
GENERATING GOAL MODELS FROM USER STORIES

by

Tuğçe Güneş

B.S., Computer Engineering, İstanbul Bilgi University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I want to express my gratitude to all people that helped and supported me

throughout the process of writing this thesis. First of all, Fatma Başak Aydemir,

who always thinks along and consistently provided me with feedback on the methods

used. Second, to Tülay Güneş, who supported me my whole life and was an amazing

role model as a mom. Third, my family, for sharing their love and support with me.

Lastly, Tunga Güngör and Savaş Yıldırım for being my jury and participating in the

defence committee.

iv

ABSTRACT

GENERATING GOAL MODELS FROM USER STORIES

Natural language (NL) is used to express stakeholder requirements since it re-

quires less time and energy. There are several ways to collect requirements, and user

stories are an example of a semi-structured format. They are commonly used to capture

user needs in agile methods due to their ease of learning and understanding. However,

user stories can be large enough which makes it difficult to read and understand the

relations among them. Such relations make it easier for developers to understand the

structure of the project. Goal models, on the other hand, provide high-level perspec-

tive and explicit relations among goals but they require time and effort to build. First,

we conduct an experiment to show the usefulness of the goal models for reading and

comprehending the data set. This thesis proposes a goal model builder tool to auto-

matically generate a goal model from a set of user stories by applying natural language

processing (NLP) techniques. We first parse and store the extracted information from

a set of user stories in a graph database to maintain the relations among the roles,

actions, and benefits mentioned in the set of user stories. We create the goal model

strategies using the information in the graph database, which enables us to see the

connections between the nodes and edges. By applying NLP techniques and several

heuristics, we produce goal models that resemble human-built models. Second, we

contribute an evaluation of the goal model builder tool that determines whether the

ArTu tool speeds up the creation of goal models. A cross-over experiment has been

carried out to evaluate the time difference between a goal model with the tool and one

without the tool. We put out a variety of hypotheses to contrast experiment findings.

The results of several statistical analyses run on the experimental data show that the

ArTu tool significantly reduced the time needed to build goal models.

v

ÖZET

KULLANICI HİKAYELERİNDEN AMAÇ MODELLERİ

OLUŞTURMA

Doğal Dil (NL), daha az zaman ve enerji gerektirdiğinden paydaş gereksinim-

lerini ifade etmede kullanılır. Gereksinimleri toplamanın birkaç yolu vardır ve kullanıcı

öyküleri yarı yapılandırılmış bir format örneğidir. Kullanıcı ihtiyaçlarını anlamak için

kullanılırlar ve öğrenme-anlama kolaylıkları nedeniyle çevik yöntemlerde kullanılırlar.

Ancak, kullanıcı öyküleri yeterince büyük olabilir ve bunlar arasındaki ilişkileri oku-

mak ve anlamak zorlaştırabilir. Bu tür ilişkiler, geliştiricilerin projenin yapısını anla-

masını kolaylaştırır. Öte yandan, hedef modeller yüksek düzeyli bir bakış açısı ve hede-

fler arasında açık ilişkileri sağlar ancak oluşturmak için zaman ve çaba gerektirirler.

Bu tez, veri kümesini anlamak için hedef modellerinin yararlılığını göstermek için bir

deney yapmakta ve doğal dil işleme (NLP) tekniklerini uygulayarak bir kullanıcı öyküsü

setinden hedef modeli otomatik olarak oluşturmak için bir hedef modeli oluşturma aracı

önermektedir. İlk olarak, bir kullanıcı öyküsü setinden çıkarılan bilgileri çözümlüyor ve

saklıyoruz ve roller, eylemler ve faydalar arasındaki ilişkileri kullanıcı öyküsü setinde

belirtilen bir grafik veritabanında koruyoruz. Grafik veritabanındaki bilgileri kulla-

narak hedef model stratejileri oluşturuyoruz, bu da düğümler ve kenarlar arasındaki

bağlantıları görmemizi sağlıyor. NLP tekniklerini ve birkaç heuristiği uygulayarak, in-

san yapımı modellere benzeyen hedef modelleri üretiyoruz. İkinci olarak, ArTu aracının

hedef modeli oluşturma hızını artırıp artırmadığını belirleyen bir değerlendirme sunuy-

oruz. Aracı kullanarak ve kullanmadan önce hedef model arasındaki zaman farkını

değerlendirmek için bir çapraz deney yapıldı. Deney bulgularını karşılaştırmak için

çeşitli hipotezler ortaya koyduk. Deneysel veriler üzerinde çalıştırılan birkaç istatistik-

sel analizin sonuçları, ArTu aracının hedef modellerini oluşturmak için gereken zamanı

önemli ölçüde azalttığını göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1. User Stories . 4

2.2. Goal Models . 5

3. MOTIVATION . 8

3.1. Experimental Design . 8

3.2. Experiment Execution . 14

3.3. Results . 15

3.3.1. Time Spent . 16

4. GENERATING GOAL MODELS FROM USER STORIES 19

4.1. Heuristics 1: Grouping Similar Verbs 20

4.2. Heuristics 2: Grouping Similar Objects 23

4.3. Heuristics 3: Without Actors . 25

4.4. Heuristics 4: Grouping Benefit of User Stories 28

4.5. Heuristics 5: Grouping Benefits without Role Boundary 30

5. THE GOAL MODEL BUILDER TOOL . 32

6. EVALUATION . 38

6.1. Experimental Design . 39

6.2. Experiment Execution . 42

6.3. Results . 44

6.3.1. User Story Similarity . 44

6.3.2. Time Difference . 45

vii

6.3.3. Goal Model Elements . 48

7. THREATS TO VALIDITY . 50

7.1. External Validity . 50

7.2. Internal Validity . 50

7.3. Construct Validity . 51

7.4. Reliability . 51

8. DISCUSSION . 52

8.1. Heuristics . 52

8.2. Feedback Questionnaire . 52

8.3. Overall . 53

9. RELATED WORK . 54

10. CONCLUSIONS . 57

REFERENCES . 59

viii

LIST OF FIGURES

Figure 2.1. Example goal model. 6

Figure 3.1. Experiment 1 flow. 10

Figure 3.2. Goal model of Camperplus parent actor. 13

Figure 3.3. Goal model of Alfred Medical Care Giver actor. 14

Figure 3.4. Participants’ demographic results. 15

Figure 3.5. Average respond time for Alfred Data Set. 16

Figure 3.6. Average respond time for Camperplus Data Set. 17

Figure 4.1. Example user story with pos tags. 20

Figure 4.2. Goal model design with heuristic 1. 21

Figure 4.3. Grouping verbs by similarity . 22

Figure 4.4. Goal model design with heuristic 2. 23

Figure 4.5. Grouping objects by similarity . 25

Figure 4.6. Goal model design with heuristic 3. 26

Figure 4.7. Getting rid of the actors . 27

ix

Figure 4.8. Goal model design with heuristic 4. 28

Figure 4.9. Grouping benefits by similarity . 29

Figure 4.10. Goal model design with heuristic 5. 30

Figure 4.11. Grouped benefits without Role . 31

Figure 5.1. The pipeline of the process. 32

Figure 5.2. The architecture of ArTu tool. 33

Figure 5.3. Example Json format. 34

Figure 5.4. Playground page with data-tool box. 35

Figure 5.5. Screenshot of the modeling editor. 36

Figure 6.1. Experiment 2 flow. 40

Figure 6.2. Participants’ demographic results. 43

Figure 6.3. Participants’ user story knowledge. 43

Figure 6.4. Participants’ goal model knowledge. 43

Figure 6.5. Boxplot for 2 datasets showing time spent. 45

Figure 6.6. Boxplot for archive set showing time in seconds. 46

Figure 6.7. Boxplot for data management set showing time in seconds. 46

x

Figure 6.8. Distribution of number of goal models elements for Archive Data

Set. 49

Figure 6.9. Distribution of goal models drawn for Data Management Data Set. 49

xi

LIST OF TABLES

Table 3.1. Experiment 1 setup design. 9

Table 3.2. Alfred set questions. 11

Table 3.3. Camperplus set questions. 12

Table 3.4. Statistics on time variable. 17

Table 6.1. Experiment 2 setup design. 39

Table 6.2. Demographics form questions & answers. 41

Table 6.3. Feedback form questions & answers. 42

Table 6.4. Statistics on time variable. 47

xii

LIST OF ACRONYMS/ABBREVIATIONS

AGORA Attributed Goal-Oriented Requirements Analysis Method

GBRAM Goal Based Requirements Analysis Method

GORE Goal-Oriented Requirements Engineering

GRL Goal-Oriented Requirement Language

GQM Goal Question Metric

KAOS Keep All Objectives Satisfied

MCES Maximum Common Edge Subgraph

NFR Nonfunctional Requirements

NL Natural Language

NLP Natural Language Processing

POS Part of Speech Tagging

RE Requirements Engineering

UML Unified Modeling Language

1

1. INTRODUCTION

The most popular method for managing software requirements is to describe them

in natural language (NL) [1]. Natural language documentation of stakeholder require-

ments takes less time and effort than alternative formal or semi-formal representations

because it is more effective in eliciting requirements from stakeholders [2]. Require-

ments can be gathered in a variety of ways, including free-form, semi-structured, and

structured formats.

User stories, a semi-structured natural language notation that is frequently em-

ployed in agile development methods [2, 3]. The easiest to learn and use a standard

pattern for user stories is ”As a role, I want action, so that benefit” [4]. User sto-

ries can be used in agile development because of these characteristics, which are also

the major factors in practitioners’ adoption of user stories.

User stories do not address the problem of capturing the structure of the user

needs. A list of user stories in a flat format does not explain the purpose of the user

stories or how they relate to one another. However, it is generally challenging to have

a high-level picture of the relationships, identifying the user stories that are about

the same concepts or declaring the same advantages even though filtering and sorting

procedures can offer a rough overview.

