
ACHIEVING ULTRA-RELIABLE LOW-LATENCY COMMUNICATION

(URLLC) IN NEXT-GENERATION CELLULAR NETWORKS WITH

PROGRAMMABLE DATA PLANES

by

Kerim Gökarslan

B.S., Computer Engineering, Boğaziçi University, 2017

B.S., Mathematics, Boğaziçi University, 2017

M.S., Computer Science, Yale University, 2020

MBA, Quantic School of Business and Technology, 2021

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

‘ὁ δὲ ἀνεξέταστος βίος οὐ βιωτὸς ἀνθρώπ’

Σωκράτης

“Dünyada her şey için, maddiyat için, maneviyat için, hayat için, başarı için en

hakik̂ı yol gösterici ilimdir, fendir. İlim ve fennin dışında yol gösterici aramak

gaflettir, cahilliktir, doğru yoldan sapmaktır.”

M. Kemal Atatürk

“The unexamined life is not worth living for a human being.”

Socrates

“Science is the most real guide for civilisation, for life, for success in the world. To

search for a guide other than science is absurdity, ignorance and heresy.”

M. Kemal Atatürk

iv

ACKNOWLEDGEMENTS

This thesis and most of my academic achievements would not be possible if I

didn’t have the chance to meet with Prof. Tuna Tugcu back in 2012 when I was a

senior high school student to work on a then cutting-edge Bluetooth/GPS coopera-

tion project that we developed for the TUBITAK’s high school project contest. He

led me to the way that I ended up at Yale, and thanks to him, I truly understood

what I like and what I don’t about science and engineering. And today, after two

bachelor’s degrees and being a candidate for my third master’s degree, I look back

on my ten years, and I feel highly empowered to achieve tomorrow.

Further, I would like to thank Prof. Ali Emre Pusane and Prof. Arda Yurdakul

for their letters of recommendation on my way to Yale. I thank all of the professors

I work with, even though numerous of them only taught me what professorship is

not about and how professors should not act.

And my personal life: I want to thank all of my friends, from high school to

Bogazici, then at Yale, and finally at the companies I worked for. Most importantly,

our extraordinary, mad, and yet extremely successful group, İSTİKRAR. Of course,

I would not be the person today if it weren’t for my parents and brother. They have

always had my back and supported me no matter what, and I am glad to have their

sincere support.

v

ABSTRACT

ACHIEVING ULTRA-RELIABLE LOW-LATENCY

COMMUNICATION (URLLC) IN NEXT-GENERATION

CELLULAR NETWORKS WITH PROGRAMMABLE

DATA PLANES

Recent advancements in wireless technologies towards the next-generation cel-

lular networks have brought a new era that made it possible to apply cellular tech-

nology on traditionally-wired networks with tighter requirements, such as industrial

networks. The next-generation cellular technologies (e.g., 5G and Beyond) intro-

duce the concept of ultra-reliable low-latency communications (URLLC). This the-

sis presents a Software-Defined Networking (SDN) architecture with programmable

data planes for the next-generation cellular networks to achieve URLLC. Our de-

sign deploys programmable switches between the cellular core and Radio Access

Networks (RAN) to monitor and modify data traffic at the line speed. We intro-

duce the concept of intra-cellular optimization, a relaxation in cellular networks to

allow pre-authorized in-network devices to communicate without being required to

signal the core network. We also present a control structure, Unified Control Plane

(UCP), containing a novel Ethernet Layer control protocol and an adapted version of

link-state routing information distribution among the programmable switches. Our

implementation uses P4 with an 5G implementation (Open5Gs) and a UE/RAN

simulator. We implement a Python simulator to evaluate the performance of our

system on multi-switch topologies by simulating the switch behavior. Our evalua-

tion indicates latency reduction up to 2x with intra-cellular optimization compared

to the conventional architecture. We show that our design has a ten-millisecond

level of control latency, and achieves fine-grained network security and monitoring.

