p is true and q is not because the resulting activity matches the

word Main. FARLEAD computes the LTL progression on ϕ0 as in Algorithm 6.3. The

resulting formula is ϕ1 = pU(q ∧ ⃝(q Up)), which is different than ϕ0, which could

indicate progress. FARLEAD calculates the amount of progress (immediate reward)

as r = |N(ϕ1) −N(ϕ0)|/(N(ϕ1) +N(ϕ0)) = 0/8 = 0. The zero reward means that a0

is neither positie nor negative for witnessing the test scenario.

In the first episode, FARLEAD has no idea which action is going to witness the

LTL, so it chooses a random action a1 = click Chess. This action clicks the Chess text

on the AUT, which triggers no events, so we reach the same state, as Figure 6.4 shows.

Again, labels are L = {p}. This time, we expand ϕ1 as

¬(¬(q ∧⃝(q Up)) ∧ ¬(p ∧⃝(pU(q ∧⃝(q Up))))) (6.2)

L = {p} means p = ⊤ and q = ¬⊤ in the current state. Hence, we restrict ϕ1

accordingly, as

¬(¬(¬⊤ ∧⃝(q Up)) ∧ ¬(⊤ ∧⃝(pU(q ∧⃝(q Up))))) (6.3)

Note that we do not replace atomic propositions protected by a ⃝ operator. After we

minimize the resulting formula and advance one step, we obtain ϕ2 = pU(q∧⃝(q Up))).

Since ϕ2 = ϕ1, we again calculate the immediate reward as zero.

Finally, after executing a2 = back randomly, we get out of the AUT, as shown in

51

Figure 6.4, so the current activity is neither MainActivity nor AboutActivity. There-

fore, the labeling is empty, so p = q = ¬⊤. We calculate the final formula as ϕ3 = ¬⊤.

We calculate the immediate reward as r = −1 and terminate this episode.

In the second episode, FARLEAD opens AboutActivity, but fails to return to

MainActivity, as shown in Figure 6.5. Though it gets r = −1 in the end, it also obtains

r = .33 for opening AboutActivity. The intermediate reward instructs FARLEAD to

explore the second action again in the next episode.

In the final episode, FARLEAD again opens AboutActivity and gets r = .33 as

before. This time, it finds the correct action and returns to MainActivity, as shown in

Figure 6.6. Therefore, it receives r = 1 and terminates. The action sequence generated

in the final episode is the witness.

6.4. Evaluation

In this section, we demonstrate the effectiveness and the performance of FAR-

LEAD through experiments on a VirtualBox guest with Android 4.4 operating system

and 480x800 screen resolution. In evaluation, a virtual machine is better than a phys-

ical Android device because

(i) anyone can reproduce our experiments without the physical device, and

(ii) even if a physical device is available, it must be the same with the original to

produce the same results.

52

Table 6.2. FARLEAD’s Experimental Test Scenarios.

Source Description Level Avaliable

A
U
T
:
C
h
es
sW

al
k

ϕA

App-

Agnostic

The user must be able to go to AboutActivity and

return back.

(a) ✔

(b) ✔

(c) ✔

ϕB

App-

Agnostic

The user must be able to go to SettingsActivity

and return back.

(a) ✔

(b) ✔

(c) ✔

ϕC

App-

Agnostic

Pausing and resuming the AUT should not change

the screen.

(a) ✖

(b) ✔

(c) ✔

ϕD

Bug

Reports

The AUT should prevent the device from sleeping

but it does not.

(a) ✔

(b) ✔

(c) ✔

ϕE

Bug

Reports

The AUT should prevent the device from sleeping

but it does not.

(a) ✔

(b) ✔

(c) ✔

ϕF

Manually

Created

The AUT should prevent the device from sleeping

but it does not.

(a) ✔

(b) ✔

(c) ✔

ϕG

Novel

Bug

The AUT should prevent the device from sleeping

but it does not.

(a) ✔

(b) ✔

(c) ✔

A
U
T
:
N
ot
es ϕH

Novel

Bug

The user must be able to go to AboutActivity and

return back.

(a) ✔

(b) ✔

(c) ✔

ϕI

Bug

Reports

The user must be able to go to SettingsActivity

and return back.

(a) ✔

(b) ✔

(c) ✔

We downloaded two applications from F-Droid, namely ChessWalk and Notes. F-

Droid [12] is an Android GUI application database, and many Android testing studies

use it. We find F-Droid useful because it provides old versions and bug reports of the

applications.

Table 6.2 lists the GUI-level test scenarios we obtained for ChessWalk and Notes

applications. For more detailed information, LTL specifications of these test scenarios

53

are available in Chapter C. These specifications come from four sources, (i) app-agnos-

tic test oracles [31], (ii) bug reports in the F-Droid database, (iii) novel bugs we found,

and (iv) specifications we manually created. Note that we can specify the same GUI

function with different LTL formulae. In an LTL formula, an action label starts with

the word action. Otherwise, it is a state label. There are two kinds of action labels,

type and detail. An action type label constrains the action type, while an action detail

label constrains the action parameters. Using these label categories, we define three

levels of detail for LTL formulae with (a) only state labels, (b) state labels and action

type labels, and (c) all labels. Intuitively, FARLEAD should be more effective as the

level of detail goes from (a) to (c). Note that specifications ϕC and ϕI are inexpressable

with a level (a) formula because they explicitly depend on action labels.

We investigate FARLEAD in three categories, FARLEADa, FARLEADb, and

FARLEADc, indicating that we use a level (a), (b), or (c) formula, respectively. For

specifications ϕC and ϕD, the LTL formula does not change from level (b) to (c) because

the specified action does not take any parameters. Hence, we combine FARLEADb

and FARLEADc as FARLEADb/c for these specifications. Other than FARLEAD, we

perform experiments on three known approaches, (i) random exploration (Random),

(ii) Google’s built-in monkey tester (Monkey) [25], and (iii) Q-Learning Based Explo-

ration optimized for activity coverage (QBEa) [19]. Random explores the AUT with

completely random actions using the same action set of FARLEAD. Monkey also ex-

plores the AUT randomly, but with its own action set. QBEa chooses actions according

to a pre-learned probability distribution optimized for traversing activities. We imple-

ment these approaches in FARLEAD so we can check if they satisfy our specifications,

on-the-fly.

For every test scenario in Table 6.2, we execute Random, Monkey, QBEa, FAR-

LEADa, FARLEADb, and FARLEADc 100 times each for a maximum of E = 500

episodes. The maximum number of steps is K = 4 or K = 6, depending on the speci-

fication, so every execution runs up to 500 episodes with at most six steps per episode.

We keep the remaining parameters of FARLEAD fixed throughout our experiments.

54

Table 6.3. Test Generator Effectiveness.

Engine ϕA ϕB ϕC ϕD ϕE ϕF ϕG ϕH ϕI Total

Random ✔ ✔ ✔ ✔ ✔ ✔ 6

Monkey ✔ ✔ ✔ 3

QBEa ✔ ✔ ✔ ✔ 4

FARLEADa ✔ ✔ ✔ ✔ ✔ ✔ ✔ 7

FARLEADb ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9

FARLEADc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9

Table 6.3 shows the total number of test scenarios that a test generator were effec-

tive at satisfying. Our results show that FARLEADa, FARLEADb, and FARLEADc

were effective at more specifications than Random, Monkey, and QBEa. Hence, we

conclude that FARLEAD is the most effective functional test generator. Table 6.3 also

shows that FARLEADb and FARLEADc were effective at more specifications than

FARLEADa. Hence, we conclude that FARLEAD-Android becomes more effective

when the level of detail goes from (a) to (b) or (c).

Figure 6.7 shows our experimental performance results. Figure 6.7(a) shows the

number of failures of all the engines across 100 executions in logarithmic scale. Accord-

ing to this figure, FARLEADa, FARLEADb, and FARLEADc failed fewer times than

Random, Monkey, and QBEa at ϕE, ϕF , and ϕH , indicating that FARLEAD achieved

higher performance for these specifications. Only FARLEAD was effective at ϕG and

ϕI , so we ignore those specifications in evaluating performance.

Figure 6.7(b) shows the average and the maximum times required to terminate

for all the engines with every specification across 100 executions in logarithmic scale.

According to this figure, FARLEADb and FARLEADc spent less time on average and

in the worst case than Random, Monkey, and QBEa for the remaining test scenarios

ϕA-ϕD, indicating that FARLEAD achieved higher performance when it used level (b)

or (c).

Random

Monkey

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

Monkey

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

FARLEADb/c

Random

FARLEADa

FARLEADb/c

Random

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

FARLEADa

FARLEADb

FARLEADc

FARLEADa

FARLEADb

FARLEADc

QBEa

FARLEADa

FARLEADb

FARLEADc

FARLEADb

FARLEADc

10

10
0

8
8

3
5

3

3
8

7
6

7
6

4
8

φ
A

φ
B

φ
C

φ
D

φ
E

φ
F

φ
G

φ
H

φ
I

0

#Failures

T
ot
al

(a
)
N
u
m
b
er

o
f
F
a
il
u
re
s
A
cr
o
ss

1
0
0
E
x
ec
u
ti
o
n
s.

Random

Monkey

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

Monkey

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

FARLEADb/c

Random

FARLEADa

FARLEADb/c

Random

QBEa

FARLEADa

FARLEADb

FARLEADc

Random

FARLEADa

FARLEADb

FARLEADc

FARLEADa

FARLEADb

FARLEADc

QBEa

FARLEADa

FARLEADb

FARLEADc

FARLEADb

FARLEADc

248
16326412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

φ
A

φ
B

φ
C

φ
D

φ
E

φ
F

φ
G

φ
H

φ
I

0

Time(seconds)

A
ve
ra
ge

M
ax

im
u
m

(b
)
T
es
t
T
im

es
A
cr
o
ss

1
0
0
E
x
ec
u
ti
o
n
s.

F
ig
u
re

6.
7.

E
x
p
er
im

en
ta
l
P
er
fo
rm

an
ce

R
es
u
lt
s.

56

Figure 6.7(b) shows that QBEa and Monkey spent less time than FARLEADa for

ϕA and ϕB because these test scenarios are about traversing activities only, a task which

QBEa explicitly specializes on and Monkey excels at [5]. As a last note, FARLEADa

outperformed QBEa for ϕH even though QBEa spent less time than FARLEADa

because QBEa failed more than FARLEADa. Hence, we conclude that FARLEAD

achieves higher performance than Random, Monkey, and QBEa unless the specifica-

tion is at level (a) and about traversing activities only.

Figure 6.7(a) shows that FARLEADa failed more times than FARLEADb and

FARLEADc at ϕE-ϕH , indicating FARLEADb and FARLEADc outperformed FAR-

LEADa. FARLEADa was ineffective at ϕC and ϕI , so we ignore those specifications in

evaluating performance. Figure 6.7(b) shows that FARLEADa spent more time than

FARLEADb and FARLEADc at the remaining specifications, ϕA, ϕB, and ϕD, indicat-

ing that FARLEADb and FARLEADc again outperformed FARLEADa. Furthermore,

Figure 6.7(b) shows that FARLEADc spent less time than FARLEADb in all specifi-

cations except ϕC and ϕD, where FARLEADb and FARLEADc are equivalent. Hence,

we conclude that the performance of FARLEAD-Android increases as the level of detail

goes from (a) to (c).

