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Boğaziçi University

2022



iii

ACKNOWLEDGEMENTS

Words cannot express my gratitude to my professors for their invaluable patience

and feedback. I must firstly thank my supervisors. Prof. Tuna Tuğcu and Assist.
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Düzağaç, and İbrahim Sina Aşık for both of whom friendships goes as far as editing.

This research was partially supported by the Scientific and Technical Research

Council of Turkey (TUBITAK) under grant number (1190049) andby the Turkish Di-

rectorate of Strategy and Budget under the TAM Project number 2007K12-873.



iv

ABSTRACT

SOURCE LOCALIZATION FOR MOLECULAR

COMMUNICATION VIA DIFFUSION

Molecular communication is a type of communication that provides communica-

tion in mediums such as underwater, where traditional communication paradigms are

insufficient, and in which information is carried by molecules in fluid environments.

However, the fact that the information particles in molecular communication propa-

gates by diffusion prevents us from solving problems such as finding the location of the

transmitter with traditional methods. Especially, when the number of transmitters is

more than one, the solution becomes more complicated. The solution described in this

thesis is to find the locations of the transmitters by employing the coordinates of the

molecules hitting the receiver in a fluid environment where there are multiple trans-

mitters and a spherical receiver that absorbs the hitting molecules completely. For this

localization solution, first the coordinates of the hitting molecules are clustered with

models such as Gaussian, Bayesian mixture models, and K-means. By calculating the

average values of the clustered data, the direction of the corresponding transmitter is

determined. At the same time, the distance is determined based on the number of data

belonging to separate clusters and the probability of the particles hitting the receiver.

The results show that the most promising cluster algorithm is K-Means. By calculating

the direction and the distance of the locations via clustered data, we can estimate the

transmitter locations.
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ÖZET

DİFÜZYON İLE MOLEKÜLER İLETİŞİM İÇİN

LOKALİZASYON

Moleküler iletişim, geleneksel iletişim paradigmalarının yetersiz olduğu sualtı gibi

ortamlarda iletişimi sağlayabilecek, akışkan ortamlarda bilginin moleküllerle taşındığı

bir iletişim paradigması türüdür. Öte yandan moleküler iletişim moleküllerin difüzyonu

ile gerçekleşmesi, vericinin yerini bulma gibi problemlerin çözümünü geleneksel yöntem-

lerle çözebilmemizi engeller. Özellikle verici sayısının birden fazla olduğu durumlarda

çözüm daha karışık hale gelmektedir. Bu tezde anlatılan çözüm ise çoklu vericilerin

ve küresel, üzerine çarpan molekülleri tamamen emen bir alıcının olduğu akışkan bir

ortamda alıcıya çarpan moleküllerin koordinatlarını kullanarak vericilerin yerlerini bu-

lacak bir çözüm önerilmiştir. Bu yer bulma çözümü için, önce çarpan moleküllerin

koordinatları K-ortalama, Gauss ve Bayes karışım modelleri gibi kümeleme modelleri

ile kümelenir. Kümelenen verilerin ortalama değerleri hesaplanarak her kümeye ait

ilgili vericinin yönü tespit edilir. Aynı zamanda herbir kümeye ait verinin sayısı, ve

moleküllerin alıcıya çarpma olasılığından yola çıkarak mesafe tespit edilir. Sonuçlar,

en umut verici küme algoritmasının K-Means olduğunu göstermektedir. Lokasyonların

yönünü ve mesafesini kümelenmiş verilerle hesaplayarak verici konumlarını tahmin ede-

biliriz.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Source Localization via Diffusion . . . . . . . . . . . . . . . . . . . . . 1

1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Contribution of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. TRANSMITTER LOCALIZATION IN DIFFUSIVE CHANNELS . . . . . . 8

2.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1. System Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Multiple Transmitter Localization in MCvD . . . . . . . . . . . . . . . 11

2.4.1. Mixture Models and K-Means for Clustering . . . . . . . . . . . 12

2.4.2. Direction and Distance Estimation . . . . . . . . . . . . . . . . 13

3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1. Effects of the Number of Transmitters . . . . . . . . . . . . . . 18

3.1.2. Effects of Minimum Angle Between Transmitter Pairs . . . . . . 20

3.1.3. Effects of Distance Variation . . . . . . . . . . . . . . . . . . . . 23

3.1.4. Effects of Quantization of the Locations on the Surface . . . . . 26

4. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 28

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



vii

APPENDIX A: COPYRIGHT PERMISSION GRANTS . . . . . . . . . . . . 34



viii

LIST OF FIGURES

Figure 1.1. An illustration of molecular communications. . . . . . . . . . . . . 2

Figure 2.1. Two transmitter points, the propagating particles (emitted from

transmitter points, some of them absorbed), and absorbing spher-

ical receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2. Expectation-maximization algorithm. . . . . . . . . . . . . . . . . 13

Figure 2.3. K-means algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.1. Average percentage of Euclidean errors for 2-transmitter scenarios

(K = 2) regarding to the minimum angle β. . . . . . . . . . . . . 19

Figure 3.2. Mean percentage of Euclidean errors for each scenario regarding to

minimum angle β. As indicated on the figures’ legends, blue dots

show the mean percentage Euclidean error for simulation scenarios

that has transmitters, which are more than two, and red dots repre-

sent the mean percentage Euclidean error for simulation scenarios

that has exact 2-transmitters. . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3. Mean percentage Euclidean errors of all scenarios regarding to the

difference of maximum-minimum distance between transmitters.

