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ABSTRACT

UNSUPERVISED/SEMI-SUPERVISED

LEARNING-BASED STRESS LEVEL DETECTION

SYSTEM BY USING UNOBTRUSIVE WEARABLES IN

THE WILD

Stress is one of the most important problems of today. Although it seems to

be a part of modern human life, it is known to cause serious health problems. Many

researchers from different disciplines have been working on this subject, which has

personal and social effects, for many years. Psychologists, behavioral scientists, and

psychiatrists continue their research in the clinical setting. However, when the stress

factor is considered as a part of daily life, clinical environments or controlled experi-

mental areas may be insufficient in terms of stress classification. Thanks to developing

sensor technologies, wearable devices, and machine learning methods, stress classifica-

tion has become an area of interest for computer scientists. Although developments

in wearable sensors, ubiquitous computing, and machine learning continue, they bring

new challenges to this field. The data labeling burden is one of these challenges. It

requires significant effort and resources to have the subjects who have stress problems

fill out questionnaires periodically in their daily life and to synchronize the physiologi-

cal data with the questionnaire results. Being aware of this labeling burden, we aimed

to find a new solution by using a less amount of labeled data from the multi-sensor

physiological dataset that we collect in daily life. For this reason, this thesis focuses

on what will be the performance of a system using a less amount of labeled data and

semi-supervised learning techniques.
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ÖZET

GÜNLÜK HAYATTA GÖZETİMSİZ/YARI GÖZETİMLİ

ÖĞRENME TEMELLİ STRES DÜZEYİ TESPİT SİSTEMİ

Stres günümüzün en önemli problemlerinden biridir. Modern insan yaşamının

bir parçası gibi görünse de ciddi sağlık sorunlarına neden olduğu bilinmektedir. Farklı

disiplinlerden birçok araştırmacı bireysel ve sosyal etkileri olan bu konu üzerine uzun

yıllardır çalışmaktadır. Psikologlar, davranış bilimciler ve psikiyatristler klinik ortamda

araştırmalarını sürdürmektedir. Fakat stres faktörü günlük hayatın bir parçası olarak

düşünülünce klinik ortamlar veya kontrollü deney alanları stres tanılama açısından

yetersiz kalabilmektedir. Gelişen sensör teknolojileri, giyilebilir cihazlar ve makine

öğrenmesi metodları sayesinde stres tanılama konusu bilgisayar bilimcilerinde ilgi alanı

haline gelmiştir. Giyilebilir sensörler, yaygın bilişim ve makine öğrenimi konularında

gelişmeler devam etse de bu alan yeni zorlukları beraberinde getirmektedir. Veri

etiketleme yükü bu zorluklardan biridir. Özellikle stres problemi yaşayan deneklere

günlük hayat içerisinde düzenli aralıklarla anket doldurtmak, veriler ile bu anket sonuç-

larını senkronize etmek önemli efor ve kaynak gerektirmektedir. Biz de bu etiketleme

yükünün farkında olarak günlük hayatta topladığımız çok tipli sensör fizyolojik veriseti

içerisinden az miktarda etiketli veri kullanarak yeni bir çözüm yolu bulmayı hedefledik.

Bu nedenle tez çalışması yarı-gözetimli öğrenme teknikleri kullanılarak eldeki az mik-

tardaki etiketli veri kullanılarak nasıl sonuçlar elde edilebileceğine odaklanmaktadır.
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1. INTRODUCTION

One of the generally accepted definitions of stress describes it as the effects of

environmental demands on the organism at a level that may cause physiological or

psychological illnesses [1]. Schneiderman et al. [2] examined the relationship of stress

with human physiology, psychology, and mental health. They explained in detail how

stress is associated with illnesses such as cancer, immune system problems, cardio-

vascular diseases, personality disorder, post-traumatic stress disorder (PTSD), and

depressive symptoms. Many internal and external factors such as traumatic memories,

long-lasting illnesses, family problems, inconvenience of the workplace environment,

economic concerns, and the recent Covid-19 pandemic increase the stress level of indi-

viduals in the society. Vital processes such as decision making, communication quality

with the social environment, and mental health are seriously damaged on the way to

treatment.

World Health Organization (WHO) has defined stress as the health epidemic of

the 21st century [3]. It is clear that such an important issue, affecting human mental

health in every aspect, will have different economic and social consequences. According

to the Global Organization for Stress, 80% of American workers experience stress in

their work environment, 442.000 British workers believe they are ill due to the stress

they face in the work environment [4]. According to the American Institute of Stress,

63% of American employees say they are ready to quit their job because of stress at

work [5]. It is also necessary to take into account the workers who do not dare to

leave the job but are inefficient due to stress. In the literature, the inefficient workforce

created by this type of employee is called ”Presenteeism” [6]. The negative economic

impact it will create around the world should be taken into account.

When evaluated from many perspectives, it is evident that the stress research

needs to be addressed more broadly. In the field of clinical psychiatry, different studies

are carried out for the diagnosis and treatment of this problem [7]. Computer scientists

also develop smart sensor technologies and machine learning algorithms for identify-
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ing stress. Electroencephalogram (EEG) electrodes [8], electrocardiogram (ECG) and

electromyography (EMG) electrodes [9], ECG harness [10], both ECG and galvanic

skin response (GSR) electrodes [11], photoplethysmography (PPG), smartphones [12]

and smartwatches [13] are preferred as wearable sensors. With the help of these wear-

able smart devices, data directly related to stress such as movements, brain, muscle,

heart and electrodermal activities can be collected. There are also studies that focus

on image, video, and speech data with the help of camera setups and microphones

without using wearable sensors. However, multimedia sensors are not preferred due to

privacy concerns and incompatibility with unrestricted environments. In addition to

the experimental setups used, the conditions and environment of the experiment are

also very important. Different experimental environments and setups are designed to

monitor stress: Restricted, Semi-Restricted, Unrestricted Environments. Considering

the results of the research, the effective use of sensors and the selection of the ap-

propriate experimental environment are very vital. The results obtained by exposing

the subjects to stress in restricted and semi-restricted environments are weak in terms

of feasibility and generalizability. For this reason, it seems appropriate to follow the

subjects in their daily lives with unobtrusive wearables.

1.1. Motivation

Tracking subjects’ physiological data continuously and labeling this data for spe-

cific periods brings new problems to the surface: Noisy and Distorted Signals, Data

Fusion Requirements, Battery Life, and Label Collection Process. Among these prob-

lems, we focused to the Ground Truth Collection and Label Collection Processes. Al-

though the subjects in restricted and semi-restricted environments are reminded by the

researchers for the labeling processes, it becomes a bigger problem in the unrestricted

environment. Collecting tests and questionnaires from the subjects at certain hourly

intervals in a 24-hour daily life creates difficulties in many ways. Expecting people to

make stress assessments at work, school or dinner reduces the quality of labels. On the

other hand, it should not be forgotten that the success of supervised learning models

comes from the labels used as the ground truth in the dataset. Despite our costly
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and resource-consuming methods of obtaining the ground truth, we should also con-

sider that the labels collected with the help of surveys, questions, and reports reflect

personal experience. Stress ground truths that the subjects presented to us with the

help of questionnaires can create unique situations. For instance, two subjects with

the same physiological signals may evaluate the situation as stressful or non-stressful

based on their own experiences [14]. Therefore, this adherence of supervised models to

the label also limits the overall performance and generalizability of machine learning

models. After assessing the challenges encountered in stress sensing classification sys-

tems, that can work with less labeling burden will be preferred. One solution for this

labor-intensive process is to use with Semi-Supervised Learning (SSL). Establishing

an architecture that learns from a small number of labeled data can reduce the label-

ing burden. In particular, the fact that SSL techniques have not been investigated in

depth by using multi-sensor physiological raw data in the literature creates room for

improvement.

1.2. Contributions

14 different subjects were tracked continuously for one week with the Empatica

E4 smartband. Multi-sensor raw data was carefully collected and prepared for use

in SSL models. When working with SSL models, the results of reducing the labeling

burden in terms of performance were examined. In order to make this examination

clear, a comparison was made with implemented Supervised/Unsupervised Learning

models. In light of the evaluations we have made so far, we are the first to implement

SSL models with raw multi-modal physiological sensor data collected in unrestricted

everyday life and compare it with Supervised and Unsupervised models. The progress

of our work is as follows:

• Multi-sensor physiological raw dataset is prepared. The data is preprocessed

according to the data fusion techniques and input shape of models.

• An unobtrusive data collection setup has been designed. Thus, the subjects could

be followed independently of heavy, static sensors that can only be used in the

laboratory. On the other hand, this system also allowed the experiment to be
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carried out at a much lower cost.

• The subjects were not in any laboratory or controlled experimental environment.

The data were collected in an unrestricted environment in daily life.

• The SSL algorithms we have designed are applied and performance metrics are

obtained.

• State-of-the-art supervised learning-based deep learning architectures are imple-

mented, and performance metrics are obtained.

• Unsupervised learning clustering algorithms are applied, and performance metrics

are obtained.

• By evaluating the performance metrics, the advantages and the shortcomings of

the presented SSL models are expressed.

1.3. Thesis Outline

The remaining chapters of the thesis are as follows. In Chapter 2, the formation

of physiological stress, its origins, and stress signals are mentioned. Thus, the con-

cepts are clearly expressed before moving on to the methods proposed in the thesis.

Supervised, Semi-Supervised, and Unsupervised Learning architectures used for stress

classification in the literature are discussed in Chapter 3. In Chapter 4, we explained

our proposed SSL architecture and data collection setup as a solution to the labeling

problem of the Stress Classification Problem. We implemented supervised learning

and unsupervised learning architectures to see how successful SSL architectures are in

terms of performance while eliminating the labeling burden. We explained these SL

and UL architectures in Chapter 5. In Chapter 6, the performance results of all models

will be compared and inferences will be made about SSL models. In Chapter 7, the

conclusions and future work will be given.
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2. BACKGROUND

Stress detection systems are formed by the combination of different components

and functionalities. A clear definition of these sub-components is crucial to understand-

ing the overall architecture. In this chapter, we will begin to discuss the physiological

formation and origin of stress. Stress seems like an abstract concept even though we

hear it a lot in our daily life. Expressing stress in a physiological sense will help to

understand other sections in this chapter. When our perspective on the concept of

stress becomes clear, we will talk about the physiological indicators that allow us to

perceive stress, then the stress perception tests based on the experiences of the in-

dividuals, the stress prediction experimental environments, and finally the challenges

experienced while creating these systems.

2.1. Stress and Its Origin

The word ”homeostasis” is derived from the Greek words homeo and statis. When

these two words, which mean same and steady, are combined, it means to stay stable.

The word was first used by Walter Bradford Cannon in the 1920s-1930s [15]. It refers to

the survival of organisms in the face of changing conditions and external factors. In the

1960s, Hans Selye defined ”stress” as factor that could disrupt homeostasis and affect

it negatively [16]. He later expanded his research on factors that stress organisms

and the response of organisms to these stressors. After these first definitions, the

Hypothalamic-pituitary-adrenal (HPA) axis system was revealed, and it focused on the

body’s response to stress. This neuroendocrine system, which is based on a feedback

mechanism, is essential for us to cope with stress physiologically. The HPA axis consists

of three parts: the hypothalamus, pituitary glands (PG), and adrenal glands(AG).

With the corticotropin-releasing hormone (CRH), the hypothalamus stimulates PG.

PG, which secretes adrenocorticotropic hormone (ACTH), activates the adrenal gland

(AG). As a result, the cortisol level in the body increases. Thanks to the feedback

mechanism, the HPA axis returns to its normal function as the stress factor decreases.
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Figure 2.1. Representation of the hypothalamic-pituitary-adrenal(HPA) axis

So what are the results for people who are constantly exposed to stress or who are

exposed to chronic stress? Chronic stress refers to the long-term exposure of a person

to stress. For example, problematic carriers, severe chronic diseases, and problems

with family in life can cause chronic stress. Since the HPA axis will be continuously

stimulated in people experiencing chronic stress, a high amount of cortisol will be

secreted into the blood via AG. Excessive cortisol release in the body has serious

physical and mental consequences. The feedback mechanism of the HPA axis can be

seen in Figure 2.1.

The situation is slightly different in acute stress, which is another type of stress.