Goal models can be used to represent the structure of a set of requirements and

many distinct relations, as has already been shown in a large number of papers [5]. A

goal modelling language can be used to specify numerous inter-dependencies, such as

cost and value contributions [6], and high and low-level goals are associated through

refinements. Actors’ goals can also be visualized within the actor’s boundaries [7].

2

Goal models are also used for analysis and optimization [8]. Despite extensive

research on goal models, there is little industry adopted these models. The learning

curve is considered to be high by practitioners, and it is often believed that creating

goal models is time and labour-intensive and therefore expensive.

By helping them in taking advantage of the benefits that goal modelling offers,

we hope to promote agile development processes that rely on user stories. To do so, we

have built a goal model generator tool to automate the process of creating goal models

using NLP features. Moreover, the tool is evaluated with a cross-over experiment,

which proves that using the tool actually shortens the time to build a goal model, and

provides more consistent design in terms of a number of model elements. Our previous

work on extracting goal models from user stories has been published in two papers.

The contributions of this theses are as follows:

• We first experiment to see if the goal models improve the understanding of re-

lations among user stories. The statistical tests have shown that when a user is

asked a question about the goal model, the time to find an answer from a given

goal model is significantly less than when a user story set is given.

• We build 5 heuristics to build goal models. There are multiple ways to draw a

goal model based on people’s points of view about the user story set. So these

heuristics give an idea of 5 different strategies to generate a goal model. Our first

3 heuristics consider the actor and action parts of the user story, whereas the last

2 heuristics deal with combining the action part with the benefit part of the user

story. By this, we try to achieve more complex designs, so that the goal model is

more similar to human-built models.

• To make practitioners able to use our 5 heuristics and have automatically gen-

erated goal models, we have built ArTu tool. The tool is served to be reachable

for our users, and it is designed to be user-friendly by helping users to upload a

user story set in text format. After selecting the file to upload, they can choose

a strategy and click the ”generate” button. The tool also provides an interac-

3

tive page to make changes to the drawn goal model, download their data, and

re-upload their last work.

• Evaluations on experiment results indicate that the editing time spent on goal

models between tool-generated ones and manually generated ones are significantly

different from each other.

The remainder of this thesis is structured as follows. Chapter 2 explains the

background of user stories and goal models. Chapter 3 presents our motivation to

create the ArTu tool. Our approach to design heuristics for generating goal models in

Chapter 4 is published in [9], and the ArTu tool with its architecture as presented in

Chapter 5 is published in [10]. Evaluation of the tool shown in Chapter 6, and threats

to our work are discussed in Chapter 7. The feedback from participants is discussed

in Chapter 8. Chapter 9 reports on related literature and Chapter 10 concludes our

approach and ideas with future work.

4

2. BACKGROUND

We present the background of user stories and goal models in this chapter since in

this thesis we integrate those concepts by creating a tool which consumes user stories

in order to derive goal models at the end.

2.1. User Stories

The most common artifact in agile software development for expressing users’

requirements is user stories [11]. A user story is a brief, straightforward description of

a feature that is written from the viewpoint of the user or customer of the system who

wants the new capacity.

User stories have become increasingly popular in the industry as a result of the

widespread use of agile software development techniques like Scrum and Kanban [12].

They have been gaining a lot of attention as they help overcome the communication

problem within a software development process by bridging the gap between those who

want the software and who build the software.

In agile development techniques, user stories, a semi-structured natural language

notation, are widely used. They are easily understood by stakeholders since they are

written in natural language. Utilizing templates, user story generation is standard-

ized. The most popular template for user stories was determined to be the Connextra

template. The template takes the following form: ”As a role, I want action, so that

benefit”. Role specifies a system user who wants the system to accomplish something,

goal outlines the action system takes to help the user, and benefit explains why the

action should be taken from the user’s point of view [13].

This user story format significantly improves the why and how knowledge that

developers must have to design a system that satisfies the needs of the users. It

5

describes the problem domain, the necessity for the activity (business value), and

the user’s ”requirement” (activity), and offers a user-first perspective (role) [14]. For

example, a student wants to upload homework through a system: ”As a student (role),

I want to upload my homework (what I want to do with the system), so that I get good

grades (value I receive).”

User stories are used in different software development approaches like require-

ments elicitation, gamification, and agile development. In one of the gamification

work [15], user stories are chosen as a method for requirements documentation due to

their clarity, simplicity, and widespread use in agile development. Besides their sim-

plicity, without any knowledge of notation or modelling, stakeholders can easily learn

how to use them.

2.2. Goal Models

A goal is a desired state of affairs. In requirements engineering (RE) a goal is

used to capture a stakeholder objective for the system to achieve. A goal model is a

conceptual model where goals are interconnected with each other through relations,

such as refinement. Goal models link high-level goals to low-level system requirements

by displaying goals in a hierarchical sequence. Goals can be either functional or non-

functional, functional goals outline the tasks the system should accomplish whereas

non-functional ones show ideal system characteristics.

Various formats can be used to express goals e.g. casual, semi-formal, and formal

approaches. Informal approaches typically utilize natural language text to communi-

cate goals; semi-formal approaches mainly employ box and arrow diagrams, and formal

approaches use logical assertions in some formal specification language [16].

Examples of goal modelling methodologies, or frameworks are KAOS, GBRAM,

AGORA, NFR, i*, Tropos, and GRL [17]. KAOS, GBRAM and NFR frameworks

try to specialize requirements by linking system components that are functional and

6

non-functional to business objectives, whereas i* do requirements elicitation to identify

the need for change and the current state of the organization [16]. Figure 2.1 is an

example of a goal model using the iStar framework. It has 2 sub-goals to reach the

parent goal which is student actor wants to get good grades which require her to upload

her homework and attend classes.

Figure 2.1. Example goal model.

Goal modelling is a common strategy in RE that helps capture stakeholders’ needs

and expectations as well as for determining whether and why software development is

necessary. Goal models are deliberate depictions of user goals and potential strategies

for achieving them. They are applied during the preliminary requirements analysis

stage to clarify the reasoning behind a software system. They offer helpful structures

to examine high-level goals and methods, and they have been used to describe the

reasoning of both people and software systems [18].

Goal-oriented requirements engineering (GORE) is the study of or use of goal

models in requirements engineering [19]. In RE research, GORE has drawn a lot of

interest as a method for comprehending the underlying causes of system requirements,

assisting in ensuring that the proper system is created to tackle the right issues [17].

There has been a lot of research on goal models, but little industry adoption. Practi-

7

tioners typically feel that there is a steep learning curve unlike user stories and that

developing goal models requires a lot of time and labour, which makes them expensive.

8

3. MOTIVATION

Our motivation is explained in this chapter. To motivate the approach, we run

an initial experiment on testing the use of goal models. We must establish the goals

of measurement to choose relevant metrics for this experiment. The Goal-Question-

Metric paradigm created by Basili et al. [20] can be used as a framework to construct

metrics that support particular goals.

For this work, our quality is ”time efficiency”, and metric is ”time difference in

seconds” when goal models or user stories are used to answer certain questions about

the user story set. Therefore, we build hypotheses to assess our time metric. Our null

hypothesis is:

• H time 0: The time to answer data set questions from user stories and to answer

from goal models are equal.

The alternative hypothesis is:

• H time 1: The time to answer data set questions from user stories and to answer

from goal models are not equal.

3.1. Experimental Design

Purpose. We argue that while user stories are a great tool for connecting stake-

holders and developers, it can be challenging to read a group of user stories in their raw

form and understand how they relate to one another. However, goal modelling makes

it possible to analyze user stories and ease comprehend how they relate to each other.

In this initial experiment, we test the effectiveness of goal models to determine if they

speed up the process of finding user story dependencies and improve readability.

9

Experiment Protocol. In this experiment, we want to perceive whether goal

models help understand the software product needs. To assess the usefulness of goal

models, we have a cross-over designed experiment with two groups a treatment group

and a control group. There are two sessions in the experiment and two user story sets

accordingly. In the first session, the control group is given a goal model drawn from

one user story set and a set of questions for this data set, while the treatment group is

given the other set of user stories in raw text format and questions related to it. The

crossover experiment design then reverses the order of responding questions from a goal

model or raw text during the second session. In other words, the second user story

set and accompanying questions are given to the control group. While the first set of

user stories and their questions are given to the treatment group. Table 3.1 details the

cross-over design we used for this study.

Table 3.1. Experiment 1 setup design.

User Story Set Given Goal Model Given

User Story Set 1 Group 1 Group 2

User Story Set 2 Group 2 Group 1

In case they are unfamiliar with user stories and goal models, we offer them a

brief introduction to these concepts at the beginning of the experiment. After briefing

them on the experiment’s methodology, we ask them to open the questionnaire form

and begin with one set of user stories while sharing their screen. When people wish to

look up words in user stories or goal models that are in text format, the search option

is also available.

They are urged to answer questions aloud, and we time how long it takes them to

do so. By doing this, we hope to determine whether or not they prefer the goal model

or the text file for finding the answers.

10

After answering all questions, participants fill out their demographic information

with their agreement after each session, which lasts about 20 minutes and requires a

total of 40 minutes for one participant. The visual explanation of how each participant

takes part in the experiment is shown in Figure 3.1.

Figure 3.1. Experiment 1 flow.

Materials. Two user story sets are considered in this experiment, which is chosen

in terms of being an understandable topic for anyone. We also need goal model designs

for each user story set. So that our first step is to build goal models from these user

stories. After having fully connected goal models using Istar Stencil.vss [21], we created

a questionnaire form for two user story sets in order to measure how well a participant

understands the topic.