Blue dots on the figure indicate the mean percentage Euclidean

for a simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.4. Mean percentage Euclidean error in various distance variation in-

tervals for each algorithm. . . . . . . . . . . . . . . . . . . . . . . 25



ix

Figure 3.5. Percentage Euclidean error in various distance variation intervals

for all scenarios. For the corresponding intervals, blue boxes, red

boxes, and yellow boxes denote GMM, DiM, and K-Means, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.6. Mean angle errors in minimum angle variations for 2-transmitter

scenarios. Blue boxes represent infinite quanta (no quantization),

red boxes represent 16020 quanta (89 pieces azimuth, 180 pieces

elevation), yellow boxes represent 7080 quanta (59 pieces azimuth,

120 pieces elevation), purple boxes represent 1740 quanta (29 pieces

azimuth, 60 pieces elevation). . . . . . . . . . . . . . . . . . . . . . 27



x

LIST OF TABLES

Table 1.1. Survey table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Table 3.1. Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 3.2. Average percentage Euclidean errors of the algorithms. . . . . . . . 17

Table 3.3. Average angle errors of the algorithms. . . . . . . . . . . . . . . . 18

Table 3.4. Mean angle estimation errors of K-Means with the associated mean

confidence intervals (confidence level 95%). Please be informed that

the lack of greater minimum angle intervals for a given number of

transmitters because taking into account the number of transmitters

reduces the probability of getting greater minimum angles when

initiating transmitters via simulation at random. . . . . . . . . . . 24



xi

LIST OF SYMBOLS

D Diffusion Coefficient

dk Direction vector from center of Rx to k-th Tx

d̂k Estimated direction vector from center of Rx to k-th Tx

erfc(·) Complementary Error Function

Fhit(·, ·, ·) Function of hitting molecules

F̂hit(·) Estimation of function of hitting molecules

K Number of Tx

k Tx variable

N Number of molecules per Tx

N (·, ·) Gaussian distribution

n Molecule variable

rr Radius of Rx

r0 Distance between center of Rx and Tx

r0k Center of Rx

t Time

∆t Time interval

tend Simulation end time

L Locations of particles

T Sampling time of hitting function

W (·) Wiener process

W Probability matrix

wkj Probability of particle j that belongs to k-th cluster

| · | Cardinality operator

Γ(·) Clustering function

δk(·) Function of location estimation

ϵd Average percent of Euclidean errors

ϵϕ Average angle error



xii

µ Mean

∆ξn Change of coordinates in 3D

σ Standard deviation

Ψk Location of k−th transmitter

Ψ̂k Estimated location of k−th transmitter



xiii

LIST OF ACRONYMS/ABBREVIATIONS

3D Three Dimensional

DiM Dirichlet Mixture Model

DoA Direction of Arrival

ISI Inter-symbol interference

GMM Gaussian Mixture Model

MC Molecular Communications

MCvD Molecular Communications via Diffusion

ML Machine Learning

MLE Maximum Likelihood Estimation

RTT Round Trip Time

Rx Receiver Node

Tx Transmitter Node



1

1. INTRODUCTION

Molecular communications (MC) is promising, small-scale technology that en-

ables molecules as an information carriers in fluidic medium. Molecular communica-

tion appears as a credible alternative in scenarios when conventional communication

systems are unsuitable owing to the fluidic propagation environment and difficulties

in the design of in-body antennas. Additionally, significant advancements have been

made in other areas of MC use, including industry, the environmental issues, genetics

engineering, and communication technology. Also, targeted medication delivery [1–3],

nanorobots, pathogen transmission [4, 5] and cancer research are just a few examples

of the micro-scale research that has significantly risen in the healthcare sector in recent

years [6]. As a result, MC has gained a great deal of attention in literature related to

science and engineering [7].

The term “molecular communication via diffusion” (MCvD) refers to an MC

system in which chemicals move through diffusion 1.1. The information carriers in this

systems are molecules, which propagate by random walk of individual particles carried

by the thermal energy in the system. Cell-to-cell communication—a process that is

already employed in the nature—is an example of MCvD [8]. Paracrine signaling is

one method of inter-cellular communication (i.e., the signaling between nearby cells)

in the human body.

1.1. Source Localization via Diffusion

The need and potential use cases for MC grow as applications drive communi-

cation networks to smaller. As a result, MC networks have recently received a lot of

attention. The fact that molecular receivers in MCvD systems receive a significant

amount of diffusion noise together with a heavy tail signal (inter-symbol interference

[ISI]) is one of the key issues. When constructing an MCvD system with right adjusted

parameters, information about transmitter location is essential to reducing noise in
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Tx

Rx

Figure 1.1. An illustration of molecular communications.

the received signal. Transmitter localization’s another promising use case is in medical

area (healthcare), where unhealthy cells can act as transmitters. Unhealthy cells can

be localized to allow the required post-treatment procedures by following the chemicals

emitted by such entities.