It occurs as a result of stressors that we are exposed to for a shorter time in daily

life. Final exams, project deadlines, and short-term discussions are examples of acute

stress. Similar to the previous process, the HPA axis is activated again, and the

hormones are activated in the neuroendocrine system, but since it is not continuous,

the cortisol level in the body returns to its original state. An adequate amount of
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cortisol hormone secreted in the face of acute stress is very important for the body’s

fight-flight-or-freeze response (also known as acute stress response). In research on

the acute stress response, the autonomic nervous system (ANS) is vital and should

be well understood. ANS is formed by the combination of the sympathetic nervous

system (SNS) and the parasympathetic nervous system (PNS). The diffusion of stress-

related hormones within the neuroendocrine system occurs with the help of the SNS

and PNS. The amygdala, which processes emotional stimuli in brain, triggers the HPA

axis by stimulating the hypothalamus against external factors that cause stress. In

addition to the above-mentioned cortisol diffusion, epinephrine (adrenaline hormone)

is also secreted in the body through AG. The SNS assists in the release of cortisol and

adrenaline hormones. The blood is pumped to the muscles, the volume of the lungs

increases [17], the heartbeat accelerates, the digestion slows down or even comes to a

halt, and the blood pressure rises. Basically, SNS puts the person in a form that can

fight against the threats perceived by the different senses. PNS, on the other hand,

helps restore body functions after the threat is gone. It is clear how crucial acute

stress response is in threatening moments. This response, which affects our decisions

to survive, get injured, and to fight, not only protects us but also helps us have fun.

For instance, extreme athletes enjoy the situation they are in, even if the surrounding

conditions are acutely stressful. Here, stress is far from being chronic and is short-lived.

2.2. Stress Signals

The autonomic nervous system(ANS) enables the body to create a physiological

response to stress through sympathetic and parasympathetic nerves. In this case, if

researchers follow specific physiological changes that occur in the human body, they

obtain essential data regarding stress prediction. In addition, we are able to obtain

physiological and psychological outputs thanks to developing sensor technologies, new

generation imaging techniques, and psychological tests. Stress-associated signals can be

obtained with complex devices such as magnetic resonance imaging (MRI), EEG, EMG,

ECG, and customized electrodes. However, 3-axis accelerometer, infrared thermopile,

galvanic skin response (GSR), and photoplethysmography (PPG), which are more small
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scale sensors, are also used. There are also studies on stress in areas such as image

processing, signal processing, and computer vision. These areas generally work with

the subjects’ audio and video data by using microphones, cameras, and voice recorders.

When the subjects are exposed to stress, changes in voice tone and facial expressions

can be followed in video and audio recordings. However, studies on mimic and voice

may be biased because individuals have different ways of coping with stress. For

example, a person may prefer to laugh in a very stressful moment, or he can hide the

expression on his face in a different way. Considering these situations, designing an

experiment provides more reliable results.

The recent increase in the use of smartphones and tablets has revealed a new

approach. Personal identification can be made by keystroke dynamics [18]. Keyboard

and mouse usage dynamics of people, frequency, and intensity of touching the screen

while using a tablet can also be studied as stress signals.

Finally, people can verbally express their stress levels. This form of verbal expres-

sion, called “perceived stress” in the literature, is obtained by questionnaires, surveys,

and self-reports. The point to be noted here is that these reports are personal. Factors

that cause stress for someone may not be a problem for another.

2.2.1. Brain Signals

Researchers in clinical stress studies prefer EEG signals. Primarily as power spec-

trum features, delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and

gamma (above 30 Hz) bands are used. These frequencies show different functionalities

in the stress response. Also, the fractal dimension feature is used to understand the

complexity and irregularity properties of time-series signals [19]. When using an EEG

device, it is necessary to determine the correct number of channels. Thus, the accuracy

and quality of the signals obtained are not compromised. Recently, researchers have

started to use EEG devices with more unobtrusive, wearable, and wireless designs.
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2.2.2. Heart Signals

The heart continues to work with the help of electrical impulses it produces.

Electrical signals are generated in a part of the heart called the sinus node (SN). This

signal is then transmitted to different parts of the heart. The devices in which impulses

are monitored with the help of electrodes are called an electrocardiogram (ECG). ECG

devices, which usually consist of 4 electrodes, can be placed on the body differently.

Chest, shoulder heads, both arms and legs are the parts used to obtain heart signals.

Accurate acquisition of signals is ensured by using gel between the ECG electrodes and

the body connection points. So ECG is usually used with wet electrodes. However, as

a result of increasing technological developments, new sensor technologies have allowed

us to obtain heart signals in different ways. Photo-Plethysmography (PPG) is a very

light and portable sensor that can work dry. It has also found a wide range of use

in smartwatches and wristbands. Thanks to the LED inside, it sends light into the

tissue and examines the degree of absorption with a photosensitive sensor. It is widely

used in pervasive health applications. Heart signals consist of heart rate variability

(HRV), heart rate (HR), and RR intervals (IBI). When the studies in the literature

are examined, HRV is seen as an informative signal in stress studies [20]. Studies

have shown that HRV is associated with post-traumatic stress disorder (PTSD) [21].

SNS and PNS directly regulate heart rate. Therefore, HRV provides an important

biofeedback in stressful conditions.

2.2.3. Muscle Signals

Our muscles are stimulated through the nervous system. This creates an electrical

potential just like in the heart. Electromyography (EMG) measures this electrical

potential in muscles. Signals are collected by placing electrodes on muscle groups.

Luijcks et al [22] showed the relationship between stress and muscle stimulation by

looking at the Mean EMG results in the baseline, pre-stimulus, and post-stimulus

periods.
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2.2.4. Electrodermal Activity(EDA)

Electrodermal activity (EDA) can be expressed as the change of electrical prop-

erties of human skin against certain factors. Researchers have named this electrical

characteristic of the skin as galvanic skin response (GSR), skin conductance, skin con-

ductance response (SCR), or sympathetic skin response (SSR). Electrical conductivity

varies depending on perspiration on the skin surface. With the help of the GSR sen-

sors, skin electrical conductance change can be detected. In the literature, ECG signals,

HRV, and EDA are highly preferred biomarkers for identifying stress [23].

2.2.5. Blood Volume Pulse(BVP)

Blood volume pressure signal is obtained with the PPG sensor. PPG is a non-

invasive optical sensor. With the green and red LED light sources used in the sensor,

the variability in blood flow is tried to be measured. Experiments have also been

carried out in the finger, toe, and ear lobes, which are the regions with high vascular

density in the literature. Alternatively, studies have been published recently on the

hand and wrist.

2.2.6. Acceleration Data

The rate of change in the velocity of the subject is obtained by acceleration

sensors. They collect data in a 1-axis, 2-axis or most commonly 3-axis. It is frequently

used in research on motion and vibration measurement. The relationship between

emotional change and body movements has been demonstrated by Ekman et al. [24].

2.2.7. Skin Temperature(ST)

Body temperature is a significant indicator for diagnosing diseases and under-

standing the course of treatment. In addition, the body temperature must be stable

within a certain range for the body functions to work correctly. To understand the

body temperature, we usually measure it from the skin surface with the help of a ther-
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mometer. Since the body temperature is directly controlled by the nervous system in

mammals, studies have been conducted on its relationship with stress. It has been

showed that there is a temperature change on the skin surface with sympathetically

mediated vasoconstriction in a person experiencing acute stress [25, 26].

2.2.8. Speech Signals

Speech is a type of signal that carries essential personal information. Besides

its meaning, it has paralinguistic features. These features are body language, facial

expression, emotion, dialect, and accent [27]. On the other hand, it has features such

as tone of voice, emphasis, pause, and breathing pattern. Using these features, stress

detection studies are carried out from the speech signal [28].

2.2.9. Facial Mimicry

Developing technologies in the fields of computer vision and image processing

provide important opportunities to understand people’s emotional changes from the

expression on their faces [29]. Similarly, with the help of advanced lenses and cameras,

the mimic variations of people can be displayed better. Studies on stress in this area

should be scrutinized. Because people can hide their emotions through their facial

expressions.

2.2.10. Keyboard and Mouse Usage

Physiological user authentication and personality characterization studies were

carried out using keyboard and mouse usage dynamics [30, 31]. As can be understood

from these studies, the keyboard and mouse usage dynamics of people are different

from each other; it is possible to use this information as a personal signature. Further

studies have shown that when people are stressed, pressing the keyboard keys and

clicking the mouse becomes more intense [32].
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2.3. Stress Experiment Environments

Stress research has been carried out in many different scenarios and environments

since its inception. Experimental designs and research outputs played an substantial

role in determining these environments. It also affected the setup of the experiments

in the areas where the researchers came from. For example, psychology and psychiatry

researchers mostly preferred clinical settings. In fact, studies in these fields have in-

fluenced many computer scientists, and controlled experiments have been put forward.

However, later studies wanted to construct more realistic experimental scenarios. This

has accelerated the shift of research from controlled and restricted environments to

semi-restricted environments. Although researchers gather more challenging data, they

are moving towards non-restricted environments because these experiments are more

suitable for daily life.

2.3.1. Restricted Environments

A specific environment for the experiment is determined, and the experiment is

carried out under those conditions. For example, studies were carried out in an office,

inside a car, or laboratory. The general motivations for experiments conducted in the

office are to measure the stress that employees are exposed to through their workload.

With the help of special sensors and cameras, the stress experiences of individuals

can be measured more easily. For example, some researchers collected and labeled the

physiological data of the subjects under special conditions such as important meetings

or project deadlines. Today, the rate of car usage is increasing day by day depending

on the population rate. This means that traffic accidents are increasing day by day.

Fatal accidents occur for many different reasons such as stress-related inattention,

sudden change of decision, and anger. Researchers also use the car as an experimental

environment to prevent such accidents. With the help of wearable wristbands, portable

ECG devices, and cameras, research was carried out on the stress status of drivers [33].

The limitation of the driver’s movements and the collection of stress data in a city with

heavy traffic create a limited experimental environment.
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2.3.2. Semi-Restricted Environments

It is an environment in which subjects interact with different factors more than

they would in a restricted environment. Constraints are less than restricted environ-

ments. Experiments carried out in the university environment can be given as an

example of these environments [34]. Subjects tracked at the university can sometimes

be found in restricted environments such as classrooms or lecture halls. However, the

same subjects have the right to roam around the campus. They can also be found in

different areas within the university, such as a gym, cafe, or stadium. Since this creates

a less constrained environment, they are called semi-restricted environments. It is an

essential step in the transition to daily life experiments and produces results closer to

non-restricted environments.

2.3.3. Non-Restricted Environments (Daily Life)

Non-restricted environment is based precisely on the monitoring of subjects in

daily life. Unobtrusive wearable devices are used. In this way, the experimental envi-

ronment is set up in an unconstrained manner. Since it is more challenging to obtain

data in these wild environments, there are fewer studies in the literature [35, 36]. See-

ing the gap, we focused our research on this experimental environment. In addition to

wearable designs, there are also research made with mobile phones. Since people ex-

posed to stress follow specific patterns in terms of mobility, research has also progressed

in that direction.

2.4. Stress Data Collection Challenges

In this thesis study, the research was completed by collecting daily life data.

However, collecting daily life data poses many challenges. These challenges should be

carefully studied, and the experimental setup should be designed accordingly. Other-

wise, a decrease in the overall system performance may be observed.
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2.4.1. Noisy and Distorted Signals

It mainly occurs due to insufficient quality of the sensors, sensor positioning error,

and sudden movements. Processes such as filtering and artifact removal ensure that

the signal is free of noise.

2.4.2. Data Fusion Principles

Since there can be more than one sensor on the wearable devices, multi-sensor

raw data is obtained. The synchronization and integration of this data must be done

with precision. For this, the sampling frequency of the sensors and the timestamps of

the sensor data must be used correctly.

2.4.3. Unobtrusive Design

Complex sensors and imaging devices are used in clinical settings. However,

these designs remain heavy and static for pervasive health applications. Unobtrusive

and wearable devices are more advantageous in terms of fast sensing, networking,

connectivity, and data fusion [37]. In addition, individuals who have problems such

as stress and anxiety are not willing to come to the clinical environment when they

are going through difficult periods. To solve this problem, researchers try to expose

the subjects to stress in different experimental scenarios, but this poses a problem in

terms of reality. As a result, it will be helpful to follow the subjects in daily life with

an unobtrusive design.

2.4.4. Battery Life

Wearable devices are all battery-dependent. It is inevitable that the sensor bat-

tery will run out in studies where subjects are continuously followed in daily life. The

important thing here is that the researchers can set up the battery charging process

without interrupting the data collection and prevent the time gap between the data.
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2.4.5. Data Labeling Process

Conventional machine learning algorithms need ground truth when seeking so-

lutions for tasks such as classification or regression. Especially during supervised

learning-based training, the target variable must be given to the models as the in-

put. In such cases, labeling the data requires serious effort and resources. Considering

today’s deep learning and machine learning problems, even the smallest recommenda-

tion systems require large amounts of data and ground truth labels. Robust labeling

principles should be used to see the success of models accurately. In the stress do-

main, questionnaires such as NASA-TLX [38], Perceived Stress Scale (PSS) [39], and

State-Trait Anxiety Inventory (STAI) [40] are preferred.