vi

ÖZET

PROGRAMLANABİLİR VERİ DÜZLEMLERİ İLE

GELECEK NESİL HÜCRESEL AĞLARDA AŞIRI

GÜVENİLİR DÜŞÜK GECİKMELİ İLETİŞİM’İN

SAĞLANMASI (URLLC)

Yeni nesil kablosuz hücresel ağlardaki son gelişmeler, hücresel teknolojinin

endüstriyel ağlar gibi daha ağır gereksinimleri olan ve geleneksel olarak kablolu

ağlar kullanan sistemlerde uygulanmasını mümkün kılan yeni bir dönem getirdi.

Yeni nesil hücresel teknolojiler (ör. 5G ve Ötesi), aşırı güvenilir düşük gecikmeli

iletişim (URLLC) konseptini ortaya çıkardı. Bu tezde, URLLC’yi elde etmek için

yeni nesil hücresel ağlarda programlanabilir veri düzlemleriyle Yazılım Tanımlı Ağ

(SDN) mimarisini öneriyoruz. Tasarımımız, veri trafiğini hat hızında kontrol etmek

için hücresel çekirdek ile Radyo Erişim Ağı (RAN) arasında programlanabilir ağ

anahtarları kullanıyor. Önceden yetkilendirilmiş ağ içi cihazların çekirdek ağa sinyal

göndermesi gerekmeden iletişim kurmasını sağlamak için bir gevşetme olan hücreler

arası eniyileme (eng. intra-cellular optimization) kavramını tanıtıyoruz. Ayrıca,

programlanabilir anahtarlar arasında bilgi dağıtımı için tasarladığımız Birleştirilmiş

Kontrol Düzlemi (eng. Unified Control Plane (UCP)) protokolünü sunuyoruz. Mi-

marimizi Open5Gs uygulaması, bir UE/RAN simülatörü ve P4 programlama dili

kullanarak uygularken sistemimizin çoklu anahtar topolojilerindeki performansını

geliştirdiğimiz Python simülatörü ile değerlendiriyoruz. Kapsamlı değerlendirmemiz,

geleneksel mimariye kıyasla hücreler arası eniyileme ile gecikme süresinin iki kata

kadar azaldığını gösteriyor.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS xiv