1.2. Related Work

Wang et al. in [9] present an algorithmic distance estimation scheme with fully

absorbing receiver. Receiver estimates the distance between the transmitter and itself

via counting the number of particles within a predefined time frame. In [10], the

proposal is transmitter positioning method for MCvD in the system that includes a

single transmitter and multiple spherical absorption receivers. It utilizes Levenberg-

Marquardt method for estimating distances between the transmitter and every receiver.

In [11], the researchers use Poiseuille flow and ring-shaped observation receivers

to analytically calculate the location information of a point transmitter in a vessel-

like medium. The goal of this work is locating anomalous and diseased cells by the

particles they release. Based on the assumption that the MC system is perfectly

synchronized, two scenarios are taken into consideration. It has been demonstrated

that in the situation of perfect synchronization, high-quality localization estimation is

feasible using just one ring-shaped observation receiver. In the same study, a different
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approach using two ring-shaped observation receivers is also suggested for the scenario

where the receiver is not synchronized with the transmitter.

In [12], using signal-dependent noise and ISI, the position of only one point trans-

mitter with an transparent 3D spherical receiver is determined analytically. Both sce-

narios, where the positions of the observing receiver are either known or unknown,

result in the proper localization of the point transmitter.

In [13, 14], experiment-based distance estimation is investigated in macro-scale

environments. In [13], various methods including data analysis based and machine

learning techniques are utilized. In [14], a localization algorithm based on sensors is

presented. In this paper, ethanol molecules are evaporated from a petri dish at 23◦C

and employed as information carriers. Cluster groups are formed from 24 sensors,

and some sensors are allowed to participate in more than one cluster group. For each

cluster, localization is estimated using data collected from sensors and an estimation

of wind velocity.

In [15], two estimation techniques for the distance between the transmitter and

the receiver are investigated for the scenario with only one transmitter. The first

technique estimates distance based on the knowledge that the molecule concentration

achieves a maximum (i.e., via peak time). The second technique makes use of signal

energy, also known as the sum of molecule concentration. The authors conclude that

utilizing signal energy for distance prediction is preferable to using peak time for esti-

mation. Nevertheless, this approach has increased complexity higher than the former.

In [16], channel characteristics diffusion coefficient, including propagation distance, and

medium co-flow velocity are also evaluated. The same work also analytically derives

closed-form formulations of the lower limits of Cramer-Rao.

In [11,15,17–21], estimation is performed by employing peak of the signal. Luo et

al. in [20] investigate a novel effective distance estimation method, in which receiver can

localize transmitter via information of peak values of two different molecules (different
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diffusivity) emitted by a transmitter. Similar distance estimation technique (different

molecules with different diffusivity) is assigned in [21].

In [18], researchers propose a method to estimate the distance between bio-

nanomachine pairs that both transmit and receive. To estimate the distance, one of the

bionanomachine pairs emits A molecules with coefficient DA into the medium. When

the other bionanomachine receives the A molecules, it reacts by emitting B molecules

with coefficient DB into the medium. By using detection times of peak concentra-

tion, diffusion coefficients, and round trip (RTT) time protocol, which is the proposed

method by the researchers, the distance between bionanomachines is estimated. An-

other paper that uses RTT to predict distance is [21].

In [22], the propagation distance is estimated using a high-accuracy protocol.

Multiple symbols are transmitted by the source in the form of molecules. Also, by using

the Newton-Raphson formula depending on the molecule concentration, the receiver

calculates the distance.

The authors of [23] use maximum likelihood estimation (MLE) to determine the

parameters (diffusion coefficient, medium co-flow velocity, and distance of propaga-

tion) of the inverse Gaussian distributed channel. [12] demonstrates that localization

via concentration of particles in the system with high accuracy in cases where single

transmitter may be attained using an iterative MLE approach. In another paper that

uses MLE to localize the transmitter [19], the estimation of distance is investigated in

the context of a single transmitter scenario. The researchers obtain the Cramer-Rao

lower bound for the error for distance estimation’s variance. Also, the lower bound

takes molecular degradation and a steady channel flow into account. In [24], distance

is estimated based on the difference of dynamic environment. It means that not only

molecules propagate, but also the transmitter and the receiver in the environment with

a constant diffusion coefficient. To accomplish the aim, a novel two-step scheme based

on MLE is proposed. Among localization techniques, MLE has higher accuracy. On

the other hand, it needs more computational power.
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Table 1.1. Survey table.

Category Method Highlights

Distance est.

Algorithmic distance

estimation scheme [9]

Sync. and unsync. conditions

Various ML methods [13] Experiment in macroscale env.

Concentration-peak time or

received concentration

energy [15]

MLE method [16] Inverse Gaussian distributed channel

Signal peak [17] Only one-way transmission, no clock

sync. between nanomachines

Signal peak [18] Single spike of molecules

MLE method [19] Cramer-Rao lower bound

Signal peak [20,21] Two different types of molecules,

sync. does not required

MLE, Newton–Raphson

method [22]

ISI considered

MLE method [23] Inverse Gaussian distributed channel

Two-step scheme based on

MLE [24]

Initial distance estimation, Tx and

Rx moves

Location est.

