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ABSTRACT

A COMPARATIVE EVALUATION OF MACHINE

LEARNING ALGORITHMS FOR STATISTICAL

DOWNSCALING OF MONTHLY MEAN TEMPERATURE

DATA OVER A EUROPEAN REGION

Climate change is the most vital environmental change that has already started

to affect many ecosystems. It is caused by greenhouse gas emissions which are in-

creasing since the pre-industrial era, and populated areas become more vulnerable to

disasters due to climate change. It has never been more crucial to model the climate

effects on local regions. Organizations like Intergovernmental Panel on Climate Change

(IPCC) use global climate models (GCMs) to project future changes in climate on a

continental scale. Although these models are becoming more accurate, downscaling

these models to smaller scales is an important task that is studied by climate scien-

tists. The two main downscaling methods are dynamical and statistical downscaling.

Statistical downscaling studies are more reachable and important to develop when com-

pared to dynamical downscaling due to its lower costs. The use of machine learning

algorithms in statistical downscaling is a new area. Studies that implement machine

learning to make local scale projections of surface temperature are numbered. In this

paper, four different machine learning algorithms were tested on downscaling of two dif-

ferent surface temperature datasets over a European region with different resolutions.

The best performing algorithm was also tested augmenting elevation data. The results

show that Gaussian process regression performs the best with MAE of 0.04 - 0.51 as

compared to the other machine learning algorithms tested. In conclusion, machine

learning algorithms such as Gaussian process regression can be a suitable approach

when downscaling spatial monthly mean surface temperature data.
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ÖZET

AVRUPA BÖLGESİ ÜZERİNDE AYLIK ORTALAMA

SICAKLIK VERİSİNİN İSTATİSTİKSEL ÖLÇEK

İNDİRGEMESİNE YÖNELİK MAKİNE ÖĞRENMESİ

ALGORİTMALARININ KARŞILAŞTIRMALI BİR

DEĞERLENDİRMESİ

İklim değişikliği, birçok ekosistemi etkilemeye başlamış en hayati çevresel değişim.

Sebebi ise sanayileşme öncesinden bu yana artan sera gazı salınımları ve nüfusu yoğun

bölgeler iklim değişikliği kaynaklı felaketlere karşı savunmasız durumda. IPCC ve

diğer ortak çalışma grupları global iklim modellerini kullanarak kıtasal ölçekte iklim

değişimlerini tahminlemektedirler. Bu modellerin daha düşük ölçeklere indirgenmesi

işi bir çok iklim bilimcisi tarafından çalışılan önemli ve ilgi çekici bir konu. Ölçek

indirgemesi genellikle dinamik ve istatistiksel ölçek indirgemesi olarak ikiye ayrılır.

İstatistiksel ölçek indirgeme dinamik ölçek indirgeme ile karşılaştırıldığında daha düşük

kaynak tüketimine sahip. Makine öğrenmesi algoritmalarının istatistiksel ölçek in-

dirgeme için kullanılması konusu sadece son yıllarda çalışılmıştır. Bu tezde dört farklı

makine öğrenmesi algoritması farklı çözünürlüklere sahip çeşitli Avrupa bölgelerini

kapsayan iki farklı yüzey sıcaklığı veri seti üzerinden ölçek indirgemesi işleminde test

edilmiştir. Testlerin sonuçlarına göre Gauss süreç regresyonu algoritması iki farklı

yüzey sıcaklığı veri setinin de ölçek indirgemesinde 0.04 ile 0.51 arasındaki ortalama

mutlak hata değerleri ile geleneksel makine öğrenmesi algoritmalarına kıyasla en iyi

performansı gösteren algoritma oldu. Sonuç olarak, uzaysal ortalama sıcaklık veri-

lerinin ölçek indirgemesi işleminde Gauss süreç regresyonu gibi makine öğrenmesi al-

goritmalarının kullanılması uygun bir yaklaşım olacaktır.
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1. INTRODUCTION

Climate has a significant impact on the Earth’s habitability. New faunal and

paleoclimate data, support the concept that previous climate variations impacted hu-

man evolution positively [1]. With increasing greenhouse emissions since the industrial

revolution, the Earth’s climate began to alter. This change became more observable

and measurable when the adverse effects on human lives became apparent. For al-

most a century, climate scientists have been developing global climate models(GCMs)

to better understand energy flows and climatic features. These models play key role

for understanding the causes of climate change and predicting the future impacts of

it. Although climate change has common global impacts such as sea-level rise and

air temperature rise, it also has region-specific consequences including extreme heat

waves, drought and floods. In order to extract regional climate information to predict

future average weather and possible extreme weather events, inherently large scaled

GCMs are required to be downscaled into finer resolutions. Higher-resolution models

obtained by downscaling processes are then used to assess vulnerability, impacts and

planning adaptations for the region of interest. These downscaling processes can be

grouped into two main categories. Dynamical and statistical downscaling. A grow-

ing number of studies on statistical downscaling have been conducted since it is less

expensive in terms of computational power and easier to execute when compared to

dynamical downscaling. Considering the rapid change in climate and observing the

effects of it, developing a statistical downscaling process to obtain local-area scaled

climate models that are relatively more accurate and computationally cheap is quite

crucial. Even though many different mathematical methods were used to implement

statistical downscaling thus far, experiments on examining the use of machine learning

algorithms for statistical downscaling are still few. This paper examines implementa-

tion of several machine learning algorithms to interpolate spatially large scaled monthly

mean surface temperature data. According to our experiments, certain machine learn-

ing algorithms such as Gaussian Process Regression exhibit relatively more accurate

interpolation results and can be used for statistical downscaling.
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1.1. Climate Change

The main difference between climate change and weather shift is that climate

change is a long term change of averaged weather of a particular region over a long pe-

riod of years, while weather means atmospheric status on short periods of time. Trends

and seasonality of average temperature and average precipitation are considered to be

the main characteristics of the climate pattern of a region. And these characteristics of

a region are delimitated by a number of elements such as elevation, patterns of ocean

circulation, distance to water bodies and highlands. To define the climate of a region

requires most of its features to be calculated or measured. Moreover, weather data

points that are gathered each day by weather observers and stations are processed del-

icately to be averaged and transformed into a final format that represents the average

climate of the concerned region with a decent accuracy.

Climate change is the variation trend of average course of weather and temper-

ature patterns throughout several decades. While this variation could be natural due

to some geological and orbital events like volcanic activities and changes in the solar

cycle, considering early 1800s through early 2000s, climate scientists have a 90% - 100%

shared consensus that climate change is anthropogenic [2]. With the industrial revo-

lution starting to spread widely amongst many different countries in the early 1800s,

more industrial areas and factories that emit greenhouse gases such as carbon diox-

ide (CO2), methane (CH4) and nitrous oxide (N2O), increased in number since then.

Increase in the atmospheric concentrations of these greenhouse gases magnified global

warming. Concentration of the essential greenhouse gas, CO2, increased dramatically

since the industrial revolution, and it is still growing. (Figure 1.1 and Figure 1.2) Such

greenhouse gases normally take part in atmosphere and play a crucial role in keeping

earth habitable by making earth sufficiently warm. However, when the concentration

of these greenhouse gases overrise, it is observed that Earth’s atmosphere tends to

warm. According to National Oceanic and Atmospheric Administration (NOAA), all

top 10 of the warmest years since 1880, is among the years after 2005 with anomaly

ranging from 0.67◦C to 1◦C. In the first two decades of the 21st century, the measured
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global surface temperature was 0.99◦C higher than it was from 1850 to 1900. The

annual Arctic sea ice area has dropped to its lowest level since 1850 in the last decade

due to the global warming [3]. Many weather and climatic extremes are already being

influenced by human-caused climate change in every corner of the world. Evidence of

observable increases in number of heatwaves, heavy precipitation, droughts, and tropi-

cal cyclones, as well as their attribution to human activity, has risen. Since the 1950s,

the frequency and severity of heavy precipitation events have grown throughout much

of the globe. Heatwaves have become more frequent whilst cold extremes have become

less frequent [3].

Australia witnessed one of the worst wildfire seasons in history in the summer of

2019-2020. More than 240000 square kilometers of land were burned, and an estimated

1 billion animals perished [4]. Despite the fact that bushfires are an unavoidable

occurrence in Australia, the risk is amplified by relatively frequent droughts. According

to a research published in 2007, the frequency of very high and extreme fire danger

days may rise 4-25 percent by 2020 as a result of climate change, which coincides with

recent observations and occurrences [5].

Figure 1.1. CO2 Levels for 800,000 years. Reproduced from [6].
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Figure 1.2. Recent Global Monthly Mean CO2 Levels. Reproduced from [7].

Climate scientists have specified some indicators to monitor the current state of

the climate. These indicators could be physical, ecological, or societal in nature. They

contribute to the monitoring of climate risks and vulnerabilities. Sea levels, ocean

temperature, and extreme weather events are among the indicators deemed critical.

1.1.1. Three Critical Indicators of Climate Change

1.1.1.1. Sea Level Rise. Sea levels are referred to be a good indicator of changes in

climate, and used as an aggregative metric for understanding current status of the

climate system and dependent to glaciers and ice sheets. When tempratures rise, more

fresh water is added into oceans as these ice masses melt down. This could cause

disastrous consequences including inundation. As seen in Figure 1.3, global mean sea

levels are rising every year. Since human population in coastal areas increases, many

of the coastal property might be affected heavily by coastal erosion as well. Wetland

salinization is another harmful effect that is already occuring at record rates and the

underlying physicochemical nature of the soil-water system is altered by salinization
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which increases ionic concentrations and changes chemical equilibria and mineral sol-

ubility. Increased salt and sulfide concentrations cause physiological stress in wetland

biota, which can lead to large transition in wetland communities and associated ecosys-

tem functions [8].

Figure 1.3. Global Mean Sea Levels, observed and projected values based on RCP

scenarios [9].

1.1.1.2. Rise of Ocean Temperatures. Covering 71% of earth’s surface, oceans play a

critical role in absorbing huge amount of heat. However, ocean surface temperature

anomalies are in a rising trend with warmer temperatures as seen in Figure 1.4. An

analysis by the Grantham Institute found that between 1955 and 2010, the heat en-

ergy absorbed by the upper 2,000 meters of the ocean increased the water temperature

by only 0.09°C. If the lower 10 kilometers of the atmosphere could absorb the same

amount of heat, it would be 36°C warmer [10]. Ocean deoxygenation, a decrease in the

ratio of oxygen dissolved in the ocean, is also another threat to be concerned. Both

global and local marine ecosystems are in potential danger due to negative transfor-

mations. For instance, more than 700 coastal sites have stated new and deteriorative

oxygen deficiency [11]. Rising temperatures also have an impact on coral reefs, causing

bleaching and increasing their mortality risk. According to a 2012 report by the United

Nations Food and Agriculture Organization, marine and freshwater capture fisheries
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and aquaculture provide about 15% of animal protein to 4.3 billion people [12]. Mil-

lions of people rely on fishing and aquaculture for a living. Ocean warming poses a

serious threat to global food security and people’s livelihoods by altering fish stock

distributions and increasing the vulnerability of fish species to diseases.

Figure 1.4. Sea surface temperature anomaly 1850 to 2022. Reproduced from [13].