11

Table 3.2 displays a list of questions made regarding the Alfred set and table 3.3

for the Camperplus user story set during the experiment. Long-answer text format for

the responses is anticipated. While examining the raw user story set or the goal model

of this set, each participant responds to these two sets of questions.

Additionally, each participant receives instruction on how to create goal models

and compose user stories, as well as information on the iStar language and the goal

model’s actor, actor boundary, goal, and refinements. The objective of this training is

to ensure that all participants in the experiment have the same level of understanding.

Only takes about 10 minutes and has 15 pages. The participant is encouraged to ask

any questions they may have prior to the experiment after this teaching session.

Table 3.2. Alfred set questions.

Data Set Questions

What are the actions to provide ’usability’ for the ’developer’ role?

What can be done to supply data privacy according to ’Older Person’?

What are the vital signs to be monitored according to ’Medical Care-

Giver’?

What are the actions to provide ’medicine intake’ according to ‘Older

Person’?

What does ’developer’ want to know when the application stops func-

tioning?

What are the household items to control according to ’Older Person’?

Two user stories are used in the first experiment and they are both taken from [22].

One of the data sets, ALFRED, which focuses on creating a wearable device to track

elderly people’s data, contains 80 user stories now instead of the original 130, some of

which were eliminated for being overly simplistic.

12

Another set, Camperplus, contains 55 user stories regarding a children’s camping

application. We manually draw the goal models for each set of user stories since, as

was previously indicated, we also need the designs for these sets’ goal models.

Table 3.3. Camperplus set questions.

Data Set Questions

What are the actions to achieve inner peace according to the ’parent’?

What are the camp administrator’s actions to handle the behavioral

issues?

Who is in charge of reporting to the manager if a camper has unseemly

behavior?

What are the actions to inform families about their children according

to ’camp administrator’?

What can be done to schedule the camp program according to ’camp

administrator’?

What should be erased to get rid of redundancy according to ’camp

administrator’?

There are 4 actors in the ALFRED dataset, and OlderPerson has more user

stories than the other actors. Additionally, Medical Caregiver, Social Caregiver and

developer actors exist in the set. We have 79 goals, 78 “and” refinements, 2 quality,

and 7 help contributions in its goal model. For Camperplus dataset, there are 4 actors,

with the Camp Administrator having more user stories than the other actors Parent,

Camp Worker, and Camp Counselor. There are 69 goals and 43 “and” refinements in

its goal model. In Figure 3.2, Parent actor with its goals and refinements are shown

in the goal model, while in Figure 3.3 Medical Care Giver actor and its goals and

refinements are presented.

13

What is Measured. What we want to measure in the first experiment is how

much time each participant spends on each survey question to find the right answers.

It is important to calculate the average time spent on every question for both when

the user story set and the goal model is given respectively. As well as measuring the

time, we also want to observe how accurately participants respond to questions. To be

clear about the right answers, there is an example question regarding the Parent actor

in Figure 3.2. ”What are the actions to achieve inner peace according to the parent?”

Camperplus set mentions inner peace within the parent actor in 5 goals. So to have

an accurate answer, the participant is expected to write down all of the 5 goals.

Figure 3.2. Goal model of Camperplus parent actor.

14

Figure 3.3. Goal model of Alfred Medical Care Giver actor.

3.2. Experiment Execution

We have 10 people as participants in this experiment. According to the partici-

pant’s demographic information, 80% of them are employed as software developers in

the industry, with the remaining 20% being computer science students which can be

seen in Figure 3.4. Additionally, 40% of these individuals have earned their master’s

degree. We ask the participants to rate their level of familiarity with user stories and

goal models because we are particularly interested in gauging this expertise.

Only one person in the research stated that they had never heard of user stories,

showing that the industry employs them often in agile development processes. On

the other hand, if we examine the data on the level of goal model experience of the

participants, we can observe that 50% of them had never seen the goal models before

15

the experiment. Eighty per cent of our participants have never heard of the Alfred and

Camperplus applications before, therefore we also want to see if they have done any

prior research on the subjects throughout the experiment.

Figure 3.4. Participants’ demographic results.

3.3. Results

We ask our participants to provide a general evaluation of the experiment’s perfor-

mance. All participants agreed that using goal models is extremely pleasant, although

half of them had no prior experience with goal models. They claimed that while trying

to answer questions in text format, they lost track of what they had read and had to

go back and re-read it. Yet, they said that after looking at the goal model just once,

the locations of the goals stayed in their visual memory and they could quickly locate

them when responding to questions. In addition, it is simple to identify relationships

across user stories because the goals are organized under a parent goal node.

16

3.3.1. Time Spent

Figure 3.5 and Figure 3.6 show the average time measurement for each question in

both user story sets. Blue bars indicate the average time spent on each question given

the goal model, whereas red bars are for user story set data. The bar plot makes it clear

that answering questions with a goal model rather than user stories takes substantially

less time.

Figure 3.5. Average respond time for Alfred Data Set.

When we analyze the summary statistics on the time variable for when the goal

model is given and when the user story set is given, which is shown in Table 3.4.

The average time spent answering questions given the goal model is 2 minutes and 58

seconds, whereas when the user story set is given the mean value is 10 minutes and 15

seconds. Min and max time spent on answering questions about the data set are also

given in the table.

17

Figure 3.6. Average respond time for Camperplus Data Set.

We want to show if there is a significant difference between the time spent on

answering questions by looking at the goal model or the raw user story set. To reject our

null hypothesis in H time 0 (The time to answer data set questions from user stories

and to answer from goal models are equal.), we run statistical tests on our results.

Before choosing which statistical test to apply, we want to see if our data is

normally distributed with the ShapiroWilk test. The only metric we have in this test

is time in seconds. So our data have time measurements for the goal model given and

the user story set given. Shapiro test results with pvalue 0.13 which we cannot say our

data’s distribution is normal.

Table 3.4. Statistics on time variable.

When Model Given When Text Given

Mean 00:02:58 00:10:35

Min 00:00:56 00:08:12

Max 00:05:19 00:15:54

18

To see whether those time differences for the goal model and user story set ex-

periments are significantly different from each other, we follow Wilcoxon-signed rank

test which is a non-parametric version of the two-sample t-test. The calculated p-value

is 0.0019 so we can reject our null hypothesis and say our alternative hypothesis is valid

which is in H time 1 (The time to answer data set questions from user stories and to

answer from goal models are not equal.)

19

4. GENERATING GOAL MODELS FROM USER

STORIES

The first experimental results show us that goal models accelerate the process

of identifying any dependencies between user stories, however creating goal models

require training and time which makes them expensive. This leads to our motivation

which is to provide a tool that enables users to create goal models automatically from

a set of user stories.

We extract who (role), what (action, object), and benefit information from user

stories using regular expressions and NLP approaches. We suggest strategies to com-

bine this information in various ways to create goal models that resemble models created

by humans. The created model is then presented in a dynamic, editable format so that

human specialists can make any necessary adjustments.

Our first step in creating a goal model from a set of user stories is to utilize NLP

to parse each user story. Semi-structured user stories are the starting point for NLP,

which then extracts the necessary concepts and relations for our model construction.

A user story’s structure can be broken down into three parts. The nature of the role

in the user story is described in the first part. The user story’s action is stated in the

second part, and its benefits are included in the third part [23].

Using regular expressions, the initial phase of our process is removing the tem-

plate’s special keywords from each user story. In order to divide each user story into

three pieces, we used the phrases ’as a’, ’want to’ and ’so that’ when creating the user

story template. After this cleaning, part-of-speech tagging (POS) and tokenization

come next. For these jobs, we employ the spaCy tool. The outcome of our pipeline’s

first two steps on this input is shown in Figure 4.1.

20

As a user , I want to click on the address .
NOUN NOUNVERB

Figure 4.1. Example user story with pos tags.

Graph databases help us store extracted knowledge and make it simple to see

the relationships between various components. When addressing relationships between

data, graph databases are handy. In graph databases, a node and a relationship are

the two building blocks that allow for the simultaneous creation of nodes and associa-

tions between them. Because Neo4j supports accepting many input types and has an

expressive query language called Cypher, we decided to use it for the implementation.

The fundamental Structured Query Language (SQL) principles and clauses are present

in Cypher. In order to comprehend the relationships between the nodes and see the

interconnected data, we use semantic queries to query the database when applying

heuristics.

We then create fundamental heuristics to create realistic goal models. We can

create numerous heuristics as our next step by using a graph database to visualize

the relationships between the data. Different strategies put into practice various goal

models. Making many goal models enables us to view the task from various angles. We

include these strategies, and the next step will explain how to put them into practice.

4.1. Heuristics 1: Grouping Similar Verbs

This heuristic creates child nodes using the different objects related to the roles

and action verbs, and parent nodes using the verbs of action of the user stories. Con-

sider a set S that consists of three user stories (examples used here are taken from [22]):

s1: As a user, I want to be able to view a map display around my area.

s2: As a user, I want to be able to view the safe disposal events around my area.

21

s3: As a user, I want to view recycling centers, so that I can check which routes to

take to drop off waste.

These user stories have a common role, user, and a verb, view, and each has

a different object: map display, safe disposal events, and recycling centers,

respectively (due to space limitations we use the short versions of the noun phrases).

The corresponding goal model is provided in Figure 4.2.

Figure 4.2. Goal model design with heuristic 1.

This procedure is described in Algorithm 4.3. It accepts as input a graph database

filled with a set of user stories. The verbs of a certain role can be searched for in the

graph database, which also contains the role nodes, their related verb nodes, and their

respective object nodes. The technique generates an actor node in the goal model for

each role in the graph database (Line 2). The verbs connected to this role are then

retrieved by querying the graph database (Line 3). Then, using the similarity ratings

from spaCy, it generates lists of verbs that each contain related verbs. View and see,

for instance, are considered similar because their scores are higher than a particular

cutoff. Line 4). The algorithm produces a parent node inside the actor boundaries for

each of these lists (Line 6). Currently, we are labelling this node using the template

”verb operations conducted”. The algorithm then searches the graph database for

22

the objects related to the role and this specific verb for each verb in the list (Line

8). Combining the verb and the object (Line 10), makes a child node and connects

it to the parent goal (Line 11). Due to space restrictions, it is not displayed in the

algorithm, however, users can choose the default type of refinements as AND or OR.