2.5. Questionnaires and Tests for Stress

It was stated in Section 2.4 that one of the most critical challenges of stress es-

timation research is the ground truth collection. Physiological data is easier to label

in controlled experimental environments. For example, in studies on the stress level

of students taking the exam, it is accepted that the physiological data represents the

stress class during the exam. However, as research moves towards less controlled ex-

periments and even daily life data, it becomes vital to collect compelling ground truth.

Researchers have designed many questionnaires and stress tests with different features

to solve this problem.

2.5.1. Perceived Stress Scale (PSS)

Perceived stress is the verbal or written expression of people’s feelings, thoughts,

and perceptions in the face of the stressor. The Perceived Stress Scale (PSS) is widely

used to measure perceived stress in the literature. Cohen et al. published PSS in 1983

to measure perceived stress universally [39]. Correlation studies between PSS and

stress measurement were also published. PSS wants to analyze the stress created by

the uncontrollable and unpredictable parameters in life with questions. Although some

of the questions in the test are similar to each other, it is basically aimed to measure
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Figure 2.2. PSS-10 Questions

the perceived stress consistently. It is based on the emotional changes and thoughts

that the individual has experienced in the past month. It is evaluated on a scale from

zero to four. It has different variations like PSS-10 [41] or PSS-5. You can see the

PSS-10 questions in Figure 2.2. The PSS score prepared according to these questions

gives precious information about the individual. For example, a high PSS score may

indicate severe depression due to stress, difficulty quitting smoking, or diabetes due to

changes in blood sugar.

2.5.2. NASA Task Load Index (NASA-TLX)

NASA-TLX is a subjective mental assessment for reporting the workload per-

ceived by individuals. It emerged from theoretical research conducted at NASA Ames

Research Center (ARC) in 1988 [38]. While determining the workload score, it uses

the following six weighted averaged subscales:
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• Mental Demand,

• Physical Demand,

• Temporal Demand,

• Performance,

• Effort,

• Frustration.

The first tests with pen and paper have now been moved to more technological

environments such as computers and mobile apps. The fact that it can be used as

software provides excellent benefits in terms of fast analysis and reporting. It has found

a wide range of uses in different fields, from aircraft cockpit to process production and

control areas.

2.5.3. The State-Trait Anxiety Inventory (STAI)

STAI is a measurement method used for anxiety disorder and trait anxiety prob-

lems [40]. It is instrumental in clinical studies of depression or studies on anxiety.

Through different answers, results on trait anxiety and state anxiety are obtained.

Answers are evaluated on the same 4-point scale used in the PSS test. The following

answers are used to measure trait and state anxiety:

• I worry too much over something that really doesn’t matter.

• I am content.

• I am a steady person.

• I’m tense.

• I’m worried.

• I feel calm.

• I feel secure.

• I feel at ease.

• I am presently worrying over possible misfortunes.

• I feel satisfied.
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• I feel frightened.

• I feel indecisive.

• I feel nervous.

• I have disturbing thoughts.

• I feel like a failure.

• I feel nervous and restless.

• I lack self-confidence.

• I am jittery.

• I feel content.

When the results obtained from the subjects are evaluated, a high STAI score

indicates high anxiety.
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3. LITERATURE REVIEW

The studies in the literature are branched out in terms of different sensor setups,

experimental environments, and machine learning / deep learning techniques. From a

general perspective, survey articles on stress classified the studies under the laboratory,

restricted, semi-restricted, and unrestricted environments [42]. However, since we fo-

cused on the labeling problem in our research, it would be more advantageous for us to

examine the literature studies under the Supervised, Semi-Supervised, and Unsuper-

vised Learning models. In Chapter 2, we talked about the sensors and experimental

environments used. In this direction, before we talk about our SSL model design, it is

valuable to classify what kind of studies have been done on the Supervised Learning

models.

Table 3.1. Literature Review on Stress Detection via Supervised Learning Models

Article Stress Sensor Stress Signal Stress Test Environment Unobstrusive
Number of

Participants

Duration Method

Mozos

et al. [43]

Electrode Wristband

Sociometric Sensor

EDA PPG

ACC Speech

TSST Laboratory No 18 17 Minutes
SVM kNN

Adaboost

Seo

et al. [10]

Zephyr Bioharness
ECG

Respiration

Visual Analogue

Scale(VAS)

Laboratory No 16 1 Hour
CNN+LSTM SVM RF

kNN LR DT

Garcia-Ceja

et al. [44]

Samsung Galaxy SIII Mini

Smartphone

ACC
Oldenburg Burnout

Inventory (OLBI)

Office No 30 8 Weeks
Naive Bayes

DT

Can

et al. [34]

Samsung Gear S1 S2 S3

Empatica E4

PPG EDA

ACC ST

NASA TLX
University Yes 21 9 Day

PCA+LDA PCA+SVM

kNN LR RF MLP

Gjoreski

et al. [45]

Empatica E4
BVP HRV ST

EDA RR

Ecological Momentary

Assessment (EMA)

STAI

Laboratory

Real Life

Yes 26 55 Days SVM

Seo

et al. [46]

Zephyr Bioharness

HDR-CX450 Camcorder

ECG RESP

Facial Expressions

Stroop Task Laboratory
No 24 45 min CNN-LSTM

Our Work Empatica E4
EDA BVP

ACC ST

PSS-5 Questionnaire Daily Life Yes 14 989 Hours
LSTM

CNN+LSTM
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3.1. Stress Prediction with Supervised Learning (SL) Models

Pioneering supervised learning studies were initiated by research groups in which

the stress levels of subjects were closely monitored in laboratory settings. In these

controlled environment studies, results were obtained using different sensors, signals,

stress factors, stress tests, experiment durations, and different conventional supervised

learning algorithms. Table 3.1 shows the summary of the studies in the literature

and our SL implementation. Mozos et al. [43] have established a robust laboratory

environment by combining physiological EDA and PPG sensor data with speech and

accelerometer data. They shared their experimental results with the controlled trier so-

cial stress test (TSS), SVM, k-nearest neighbor, and AdaBoost classifiers. Accordingly,

the AdaBoost algorithm gave the best accuracy performance with 94% for two-class

classification (Stressful and Neutral Situation). In another lab study, Seo et al. [10]

implemented different supervised models using ECG and respiration data. The data

was collected with a wearable device called the Zephyr Bioharness. They tracked 18

subjects as they relaxed or solved different levels of math and stroop tasks. Time

and frequency domain features are extracted from ECG and respiration signals. A

solution to the binary classification problem was sought with CNN-LSTM based deep

neural network. In addition, the results were compared in the experiment section by

implementing conventional algorithms such as support vector machine (SVM), ran-

dom forest (RF), k-nearest neighbors(kNN), logistic regression (LR), and decision tree

(DT). According to accuracy, F1 Score, and area under the ROC curve (AUC) metrics,

their CNN-LSTM network provided the best performance. They surpassed the studies

using similar neural network architectures with an accuracy score of 83.9%. Further

studies were carried out in restricted areas such as offices and cars. In the office envi-

ronment, Garcia-Ceja et al. [44] reported an overall accuracy of 71% using smartphone

accelerometer data and classifiers such as Naive Bayes and DT. Researchers continued

to work on semi-restricted and unrestricted environments to make experiments more

realistic. University campuses were mostly chosen as the semi-restricted environment.

The reason for this is to be able to create a less intrusive experiment that is close to

real life. Can et al. [34] conducted a study on the stress levels of university students

in a summer camp. The data was collected from 21 university students participating
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in a nine day algorithm competition. The designed three-class automatic stress detec-

tion system includes capabilities such as modality-specific artifact removal and feature

extraction.

Figure 3.1. Empatica E4 Smartband Physiological Data. Electrodermal Activity

(EDA), Blood Volume Pressure (BVP), Accelerometer (ACC), Interbeat Interval

(IBI) and Skin Temperature (ST)

Electrodermal activity (EDA), photoplethysmography (PPG), skin temperature (ST)

and the accelerometer (ACC) physiological signals were obtained using different smart-

watches such as Samsung Gear S1, S2, S3, and Empatica E4. Two separate ground

truth creation methods are applied; the first was the context labeling for three known

classes. For example, the labels were determined that the students were very stressed

during the competition, less stressed but still stressed in the lesson compared to the

competition, and not stressed in their free time. Secondly, the NASA-TLX question-

naire was used. A maximum of 98% accuracy score was achieved with person-specific

RF algorithm among supervised learning algorithms such as PCA+LDA, PCA+SVM,

kNN, LR, RF, and MLP. In recent days, researchers have preferred unrestricted en-

vironments because they fully cover the stress factors in real life. Due to the uncon-

strained and uncontrolled conduct of the research, it creates a challenge in terms of

ground truth gathering, and lower accuracies are obtained. Considering its challenges,

stress detection in everyday life has been studied less than in other experimental en-



22

vironments. One of the few studies was carried out by Gjoreski et al. [45], following

the subjects with the Empatica E4 smartwatch both in the laboratory and in real life.

They carried out labeling with stress logs and the Ecological Momentary Assessment

(EMA) prompt implemented on the smartphone. Different features are extracted us-

ing BVP, HRV, ST, EDA, and inter-beat (RR) intervals signals. Their model consists

of three parts as activity recognizer, base stress detector, and context-based stress

detector. While the base stress detector enables the extraction of features from the

raw physiological data, the activity recognizer determines the activity of the subjects

with the data received from the accelerometer. The last stress detector module per-

forms two-class classifications every 20 minutes. In this module, the SVM classifier was

trained with 55-day real life data, and an accuracy score of 92% was obtained. In their

recently published study, Seo et al. [46] focused on the stress of workload. A sample

dataset consisted of 24 healthy individuals and the experiments were carried out at the

Pohang University of Science of Technology (POSTECH), South Korea. It was con-

firmed that the subjects did not have any heart disease and had not participated in the

stress experiment before. In the experimental environment, they prepared as a GUI,

the subjects’ stress levels were increased or decreased in a controlled manner by giving

them tasks with certain difficulties. Electrocardiogram (ECG), respiration (RESP),

and video data were used in the controlled experiment performed in the laboratory.

Stroop tasks were used to generate changes in the stress level. Using Zephyr Bioharness

as a sensor, 1 kHz ECG signal and 25 Hz RESP signal were obtained. Subjects sitting

in front of a Hewlett Packard laptop were followed with a HDR-CX450 camcorder at a

resolution of 1280 × 720 and 30 fps. Preprocessed ECG, RESP, and facial expression

features were fed to the neural network as input. They used 68 landmarks around

the eyes, nose, and mouth while extracting the facial features. The models consist

of two parts. First, physiological signals were processed with the CNN-LSTM model.

In the second part, facial feature sequences are processed using Bidirectional Long

Short-Term Memory (Bi-LSTM). After completing the feature level fusion, the highest

accuracy score of 73.3% was obtained by using RESP, and facial landmarks. However,

when using ECG, RESP and facial expression features, the accuracy score decreased

to 54.4%, which means an almost 50% probability of correct stress classification result.
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Although the study focuses on workload stress, the fact that the subjects were students

and the experiment was far from the working environment makes the results limited.

Table 3.2. Literature Review on Stress Detection via Semi-Supervised Learning

Models

Article Stress Sensor Stress Signal Stress Test Environment Unobstrusive
Number of

Participants

Duration Method

Wampfler

et al. [47]

Smartphone

Smarttablet

Hand Movements Self Reports Laboratory Yes 70 70 Minutes
Variational

Auto-Encoder(VAE)

Lin et al. [48] Garmin Smartband
Heart Rate HRV

Stress Sequence Intervals

Surveys Office Yes 574 8 Months Autoencoder+LSTM

Peng et al. [49]
62-Channel

Electrode Cap

EEG
Videos Laboratory No 15 72 Minute OGSSL

Our Work Empatica E4
EDA BVP

ACC ST

PSS-5 Questionnaire Daily Life Yes 14 989 Hours
Label Propagation

Deep Autoencoder

3.2. Stress Prediction with Semi-Supervised Learning (SSL) Models

As researchers started to work with daily life data, even a few innovative SSL

model trials began to work to optimize the labeling problem, as we discussed earlier.