Levenberg-Marquardt

method and multi-point

positioning method [10]

Single Tx and multiple spherical

absorption Rx

Signal peak [11] Poiseuille flow and ring-shaped

observation Rx

Iterative maximum

likelihood estimation [12]

Locations of the Rx are both known

and unknown

Sensor network-based

localization algorithm [14]

Experiment in macroscale env.,

Gaussian plume model
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In addition, two different techniques are provided in [17] to estimate the distance

in a 1-D diffusion-based channel without clock synchronization. In the first technique,

the transmitter and receiver’s distance are determined using the concentration’s peak

value. In the second technique, the distance by modifying the transmission mechanism

is estimated.

1.3. Contribution of This Thesis

Source localization problem has been researched in many ways for traditional

communication paradigms and wide range of transmitter types such as radioactive,

acoustic, radio-based, or optical. Also, it has been investigated deeply for multiple

transmitter cases. However, in MC literature, researches are concentrated mostly on

estimation of the distance instead of localization. Additionally, these are focused on

single transmitter cases. In this theses, we proposed a solution for multiple transmitter

localization. The main contributions of this thesis can be defined as follows:

• Proposing an approach to estimate each distance between an absorbing receiver

and a corresponding transmitter by using the location coordinates of absorbed

particles by the absorbing receiver.

• Proposing an approach to estimate each DoA for each transmitter by calculating

the mean value of location coordinates of absorbed particles by the absorbing

receiver.

• Evaluating the performances of different clustering algorithms with various error

metrics based on the angle differences and the distance differences by investigating

◦ the effects of the number of transmitters,

◦ the effects of minimum angle between transmitter pairs,

◦ the effects of distance variation,

◦ the effects of quantization of the locations on the surface.
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1.4. Thesis Outline

This thesis is outlined as follows. In Chapter 2, we introduce our method for

transmitter localization in diffusive channels. First, we describe the system model,

propagation model and channel model of the system of our study. Second, we propose

our method for localization problem. In Chapter 3, we discuss the results of our method

with alternative clustering techniques. In Chapter 4, we present a summary for the

results and describe open questions with possible future works.
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2. TRANSMITTER LOCALIZATION IN DIFFUSIVE

CHANNELS

2.1. System Model

In this section, we focus on the micro-scale environment that includes a receiver

and multiple transmitters. In such environments, the signal received by the absorbing

transmitter is affected by signal emission process, signal absorption process, and the

type of propagation (e.g., flow-based propagation, diffusion-based propagation).

2.1.1. System Topology

In this thesis, diffusion-based propagation is considered as a type of propagation.

The medium is assumed to be 3D, unbounded, diffusion-based with no flow. Also, the

topology consists of a single absorbing receiver (i.e., memorizes each emitted molecule)

with spherical shape and multiple point transmitters, where the locations are ran-

dom around the spherical receiver Figure 2.1. The transmitters emit same number of

molecules synchronously.

Figure 2.1 demonstrates an example configuration of the system topology with

and absorbing receiver, 2 point transmitters, and the molecules emitted from these

transmitters. The point transmitters emit molecules from their locations. The distance

between a location of transmitter k and the center of the absorbing sphere is r0k. The

radius of the absorbing receiver is rr.

In the topology, we assume that there is no molecule-molecule interaction due to

the narrow number of molecules in the medium. Also, we assume there is no source

noise around receiver (closer than 13µm) except diffusion noise. Because, in this
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topology, the received signal drops significantly. after 13µm. Additionally, we consider

that the the point transmitters and the spherical receiver are perfectly synchronized

(some of the works that use synchronized communication components in literature

[25,26]).

Figure 2.1. Two transmitter points, the propagating particles (emitted from

transmitter points, some of them absorbed), and absorbing spherical receiver.



10

2.2. Propagation Model

Emitted molecules propagate randomly through the medium. This propagation

can be modeled by Wiener process W (t) [27] and it is defined by

W (0) = 0,

W (t) is almost surely continuous,

W (t) has independent increments,

W (tt)−W (ts) ∼ N (0, ts − tt), for 0 ≤ tt ≤ ts,

(2.1)

where N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2. For each

molecule, (2.1) explains that the probability of location change in one direction obeys

Gaussian distribution. The location change at each dimension in 3D space, can be

calculated by ∆x, ∆y, and ∆z in time interval ∆t, are given by

∆ξn =<∆xn,∆yn,∆zn> (2.2)

with

∆xn ∼ N (0, 2D∆t),

∆yn ∼ N (0, 2D∆t),

∆zn ∼ N (0, 2D∆t),

(2.3)

where D denotes the diffusion coefficient of molecules in the environment. Moreover,

the location change of each molecules is calculated by Gaussian distribution for each

time interval ∆t (the probability of the step size is determined by time interval).

2.3. Channel Model

In the literature, hitting distributions of the particles absorbed by fully absorbing

receiver is well researched. In [28], cumulative distribution of hitting particles absorbed
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by the receiver is analytically solved with respect to time (t), the distance between

point transmitter and center of the absorbing receiver (r0), and the radius of absorbing

receiver (rr) is given as,

Fhit(t, r0, rr) =
rr
r0
erfc

(
r0 − rr√

4Dt

)
, (2.4)

where erfc(·) and D denote the complementary error function and diffusion coefficient,

respectively.