Overall, FARLEAD is the most effective test generator. It also outperforms the

other test generators. Note that FARLEAD’s effectiveness and performance improve

with the level of detail in the test scenario description.

6.5. Notes on FARLEAD

Through dynamic execution, the RL agent learns from positive and negative

rewards, on-the-fly for every action taken. Typically, an RL agent is trained to keep

getting positive rewards and avoid the negative ones, indefinitely. Instead, our goal is

to generate one satisfying test for a specified test oracle and terminate, which requires

much less training than typical RL use cases. This helps us to develop a test generator

with low execution costs, which is crucial for dynamic execution tools.

57

In addition to verifying GUI functions, note that FARLEAD also reproduces

known GUI bugs. A GUI bug may have test scenario just as a GUI function. Hence,

from the FARLEAD-Android perspective, a GUI bug is equivalent to a GUI function.

58

7. FARLEAD2: IMPROVING FARLEAD WITH

EXPERIENCE REPLAY

Although FARLEAD is the first test generator enabling fully automated func-

tional testing of Android GUI applications, our experience [23] shows it has two short-

comings:

(i) As an online learner, for every test scenario, even if the AUT is the same, FAR-

LEAD starts learning from scratch, which is time consuming and repetitive.

(ii) The test scenario format FARLEAD accepts is not realistic because typical test

scenarios are human-readable, natural language descriptions. Instead, FARLEAD

scenarios are complicated formal specifications. The developer/tester has to learn

LTL before generating tests with FARLEAD, which is impractical.

In a recent study, we replaced LTL scenarios with a common UI automation

syntax called Gherkin [22]. However, Gherkin is not a complete language, it is just a

syntax without semantics. Trying to fit a predefined semantics to Gherkin proved to be

challenging, making many Gherkin keywords obsolete or unintuitive. Our experience

shows that even with Gherkin syntax, writing and maintaining test scenarios remain

difficult for the tester/developer

We propose FARLEAD2, an improvement to FARLEAD. We improve FARLEAD

by enhancing its Reinforcement Learning (RL) algorithm with Generalized Experience

Replay (GER). GER gathers experience while witnessing a test scenario and then uti-

lizes that experience for later test scenarios. We also propose the Staged Test Scenario

(STS), a human-readable but unambiguous test scenario language that divides the

underlying tasks of a test scenario into consecutive stages. These stages produce inter-

mediate positive rewards upon completion, enabling Reward Shaping. STSs also allow

the developer/tester to easily incorporate apriori information on the AUT, facilitating

witness generation.

59

GER Agent

RL Agent

Developer/Tester

STS

Experience
Database

Generalized Unit

Experiences

Generalized Unit

Experience

Initial Policy

Application
Under Test

Mobile
Device

O
bs

er
va

tio
ns

Ac
tio

n

installed

W
itn

es
s

STS Monitor

Labels

La
be

ls

Rewards

R
ew

ar
d

related to

Figure 7.1. FARLEAD2 Overview.

Figure 7.1 shows the overview of FARLEAD2. First, FARLEAD2 assumes the

AUT is installed on a Mobile Device. Second, the Developer/Tester provides an STS

test scenario. The STS monitor receives this STS, then computes the monitor state and

calculates the immediate Reward. Third, the GER Agent generates Labels (Boolean

propositions) by processing every Generalized Unit Experience residing in the Expe-

rience Database, where a Generalized Unit Experience is a transition between two

Device States via an Action. The GER Agent receives Rewards from the STS monitor

and learns an Initial Policy. After exhausting all the Generalized Unit Experiences,

the GER Agent sends the Initial Policy to the RL Agent. Finally, after receiving the

Initial Policy, the RL Agent starts searching for a Witness by selecting an Action ac-

cording to its current policy and executing it on the Mobile Device. Then, the RL

Agent observes the Device State and generates a Generalized Unit Experience along

with Labels, storing the Generalized Unit Experience in the Experience Database and

sending the Labels back to the STS Monitor. The STS Monitor calculates a Reward

from the Labels and sends it back to the RL Agent. The RL Agent learns from the Re-

ward, in other words, updates its policy accordingly. FARLEAD2 continues searching

until either it finds a Witness or gives up the search after a predefined limit.

60

FARLEAD2’s main contributions to the literature are

(i) being the first study that combines RL and GER for GUI test generation,

(ii) the usage of novel STS, and

(iii) an experimental evaluation of RL with GER (RL+GER), showing that it fails

fewer times, witnesses more test scenarios, and is faster than RaNDom (RND)

and RL witness generators.

7.1. Staged Test Scenarios

Example Propositions:

P = activity CONTAINS MainActivity
Q = text IS Note 1
R = text IS NOT Note 1
S = ActionType IS Write
	 AND ActionDetail IS username
	 AND ActionParam IS Yavuz

	 (Write Yavuz TO username)

SCENARIO: <ScenarioName>

[MAXSTEPS = <MaxSteps>]
[MAXTIME = <MaxTime>]
STAGE: <StageName>
	 [MAXSTEPS = <MaxSteps>]
	 [MAXTIME = <MaxTime>]
	 INVARIANTS:

	 	 [<Proposition>[AND/OR <Proposition>]...]

	 	 [<Proposition>[AND/OR <Proposition>]...]

	 	 ...

	 [STEPS:

	 	 <StepProposition>

	 	 [<StepProposition>]

	 	 ...

]

	 EVENTUALLY:

	 	 <Proposition>[AND/OR <Proposition>]...

	 	 [<Proposition>[AND/OR <Proposition>]]...

	 	 ...

[STAGE: <StageName>
	 ...

]

Figure 7.2. Staged Test Scenario (STS) Overview.

Figure 7.2 shows the overview of a Staged Test Scenario (STS). In the STS format,

every word inside angle and square brackets are variables and optional constructs,

respectively. Keywords separated with slashes are alternatives to each other.

61

Within given time constraints and step bounds, a candidate witnesses a stage

only if all its invariants are true until all its eventual conditions become true. In

other words, all invariants and all eventual conditions are necessary and sufficient

propositions, respectively. Note that this is similar to the until operator in LTL. All

invariants and eventual conditions are Boolean propositions. These propositions do not

have to be atomic. They may have several terms connected via AND or OR operators.

We assume that every Boolean proposition is a triple (property, relation, value).

There are two types of properties, action and state properties. There are three action

property types. These are ActionType, ActionParam, and ActionDetail, linked to

the GUI action type, the action parameter, and an attribute of the related widget,

respectively. State properties are either crashed, package, activity, or one of any GUI

widget’s attributes on the screen. The relation is IS, IS NOT, CONTAINS, or NOT

CONTAINS. Since every relation’s negation (NOT) is available along with the AND

and OR operators, our Boolean propositions are functionally complete. In other words,

our Boolean operations are universal.

In Figure 7.2, P, Q, R, and S are some example propositions. These propositions

become labels only if the current activity name contains MainActivity, the screen has

a text that writes exactly “Note 1”, there are no texts that write exactly “Note 1”,

and the GUI action types the word “Yavuz” to username, respectively.

A stage may have optional steps. These steps are a list of propositions with

action properties only. For example, S is a step proposition, and P, Q, and R are not

in Figure 7.2.

Step propositions can be cumbersome to specify. To address this issue, we have

developed a shorthand notation. FARLEAD2 automatically converts every shorthand

notation in the STS to a proper step proposition. Figure 7.2 gives the shorthand

notation for S between round brackets.

62

7.1.1. Monitoring an STS Stage

Given an STS, FARLEAD2 aims to find the witness via trial-and-error, generating

many candidate tests before the one that witnesses the STS. FARLEAD2 generates and

executes one GUI action at every step. To learn after every step, FARLEAD2 maintains

a reward variable, R. Most of the R values in FARLEAD2 are typical for an RL agent.

When R = +1.00, the candidate at hand (the GUI action sequence up to now) is

indeed a witness. When R = −1.00, the candidate will never become a witness due to

its previous GUI actions. When R = 0.00, the candidate does get neither closer to nor

farther away from being a witness. In addition to these typical values, FARLEAD2

may also have atypical partial reward values between 0.00 and +1.00. In this case, the

candidate is not yet a witness but satisfies some of the conditions of becoming one. In

the literature, using such partial reward values is known as Reward Shaping (RS) [24].

At every step, an STS monitor should calculate the reward value automatically

by checking the currently monitored propositions at that step for consistency with the

test scenario. All these propositions are Boolean. FARLEAD2 observes some of these

propositions during one of the steps. All these observed propositions are labels of that

step.

In a FARLEAD2 step, there are two types of propositions, necessary and suffi-

cient. These propositions create three possibilities at every step.

(i) Sufficient propositions are a subset of the labels. In this case, the monitor returns

a positive reward, a full plus one if this is the last step of the given test scenario.

(ii) Sufficient propositions are not a subset of the labels, and at least one necessary

proposition is not a label. Then, the monitor returns a minus one reward.

(iii) In all other cases, the monitor returns zero.

Note that a proposition is related to either the current GUI action or GUI state,

where a GUI state is all the GUI widgets’ attributes on the screen.

63

Necessary Propositions

(1) text IS Note 1

(2) text IS Update

Sufficient Propositions

(1) text IS Note 1

(2) text IS Update

(3) text IS Moving to recycle bin

Actions

(1) Click Cancel → R = -1.00

(2) Click Delete → R > 0

(3) Click Note 1 → R = 0.00

Figure 7.3. An Example Step of FARLEAD2.

Figure 7.3 illustrates an example step of FARLEAD2. On the screen to the left,

all the necessary propositions are labels. However, the “text IS Moving to recycle bin”

proposition is not. FARLEAD2 must find the correct GUI action, so this proposition

also becomes a label, and FARLEAD2 gets a positive reward for that. In reality, there

are many more GUI actions enabled on the screen to the left. But for the sake of

simplicity, we consider only the Click Cancel, Delete, and Note 1 actions. Clicking

Cancel closes the current screen. After this action, the monitor generates a minus one

reward because (i) the “text IS Moving to recycle bin” proposition did not become

a label, and (ii) the necessary propositions stopped being labels. Click Delete action

opens a popup with “Moving to recycle bin” text without closing the current screen,

making all the propositions labels. Therefore, the monitor generates a positive reward,

a full plus one if this action witnesses the whole test scenario. Click Note 1 action

clicks the text at the top, so the screen remains unchanged where still, the necessary

propositions are labels, but the “text IS Moving to recycle bin” proposition did not

become a label. Therefore, the monitor generates a zero reward. All propositions in

this example are state propositions. Action propositions may constrain what actions

FARLEAD2 should take. In that case, FARLEAD2 automatically reduces the set of

enabled actions to avoid any future negative rewards and pursue positive ones.

64

7.2. Generalized Experience Replay (GER)

Every unit experience (s, a, s′, r) in traditional Experience Replay (ER) has a

fixed reward r. However, after FARLEAD2 witnessing a scenario, reward values will

never be the same because of the following reasoning. Once FARLEAD2 witnesses

a test scenario, the developer/tester will never use FARLEAD2 again to verify the

related GUI function since the developer/tester already has a replayable witness for it.