Although these studies are new, they differ in terms of the experimental environment,

data type, and algorithmic models. At ETH Zurich University, Wampfler et al. [47]

studied an experimental group of 70 undergraduate and graduate students. They ex-

posed the subjects to different stress situations with their own 70-minute Skype mes-

saging chat conversation in a controlled laboratory environment. While messaging was

carried out with smartphones via Skype, they also collected self-reports with smart

tablets. In order to predict stress, they produced the dataset as heat maps based on

the intensity of movement on the touch screen of smartphones. Self-reports collected

via the tablet consist of two parts. In the first part, they infer valence, arousal, and

dominance scores. In the second part, they ask people to choose emojis that reflect

their emotions. During the experiment, they were exposed to shocking, sad, rude,

exciting, and confusing events in their communication. Variational auto-encoder was

used as the SSL model, and low-dimensional embeddings were extracted from the 2D

heat maps they created. Then, classification was made by giving low-dimensional em-
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beddings as input to the fully connected layers. The network with fully connected

layers consists of a pre-trained model that has been trained using labeled data. Ac-

curacy and AUC scores for valence, arousal, and dominance were obtained by using

heat maps of hand movements such as Pressure, Down-down, Up-down, and Combi-

nation obtained during the conversation. According to their performance evaluation,

AUC metric results reported; valence achieved 84%, arousal 82%, and dominance 82%.

In [48], Lin et al. studied multi-label human psychology anomaly detection (MBEAD

framework). Multivariate temporal sensor data were consisting of minutely heart rate,

minute-to-minute HRV signals, and three-minute stress sequence intervals were col-

lected via Garmin bands. The encoder part consist of ReLu activation function, five

CNN layers stack, reweighting mechanism with different size of kernels. The decoder

part is symmetric to the encoder. The framework is completed with the relevance learn-

ing module and the LSTM network-based temporal relevance module. The obtained

results were compared using seven different state-of-the-art frameworks. They detected

the Affect, Stress, and Work Performance classes as anomalies and reported F1, Recall,

and Precision metrics. The results show that better performance scores were obtained

compared with the other seven studies. One of the recent SSL studies has focused on

emotion recognition using EEG signals [49]. They proposed a model called Optimal

Graph coupled Semi-Supervised Learning (OGSSL), which combines the concepts of

adaptive graph learning and emotion recognition. The SEED-IV public dataset pre-

pared by Shanghai Jiao Tong University was used. Different video clips were watched

in three sessions to the subject group consisting of 15 healthy people. According to

the video content, it was aimed to create four emotional states (sad, fear, happy and

neutral) in the subjects. EEG data were sampled at 1000Hz with a 62-channel elec-

trode cap. Their OGSSL model was compared with the Semi-supervised Projected

Clustering with Adaptive Neighbors (semiPCAN) [50], the semi-supervised support

vector machine (semiSVM), the semi-supervised Linear Square Regression (semiLSR),

the Rescaled Linear Square Regression (RLSR) [51, 52], and the Robust Discrimina-

tive Sparse Regression (RDSR) [53] models were compared. The OGSSL model has

an average of 76% accuracy score. Outperformed the benchmark models with an im-

provement of around 5%. When the literature is carefully examined, it is seen that SSL
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architectures are used more widely in human action recognition and motion recognition

fields [54–56]. Therefore, stress recognition is still a new field for SSL architectures.

Table 3.2 shows the summary of the studies in the literature.

Table 3.3. Literature Review on Stress Detection via Unsupervised Learning Models

Article Stress Sensor Stress Signal Stress Test Environment Unobstrusive
Number of

Participants

Duration Method

Wu

et al. [35]

Empatica E4
EDA BVP

STAI Laboratory Yes 169 10-20 Minutes
K-Means

Wang

et al. [36]

ECG Electrodes

EMG Electrodes

Respiration Sensor

Skin Conductivity Sensor

ECG EMG

GSR HR RESP

Comparative Questionnaire Car No 7 65-93 Minutes
Autoencoder+AdaBoost

Our Work Empatica E4
EDA BVP

ACC ST

PSS-5 Questionnaire Daily Life Yes 14 989 Hours

K-Means

DBSCAN

BIRCH

3.3. Stress Prediction with Unsupervised Learning (UL) Models

Table 3.3 shows the summary of the studies in the literature and our UL imple-

mentation. Wu et al. [35] set up a simulation environment for the experimental group

of 169 fifth and sixth grade medical students in Presage Training Center. Although

ACC, BVP, EDA, IBI, and ST data are collected with the Empatica E4 smartwatch,

especially EDA and BVP signals are used. Subjects are called to collect 42, 43, 40, and

44 samples daily for 11 days in 4 different simulation rooms. The subjects deal with the

patients by pretending to be doctors working in the clinic in a simulation environment.

In this case, the created simulation environment expressed the stressed class, and the

2-3 minutes before the simulation formed the baseline class. Physiological signals are

passed through segmentation, filtering, and feature extraction stages. K-Means clus-

tering algorithm is trained with the obtained features. Algorithm success is measured

using the Silhouette Score (SS). When the SS is examined by giving a different number

of clusters to the algorithm, the highest performance result of 0.49 is obtained for two

clusters (baseline and simulation). They compared the obtained results with some of

the studies they went through in the related work section. However, these compari-
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son results are far from benchmarking. In addition, this study, which proceeds on the

assumption that the stress level of the subjects will increase in the simulation environ-

ment, is not realistic. However, it is a study that we examined in order to compare the

Silhouette Score results of the K-means algorithm that we are using. Another unsu-

pervised learning study conducted in a semi-restricted environment is to recognize the

stress level of drivers [36]. Researchers preferred to use the previously prepared Stress

Recognition in Automobile Drivers (SRAD) dataset. The experiment took place on

the streets of Boston, Massachusetts. It comes out of different scenarios such as Rest,

City-driving and Highway-driving. The SRAD dataset consists of different physiolog-

ical signals such as EMG, ECG, GSR, HR, and RESP. The proposed model consists

of two parts. The first is the Pseudoinverse Learning Algorithm based Autoencoder

(PILAE) revealed in their previous research, and the other is the ensemble classifier

using the AdaBoost algorithm. They reported the ROC curves of the three classes

(Low, Medium, and High) classified for ECG, EMG, Foot Galvanic Skin Response

(FGSR), Hand Galvanic Skin Response (HGSR), HR, and RESP. The most successful

results were obtained in classification using the FGSR signal. They also extended their

experiments with multiple signals obtained by fusion. In terms of performance metrics

such as test accuracy and training time, better results were obtained compared with

the results of the studies in the literature.
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4. PROPOSED SEMI-SUPERVISED LEARNING

ARCHITECTURES

In Chapter 1, we talked about how difficult to collect daily life stress data and

obtain the corresponding ground truth. Based on this problem, we stated that SSL

architectures would be a vital solution. SSL models provide significant advantages

by working with a less amount of labeled data. The architecture we propose via

SSL consists of two parts, as seen in Figure 4.1. The multi-sensor raw physiological

data is prepared by fusion techniques, and then the raw data is used as input in

our Label Propagation and Deep Autoencoder models. This section will detail our

data collection principles, wearable device framework, ground truth collection, ethical

consent, theoretical formulation, and implementation of SSL models.

4.1. Experiment Design

When the studies in the literature are examined, few studies are using daily

life data. Stress detection studies are mostly concentrated in restricted environments

and semi-restricted environments. We focused on non-restricted environments, as we

saw the deficiency here and wanted to deepen the research. The primary purpose

of experiments in non-restricted environments is to follow the subjects in their daily

lives. Unobtrusive, light wearable designs are preferred because it is necessary for the

subjects to continue their daily lives uninterruptedly.

4.1.1. Data Collection Unit - Empatica E4 Wristband

After analyzing the studies in the literature, we deduced that it is not realistic

to use incommodious sensor designs in unrestricted areas. We decided to use the

unobtrusive Empatica E4 smartband as a sensor to observe the stress situation of

individuals under real-life conditions. With the help of its multi-sensor design, it can

collect data such as BVP, EDA, ACC, and TMP. Wristband also can work with IOS
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Figure 4.1. The Overview of the Stress Detection System with Three Different

Learning Model Types
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Table 4.1. The Sampling Frequencies of Empatica E4 Sensors

Physiological Signal Sampling Frequency

EDA 4 Hz

BVP 64 Hz

ACC 32 Hz

ST 4 Hz

and Android operating systems, and send data to Empatica Cloud in real time. The

obtained signals were used in the designed models without feature extraction. Signals

with different sampling frequencies from multi sensors are synchronized with a python

script according to start and end timestamps. Windowing or artifact removal methods

were not used on the physiological data. Instead, the dataset was created by taking the

averages of the BVP, EDA, ACC, and TMP data per second. The sample was created

for that second by averaging 64 elements of the BVP signal with a sampling frequency

of 64Hz. The exact process was applied to other physiological signals, considering

their sampling. Frequencies are shown in Table 4.1. Since Empatica E4 smartband

battery life supports 24+ hours in streaming mode and 48+ hours in memory mode,

the subjects charged the watch every three days. While this charging process was

taking place, users were requested to upload the collected data to the cloud. Since

the subjects were followed entirely in their daily lives, they were not exposed to any

test scenarios or restrictions. Similarly, they were not exposed to unrealistic stressors.

The obtained dataset consisted of Subject IDs, Session IDs, used Empatica E4 Device

ID, Timestamp, UTC Start Time, UTC End Time, and the Perceived Stress Score to

synchronize with the physiological data.

4.1.2. Ground Truth Collection

The daily life experiment was carried out on 14 participants who were university

students aged between 20 and 25 (Nine male and five female). Empatica E4 smart-

bands are given to all participants for one week. They were instructed to wear these
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smartbands for twelve hours a day, between 9 a.m. and 9 p.m in their daily routine.

These days were not specifically chosen consecutively. Ecological Momentary Assess-

ments (EMAs) were collected. Thus, ground truth was gathered about the stress levels

of the subjects. Participants are required to fill in the questionnaire every three hours.

The three-hour intervals are called the session. To ensure the gathering of self-reports,

reminder e-mails and questionnaire link were sent. Survey questions can be seen in

Figure 4.2. A survey app was used to deliver the questionnaire to the participants.

Finally, 989 hours of physiological sensor data and 332 EMAs obtained. More details

about the data collection procedures and dataset can be found in the previous study

of our research group [57].

4.1.3. Ethics

The procedure of the methodology used in this study was approved by the In-

stitutional Review Board for Research with Human Subjects of Boğaziçi University

with the approval number 2018/16. Prior to the data acquisition, each participant re-

ceived a consent form, which explains the experimental procedure and its benefits and

implications to both the society and the subject. The procedure was also explained

vocally to the subject. The data collection procedure and all of the interventions in

this research fully meet the 1964 Declaration of Helsinki [58]. All of the data are stored

anonymously.
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Figure 4.2. PSS-5 Survey used for Ground Truth

[57]
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4.2. Label Propagation Algorithm

Label propagation is an SSL technique based on the graph theory. In an approach

where nodes represent data samples, edges represent the similarity between nodes.

Propagation provided through nodes with known labels enables unlabeled nodes to

turn into labeled nodes similar to them [59]. The red and blue samples that appear in

Figure 4.3 actually illustrate the less amount of labeled data the LP algorithm uses.

Classes are tried to be obtained by propagation technique between labeled samples

(red, blue) and unlabeled samples (white).

4.2.1. Theoretical Formulation and Preliminaries

The LP algorithm was developed by Zu and Ghahramani [60]. The mathematical

formulation of this study express the labeled data as

(x1, y1)...(xn, yn), where YN = (y1...yn) ∈ {1...C}, (4.1)

where YN refers to the labels for the different classes we have available in our dataset.

While C expresses the number of classes, it is accepted that there are samples from

each class in the dataset. Unlabeled data and the entire dataset are expressed as

(xn+1, yn+1)...(xl+t, yl+t), where YT = (y1...yt), (4.2)

X = {x1...xl+t} ∈ RD. (4.3)

The ultimate goal is to estimate YT using X and YN . A fully connected graph in-

frastructure has been designed to solve the problem. While each data sample in the

dataset represents a node, the relationship between nodes is weighted using the Eu-
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clidean distance. The weights can be expressed mathematically as

wij = exp

(
−
d2ij
σ2

)
, (4.4)

where labels are propagated to all unlabeled data samples over the edges determined

by weights. σ is used as a control parameter for calculating weights. The probabilistic

transition matrix is used to assign the labels correctly. Thus, the labels of nodes can

be updated over the edges with higher weights. The matrix can be expressed as

Tij = P (j → i) =

(
wij∑l+t
k=1wkj

)
. (4.5)

The probability of transition from node j to node i is calculated through the Tij

matrix defined in (l + t)(l + t). As can be seen from the formula, this calculation

changes according to the weight of the edges between the nodes. Matrix Y , whose size

is defined as (l+ t)C depending on the number of classes, keeps the label probabilities

of the nodes. The working principle of the algorithm consists of three basic steps:

(i) All nodes propagate labels using the probabilistic transition matrix Y .