It provides the goal model’s structure back (Line 16). In our implementation, a JSON

file is returned.

Input a graph database USG of user stories

Output a goal model G for given user stories

for role r in USG do

create an actor for r in G

VL = Verbs of r

SVL = GroupSimilarVerbs(VL)

for list verbtree in SVL do

Create a parent goal for the list

for v in verbtree do

OL is the list of objects connected to v and r

for o in OL do

create a child goal combining v and o in G

link the child node with its parent in G

end for

end for

end for

end for

return G

Figure 4.3. Grouping verbs by similarity algorithm.

23

4.2. Heuristics 2: Grouping Similar Objects

The second heuristic produces parent nodes from user story objects. The verbs

that are connected to these parent nodes are their child nodes. Each object tree is

produced inside an actor’s boundaries of a role.

Consider a set S that consists of three user stories:

s1: As a user, I want to view recycling centers, so that I can check which routes to

take to drop off waste.

s2: As a user, I want to know the hours of recycling facility, so that I can arrange

drop-offs on my off days or during after-work hours.

These user stories have a common role, user, however different verbs and objects.

The verbs are view, and get; and the objects are locations of recycling centers,

and hours of each recycling facility. The resulting goal model is presented in

Figure 4.4.

Figure 4.4. Goal model design with heuristic 2.

24

The transition from the collection of user stories to the goal model is described

in Algorithm 4.5. Similar to Algorithm 1, it accepts as input a set of user stories

that have been used to populate a graph database. The algorithm generates an actor

node in the goal model for each role in the graph database (Line 2). After that, it

makes a query to the graph database to retrieve the objects related to this role (Line

3). The process then generates lists of objects, each list containing related items (for

phrases, we use the similarity scores from spaCy) (Line 4). The algorithm produces a

parent node inside the actor boundaries for each of these lists (Line 6). For the label

of this node, we now employ the template ”object operations done.” The program

then searches the graph database for the verbs related to the role and this object for

each object in the list (Line 8). As in Algorithm 1, it joins the verb and the object

to produce a child node (Line 10) and ties it to the parent goal (Line 11). Finally, it

returns the goal model’s structure (Line 16).

25

Input a graph database USG of user stories

Output a goal model G for given user stories

for role r in USG do

create an actor for r in G

OL = objects associated with r

SOL = GroupSimilarObjects(OL)

for list verbtree in SOL do

Create a parent goal for the list

for o in objecttree do

VL is the list of verbs connected to o and r

for v in VL do

create a child goal combining o and v in G

link the child node with its parent in G

end for

end for

end for

end for

return G

Figure 4.5. Grouping objects by similarity algorithm.

4.3. Heuristics 3: Without Actors

Consider a set S that consists of three user stories:

s1: As an executive, I want to access to company data, so that I can have a sense of

my company’s performance.

s2: As an employee from the HR department, I want to modify the company data.

s3: As an employee, I want to view the company data.

26

These user stories have the same or similar objects, data of the company. Their

roles are different: executive, and employee. They also have different verbs, namely,

access, modify, and view. Figure 4.6 presents the resulting goal model.

Figure 4.6. Goal model design with heuristic 3.

Heuristic 3 is similar to Heuristic 2 in that it also builds subtrees of objects, how-

ever unlike Heuristic 2, this time the goal model does not include any actor boundaries,

and the child node labels also include the role information.

Beginning with Line 1 of the graph database, Algorithm 4.7 extracts the objects

and groups them based on similarity (Line 2). A parent node is created for each group

(Line 4). It analyses all the verbs for each element in a particular group (Line 6)

and gets the roles that go along with each verb (Line 8). Each time a role and verb

combination is used (Line 10), a child node is created by the algorithm and linked to

the parent goal(Line 11). It concludes by returning to the goal model’s structure (Line

16).

27

Input a graph database USG of user stories

Output a goal model G for given user stories

OL is the list of all objects in USG

SOL = GroupSimilarObjects(VL)

for list objecttree in SVL do

Create a parent goal for the list

for o in objecttree do

VL is the list of verbs connected to o

for v in VL do

RL is the list of roles connected to o and v

for r in RL do

create a child goal combining r and v in G

link the child node with its parent in G

end for

end for

end for

end for

return G

Figure 4.7. Grouping objects without actors algorithm.

The output file in JSON format must then be converted into an editable visualiza-

tion as the following step in the pipeline. We are currently developing a browser-based

modelling editor that automatically creates a layout for the goal model utilizing the

joint.js JavaScript library after parsing the JSON file containing the structural infor-

mation.

28

4.4. Heuristics 4: Grouping Benefit of User Stories

This heuristic makes use of the benefits part of the user story. Parsing user stories

by checking if a set of user stories consists of similar benefit parts allows us to see the

common benefit in the user story set. This heuristic aims to see which actions lead to

achieving a common benefit.

Figure 4.8. Goal model design with heuristic 4.

Here is an example of having the same benefit of 3 user stories in a set:

s1: As a UI designer, I want to improve user experience, so that I can get approvals

from the leadership.

s2: As a UI designer, I want to increase the number of customers, so that I can get

approvals from the leadership.

s3: As a UI designer, I want to impress potential investors, so that I can get approvals

from the leadership.

For the same role type (UI designer), they have the same benefit which is get

approvals from the leadership with different action objects, corresponding goal model

is in Figure 4.8.

29

Input a graph database USG of user stories

Output a goal model G for given user stories

for role r in USG do

create an actor for r in G

BL = Benefits of r

SBL = GroupSimilarBenefits(BL)

for list benefittree in SBL do

Create a parent goal for the list

for b in benefittree do

AL is the list of actions connected to b and r

for a in AL do

create a child goal taking a in G

link the child node with its parent in G

end for

end for

end for

end for

return G

Figure 4.9. Grouping benefits by similarity algorithm.

The extraction process of the common benefits among user stories is described

in Algorithm 4.9. While consuming the set of user stories, it stores the information

from the actions and benefits of user stories in a graph database. It first creates an

actor node for every role in the user story set (Line 2). By calculating the similarity

of the stored benefits (Line 4), for every benefit list created within a certain similarity

threshold, the algorithm creates a parent node to collect them (Line 6). Later, it

queries for the action part of the user story associated with the common benefit part

and creates child nodes named by their actions under the benefit. These benefits are

grouped in different lists now and can have their child nodes linked to the parent node.

30

Linking these actions to their parent nodes is processed in Line 11. The heuristic finally

returns the grouped benefit structure of the goal model in Line 16.

4.5. Heuristics 5: Grouping Benefits without Role Boundary

This heuristic is a more complex one by combining heuristic 3 (getting rid of

the actor) and heuristic 4 (grouping benefits) meaning that it does not require actor

boundaries while trying to look for similar benefits in the set. The role information is

added to the action part in the goal model which you see in 4.10. This design belongs

to the below example of user stories:

s1: As a UI designer, I want to improve user experience, so that I can get approvals

from the leadership.

s2: As a manager, I want to increase the profits, so that I can get approvals from the

leadership.

s3: As a developer, I want to increase efficiency, so that I can get approvals from the

leadership.

Figure 4.10. Goal model design with heuristic 5.

31

Beginning with Line 1 of the graph database, Algorithm 4.11 gets the action and

benefit part information from user stories and creates a list of all benefits (Line 1).

The similarity function collects the common benefits with their related actions (Line

2). A parent node is created for each group with similar benefits (Line 4). It analyses

all the actions for each element in a particular group (Line 6) and gets the roles that

go along with each action (Line 8). Each time a role and action combination is used

(Line 10), a child node is created by the algorithm and linked to the parent goal (Line

11). It concludes by returning to the goal model’s structure (Line 16).

Input a graph database USG of user stories

Output a goal model G for given user stories

BL is the list of all benefits in USG

SBL = GroupSimilarBenefits(VL)

for list benefittree in SBL do

Create a parent goal for the list

for b in benefittree do

AL is the list of actions connected to b

for a in AL do

RL is the list of roles connected to a and b

for r in RL do

create a child goal combining r and a in G

link the child node with its parent in G

end for

end for

end for

end for

return G

Figure 4.11. Grouping benefits without actors algorithm.

32

5. THE GOAL MODEL BUILDER TOOL

For the industry to profit from the research on goal models, ArTu’s main goals are

to reduce the effort involved in creating goal models and boost goal model adoption.

Simply said, ArTu takes a set of user stories, builds a goal model based on the user’s

chosen strategy, and offers a browser-based modelling editor so the user may update

the goal model and export it in several forms. Figure 5.1 explains how it works.

Figure 5.1. The pipeline of the process.

ArTu is a web application tool served on Heroku that produces goal models

from user story sets using NLP features. Produced goal models can be viewed on an

interactive editor page for users to edit and save their changes on the model.

The ArTu tool’s architecture is demonstrated in Figure 5.2. The tool’s user stories

serve as its entry point, from which the NLP module extracts the informative phrases

and stores them in the graph database (back-end module). The output JSON file is

rendered for creating a goal model using React.js and the piStar library after we query

the graph database (front-end module). The renderer re-connects to the NLP parser

and database to perform the necessary modifications on both the backend and frontend

components when modifying the final goal model.

33

Figure 5.2. The architecture of ArTu tool.