Another issue that adds up to the temperature rise of the oceans problem is

outbreaks of marine mucilage. It is a mucus-like organic material that attracts bacteria

and viruses released by marine organism, are increasing. According to historical data,

the frequency of mucilage in the Mediterranean Sea has grown practically exponentially

in the previous two decades [14]. Marine mucilage was reported spanning more than

2,500 kilometers of the Italian coastline in March 2007. Massive aggregates remained

for more than five months, nearly continuously [14]. Mucilage development can lead

to oxygen deprivation and rapid mortality of seabed plants and animals. In 2021, the

shores of Istanbul, Turkey’s most populous metropolis with a population of over 15

million, were afflicted by severe marine mucilage. Mucilage development was primarily

caused by overfishing and a rise in water temperature. The Sea of Marmara’s water
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temperature has risen by 2 to 2.5 degrees Celsius over the world average, and that was

one of the main reasons for mucilage outbreak [15].

1.1.1.3. More Frequent Extreme Weather Events. The increasing number of extreme

weather events is another one of the most visible indicators of climate change. Extreme

weather events are occurrences of unexpectedly severe climate conditions that can have

catastrophic consequences for communities and agricultural-natural ecosystems. Heat

waves, freezes, heavy downpours, tornadoes, wildfires, severe hail storms and floods

are all examples of extreme weather events. Warmer air causes more evaporation,

which results in more moisture in the atmosphere. Water vapor-rich air, on the other

hand, promotes heavy rainfall and storm systems. In a scenario where temperatures

continue to rise, more intense and higher level storms and hurricanes are expected to

occur. In the wake of increasingly frequent and intense extreme weather events, climate

scientists started a new area of research. An article entitled “Human Contribution

to the European Heat Wave of 2003” published in 2004 is a prime example of this

new attribution science. Researchers modeled how anthropogenic greenhouse emissions

increased the probability of a record breaking 2003 heat wave in Europe [16]. As

of today, organizations like the World Weather Attribution Initiative (WWA), with

collaboration of climate scientists from many countries, are analyzing extreme weather

events just after they occur to understand the role climate change played in them. A

period of extreme rainfall in Germany, Luxembourg and Belgium in July 2021 caused

acute flooding in some regions of these countries and resulted in more than 200 fatalities

as well as major damage to houses, bridges and railroad lines. As a result of the

current climate, such events are likely to happen every 400 years, according to a report

published by WWA in 2021. Therefore, such heavy rain events are predicted to be

more frequent within the Western European region as a result of global warming [17].

Although monitoring the rise of sea levels, the rise of ocean temperature and

the frequency of extreme weather events give us more data for understanding climate

change, these indicators are also some of the many serious consequences that has devas-

tating effects on many different types of regions across the globe. For this reason, many
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intergovernmental organizations have been established to expand the research on this

serious matter and spread awareness amongst governments such as Intergovernmental

Panel on Climate Change.

1.1.2. Intergovernmental Panel on Climate Change (IPCC)

In 1988, the World Meteorological Organization (WMO) and the United Nations

Environment Program (UNEP) established the Intergovernmental Panel on Climate

Change (IPCC), which provides scientific information for governments to assist them

in developing climate policies. IPCC has 195 member countries and many experts

around the world contribute as IPCC researchers to assess the future impacts, risks

and possible adaptations for those risks posed by climate change and its ramifications.

IPCC publishes broad Assessment Reports about insights on climate change,

potential effects and practical guidelines on mitigating it. According to their report

entitled “Global Warming of 1.5°C” published in 2018, warming of mean land surface

air temperature from pre-industrial period to the decade 2006–2015 is assessed to have

rised from 1.38°C to 1.68°C and global mean surface temperature is estimated to have

increased by 0.75°C to 0.99°C. In addition to that, as a result of past and ongoing

emissions, the rate of anthropogenic global warming is likely to increase by between

0.1°C and 0.3°C per decade. It is expected to reach 1.5°C above the pre-industrial

temperature levels if the current pace of warming continues [18]. In recognition of

potential irreversible threat to the planet, an international treaty on climate change

“Paris Agreement” was adopted in 2015. Covering climate change mitigation and

adaptation, the pivotal aim of the agreement was to limit the global temperature rise

to 1.5 C above the pre-industrial temperature levels. As of November 2021, more than

190 countries ratified the agreement.

Considering the unknown consequences that climate change might cause, to assess

the possible impacts of climate change on human life, insightful research and studies are

becoming much more necessary. Understanding the climate system and its patterns
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is the primary concern for taking a serious action. As scientists are concerned that

countries might fail to meet the goal of the Paris Agreement, it is now more important

to study and understand the climate system and predict the possible future status of

the climate on both global and local scales [19].

1.2. Climate Models

As effects of climate change on ecosystems are becoming more severe and observ-

able, predicting these effects and understanding the changing climate trends for differ-

ent regions on Earth has become more important for both scientists and governments.

As humans understand and identify potential future threats more precisely, planning

adaptations and possible precautions became faster and more accurate. Climate mod-

els are systems that assist in the conceptual understanding of climate trends. They

employ complicated mathematical concepts that are constrained by physical princi-

ples. As any mathematical model of any natural system, climate models simulate

energy flows and interactions between climate system components with simplification.

Although Earth’s climate is system consists of complex energy flows and interactions

between ocean, atmosphere and land, accuracy of climate models have been increased

significantly in the last couple of decades.

Climate modeling emerged from weather forecasting around 1940s. It was Vilhelm

Bjerknes who understand that weather prediction was solving physical and mathemat-

ical problems [20]. Lewis Fry Richardson used data from 12 vertical pressure levels at

multiple sites to perform the first numerical weather computations in 1917. Despite the

fact that his calculations were extremely useful for the notion of climate modeling, these

projections were impractical due to their large workload and limited accuracy [20,21].

After World War ll, numerical weather forecasting became more accurate. Fol-

lowing that, the first attempts at global circulation modeling began. Norman Phillips

conducted the first computer-based global circulation modeling studies in 1955 [22].

Researchers from the US National Center for Atmospheric Research (NCAR), founded
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in 1960, Akira Kasahara and Warren Washington, used the z-coordinate to express

height and produced more accurate findings. Series of models named Community Cli-

mate Model (CCM) by NCAR, were widely used until the middle 1990s. Climate

modeling is becoming more open-source, notably with the introduction of the Earth

System Modeling Framework (ESMF) by NCAR, NOAA, and NASA in 2002, which al-

lows scientists to execute numerous modeling tasks using pre-assembled scripts [22,23].

1.2.1. Global Climate Models

Projection of the impacts of the climate change for any area of any scale on Earth

is crucial since decision makers rely on these projection reports and data to assess

vulnerability and develop adaptation plans. The main tools that climate scientists

use to understand and simulate oceanic and atmospheric processes and interactions

are known as Global Climate Models or General Circulation Models (GCM). A global

climate model is an intricate mathematical representation of climate features that

simulate energy flows within the climate system. GCMs aid in scenario testing because

the models are based on well-documented physical processes that describe how variables

like temperature, pressure, precipitation, and wind change over time. As GCMs use

mathematical equations to describe a large number of factors that change and interact

with each other over time, they typically necessitate the use of supercomputers with a

massive processing capability. The mathematical formulas that form a GCM are often

separated into three distinct groups:

• Air mass actions and motions, as well as energy transitions.

• Thermodynamics, evaporation and radiation transmission.

• Topography, air-ocean interactions, and vegetation cover aspects.

Each expression relies on physical laws, formulas and empirical relations.

After a climate model is designed, hind-casting process is implemented on the

model to validate its modelling performance. This process runs the model backwards
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into the past and compares the results with observed climate data. Validated climate

models are then used to forecast future climate activities. With the help of climate

models, we were able to determine that anthropogenic activities contributed to the

twentieth-century climate change. Climate modeling estimates show possible path-

ways and scenarios that demonstrate the link between human-caused emissions and

temperature change.

GCMs separate Earth’s surface into grid cells, and have a resolution that indicates

how big scaled its grid structure is. They process and provide outputs for each cell,

which are then utilized as inputs for another surrounding cell to represent energy

transfers and motions. The size of cells in a model indicates its resolution, which

is an important concept for models that describe the level of detail. The resolution

of GCMs ranges from 100 to 640 km, with 10 to 30 layers vertically. Features like

temperature and precipitation fluctuate constantly across the portions of the Earth’s

surface. Thus, they become hard to compute for the entire surface. GCMs, on the

other hand, compute the temperature for each grid cell’s corner. As a result, the

estimated temperatures are only given for 100 km intervals for instance. Resolution

is the key feature that defines how fine the climate model is scaled. Higher resolution

requires more computational power and involves more complex mathematical processes.

Downscaling techniques, which will be described in more detail, help us reach models

with smaller grids; therefore, we can extract information on smaller regions.

Scenarios, such as possible human population expansion and economic evolution,

are used for projections of climate aspects [24]. These scenarios aid us in making

assumptions when developing more precise global climate models. Thus, more precise

GCMs provide more accurate downscaled models. In 2000, the IPCC defined SRES

scenarios which consist of four scenario sets of probable future conditions (A1, A2,

B1, B2). Each of these conditions was centered on a link between socioeconomic

advancement and greenhouse gas emissions and has been employed for more than a

decade by several climate models.
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However, after about a decade, climate scientists agreed on a new set of scenarios

known as Representative Concentration Pathways (RCPs). These scenarios focus on

variation of radiative forcing by 2100 rather than socioeconomic progress. Based on

2100 forecasts, four distinct RCP scenarios were developed(2.6 W/m2, 4.5 W/m2, 6

W/m2, and 8.5 W/m2) [25,26].

For the last couple of years, climate scientists, economy experts and energy sys-

tems modellers have developed new scenario paths focusing on the possible changes

in education, urbanisation, demographics, economics and technological development.

This new set of pathways are known as Shared Socioeconomic Pathways (SSPs). Some

researchers believe this new scenario set is ready to be used by climate researchers [27].

With IPCC Sixth Assessment Report (AR6), five new scenarios based on SSPs were

highlighted to indicate the possible evolution of the climate towards 2100 [3]. Projected

global surface temperature changes for these scenarios can be seen in Figure 1.5.

SSP1-1.9 is the IPCC’s most optimistic scenario, which depicts a future in which

global CO2 emissions are reduced to zero by 2050. Societies change their goal from

economic growth to total sustainable well-being. Investments in education and health

care grow resulting in less inequality. Although extreme weather events become more

frequent, the globe manages to avoid the worst effects of climate change. The scenario

projects the warming to be 1.4 degrees Celsius in 2100. SSP1-1.9 is the only scenario

that complies with the Paris Agreement’s aim of limiting global warming to 1.5 degrees

Celsius above the pre-industrial levels.

SSP1-2.6 is a scenario that estimates CO2 emissions to be cut after 2050. So-

cioeconomic progress is similar to SSP1-1.9; however, temperatures reach 1.8 degrees

C by 2100, and CO2 concentrations rise to 445 ppm as global average.

SSP2-4.5 is also referred as “middle of the road” scenario. It is very close to

RCP4.5 scenario. CO2 emissions do not reach net zero but decrease slightly after 2050.

There are no significant changes in investments in education and health. According to
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this scenario, temperatures rise by 2.7 degree C by 2100.