1. INTRODUCTION . 1

1.1. Contributions of This Thesis . 3

2. RELATED WORK . 6

2.1. Cellular Networks: 5G and Beyond 6

2.2. URLLC . 6

2.3. SDN and Programmable Data Planes 7

2.4. SDN in Cellular Networks . 8

3. ARCHITECTURE . 10

3.1. Cellular Network Architecture and Functions 10

3.1.1. Cellular Control Plane . 12

3.1.1.1. NGAP . 12

3.1.1.2. AMF . 12

3.1.1.3. SMF . 12

3.1.2. Cellular Data Plane . 12

3.1.2.1. GTP . 14

3.1.2.2. UPF . 14

3.2. High-Level View . 15

3.2.1. Unified Control Plane (UCP) 16

3.2.1.1. Multi-Switch Communication 17

3.3. The Cellular Control Plane . 19

3.4. The Cellular Data Plane . 19

viii

3.5. Mathematical Model of the Intra-Cellular Latency 21

4. IMPLEMENTATION . 24

4.1. Emulation . 24

4.1.1. P4 Implementation . 26

4.2. Multi-Switch Simulation . 28

4.2.1. Topology Generation . 28

4.2.2. Route Computation and TEID Announcement 30

4.2.3. UCP Implementation . 30

4.2.4. Intra-Cellular Latency Evaluation Simulation 31

5. EVALUATION . 32

5.1. Evaluation with Cellular Network Emulation 32

5.1.1. Intra-Cellular Latency Evaluation 32

5.1.2. NGAP Processing . 34

5.1.3. Security Evaluation . 35

5.1.4. Monitoring Evaluation . 36

5.2. Multi-Switch Simulation . 38

5.2.1. Route Computation and TEID Announcement 39

5.2.2. Intra-Cellular Latency Evaluation on Simulation 40

6. CONCLUSION . 42

REFERENCES . 43

ix

LIST OF FIGURES

Figure 1.1. A simplified version of the 5G Network Architecture from the

ETSI Standard Number TS 123 501 Release 16 [9]. 3

Figure 3.1. An architecture with four gNBs (gNBi) with the same signal

coverage (dashed-lined circles). Four programmable switches

are connecting them to the cellular network, and seven devices

(UEi). Network administrators manage switches via the UCP

logically connected to the P4 switches in real-time. 11

Figure 3.2. A simplified version (steps between 5-14 and 10-21 are not shown)

of PDU session establishment initiated by the UE in ETSI TS

123 502 and ETSI 138 300 Release 16 [33,34]. 13

Figure 3.3. The process flow of the programmable data plane with the RAN

and core network as appeared in our work [38]. 15

Figure 3.4. Multi-switch Intra-cellular Optimization Algorithms on a switch 18

Figure 3.5. Multi-switch Intra-cellular Optimization Algorithms on the UCP 19

Figure 3.6. The NGAP pipeline between between gNBs and AMF as ap-

peared in our work [38]. 20

Figure 3.7. The pipeline parsing GTP packets on the N3 link as appeared

in our preliminary work [39]. 21

Figure 4.1. Emulation topology with VirtualBox [40]. Table 4.1 shows the

specification of each VM in the topology. 24

x

Figure 4.2. FSM diagram for header parsing. At each state, a protocol layer

is decapsulated. States after parse gtp is shown in Figure 4.3.

Initially appeared in [38]. 27

Figure 4.3. P4 header parsing finite state machine diagram for GTP packets. 27

Figure 4.4. Pseudocode of the main processing algorithm implemented in P4. 28

Figure 4.5. Topology Generation Algorithm. 29

Figure 4.6. A randomly generated topology with 6 gNBs and 3 P4 switches. 30

Figure 5.1. The emulation architecture with two gNBs. 33

Figure 5.2. Average RTT evaluation between UE1 and UE2 with ping [51]