2.4. Multiple Transmitter Localization in MCvD

This thesis consists of a localization proposal with multiple point transmitter

that emit same number of molecules at time t and an absorbing receiver in unbounded,

3D, diffusive, no flow fluidic environment. Additionally, the fluidic environment has a

constant temperature and the viscosity.

We assume that the number of point-shaped transmitters in each scenario, the

molecule numbers transmitted by point transmitters, and the time of transmission are

known. It is also assumed that the diffusion coefficient of the fluidic environment (D)

and the radius of the absorbing receiver (rr) are constant and known.

It is challenging to locate the points of each transmitter by regarding to the

locations of particles (denoted by L) absorbed by the fully absorbing receiver. In order

to estimate the location of the particles, we minimize the difference between each real

(Ψk =<Xk, Yk, Zk>)and the predicted (Ψ̂k =<X̂k, Ŷk, Ẑk>) location of corresponding

transmitter (k-th) pairs. This minimization is shown as,

min
δ(L)

K∑
k=1

∥Ψk − Ψ̂k∥, (2.5)

where δk(L) = Ψ̂k and δ(·), and K are the function of location estimation (locations
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of absorbed particles) and the number of point transmitter.

Each point transmitter emits same kind of particles from their coordinates. It

causes absorbing receiver to absorb particles concurrently. So, first, we need to cluster

(both soft and hard clustering) each absorbed particles (L) into clusters, which cor-

respond to one of point transmitters. Γ(·) (clustering function) finds the probability

matrix (W), which expresses that each data point belongs to corresponding transmit-

ter. Note that, the sum of each row equals to 1 and also W is zero-one matrix for

hard-decision clustering, while it is (0, 1)−matrix for soft-decision clustering.

2.4.1. Mixture Models and K-Means for Clustering

In [29–34], the researchers study numerous methodologies for analyzing spherical

data based on mixture models. In order to solve the localization of multiple transmit-

ters problem in MCvD, we modified mixture model-based techniques. Popular cluster-

ing algorithms that employ soft-decision methods include the Gaussian mixture model

(GMM) and the Dirichlet model (DiM). The probability that a data point belongs

to corresponding cluster is determined using soft decision algorithms. In other words,

these decision algorithms estimate the likelihood of each designation rather than rigidly

identifying a data point. An iterative expectation-maximization techniques used in this

work are both GMM and DiM. Based on the data gathered from the previous iteration,

cluster probabilities associated to a data point are estimated in the expectation step.

In the maximization step, these probabilities are used to estimate parameters for

the cluster distribution. GMM attempts to fit a set of (particularly, K) 3D Gaussian

distributions to spherical data to cluster it. Gaussian distribution is used by the Dirich-

let model as well, by utilizing a Dirichlet process. Other than these EM model-based

algorithms, we used the K-Means algorithms to solve localization problem for multiple

transmitters in MCvD. Moreover, K-Means algorithm uses a hard-decision logic to as-

sign data points into clusters so that each data point is rigorously assigned to a single

cluster (in our case, transmitter).
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Pseudo-codes of the algorithms adapted in this thesis are presented in Figure

2.2 and Figure 2.3. In Figure 2.2, the logic behind EM-based models (soft decision) is

shown with expectation and maximization steps. K-means algorithm is given in Figure

2.3.

Data: Hitting Molecules L
Result: Γ(L) = W
Initialization: means, covariance matrices, mixing coefficients of the clusters
while not converge do

if Expectation Step then
for each data point do

calculate probability of each cluster using parameters of the corresponding
cluster

if Maximization Step then
Update distribution parameters, i.e., the means, the covariance matrices and
the mixing coefficients of the clusters from calculated probabilities

1

Figure 2.2. Expectation-maximization algorithm.

Data: Hitting Molecules L
Result: Γ(L) = W
Initialization: centroids of the clusters
while not converge do

for each data point do
assign the data point to the closest cluster

Update centroids

1

Figure 2.3. K-means algorithm.

2.4.2. Direction and Distance Estimation

To estimate a location of a point, we need the direction and the distance estima-

tion for this point, which DoA and r0k for k− th transmitter in our case. Hence, first,

we need to cluster (via GMM, DiM and K-Means) hitting molecules (L) properly to

reach this valuable information. By doing so, we calculate the centers of each cluster,

which is an estimation of DoA for corresponding transmitter. We mean the coordi-

nates of each cluster individually for K-Means, due to the fact that it is a hard-decision

algorithm. We use the Fhit function from (2.4) and the number of molecules received
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to estimate r0k.

To estimate the DoA for each transmitter, we mean the coordinates of each

absorbed data points that belongs to corresponding cluster. To mean the data points

for soft-decision clustering, we calculate average weighted sum of data points of a

cluster with probabilities coming from expectation step. The estimated direction from

the spherical receiver’s center to the k-th transmitter (d̂k) is calculated by taking mean

of the location (with respect to each dimension) of the data points with the relevant

wkj as

d̂k =

∑|L|
j=1wkj {<xj, yj, zj> − <XRx, YRx, ZRx>}∑|L|

j=1wkj

, (2.6)

where wkj indicates the probability of particle j that belongs the k-th cluster (trans-

mitter), | · | is the cardinality operator, and <XRx, YRx, ZRx> is the absorbing receiver

center, respectively. Besides, 2.6 is also usable for K-Means. Due to K-Means algo-

rithm is a hard-decision algorithm for clustering, the weights (wkj) take a value either

0 or 1. When K-Means predict that n− th particle belongs to k − th transmitter, wkj

will take 1, otherwise 0.