SSP3-7.0, emissions and temperatures climb gradually as in present, with CO2

emissions doubling by 2100. Countries compete more aggressively with one another,

focusing on national security and safeguarding their own food supply. Average tem-

peratures rise by 3.6 degrees Celsius at the end of the century.

SSP5-8.5 is the worst case scenario to be avoided at all costs. It projects CO2

emissions to double by 2050. The use of fossil fuels and energy consumption is embraced

more than ever. Growth of global economy is considered to be the main goal, and

sustainable lifestyle takes no notice. Temperatures rise by 4.4 degrees Celsius by 2100.

Figure 1.5. Global surface temperature change projections for five different scenarios.

Reproduced from IPCC Sixth Assessment Report [3].
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These five narratives indicate that with any possible scenario, warming will con-

tinue for at least next 2 decades. Climate modelling has never been more crucial as

it is now. Institutions and climate scientists have a critical role in simulating what

Earth is going through. While many modelling processes continue around the world,

collaboration and joint studies have proven to be more effective in developing climate

reports and creating awareness about climate change using many different climate mod-

els published by different scientific groups. With the intention of reducing the number

of possible problems that might occur when comparing climate model outputs from

different group of researchers, Coupled Model Intercomparison Project (CMIP) has

been developed. It is an inter comparison framework for creating a way for climate

model experiments which different climate researcher groups perform. With first time

implementation in 2008 by World Climate Research Program (WCRP), CMIP is up-

dated every 5 or 6 years and replaced with a new generation becoming more detailed

with every iteration. As more climate research groups and institutions from different

countries are financially supported, more climate models which contribute to CMIP

are developed each year. CMIP6, the last version, used in the latest IPCC Assessment

Report AR6 based on SSP scenarios, which were previously mentioned in this chapter,

informs policymakers about the climate trends [3].

As GCMs are becoming more accurate with each big step, they help with the

process of projecting climate data on a regional scale. The performance of a regional

climate projection is highly dependent on the accuracy of GCMs to be used when

implementing downscaling techniques.

1.2.2. Downscaling a Climate Model

Climate change affects the majority of humans and environmental systems, rang-

ing from agriculture and ecosystems to energy and health, and magnifies other pre-

existing challenges ranging from poverty to political instability [28]. Although GCMs

play crucial role with their important outputs and scientific insights on evolution of

the climate behaviour, the scale and resolution of GCMs hinder their accuracy when
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it comes to local end-use applications. The term “downscaling” has been used since

early 1990s and it was meant to build a relationship between large scale data statis-

tics to small scale data statistics. In order to refine its coarse resolution, a variety

of downscaling methods are used to create finer outputs. The idea of downscaling is

to convert the output from global climate model to finer regional scales. While finer

and more detailed data is generated through downscaling, the process requires some

auxiliary data and assumptions. Consequently, this leads to some uncertainties and

drawbacks. International organizations have not yet agreed on a guidance on down-

scaling process for researchers to use. Today, most of the climate projections that

have finer resolution than 100 x 100 are developed by downscaling a large scale climate

model. They bridge the gap between global scale data and local scale climate data so

that climate estimations can be made over much smaller grid shape regions instead of

country sized regions. The main aim of downscaling methods is projecting long-term

weather patterns for cities, regions and states. Downscaled model results are invaluable

for assessing risks and planning proper adaptations. Generally, downscaling techniques

can be split into two major categories:

• Statistical Downscaling

• Dynamical Downscaling

1.2.3. Dynamical Downscaling

Downscaling inherently assumes that local climate is a blend of large-scale cli-

matic elements (global, hemispheric, continental, and regional) and local conditions.

For dynamical downscaling, higher resolution climate models named Regional Climate

Models(RCMs) driven by a GCM are used. RCMs are much smaller scaled versions

of GCMs with some other regional information to represent local climate with higher

quality. With GCMs’ limiting conditions and physical rules (or lateral boundary con-

ditions), obtained RCMs give local output for a given area. While generating this local

climate information, RCMs usually have resolution of 5 to 50 km and incorporates

physical processes, topography and variety of surface characteristics. Since grid sizes
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are much smaller, there is more additional information and physical conditions to pro-

cess. Therefore, RCMs are computationally very demanding [29]. They might require

as much processing time as GCMs to obtain projections in some cases [30]. One other

big concern for RCMs is, like GCMs, they perform poorly when simulating extreme

precipitation, especially on tropic regions. According to a study published in 2008,

this systematic bias goes further with higher resolutions and in most cases, statistical

bias corrections are required to increase the accuracy of the model [31]. Briefly, major

disadvantages of dynamical scaling could be listed as follows:

• They require vast amount of computational power.

• Due to their computation costs, there are limited number of RCMs.

• Bias correction may be required.

• Different RCMs with different assumptions give different results.

1.2.4. Statistical Downscaling

Contrary to dynamical downscaling, requiring less computational power makes

statistical downscaling processes more researchable and easy to implement. Statistical

downscaling implicates building up statistical relations between observed climate data

and global climate model outputs. Through established statistical relations, it becomes

possible to predict future local climate conditions using GCMs projections. A possible

issue with this method is it assumes that statistical relation between observed data

and GCM would remain the same in another time period. The accuracy is also highly

dependent on the predictor GCM’s accuracy.

In 2001, the first application of the statistical downscaling procedure was pro-

vided as an open source program, and over 170 experiments have been reported to

date. According to a paper entitled “The Statistical DownScaling Model: insights

from one decade of application” that retrogrades evolution of statistical downscaling

models (SDSMs) and assessments of effectiveness of these models, SDSMs give stable

projections of extreme temperatures and precipitation trends over seasons. However,
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estimation on how frequent extreme precipitation would occur is relatively less reliable

in dry seasons [32].

According to Guyennon et al., dynamical downscaling enhances the key features

of regional climate modeling while providing better predictors for subsequent statistical

downscaling to higher-resolution output [33].

Various approaches for statistical downscaling were applied during the previous

few decades. In 2016, Dixon et al. experimented to check if SDSMs’ performance on ob-

servational training period would remain similar on future projections [34]. They used

an Asynchronous Regional Regression Model to downscale daily maximum tempera-

tures and observed larger Mean Absolute Error along coastal areas and steep moun-

tainous areas.

Most common methods used as statistical downscaling methods are transfer func-

tions. Transfer functions are regression based downscaling methods that require very

little computational power relatively. They are used to extract statistical relationship

between Large Scale climate data and observed regional climate data. Principal Com-

ponent Analysis, Canonical Correlation, Linear/Non-Linear Regression and Machine

Learning approaches fall into transfer functions category.

In 1992, Bretherton et al. suggested the use of Canonical Correlation Analysis

[35]. In 1997 Winkler et al. used linear and non-linear transfer functions to assess

sensitivity to training time period and region of interest [36]. In 2013, Wilks used

three statistical methods which are canonical correlation analysis, maximum covariance

analysis and redundancy analysis on predicting mean temperature in North America

grid data [37]. In 2016, Hadipour et al. compared linear regression model, generalized

linear regression model and generalized additive model on downscaling monthly rainfall

in Malaysia data [38]. They concluded that linear regression model performed best

due to normal distribution of their tropical region monthly rainfall data. In 2021,

Shen et al. used station-based non-linear regression downscaling (SNRD) and bias
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correction spatial dissaggregation (BCSD) methods and found that above 2500m of

elevation, downscaling displays better performance on monthly precipitation data over

China [39].

When compared to Dynamical downscaling, statistical downscaling has certain

advantages that make the process implementable among scientists.

• Statistical downscaling is computationally less expensive, so that many different

GCMs and emission scenarios can be processed in a relatively shorter time.

• Point scale climate projection can be implemented using GCM-scale output.

• Statistical downscaling uses observed station data for future projections of the

region of interest.

• There are many open source libraries for implementation.

• Finally, the number of methods to implement statistical downscaling is vast and

new methods or algorithms are researched and published by climate scientists

day by day.

One of the new research areas that climate scientists work on is the use of machine

learning algorithms in statistical downscaling.

1.2.4.1. Machine Learning. The areas in which machine learning algorithms are used

are widening each year. In the last decade, major breakthroughs obtained by Deep

Learning models fostered the attention and hype on machine learning. Deep learning

comes to the forefront by its capability of extracting complex feature representations of

many types of data. Machine learning algorithms are employed in many fields such as

image processing, pattern recognition, text interpretation(Natural Language Process-

ing and Understanding). According to Gantz and Reinsel, digital information multi-

plied nine times in volume in just five years, and its global amount might approach 35

trillion gigabytes by 2020 [40]. As a result, the phrase “Big Data” was developed to de-

scribe the significance of this data explosion trend. Machine learning (ML) is a highly

multidisciplinary area that draws concepts from a wide range of disciplines, includ-
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ing artificial intelligence, optimization theory, information theory, statistics, cognitive

science, optimal control, and many more [41]. In general, machine learning could be

divided into three major subdomains: supervised learning, unsupervised learning, and

reinforcement learning. In supervised learning, input data is labeled, so the desired out-

put is given. On the contrary, unsupervised learning does not require desired outputs

for given input. Reinforcement learning, on the other hand, focuses on maximizing re-

ward depending on the actions taken in an environment. With these three fundamental

elements, advancement of technologies like auto language translators, voice recognition

and recommendation engines has accelerated significantly. As the data gets bigger and

more varied, more efficient learning methods are developed to handle huge amounts of

data.

Despite the recent achievements in machine learning, Qiu et al. presents five

different issues including learning large scale of data, learning different types of data,

learning high speed streaming data, learning uncertain and incomplete data, and learn-

ing how to extract valuable information from massive amounts of data [42]. (Figure 1.6)

Figure 1.6. Five major issues with machine learning [42].
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1.2.5. Related Work

Machine learning is a well fit part of many geoscience applications and climate

research. Studies covering statistical downscaling using machine learning algorithms

evolving in number every year. Several machine learning methods have been recently

introduced for spatial data interpolation. In 2001, Bodri et al. used an Artificial Neural

Network to predict monthly precipitation [43]. In 2016, Liu et al. used a convolutional

neural network (CNN) to achieve 89% - 99% of accuracy in detecting extreme weather

events [44]. Shi et al. used another type of neural networks called long-short term

memory (LSTM) architecture for prediction of rainfall intensity over a short period of

time [45]. In 2018, Anh and Taniguchi used a hybrid dynamical-statistical downscaling

approach for high-resolution rainfall forecast over Red River Delta in Vietnam [46].

They showed that an artificial neural network (ANN) can generate RCM-like results

with 89% less computational power. Pour et al. used a hybrid model using random

forest and machine algorithms to downscale a rainfall data [47]. In 2020, Wang et

al. used super resolution deep residual network (SRDRN) for downscaling daily min

and max temperatures in Alabama state [48]. Using high-resolution observation data

aggregation, they generated three different data with resolutions, 25km, 50km and

100km for synthetic experiments. They targeted to downscale these 3 datasets into

a 4km resolution data training with gridMET dataset by Abatzoglou in 2013 [49].