Therefore, the developer/tester will always use FARLEAD2 with unique test scenarios

(scenarios FARLEAD2 has never witnessed before). Every unique test scenario yields

a different reward function. Hence, if FARLEAD2 uses traditional ER, some of the

recorded rewards are bound to be misleading for the new test scenario, hampering

witness generation effectiveness and performance.

The FARLEAD2 monitor generates a reward value at every step by checking the

labels of that step. FARLEAD2 determines these labels by looking at the step’s GUI

action a and the GUI state s’ reached after executing that GUI action. In other words,

the reward r is always a function of the GUI action a and the GUI state s’. Hence,

storing only GUI states and GUI actions is sufficient to calculate reward values for any

test scenario.

A generalized unit experience is a triple (s, a, s′), meaning that the AUT goes from

state s to state s’ by executing action a. We call it generalized because we generalize

the reward value out. Note that storing only (a, s′) would be sufficient to calculate the

reward value, but it would be insufficient to determine which state-action pair (s, a)

gets that value.

Figure 7.4 demonstrates an example in which the generalized experience gathered

in a test scenario facilitates witnessing a second. These scenarios are about reaching

different screens of the AUT, both in two steps. We already have a witness for the first

test scenario. This witness has two GUI actions, A and B. For the second test scenario,

we do not have a witness yet. So, the GUI actions C and D are unknown. Before any

65

exploration, the GER module replays the generalized experience gathered from the

first witness. During replay, the GUI action A gets a positive reward value because

it is consistent with the first step of the second test scenario. However, the GER

module assigns a negative reward value for the GUI action B because it is inconsistent

with the second step of the test scenario. As a result, FARLEAD2 picks C=A with

no exploration and eliminates B as a candidate for the second step. Overall, the

search space for the second witness shrinks, amplifying FARLEAD2 effectiveness and

performance.

Witness: A = Click Drawer Icon, B = Click Manage categories

A B

The First Test Scenario: (1) Open Drawer and then (2) Open ManageCategoriesActivity

The Second Test Scenario: (1) Open Drawer and then (2) Open RecycleActivity

Witness: C = ?, D = ?

DC

Figure 7.4. Generalized Experience Replay (GER) Example.

As a final note, a FARLEAD2 state is different than a typical GUI state, because

it is a combination of the GUI state and the STS monitor state. The STS monitor

66

starts from an initial state m0, denoting it is monitoring the first stage. If the first

stage is complete, the monitor goes to state m1. Hence, the state subscript denotes the

last completed stage.

7.3. Evaluation

This section describes our experimental setup, discusses our research questions,

and evaluates our experimental results.

7.3.1. Experimental Setup

7.3.1.1. Witness Generators. We compare three witness generators, RaNDom (RND),

Reinforcement Learning (RL), and Reinforcement Learning with Generalized Experi-

ence Replay (RL+GER). RND generates random GUI actions, ignoring all rewards. RL

uses Reinforcement Learning (RL) to obtain the witness. It is equivalent to FARLEAD-

Android but with STS monitoring instead of LTL. Finally, RL+GER uses RL with

Generalized Experience Replay (GER).

7.3.1.2. Effectiveness. A witness generator fails to produce a witness only if it hits its

episode limit, which is 100 throughout our experiments. Otherwise, it outputs a witness

and thereby is successful. A witness generator’s effectiveness is the percentage of times

it is successful. We execute the same witness generator for the same test scenario under

the same conditions ten times. So, the witness generator is a hundred percent effective

if it generates a witness ten times. Conversely, it is zero percent effective if it fails

all the time. Higher effectiveness directly shows that the witness generator fails fewer

times.

7.3.1.3. Performance. A witness generator performs better than another if it termi-

nates faster. We have two measures reflecting performance, (i) total number of steps

and (ii) total seconds it takes until termination. We look at the first measurement

67

to ensure the latter does not suffer from noise caused by varying execution times of

individual GUI actions on the mobile device. Since we execute the same scenario under

the same conditions ten times, we take the average of both performance measures.

7.3.1.4. The Mobile Device. Throughout our experiments, the mobile device is a Vir-

tualBox guest with 1024 megabytes of random access memory and a screen resolution

of 480x800. The operating system of this device is an Intel x86 port of Android 4.4.5.

Using a VirtualBox guest allows making exact clones of our experimental environment,

allowing mass witness generation for different test scenarios in parallel. Furthermore,

no physical mobile devices or hardware preparation are required to replicate our ex-

periments.

7.3.1.5. Application Under Test (AUT). Throughout our experiments, the Applica-

tion Under Test (AUT) is the “org.secuso.privacyfriendlynotes” package from F-Droid

[12], Notes in short. It allows the user to create four types of notes; audio, text, sketch,

and checklist. Furthermore, the user may construct categories and divide notes into

those categories.

The Notes application has a known bug in its sketch notes where the color palette

has no black color, preventing the user from making black drawings [73].

7.3.1.6. Test Scenarios. For the Notes application, our experimental setup has 17 test

scenarios in the order of increasing complexity. We measure the complexity of a test

scenario as the length of its shortest witness. The shortest witness length is the min-

imum number of steps (GUI actions) required to witness the test scenario. We argue

that a witness generator would have more difficulties in a complex test scenario due to

the number of unknown steps it needs to discover.

The complexities of our experimental test scenarios vary between 2 and 13. Figure

7.5 shows an example witness manually generated for test scenario 014. The existence

68

Witness:

A = Reinit

B = Click OKAY

C = Click Expand Icon

D = Click New checklist

E = Write checkitem

F = Click Add

G = Click checkbox

Test Scenario Complexity ≤ 7

B C

D

A

F

G

E

Figure 7.5. A Witness for Test Scenario 014.

69

of this witness puts an upper bound of 7 on the complexity of this test scenario. We

manually produce witnesses for all test scenarios to determine their complexity.

Staged Test Scenario (STS) is a flexible structure, allowing the developer/tester

to incorporate apriori information about the test scenario. According to the level

of information given to an STS, there are two extremes. These are declarative and

imperative STSs.

A declarative STS contains only the necessary information for a scenario. This

information is (i) the invariants and (ii) the eventual conditions of every stage. So,

the developer/tester declares only what the generator should witness. In contrast, an

imperative STS defines the steps of every stage. An imperative STS shrinks the search

space, so there is often only one candidate. However, an imperative STS is cumbersome

to maintain because it requires restructuring after almost any software update, whereas

a declarative STS should work across multiple versions of the AUT.

For every experimental test scenario, we have four STSs, with four levels of infor-

mation; L4 (imperative), L3, L2, and L1 (declarative). Hence, for the 17 test scenarios,

we get 68 STSs in total.

Figure 7.6 shows L1-L4 STSs for the test scenario 014. The first stage of L1 has

no invariants but only one eventual condition, starting the AUT package on the device.

The second stage has one invariant, describing that the AUT package must be active

until the second stage’s eventual condition is satisfied, so the ChecklistNoteActivity is

on the screen. Again, the third stage has the same invariant, describing that the AUT

package must be active, but now it is until the device ends up in the ChecklistNote-

Activity, while there is a text that writes “checkitem” and there is a checked checkbox

on the screen. Overall, the L1-STS describes that (i) eventually, the AUT must be

opened. (ii) Then, eventually, the ChecklistNoteActivity must be opened. (iii) Fi-

nally, the ChecklistNoteActivity must be on the screen with the checklist containing a

checked item, and the “checkitem” text appears on the screen. Whenever FARLEAD2

70

SCENARIO: 014_L1
 STAGE: OpenNotes
 EVENTUALLY:
 package IS org.secuso.privacyfriendlynotes
 STAGE: GoToChecklistNoteActivity
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 STAGE: CreateItemAndCheck
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 text IS checkitem
 checked IS true

SCENARIO: 014_L2
 STAGE: OpenNotesAndGoToMainActivity
 EVENTUALLY:
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 STAGE: GoToChecklistNoteActivity
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 STAGE: CreateItemAndCheck
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS ChecklistNoteActivity
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 text IS checkitem
 checked IS true

SCENARIO: 014_L3
 STAGE: OpenNotesAndGoToMainActivity
 MAXSTEPS = 1
 EVENTUALLY:
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 STAGE: ExpandDrawer
 MAXSTEPS = 2
 INVARIANTS:
 actionType IS click
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 EVENTUALLY:
 text CONTAINS New
 activity CONTAINS MainActivity

 STAGE: GoToChecklistNoteActivity
 MAXSTEPS = 1
 INVARIANTS:
 actionType IS click
 text CONTAINS New
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 STAGE: CreateItemAndCheck
 MAXSTEPS = 3
 INVARIANTS:
 actionType IS click OR actionType IS write
 activity CONTAINS ChecklistNoteActivity
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 text IS checkitem
 checked IS true

SCENARIO: 014_L4
 STAGE: OpenNotesAndGoToMainActivity
 STEPS:
 reinit
 EVENTUALLY:
 package IS org.secuso.privacyfriendlynotes
 activity CONTAINS MainActivity
 STAGE: GoToChecklistNoteActivity
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 STEPS:
 click OKAY
 click expand
 click checklist
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 STAGE: CreateItemAndCheck
 INVARIANTS:
 package IS org.secuso.privacyfriendlynotes
 STEPS:
 write checkitem
 click Add
 click checkitem
 EVENTUALLY:
 activity CONTAINS ChecklistNoteActivity
 text IS checkitem
 checked IS true

Figure 7.6. L1-L4 STSs for Test Scenario 014.

71

encounters a text proposition, note that it automatically considers writing that text to

any appropriate GUI widget an enabled action.

Given an L1-STS, we automatically generate an L2-STS through intent resolu-

tion analysis [14]. Intent resolution analysis is a static analysis on an Android GUI

application binary that extracts the Static Activity Transition Graph (SATG) of an

AUT. The SATG determines from any activity, which activities a tester can go to,

and using the SATG, FARLEAD2 updates the given STS with extra invariants and

eventual conditions. For the test scenario 014, FARLEAD2 determines that it can

reach ChecklistNoteActivity via MainActivity. So, it automatically restricts its search

to those activities by adding activity constraints to appropriate stages of the STS.

Overall, the L2-STS shrinks the search space with no manual effort.

The L3-STS incorporates any information the developer/tester may give, except

the steps (GUI actions) themselves. First, MAXSTEPS defines the maximum number

of steps allowed for every stage. Note that assigning every MAXSTEPS condition to

an absolute minimum would force the witness generator to find the shortest witness,

taking more time than finding an arbitrary witness. So, we put slightly relaxed values

in these conditions. Second, “actionType” propositions restrict the action type. Third,

an extra stage called ExpandDrawer describes that the text “New” must appear on

the screen before reaching the ChecklistNoteActivity. All these additions shrink the

search space but require extra manual effort.