User story sets are taken as raw text input having the following format: ”As a

role, I want action, so that benefit”. As an example, ”As a student, I want to upload

my homework, so that I get good grades.” The user stories are analyzed in the NLP

module, written in Python, and the extracted information is stored in a graph database.

Regarding our strategies to build a goal model, we write queries on a graph

database and get grouped information in JSON format. These query results are fed

into our visualization module which uses React.js and piStar libraries.

While analyzing the user stories, each of them is split into 3 parts regarding their

structure (role, action, benefit). After unnecessary parts are removed, user stories

are tokenized and the NLP module uses Part of Speech Tagging to extract relevant

information from these 3 parts. For instance, from the user story above we have

student, upload my homework and get good grades as necessary parts. After having

34

the informative word phrases from user stories, they are grouped using designed 5

heuristics. To build our goal models relying on strategies, we use similarity-checking

functions to group action verbs, action objects, and benefit parts by their meaning.

The ArTu tool can now create a goal model utilizing goals as nodes and relation-

ships as edges between nodes once the similarity function has finished identifying goals

and relationships. The type of the node determines how the goal nodes are labelled;

for example, an actor node receives an actor label. The data collected from graph

databases also label parent and child nodes, for example, the node type ”goal” has in-

formation about the goal with a label and its child nodes. When connecting the nodes

between the parent goal and child goal, the ArTu tool refines its lines using relationship

information to generate AND or OR refinements. For instance, the example JSON in

Figure 5.3 has good grades got as a ”parent node” and homework uploaded as a ”child

nodes”.

Figure 5.3. Example Json format.

35

Figure 5.4. Playground page with data-tool box.

When the user sees the goal model on the tool’s editor page, these are the func-

tionalities she/he can do:

(i) Zooming in and out: Users can zoom in and out on the goal model on an in-

teractive page, which enables them to generate an overview of a project or to

concentrate on particular aspects.

(ii) Tool Bar: On the left side in Figure 5.5, the elements to draw a goal model is

listed. Clicking on the element and clicking on the blank page creates the item you

want. Boundary draw an actor boundary, Actor element come with an actor and

its boundary, goal element creates goal nodes within the actor boundary. Users

can edit the actor’s and goal’s labels by double-clicking on them. AND and

OR refinements are also provided to connect nodes on the model. By default,

automatically designed goal models come with AND relations, the user can easily

replace it with OR by deleting the element on the model.

(iii) Export Data: Figure 5.4 shows the data features users can do on the tool. Once

the user edit/create a goal model as they wish, they can export it in PNG, JPEG

and JSON formats. So that they can either visualize the model or download it

as JSON and work on it later on.

(iv) Import Data: If the users have their goal model data in JSON format, they can

easily import them on the data toolbar and do further editing.

36

Figure 5.5. Screenshot of the modeling editor.

(v) Switch Heuristics: User stories can be uploaded, and tool heuristics can be used

to create a goal model. When the tool displays it on an interactive page, the user

can first examine the design before deciding whether to change the heuristic to

view the other goal model design. So they can accomplish it using the switch

heuristics section.

On an interactive modelling canvas modelled after the piStar tool [24], the vi-

sualized goal model is displayed for users to update. A screenshot of our modelling

canvas is shown in Figure 5.5. Actor, actor boundary, goal elements, and AND/OR

refinements are available in the toolbox on the left. The model can be zoomed in or out

by users. By altering the chosen heuristic on the canvas, they may also test out other

goal model architectures. The user can export the model as an image or JSON file after

she is happy with the model. You can reach our tool in the GitHub repository [25].

37

ArTu tool has 3 types of users. The first group consists of professionals in the

business who use agile development. They can easily input their user stories into the

tool and view the goal models that are generated. The instructors who teach software

engineering make up the second group of users. They can demonstrate several tech-

niques for capturing the requirements using our technology. The third group consists

of students who receive training in goal model construction. By giving them an initial

goal model structure for their user story data, the tool can help them.

38

6. EVALUATION

The evaluation protocol is explained in this chapter. We follow the Goal Question

Metric (GQM) approach [20] to build our methodology on assessing the usefulness and

effectiveness of goal models and ArTu tool. To determine the quality of the designed

heuristics and the tool, we study time efficiency and the complexity of the goal models.

Our metric for evaluating time is time in seconds, and model complexity is the number

of model elements.

We build 4 hypotheses to measure our quality metrics mentioned above. H time [0-

1] are hypotheses to see time efficiency when using the tool to draw a goal model and

when not using it. H complexity [2-3] are designed to evaluate the number of model

elements between automatically built goal models and manually built goal models to

see how complex goal models are.

Our null hypotheses:

• H time 0: The time spent to draw a goal model without using the tool is equal

to when the tool is used.

• H complexity 2: The number of goal model elements in the tool generated one

and manually generated one is equal.

Alternative hypotheses state:

• H time 1: The time spent to draw a goal model without using the tool is longer

than when the tool is used.

• H complexity 3: The number of goal model elements between tool-generated one

and manually generated one is not equal.

39

6.1. Experimental Design

Purpose. Here we aim to design an evaluation methodology to test our hypothe-

ses above. The time difference to build a goal model between using the tool and without

using it is one of our quality issues. To measure time, time in seconds is used as a

metric. The model elements are considered to indicate the complexity quality when

drawing goal models. Each participant is asked to send their goal model design after

the experiment ended. We analyze those designs to calculate the number of model

elements as a metric for this quality.

Experiment Protocol. In this part, we run a cross-over experiment on partic-

ipants with 2 user story sets. Each participant who gave consent to participate is

assigned to two different groups (treatment group and control group). This experi-

ment includes 2 sessions. During the first session, the control group receives one of the

user-story sets and draws a goal model manually using ArTu tool’s playground page,

while the treatment group receives the other user story set and uses built heuristics

to have an automatically generated goal model. Then during the second session, the

order of having goal models either manually or automatically is reversed according to

the crossover experiment design. In other words, the control group receives the second

user story set and uses the tool to draw automatically. Whereas the treatment group

receives the first user story set and draws manually on the tool. Table 6.1 shows how

we set up the cross-over design in this experiment.

Table 6.1. Experiment 2 setup design.

With Tool Without Tool

User Story Set 1 Group 1 Group 2

User Story Set 2 Group 2 Group 1

40

Before the experiment, all participants get an e-mail including an explained tu-

torial, 2 user story sets, and ArTu tool link. Moreover, a short questionnaire form

is sent to gather information about participants’ profiles. Participants in the online

experiment were asked to share their screens during the session. Each participant is

asked to provide feedback regarding the experiment’s progress and the session they

found easiest, both verbally and in writing on a questionnaire, at the end of the study.

The flow of this experiment is shown in Figure 6.1.

Figure 6.1. Experiment 2 flow.

Materials. Before the experiment, each participant receives a tutorial that in-

cludes the same user stories and goal model information as in the first experiment. In

addition, it includes instructions on how to use the ArTu tool to upload a set, choose

heuristics, and draw a goal model on a blank playground page using tool elements.

For this experiment, two user story sets are used in two separate sessions. To learn

more about our users’ profiles and how they feel about the usability of the ArTu tool,

a feedback form in Table 6.3 and a demographics form in Table 6.2 are also delivered.

Participants are required to download goal model designs from the tool at the end of

each session, thus we had 2 goal models.

41

Table 6.2. Demographics form questions & answers.

Demographics Questions Answers

Which of the following categories best de-

scribes your employment status?

Computer Engineering Student

Software Developer

Not Employed

Researcher

Other

What describes you if you are still a stu-

dent?

Bachelor’s degree

Master’s degree

PhD or higher

Have you taken any training on user stories?

No

I’ve taken a course at university

I’ve taken a training at work

Other

How much experience do you have in User

Stories?

No experience

I use them at work

I’m actively writing user stories

Have you taken any training on goal mod-

els?

No

I’ve taken a course at university

I’ve taken a training at work

Other

How much experience do you have in Goal

Models?

No experience

I use them at work

I’m actively writing user stories

42

Table 6.3. Feedback form questions & answers.

Feedback Questions Answers

Depending on your role (teacher, student,

worker) would you use it for your work pur-

poses?

Yes, because ...

No, because ...

Maybe, because ...

How easy is it to edit the automatically

built goal model?

Linear scale from 1 to 5

1 Very easy

5 Complex

Do you prefer editing the automatically

drawn goal model to have your goal model

or building your model from scratch?

Yes

No

What would you rate the user-friendliness

of the tool?

Linear scale from 1 to 10

1 Very easy to navigate

10 Complex

6.2. Experiment Execution

The experiment involves computer engineering students, software developers and

researchers. From 38 participants 25 of them are software developers which are shown

in Figure 6.2.

92% of the participants have studied user stories, and 79% of them have studied

goal models. These results show that most of them have preliminary knowledge of user

stories and goal models which you can see in Figure 6.3 and Figure 6.4, also 80% of

them studying for their master’s degree in software engineering.

43

Figure 6.2. Participants’ demographic results.

Figure 6.3. Participants’ user story knowledge.

Figure 6.4. Participants’ goal model knowledge.

44

However, a demographics survey reveals that nearly half of them have no expe-

rience with either user stories or goal models in the workplace. 30% of them say they

do not write user stories but instead use them for work projects. And rest 20% of

users actively write user stories. On the other hand, 65% of the participants lack any

expertise with goal models rather than taking a course in university. 28% use goal

models at their job but do not draw practically, and only 7% of them draw/use goal

models actively at work.

6.3. Results

In this section, we first discuss the similarity between the 2 user story sets by

showing the time spent by each participant. Then we examine the time difference to

draw goal models with the tool and without the tool and lastly, goal model elements

are considered.

6.3.1. User Story Similarity

Our first aim is to show that 2 user story sets used in the experiment have similar

complexity and to achieve that we run some statistical analysis on the data. Before

deciding which statistical test to run, we analyze whether the data we collected from

measuring time for these 2 data sets have a normal distribution. Sharpio-Wilk test is

performed on the data, and the p-value is greater than 0.05 which indicates we have

normally distributed data.