Using SRDRN, their model generated downscaled each dataset with performances as

follows. Downscaling 25km resolution data yielded MAE for tmin = 0.11 and MAE for

tmax = 0.12. 50km resolution data yielded MAE for tmin = 0.17 and MAE for tmax

= 0.21, and 100km resolution data yielded MAE for tmin = 0.31 and MAE for tmax

= 0.36. In 2022, Vaughan et al. used a newly developed model called convolutional

conditional neural processes (ConvCNP), developed by Gordon et al. in 2019, to

predict maximum temperature of 86 different stations using ERA-Interim grid data

[50, 51]. They obtained MAEs under 1.25 degree Celsius. Studies for downscaling a

monthly mean near surface temperature dataset are limited. In 2002, Oshima et al.

used a regression model based on singular value decomposition to downscale January

and July monthly mean upper air temperature to surface air temperature in Japan
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[52]. According to the study, RMSE around 1.0 degrees Celsius were obtained where

estimations for July were slightly more accurate when compared to January.

In 2017, Li and Yan experimented on downscaling monthly mean temperature

using NCEP/NCAR monthly mean reanalysis dataset which has resolution of 209km

[53]. Predictands were chosen as observed monthly mean temperature values obtained

from 11 different stations scattered throughout Kazakhstan. As for input vector, they

used wind velocity and geopotential height information from each of the top 9 closest

neighbouring data points and their 3 different atmospheric levels and combined them

into a one-dimensional input vector. After carrying out a PCA process and reducing the

number of features, they trained a linear regression model. Their MAE of predicting

monthly mean temperature ranging from 0.82 to 1.08. The study also reported that

obtained errors are lower for summer season.

Although the machine learning methods used in geoscience and climate research

are growing in numbers each year, particular research on downscaling monthly mean

temperature data using these methods are scarce. The aim of the study explained in

this paper is to investigate a machine learning method for downscaling monthly mean

temperature dataset with a significantly better accuracy.
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2. EXPERIMENTS

2.1. Data

For the experiments, two different data sets, ERA5 and MPI-ESM-MR historical

monthly average near surface air temperature, were used for downscaling and evalua-

tion of machine learning methods implemented. The region that was selected for the

experiments from each of the data mainly focuses on European region with coordinate

intervals longitude -9 to 45 and latitude 35 to 60. See Figure 2.1 and Figure 2.3.

Elevation data was also used in the experiments stated in this paper as a topo-

graphic information for a possible improvement in predictive performance. Global 30

Arc-Second Elevation (GTOPO30), which is a digital elevation model, was selected as

the elevation data source.

2.1.1. MPI-ESM-MR

As the first dataset, historical monthly mean near surface temperature from mixed

resolution (MR) version of MPI-ESM global circulation model developed by Max Plank

Meteorology Institute was used [54]. The MPI-ESM is mainly composed of the coupled

general circulation models ECHAM6 [55] and MPIOM [56] for the atmosphere and

ocean, as well as subsystem models for land and vegetation (JSBACH) [57] and marine

biogeochemistry (HAMOCC5) [58]. It was one of the GCMs that was used in CMIP5.

The dataset has 210 km resolution on land, and 96 latitude values and 192 longitude

values in total.

2.1.2. ERA-5

Secondly, ERA5 monthly averaged data on single levels from 1979 to present

was used [59]. This dataset was published in 2019 and developed by European Centre
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for Medium-Range Weather Forecasts (ECMWF) as a reanalysis and using the rules

of physics, this model combines global circulation model data with observations from

around the world to create a globally comprehensive and consistent dataset. It consist

of 0.25 x 0.25 degree grid cells (27 km resolution) with 541 longitude and 951 latitude

values. According to the source of the data, ERA5 data family is updated daily with

latency of 5 days and new monthly mean entry is added on the 6th of each month.

2.1.3. GTOPO-30

Global 30 Arc-Second Elevation (GTOPO30) is a global digital elevation model

(DEM) developed by U.S. Geological Survey’s Center for Earth Resources Observation

and Science (EROS). It was developed to help research that involves geospatial topo-

graphic data for both regional and continental scales. It has an approximately 1km

grid spaces and elevation values ranging from -407 to 8752 meters [60].

Figure 2.1. ERA5 monthly average near surface temperatures for January 1990.
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Figure 2.2. Elevation values of ERA5 sample points extracted from GTOPO30 digital

elevation model.

Figure 2.3. MPI-ESM-MR monthly average near surface temperatures in chosen

region for January 1990.
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2.2. Methodology

Downscaling a large scaled climate model is generating new data points for co-

ordinates that do not exist in the original data. In other words, spatial interpolation.

Therefore, the task here is to predict monthly average temperatures of target points

with the given data points. In order to evaluate each algorithm’s performance by com-

paring predictions with true data points, target points were chosen amongst original

data itself. Chosen region from both ERA5 and MPI-ESM-MR historical data sets

covers mostly European region with ranges latitude 35 to 60 and longitude -9 to 45.

ERA5 data has no surface temperature values for marine areas; therefore, when evalu-

ating the downscaling performances of models, no predictions were made for locations

that correspond to a sea. For predictions, temperature values of neighbouring coor-

dinates to the targets are used. Number of closest neighbouring points to be used in

models is decided by n parameter. For each algorithm and dataset, a new model was

built with each n value between 4 and 25. At first, widely used traditional machine

learning algorithms such as decision trees (DT), random forests (RF) and regression

(SVR) algorithms were used to analyze predictability of the given data and compare

with linear regression baseline performance. Then, a machine learning algorithm that

is more suitable for interpolating spatial data, Gaussian Process Regression (GPR) was

used with and without elevation data. When modeling with GPR, elevation data is

integrated in two different ways. First, for every 100m elevation, 0.5 degree Kelvin

is subtracted from both train and target data. After training and predictions, pre-

dicted value is increased by 0.5 degree Kelvin for every 100m elevation it contains and

counted as the final prediction. In the second approach, elevation data is integrated

in the model as a new dimension next to latitude and longitude dimensions. As for

evaluation, RMSE, R-Squared and MAE metrics were used for each model.

2.2.1. Downscaling with Traditional Machine Learning Algorithms

As for traditional machine learning methods, DT, RF and SVR algorithms were

used for statistical downscaling. These 3 algorithms are known and used widely as
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their implementation and interpretability are relatively transparent for classification

and regression tasks.

2.2.1.1. Decision Trees. A decision tree algorithm is a supervised machine learning

algorithm used for both classification and regression tasks. It consists of nodes called

root, leaf, parent and child nodes where root node is the first splitting point for entire

given data. While choosing the root node, purity of the subsets obtained by splitting

data by each attribute is calculated. In order to calculate the purity of splits, infor-

mation gain or gini index methods are used. After choosing the root split, new child

nodes are created by information gain or gini index. This iterative process continues

until obtaining splits with pure subsets which are called the leaf nodes. When it comes

to regression problems, mean of the values that falls into a split is considered as the

prediction for the continuous target. Decision tree regression works very well for non-

linear data and although it is widely used for many domains, statistical downscaling

or spatial data interpolation is not one of them.

2.2.1.2. Support Vector Regression. Like decision trees, support vector regression is

a component of support vector machines (SVM), which is also a supervised machine

learning algorithm that can be used for both classification and regression tasks. The

fundamental principle of a SVM is to fit a hyperplane to the observed data so that

the perpendicular distance to only the closest point, the margin, would be largest.

Aside from SVM, SVR fits an approximation function with a given epsilon, allowing

the optimization task to be handled by specifying an epsilon intense loss-function and

identifying the smoothest tube with the maximum observed data points [61]. In other

saying, the objective in SVR is to find a hyperplane that holds maximum number of

observations data within the margin ε. As seen in Figure 2.4, blue line represents the

hyperplane with function

y = wxi + b.
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For SVM, maximizing the margin is to minimize ||w||, (or minimizing ||w||2/2)

with the constraints

wxi + b ≥ 1,

when yi = 1, and

wxi + b ≤ −1,

when yi = −1.

In SVR, the data points that fall outside the fitted hyperplane margin are called

slack variables, and their distance to support vectors are ξi and ξ∗i . These slack variables

bring a penalty term to the optimization problem, and the problem becomes

min

(
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i )

)
, (2.1)

with constraints

yi − wxi − b ≤ ε+ ξi, (2.2)

wxi + b− yi ≤ ε+ ξ∗i , (2.3)

ξi, ξ
∗
i ≤ 0, (2.4)

where C is the penalty hyperparameter that balances the trade-off between bias and

variance. High C makes the model more flexible, lower the bias and increases the

variance. Low C makes the model less flexible, increase the bias and lower the variance.

SVMs use kernel functions to map the given data into any desired form. In cases

where a hyperplane cannot be fit, kernel functions are used to transform hyperplane

for higher dimensions. The number of research on the use of SVR in statistical down-

scaling or spatial data processing is limited. In 2020, Husna et al. used SVR to predict

precipitation in a district of Indonesia by a 7x7 grid-scale statistical downscaling tech-

nique [62]. They showed that using radial basis function (RBF) kernel in SVR yields

the best results for statistical downcaling of GCMs for rainfall predictions. SVR models

in this paper were also formed with RBF kernel. RBF kernel is also known as squared
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exponential kernel and has the form

(x, x′) = σ2 exp

(
−(x− x′)2

2ℓ2

)
. (2.5)

In 2021, Sithara et al. applied regression trees and SVR for statistical downscaling

of sea level and observed that SVR performs better when compared to tree based

algorithms [63].

Figure 2.4. Support vector regression example with linear kernel where black lines are

the support vectors.

2.2.1.3. Random Forest. A random forest is a supervised machine learning algorithm

consisting of multiple decision trees as an ensemble method. It is a very favored

algorithm among data scientists and works well for many different data with both clas-

sification and regression tasks. Having a consensus by combining votes from multiple

machine learning algorithms is the key idea of ensemble approaches. When a single

machine learning algorithm is used for prediction, main reasons for error are variance,

noise and bias. Random forest algorithm is a more developed version of the first en-

semble learning method called bagging. The main concept of bagging method is to
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select n subsamples with replacement from the data, construct decision trees for each

of these bootstrapped subsets and average the predictions. A random forest uses only

a random subset of features on each tree. For a dataset such as (xi, yi) = D where

each xi has a dimension of d, if we choose B bootstrap subsamples Di from D where

1 ≤ i ≤ B, we construct trees θi using Di so that at each tree, we choose a subset of

m randomly selected features, where m < d and only split the data on those subset of

features. For given data x, the target is the average of votes from each tree Ti.

2.2.1.4. Experiment Setting for Traditional ML Algorithms. DT, RF and SVM are

capable of making predictions based on one dimensional input vectors. This prevents

representing spatial features such as latitude, longitude and elevation within the input

features. Therefore, for the experiments using DT, RF and SVM, input vector was

chosen to be ti where it is the average temperature of the ith closest neighbouring

location available in the data. n is the number of the top closest points to the target

location to be used as input. For each chosen n, a different model was built with

each algorithm. For experiments, n values were chosen between the range 4 - 25.

As for random forest, 4 different random forest algorithms were used. Number of

decision trees in random forest algorithm is an effective hyperparameter. Random

forests with 5, 10, 20 and 25 decision trees were used to obtain more insight of the

algorithms performance with different number of trees. Available data in ERA5 for

given region consists of 33801 different geographic coordinates. MPI-ESM-MR dataset

has 364 different geographic coordinates. For each model built, %85 of the data that

randomly selected was used for training and %15 was used for testing. While modeling

with ERA5, some input location was from sea areas which are masked. Therefore,

masked values of those locations were imputed with the mean of other unmasked input

temperatures.