To find the distance of k−th transmitter (r0k), the number of the data points

that belong to cluster r0k with time steps and equation 2.4 can bu utilized. First,

the coordinates of the data points are discretizated cumulatively with respect to their

absorption time by absorbing receiver. Next, wkj, which is provided by clustering

algorithms, yields the estimated number of particles until time ts by

N ts
k =

∑
j∈Lts

wkj, (2.7)

where Lts denotes the particles absorbed until time ts. The calculated values of N ts
k

are used for estimating Fhit in (2.4) such that

F̂ k
hit(ts) =

N ts
k

N
. (2.8)

At the right side of (2.4), both parameters D and rr are already known. Next step is



15

to estimate expected distance of transmitter point k as

r0k = argmin
r0

∑
ts∈T

{
Fhit(ts, r0, rr)− F̂ k

hit(ts))
}2

, (2.9)

where T denotes the hitting function’s sampling time.
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3. RESULTS

3.1. Performance Evaluation

Using a particle-based simulator, the coordinates of hitting molecules (L) are

generated. The particles in the simulator propagate via diffusion by computing their

3D displacements in accordance with (2.2) at each simulation time step. Later, applying

the algorithms GMM, DiM, and K-Means in the machine learning library scikit-learn

[35], point transmitter clusters are identified from data made up of hitting molecules.

Depending on the quantity of transmitters, we examine a variety of different sce-

narios. From each transmitter point, 104 molecules are released into the environment.

Other parameters are selected as 10−5s and 79.4µm2

s
for time step ∆t and diffusion

coefficient D, respectively. Moreover, estimations are obtained by averaging 500 rep-

etitions. The radius of the receiver (rr) is 5µm, and the transmitters are initialized

in random near the receiver with a distance (from the center of the absorbing receiver

to a point transmitter) between 8µm and 12µm (r0 ∈ [8, 12]). The distance range

of signals is what led to these values being determined for the receiver’s radius and

distances. An upper bound for the distance between a transmitter and a receiver in an

MC network is computed so that the bit error rate stays under 10−3. Expressly, the

the range of distance is chosen to maintain adequate levels of communication quality.

Furthermore, the direction information becomes considerably less reliable the further

apart the transmitter and receiver are. Hence, when the signal absorbed by receiver

is poor, it is difficult to precisely identify the transmitter’s location. Additionally, ad-

ditional factors besides distance values are frequently employed for simulations in MC

studies. The reader is encouraged to refer to [11,36] for such examples.

For the sake of comparison, the percentage Euclidean error is calculated by di-
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Table 3.1. Simulation parameters.

Parameter Symbol Value

Radius of Rx rr 5µm

Diffusion coefficient D 79.4µm2

s

No. of released molecules per Tx N 104

Distance btw centers of Rx and Tx r0 8 ∼ 12µm

Number of Tx K 2, 3, 4, 5, 6

Simulation End Time tend 0.5s

Time step ∆t 10−5s

Table 3.2. Average percentage Euclidean errors of the algorithms.

Number of Tx GMM DiM K-Means

2 23.58% 21.83% 8.51%

3 25.11% 22.93% 14.74%

4 29.29% 28.98% 19.70%

5 33.64% 33.85% 24.04%

6 36.98% 37.20% 28.67%

viding the Euclidean error of our prediction for each transmitter by the actual distance

between the corresponding transmitter and the center of the receiver. Then, for each

simulation, the average percent of Euclidean errors (ϵd) is calculated as

ϵd =
1

K

K∑
k=1

∥Ψk − Ψ̂k∥
r0k

. (3.1)

Similar to that, the average angle error (ϵϕ) may be calculated as follows

ϵϕ =
1

K

K∑
k=1

cos−1

(
dk · d̂k

∥dk∥ ∥d̂k∥

)
(3.2)

where dk is the direction vector of the grand truth of transmitter location, and d̂k

is the direction vector of the estimated transmitter location. ϵϕ denotes the angular
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Table 3.3. Average angle errors of the algorithms.

Number of Tx GMM DiM K-Means

2 9.80◦ 9.14◦ 4.70◦

3 10.75◦ 9.95◦ 8.24◦

4 14.96◦ 15.18◦ 11.06◦

5 18.10◦ 18.65◦ 13.56◦

6 20.51◦ 20.96◦ 16.14◦

difference regarding to the center of the spherical-shaped receiver between the actual

(grand truth) and the locations predicted by the algorithms.

3.1.1. Effects of the Number of Transmitters

If a comparatively smaller intersection among clusters are randomly initialized,

each technique outlined above can differentiate the clusters on absorbed particles

(spherical data) achieved from the locations of the points of particles absorbed more

easily. Additionally, particular to the soft-decision algorithms, it is likely that they

have a tendency to categorize a collection of absorption points belonging to multiple

transmitters as a single cluster, especially if the grouping resembles a cluster with a

pleasing distribution or structure. As a result, the clustering becomes complicated, and

consequently, there is a positive correlation between the number of point transmitters

(and the amount of intersection among actual clusters) and the estimation errors of the

algorithms. Mean percentage Euclidean errors and mean angle differences between the

actual location of a transmitter point and its predicted location for various number of

transmitters and various algorithms are showed in Table 3.2 and Table 3.3, respectively.