In Figure 6.5, the time spent in seconds using the tool and not using the tool is

shown. When we first look at grouped box plots for both data sets, the average time

spent when the tool is not used is very similar which means our data sets are similar

complexity-wise.

45

Figure 6.5. Boxplot for 2 datasets showing time spent.

An independent t-test is chosen to prove that there is no significant difference in

time spent on both user story sets. Total time which indicates time spent with the tool

and without the tool is analysed for both sets with a t-test, the result for the p-value

is equal to 0.575. So we can say that these 2 sets are not different from each other.

6.3.2. Time Difference

After showing the similarity between the two user story sets, our plan is to show

if there is a significant time difference between drawing a goal model with the tool

and without the tool. H time [0-1] hypotheses are tested in this part for control and

treatment groups. Figure 6.6 displays the distribution of time in seconds for Archive

data set for when the tool is used and when is not used. It is ame for Data Management

data set is shown in Figure 6.7. We can easily see that for both data sets the average

time spent in seconds when the ArTu tool is not used is higher than the tool used.

46

Figure 6.6. Boxplot for archive set showing time in seconds.

Figure 6.7. Boxplot for data management set showing time in seconds.

47

When we analyse the summary statistics on the time variable for when the tool

is used and when not which is shown in Table 6.4. The mean value for tool time is 17

minutes, while the mean value for a tool not used is 28 minutes.

This time we apply Shapiro-Wilk test on each data set for tool times and no-

tool times to see if they have normal distributions. Both user story sets have normally

distributed data when we look at time in seconds (both p-values are greater than 0.05).

So the test is not significant which indicates the sampling distribution is normally

distributed. To see if these time values are significantly different from each other we

use independent t-test considering the data we have. The result from the t-test

indicates there is a significant difference in time when the tool is used to draw.

Table 6.4. Statistics on time variable.

Time Spent With Tool Time Spent Without Tool

Mean 00:17:45 00:28:09

STD 00:09:00 00:10:15

Min 00:04:12 00:08:34

Max 00:43:51 00:55:10

The pvalue is equal to 0.002 which we can reject our null hypothesis.

• H time 0: The time spent to draw a goal model without using the tool is equal

to when the tool is used.

• H time 1: The time spent to draw a goal model without using the tool is longer

than when the tool is used.

48

6.3.3. Goal Model Elements

Our second and third hypotheses try to show if there is a difference in terms of

the number of goal model elements between tool-designed and manually-designed goal

models.

• H complexity 2: The number of goal model elements in the tool-generated one

and manually generated one is equal.

• H complexity 3: The number of goal model elements between the tool-generated

one and manually generated one is not equal.

First, we analyse the data to see if it has normal distribution by using the Shapiro-

Wilk test. When it has been applied, the result has shown we have normally distributed

data. Thereby we apply a t-test in this case as well. Since we have a p-value of 0.316,

we cannot say they are significantly different.

However, when we look at the distributions of model elements for both sets, we

see a consistent number of elements when the model is drawn with the tool. On the

other hand, the number of manually drawn goal model elements is spread over the

figures. This leads us to conclude having a goal model structure using the tool gives

a consistent design of the goal model. The distribution for Archive Set can be seen in

Figure 6.8, while Data Management set in Figure 6.7.

49

Figure 6.8. Distribution of number of goal models elements for Archive Data Set.

Figure 6.9. Distribution of goal models drawn for Data Management Data Set.

50

7. THREATS TO VALIDITY

In terms of external threats, internal threats, construct threats, and reliability

threats, we analyze the limitations of our solution in this chapter. The threats to the

validity considered in this study are explained in the next sections.

7.1. External Validity

Threats to external validity decrease the results’ generalization. Experience: It

is unlikely that participants with similar levels of expertise in user stories and goal

models will participate in this study. To minimize this threat, we ask people from a

software engineering background. Number of participants: More participants could

join this study to strengthen the obtained results, yet we have 38 participants and a

cross-over design which lessens the threat. Varieties of user story sets: Evaluations on

additional data sets are necessary to obtain more trustworthy accuracy results. Yet,

the results have been proven to be good.

7.2. Internal Validity

Threats to the internal validity of the centre of the experiment on their method-

ology. Data sets: The data sets were selected from a public place which we did not

write ourselves so we limit the threat here. Time: In the study there are 2 sessions,

and 30 minutes is assigned for each participant, but they are also allowed to take their

time in each session. Heuristics: To have a goal model automatically, the strategies

are described in detail before the experiment. Users choose the heuristic as they want,

yet they mostly select the heuristic 1. Learning: Users who started using the ArTu

tool with heuristics have learned how to draw a goal model from their first session.

Maturation: It is possible that participants lost motivation or performed worse due

to fatigue after completing the first session. These threats are reduced by having a

cross-over designed experiment.

51

7.3. Construct Validity

Threats related to how well a test captures what it is designed to capture. While

building goal models on the tool, the designs do not have OR refinement however users

can adjust the goal model design as they see fit. So this threat is dropped by allowing

users to edit the goal models as they wish.

7.4. Reliability

In terms of reliability, we have four hypotheses covering the number of goal model

elements and the time spent when drawing goal models. We have carried out statistical

analyses and the results demonstrated the validity of our hypotheses.

52

8. DISCUSSION

In this chapter, we analyzed the results we got from people at the end of their

experiment. Moreover, we go over the comments made by users and read the feedback

survey form. At the end of each session, we encouraged them to discuss the tool’s

usability, the clarity of its heuristics, and what could be done to make the tool and the

experiment better.

8.1. Heuristics

Each participant receives a tutorial describing the heuristics on ArTu tool before

their experiment. During the experiment, they are asked to revise the user story sets

and choose which heuristic design to utilize when drawing a goal model. The selected

heuristic numbers are saved for every user, and heuristic 1, which groups user stories

with similar action verbs, was picked by 28 participants. This might be a result of

the comparable structure of both user story sets. Heuristics 2,4, and 5 are used seven

times, four times, and once respectively.

8.2. Feedback Questionnaire

When asked if they would use the tool at work, more than half of the respondents

answered they would, with 11% saying they may. Eighty per cent of users said it was

very simple to update the goal model once they had it from the heuristics. When

asked if they would use the tool to generate goal models generally, 85% of them replied

yes, and 90% stated they preferred automatically constructed goal models to ones that

were manually drawn. 95% of users give the tool a rating of 7 or higher due to its

user-friendliness.

53

8.3. Overall

Overall feedback covers what the participants said after their experiment ended.

The participants who started using the tool to generate goal models indicated that in

their next session (drawing manually) they learned how to draw from automatically

drawn one and felt biased when they had to draw by themselves. Some of them even

created their goal model mimicking the heuristics design. According to our overall

analysis of time differences, it can be seen that using the tool speeds up the process,

yet few participants said they felt more at ease when they had to draw manually.

Heuristics were unclear to some participants, and they needed extra time to

practice drawing goal models with heuristics. Some of them desired further illustrations

of what the heuristics did or the situations in which they should apply whichever

heuristic. Goals are linked to one another via AND refinements in all of the heuristic-

generated goal models. But several people claim to have used OR in some cases, thus it

should also be added. People who utilize heuristic 4 advise using the benefit component

with a quality attribute in iStar framework.

Both sets of user story sets, which each have 27 user stories, are thought to be

comprehensible and contain a good number of user stories. Users claim that even

though the set size was relatively tiny for a software project when they had goal mod-

els created from scratch, some user stories were missing in the manually drawn goal

model. On the other hand, they also claimed that the automatically generated goal

models always include user stories, making them useful. They claimed that if the user

story sets were larger, the time gap would be significantly greater. When asked which

method was simpler, several users who spent about the same amount of time drawing

with and without the tool chose to modify the automatically created model. Most of

them claimed that starting with the heuristic-developed goal model made a significant

difference in terms of easy editing and requiring less time.

54

9. RELATED WORK

An unexplored field of research is automated model development from text docu-

ments using NLP. For instance, Sanyal and Kumar [26] provide the SUGAR tool, which

uses NLP and syntactic principles to construct use cases and class diagrams from NL

requirements. Using difficult NL requirements, Deeptimahanti and Babar [27] present

a method for producing UML models. The authors describe a tool called UML Model

Generator from Analysis of Requirements (UMGAR), which can handle lengthy re-

quirements documents and is powered by NLP technologies like Stanford Parser [28]

and WordNet [29].

Using NLP and domain ontology approaches, More and Phalnikar [30] create the

RAPID tool to extract UML diagrams from NL specifications. They intend to automate

the conversion of textual user requirements to UML class diagrams using NLP and

domain ontology, which is similar to earlier work by Herchi and Abdesselam [31]. In

order to capture notions like class names, their characteristics, and linkages to create

UML, the technique finally uses some linguistic rules.

Ibrahim and Ahmad [32] utilise the RACE tool, which is very similar to the

RAPID tool in that it combines NLP and domain ontology knowledge, to translate

user requirements specified in NL into class diagrams. By layering conceptual patterns

on top of NLP methods, Letsholo et al. [33] offer the TRAM tool for automatically cre-

ating analytical models from natural language requirements. Additionally, the system

enables users to get in touch with experienced modellers to raise the model’s quality.

Abdessalem et al. [34] suggest an automated program that will generate UML class

diagrams from NL requirements by extracting the class elements using NLP techniques

like pattern matching.