2.2.2. Downscaling with Gaussian Process Regression

Because of its representation flexibility and intrinsic uncertainty estimates regard-

ing predictions, Gaussian processes regression (GPR) algorithms have been frequently
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employed in machine learning applications. A GPR model can generate predictions and

offer uncertainty estimates based on previous information. It is a supervised learning

method consisting of notions such as multivariate normal distribution and covariance

functions as known as kernels. The task is to fit possible functions to given data points

and then make predictions for new targets. Gaussian process model is a probability

distribution over all the functions that fit to the given points. After obtaining the

distribution of functions that can fit the given data, mean function of the function

distribution is used for predictions, and variances are used as confidence interval of the

predictions.

Given multivariate Gaussian regression functions as

P (f |X) = N (f | µ,K) , (2.6)

where

X =
[
x1, x2, · · · , xn

]
, (2.7)

f =
[
f(x1), f(x2), · · · , f(xn)

]
, (2.8)

µ =
[
m(x1), m(x2), · · · , m(xn)

]
, (2.9)

Kij = k(xi, xj), (2.10)

where X are the observed data points, m is the mean function, and k is a positive

definite kernel function. Smoothness of the functions, which Gaussian process model

has a distribution over, is defined by K the covariance matrix which calculated by the

chosen kernel function. Kernel functions are also known as covariance functions. As

illustrated on the Figure 2.5, with given data points and estimated mean function f ,

predictions of new points are f(X∗).

The joint distribution of f and f∗ is f

f∗

 ∼ N

m(X)

m(X∗)

 ,

 K K∗

KT
∗ K∗∗

 , (2.11)

where K = K(X,X),K∗ = K(X,X∗) and K∗∗ = K(X∗, X∗).
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Figure 2.5. Example function distribution that fits to the observed red points with

Gaussian process regression using RBF kernel(covariance function). Blue line

represents the mean of the function distribution and grey area represents the variance

of function distribution.

Using the marginal and conditional distributions of multivariate normal distribu-

tion theorem the conditional distribution over f∗ becomes

f∗ | f , X,X∗ ∼ N
(
KT

∗Kf ,K∗∗ −KT
∗K

−1K∗
)
. (2.12)

When (m(X),m(X∗)) = 0 and there is a independent Gaussian noise σ2
nI to be add to

K, we get the predictive function distribution as

f̄∗ | X, y,X∗ ∼ N (f̄∗, cov(f∗)) (2.13)

f̄∗ = KT
∗
[
K+ σ2

nI
]−1

y (2.14)

(f∗) = K∗∗ −KT
∗
[
K+ σ2

nI
]−1

K∗ (2.15)

where f̄∗ is the predictive mean and cov(f∗) is the predictive covariance. In 2015,
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Appelhans et al. compared GPR with other algorithms for predicting monthly mean

air temperature at Mt. Kilimanjaro, Tanzania [64]. They showed that GPR with

elevation data outperforms other algorithms. In 2021, Cui et al. performed GPR

to interpolate groundwater salinity in Australia. They stated that GPR should be

encouraged for interpolation when several predictors are available [65].

2.2.2.1. Experiment Settings for GPR. Kernel functions are essential since they define

the majority of the GPR model’s generalization features. For experiments with GPR,

RBF function has been chosen as the kernel. Hyperparameters of the RBF were chosen

as l = 1 and σ = 1, which performs the best among other tested values. Traditional ML

models do not consider spatial dependence among the samples. However, GPRs make

predictions considering of spatial dependence of given data. Contrary to traditional ML

algorithms, GPR does not require the data to be separated into train and test sets since

it does not work with tabular data. For each target point and specified n predictor

points, a new GPR model is built to fit a distribution of functions. This function

distribution is unique to the set of predictor data points. For a chosen number of

closest points n to the target coordinate H0 = (lat0, lon0), assume we have coordinates

of these n closest points H = [(lat1, lon1), · · · , (latn, lonn)] and corresponding monthly

mean surface temperature values T = [t1, · · · , tn] where H1 is the closest coordinate to

the target coordinate H0 and Hn is the furthest. Each (Hi,Ti) couple is used by GPR as

a training point to predict T0 for corresponding coordinate H0. When experimenting

with GPRs, 3 main approach were followed. First, no elevation data were involved

during the interpolation process (will be referred as GPR in the Results section). With

this approach, sequence of 2-dimensional input values, Hi values, were given as input

data along with related temperature values Ti as targets for training. Then the model

has generated predictions for H0. In the second approach (will be referred as GPR-

100m), for each location, 0.5◦K per 100m elevation was subtracted from all input mean

temperature Ti. Then, predicted value for a particular location were increased by 0.5

◦K per 100m according to its elevation and became the final value as output. In the

third approach (will be referred as GPR-3D), elevation information was considered

as another dimension. Thus, the GPR model was transformed into a 3-dimensional



33

regression model, where H became H = [(lat1, lon1, elev1), · · · , (latn, lonn, elevn], and

model was built to give outputs for given H0 = (lat0, lon0, elev0) 3-dimensional vector.
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3. RESULTS

In this chapter, results from traditional ML algorithms and GPR on downscaling

ERA5 and MPI-ESM-MR historical monthly mean near surface temperature datasets

are evaluated. Each model’s ability to interpolate spatial temperature data are pre-

sented. Our goal is to understand if it is feasible to implement statistical downscaling

with the algorithms covered in this paper and understand which one could be a better

fit. Three statistical measures were used to evaluate the outputs: Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and R2.

3.1. MPI-ESM-MR and ERA5 Historical Near Surface Monthly Mean

Temperature Data Downscaling with Traditional Machine Learning

Models

Chosen date for downscaling monthly mean temperature data is January 1990 for

both MPI-ESM-MR and ERA5. Algorithms in the tables from Table 3.1 to Table 3.22

are DT, SVR, RF-5, RF-10, RF-20, RF-25 and basic linear regression (LR). Where

RF-5, RF-10, RF-20, RF-25 is random forest models built with 5, 10, 20, 25 trees

respectively. Top 6 performing algorithms by mean absolute error for each dataset and

chosen n are listed in tables Tables 3.1–3.22 below.

Looking at these tables, LR gives very poor results (very close to R2 = 0) with

ERA5 data when compared to MPI-ESM-MR. On the other hand, DT algorithm has

worst errors with MPI-ESM-MR contrary to ERA5 case. RF algorithms has better

MAE and RMSE due to their capability of fitting to non-linear data. SVR algorithm

performs relatively bad with MPI-ESM-MR, but not with ERA5 data. In fact, SVR

gives the most stable errors as its average RMSE −MAE difference is the lowest of

all with ERA5 data.
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Table 3.1. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 4 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-5 1.2 0.88 0.98

RF-25 1.16 0.89 0.98

RF-20 1.17 0.9 0.98

RF-10 1.29 1.03 0.97

Lin-Reg 1.9 1.23 0.94

SVR 1.96 1.31 0.94

Algorithm RMSE MAE R2

RF-5 0.37 0.18 0.99

RF-10 0.51 0.18 0.99

RF-20 0.92 0.22 0.97

RF-25 1.09 0.24 0.96

SVR 0.75 0.34 0.98

DT 1.63 0.36 0.9

Table 3.2. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 5 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.14 0.87 0.98

RF-20 1.18 0.92 0.98

RF-5 1.2 0.98 0.98

RF-10 1.36 1.0 0.97

Lin-Reg 1.92 1.25 0.94

SVR 2.02 1.35 0.93

Algorithm RMSE MAE R2

RF-20 0.94 0.22 0.97

RF-25 0.91 0.23 0.97

RF-5 1.34 0.29 0.93

RF-10 1.49 0.29 0.92

DT 1.63 0.37 0.9

SVR 0.88 0.37 0.97
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Table 3.3. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 6 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.15 0.9 0.98

RF-10 1.33 1.03 0.97

RF-20 1.34 1.05 0.97

RF-5 1.45 1.12 0.97

Lin-Reg 1.86 1.17 0.94

SVR 2.0 1.35 0.94

Algorithm RMSE MAE R2

RF-5 0.57 0.21 0.99

RF-10 0.71 0.21 0.98

RF-25 0.79 0.21 0.98

RF-20 0.81 0.22 0.98

DT 1.58 0.37 0.9

SVR 0.9 0.38 0.97

Table 3.4. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 7 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.21 0.96 0.98

RF-5 1.27 0.97 0.97

RF-25 1.24 0.97 0.98

RF-20 1.29 1.0 0.97

Lin-Reg 1.83 1.18 0.95

SVR 2.01 1.38 0.94

Algorithm RMSE MAE R2

RF-5 0.49 0.2 0.99

RF-20 0.82 0.22 0.97

RF-10 0.98 0.24 0.96

RF-25 1.0 0.25 0.96

SVR 0.77 0.36 0.98

DT 1.64 0.39 0.9
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Table 3.5. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 8 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.28 0.95 0.97

RF-25 1.25 1.0 0.97

RF-10 1.35 1.06 0.97

Lin-Reg 1.82 1.19 0.95

RF-5 1.61 1.2 0.96

SVR 2.05 1.38 0.93

Algorithm RMSE MAE R2

RF-20 0.62 0.21 0.99

RF-10 0.77 0.22 0.98

RF-25 0.96 0.25 0.97

RF-5 0.87 0.26 0.97

SVR 0.78 0.36 0.98

DT 1.63 0.37 0.9

Table 3.6. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 9 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.17 0.9 0.98

RF-5 1.32 0.95 0.97

RF-10 1.29 1.02 0.97

RF-25 1.3 1.05 0.97

Lin-Reg 1.76 1.1 0.95

SVR 1.99 1.37 0.94

Algorithm RMSE MAE R2

RF-25 0.72 0.22 0.98

RF-20 0.8 0.24 0.98

RF-5 0.79 0.27 0.98

RF-10 1.14 0.28 0.95

DT 1.59 0.37 0.9

SVR 0.79 0.37 0.98
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Table 3.7. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 10 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.26 0.92 0.97

RF-5 1.39 1.02 0.97

RF-25 1.36 1.03 0.97

RF-20 1.3 1.05 0.97

Lin-Reg 1.81 1.13 0.95

SVR 2.01 1.35 0.94

Algorithm RMSE MAE R2

RF-25 0.69 0.22 0.98

RF-10 0.74 0.24 0.98

RF-20 0.94 0.24 0.97

RF-5 1.2 0.3 0.95

DT 1.63 0.37 0.9

SVR 0.88 0.4 0.97

Table 3.8. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 11 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.35 1.03 0.97

RF-25 1.26 1.03 0.97

RF-20 1.38 1.04 0.97

RF-5 1.34 1.09 0.97

Lin-Reg 1.81 1.12 0.95

SVR 1.99 1.33 0.94

Algorithm RMSE MAE R2

RF-20 0.56 0.21 0.99

RF-10 0.71 0.23 0.98

RF-25 0.83 0.23 0.97

RF-5 1.36 0.33 0.93

DT 1.67 0.4 0.89

SVR 0.91 0.41 0.97
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Table 3.9. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 12 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.3 1.01 0.97