K-Means provides the best accurate transmitter position estimations across all

scenarios of all algorithms considered. The distribution of the hitting molecules’ co-

ordinates may be to responsible for this. Using the presumption that the input data

set contains a mixture of Gaussian distributions, GMM and DiM attempt to fit data
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(c) K-Means Model

Figure 3.1. Average percentage of Euclidean errors for 2-transmitter scenarios

(K = 2) regarding to the minimum angle β.
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points to clusters. However, in practice, the spherical receiver’s distribution of the

coordinates of molecules that have been hit differs from a Gaussian distribution. The

authors in [36] calculate the appropriate distribution analytically with various assump-

tions. The aim of the K-Means algorithm is to create clusters by taking into account

the distance between 3D data points, as stated in Figure 2.3.

3.1.2. Effects of Minimum Angle Between Transmitter Pairs

Out of the K transmitters, we examined the impact of the minimum angle (β)

between every binary combination of transmitters. Differentiation of the clusters con-

siders the molecules released from two transmitters with a narrow angle (small differ-

ence) with regard to the center of the receiver being too close angularly. Therefore,

it is expected that estimation errors and angle differences have a negative correlation.

However, when the 2-transmitter scenario is examined, this is found only for K-Means,

as shown in Figure 3.1. in Figure 3.1, each simulation has a point for the average

percentage of Euclidean error on the figure. The box plots on the figures demonstrate

statistical features of Euclidean error in 20-degree intervals between 0◦ and 180◦. Red

lines and green diamond points denote the median and mean values of each interval,

respectively. The top and bottom of each box indicate data in between 25-th and

75-th percentiles for each interval. Additionally, red dots with plus shapes and bars

highlight extreme points and outliers. Through all cases, the standard deviations of av-

erage Euclidean errors are 13.50%, 12.45%, and 8.12% for GMM, DiM, and K-Means,

respectively.. The angle difference between the point transmitters may be thought

of as being almost insignificant to soft decision algorithms. Even though GMM and

DiM may be valuable up to around 30◦ minimum angle difference when the absorbing

receiver assumes there to be two transmitters, K-Means are often preferred.

Each binary combination of transmitter creates a distinct angle difference in

a scenario when there are more than two transmitters. We group these examples

together based on the smallest angle difference between the transmitters to explore

how angle differences influence estimation error. In Figure 3.2, the impact of β on the
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Figure 3.2. Mean percentage of Euclidean errors for each scenario regarding to

minimum angle β. As indicated on the figures’ legends, blue dots show the mean

percentage Euclidean error for simulation scenarios that has transmitters, which are

more than two, and red dots represent the mean percentage Euclidean error for

simulation scenarios that has exact 2-transmitters.

estimation performance is depicted. As the transmitters are further apart, it is expected

that the Euclidean error percentage would decrease. Only the K-Means algorithm,

which employs a hard decision logic for the clustering, shows this behavior, though.

When all instances are taken into account, soft decision algorithms do not provide
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the expected negative correlation, but when two transmitter cases are excluded, the

expected patterns are shown.
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(c) K-Means Model

Figure 3.3. Mean percentage Euclidean errors of all scenarios regarding to the

difference of maximum-minimum distance between transmitters. Blue dots on the

figure indicate the mean percentage Euclidean for a simulation.

Compared to GMM and DiM, K-Means produces results that are more favorable.

As a result, K-Means algorithm performs confidence interval analysis for ϵϕ, where

confidence interval is an estimation of the difference between sample mean and the real

mean with a specific confidence level.
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In Table 3.4, there is a specified sample size for the number of binary combination

of transmitters and each minimum angle interval, and the mean confidence interval re-

veals the range of actual error with confidence level 95%. By applying this information,

we can more precisely evaluate the algorithm’s performance in terms of the number of

transmitters and the value of minimum angle.

3.1.3. Effects of Distance Variation

The number of particles absorbed by receiver and emitted from a transmitter that

is closer to the receiver has to be greater than those emitted from a transmitter that

is further away, according to the system topology and channel model. As a result, a

cluster relating to the nearby transmitter is assumed to have more data points. Thus,

we give more importance to how the distance variation, which is the difference between

the r0 values of the closest and furthest transmitters, affects the estimation error.

The number of points (or hitting molecules) in the clusters associated to the

closest and distant transmitters differs as the distance variation increases. Furthermore,

if the number of molecules received from the furthest transmitter is insufficient to

identify its cluster, the clustering algorithms are likely to classify such molecules as

belonging to another cluster. Higher percentages of Euclidean errors might result from

this.

As was previously noted, the differences between the maximum and minimum

r0 values are employed for comparison since they may point to a potential estimate

disruption. The linear regression curves and related confidence intervals are demon-

strated in Figure 3.3 with the percentage Euclidean errors fitted on them. When all

cases are taken into consideration and the wide confidence intervals are used, there is

low correlation for all algorithms.