Researchers are becoming more interested in user stories as agile development ap-

proaches to gain traction in the software industry. Using the natural language processor

55

tool spaCy, Robeer et al. [35] present a completely automated solution to generate a

conceptual model from user stories. In a further piece of work, Lucassen et al. [36]

suggest the Visual Narrator tool, which extracts conceptual models from user tales

using Python and the Natural Language Tool Kit (NLTK). Elallaoui et al. [37] suggest

employing NLP techniques to automate the conversion of user stories into UML use

case diagrams. In contrast to other studies, this one evaluates user stories while cre-

ating UML diagrams, whereas other studies mostly focus on requirements documents.

Kochbati et al. [38] generates UML models from user stories. To divide the system

into smaller units, they create a semantic similarity module that groups the natural

language requirements. Gulle et al. [39] cluster topics within crowd-generated user sto-

ries using pre-trained word embeddings and Word Mover’s Distance (WMD). Resketi

et al. [40] attempt to employ NLP features to summarize a set of user stories based on

their frequency and then reuse them in future projects of a similar nature.

Elallaoui et al. [41] develop an algorithm that converts XML files from user story-

contained files into sequence diagrams by utilising the UML2 tool SDK plugin for

Eclipse. By creating a Visual Narrator tool to extract conceptual models from user

stories, Lucassen et al. [42] study potential remedies for using algorithms that have a

semantic understanding between ideas to display user stories. Arora et al. [43] sug-

gest using NLP tools to automate the process of building domain models from NL

requirements while also providing additional rules using the NLP dependency parser.

The conversion of user stories to goal models has received some attention. To au-

tomate the creation of iStar models from user stories, [44] create the tool US2StarTool.

Lin et al. [45] present a method for modelling goal requirements from user stories that

are goal-oriented. The approach Goal Net shows goal structure as ranging from simple

user stories to complex objectives. For user story sets, Wautelet et al. [23,46–48] create

rationale models. These papers focus on breaking down user stories into three broad

pieces rather than analyzing the smaller linguistic components within them (actor, ac-

tion, benefit). Our research differs from theirs in that we want to be more specific

and do not create goals for the entire action or benefit portion of a user story instead

56

we select objects and verbs and connect them. Wu et al. [49] study generating goal

models from user stories, which are built using iStar framework. They merge nodes in

the model using BERT to identify node similarity.

Conducting a controlled experiment to evaluate this project’s characteristics is

another crucial step. When compared to not using the technology, Winkler et al. [50]

want to know if it improves categorization quality. Two groups were utilized in their

controlled experiment: a treatment group and a control group. One group used the

tool, the other group did not. To determine which situations employing the tool is

advantageous is the goal. Ko et al. [51] created a book to instruct readers on how

to conduct controlled experiments. They say it’s crucial for experiments to have a

research question. Additionally, Abrahão et al. [52] propose a controlled experiment

for contrasting the efficacy of several goal model languages.

Our evaluation strategy compares automatically generated models with human-

built models by analyzing their similarities in order to provide realistic goal models.

A current area of investigation is how to quantify graph similarity. A method for

comparing labelled graphs that involve establishing a minimum similarity criterion is

presented by Raymond et al. [53]. Utilizing the maximum common edge subgraph

(MCES) discovery approach, the similarity is evaluated. When the node correspon-

dence is known, Koutra et al. [54] suggest DELTACON to measure the connectedness

between two graphs. This method addresses the issue and measures the overlap of

graph edges. A novel framework for calculating the degree of graph similarity utilizing

belief propagation and related concepts is designed by Koutra et al. [55] in another

piece of work. They operate on two graphs with the same number of nodes but various

edges. According to Zheng et al. [56], it is inefficient to gauge graph similarity across

huge graph databases. In order to solve the edit-distance-based similarity problem,

they propose to retrieve graphs if they are similar to the specified query graph.

57

10. CONCLUSIONS

It is difficult to see the relationships in user stories because they are presented

with flat data. Goal models, on the other hand, give a high-level representation of

the relationships and pinpoint user stories that discuss the same concepts. However,

manually creating goal models requires time, effort, and training, so they are not widely

adopted in the industry. To enhance the usage of goal models in agile practices, we

introduce ArTu, a goal model-building tool driven by NLP.

The initial experiment on evaluating the utility of goal models motivated the

development of the ArTu tool. The goal model allows users to uncover user story

relationships more quickly, according to the results. To meet the problem of creating a

goal model, we develop several heuristics that combine user stories and generate several

goal model designs that resemble goal models created by humans. To extract useful

information from each user story in the set, we apply NLP features. We then store the

information in graph databases to display the dependencies between nodes and edges

more clearly.

In order to display the relationships between nodes in the front-end part, we put

the strategies we obtained by querying the graph database into a JSON format. The

user story’s action element is the emphasis of the first three heuristics, while the fourth

and fifth heuristics combine the benefit and action parts. We can upload a set of user

stories to ArTu, and based on the goal model structure method we choose, the goal

model is generated. The model is displayed on its interactive playground page, which

allows users to modify the tool-built goal model as they see fit. A goal model’s final

iteration is available for download as an image or in JSON format.

The purpose of the second experiment is to evaluate the effectiveness of heuristics

and the ArTu tool. We have designed it to explore the metrics for time effectiveness

and the number of model elements. In order to cover these quality criteria, we have

58

4 hypotheses. Hypotheses H 0 and H 1 focus on the time efficiency metric and ask

whether using the tool may speed up the process of creating goal models. H 2 and

H 3 are used to assess the model’s components and determine whether the number is

consistent. Other elements that need to be vocally assessed include the tool’s usability

and perceived usefulness.

Future research is now possible thanks to this study of the ArTu tool’s and

goal models’ efficacy, which highlighted the significance of goal models in software

development processes. In the long run, it would be interesting to use machine learning-

based techniques in place of our rule-based heuristics to generate the goal models. We

can enhance the amount of heuristics on the tool by combining alternative grouping

techniques or working on designed goal models utilizing node similarity methodologies

since feedback pointed to the need for more complicated heuristics. In addition, the

playground page and toolbox features, for example, have received input regarding how

they might be improved and made more user-friendly.

59

REFERENCES

1. Kassab, M., C. Neill and P. Laplante, “State of Practice in Requirements Engi-

neering: Contemporary Data”, Innovations in Systems and Software Engineering ,

Vol. 10, pp. 235–241, 2014.

2. Kassab, M., “The Changing Landscape of Requirements Engineering Practices

Over The Past Decade”, Fifth International Workshop On Empirical Requirements

Engineering (EmpiRE), Ottawa, Canada, pp. 1–8, IEEE, 2015.

3. Lucassen, G., F. Dalpiaz, J. M. E. M. v. d. Werf and S. Brinkkemper, “The Use

and Effectiveness of User Stories in Practice”, Requirements Engineering: Foun-

dation for Software Quality: 22nd International Working Conference, REFSQ,

Gothenburg, Sweden, pp. 205–222, 2016.

4. Cohn, M., “User Stories Applied: For Agile Software Development”, Addison-

Wesley Professional, Redwood City, CA, USA, 2004.

5. Horkoff, J., F. B. Aydemir, E. Cardoso, T. Li, A. Mat’e, E. Paja, M. Salnitri,

L. Piras, J. Mylopoulos and P. Giorgini, “Goal-Oriented Requirements Engineering:

An Extended Systematic Mapping Study”, Requirements Engineering , Vol. 24,

No. 2, pp. 133–160, 2019.

6. Aydemir, F. B., F. Dalpiaz, S. Brinkkemper, P. Giorgini and J. Mylopoulos, “The

Next Release Problem Revisited: A New Avenue for Goal Models”, IEEE 26th

International Requirements Engineering Conference (RE), Banff, AB, Canada,

pp. 5–16, IEEE, 2018.

7. Dalpiaz, F., X. Franch and J. Horkoff, “iStar 2.0 Language Guide”, arXiv preprint

arXiv:1605.07767 , 2016.

60

8. Nguyen, C. M., R. Sebastiani, P. Giorgini and J. Mylopoulos, “Multi-objective

Reasoning With Constrained Goal Models”, Requirements Engineering , Vol. 23,

No. 2, pp. 189–225, 2018.

9. Güneş, T. and F. B. Aydemir, “Automated Goal Model Extraction From User Sto-

ries Using NLP”, IEEE 28th International Requirements Engineering Conference

(RE), Zurich, Switzerland , pp. 382–387, 2020.

10. Güneş, T., C. A. Öz and F. B. Aydemir, “ArTu: A Tool for Generating Goal

Models From User Stories”, IEEE 29th International Requirements Engineering

Conference (RE), Notre Dame, IN, USA, pp. 436–437, 2021.

11. I. K. Raharjana, D. S. and C. Fatichah, “User Stories and Natural Language Pro-

cessing: A Systematic Literature Review”, IEEE Access , Vol. 9, pp. 53811–53826,

2021.

12. Dalpiaz, F. and S. Brinkkemper, “Agile Requirements Engineering With User Sto-

ries”, IEEE 26th International Requirements Engineering Conference (RE), Banff,

AB, Canada, pp. 506–507, 2018.

13. Amna, A. R. and G. Poels, “Ambiguity in User Stories: A Systematic Literature

Review”, Information and Software Technology , Vol. 145, p. 106824, 2022.

14. Zeaaraoui, A., Z. Bougroun, M. G. Belkasmi and T. Bouchentouf, “User Stories

Template for Object-Oriented Applications”, Third International Conference on

Innovative Computing Technology (INTECH), London, UK , pp. 407–410, 2013.

15. Lombriser, P., F. Dalpiaz, G. Lucassen and S. Brinkkemper, “Gamified Re-

quirements Engineering: Model and Experimentation”, Requirements Engineering:

Foundation for Software Quality , pp. 171–187, Springer International Publishing,

2016.

16. Kavakli, E. and P. Loucopoulos, “Goal Modeling in Requirements Engineering:

61

Analysis and Critique of Current Methods”, Information Modeling Methods And

Methodologies: Advanced Topics in Database Research, pp. 102–124, IGI Global,

2005.