RF-25 1.23 1.02 0.98

RF-20 1.42 1.08 0.97

Lin-Reg 1.84 1.15 0.95

RF-5 1.65 1.27 0.96

SVR 1.98 1.34 0.94

Algorithm RMSE MAE R2

RF-25 0.63 0.21 0.99

RF-5 0.55 0.24 0.99

RF-20 0.94 0.25 0.97

RF-10 1.04 0.27 0.96

DT 1.57 0.39 0.91

SVR 0.9 0.41 0.97

Table 3.10. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 13 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.35 1.05 0.97

RF-10 1.48 1.12 0.96

RF-20 1.4 1.12 0.97

Lin-Reg 1.82 1.14 0.95

RF-5 1.58 1.25 0.96

SVR 2.05 1.39 0.93

Algorithm RMSE MAE R2

RF-25 0.7 0.22 0.98

RF-10 0.67 0.23 0.98

RF-20 0.78 0.24 0.98

RF-5 0.85 0.27 0.97

DT 1.56 0.39 0.91

SVR 0.91 0.41 0.97
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Table 3.11. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 14 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.29 1.01 0.97

RF-20 1.29 1.07 0.97

Lin-Reg 1.81 1.13 0.95

RF-10 1.43 1.14 0.97

RF-5 1.58 1.24 0.96

SVR 2.08 1.44 0.93

Algorithm RMSE MAE R2

RF-5 0.63 0.23 0.98

RF-25 0.91 0.25 0.97

RF-20 1.05 0.26 0.96

RF-10 0.9 0.28 0.97

DT 1.65 0.39 0.9

SVR 0.91 0.42 0.97

Table 3.12. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 15 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.3 1.04 0.97

RF-20 1.35 1.11 0.97

Lin-Reg 1.73 1.13 0.95

RF-10 1.43 1.16 0.97

RF-5 1.68 1.34 0.95

SVR 2.12 1.49 0.93

Algorithm RMSE MAE R2

RF-25 0.84 0.24 0.97

RF-10 0.82 0.25 0.97

RF-20 0.88 0.26 0.97

RF-5 1.31 0.35 0.94

DT 1.71 0.42 0.89

SVR 0.95 0.44 0.97
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Table 3.13. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 16 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.28 0.96 0.97

RF-10 1.42 1.08 0.97

Lin-Reg 1.73 1.11 0.95

RF-25 1.47 1.15 0.97

RF-5 1.78 1.28 0.95

SVR 2.16 1.52 0.93

Algorithm RMSE MAE R2

RF-25 0.76 0.23 0.98

RF-20 0.66 0.24 0.98

RF-5 0.76 0.28 0.98

RF-10 0.94 0.29 0.97

DT 1.75 0.42 0.88

SVR 0.97 0.44 0.96

Table 3.14. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 17 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.25 1.02 0.97

RF-10 1.33 1.05 0.97

RF-20 1.34 1.07 0.97

Lin-Reg 1.74 1.11 0.95

RF-5 1.83 1.31 0.95

SVR 2.17 1.52 0.92

Algorithm RMSE MAE R2

RF-25 0.83 0.25 0.97

RF-20 0.93 0.27 0.97

RF-5 0.89 0.28 0.97

RF-10 1.17 0.3 0.95

DT 1.66 0.39 0.9

SVR 0.97 0.45 0.96
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Table 3.15. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 18 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.36 1.07 0.97

Lin-Reg 1.77 1.13 0.95

RF-20 1.44 1.14 0.97

RF-10 1.5 1.19 0.96

RF-5 1.71 1.28 0.95

SVR 2.15 1.51 0.93

Algorithm RMSE MAE R2

RF-25 0.81 0.26 0.98

RF-10 0.85 0.28 0.97

RF-5 0.9 0.29 0.97

RF-20 1.16 0.3 0.95

DT 1.69 0.4 0.89

SVR 0.97 0.45 0.96

Table 3.16. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 19 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.25 1.02 0.97

RF-20 1.36 1.05 0.97

Lin-Reg 1.78 1.11 0.95

RF-25 1.36 1.11 0.97

RF-5 1.74 1.36 0.95

SVR 2.14 1.52 0.93

Algorithm RMSE MAE R2

RF-25 0.69 0.23 0.98

RF-10 0.95 0.26 0.97

RF-20 0.85 0.26 0.97

RF-5 0.93 0.32 0.97

DT 1.63 0.39 0.9

SVR 1.0 0.46 0.96
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Table 3.17. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 20 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.28 1.02 0.97

RF-20 1.4 1.13 0.97

RF-10 1.49 1.14 0.96

Lin-Reg 1.83 1.15 0.95

RF-5 1.78 1.41 0.95

SVR 2.16 1.54 0.93

Algorithm RMSE MAE R2

RF-25 0.69 0.23 0.98

RF-20 0.7 0.24 0.98

RF-10 1.09 0.3 0.95

RF-5 1.56 0.36 0.91

DT 1.75 0.41 0.88

SVR 0.99 0.46 0.96

Table 3.18. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 21 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.21 0.96 0.98

RF-10 1.42 1.1 0.97

Lin-Reg 1.8 1.11 0.95

RF-25 1.44 1.14 0.97

RF-5 1.64 1.25 0.96

SVR 2.1 1.48 0.93

Algorithm RMSE MAE R2

RF-10 0.79 0.25 0.98

RF-20 0.95 0.26 0.97

RF-25 0.94 0.27 0.97

RF-5 0.95 0.31 0.97

DT 1.7 0.41 0.89

SVR 0.96 0.45 0.96
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Table 3.19. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 22 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.37 1.11 0.97

RF-25 1.41 1.12 0.97

Lin-Reg 1.76 1.2 0.95

RF-10 1.48 1.2 0.96

RF-5 1.64 1.28 0.96

SVR 2.09 1.54 0.93

Algorithm RMSE MAE R2

RF-5 0.66 0.25 0.98

RF-25 0.85 0.26 0.97

RF-20 1.09 0.27 0.95

RF-10 1.11 0.32 0.95

DT 1.71 0.4 0.89

SVR 0.97 0.46 0.96

Table 3.20. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 23 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-25 1.21 1.0 0.98

RF-10 1.33 1.08 0.97

RF-20 1.32 1.08 0.97

RF-5 1.37 1.1 0.97

Lin-Reg 1.76 1.2 0.95

SVR 2.1 1.56 0.93

Algorithm RMSE MAE R2

RF-5 0.55 0.23 0.99

RF-20 0.9 0.26 0.97

RF-25 0.78 0.26 0.98

RF-10 0.96 0.3 0.96

DT 1.72 0.41 0.89

SVR 1.02 0.48 0.96



45

Table 3.21. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 24 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-20 1.19 1.0 0.98

RF-25 1.33 1.12 0.97

RF-10 1.52 1.15 0.96

Lin-Reg 1.68 1.17 0.95

RF-5 1.7 1.37 0.95

SVR 2.12 1.59 0.93

Algorithm RMSE MAE R2

RF-25 0.82 0.26 0.97

RF-20 0.92 0.27 0.97

RF-10 0.87 0.29 0.97

RF-5 1.08 0.31 0.96

DT 1.69 0.39 0.89

SVR 1.03 0.49 0.96

Table 3.22. MPI-ESM-MR and ERA5 historical monthly mean near surface

temperature downscaling errors with models built with top n = 25 closest points to

target locations.

MPI-ESM-MR ERA5

Algorithm RMSE MAE R2

RF-10 1.41 1.08 0.97

RF-25 1.33 1.1 0.97

RF-20 1.4 1.14 0.97

Lin-Reg 1.68 1.17 0.95

RF-5 1.53 1.18 0.96

SVR 2.12 1.59 0.93

Algorithm RMSE MAE R2

RF-5 0.55 0.21 0.99

RF-20 0.95 0.29 0.97

RF-25 0.94 0.29 0.97

RF-10 1.18 0.31 0.95

DT 1.69 0.4 0.89

SVR 1.03 0.49 0.96
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3.1.0.1. Error trends of each traditional ML algorithm with changing n value. Look-

ing at RMSE and MAE variations of each algorithm with changing n values (Fig-

ures 3.1 – 3.7 ), we can see that the higher number of closest points yields higher errors

for most of these algorithms. Only LR with ERA5 follows an opposite trend since it

has an unacceptable prediction performance with MAE constantly higher than 4. The

main reason for high n bringing high errors is that when n is higher, more features are

used in the model. Therefore, model becomes more complex and grows further away

from linearity. It is also observable that the error variations are very high with tree

based algorithms.

Figure 3.1. Linear Regression MAE and RMSE for different n values.
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Figure 3.2. Decision Tree Regression MAE and RMSE for different n values.

Figure 3.3. Support Vector Regression MAE and RMSE for different n values.
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Figure 3.4. RF-5 MAE and RMSE for different n values.

Figure 3.5. RF-10 MAE and RMSE for different n values.
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Figure 3.6. RF-20 MAE and RMSE for different n values.

Figure 3.7. RF-25 MAE and RMSE for different n values.
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3.1.0.2. Traditional ML Models with lowest MAE. If we look at the Tables 3.23 and

3.24, we can see that among the traditional ML algorithms, random forest is the best fit

for downscaling both ERA5 and MPI-ESM-MR historical monthly mean near surface

temperature datasets. For ERA5, performances of RF-5 and RF-10 with n = 4 is very

close where RF-5 with n = 4 is slightly better in terms of RMSE. We can also observe

that RFs with smaller number of decision trees, have smaller RMSE. For MPI-ESM-

MR, RFs with bigger number of decision trees have slightly lower RMSE. RF-25 with

n = 5 has the lowest MAE and RMSE of all where RF-5 with n = 4 follows with

second lowest MAE. Among the top 10 lowest MAE for MPI-ESM-MR, no model with

n > 10 has made it to the top 10 smallest MAE list.

Table 3.23. Top 10 models with smallest MAE for downscaling MPI-ESM-MR

Historical Monthly Mean Near Surface Temperature using traditional algorithms.

Algorithm n RMSE MAE R2

RF-25 5 1.14 0.87 0.98

RF-5 4 1.20 0.88 0.98

RF-25 4 1.16 0.89 0.98

RF-20 4 1.17 0.90 0.98

RF-25 6 1.15 0.90 0.98

RF-20 9 1.17 0.90 0.98

RF-10 10 1.26 0.92 0.97

RF-20 5 1.18 0.92 0.98

RF-20 8 1.28 0.95 0.97
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Table 3.24. Top 10 models with smallest MAE for downscaling ERA5 Historical

Monthly Mean Near Surface Temperature using traditional algorithms.

Algorithm n RMSE MAE R2

RF-5 4 0.37 0.18 0.99

RF-10 4 0.51 0.18 0.99

RF-5 7 0.49 0.20 0.99

RF-20 11 0.56 0.21 0.99

RF-20 8 0.62 0.21 0.99

RF-25 12 0.63 0.21 0.99

RF-10 6 0.71 0.21 0.98

RF-25 6 0.79 0.21 0.98

RF-5 25 0.55 0.21 0.99

3.2. MPI-ESM-MR and ERA5 Historical Monthly Mean Near Surface

Temperature Data Downscaling with Gaussian Process Regression

3.2.0.1. Downscaling MPI-ESM-MR dataset with GPR (No elevation). Looking at the

Table 3.25, the lowest MAE (0,51) was achieved when n = 14 and the lowest RMSE

(0,88) was achieved when n = 13 on downscaling MPI-ESM-MR dataset with GPR

approach. This performance outperforms traditional ML algorithms where traditional

ML algorithms yielded MAE of 0,87 Kelvin when downscaling MPI-ESM-MR dataset.