(ii) Y matrix rows are normalized to provide the class probability interpretation.

(iii) Run Step 2 until Y converges.

4.2.2. Algorithm Implementation

The algorithm is implemented using the scikit-learn library [61]. The strategy

followed during implementation is as follows:

(i) Split the dataset into training and test sets.

(ii) Split the training dataset into labeled and unlabeled sets.

(iii) Predict the labels of unlabeled samples with the label propagation algorithm.

(iv) The pseudo-labels, which are the outputs of the Label Propagation algorithm,

are replaced with unlabeled samples in training dataset.
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Figure 4.3. Label Propagation Through Labeled Data Samples.

(v) Training the classifier with the new augmented dataset of labeled and pseudo-

labeled samples.

(vi) Use this model to predict test data.

4.3. Autoencoder Architecture

Autoencoder studies were first published in 1986 [62]. They proceeded with the

perspective of unsupervised learning to learn about the internal representation of the

data. Basically, the input, which is encoded with the help of a neural network, is tried

to be reconstructed by extracting the informative parts of the data.

4.3.1. Theoretical Formulation and Preliminaries

Autoencoder was expressed mathematically by Pierre Baldi [63]. The encoder

and decoder functions can be expressed as

Y : Rn → Rp (encoder), (4.6)
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Figure 4.4. Autoencoder Architecture

Z : Rp → Rn (decoder). (4.7)

While learning the above functions, it is necessary to consider some constraints. One

of these constraints is expressed as

arg minY,ZE[∆(x, Z o Y (x)]. (4.8)

In this expression, expectation over the distribution of x is calculated with the help of

operator E. ∆ operator expresses the reconstruction loss function by calculating the

distance between the encoder input and the decoder output.

4.3.2. Algorithm Implementation

The autoencoder, which is an UL technique, was designed to create an SSL ar-

chitecture in our study. By showing only a less amount of the non-stress samples to

the autoencoder model, the best representation of the non-stress class will be learned

by the model. Then, with the same model, stress samples will be generated differ-

ently from non-stress samples. Thus, the autoencoder will be able to distinguish the

automatically generated stress samples. The flow of the algorithm is as follows
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(i) Create the autoencoder network with input and output layers.

(ii) Apply Min-Max Normalization.

(iii) Training the autoencoder model with a less amount of non-stress samples.

(iv) Create a new network consisting of the weights of the trained network (This will

create a network of latent representations of non-stress samples).

(v) Predicting raw non-stress and stress samples’ hidden representation.

(vi) Hyper-parameter tuning in parameter space (hidden layer sizes, activation func-

tion, solver, alphas, learning rate).

(vii) Training and validating the classifier with the dataset containing the latent rep-

resentation with the best parameters.

4.4. Experimental Results & Discussion

Since we used three different learning techniques and different models in our

research, we thought it would be beneficial to use other performance metrics. The

Silhouette Score metric has been chosen for clustering algorithms. It will be discussed

in detail in the relevant section.

• Accuracy: A ratio of correctly classified observations to the total observations

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.9)

• Precision: A ratio of correctly classified positive observations to the total clas-

sified positive observations

Precision =
TP

TP + FP
. (4.10)

• Recall: A ratio of correctly classified positive observations to the all observations

Recall =
TP

TP + FN
. (4.11)
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• F-Measure: Weighted average of precision and recall

Precision =
TP

TP + 1
2
(FP + FN)

. (4.12)

• Silhouette Score: Metric that measures separation quality among clusters

Let’s assume:

p = Mean distance to the points in the nearest cluster

q = Mean intra-cluster distance to all the points.

SS =
(p− q)

max(p, q)
. (4.13)

4.4.1. LP Algorithm Hyperparameter Tuning Stages and Results

The LP algorithm has two different kernel functions. Therefore, before starting

the performance evaluation, we experimented with which kernel we would use in the

algorithm. Thus, the best performance result of the LP algorithm was obtained by

choosing the correct kernel function. LP algorithm has kNN or RBF options as its

kernel. Table 4.2 and Table 4.3 show the performance metrics obtained using these

two kernels. LP algorithm with kNN kernel, we observe that the precision score is

high for both classes. f-Measure is also acceptable (0.9 for non-stress class and 0.7 for

stress class). The important point is that the original dataset is partially imbalanced

toward non-stress class value count being three times the value count (or the number

of samples) of stress class (Almost 1.5 million class-0 and 0.5 million class-1 samples).

Thus obtaining a high f1-score for class-0 is pretty natural, but still we obtained 0.75

f1 score for class-1, which is acceptable. However, the performance results of the LP

algorithm with the RBF kernel are lower than the kNN kernel version. If Table 4.3 is

sifted through, f-measure and recall scores are lower. Especially in the non-stress class,

the success of the RBF kernel function has decreased. Considering the performance

metrics, it has been confirmed that using kNN as a kernel function in the LP algorithm

will perform better. Now we have new labels successfully classified by the LP algorithm.

After adding those observations to the training data (by replacing the unlabeled data
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Table 4.2. Classification Report of Label Propagation Algorithm

(Selected LP Kernel = kNN)

Class Precision Recall f-Measure

Non-Stress 0.86 0.99 0.92

Stress 0.97 0.72 0.75

Macro Average 0.92 0.86 0.84

Weighted Average 0.89 0.92 0.88

Table 4.3. Classification Report of Label Propagation Algorithm

(Selected LP Kernel = RBF)

Class Precision Recall f-Measure

Non-Stress 0.86 0.85 0.83

Stress 0.88 0.62 0.68

Macro Average 0.87 0.74 0.76

Weighted Average 0.86 0.80 0.79

with the new predictions) on which we are moderately confident. These are called as

pseudo-labeled as contrasted to labeled data. Then, we trained this new (augmented)

dataset using different classifiers and used these models to predict the accuracy of the

test data (with 651600 samples). Performance comparison between these classifiers was

made by examining the accuracy score. In Figure 4.5, although classifier performance

results are close to each other, the highest accuracy score was obtained with the random

forest classifier. With such a small set of labeled and unlabeled datasets, with the help

of LP algorithm we obtained an acceptable accuracy of 75% on this test set. After this

stage, hyperparameter tuning was performed to improve the performance of the random

forest classifier. The RF algorithm consists of many parameters. We used max depth

and n estimators parameters in the hyperparameter tuning process. Because these

two parameters are directly related to the learning ability of the classifier, if they are

tuned correctly, the results can be improved. Therefore, we can enhance the overall

classification performance with these two parameters:
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Figure 4.5. Accuracy Scores of Different Classifiers After LP Algorithm

• max depth: Maximum depth of tree,

• n estimators : Number of trees in the forest.

Accuracy scores of the RF classifier were obtained for these parameter values

that change relative to each other. The results are shared in Table 4.4. Three different

forest scenarios (100 , 300 , 500) were examined for increasing the maximum depth of

tree values. Increasing the max depth parameter too much causes the model to overfit.

It has been observed that the model overfits the training data for values of max depth

greater than 20. That is why it is bounded to max depth=20. Ascending values of

the n estimators can contribute to better learning of the data as it will increase the

trees in the forest. However, higher values will increase the model’s computational

complexity. Growing it in a controlled way prevents the training time from getting too

long. When the accuracy scores were evaluated, the best performance was obtained

withmax depth=20 and n estimeators=300. Before the n estimator parameter reached

its maximum value, the model’s performance reached saturation. In other words,

the random forest model consisting of 300 trees with a depth of 20 units allowed us

to achieve the best overall performance. In order to understand the success of the

augmented dataset obtained with the LP algorithm, it will be useful to train the RF
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Classifier (with the same parameters) with the real labeled dataset and compare the

results. When RF Classifier is trained with augmented dataset, 77% Accuracy Score

is obtained. When the RF Classifier is trained with the real dataset without pseudo-

labels, 81% Accuracy Score is obtained. Considering the actual size of the dataset and

the labeling burden that the pseudo-labels obtained with the LP algorithm save us;

a performance difference of 4& can give researchers a new direction in line with their

priorities.

4.4.2. Autoencoder Hyperparameter Tuning Stages and Results

We also obtained results with our other model, the autoencoder. It will be use-

ful to visualize the data before hyperparameter tuning. The t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) nonlinear statistical method is very useful for high-

dimensional data visualization.

Table 4.4. RF Classifier’s Accuracy Results for Variable max depth and n estimators

Parameters

max depth
n estimators

100 300 500

2 75.23 75.23 75.23

4 75.49 75.49 75.49

6 75.78 75.78 75.78

8 76.00 75.99 75.99

10 76.11 76.11 76.11

15 76.49 76.50 76.50

20 76.86 76.88 76.86

The t-SNE algorithm was developed in 2008 [64]. Based on the nonlinear di-

mensionality reduction method, high-dimensional data is reduced to two or three low-

dimensional maps. The working logic of the algorithm is that similar objects in high-

dimensional space are assigned a high probability, while dissimilar ones have a low

probability distribution. Then, a similar process is performed in the low-dimensional
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Figure 4.6. Visualization of Stress and Nonstress Classes via t-SNE

space, and the data points are mapped by considering the probability distribution in

these two spaces. The mapping operation is performed using Kullback–Leibler diver-

gence (KL divergence). As seen in Figure 4.6, we reduced the dimensions of the data

using t-SNE and obtained the two-component representation. While the red dots rep-

resent the stress class, the green dots belong to the non-stress class. It is clearly seen

that the samples of the two classes are very close to each other. Therefore, it is a

very challenging dataset to work with simple models.Considering the challenges of our

data, the autoencoder design was carried out. Working with a high-dimensional and

imbalanced dataset on a single layer autoencoder makes it impossible to learn from the

data. Therefore, we designed a Deep Autoencoder architecture using stacks of layers.

In Figure 4.4, Deep Autoencoder architecture is created symmetrically on the encoder

and decoder parts. Encoder and decoder consist of shallow layers and are connected

with a bottleneck. We have conducted many experiments to determine the input nodes

of the shallow layers in the encoder. Considering that we have four features, the dense

layer, which started with a hundred nodes, was gradually reduced to three nodes when

it reached the bottleneck. The bottleneck design decision is quite significant. We have
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seen in the experiments that when the bottleneck size is designed much larger than

the number of features, the network becomes light and flexible. It copies the input’s

low dimensional representation exactly instead of compressing it. On the other hand,

if the bottleneck is designed too narrow, this time the network loses its ability to learn

as it will experience a massive amount of information loss. For this reason, the number

of nodes has been gradually reduced from one hundred to three. In the encoder part,

the layers are designed with a width of 100, 75, 50, 25, and 3 nodes, respectively, until

the end. Since the decoder is symmetric of the encoder, it is designed to reconstruct

the input with 3, 25, 50, 75, and 100 nodes incrementally. Also, the reason why the

width of the nodes in the encoder layers is decreasing and the decoder is increasing

is that we have come to the conclusion that the network can learn much better with

this design. Adding noise to the encoder side of the network provides better learning.

We decided that it would be useful to add L1 regularization to the encoder’s initial

layer so that the features can be learned better. As a result of the experiments, the

L1 regularization value was chosen as 0.00001. We used MSE Loss (Mean Squared Er-

ror Loss) to measure the error between the actual input and the reconstructed input.

Different activation functions can be used within the layers of the Autoencoder model.

As a result of experiments using only tanh or only ReLU, we have seen that making a

mixed design results in much better performance. In this direction, we used tanh in the

first two layers of the encoder, and we used tanh in the last two layers of the decoder.