The 2- and 4-transmitter scenarios, as well as all scenarios, are examined under

maximum-minimum distance difference (difference between the further transmitter and
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Table 3.4. Mean angle estimation errors of K-Means with the associated mean

confidence intervals (confidence level 95%). Please be informed that the lack of

greater minimum angle intervals for a given number of transmitters because taking

into account the number of transmitters reduces the probability of getting greater

minimum angles when initiating transmitters via simulation at random.

Mean Conf. Intervals for ϵϕ of Each Minimum Angle Intervals

Num of Tx Min Angle Conf. Interval for ϵϕ

2

0◦ − 30◦ 18.557◦ ± 1.712◦

30◦ − 60◦ 9.899◦ ± 0.524◦

60◦ − 90◦ 4.824◦ ± 0.222◦

90◦ − 120◦ 2.244◦ ± 0.116◦

120◦ − 150◦ 1.289◦ ± 0.104◦

150◦ − 180◦ 0.909◦ ± 0.141◦

3

0◦ − 30◦ 15.356◦ ± 1.533◦

30◦ − 60◦ 9.413◦ ± 0.621◦

60◦ − 90◦ 4.264◦ ± 0.196◦

90◦ − 120◦ 2.219◦ ± 0.326◦

4

0◦ − 30◦ 16.166± 0.856

30◦ − 60◦ 9.144◦ ± 0.505◦

60◦ − 90◦ 4.551◦ ± 0.272◦

5

0◦ − 30◦ 16.543◦ ± 0.742◦

30◦ − 60◦ 10.574◦ ± 0.638◦

60◦ − 90◦ 4.992◦ ± 0.716◦

6

0◦ − 30◦ 18.099◦ ± 0.683◦

30◦ − 60◦ 12.513◦ ± 0.844◦

60◦ − 90◦ 5.977◦ ± 3.144◦

the closest one) intervals for all algorithms for further examination (Figure 3.4). Despite

the fact that the mean percentage Euclidean errors in the 2- and 4-transmitter cases do

not show any correlation for the K-Means algorithm, a correlation may be established
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(b) 4 Transmitter Cases
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(c) All Cases

Figure 3.4. Mean percentage Euclidean error in various distance variation intervals

for each algorithm.

when all cases are taken into consideration. The first result is that K-means performs

much better across all intervals compared to soft decision algorithms. There is the

negative correlation between the number of transmitters and the performance difference

between the soft decision algorithms and K-Means.

Moreover, interval statistics i.e., median, mean, confidence interval, and outliers

is investigated using the box plot shown in Figure 3.5 without distinguishing the in-
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stances based on the number of transmitters. A statistical tendency suggests that when

distance variation increases, the median and upper end of the confidence interval may

as well.
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Figure 3.5. Percentage Euclidean error in various distance variation intervals for all

scenarios. For the corresponding intervals, blue boxes, red boxes, and yellow boxes

denote GMM, DiM, and K-Means, respectively.

3.1.4. Effects of Quantization of the Locations on the Surface

It has been assumed up until now that an absorbing receiver has the ability to

store the precise locations of absorbing molecules that are absorbed on its spherical

surface. The spherical surface is divided into equal-area regions to satisfy receiver

memory and processing capacity concerns (i.e., quantized) [37, 38]. This limits the

absorbing receiver’s interactions to a certain set of sites and the quantity of absorbed

molecules that correspond to them. In this configuration, we evaluate the average angle
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Figure 3.6. Mean angle errors in minimum angle variations for 2-transmitter

scenarios. Blue boxes represent infinite quanta (no quantization), red boxes represent

16020 quanta (89 pieces azimuth, 180 pieces elevation), yellow boxes represent 7080

quanta (59 pieces azimuth, 120 pieces elevation), purple boxes represent 1740 quanta

(29 pieces azimuth, 60 pieces elevation).

error to discover the quantization effect.

To investigate the impact of quantization, we studied four scenarios with vari-

ous numbers of quantization bins. The constant angle intervals for each quantization

bin for comparable situations are as follows: indefinitely small (i.e., the data without

quantization), 2◦, 3◦, and 4◦. To evaluate the performance variation brought on by

the locations’ quantization over minimum angle values, the K-Means algorithm for the

2-transmitter case is selected. Although the average angle error for each minimum

angle interval is similar, when the number of quantization bins is decreased, as shown

in Figure 3.6, the mean angle error either slightly increases or stays the same. The

angle error caused by the quantization process is therefore negligible.
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4. CONCLUSION AND FUTURE WORK

This thesis proposes a solution to the multiple transmitters localization problem

in diffusion-based 3D mediums with a single absorbing receiver. Utilizing algorithms

for clustering, directional data averaging, and cumulative distributions of hitting prob-

ability, we estimate the coordinates of each transmitter. The results demonstrate that

by using the information provided by molecules received by a single receiver, we can

precisely determine the locations of multiple transmitters. K-Means is the clustering

algorithm that offers the most accurate estimation of actual values out of the three that

were taken into consideration. Additionally, the error value increases for all algorithms

as the number of transmitters increase and the angle between transmitters narrows.

As a future work, by changing the expectation-maximization method to better

take into consideration the ground truth of hitting locations’ distribution, we want to

create a method that estimates the positions of multiple transmitters. Another goal

is to precisely predict the transmitter number, such that it is not expected that the

receiver already knows this information.
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