When we look at the Figure 3.8 which shows distribution of absolute errors of the best

GPR model with n = 14 for available coordinates in MPI-ESM-MR dataset, we can

see that absolute errors tend to increase for locations near marine areas. Moreover,

we can also see that significantly high absolute errors were obtained in the regions of

Iberian Peninsula, British Isles, and the southern parts of Norway.
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Table 3.25. MPI-ESM-MR Monthly Mean Near Surface Temperature downscaling

errors with GPR using different n values.

n MAE RMSE R2

4 1.02 1.45 0.95

5 0.81 1.25 0.96

6 0.85 1.38 0.96

7 0.72 1.18 0.97

8 0.69 1.13 0.97

9 0.60 1.01 0.98

10 0.59 0.98 0.98

11 0.57 0.93 0.98

12 0.55 0.89 0.98

13 0.52 0.88 0.98

14 0.51 0.89 0.98

15 0.52 0.91 0.98

16 0.56 0.95 0.98

17 0.56 0.96 0.98

18 0.58 0.97 0.98

19 0.58 0.96 0.98

20 0.59 0.98 0.98

21 0.61 1.00 0.98

22 0.62 1.00 0.98

23 0.63 1.01 0.98

24 0.64 1.02 0.98

25 0.67 1.03 0.98
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Figure 3.8. Distribution of errors. MPI-ESM-MR Downscaling with GPR where the

lowest MAE obtained with n = 14.

3.2.0.2. Downcaling MPI-ESM-MR dataset with GPR-100m. MAE, RMSE and R2

values for downscaling MPI-ESM-MR historical monthly mean near surface tempera-

ture with GPR-100m are shown in the Table 3.26. We can see that 100m temperature

adjustment approach for GPR resulted in higher errors relatively. Lowest MAE (2,06)

was obtained where n = 12. The n value did not affected the GPR-100m performance

significantly as algorithm did not fit well for adjusted data. When we look at the

Figure 3.9, absolute error can reach up to over 10 degree Kelvin with even with best

GPR-100m.
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Table 3.26. MPI-ESM-MR Monthly Mean Near Surface Temperature downscaling

errors with GPR-100m using different n values.

n MAE RMSE R2

4 2.21 3.22 0.75

5 2.12 3.14 0.76

6 2.19 3.25 0.74

7 2.16 3.42 0.71

8 2.16 3.31 0.73

9 2.08 3.07 0.77

10 2.09 3.06 0.77

11 2.08 3.05 0.77

12 2.06 2.96 0.79

13 2.14 3.03 0.77

14 2.09 2.96 0.79

15 2.09 2.98 0.78

16 2.10 2.97 0.78

17 2.10 2.95 0.79

18 2.15 3.03 0.78

19 2.18 3.04 0.77

20 2.15 3.04 0.77

21 2.17 3.07 0.77

22 2.19 3.09 0.77

23 2.17 3.09 0.77

24 2.17 3.09 0.77

25 2.17 3.10 0.76
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Figure 3.9. Distribution of errors. MPI-ESM-MR Downscaling with GPR-100m

where the lowest MAE obtained with n = 8.

3.2.0.3. Downcaling MPI-ESM-MR dataset with GPR-3D. The approach where ele-

vation information is integrated as another input dimension performed worse when

compared to GPR as well. Looking at the Table 3.27, we can see that MAE fluctuates

with n increasing. The best MAE and RMSE were obtained when n = 5 with 0.84 and

1.31 respectively. This result is very close to the performances of traditional ML algo-

rithms where MAE was 0.87 and RMSE was 1.14. When we look at the Figure 3.10, the

best GPR-3D model with n = 5, absolute error tend to increase with higher elevation

values.
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Table 3.27. MPI-ESM-MR Monthly Mean Near Surface Temperature downscaling

errors with GPR-3D using different n values.

n MAE RMSE R2

4 0.93 1.31 0.96

5 0.84 1.31 0.96

6 0.94 1.45 0.95

7 1.03 1.59 0.94

8 0.94 1.50 0.95

9 0.92 1.48 0.95

10 1.07 1.64 0.94

11 1.09 1.69 0.94

12 1.06 1.64 0.94

13 1.05 1.70 0.93

14 1.07 1.74 0.93

15 1.08 1.77 0.93

16 0.96 1.57 0.94

17 1.00 1.68 0.94

18 0.99 1.70 0.93

19 0.99 1.68 0.94

20 1.03 1.76 0.93

21 1.00 1.69 0.94

22 0.96 1.64 0.94

23 0.98 1.69 0.94

24 0.94 1.60 0.94

25 0.95 1.63 0.94
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Figure 3.10. Distribution of errors. MPI-ESM-MR Downscaling with GPR-3D where

the lowest MAE obtained with n = 5.

3.2.0.4. Downscaling ERA5 dataset with GPR (No elevation). When we look at the

Table 3.28, both MAE and RMSE values when downscaling ERA5 dataset with GPR is

significantly lower than traditional ML models. MAE values under 0.05 were obtained

where n > 20. When n = 4 the model cannot fit as well as it does with other n values.If

we neglect n, we can also see that small n values yielded higher MAE but lower RMSE

relatively. GPR outperforms traditional ML algorithms on downscaling ERA5 dataset

where lowest MAE with GPR is %75 lower than lowest MAE obtained by traiditional

ML which was 0.18.
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Table 3.28. ERA5 Historical Monthly Mean Near Surface Temperature downscaling

errors with GPR using different n values.

n MAE RMSE R2

4 0.143 0.407 0.993

5 0.072 0.189 0.999

6 0.071 0.190 0.999

7 0.063 0.185 0.999

8 0.057 0.182 0.999

9 0.051 0.180 0.999

10 0.060 0.196 0.998

11 0.060 0.198 0.998

12 0.081 0.232 0.998

13 0.065 0.207 0.998

14 0.070 0.218 0.998

15 0.066 0.218 0.998

16 0.073 0.233 0.998

17 0.077 0.243 0.998

18 0.077 0.242 0.998

19 0.071 0.237 0.998

20 0.064 0.228 0.998

21 0.050 0.203 0.998

22 0.046 0.192 0.998

23 0.049 0.197 0.998

24 0.052 0.209 0.998

25 0.048 0.208 0.998
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3.2.0.5. Downscaling ERA5 dataset with GPR-100m. When we look at the Table 3.29,

we can see that adjusting temperature values according to elevation values yielded rel-

atively higher errors when downscaling ERA5 dataset with GPR. The lowest MAE,

0.38, was obtained when n = 5 which is higher than downscaling with traditional ML

algorithms.
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Table 3.29. ERA5 Historical Monthly Mean Near Surface Temperature downscaling

errors with GPR-100m using different n values.

n MAE RMSE R2

4 0.46 0.94 0.96

5 0.38 0.81 0.97

6 0.40 0.85 0.97

7 0.41 0.86 0.97

8 0.41 0.85 0.97

9 0.40 0.85 0.97

10 0.42 0.87 0.97

11 0.41 0.86 0.97

12 0.43 0.88 0.96

13 0.43 0.89 0.96

14 0.43 0.89 0.96

15 0.44 0.92 0.96

16 0.45 0.93 0.96

17 0.46 0.93 0.96

18 0.46 0.96 0.96

19 0.47 0.97 0.96

20 0.47 0.96 0.96

21 0.47 0.98 0.95

22 0.48 1.01 0.95

23 0.49 0.99 0.95

24 0.50 1.06 0.95

25 0.50 1.06 0.95
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3.2.0.6. Downscaling ERA5 dataset with GPR-3D. Results of downscaling ERA5 dataset

with GPR-3D can be seen in Table 3.30. When we look at the results, MAE is lower

when n value is lower. The lowest MAE and RMSE were obtained when n = 5 which

outperforms downscaling ERA5 with traditional ML algorithms. We can say that, us-

ing elevation as a new input dimension yielded slightly higher errors when compared to

GPR with no elevation. Similar to downscaling MPI-ESM-MR dataset with GPR-3D,

Figure 3.11 exhibits that, absolute error is higher for coordinates with higher elevation

values.

Figure 3.11. Distribution of errors from sampled 6000 points. ERA5 Downscaling

with GPR-3D where the lowest MAE obtained with n = 5.
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Table 3.30. ERA5 Historical Monthly Mean Near Surface Temperature downscaling

errors with GPR-3D using different n values.

n MAE RMSE R2

4 0.101 0.188 0.999

5 0.071 0.135 0.999

6 0.099 0.190 0.998

7 0.109 0.221 0.998

8 0.097 0.203 0.998

9 0.089 0.192 0.998

10 0.103 0.216 0.998

11 0.117 0.416 0.992

12 0.123 0.445 0.991

13 0.136 0.689 0.978

14 0.164 1.416 0.908

15 0.202 2.332 0.749

16 0.185 1.960 0.822

17 0.192 2.382 0.736

18 0.190 2.215 0.771

19 0.172 1.464 0.900

20 0.168 1.403 0.908

21 0.152 0.920 0.960

22 0.496 10.201 -3.879

23 0.446 9.939 -3.639

24 0.335 6.806 -1.178

25 0.707 22.600 -23.082
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3.3. Comparison of Top Traditional ML Algorithms and GPR Algorithm

for ERA5 and MPI-ESM-MR Datasets

As seen in Table 3.31 and Table 3.32, using GPR algorithm without elevation,

outperforms traditional ML methods for both ERA5 and MPI-ESM-MR datasets.

Table 3.31. Top 3 approaches built from traditional ML algorithms and GPR

algorithm for ERA5

Traditional ML GPR Based

Model n MAE

RF-5 4 0,18

RF-10 4 0,18

RF-5 7 0,20

Model n MAE

GPR (no elev.) 22 0,046

GPR (no elev.) 25 0,048

GPR (no elev.) 23 0,049

Table 3.32. Top 3 approaches built from traditional ML algorithms and GPR

algorithm for MPI-ESM-MR

Traditional ML GPR Based

Model n MAE

RF-25 5 0,87

RF-5 4 0,88

RF-25 4 0,89

Model n MAE

GPR (no elev.) 14 0,51

GPR (no elev.) 13 0,52

GPR (no elev.) 15 0,52
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4. DISCUSSION

Climate change has already started altering the life of populations from many

different regions rapidly. As extreme weather events become more frequent, some

regions of the Earth are becoming unlivable. Due to extreme drought, crops and

livestock in many regions are wiped out every year. Today, up to %70 of land is used

by people for producing resources such as food, feed, timber, fibre and energy [66].

Food supply per capita has increased drastically in the last sixty years due to changes

in consumption habits. However, currently, one quarter of total food produced is

wasted [66]. Although world hunger still remains, the amount of wasted food and

rates of overconsumption are extremely high. Land use for producing sufficient food

and energy decreases the nutritiousness of the land itself besides fostering greenhouse

gas emissions. Change in precipitation patterns has already affected food security,

especially in drylands such as Africa and South America [66]. In order to supply

sufficient food in a scenario with high population growth rate, land use will intensify

which would cause more greenhouse gas emissions. It has never been this crucial for

policymakers to plan sustainable land managements considering climate change and

health of ecosystems. Technological advancements and sustainable land management

practices in agriculture are essential for food production to be more efficient and less

land degrading. Droughts, heat waves and changes in precipitation patterns affect

fertility of the land. With increasing warming, desertification and deforestation due to

extreme and more frequent heat waves amplify climate change due to cooling effects

of vegetation. Soil erosion caused by agricultural activities surpassed the rate of soil

formation rate [66]. A habitat without food resources is not an option for any species.