The L4-STS is imperative and describes all the steps, so almost no learning is

required. Figure 7.5 shows that after the GUI action D, FARLEAD2 still has to learn

the correct GUI widget to write on. With the L4-STS, search space is the smallest,

but the developer/tester determines all the GUI actions manually, making the manual

effort of writing an L4-STS the highest among all STSs. Still, writing an executable

test script requires coding skills, whereas an L4-STS is a no-code script. So, writing

an L4-STS takes less effort than writing the test script itself.

72

We have designed one test scenario (4 STSs) to reach each activity of the Notes

application (test scenarios 001-009). Hence, witnessing all the test scenarios achieve full

activity coverage. We have created one test scenario (test scenario 012) to reproduce the

palette bug [73]. Finally, the rest of the test scenarios are about the main GUI functions

of the Notes application, namely, creating, deleting, recycling, and categorizing notes.

7.3.1.7. Generalized Experience Replay (GER) Setup. Generalized Experience Rep-

lay (GER) depends on the experience gathered so far. Our experimental setup starts

with no experience and executes RL+GER on the test scenarios in the order of in-

creasing test complexity. Even though RL+GER re-witnesses an STS multiple times

in our experiments, it never uses the experience of that same STS. RL+GER selects

one run per previous STS and uses the cumulative experience gathered from only these

STSs. Hence, we expect RL+GER to produce similar results to RL in test scenario

001. Also, RL+GER will have the most experience when it witnesses the most complex

test scenario (test scenario 017). Note that we use separate experience databases for

every STS level. Finally, although we perform our experiments in parallel, RL+GER

waits for the previous scenarios to finish before generating witnesses.

7.3.1.8. Overall. Our experimental setup has three witness generators (RND, RL,

and RL+GER), 68 STSs, and ten runs for each witness generator-STS combination.

Hence, there are 2040 experimental runs in total. We measure four values for every

experimental run; (i) success/fail, (ii) the total number of steps, (iii) the total seconds,

and (iv) the witness length. The first value measures effectiveness, the second and

third values measure performance, and the last value measures test complexity.

7.3.2. Research Questions

Our experimental setup aims to answer the following research questions.

RQ1. (Feasibility) Are all the experimental test scenarios witnessable?

73

RQ2. (Effectiveness) How much more effective is RL+GER than RL and RND?

RQ3. (Performance) How much performance increase does RL+GER have over RL and

RND?

RQ4. (Witness Length) How much longer witnesses RL+GER does generate over RL

and RND?

RQ5. (Levels of Information) What is the impact of L1-L4 STSs on witness generation

effectiveness and performance?

RQ6. (Test Scenario Complexity) How does test scenario complexity affect witness

generation effectiveness and performance?

RQ1 verifies that every experimental test scenario has positive utility in evalu-

ating effectiveness, performance, and test complexity. If the underlying GUI function

that a test scenario exploits is nonexistent in the AUT, there exists no witness for that

test scenario. Then, effectiveness will be zero percent regardless of the witness genera-

tor, and performance and test complexity measurements would be infeasible. We aim

to show that there exists at least one witness for every experimental test scenario.

RQ2 evaluates the most crucial criterion for a witness generator, its effectiveness.

Depending on the test scenario, an ineffective witness generator would often fail in

practice, frustrating the developer/tester. We aim to ensure that RL+GER is more

effective than RND and RL.

RQ3 evaluates how fast a witness generator terminates. A faster and more effec-

tive witness generator would produce more witnesses within a constant testing budget,

providing the developer/tester more utility. We aim to show that RL+GER outper-

forms RND and RL.

RQ4 evaluates the increase in average test complexity due to high effectiveness.

A highly effective witness generator finds witnesses for complex test scenarios, test

scenarios with longer witnesses by definition. We aim to measure the re-execution cost

of a witness suite created by RL+GER over RND and RL. From the developer/tester

74

perspective, re-execution costs are relevant in the case of regression testing. Regression

testing involves re-executing a previous test suite on a new software version, and it is

imperative to finish re-execution as fast as possible.

RQ5 aims to determine RL+GER’s effectiveness and performance under different

levels of information. Our goal is to show that RL+GER is preferable regardless of the

information level.

Finally, RQ6 evaluates the effects of increasing text complexity over witness gen-

eration performance and effectiveness. Our experience shows that real-world test sce-

narios are complex enough to cause effectiveness and performance problems. Hence,

we aim to demonstrate that RL+GER is more robust to increasing test complexity

than RND and RL.

7.3.3. Experimental Results

Table 7.1 shows our experimental results. Every row in this table shows (i) ef-

fectiveness as a percentage, (ii) the total number of steps and total time required to

generate a witness (performance), or (iii) the witness length (test complexity). Hence,

every test scenario (001-017) has three rows, effectiveness, performance, and test com-

plexity. The three rows on top show the average measurements across all test scenarios.

The three groups of columns RND, RL, and RL+GER of Table 7.1 show the

measurements under L4-L1 STSs. The rightmost three columns show the average

measures across all levels of information. The three by three group of entries at the

top right corner of this table are the averages across all test scenarios and information

levels.

T
ab

le
7.
1.

E
x
p
er
im

en
ta
l
R
es
u
lt
s.

R
N
D

R
L

R
L
+
G
E
R

O
v
e
ra

ll
L
4

L
3

L
2

L
1

L
4

L
3

L
2

L
1

L
4

L
3

L
2

L
1

R
N
D

R
L

R
L
+
G
E
R

A
ll

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

57
.6

45
.3

62
.9

10
0

80
.0

93
.5

74
.7

10
0

98
.2

96
.5

82
.4

6
6
.5

8
7
.1

9
4
.3

#
S
te
p
s/

T
im

e
(s
e
c)