The remaining layers were created using the ReLU activation function. Deep autoen-

coder consists of many stacked layers. Training it recursively involves a large number

of parameters. For this reason, the probability of the designed models being overfit

increases. In addition, it takes a lot of time to converge for models with thousands of

parameters. Batch normalization is a fundamental method for reliable network design

and adequate convergence time. Moreover, it helps to create less reaction to sudden

changes in the input and hidden layers. We also used of batch normalization to avoid

overfitting and shorten the long training time during layer designs. We created a batch

normalization layer after each dense layer. Since the encoder and decoder are sym-

metrical, we used batch normalization in both parts. As a result of the experiments,

thanks to batch normalization, overfit possibility of our model was eliminated. We also
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Table 4.5. Final Deep Autoencoder Model Summary with Parameters

Autoencoder Layers Output Shape Parameters

input 1 (InputLayer) (None, 4) 0

dense (Dense) (None, 100) 500

batch normalization (BatchNormalization) (None, 100) 400

dense 1 (Dense) (None, 75) 7575

batch normalization 1 (BatchNormalization) (None, 75) 300

dense 2 (Dense) (None, 50) 3800

batch normalization 2 (BatchNormalization) (None, 50) 200

dense 3 (Dense) (None, 25) 1275

batch normalization 3 (BatchNormalization) (None, 25) 100

dense 4 (Dense) (None, 3) 78

dense 5 (Dense) (None, 3) 12

batch normalization 4 (BatchNormalization) (None, 3) 12

dense 6 (Dense) (None, 25) 100

batch normalization 5 (BatchNormalization) (None, 25) 100

dense 7 (Dense) (None, 50) 1300

batch normalization 6 (BatchNormalization) (None, 25) 100

dense 8 (Dense) (None, 75) 3825

batch normalization 7 (BatchNormalization) (None, 75) 300

dense 9 (Dense) (None, 100) 7600

dense 10 (Dense) (None, 4) 404

Total Params: 28,081

Trainable Params: 27,275

Nontrainable Params: 806
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Figure 4.7. Learning Curves of Our Final Deep Autoencoder Model

achieved sustainable training time. Considering the size of the dataset we have, the

batch size was tried gradually as 32, 64, 18, and 256 during the autoencoder (only non-

stress samples) training phase. As a result, it was seen that the network achieved the

best performance when batch size=256. Many different optimizers can be used while

designing the deep autoencoder model. Stochastic Gradient Descent (SGD) Adam,

Adagrad, and RMSprop are widely used. However, as a result of the experiments we

carried out, we decided that the Adadelta [65] optimizer functions most effectively in

the network. Adadelta, a stochastic gradient descent method with an adaptive learn-

ing rate, gave more successful results. Primarily, the optimizer’s ability to adapt itself

without depending on the initial learning rate provided convenience in the hyperpa-

rameter tuning phase. A detailed summary of the deep autoencoder model can be seen

in Table 4.5. While making this design, the decision was taken according to the best

training performance result by examining the loss and accuracy curves in Figure 4.7.

Our autoencoder network is trained with non-stress class samples. Thanks to the

accessible weights of the autoencoder model, it is possible for us to access the latent

representation of the non-stress input. To use these weights of the trained network, we

can create a new network with hidden layers. Thus, we will predict raw stress and non-

stress data through these sequential weight layers. Since the network is trained with



45

Table 4.6. First Experiments of Deep Autoencoder Model Summary

Autoencoder Layers Output Shape Parameters

input 1 (InputLayer) (None, 4) 0

dense (Dense) (None, 100) 500

dense 1 (Dense) (None, 50) 5050

dense 2 (Dense) (None, 50) 2550

dense 3 (Dense) (None, 100) 5100

dense 4 (Dense) (None, 4) 4004

Total Params: 13,604

Trainable Params: 13,604

Nontrainable Params: 0

the non-stress class, it will sense the difference while predicting the samples of the stress

class. While designing the network consisting of weights, the number of layers of the

autoencoder model should be taken as a reference. Otherwise, the latent representation

of input cannot be used correctly. The encoder consists of five dense layers and four

batch normalization layers (same structure in the decoder side). There are weights

of ten separate layers in total that we can access together with the input layer. In

this case, it would be appropriate to make the latent representation network with ten

layers. It is vital to correctly parameterize the encoder, decoder, and bottleneck layers

of the deep autoencoder model. The model’s inability to learn leads to its inability

to reconstruct input samples. In our scenario, the model that cannot learn non-stress

samples will not be able to predict stress samples. Such a design cannot be expected

to perform well. To explain this better, it would be meaningful to share the results of

the simpler autoencoder model we designed before finding the final model parameters.

Table 4.6 shows the simpler autoencoder model we designed first. There are no batch

normalization layers, less dense layers, the bottleneck size is much larger than the

size of the input, and the number of trainable parameters that the model can learn is

almost half of our final model. We talked about the importance of tuning the batch

normalization layers and bottleneck size correctly to eliminate the overfitting problem.
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Figure 4.8. Problematic Learning Curves of Experimental Autoencoder Model

Figure 4.9. Latent Representation of Stress and Nonstress Classes via t-SNE
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Table 4.7. Classification Report of Logistic Regression Classifier(solver=lbfgs)

Class Precision Recall f-Measure

Non-Stress 0.62 0.67 0.64

Stress 0.58 0.54 0.56

Accuracy 0.61

Table 4.8. Classification Report of Logistic Regression Classifier (solver=saga)

Class Precision Recall f-Measure

Non-Stress 0.63 0.68 0.65

Stress 0.60 0.56 0.57

Accuracy 0.63

Let’s look at the learning curves in Figure 4.8 of this experiment where these param-

eters could not be tuned precisely. As can be seen from the curves, it is clear that

the model directly overfits the training data. For this reason, making predictions be-

hind the input reconstruction with such an autoencoder model will produce fallacy

and biased results. Figure 4.9 shows the success of the classification of stress and

non-stress samples reconstructing the latent representation of non-stress input. After

this stage, we can examine the success of the dataset we obtained with the deep au-

toencoder model using different classifiers. Considering Figure 4.9, we started with

the linear classifier. The performance results are obtained when the Limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm is used as a solver. However,

when Table 4.7 is examined, the classifier prediction results are not very satisfying. The

overall accuracy 0.61 is slightly above 50%, which has a lot of room for improvement.

L-BFGS solver is only capable of L2 regularization, and this can create a constraint.

So we repeated the experiments using the SAGA optimizer. SAGA is a solver that

offers fast linear convergence rates in big datasets. However, the performance results

obtained with SAGA are slightly better than the L-BFGS solver results. In Table

4.8, the overall classifier accuracy increased to around 0.63. When these results are

evaluated, expected performance scores are still not achieved. The augmented dataset

we created through the LP algorithm was reported with the RF classifier. In order
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Table 4.9. Classification Report of RF Classifier(max depth, n estimators)

Class Precision Recall f-Measure

Non-Stress 0.64 0.84 0.72

Stress 0.77 0.53 0.62

Accuracy 0.68

Table 4.10. Classification Report of MLP Classifier (default parameters)

Class Precision Recall f-Measure

Non-Stress 0.65 0.73 0.69

Stress 0.69 0.61 0.65

Accuracy 0.68

to compare the dataset we created with our deep autoencoder model with the LP,

RF classifier was used with similar parameters(max depth=20, n estimators=300 ). In

Table 4.9, RF classifier accuracy score was obtained as 0.68. Although it seems to be

more successful than the LR classifier, it is still a result that is open to improvement.

Moreover, when the RF Classifier was trained for similar parameters, it was revealed

that the augmented dataset created by the label propagation algorithm gave better

results than the dataset created with the deep autoencoder. As the next step, it would

be useful to examine how close we are to the performance of the label propagation al-

gorithm by training a more strong classifier. For this reason, experiments were carried

out with the MLP classifier. First, the classifier was trained with its default parame-

ters, and performance results were obtained. The parameters used during the initial

training are:

• Hidden Layer Size = (100, ),

• Activation Function = ReLU,

• Solver = Adam,

• Alpha = 0.0001,

• Learning Rate = Constant.
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Table 4.11. Parameter Grid via GridSearchCV

Parameters Parameter Values

Hidden Layer Size [(50, 50, 50), (50, 100, 50), (100,)]

Activation Function [‘lbfgs’, ‘sgd’, ‘adam’]

Solver [‘logistic’, ‘tanh’, ‘relu’]

Alpha [0.00001, 0.0001, 0.05]

Learning Rate [‘constant’, ‘invscaling’, ‘adaptive’]

Table 4.12. Classification Report of MLP Classifier (Hyperparameterized)

Class Precision Recall f-Measure

Non-Stress 0.81 0.73 0.77

Stress 0.72 0.80 0.76

Accuracy 0.76

The MLP classifier performance results, which were trained using the above pa-

rameters, are given in Table 4.10. The maximum performance of the RF Classifier has

been achieved with the basic MLP Classifier without parameter tuning. In this case,

it will be useful to evaluate the results by examining a more comprehensive parameter

grid. Hyperparameter tuning is performed in a wide parameter space, and the param-

eters that provide the best estimation of the model are obtained with the scikit-learn

library GridsearchCV tool. The best parameters were obtained after hyperparameter

tuning with the parameter space in Table 4.11:

• Hidden Layer Size = (50, 100, 50),

• Activation Function = tanh,

• Solver = Adam,

• Alpha = 0.0001,

• Learning Rate = Adaptive.

Performance results are obtained with these tuned parameters. Table 4.12 shows

the performance results of the model after hyperparameter tuning. Compared to the
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simpler autoencoder design, much more successful and improvable results were obtained

with the deep stacked autoencoder model. The final model achieved 81% precision score

for class-0 (non-stress) and 72% for class-1 (stress). When f-Measure was examined,

77% score was achieved for non-stress, 76% score was achieved for stress classes. After

all, we were able to achieve 76% accuracy from the classifier we trained with the new

augmented dataset that prepared with the deep autoencoder model. Promising results

were obtained using a less amount of labeled samples from an imbalanced dataset with

75.17% nonstress class and 24.83% stress class. In order to understand the success

of the augmented dataset we obtained with the deep autoencoder model, we trained

the MLP classifier with the real dataset (with the same parameters). It can be seen

above that the accuracy score obtained with the Augmented dataset is 76%. The

accuracy score of the MLP Classifier trained with the real dataset is 79%. There is a

3% difference between the performance of the models trained with augmented and real

dataset. This proves that the deep autoencoder model creates an important trade-off

with the SSL perspective.
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5. EXPERIMENTS WITH SUPERVISED LEARNING

ARCHITECTURES

There are many different conventional machine learning algorithms used in this

field; we summarized them in Table 3.1. When the literature is examined, we have

seen that working with raw sensor data and using deep learning architectures are more

challenging and rare. For this reason, we decided to use LSTM and CNN-LSTM

deep learning architectures. Since physiological sensor data is time-series, it would be

advantageous to start the design with an architecture like LSTM that uses sequential

input.

5.1. LSTM Networks

The recurrent neural network (RNN) is an artificial neural network with reasoning

capability. They form repetitive cells with directed or undirected connections to each

other. This creates a temporal sequence via a loop.

Figure 5.1. Simple Representation of Recurrent Neural Network

When Figure 5.1 is examined carefully, it can be seen that a t-long list can be

created when the main loop is opened. Basically, it is desired to create a memory by

using the information from the previous neural network cell as an input. It has been
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used in various fields such as image captioning and speech recognition. But when RNN

creates a memory using the past context, it can not go back very far. This issue is called

the long-term dependency deficit. Hochreiter et al. [66] designed the Long Short-Term

Memory (LSTM) to solve this problem. Although LSTM is basically RNN, it is a new

generation version of RNN that solves the long-term dependency problem. In LSTM

cells, different from RNN, new layers are added, and information is carried longer.

Figure 5.2. Simple Representation of LSTM

5.1.1. Theoretical Formulation and Preliminaries

The mathematical representation of the LSTM cell in Figure 5.2 is as follows:

ft = σ(Wf .[ht−1, xt] + bf ), (5.1)

where forget gate is a sigmoid function. For 0 and 1 states, it is determined whether

the input stays in the cell or not. The remaining input gate, cell update, cell state
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layers are expressed as

it = σ(Wi.[ht−1, xt] + bi), (5.2)

Ĉt = tanh(WC .[ht−1, xt] + bC), (5.3)

Ct = ft ∗ Ct−1 + it ∗ Ĉt. (5.4)

The input gate (it) layer and cell state (Ct) layers help to decide and store new infor-

mation in the cell. In Ct, the old state Ct−1 is deleted from memory by multiplying

with ft. Output gate and final output are expressed as

ot = σ(Wo.[ht−1, xt] + bo), (5.5)

ht = ot ∗ tanh(Ct). (5.6)

Finally, the required parts of the current cell state are extracted with the last sigmoid

function. Ct is scaled with the tanh function and the ht is obtained.

5.2. CNN-LSTM Networks

In Chapter 5.1, we talked about LSTM networks. They offer a special memory

capacity through the layers they contain in their cells. The convolutional neural net-

work (CNN) is an artificial neural network mostly used on visual data [67]. It allows

extracting valuable features from the data using the convolution operation. CNN ba-

sically consists of 3 separate layers:
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Figure 5.3. Our Architecture Design of the LSTM and CNN–LSTM Neural Networks

• Convolutional Layer:

The dot product of the learnable parameters matrix of the data and the kernel

function matrix is performed. Most of the computational load on the network is

handled here. The kernel creates the activation map by moving in two dimen-

sions, taking into account the height and width of the data. The sie of this sliding

movement of the kernel is called stride.