Since the early 1990s, the number of reports of displacements or migrations due to

environmental changes is increasing. By the year 2000, the number of people that had

been forced to leave their homes due to serious environmental changes and natural

disasters was more than all war refugees ever documented [67]. In 2019, 4.1 million

people in Bangladesh, which constitute %2.5 of Bangladesh’s population, were forced

to migrate due to climate disasters [68]. Due to its poor household income and intense
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population, South Asia has become more vulnerable to climate change as frequency

and intensity of extreme weather events such as floods and cyclones are increasing.

Since adaptive capacity and sensitivity are mostly dependent on social and economic

conditions, countries with low income are impacted by environmental changes such as

land degradation.

More than half of the world’s population live in urban areas [69]. As climate

change poses a great threat to urban areas as well, ecosystem based adaptation and

planning for these areas are becoming more critical. Projections for possible climate

trends play a key role for policymakers to manage most suitable solutions. Downscaling

climate scenarios help us quantify local climate risks. While global climate models are

the main tool to understand and project climate trends, regional estimations can only

be obtained by downscaling techniques.

Downscaling a grid data is namely interpolating spatial data and predicting values

for unknown locations. Experiments conducted in this paper are to show that some

machine learning algorithms could handle spatial interpolation and thus statistical

downscaling.

Despite the fact that machine learning is now frequently utilized to tackle prob-

lems such as classification, regression, and clustering, there is relatively less research

examining spatial interpolation using machine learning methods. Machine learning

algorithms learn by predicting output variables from a collection of input variables,

where output variables could be class labels or real numbers. The majority of machine

learning algorithms accepts “tabular data” as observations. To put it another way, ma-

trices with each row represent a sample. Algorithms utilized in the experiments part of

this paper are decision trees, support vector regression and random forest which employ

tabular data for learning processes. Gaussian process regression, on the other hand,

considers spatial coordinates while learning. Therefore, representing spatial informa-

tion such as latitude and longitude within the input variables of traditional algorithms

is a complex process. Many studies have used the strategy of augmenting spatial data
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to observation vectors since it allows researchers to employ algorithms without hav-

ing to change the data [70]. However, that approach does not represent location data

in the input vector entirely, and due to high correlation between coordinate features

noticeable overfitting might occur [71].

In this paper, two different monthly mean temperature spatial datasets with

different spatial resolutions, MPI-ESM-MR and ERA5 historical monthly mean near

surface temperature over European region, were downscaled using 5 different machine

learning algorithms to evaluate downscaling performances and assess possible use of

these algorithms for future GCM projections. Algorithms were grouped into two.

The first group, the traditional ML algorithms group, which consists of decision trees,

support vector regression and random forest. The second group consists of Gaussian

process regression based approaches (GPR with no elevation data integration, GPR-

100m and GRP-3D). Additionally, elevation information was also integrated to test

possible improvements in downscaling with GPR.

The lowest error when downscaling MPI-ESM-MR dataset which has wider grid

sizes than ERA5 (210km x 210km), MAE = 0.87 and RMSE = 1.14, was achieved by

random forest algorithm utilizing top five closest points to each target as predictors.

No other traditional ML algorithms were able to downscale MPI-ESM-MR dataset

with MAE lower than 1 degree Kelvin. The baseline algorithm for benchmark, linear

regression, was the second best algorithm with MAE ranging from 1.10 to 1.25 for

different n values. MAE of SVR algorithm ranges from 1.31 to 1.59. DT on the other

hand, has the highest error values of all when downscaling MPI-ESM-MR with MAE

values bigger than 2.2 degrees Kelvin. Therefore, as for downscaling MPI-ESM-MR

dataset with traditional ML algorithms, random forest was the prominent algorithm

with significantly lower MAE and RMSE values. Downscaling MPI-ESM-MR dataset

with gaussian process based methods resulted in various errors. GPR with no ele-

vation data utilization exhibited the lowest errors with MAE = 0,51 and RMSE =

0,89. Downscaling MPI-ESM-MR dataset with GPR-100m, where temperature values

were subtracted by 0.5 degree Kelvin for every 100m elevation, was the approach with
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highest error values with MAE larger than 2 degrees Kelvin. Model with represent-

ing elevation information as another dimension in the spatial data, GPR-3D, was able

to achieve downscaling with MAE = 0.84 surpassing random forest performance but

not as good as model with no elevation utilization. Utilizing elevation data in models

generally did not improve the downscaling performance of GPR. 100m temperature

adjustment for smoothing elevation effect was not successful as the model generated

poor predictions. One possible reason that GPR-3D was performed relatively weakly

could be the increased complexity of the model due to considering elevation as an-

other dimension. It is also a noticeable fact that when downscaling MPI-ESM-MR,

GPR based approaches require more predictor points neighbouring the target points

in order to generate significantly better predictions.

Downscaling ERA5 dataset which has a resolution of 31km x 31km with DT, SVR

and RF yielded MAE values ranging from 0.18 to 0.49 where baseline linear regression

generated MAEs larger than at least 4 degrees Kelvin. Tested random forest algorithms

with various “number of decision trees” hyperparameters generated the best predictions

with MAE = 0.18 and RMSE = 0.37 using the top five closest points to each target

as predictors. DT and SVR generated predictions with similar MAEs ranging from

0.34 to 0.49. However, RMSE of SVR is significantly lower than DT where RMSE of

SVR ranges from 0.75 to 1.03 and RMSE of DT ranges from 1.56 to 1.75. Predictions

of SVR were more consistent when compared to other traditional ML algorithms as

variation of error values for different n values is relatively lower (See Figure 3.3). When

it comes to GPR based approaches, downscaling ERA5 algorithm generated various

performances similar to MPI-ESM-MR experiments. GPR model with no elevation

utilization yielded considerably low errors with MAEs as low as 0.05. While the lowest

MAE values achieved by models when n <20, the lowest RMSE values (RMSE < 0.19)

were obtained when n <9. As for GPR-100m approach, predictions were not as good as

GPR with no elevation with MAEs ranging from 0.38 to 0.50. Downscaling ERA5 with

GPR-3D approach achieved to generate predictions with MAE under 0.1. The lowest

MAE and RMSE achieved by this approach are 0.07 and 0.13 respectively. Contrary

to downscaling MPI-ESM-MR dataset with GPR-3D, in downscaling ERA5 dataset,



68

RMSE of GPR-3D surpasses the RMSE of GPR with no elevation approach. From

this fact, it can be deduced that the use of elevation data as a new input dimension

for GPR in the process of downscaling spatial datasets with higher resolution enables

predictions with lower variational errors to be obtained when compared to datasets

with coarser resolutions.

As mentioned in the related work section in this paper, there are very few studies

and performance reports on statistical downscaling monthly mean temperature data

using machine learning algorithms. Therefore, for evaluating the results of the tests

explained in this paper, performance reports of the study [53], which was mentioned

in the related work section, cannot be considered as a benchmark in view of the fact

that the algorithm that study used was linear regression which was included only as

a baseline algorithm in this paper, and the area of study was Kazakhstan region. To

give an idea, Li and Yan downscaled the NCEP/NCAR dataset in the Kazakhstan

area with a minimal MAE of 0.82, while downscaling experiments in this paper yielded

estimations with an MAE of 0.51 [53].

All in all, downscaling monthly mean near surface temperature data using ma-

chine learning gives promising results. Moreover, it can be said that Gaussian process

regression is a better fit when compared to traditional algorithms mentioned. In ad-

dition, experiments also showed that using elevation in the input data for building

machine learning models did not improve interpolation performances.
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5. CONCLUSION

In this dissertation, the downscaling ability of four machine learning algorithms

were examined and tested for obtaining accurate monthly mean surface temperature

projections. First, decision tree regression, random forest regression and support vec-

tor regression were evaluated as traditional ML methods. Then, Gaussian process

regression algorithm was tested for spatial interpolation. Two different data sources

with different resolutions were used in downscaling with machine learning. One GCM

with a resolution of about 210km and one reanalysis data with a resolution of about

27km were interpolated to evaluate the variance of performances of tested machine

learning algorithms on different resolutions. Moreover, data from a digital elevation

model, GTOPO30, was also used to evaluate performance change when elevation data

was also attached to the input vector. The results of these tests show that, GCM

scaled monthly mean temperature data can be downscaled with mean absolute error

around 0.5 degrees Kelvin using Gaussian process regression while traditional ML al-

gorithms can downscale the same dataset with mean absolute error around 0.9 degrees

Kelvin. A smaller scaled dataset, ERA5, can be downscaled with mean absolute error

around 0.04 using Gaussian process regression while traditional ML algorithms can

downscale the same dataset with mean absolute error around 0.19. These results in-

dicate that machine learning algorithms can be used for downscaling monthly mean

near surface temperature datasets. Although the tests were conducted on a European

region dataset, the chosen data contains locations with various geographic features.

Traditional ML models become more resilient as a result of the dataset’s diversity,

and it also offers an indication of usefulness in other regions. As for Gaussian process

regression, which regards spatial features, the same robustness cannot be mentioned

and requires further experiments since for each target point, a new function is fitted.

As shown in many climate studies, the accuracy of downscaled projections are

dependent on the predictor datasets. Many different GCMs have different projections

and this is the point of origin of CMIP studies. Although the experiments for down-
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scaling MPI-ESM-MR and ERA5 datasets were conducted separately, combining the

information of both datasets and using it in the ML models could yield a better per-

formance and provide motivation for future work. It is also shown by many papers

based on climate science research that ensemble methods that consist of at least one

ML model within yield relatively low errors in statistical downscaling. Combining es-

timation powers of different kind of methods with Gaussian process regression is also

another possible experiment setup with the motivation of improving spatial interpola-

tion performance.

Another possible approach for processing and downscaling spatial climate data

is considering the task as an image processing problem. Many state-of-the-art meth-

ods in the area of image processing were developed by machine learning engineers in

the last decade. It can be said that gridded spatial datasets and image datasets are

substantially similar where both pixels and locations in spatial data and image data

can be represented inside vectors for processing. An object detection task can be fit

for extreme climate event predictions, an object tracking task can be fit for projecting

climate event extensions. Image-completing or denoising models can be used for in-

terpolation and thus statistical downscaling. Style transfer methods can be applied to

climate data to predict possible climate effects on specific regions.

Even though the tests in this paper were conducted on historical climate data,

the accuracy and reliability of the top performing models explained in this paper in-

dicate that some machine learning methods are usable for future climate projections.

Statistical downscaling with machine learning will be much more helpful in the fu-

ture with growing tendency toward more open-source climate studies and the growing

number of joint studies that aim to generate more accurate GCMs with more complex

but informative socioeconomic and emission scenarios. Consequently, local effects of

climate change will be much more predictable due to more accurate models, and this

means that adaptation planning for changing climate will be more precise.
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