6.
02
/2
0.
8

20
2/
73
4

23
6/
82
6

31
7/
10
21

5.
86
/1
9.
9

21
4/
82
3

24
3/
81
8

49
0/
14
52

5.
78
/2
0.
2

95
.7
/3
30

17
6/
63
0

39
2/
12
40

1
9
0
/
6
5
0

2
3
8
/
7
7
8

1
6
7
/
5
5
5

W
it
n
e
ss

L
e
n
g
th

5.
53

4.
79

5.
05

6.
10

5.
53

5.
33

7.
29

6.
47

5.
53

6.
22

7.
38

6.
77

5
.4
2

6
.1
6

6
.4
5

0
0
1

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

2.
00
/6
.9
0

4.
20
/1
5.
9

10
.5
/3
7.
5

13
.7
/4
7.
7

2.
00
/7
.2
0

2.
80
/1
0.
5

4.
40
/1
2.
6

7.
40
/2
6.
2

2.
00
/7
.5
0

4.
00
/1
5.
2

9.
10
/3
0.
8

10
.9
/4
0.
1

7.
60

/
27
.0

4.
15

/
14
.1

6.
50

/
23
.4

W
it
n
e
ss

L
e
n
g
th

2.
00

2.
60

2.
90

2.
70

2.
00

2.
00

2.
30

2.
00

2.
00

2.
00

2.
10

3.
20

2.
55

2.
08

2.
33

0
0
2

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

40
.0

90
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

90
.0

82
.5

10
0

97
.5

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
6.
2

16
3/
59
7

25
5/
89
9

26
7/
86
0

4.
00
/1
6.
0

29
.4
/1
15

14
6/
50
5

21
1/
67
3

4.
00
/1
6.
3

21
.4
/8
4.
7

11
8/
41
3

31
6/
96
3

17
2
/
59
3

97
.7

/
32
7

11
5
/
36
9

W
it
n
e
ss

L
e
n
g
th

4.
00

5.
20

5.
00

6.
22

4.
00

4.
50

5.
40

5.
20

4.
00

4.
00

6.
20

6.
67

5.
09

4.
78

5.
18

0
0
3

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

90
.0

70
.0

90
.0

10
0

10
0

10
0

90
.0

10
0

10
0

10
0

10
0

87
.5

97
.5

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
5.
7

11
4/
41
7

20
7/
72
9

21
3/
69
3

4.
00
/1
6.
1

28
.7
/1
15

11
6/
39
8

27
5/
83
1

4.
00
/1
6.
2

8.
00
/3
1.
9

79
.8
/2
89

10
9/
36
0

13
4
/
46
4

10
6
/
34
0

50
.3

/
17
4

W
it
n
e
ss

L
e
n
g
th

4.
00

4.
44

5.
29

5.
56

4.
00

4.
20

5.
90

5.
78

4.
00

4.
50

5.
70

5.
20

4.
77

4.
95

4.
85

0
0
4

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

80
.0

90
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

92
.5

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
5.
5

82
.4
/3
02

16
5/
59
0

31
1/
10
25

4.
00
/1
5.
9

29
.3
/1
14

10
8/
36
9

20
6/
64
2

4.
00
/1
6.
9

11
.7
/4
5.
4

58
.3
/2
06

61
.0
/2
14

14
0
/
48
3

86
.7

/
28
5

33
.8

/
12
1

W
it
n
e
ss

L
e
n
g
th

4.
00

4.
30

5.
12

5.
33

4.
00

4.
80

5.
30

6.
00

4.
00

4.
30

5.
30

6.
30

4.
65

5.
03

4.
97

0
0
5

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

60
.0

10
0

10
0

10
0

10
0

90
.0

10
0

10
0

10
0

10
0

90
.0

97
.5

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
5.
9

12
0/
44
6

17
8/
62
2

23
0/
74
9

4.
00
/1
5.
5

34
.8
/1
33

15
2/
52
4

30
6/
90
6

4.
00
/1
6.
0

7.
10
/2
8.
4

62
.0
/2
23

12
5/
38
2

13
3
/
45
8

12
4
/
39
4

49
.5

/
16
2

W
it
n
e
ss

L
e
n
g
th

4.
00

4.
70

5.
50

6.
20

4.
00

4.
60

5.
60

5.
56

4.
00

4.
40

5.
80

5.
90

5.
06

4.
92

5.
03

0
0
6

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
3.
3

31
.2
/9
8.
9

63
.1
/2
21

73
.9
/2
41

4.
00
/1
3.
0

14
.3
/4
6.
2

41
.4
/1
43

59
.0
/1
85

4.
00
/1
4.
0

8.
80
/2
9.
7

17
.9
/6
3.
9

18
.8
/6
5.
6

43
.1

/
14
4

29
.7

/
96
.8

12
.4

/
43
.3

W
it
n
e
ss

L
e
n
g
th

4.
00

5.
50

5.
20

6.
00

4.
00

4.
30

5.
60

7.
20

4.
00

4.
70

4.
40

5.
90

5.
17

5.
28

4.
75

0
0
7

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
3.
3

36
.5
/1
20

81
.0
/2
91

59
.1
/1
93

4.
00
/1
3.
3

13
.6
/4
4.
2

42
.7
/1
46

43
.7
/1
39

4.
00
/1
3.
8

5.
30
/1
7.
2

16
.4
/5
9.
1

13
.3
/4
2.
5

45
.1

/
15
4

26
.0

/
85
.6

9.
75

/
33
.1

W
it
n
e
ss

L
e
n
g
th

4.
00

5.
30

4.
50

6.
10

4.
00

4.
60

5.
00

5.
00

4.
00

4.
20

5.
10

5.
60

4.
97

4.
65

4.
72

0
0
8

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

90
.0

50
.0

80
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

80
.0

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
3.
0

16
5/
60
2

21
0/
73
8

28
8/
91
4

4.
00
/1
3.
3

39
.7
/1
41

15
7/
52
2

31
3/
94
8

4.
00
/1
3.
6

20
.1
/7
1.
9

23
.5
/8
1.
9

51
.3
/1
73

16
7
/
56
7

12
9
/
40
6

24
.7

/
85
.1

W
it
n
e
ss

L
e
n
g
th

4.
00

4.
89

6.
00

5.
38

4.
00

4.
80

6.
50

6.
00

4.
00

4.
90

5.
80

6.
00

4.
91

5.
33

5.
17

0
0
9

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

80
.0

70
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

87
.5

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

4.
00
/1
2.
7

15
2/
56
0

17
1/
59
9

16
1/
52
2

4.
00
/1
3.
0

33
.1
/1
18

11
9/
40
3

45
2/
13
41

4.
00
/1
3.
4

15
.0
/5
2.
7

25
.7
/9
3.
7

38
.9
/1
18

12
2
/
42
3

15
2
/
46
9

20
.9

/
69
.5

W
it
n
e
ss

L
e
n
g
th

4.
00

4.
25

5.
29

5.
60

4.
00

4.
60

5.
70

6.
30

4.
00

4.
60

5.
00

4.
40

4.
77

5.
15

4.
50

0
1
0

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

20
.0

20
.0

60
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

50
.0

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

5.
00
/1
7.
4

30
1/
10
98

32
2/
11
42

37
6/
12
08

5.
00
/1
6.
8

49
.4
/1
87

18
9/
65
1

35
8/
10
49

5.
00
/1
7.
9

17
.6
/6
4.
4

32
.6
/1
15

85
.7
/2
63

25
1
/
86
6

15
0
/
47
6

35
.2

/
11
5

W
it
n
e
ss

L
e
n
g
th

5.
00

6.
00

6.
00

9.
17

5.
00

5.
30

7.
10

7.
50

5.
00

5.
50

6.
70

6.
50

6.
45

6.
22

5.
92

0
1
1

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

50
.0

70
.0

90
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

77
.5

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

5.
00
/1
7.
7

24
6/
89
4

23
9/
83
8

31
5/
10
23

5.
00
/1
7.
3

45
.2
/1
69

19
3/
64
9

33
9/
10
36

5.
00
/1
8.
0

10
.8
/3
9.
9

30
.6
/1
13

66
.4
/2
00

20
1
/
69
3

14
5
/
46
8

28
.2

/
92
.8

W
it
n
e
ss

L
e
n
g
th

5.
00

6.
20

6.
29

7.
22

5.
00

5.
40

8.
40

7.
30

5.
00

5.
40

6.
10

7.
80

6.
13

6.
53

6.
08

0
1
2

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

30
.0

0.
00

20
.0

10
0

10
0

10
0

40
.0

10
0

10
0

10
0

70
.0

37
.5

85
.0

92
.5

#
S
te
p
s/

T
im

e
(s
e
c)

5.
00
/1
7.
6

29
2/
10
43

35
1/
12
30

49
7/
15
96

5.
00
/1
7.
3

52
.1
/1
79

16
4/
55
2

76
0/
23
50

5.
00
/1
7.
7

10
.1
/3
6.
0

35
.5
/1
21

47
6/
14
30

28
6
/
97
2

24
5
/
77
5

13
2
/
40
1

W
it
n
e
ss

L
e
n
g
th

5.
00

6.
33

-
8.
00

5.
00

5.
80

6.
20

8.
25

5.
00

5.
30

6.
50

6.
71

5.
67

5.
97

5.
81

0
1
3

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

0.
00

0.
00

10
.0

10
0

0.
00

10
0

20
.0

10
0

10
0

10
0

70
.0

27
.5

55
.0

92
.5

#
S
te
p
s/

T
im

e
(s
e
c)

6.
00
/2
3.
7

34
3/
12
65

35
0/
12
32

51
9/
16
41

6.
00
/2
3.
6

77
5/
30
21

17
0/
56
8

12
51
/3
56
1

6.
00
/2
4.
1

26
.4
/1
12

70
.1
/2
54

11
74
/3
51
8

30
4
/
10
40

55
0
/
17
93

31
9
/
97
7

W
it
n
e
ss

L
e
n
g
th

6.
00

-
-

13
.0

6.
00

-
12
.3

15
.5

6.
00

8.
70

14
.0

12
.6

6.
64

9.
73

10
.1

0
1
4

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

0.
00

0.
00

0.
00

10
0

0.
00

40
.0

0.
00

10
0

10
0

70
.0

0.
00

25
.0

35
.0

67
.5

#
S
te
p
s/

T
im

e
(s
e
c)

15
.4
/6
5.
8

35
2/
12
86

35
2/
12
22

54
5/
17
55

12
.6
/5
1.
9

10
11
/4
41
5

68
5/
23
84

10
96
/3
28
9

11
.2
/4
6.
7

33
5/
14
91

84
7/
32
05

13
44
/4
20
2

31
6
/
10
82

70
1
/
25
35

63
4
/
22
36

W
it
n
e
ss

L
e
n
g
th

7.
00

-
-

-
7.
00

-
13
.5

-
7.
00

10
.6

14
.6

-
7.
00

8.
86

10
.3

0
1
5

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

20
.0

10
.0

40
.0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

42
.5

10
0

10
0

#
S
te
p
s/

T
im

e
(s
e
c)

8.
00
/2
2.
6

33
3/
12
14

35
0/
12
27

42
8/
13
87

8.
00
/2
2.
8

65
.9
/2
25

12
9/
43
0

24
4/
73
8

8.
00
/2
3.
9

26
.4
/7
8.
0

46
.9
/1
62

37
.1
/1
08

28
0
/
96
3

11
2
/
35
4

29
.6

/
92
.9

W
it
n
e
ss

L
e
n
g
th

8.
00

6.
50

9.
00

10
.2

8.
00

8.
10

6.
80

8.
50

8.
00

7.
50

7.
80

8.
70

8.
41

7.
85

8.
00

0
1
6

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

0.
00

0.
00

0.
00

10
0

0.
00

70
.0

0.
00

10
0

10
0

70
.0

0.
00

25
.0

42
.5

67
.5

#
S
te
p
s/

T
im

e
(s
e
c)

11
.0
/3
5.
7

35
2/
12
66

35
1/
12
16

54
1/
17
30

11
.0
/3
4.
8

78
5/
30
91

94
6/
33
12

13
86
/4
06
9

11
.0
/3
5.
8

47
2/
15
53

11
55
/4
18
1

18
42
/6
42
1

31
4
/
10
62

78
2
/
26
26

87
0
/
30
48

W
it
n
e
ss

L
e
n
g
th

11
.0

-
-

-
11
.0

-
13
.9

-
11
.0

13
.1

13
.4

-
11
.0

12
.2

12
.4

0
1
7

E
ff
e
ct
iv
e
n
e
ss

(%
)

10
0

0.
00

0.
00

0.
00

10
0

60
.0

80
.0

30
.0

10
0

70
.0

10
0

70
.0

25
.0

67
.5

85
.0

#
S
te
p
s/

T
im

e
(s
e
c)

13
.0
/3
0.
2

34
7/
12
48

35
2/
12
12

56
0/
17
77

13
.0
/3
0.
0

62
7/
18
71

77
2/
23
44

10
15
/2
89
9

13
.0
/3
1.
1

62
7/
18
62

36
4/
10
99

88
9/
25
86

31
8
/
10
67

60
7
/
17
86

47
3
/
13
95

W
it
n
e
ss

L
e
n
g
th

13
.0

-
-

-
13
.0

15
.8

15
.9

15
.3

13
.0

14
.6

14
.9

14
.0

13
.0

14
.7

14
.1

76

We first calculate the effectiveness of a witness generator under an information

level and a test scenario by counting the number of times the witness generator was

successful and dividing by the total number of executions, which is ten. We multiply the

result by a hundred to report it as a percentage. Second, every performance measure

is an average of the ten executions. Finally, witness length is not applicable in case

of a witness generator fails, so we take the average witness length of successful runs.

If the witness generator failed all the ten executions, and the effectiveness is zero, we

denote the witness length with a dash (-) character.

7.3.3.1. RQ1: Feasibility. Table 7.1 shows that under information level L4, all witness

generators produced a witness for every test scenario with 100 percent effectiveness.

Therefore, all the experimental test scenarios are feasible.

Note that an L4-STS delegates the task of finding low-level test steps to the

developer/tester. Due to the resulting manual effort, the developer/tester would prefer

lower information levels. At least, L4-STSs prove that a witness exists in the candidate

space for every experimental test scenario.

7.3.3.2. RQ2: Effectiveness. Table 7.1 shows that, overall, RL+GER has 94.3 percent

effectiveness. Across all test scenarios and information levels, RL+GER is 7.2 and 27.8

percent more effective than RL and RND, respectively. Furthermore, RL+GER has

zero effectiveness in only two STSs, whereas RL and RND in five and twelve STSs,

respectively. The lowest overall effectiveness of RL+GER is 67.5 (for test scenarios

014 and 016), where RL and RND’s minimums are 35 and 25 (for test scenario 014),

respectively. Therefore, RL+GER is consistently more effective than its alternatives

and generates witnesses for more test scenarios.

The only case where RL+GER does not have the best effectiveness score across

all information levels is test scenario 002. For this test scenario, RL beats RL+GER

by 100 percent versus 97.5. The downside of GER is the rare occasion of maximization

77

bias due to false-lead experience. This bias occurs when the previous experience guides

RL+GER to rapidly complete the first STS stages but in a way that makes it impossible

to witness the whole STS. RL does not suffer from false leads because it does not

replay any experience. Overall effectiveness scores show that the benefits of RL+GER

outweigh the danger of false-lead experience maximization bias.

7.3.3.3. RQ3: Performance. Table 7.1 shows that, on average, across all test scenarios

and information levels, RL+GER generates a witness in 167 steps and 555 seconds.

RL+GER witness production is 71 steps and 223 seconds faster than RL. Again, it is 23

steps and 95 seconds faster than RND. These results show that RL+GER outperforms

both RND and RL. RL+GER produces more witnesses within a constant testing budget

because it is also the most effective witness generator.

Overall performance scores for each test scenario show that RL+GER outper-

forms both RND and RL in test scenarios 003-012 and 015. All witness generators

witness the test scenario 002 in under half a minute, so the differences between witness

generators are not significant. For test scenarios 013, 014, 016, and 017, RND outper-

forms both RL and RL+GER. A more detailed analysis of Table 2 shows that RND

spends between 1212-1777 seconds for STSs with zero effectiveness, whereas RL and

RL+GER spend between 3021-4069 and 4202-6421 seconds, respectively. For these

complex test scenarios, RND terminates in failure significantly faster than RL and

RL+GER. All our experimental witness generators start a new episode at the moment

of any inconsistency between the generated candidate and the monitored test scenario.

RND starts a new episode quicker than RL and RL+GER because it hits an incon-

sistency earlier. Hence, RND hits the episode limit (a hundred) faster than RL and

RL+GER, allowing it to outperform RL but not RL+GER.