17. Horkoff, J. and E. Yu, “Analyzing Goal Models: Different Approaches and How

to Choose Among Them”, Proceedings of the 2011 ACM Symposium on Applied

Computing, TaiChung, Taiwan, SAC ’11, pp. 675–682, 2011.

18. Ali, R., F. Dalpiaz and P. Giorgini, “A Goal-Based Framework for Contextual

Requirements Modeling and Analysis”, Requirements Engineering , Vol. 15, pp.

439–458, 2010.

19. Horkoff, A. F. C. E. e. a., J., “Goal-Oriented Requirements Engineering: An Ex-

tended Systematic Mapping Study”, Requirements Engineering , Vol. 24, pp. 133–

160, 2019.

20. Caldiera, V. R. B. G. and H. D. Rombach, “The Goal Question Metric Approach”,

pp. 528–532, 1994.

21. Horkoff, J., “iStar 2.0 Core Language”, http://istar.rwth-aachen.de/

tiki-index.php?page=Visio+Template.

22. Dalpiaz, F., “Requirements Data Sets (User Stories)”, Mendeley Data, 2018, ac-

cessed on June 16, 2021.

23. Wautelet, Y., S. Heng, M. Kolp and I. Mirbel, “Unifying and Extending User

Story Models”, 26th International Conference on Advanced Information Systems

Engineering (Caise), Thessaloniki, Greece, Vol. 8484, pp. 211–225, CAiSE, 2014.

24. Pimentel, J. and J. Castro, “piStar Tool: A Pluggable Online Tool for Goal Model-

ing”, IEEE 26th International Requirements Engineering Conference (RE), Banff,

AB, Canada, pp. 498–499, IEEE, 2018.

62

25. Güneş, T., “tugcegns/goal-model-builder: Goal Model Builder Tool”, Zenodo,

2022, https://zenodo.org/record/7011245, accessed on September 2, 2022.

26. Deeptimahanti, D. K. and R. Sanyal, “Static UML Model Generator From Analysis

of Requirements (SUGAR)”, In Advanced Software Engineering and Its Applica-

tions (ASEA), 2008.

27. Deeptimahanti, D. K. and M. A. Babar, “An Automated Tool for Generating UML

Models From Natural Language Requirements”, Automated Software Engineering ,

pp. 680–682, 2009.

28. Klein, D. and C. D. Manning, “Stanford Parser”, https://nlp.stanford.edu/

software/lex-parser.shtml, accessed on August 21, 2021.

29. Fellbaum, C., “WordNet A Lexical Database for English”, https://wordnet.

princeton.edu/, 1998, accessed on August 21, 2021.

30. More, P. R. and R. Phalnikar, “Generating UML Diagrams From Natural Language

Specifications”, International Journal of Applied Information Systems , Vol. 1, pp.

19–23, 2012.

31. Herchi, H. and W. Abdessalem, “From User Requirements to Uml Class Diagram”,

arXiv preprint arXiv:1211.0713 , 2012.

32. Ibrahim, M. and R. Ahmad, “Class Diagram Extraction From Textual Require-

ments Using NLP Techniques”, Second International Conference on Computer Re-

search and Development, NW Washington, DC, United States , pp. 200–204, IEEE,

2010.

33. Letsholo, K. J., L. Zhao and E.-V. Chioasca, “TRAM: A tool for Transform-

ing Textual Requirements Into Analysis Models”, 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), Silicon Valley, CA, USA,

pp. 738–741, 2013.

63

34. Abdessalem, W., Z.B.Azzouz, A.Singh, N.Dey, A.S.Ashour and H.B.Ghezala, “Au-

tomatic Builder of Class Diagram(ABCD): An Application of UML Generation

From Functional Requirements”, Software Practice and Experience, Vol. 46, 2016.

35. Robeer, M., G. Lucassen, J. M. E. M. van der Werf, F. Dalpiaz and S. Brinkkemper,

“Automated Extraction of Conceptual Models From User Stories via NLP”, IEEE

24th International Requirements Engineering Conference (RE), Beijing, China,

pp. 196–205, 2016.

36. Lucassen, G., M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf and S. Brinkkem-

per, “Extracting Conceptual Models From User Stories With Visual Narrator”,

Requirements Engineering , Vol. 22, pp. 339–358, 2017.

37. Elallaoui, M., K. Nafil and R. Touahni, “Automatic Transformation of User Sto-

ries Into UML Use Case Diagrams Using NLP Techniques”, Procedia Computer

Science, Vol. 130, pp. 42–49, 2018.

38. Kochbati, T., S. Li, S. Gérard and C. Mraidha, “From User Stories to Mod-

els: A Machine Learning Empowered Automation”, 9th International Confer-

ence on Model-Driven Engineering and Software Development (MODELSWARD),

Palaiseau, France, Vol. 10, pp. 28–40, 2021.

39. Gülle, K. J., N. Ford, P. Ebel, F. Brokhausen and A. Vogelsang, “Topic Modeling

on User Stories Using Word Mover’s Distance”, IEEE Seventh International Work-

shop on Artificial Intelligence for Requirements Engineering (AIRE), pp. 52–60,

IEEE, 2020.

40. Resketi, M. R., H. Motameni, H. Nematzadeh and E. Akbari, “Automatic Sum-

marising of User Stories in Order To Be Reused in Future Similar Projects”, IET

Software, Vol. 14, No. 6, pp. 711–723, 2020.

41. Elallaoui, M., K. Nafil and R. Touahni, “Automatic Generation of UML Sequence

64

Diagrams From User Stories in Scrum Process”, 10th International Conference on

Intelligent Systems: Theories and Applications (SITA), Rabat, Morocco, pp. 1–6,

2015.

42. Lucassen, G., F. Dalpiaz, J. M. E. M. v. d. Werf and S. Brinkkemper, “Visual-

izing User Story Requirements at Multiple Granularity Levels via Semantic Re-

latedness”, Conceptual Modeling: 35th International Conference, ER 2016, Gifu,

Japan, pp. 463–478, 2016.

43. Arora, C., M. Sabetzadeh, L. Briand and F. Zimmer, “Extracting Domain Mod-

els From Natural-Language Requirements: Approach and Industrial Evaluation”,

Proceedings of the ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems, Saint-Malo, France, pp. 250–260, 2016.

44. Mesquita, R., A. Jaqueira, M. Lucena, C. Sá Filho and F. M. Alencar,

“US2StarTool: Generating i* Models From User Stories”, International i* Work-

shop, Ottawa, Canada, pp. 103–108, 2015.

45. Lin, J., H. Yu, Z. Shen and C. Miao, “Using Goal Net To Model User Stories in

Agile Software Development”, pp. 1–1, 15th IEEE/ACIS International Conference

on SNPD, Las Vegas, NV, USA, 2014.

46. Wautelet, Y., S. Heng, M. Kolp, I. Mirbel and S. Poelmans, “Building a Rationale

Diagram for Evaluating User Story Sets”, IEEE Tenth International Conference on

Research Challenges in Information Science (RCIS), Grenoble, France, pp. 1–12,

2016.

47. Wautelet, Y., S. Heng, D. Hintea, M. Kolp and S. Poelmans, “Bridging User Story

Sets With the Use Case Model”, Advances in Conceptual Modeling: ER 2016

Workshops, AHA, MoBiD, MORE-BI, MReBA, QMMQ, SCME, and WM2SP,

Gifu, Japan, Proceedings 35 , pp. 127–138, 2016.

65

48. Wautelet, Y., S. Heng, S. Kiv and M. Kolp, “User-Story Driven Development of

Multi-Agent Systems: A Process Fragment for Agile Methods”, Computer Lan-

guages Systems & Structures , Vol. 50, pp. 159–176, 2017.

49. Wu, C., C. Wang, T. Li and Y. Zhai, “A Node-Merging Based Approach for Gen-

erating iStar Models From User Stories”, Software Engineering and Knowledge

Engineering , Vol. 32, pp. 257–262, 2022.

50. Winkler J.P., V. A., “Using Tools To Assist Identification of Non-requirements in

Requirements Specifications – A Controlled Experiment”, Requirements Engineer-

ing: Foundation for Software Quality: 24th International Working Conference,

Utrecht, The Netherlands, Proceedings 24 , pp. 57–71, Springer, 2018.

51. Ko, L. T. . B. M., A.J., “A Practical Guide To Controlled Experiments of Software

Engineering Tools With Human Participants”, Empirical Software Engineering ,

Vol. 20, pp. 110–141, 2015.

52. Abrahão, S., E. Insfran, F. G. L. Guevara, M. Fernández-Diego, C. Cano Genoves

and R. Oliveira, “Assessing The Effectiveness of Goal-Oriented Modeling Lan-

guages: A Family of Experiments”, Information and Software Technology , Vol.

116, pp. 106–171, 2019.

53. Raymond, J. W., E. J. Gardiner and P. Willett, “RASCAL: Calculation of Graph

Similarity Using Maximum Common Edge Subgraphs”, The Computer Journal ,

Vol. 45, pp. 631–644, 2002.

54. Koutra, D., J. T. Vogelstein and C. Faloutsos, “DELTACON: A Principled

Massive-Graph Similarity Function”, Proceedings of the 2013 SIAM International

Conference in Data Mining (SDM), Texas, USA, pp. 162–170, 2013.

55. Koutra, D., J. T. Vogelstein and C. Faloutsos, “Algorithms for Graph Similarity

and Subgraph Matching”, Ecological Inference Conference, Vol. 17, Citeseer, 2011.

66

56. Zheng, W., L. Zou, X. Lian, D. Wang and D. Zhao, “Efficient Graph Similarity

Search Over Large Graph Databases”, IEEE Transactions on Knowledge and Data

Engineering , Vol. 27, No. 4, pp. 964–978, 2014.