• Pooling Layer:

The pooling layer helps to eliminate the computational burden by reducing the

size of the feature maps obtained through the convolutional layer. It reduces the

representation size to a reasonable level by summarizing feature maps.

• Fully Connected Layer:

It provides a convenient representation between input and output. In fully con-

nected layer (FCL), input with distributed representations passing through dif-

ferent layers is converted to a single vector form.

Video and image data do not have a linearity principle. For this reason, nonlinear

functions such as sigmoid, tanh, or ReLU are used to perform nonlinear operations

in the network. These functions are selected during model design. For example, the
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Table 5.1. Number of Trainable Parameters of LSTM Network

Modules Parameters

lstm.weight ih l0 80

lstm.weight hh l0 400

lstm.bias ih l0 20

lstm.bias hh l0 20

fc.0.weight 12000000

fc.0.bias 1000

fc.2.weight 1000

fc.2.bias 1000

fc.3.weight 1000

fc.3.bias 1

Total Trainable Params: 12,004,521

sigmoid function takes a value between 0 and 1, while the tanh function takes a value

between -1 and 1. In recent studies, hybrid versions of CNN and LSTM networks

have been used [68, 69]. The CNN-LSTM network extracts preliminary features from

the data via CNN and focuses on temporal features with the help of LSTM. We can

define CNN-LSTM networks as an LSTM network variant with CNN layers. This new

hybrid model also gives effective results on time-series. That’s why we wanted to see

the results by experimenting with this model.

5.3. Experimental Results & Discussion

In Figure 5.3, you can see the LSTM and CNN-LSTM based artificial neural

networks we have designed. One of the problems encountered in the literature is that

the time-series data is split by shuffling during training. After such an ill-judged

training, the network performance will be biased as the LSTM network will see the

data sequence ahead and behind. To prevent this, the time-series data split method is

used. In our training sessions, time-series split techniques were used where the k-fold
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Table 5.2. Layers and Input Sizes of LSTM Network

Layers Input Size

LSTM (128, 600, 4)

Flatten (128, 600, 20)

Dense (128, 12000)

ReLU (128, 1000)

BatchNormalization1D (128, 1000)

Dropout(p=0.5) (128, 1000)

Dense (128, 1000)

Sigmoid (128, 1)

cross-validation’s k is five. Thus, we will have four splits in training and one split in

validation. Since the features were not extracted beforehand with raw data, studies

were carried out on the CNN-LSTM architecture. CNN layers provide better feature

extraction before data is fed to the LSTM layer. We planned to extract both spatial

and temporal features from our raw dataset with the hybrid CNN-LSTM deep neural

network.

5.3.1. LSTM Network Hyperparameter Tuning Stages and Results

The models were implemented using the PyTorch Deep Learning Tensor Library

and Google Colaboratory Notebook. Thus, while the models are being trained with our

large dataset, the GPU processing capability of the existing server is utilized by using

the CUDA API. When evaluating the current NVIDIA Tesla T4 GPU performance

and competence, the maximum initial batch size is set to 128. The problem we are

working on is binary classification. In this respect, we decided to make hyperparameter

tuning according to the accuracy score. Moreover, in the final discussion, we can easily

compare the performances of our SSL and UL architectures with the accuracy score.

The parameters we tune while training the LSTM model are:

• Hidden Size,
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• Learning Rate,

• Activation Function,

• Batch Normalization.

The hidden size parameter is the number of features in the hidden state. While

determining this parameter, it was increased gradually, and its final value was obtained.

In experiments:

• hidden size < 20 :

The accuracy score was lower because it was seen that the model was underfitting.

• hidden size > 20 :

The probability of overfitting has increased. It has been clearly seen that the

accuracy score is insufficient.

That is why it is set to hidden size = 20. The learning rate was used as 0.0001. For

larger learning rate values, the probability of over-shooting the global optimum in-

creases. When lower learning rate values are selected, the learning capacity of the

network decreases considerably, and the training time is long. Different activation

functions have been tried. Better performance was obtained with ReLU compared to

the others. Also, ReLU does not allow a negative gradient, which is good for efficient

and fast training. As we used in our deep autoencoder model, the batch normalization

layer was also used in the LSTM network. Thus, we made the LSTM network more

reliable. During training, Binary Cross Entopy (BCE) loss is used instead of MSE loss.

Due to the nature of our problem, it is thought that binary classification can be better

analyzed with the BCE loss. The output layer is designed with sigmoid function in

accordance with the BCE loss. Kingma et al. [70] suggested the advantages of using

Adam optimizer in situations that require sparse and noisy gradients, so Adam was

chosen as the optimizer for both LSTM and CNN-LSTM models. In the models estab-

lished through the PyTorch framework, gradients are set to zero for each batch in the

training phase. This is done before starting backpropagation. Because PyTorch models

tend to keep these gradients. To prevent this, we reset the gradients by calling the zero

gradient method with the help of the optimizer. By performing the gradient cleaning
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Table 5.3. Number of Trainable Parameters and Training Time of Networks

Network Parameters GPU (seconds) CPU (seconds)

LSTM 12,004,521 220 5000

CNN-LSTM 1,030,753 115 8000

after each backward pass, we ensured that the parameters were updated correctly. If

this zero gradient method is not applied correctly, it causes the old used gradients

to interfere with the newly computed gradients. After the hyperparameter tuning is

completed, the layers of the finalized model and the number of trainable parameters

formed in these layers are shared in Table 5.1. The final LSTM network architecture

and input sizes are given in Table 5.2. To understand the virtue of using GPU, we

also trained the LSTM model via CPU. We shared the training times in Table 5.3. In

training with the GPU, each iteration took 2.2 seconds, while the CPU took 50 seconds

per iteration. Each iteration consists of one forward pass and one backward pass. The

GPU enabled 23x faster training iterations.

5.3.2. CNN-LSTM Network Hyperparameter Tuning Stages and Results

As in the LSTM network, the hyperparameter tuning in the CNN network is

based on the accuracy metric. In addition to accuracy, loss curve, f-measure, recall

and precision metrics were also checked simultaneously. In the training phase of the

LSTM network, the capacity of the current GPU was evaluated and the maximum batch

size was selected as 128, and this value was continued to be used in the CNN-LSTM

network. Since the overall network consists of CNN and LSTM parts, the parameters

are tuned in two separate parts. The tuned CNN network parameters are:

• Kernel Size,

• Stride,

• Hidden Size.

The dimensions of the dataset is taken into account when determining the dimensions
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of convolution layers, kernel size, and stride. Considering that there are four attributes

in the convolution layer, the kernel size and stride have been tested from one to three

to extract these features. Although the CNN model extracts more information when

the kernel size is selected as one, choosing two provides better performance in the

case of overfitting. When the kernel size is chosen as three, it is observed that the

accuracy score decreases, and the final decision is made as kernel size=2. Since we use

1D convolution layers and the kernel size is selected as two, stride=1 is set. While

determining the stride, this result was reached by testing the mutual values with the

kernel size. While the CNN network hidden size parameter was determined, similar

findings were observed in Section 5.3.1, so this parameter was kept the same with its

value in the LSTM network.

Layers of the LSTM network part have been designed considering Section 5.3.1.

Input sizes are rearranged according to the output of the CNN network part. The layers

of the finalized CNN-LSTM model and the number of trainable parameters formed in

these layers are shared in Table 5.4. The CNN network part of the CNN-LSTM model

has put a severe load on the CPU. Training time with CPU takes 70x longer. The train-

ing duration of the CNN-LSTM network was lower than the LSTM network. Training

the CNN-LSTM model with the GPU took 1.1 seconds per iteration. It is even 2x faster

than training the LSTM network with a GPU. Considering the performance metrics in

Table 5.5, a more successful result was obtained with the CNN-LSTM network. The

time-series split method was used as a cross-validation strategy, thus preventing the

model from being trained with samples from the future sequence. In the literature, this

often leads to biased performance results. Thus, our LSTM and CNN-LSTM models

were built with a correct cross-validation strategy. The results obtained are at a level

to compete with the performance results in the literature. Accuracy, Precision, Recall

and f-measure results of the CNN-LSTM model were obtained slightly better perfor-

mance than those of the LSTM model. Figure 5.4 shows the results of these metrics

prepared per iteration. Even though we performed 100 epoch trainings, the model

was saturated around the 80th iteration. Very similar curves are also obtained in the

LSTM model for these performance metrics.
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Table 5.4. Number of Trainable Parameters of CNN-LSTM Network

Modules Parameters

cnn.0.weight 307200

cnn.0.bias 256

cnn.1.weight 256

cnn.1.bias 256

cnn.3.weight 65536

cnn.3.bias 128

cnn.4.weight 128

cnn.4.bias 128

lstm.weight ih l0 40

lstm.weight hh l0 400

lstm.bias ih l0 20

lstm.bias hh l0 20

fc.0.weight 655360

fc.0.bias 256

fc.2.weight 256

fc.2.bias 256

fc.3.weight 256

fc.3.bias 1

Total Trainable Params: 1,030,753
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Figure 5.4. Performance Results of CNN-LSTM Network

Table 5.5. Classification Results of LSTM and CNN-LSTM Networks

Algorithm Accuracy f-Measure Precision Recall

LSTM 90.38 82.60 83.18 82.01

CNN-LSTM 91.35 83.84 85.70 82.09

In Table 5.5, the performance results of the LSTM and the CNN-LSTM models

are given together. Although the results were close to each other, CNN-LSTM model

ensured improvement.One of the main reasons for this is that thanks to the CNN layers,

more informative features were extracted from the raw data and fed to the LSTM layers.

This increased the overall performance. Besides this performance improvement, there

is another very valuable output provided by the CNN-LSTM model. Training using

the GPU took much less time with the CNN-LSTM network, these type of models will

make it easier to work with a large dataset.
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6. EXPERIMENTS WITH UNSUPERVISED LEARNING

ARCHITECTURES

In this learning technique, the model is expected to learn the internal represen-

tation of the data without the use of labels. Clustering is in this category. Clustering

algorithms look for solutions by considering the similarity of the samples and their dis-

tance from each other in the feature space. It aims to separate homogeneous subgroups

in the dataset by using this statistical similarity. The clustering algorithms to be used

may vary depending on the difficulty of the problem. We worked with three different

clustering algorithms. Some of these algorithms must first be given parameters such

as the number of clusters or the minimum distance between observations. With the

hyperparameter tuning algorithm, we enabled the model to choose the most appropri-

ate number of clusters itself. To eliminate the initialization for the number of clusters,

the optimal number of clusters is taken from the algorithm by checking the Silhouette

Score metric during the hyperparameter tuning phase.

6.1. K-Means

K-means is among the most known and used clustering algorithms. It works

on minimizing the average squared distance of the samples in the same dense region

(cluster). When the problem is defined mathematically, the dataset can be defined as

X = {x1, ..., xu} ∈ Rt, (6.1)

C = {c1, ..., cv} ∈ k = (1, ..., v), (6.2)

p = [pik]t×v , where pik ∈ {0, 1}, (6.3)
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where C represent Cluster Center, p represents Cluster Indicator. In t-dimensional

Euclidean space, whether any data point belongs to the k-th cluster is checked by eq.

(6.3). We can express the objective function of the algorithm as

J(p, C) =

(
u∑

i=1

v∑
k=1

pik∥xi − ck∥2
)
. (6.4)

The Euclidean distance between data points and cluster centers is updated to minimize

the iteratively calculated objective function.

6.2. BIRCH

Since traditional clustering algorithms such as K-means are open to improvement

in areas such as running time, memory management and processing performance, we

thought that BIRCH, defined as Balanced Iterative Reducing and Clustering using

Hierarchies, could yield more effective results. BIRCH, which creates a meaningful

and informative summary dataset from a large original dataset, aims to eliminate the

disadvantages of traditional clustering algorithms by applying clustering on the new

summary dataset. Zhang et al. [71] expressed their algorithm flow as follows:

• Data Loading,

• Initial Clustering Feature (CF) Tree,

• Smaller CF Tree,

• Good Clusters,

• Better Clusters with Cluster Refining(Optional).

The CF specified here refers to the dense information fields obtained in the tran-

sition to the smaller dataset. The CF consists of the number of data points in the

cluster, the linear sum of the data samples, and the squared sum of data samples. The

CF Tree defines the structure whose leaf nodes are conjugated to information-carrying

sub-clusters.
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Figure 6.1. Visualization of K-means Classification Result via PCA

6.3. DBSCAN

In 1996 Ester et al. [72] published the Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) algorithm. Basically, the algorithm examines the high

density and low-density regions of the data points in the data space. It uses epsilon

(eps), which expresses the distance between data points and the minimum number of

data points (minPts) that can form a cluster as parameters. The algorithm working

steps are as follows:

• Random data points are selected until all data points are classified,

• If there are at least minPts data points within the eps radius, this creates a

cluster,

• After the neighborhood calculation is made according to the neighborhood points,

the existing clusters are expanded until the final number is found.