7.3.3.4. RQ4: Witness Length. Table 7.1 shows that, overall, RL+GER generates wit-

nesses 6.45 steps long. Witnesses of RL+GER are 0.29 and 1.03 longer than RL and

RND, on average, respectively. FARLEAD2 spends 3.25 seconds per step, on average,

78

due to real-time execution. Hence, in the case of regression testing, FARLEAD2 would

replay an RL+GER witness 0.94 and 3.35 seconds slower than RL and RND, respec-

tively. Since RL+GER achieves significantly higher effectiveness, these slightly slower

witness replay times may be acceptable for the developer/tester.

7.3.3.5. RQ5: Levels of Information. Table 7.1 shows that every witness generator is

100 percent effective in every L4-STS. Performances are also similar, except for test

scenario 014. RL+GER outperforms RND and RL in this test scenario. Still, every

witness generator produces a witness for test scenario 014 in a reasonable time (around

or under a minute), so all witness generators are preferable.

Under an L3-STS, RL+GER is 98.2 percent effective, 18.2 and 40.6 percent more

than RL and RND, respectively. Similarly, RL+GER is consistently the most effective

witness generator under all information levels. Again, except for L4-STSs, RL+GER

outperforms RND and RL under every information level. Overall, RL+GER is more

effective and performs better than RND and RL, regardless of the level of information.

7.3.3.6. RQ6: Test Scenario Complexity. Witness length measures of any L4 column

in Table 2 reflect the complexities of our experimental test scenarios, with the notable

exception of test scenario 015. Our manually created witness for test scenario 015 is

eight steps long. However, experiments show that a six steps long witness exists for this

test scenario. Specifically, this test scenario first creates a text note and then deletes it.

Our manually generated test opens the text note, clicks the delete button, confirms the

deletion with another click, and returns to the list to verify that the text note is gone.

The automatically generated witness performs a long click on the text note and clicks

the appearing trash icon, visibly removing it from the list. Hence, the true complexity

of test scenario 015 is not higher than 014 but equal to 013. Otherwise, all the other

test scenarios are in ascending order of complexity.

79

The rightmost three columns of Table 2 show that, for test scenarios 002-009,

where the test complexity is four or less, all the witness generators have 80 percent or

higher effectiveness. RND never gets back to 80 percent effectiveness at test scenarios

010-017. RL gets mixed results with 100 percent effectiveness for test scenarios 010, 011,

and 015 but drops to 35 percent for test scenario 014. On the other hand, RL+GER

gets 100 percent effectiveness for the same test scenarios but never drops below 67.5

percent. These results show that (1) increasing test complexity causes effectiveness

problems, and (2) RL+GER is more robust to increasing test complexity than RND

and RL.

In non-complex test scenarios 002-009, RL-GER outperforms RND and RL. In

complex test scenarios 010-013 and 015, RL+GER keeps having better performance

than RND and RL. However, for test scenarios 014, 016, and 017, RND outperforms

RL and RL+GER consistently with around 1062-1082 seconds against 1786-2626 and

1395-3048 seconds, respectively. These results show that although RL and RL+GER

fail fewer times than RND, the cost of failure is higher for RL and RL+GER.

7.3.3.7. Summary. Our experimental results show that, on average, RL+GER is more

effective, generates witnesses for more test scenarios, and produces more witnesses

within a constant testing budget than RL and RND. RL+GER is more effective than

RL and RND, regardless of the level of information and the complexity of the test

scenario.

The downsides of RL+GER are, (i) it may terminate later than RND for complex

test scenarios, (ii) it may rarely produce no witness due to maximization bias caused by

previous experience, and (iii) it produces longer witnesses on average, slightly increas-

ing witness replay times. We argue that RL+GER’s benefits outweigh its downsides

because (i) it outperforms RND on average, (ii) false-lead experience maximization

bias does not harm its overall effectiveness, and (iii) it covers more test scenarios,

compensating for longer witnesses.

80

8. DISCUSSION

All the four test generators in this thesis, QBE, TCM, and FARLEAD/FAR-

LEAD2, suffer from the inability of detecting the infeasibility of achieving their test

adequacy criteria. We cannot say if an activity is unreachable, a bug does not exist,

or a functional behavior is not implemented using QBE, TCM, and FARLEAD/FAR-

LEAD2, respectively. However, we argue that an AUT for which TCM cannot find a

crash is more reliable than an AUT for which TCM finds crashes. Also, if QBE cannot

reach an activity or FARLEAD/FARLEAD2 cannot trigger a functional behavior, it’s

reasonable to assume that reaching the activity or triggering the functional behavior

would be difficult for the user, too, which may encourage the developer to re-design an

easier way for the users.

In theory, QBE, TCM, and FARLEAD/FARLEAD2 are challenging to generalize

to all GUI applications on all platforms because

(i) Some AUTs such as messaging applications must be installed on multiple devices.

Our test generators control only one device at a time, so they won’t be able to

test some critical functions of those AUTs.

(ii) GUI states between every two GUI action must be stable, i.e., not changing.

However, in practice, system events and remote calls may also affect GUI output

without any GUI action, confusing the test generator.

(iii) There must be a small, finite set of enabled actions at every GUI state. Some

GUIs, especially games may have infinite or almost infinite set of enabled actions,

leading to action explosion. If the developer does not mitigate this explosion via

input-space partitioning, in theory, RL would be rendered no better than any

random test generator.

(iv) The GUI must report crash logs, the activity name, and information on the GUI

widgets so we can label the GUI states with Boolean propositions. However, this

is not always the case in practice. For example, iOS devices provide different logs

81

and widget information than Android, and do not provide any activity names

at all. Hence, even for the same AUT built for different devices (e.g. iOS and

Android) may not behave the same for the test generator, leading an inevitable

variance in effectiveness and performance depending on the GUI environment.

If a GUI environment is configured to provide stable GUI states, the input-space

is partitioned enough to allow only small, finite sets of enabled actions at every GUI

state, and the environment reports crashes, activities and its widgets, then our methods

are applicable to that GUI environment in addition to the Android OS.

If a test scenario involves too many steps, it quickly becomes intractable for the

test generator to generate a witness. The developer/tester should divide such test

scenarios into successive test scenarios, for which the test generator generates tests in

reasonable time. Optimizations such as ER also benefit from this divide and conquer

strategy.

Even though we delegate the task of finding the low-level GUI actions to the test

generator, we cannot guarantee it can generate a desired test on every Android device

just because it generates that test on an Android device. Android devices come with

different resolutions, memory, data, and OS versions. All these factors inevitably affect

test generation. The developer/tester should execute the test generator on different

devices to establish the AUTs reliability over a representative sample of devices. Note

that the generated test is often not portable from a device to another without a smart

self-healing technique adapting the test for the new device.

82

9. CONCLUSION

Summary of our contributions in this thesis are as follows.

(i) We describe the related work on Automated GUI Testing, especially for Android,

and its shortcomings.

(ii) We improve the state-of-the-art in terms of automatic exploration of GUI screens

and detecting unique crashes, with QBE and TCM.

(iii) We enable automated functional testing of GUI application through test scenarios

with FARLEAD/FARLEAD2.

(iv) We use RL, a semi-supervised ML technique, in every test generator, improving

both structural and functional testing.

(v) We improve RL effectiveness and performance with GER, allowing the exploita-

tion of experience gathered during previous test generation tasks on new tasks.

(vi) We design a new test scenario language, STS, to make test scenarios both human-

readable and unambiguously run-time monitorable.

(vii) We describe or test generators with overall figures, examples, and algorithms.

(viii) Our experimental results show that within a fixed testing time,

(a) QBE covers more screens (activities) than other test generators,

(b) Executing TCM on top of QBE detects the highest number of unique crashes,

and

(c) FARLEAD2 with GER provides the highest performance and effectiveness

in verifying functional behavior.

Note that this thesis is not just the first work that enables functional testing but

it also makes functional testing more practical via STSs. With this development, the

developer/tester no longer needs to know coding to implement tests for automation.

Still, somebody has to write the test scenarios in STS, which takes time and manual

effort. Any future work regarding this thesis must mainly focus on removing the

remaining human intervention, completely.

83

As future work, we will

(i) Investigate NLP techniques that could convert true natural language descriptions

in GitHub issues or software requirement documents to STSs.

(ii) Learn multiple Q-values from multiple reward functions in the same episode,

making the RL-engine multi-objective. A multi-objective RL could learn many

behaviors in one go, increasing test generator performance and effectiveness.

(iii) Investigate methods that either perform an initial random crawl on the AUT

or a static analysis on its binary to automatically create test scenarios. Such a

crawler/analyzer may work in combination with the NLP transformers converting

descriptions to test scenarios.

84

REFERENCES

1. Bloomberg, “Knight Shows How to Lose $440 Million in 30 Minutes”, https:

//www.bloomberg.com/news/articles/2012-08-02/knight-shows-how-to-l

ose-440-million-in-30-minutes, accessed on September 1, 2018.

2. Wikipedia, “Morris Worm”, https://en.wikipedia.org/wiki/Morris\ worm,

accessed on September 1, 2018.

3. Wikipedia, “Pentium FDIV Bug”, https://en.wikipedia.org/wiki/Pentium\

FDIV\ bug, accessed on September 1, 2018.

4. National Institute of Standards and Technology (NIST), “The Economic Impacts

of Inadequate Infrastructure for Software Testing”, http://www.nist.gov/direc

tor/planning/upload/report02-3.pdf, accessed on July 29, 2016.

5. Venolia, G. D., R. DeLine and T. LaToza, “Software Development at Microsoft

Observed”, http://research.microsoft.com/apps/pubs/default.aspx?id=70

227, accessed on July 29, 2016.

6. Burnim, J. and K. Sen, “Heuristics for Scalable Dynamic Test Generation”, Pro-

ceedings of the 23rd IEEE/ACM International Conference on Automated Software

Engineering , ASE ’08, 2008.

7. Boyer, R. S., B. Elspas and K. N. Levitt, “SELECT, a Formal System for Testing

and Debugging Programs by Symbolic Execution”, Proceedings of the International

Conference on Reliable Software, 1975.

8. Piejko, P., “15 Mobile Web Predictions for 2020”, https://deviceatlas.com/bl

og/15-mobile-web-predictions-2020, accessed on July 12, 2022.

9. Ceci, L., “Number of Monthly Google Play App Releases Worldwide 2019-2021”,

85

https://www.statista.com/statistics/1020956/android-app-releases-w

orldwide/, accessed on December 3, 2021.

10. Rodŕıguez-Valdés, O., T. E. Vos, P. Aho and B. Maŕın, “30 Years of Automated

GUI Testing: A Bibliometric Analysis”, International Conference on the Quality

of Information and Communications Technology , pp. 473–488, Springer, 2021.

11. Khan, M. E., F. Khan et al., “A Comparative Study of White Box, Black Box

and Grey Box Testing Techniques”, Int. J. Adv. Comput. Sci. Appl , Vol. 3, No. 6,

2012.

12. Gultnieks, C., “F-Droid Benchmarks”, https://f-droid.org/, accessed on July

12, 2022.

13. Hao, S., B. Liu, S. Nath, W. G. Halfond and R. Govindan, “PUMA: Programmable

UI-automation for Large-scale Dynamic Analysis of Mobile Apps”, 12th Annual In-

ternational Conference on Mobile Systems, Applications, and Services (MobiSys),

pp. 204–217, 2014.

14. Azim, T. and I. Neamtiu, “Targeted and Depth-first Exploration for Systematic

Testing of Android Apps”, ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA), pp. 641–

660, 2013.

15. Choi, W., G. Necula and K. Sen, “Guided GUI Testing of Android Apps with Min-

imal Restart and Approximate Learning”, ACM SIGPLAN International Confer-

ence on Object Oriented Programming Systems Languages and Applications (OOP-

SLA), pp. 623–640, 2013.

16. Mao, K., M. Harman and Y. Jia, “Sapienz: Multi-Objective Automated Testing

for Android Applications”, 25th International Symposium on Software Testing and

Analysis (ISSTA), pp. 94–105, 2016.

86

17. Moran, K., M. L. Vásquez, C. Bernal-Cárdenas, C. Vendome and D. Poshy-

vanyk, “Automatically Discovering, Reporting and Reproducing Android Appli-

cation Crashes”, IEEE International Conference on Software Testing, Verification

and Validation (ICST), pp. 33–44, 2016.

18. Machiry, A., R. Tahiliani and M. Naik, “Dynodroid: An Input Generation System

for Android Apps”, 9th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE), 2013.

19. Koroglu, Y., A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi and Y. Donmez,

“QBE: QLearning-Based Exploration of Android Applications”, IEEE Interna-

tional Conference on Software Testing, Verification and Validation (ICST), 2018.

20. Azim, T., I. Neamtiu and L. M. Marvel, “Towards Self-healing Smartphone Soft-

ware via Automated Patching”, 29th ACM/IEEE International Conference on Au-

tomated Software Engineering (ASE), pp. 623–628, 2014.

21. Koroglu, Y. and A. Sen, “TCM: Test Case Mutation to Improve Crash Detection

in Android”, Fundamental Approaches to Software Engineering , 2018.

22. Koroglu, Y. and A. Sen, “Functional Test Generation from UI Test Scenarios Using

Reinforcement Learning for Android Applications”, Software Testing, Verification

and Reliability , Vol. 31, No. 3, p. e1752, 2021.

23. Koroglu, Y., A. Sen and A. Akin, “Automated Functional Test Generation Practice

for a Large-Scale Android Application”, Turkish National Software Engineering

Symposium (UYMS), pp. 1–3, IEEE, 2020.

24. Laud, A. D., Theory and Application of Reward Shaping in Reinforcement Learn-

ing , Tech. rep., University of Illinois at Urbana-Champaign, 2004.

25. Google Developers, “Android UI/Application Exerciser Monkey”, http://develo

per.android.com/tools/help/monkey.html, accessed on July 12, 2022.

87

26. Anand, S., M. Naik, M. J. Harrold and H. Yang, “Automated Concolic Testing of

Smartphone Apps”, Proceedings of the ACM SIGSOFT 20th International Sympo-

sium on the Foundations of Software Engineering (FSE), 2012.

27. Yang, W., M. R. Prasad and T. Xie, “A Grey-box Approach for Automated GUI-

model Generation of Mobile Applications”, 16th International Conference on Fun-

damental Approaches to Software Engineering (FASE), pp. 250–265, 2013.

28. Mahmood, R., N. Mirzaei and S. Malek, “EvoDroid: Segmented Evolutionary

Testing of Android Apps”, 22Nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE), pp. 599–609, 2014.

29. Liu, Y., C. Xu, S.-C. Cheung and J. Lü, “Greendroid: Automated Diagnosis of

Energy Inefficiency for Smartphone Applications”, IEEE Transactions on Software

Engineering , Vol. 40, No. 9, pp. 911–940, 2014.

30. Amalfitano, D., A. R. Fasolino, P. Tramontana, B. D. Ta and A. M. Memon, “Mo-

biGUITAR: Automated Model-Based Testing of Mobile Apps”, IEEE Software,

Vol. 32, No. 5, pp. 53–59, 2015.

31. Zaeem, R. N., M. R. Prasad and S. Khurshid, “Automated Generation of Ora-

cles for Testing User-Interaction Features of Mobile Apps”, IEEE International

Conference on Software Testing, Verification, and Validation (ICST), 2014.

32. Linares-Vásquez, M., M. White, C. Bernal-Cárdenas, K. Moran and D. Poshy-

vanyk, “Mining Android App Usages for Generating Actionable GUI-based Execu-

tion Scenarios”, 12th Working Conference on Mining Software Repositories (MSR),

pp. 111–122, 2015.

33. Mirzaei, N., J. Garcia, H. Bagheri, A. Sadeghi and S. Malek, “Reducing Combi-

natorics in GUI Testing of Android Applications”, IEEE/ACM 38th International

Conference on Software Engineering (ICSE), pp. 559–570, IEEE, 2016.

88

34. Li, Y., Z. Yang, Y. Guo and X. Chen, “DroidBot: A Lightweight UI-Guided Test

Input Generator for Android”, IEEE/ACM 39th International Conference on Soft-

ware Engineering Companion (ICSE-C), 2017.

35. Su, T., G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu and Z. Su,

“Guided, Stochastic Model-based GUI Testing of Android Apps”, Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering , 2017.

36. Cao, Y., G. Wu, W. Chen and J. Wei, “CrawlDroid: Effective Model-based GUI

Testing of Android Apps”, Tenth Asia-Pacific Symposium on Internetware, 2018.

37. Eler, M. M., J. M. Rojas, Y. Ge and G. Fraser, “Automated Accessibility Testing

of Mobile Apps”, 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation (ICST), 2018.

38. Choi, W., “SwiftHand2: Android GUI Testing Framework”, https://github.c

om/wtchoi/swifthand2, accessed on July 12, 2022.

39. Yan, J., L. Pan, Y. Li, J. Yan and J. Zhang, “LAND: A User-friendly and Cus-

tomizable Test Generation Tool for Android Apps”, Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),

2018.

40. Cao, C., J. Deng, P. Yu, Z. Duan and X. Ma, “Paraaim: Testing Android Applica-

tions Parallel at Activity Granularity”, 2019 IEEE 43rd Annual Computer Software

and Applications Conference (COMPSAC), Vol. 1, pp. 81–90, IEEE, 2019.

41. Su, T., Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang and Z. Su, “Fully

Automated Functional Fuzzing of Android Apps for Detecting Non-Crashing Logic

Bugs”, Proceedings of the ACM on Programming Languages , Vol. 5, No. OOPSLA,

pp. 1–31, 2021.

42. Mariani, L., M. Pezze, O. Riganelli and M. Santoro, “AutoBlackTest: Automatic

89

Black-Box Testing of Interactive Applications”, 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation, pp. 81–90, 2012.

43. Carino, S. and J. H. Andrews, “Dynamically Testing GUIs Using Ant Colony Opti-

mization (T)”, 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pp. 138–148, 2015.

44. Esparcia-Alcázar, A. I., F. Almenar, M. Mart́ınez, U. Rueda and T. Vos, “Q-

learning Strategies for Action Selection in the TESTAR Automated Testing Tool”,

6th International Conferenrence on Metaheuristics and nature inspired computing

(META 2016), pp. 130–137, 2016.

45. Adamo, D., M. K. Khan, S. Koppula and R. Bryce, “Reinforcement Learning

for Android GUI Testing”, Proceedings of the 9th ACM SIGSOFT International

Workshop on Automating TEST Case Design, Selection, and Evaluation, pp. 2–8,

2018.

46. Vuong, T. A. T. and S. Takada, “A Reinforcement Learning Based Approach to

Automated Testing of Android Applications”, Proceedings of the 9th ACM SIG-

SOFT International Workshop on Automating TEST Case Design, Selection, and

Evaluation, p. 31–37, 2018.

47. Gomez, L., I. Neamtiu, T. Azim and T. Millstein, “RERAN: Timing- and Touch-

sensitive Record and Replay for Android”, International Conference on Software

Engineering (ICSE), 2013.

48. Hu, Y. and I. Neamtiu, “VALERA: An Effective and Efficient Record-and-replay

Tool for Android”, International Conference on Mobile Software Engineering and

Systems (MOBILESoft), 2016.

49. Fazzini, M., E. N. D. A. Freitas, S. R. Choudhary and A. Orso, “Barista: A

Technique for Recording, Encoding, and Running Platform Independent Android

90

Tests”, IEEE International Conference on Software Testing, Verification and Val-

idation (ICST), 2017.

50. Falcone, Y., S. Currea and M. Jaber, “Runtime Verification and Enforcement for

Android Applications with RV-Droid”, International Conference on Runtime Ver-

ification, pp. 88–95, Springer, 2012.

51. Daian, P., Y. Falcone, P. O. Meredith, T. Serbanuta, S. Shiraishi, A. Iwai and

G. Rosu, “RV-Android: Efficient Parametric Android Runtime Verification, a Brief

Tutorial”, Runtime Verification - 6th International Conference, RV 2015 Vienna,

Austria, September 22-25, 2015. Proceedings , Vol. 9333 of Lecture Notes in Com-

puter Science, pp. 342–357, Springer, September 2015.

52. Sun, H., A. Rosà, O. Javed and W. Binder, “ADRENALIN-RV: Android Run-

time Verification Using Load-Time Weaving”, IEEE International Conference on

Software Testing, Verification and Validation (ICST), 2017.

53. Zhang, P., K. Cheng and J. Gao, “Android-SRV: Scenario-Based Runtime Veri-

fication of Android Applications”, International Journal of Software Engineering

and Knowledge Engineering , Vol. 28, No. 02, pp. 239–257, 2018.

54. Hasanbeig, M., A. Abate and D. Kroening, “Certified Reinforcement Learning with

Logic Guidance”, arXiv preprint arXiv:1902.00778 , 2019.

55. Hasanbeig, M., A. Abate and D. Kroening, “Logically-Constrained Neural Fitted

Q-Iteration”, Proceedings of the 18th International Conference on Autonomous

Agents and MultiAgent Systems , pp. 2012–2014, International Foundation for Au-

tonomous Agents and Multiagent Systems, 2019.

56. Toro Icarte, R., T. Q. Klassen, R. Valenzano and S. A. McIlraith, “Teaching Mul-

tiple Tasks to an RL Agent Using LTL”, Proceedings of the 17th International

Conference on Autonomous Agents and MultiAgent Systems , AAMAS ’18, pp.

91

452–461, International Foundation for Autonomous Agents and Multiagent Sys-

tems, Richland, SC, 2018.

57. Wen, M., R. Ehlers and U. Topcu, “Correct-by-synthesis Reinforcement Learning

with Temporal Logic Constraints”, IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), 2015.

58. Baek, Y.-M. and D.-H. Bae, “Automated Model-based Android GUI Testing Using

Multi-level GUI Comparison Criteria”, 31st IEEE/ACM International Conference

on Automated Software Engineering (ASE), pp. 238–249, 2016.