Each data point is classified as Core Points, Boundary Points, and Noise Points with

the help of minPts and eps parameters. There are two important advantages of using

the DBSCAN algorithm compared to K-means. First of all, DBSCAN can work with-
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out knowing the number of clusters a priori. Secondly, while the K-means algorithm

can include the data point that has a weak relationship with the cluster, DBSCAN’s

clustering by detecting noise points gives more effective results in terms of performance.

6.4. Experimental Results & Discussion

Since the size units of the features are different from each other, standardization

was performed using the scikit-learn StandardScale method before the three cluster-

ing algorithms were run. Performance results are obtained for K-means, DBSCAN,

and BIRCH clustering algorithms. Principal Component Analysis (PCA) is used to

visualize how clustering algorithms classify data. After the high-dimensional data is

reduced to two components with the help of PCA, the visualization of the K-means

algorithm is shared in Figure 6.1. One of the points to be considered is that important

information about the data can be lost after PCA is applied to clustering algorithms,

so it would be more accurate to use it for data visualization purposes. During the

hyperparameter tuning phase, Silhouette Score was checked, and the models could

determine the number of clusters themselves. In Figure 6.2, silhouette scores were

obtained for the different number of clusters of the K-means algorithm. The highest

SS was obtained from the algorithm for two clusters. We already knew that there

were two classes in our data, but we validated the K-means algorithm to cluster these

two classes correctly with the SS metric. Similar results were obtained by examining

SS for BIRCH algorithms. In Table 6.1, the silhouette score results for the different

clustering algorithms are displayed. Here, silhouette score results are reported by dy-

namically parameterizing the number of clusters. Although the results are very close

to each other, it can be said that the BIRCH algorithm clusters the two classes better

with a minimal difference. We theoretically stated that the BIRCH algorithm creates

an advantage in terms of running time, CPU utilization, and memory management.

It will be useful to test this theoretical information and report it. The server where

runtime and resource utilization experiments are performed has NVIDIA RTX A2000

GPU, 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz (16 Cores), 32 GB RAM.

While calculating the runtime, this metric was calculated for each function block used
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Figure 6.2. Silhouette Scores for different number of clusters.

Table 6.1. Silhouette Score for dynamically varying number of clusters

Algorithm 2-Cluster 3-Cluster 4-Cluster

K-Means 0.85 0.62 0.61

BIRCH 0.86 0.63 0.62

in the algorithm, and the cumulative sum was obtained. When Table 6.2 is examined,

it is seen that CPU and RAM utilization of the BIRCH algorithm is more efficient

than other algorithms. In addition, a shorter runtime was obtained than the others. It

has been observed that the DBSCAN algorithm’s attempt to handle even the smallest

density regions causes it to run longer and to be more demanding in terms of resources.

At this point, it would be right to make the final decision by using the ground truth

samples available. The accuracy metric of the algorithms was calculated using the data

samples labeled by the clustering algorithms and the existing ground truth samples,

and their accuracy scores are shared in Table 6.3. K-means algorithm clustered stress

and non-stress samples more successfully than BIRCH and DBSCAN. When the labels

obtained with K-means were compared with the original labels, the overall accuracy

score was 73%. The BIRCH algorithm also performed close to the K-means result.

BIRCH presented a vital trade-off in terms of runtime and resource usage. It can be
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Table 6.2. Runtime and Resource Utilization

Algorithm Runtime (ms) CPU Utilization (%) RAM Utilization (%)

K-Means 85809 0.77 0.12

DBSCAN 101286 0.81 0.14

BIRCH 65052 0.73 0.10

of great advantage when used with high-dimensional datasets. Variable density regions

in the dataset may have caused DBSCAN to tackle. For this reason, the DBSCAN

accuracy score tells us that it makes an almost random prediction.
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Table 6.3. Accuracy Results of SL & SSL & UL Architectures

Model Hyperparameter Tuning Accuracy

Supervised Learning Results

LSTM Yes 90%

CNN-LSTM Yes 91%

Semi-Supervised Learning Results

Label Propagation (RF Classifier) Yes 77%

Autoencoder (LR Classifier-lbfgs) No 61%

Autoencoder (LR Classifier-saga) No 63%

Autoencoder (RF Classifier) Yes 68%

Autoencoder (MLP Classifier) No 68%

Autoencoder (MLP Classifier) Yes 76%

Unsupervised Learning Results

K-Means Yes 73%

BIRCH Yes 70%

DBSCAN Yes 56%
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7. CONCLUSION

In this study, we focused on the semi-supervised classification of mental stress

in daily life. Unlike previous studies, we collected multi-sensor physiological data of

the subjects in their routine. Our main goal was to provide a solution to the label-

ing problem of sensory data. In this direction, we designed LP and deep autoencoder

models and compared their performance with the existing SL (LSTM, CNN-LSTM)

and UL (K-means, BIRCH, DBSCAN) algorithms. Especially for the time-series data,

instead of the conventional train&test split model used in the cross-validation phase,

we obtained the performance of our LSTM and CNN-LSTM models correctly by using

the time-series split method. It is the first study conducted on semi-supervised men-

tal stress classification using daily life physiological data with the label propagation

algorithm and deep autoencoder model.

Although our performance metrics vary since we apply three different learning

techniques, we ultimately decided to report our models with the accuracy metric. Table

6.3 shows the percentage accuracy score of our models. SL architectures are leading in

terms of performance since they have the ground truth gathered beforehand. However,

the results of the Label Propagation algorithm, which we designed with the very lim-

ited labeled data, are also promising. Our Label Propagation algorithm achieved 86%

precision score for class-0 (non-stress) and 97% for class-1 (stress). When f-Measure

was examined, class-0 achieved 92%, class-1 72% results. Afterward, we were able to

achieve 77% accuracy from the classifier we trained with the new augmented dataset

that prepared with the label propagation algorithm. Precision, accuracy, and f-measure

performance metrics obtained per class are close to those of the SL models. The deep

autoencoder, which was initially under the umbrella of UL, was used in our study with

an SSL perspective. Such a study has not yet been conducted using raw daily life

data in the literature. When the deep autoencoder with logistic regression classifier

performance result is examined, it is seen to have a lower accuracy score than some

clustering algorithms. One of the reasons could be imperfect decoding. In this case,

the lossy reconstruction phase may cause a decrease in performance, or the augmented
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dataset we obtained with the deep autoencoder might not be compatible with the clas-

sifier running in the continuation of the model. Therefore, we conducted experiments

with different classifiers after the deep autoencoder model. First, we trained the RF

classifier using the same parameters to compare with the label propagation algorithm.

When the deep autoencoder was trained with the RF classifier, it performed 5% better

than the LR classifier. Although this result is an improvement for the deep autoencoder

model, it was found to be almost 10% lower when compared to the label propagation

algorithm. On the other hand, results closer to clustering algorithms were obtained.

After these results, it was decided to test the autoencoder model with a more advanced

classifier. For this reason, by choosing the MLP classifier, the best parameters were

obtained with hyperparameter tuning. As a result, the overall accuracy score almost

approached the LP algorithm.

Consequently, when the performance results are examined, the superiority of the

SSL architectures to UL architectures is also evident. Moreover, the ground truth

is needed to ensure accuracy when measuring the performance of existing clustering

algorithms. Similarly, although very high performance is achieved with LSTM and

CNN-LSTM models, the labeling burden cannot be ignored. In such a case, it will

be much more advantageous to obtain results with the minimum labels using SSL

architectures.

7.1. Future Work

We aimed to create a performance trade-off with SSL architectures by focus-

ing on the labeling problem of physiological data collected with unobtrusive wearable

wrist bands. In the next step, hybrid models can be built with CNN or LSTM lay-

ers, especially on the autoencoder side, and better results can be obtained there. In

addition, the Label Propagation algorithm was tested with different kernels such as

kNN and RBF. As a next step, a new autoencoder kernel can be implemented into

the LP algorithm and the results can be examined. In UL Clustering algorithms, we

provided accuracy measurements with the ground truth samples and raw features. One

of the new research areas is deep clustering in UL. Researchers aim to use clustering
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algorithms more effectively by obtaining the features of the data with the help of neu-

ral networks. We can continue future research by redesigning the autoencoder model

we used in this thesis to work as a hybrid model with clustering algorithms. While

working in this field, it is necessary to be aware of the difficulties as well as the ben-

efits of the deep clustering algorithm. It provides feature extraction, processing large

datasets, and advanced parameter estimation. But the neural network side of deep

clustering algorithms is data-hungry. A massive amount of data is required to obtain

informative features. Accordingly, the hyperparameter tuning phases require enormous

computational resources.
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45. Gjoreski, M., H. Gjoreski, M. Luštrek and M. Gams, “Continuous Stress Detection

Using a Wrist Device: In Laboratory and Real Life”, Proceedings of the 2016 ACM

International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct ,

UbiComp ’16, p. 1185–1193, Association for Computing Machinery, New York,

NY, USA, 2016.

46. Seo, W., N. Kim, C. Park and S.-M. Park, “Deep Learning Approach for Detecting

Work-Related Stress Using Multimodal Signals”, IEEE Sensors Journal , Vol. 22,

No. 12, pp. 11892–11902, 2022.

47. Wampfler, R., S. Klingler, B. Solenthaler, V. R. Schinazi and M. Gross, “Affec-

tive State Prediction Based on Semi-Supervised Learning from Smartphone Touch

Data”, Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems , CHI ’20, p. 1–13, Association for Computing Machinery, New York, NY,

USA, 2020.

48. Lin, S., L. Faust, S. D’Mello, G. Martinez and N. V. Chawla, “MBead: Semi-

supervised Multilabel Behaviour Anomaly Detection on Multivariate Temporal

Sensory Data”, 2020 IEEE International Conference on Big Data (Big Data), pp.



78

1089–1096, Atlanta, Georgia, 2020.

49. Peng, Y., F. Jin, W. Kong, F. Nie, B.-L. Lu and A. Cichocki, “OGSSL: A Semi-

Supervised Classification Model Coupled With Optimal Graph Learning for EEG

Emotion Recognition”, IEEE Transactions on Neural Systems and Rehabilitation

Engineering , Vol. 30, pp. 1288–1297, 2022.

50. Nie, F., X. Wang and H. Huang, “Clustering and Projected Clustering with Adap-

tive Neighbors”, Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining , KDD ’14, p. 977–986, Association for

Computing Machinery, New York, NY, USA, 2014.

51. Chen, X., F. Nie, G. Yuan and J. Z. Huang, “Semi-Supervised Feature Selection

via Rescaled Linear Regression”, Proceedings of the 26th International Joint Con-

ference on Artificial Intelligence, IJCAI’17, p. 1525–1531, AAAI Press, Melbourne,

Australia, 2017.

52. Chen, X., G. Yuan, F. Nie and Z. Ming, “Semi-Supervised Feature Selection via

Sparse Rescaled Linear Square Regression”, IEEE Transactions on Knowledge and

Data Engineering , Vol. 32, No. 1, pp. 165–176, 2020.

53. Song, P., W. Zheng, Y. Yu and S. Ou, “Speech Emotion Recognition Based on

Robust Discriminative Sparse Regression”, IEEE Transactions on Cognitive and

Developmental Systems , Vol. 13, No. 2, pp. 343–353, 2021.

54. An, S., A. Medda, M. N. Sawka, C. J. Hutto, M. L. Millard-Stafford, S. Appling,

K. L. S. Richardson and O. T. Inan, “AdaptNet: Human Activity Recognition via

Bilateral Domain Adaptation Using Semi-Supervised Deep Translation Networks”,

IEEE Sensors Journal , Vol. 21, No. 18, pp. 20398–20411, 2021.

55. Liu, D. and T. Abdelzaher, “Semi-Supervised Contrastive Learning for Human Ac-

tivity Recognition”, 2021 17th International Conference on Distributed Computing

in Sensor Systems (DCOSS), pp. 45–53, Coral Bay, Pafos, Cyprus, 2021.



79

56. Ding, Y., B. Jin, J. Zhang, R. Liu and Y. Zhang, “Human Motion Recognition

Using Doppler Radar Based on Semi-Supervised Learning”, IEEE Geoscience and

Remote Sensing Letters , Vol. 19, pp. 1–5, 2022.
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