59. Mao, H., M. Alizadeh, I. Menache and S. Kandula, “Resource Management with

Deep Reinforcement Learning”, Proceedings of the 15th ACM Workshop on Hot

Topics in Networks , pp. 50–56, ACM, 2016.

60. Arel, I., C. Liu, T. Urbanik and A. Kohls, “Reinforcement Learning-based Multi-

agent System for Network Traffic Signal Control”, IET Intelligent Transport Sys-

tems , Vol. 4, No. 2, pp. 128–135, 2010.

61. Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan and D. Hassabis,

“Mastering Chess and Shogi by Self-play with a General Reinforcement Learning

Algorithm”, arXiv preprint arXiv:1712.01815 , 2017.

62. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and

M. Riedmiller, “Playing Atari with Deep Reinforcement Learning”, arXiv preprint

arXiv:1312.5602 , 2013.

63. Zhou, Z., X. Li and R. N. Zare, “Optimizing Chemical Reactions with Deep Rein-

forcement Learning”, ACS central science, Vol. 3, No. 12, pp. 1337–1344, 2017.

64. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, The

MIT Press, 2nd edn., 2018.

92

65. Drugan, M., “Reinforcement Learning versus Evolutionary Computation: A Survey

on Hybrid Algorithms”, Swarm and Evolutionary Computation, 03 2018.

66. Lin, L.-J., “Self-improving Reactive Agents Based on Reinforcement Learning,

Planning and Teaching”, Machine Learning , Vol. 8, No. 3-4, pp. 293–321, 1992.

67. Watkins, C. J. C. H., Learning from Delayed Rewards , Ph.D. Thesis, King’s Col-

lege, Cambridge, 1989.

68. Google Developers, “The Android Emulator”, https://developer.android.co

m/studio/run/emulator.html, accessed on July 12, 2022.

69. Qin, F., Z. Zheng, X. Li, Y. Qiao and K. S. Trivedi, “An Empirical Investigation

of Fault Triggers in Android Operating System”, IEEE 22nd Pacific Rim Interna-

tional Symposium on Dependable Computing (PRDC), pp. 135–144, 2017.

70. Zeller, A., “Yesterday, My Program Worked. Today, It Does Not. Why?”, 7th Eu-

ropean Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (ESEC/FSE-7),

pp. 253–267, 1999.

71. Bolton, D., “88 Percent of People Will Abandon an App Because of Bugs”, https:

//www.applause.com/blog/app-abandonment-bug-testing, accessed on July 2,

2017.

72. Barr, E. T., M. Harman, P. McMinn, M. Shahbaz and S. Yoo, “The Oracle Prob-

lem in Software Testing: A Survey”, IEEE transactions on software engineering ,

Vol. 41, No. 5, pp. 507–525, 2014.

73. Koroglu, Y., “Black is Missing from the Color Palette (Issue #75)”, https://gi

thub.com/SecUSo/privacy-friendly-notes/issues/75, accessed on July 12,

2022.

93

APPENDIX A: QBE’s Experimental AUT Characteristics

Table A.1. AUT Characteristics.

Training Set Test Set F-Droid

Characteristics Min Max Mean Min Max Mean Min Max Mean

Size (MB) 0.01 14.51 1.29 0.02 17.48 1.8 0.01 157.2 2.29

KInstructions 0.01 491.9 101.7 0.9 522.2 74.17 0.01 1395 107.4

KMethods 0.01 49.9 11.4 0.18 38.15 6.51 0.01 157.7 11.3

Activities 1 37 4.54 1 28 6.3 0 123 5.79

Permissions 0 31 8.44 0 24 6.4 0 168 8.4

Table A.1 shows the characteristics of our training and tests sets in more detail.

We argue that our training set has similar charasteristics to our test set in terms of

size, number of instructions, methods, activities, and permissions.

94

APPENDIX B: QBE’s Experimental Coverage Results

Q
BE

c

Q
BE

a

R
E

D
FE

Sa
pi

en
z

Sw
ift

H
an

d

PU
M

A

M
on

ke
y

0

20

40

60

80

100

Ac
tiv

ity
 C

ov
er

ag
e

(%
)

Figure B.1. Boxplots of Activity Coverages for Three Runs by Tool.

Figure B.1 gives more insight on QBE’s improvement on activity coverage. From

this figure, it is trivial to see when trained for crashes, QBEc performs similar to

Random Exploration (RE). Hence, we deduce locating crashes and covering new activ-

ities yield incompatible general patterns accross Android applications. However, when

trained for coverage, QBEa can achieve more than 80% coverage on some applications,

which outperforms any other test generator.

95

APPENDIX C: FARLEAD’s Experimental LTL Formulae

The LTL formulae related to the experimental test scenarios of FARLEAD:

ϕA: (a) ⃝([activity ∼ Main]U([activity ∼ About] ∧ ⃝([activity ∼ About]U[activity ∼ Main]))

(b) ⃝(([activity ∼ Main] ∧ actionType = click)U([activity ∼ About] ∧ ⃝([actionType = back]U[activity ∼ Main]))

(c) ⃝((([actionType = click] ∧ [actionDetail ∼ About]) ∧ [activity ∼ About]) ∧ ⃝([actionType = back]Uactivity ∼ Main))

ϕB : (a) ⃝([activity ∼ Main]U([activity ∼ Settings] ∧ ⃝([activity ∼ Settings]U[activity ∼ Main]))

(b) ⃝(([activity ∼ Main] ∧ actionType = click)U([activity ∼ Settings] ∧ ⃝([actionType = back]U[activity ∼ Main]))

(c) ⃝((([actionType = click] ∧ [actionDetail ∼ About]) ∧ [activity ∼ About]) ∧ ⃝([actionType = back]Uactivity ∼ Main))

ϕC : (a) N/A

(b) ⃝([actionType = pauseresume] ∧ [activity ∼ Main])

(c) ⃝([actionType = pauseresume] ∧ [activity ∼ Main])

ϕD : (a) ⊤U[screen = off]

(b) ⃝([actionType = idle] ∧ [screen = off])

(c) ⃝([actionType = idle] ∧ [screen = off])

ϕE : (a) ⃝([activity ∼ Main]U(([activity ∼ Settings]∧ [checked = true])∧ (([checked = true]∧ [activity ∼ Settings])U([checked =

false] ∧ ⃝([activity ∼ Main] ∧ ⃝([activity ∼ Settings] ∧ [checked = false]))))))

(b) ⃝(([actionType = click] ∧ [activity ∼ Main])U(([activity ∼ Settings] ∧ [checked = true]) ∧ ⃝((([actionType = click] ∧

[activity ∼ Settings]) ∧ [checked = true])U([checked = false] ∧ ⃝(([actionType = back] ∧ [activity ∼ Main]) ∧

⃝(([actionType = click] ∧ [activity ∼ Main])U([activity ∼ Settings] ∧ [checked = false])))))))

(c) ⃝(([actionDetail ∼ Settings]∧ [checked = true])∧⃝((([actionType = click]∧ [actionObjectID = 0:0:0:0:0])∧ [checked =

false]) ∧ ⃝([actionType = back] ∧ ⃝([actionDetail ∼ Settings] ∧ [checked = false]))))

ϕF : (a) ⃝([activity ∼ New] ∧ ⃝([activity ∼ Offline] ∧ ⃝[text ∼ moved]))

(b) ⃝(([actionType = click] ∧ [activity ∼ New]) ∧ ⃝(([actionType = click] ∧ [activity ∼ Offline]) ∧ ⃝([actionType =

chessmove] ∧ [text ∼ moved])))

(c) ⃝([actionDetail ∼ Offline] ∧ ⃝([actionDetail ∼ Play] ∧ ⃝([actionType = chessmove] ∧ [text ∼ moved])))

ϕG: (a) ⃝([activity ∼ Main]U([activity ∼ New] ∧ ⃝([activity ∼ New]U([activity ∼ Offline] ∧ ⃝([activity ∼ Offline]U([text ∼

moved]∧⃝([activity ∼ Offline]U([activity ∼ New]∧⃝([activity ∼ New]U([activity ∼ Offline]∧ [text ∼ moved]))))))))))

(b) ⃝(([activity ∼ Main] ∧ [actionType = click])U([activity ∼ New] ∧ ⃝(([actionType = click] ∧ [activity ∼ Offline]) ∧

⃝(([actionType = chessmove] ∧ [text ∼ moved]) ∧ ⃝([actionType = click]U([activity ∼ New] ∧ ⃝(([actionType =

click] ∧ [activity ∼ Offline]) ∧ [text ∼ moved])))))))

(c) ⃝([actionDetail ∼ Offline] ∧ ⃝([actionDetail ∼ Play] ∧ ⃝([actionType = chessmove] ∧ ⃝([actionDetail ∼ New] ∧

⃝([actionDetail ∼ Play] ∧ [text ∼ moved])))))

ϕH : (a) ⃝([activity ∼ Main]U([activity ∼ New] ∧ ⃝([activity ∼ New]U([activity ∼ Offline] ∧ ⃝([activity ∼ Offline]U([text ∼

moved]∧⃝([activity ∼ Offline]U([activity ∼ New]∧⃝([activity ∼ New]U([activity ∼ Offline]∧ [text ∼ moved]))))))))))

(b) ⃝(([text ∼ OK] ∧ [actionType = click])U([activity ∼ Main] ∧ ⃝(([activity ∼ Main] ∧ [actionType = click])U([text ∼

sketch] ∧ ⃝(([activity ∼ Main] ∧ [actionType = click])U([activity ∼ Sketch] ∧ ⃝(([activity ∼ Sketch] ∧ [actionType =

click])U([objectID ∼ 18] ∧ ¬[objectID ∼ 19]))))))))

(c) ⃝(([actionType = click] ∧ [actionDetail ∼ OK]) ∧ ⃝(([actionType = click] ∧ [actionDetail ∼ +]) ∧ ⃝(([actionType =

click] ∧ [actionDetail ∼ sketch]) ∧ ⃝(([actionType = click] ∧ [actionDetail ∼ colorSelector])U([objectID ∼ 18] ∧

¬[objectID ∼ 19])))))

ϕI : (a) N/A

(b) ⃝(([activity ∼ Main] ∧ [actionType = click])U([text ∼ New text] ∧ ⃝(([actionType = click] ∧ [activity ∼ TextNote]) ∧

⃝([actionType = back]U[text ∼ Note 1]))))

(c) ⃝(([actionType = click] ∧ [actionDetail ∼ OK]) ∧ ⃝(([actionType = click] ∧ [actionDetail ∼ +]) ∧ ⃝(([actionType =

click] ∧ [actionDetail ∼ text]) ∧ ⃝([actionType = back]U[text ∼ Note 1]))))

96

APPENDIX D: On the Figures of This Thesis

Figure 3.1 is available under the Creative Commons CC0 1.0 Universal Public

Domain Dedication at Wikimedia Commons, accessed on 20th of June, 2022. This

thesis respects the constraints the Creative Commons CC0 1.0 Universal Public Domain

Dedication license with respect to this figure.

All the other figures are the author’s own work, published in journals and con-

ferences. This thesis respects all the publishers’ rights with respect to these figures,

obeying their reuse policies.