tool. We take an average of 100 runs for each packet size. Intra-

cellular optimization always performs better than the traditional

5G setup and can achieve up to 2.2x fewer latency values. The

results indicate no correlation between packet sizes and latency. 34

Figure 5.3. Average security rule update time with the total number of se-

curity rules on the P4 switch. Our results indicate no significant

effect of the total number of rules on the rule update time, and,

we can achieve less than 10 ms for each rule to be deployed on

the dataplane with the P4 BMV2 software switch. 36

Figure 5.4. Two IoT sensors (S1 and S2) send heartbeat signals with a 10

ms period via HTTP to Server. The packet counter mechanism

increments the counter for the respective sensor. In addition to

the sensors, we run a live TCP traffic between the VM on Google

Cloud and the UE, shown in the figure using iPerf3 [52]. 37

xi

Figure 5.5. Some of the randomly generated topologies used in the evaluation. 39

Figure 5.6. TEID advertisement and retrieval results are generated with the

Python simulation. The topologies have fixed a switch-to-gNB

and gNB-to-UE ratio of 5. 40

Figure 5.7. The lines in the figure show the average latency gain percentage

for the different numbers of gNBs with a fixed switch-to-gNB ra-

tio. We compute the average latency gain by taking the average

of pair-wise UE latency where each UE connects to a different

gNB. 41

xii

LIST OF TABLES

Table 3.1. GTPv2 header fields defined in the 3GPP standard [36]. 14

Table 3.2. UCP Message Types . 17

Table 4.1. The specification of each VM in our evaluation. 25

Table 4.2. Tables we define in the P4 program. 29

Table 5.1. Average progressing time of programmable switch on UE ID re-

quests on a topology containing four devices and two gNBs. We

execute a total of 500 experiments on each poll frequency and

take the average processing time. 35

Table 5.2. TCP throughput between the UE and VM with respect to packet

counter polling intervals on the P4 switch via the UCP, as ap-

peared in our preliminary work [39]. We run each iPerf3 session

five times on a pooling frequency of up to 10000 Hz. 38

xiii

LIST OF SYMBOLS

gnbij gNB with identifier i

lij A link between nodes ni and nj

N Network

ni Node with identifier i

Pij A path between nodes ni and nj

Q≥0 The set of non-negative rational numbers

swij Switch with identifier i

ti TEID with identifier i

u UPF

ueij UE with identifier i

xiv

LIST OF ACRONYMS/ABBREVIATIONS

1G First Generation Cellular Networks

2G Second Generation Cellular Networks

3G Third Generation Cellular Networks

3GPP 3rd Generation Partnership Project

4G Fourth Generation Cellular Networks

5G Fifth Generation Cellular Networks

6G Sixth Generation Cellular Networks

AF Application Function

AI Artificial Intelligence

AMF Access and Mobility Management

AN Access Network

AUSF Authentication Server Function

BMV2 Behavioral Model version 2

CAPEX Capital Expenditures

CDR Charging Data Record

CHF Charging Function

CMI Control Message Identifier

CN Core Network

CPU Central Process Unit

CUPS Control and User Planee Seperation

DN Data Network

ETSI European Telecommunications Standard Institute

FSM Finite State Machine

GHz Gigahertz

GPRS General Packet Radio Service

GTP GRPS Tunneling Protocol

Gbps Gigabits per second

HTTP Hypertext Transport Protocol

xv

ICMP Internet Control Message Protocol

ID Identity Document

IIoT Industrial Internet of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

L2 Layer 2 (Data Link Layer)

L3 Layer 3 (Network Layer)

L4 Layer 4 (Transport Layer)

LPM Longest Prefix Match

LSR Link State Routing

LTE Long Term Evolution

M2M Machine-to-Machine

MAC Medium Access Control

MME Mobility Management Entity

MTU Maximum Transfer Unit

Mbps Megatbits per second

NEF Network Exposure Function

NF Network Function

NG Next Generation

NGAP NG Application Protocol

NR New Radio

NRF Network Repository Function

NSSF Network Slice Selection Function

NWDAF Network Data Analytics Function

OPEX Operating Expenses

OS Operating System

OSPF Open Shortest Path First

PCF Policy Control Function

PCRF Policy and Charging Rules Function

PDU Protocol Data Unit

xvi

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

RTT Round-trip Time

SCP Serrvice Communication Proxy

SCTP Stream Control Transmission Protocol

SDN Sfotware-Defined Networking

SMF Session Management Function

SW Switch

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TEID Tunnel Endpoint Identifier

UCP Unified Control Plane

UDM Unified Data Management

UDP User Datagram Protocol

UDR Unified Data Repository

UE User Equipment

UPF User Plane Function

URLLC Ultra-Reliable and Low-Latency Communication

VM Virtual Machine

VR Virtual Reality

WiMAX Nobile Worldwide Interoperability for Microwave Access

dst Destination

eMBB Enhanced Mobile Broadband

gNB Next Generation NodeB

mMTC Massive Machine Type Communications

ms Milliseconds

s Seconds

src Source

vCPU Virtual Central Process Unit

1

1. INTRODUCTION

Wireless cellular systems have been rapidly evolving since the first generation

(1G) based on analog voice communication was introduced in the late 1970s. The

first digitalized cellular technology, the second-generation (2G), was introduced a

decade later. The following extensions of 2G (e.g., GPRS) initially enabled the

cellular networks to reach data rates around a couple of tens of Kbps in measure-

ments [1], and later with introduction of EDGE such networks can reach upto 384

Kbps data rates. In the late 2000s, the third-generation (3G) cellular technology

with transmission rates reaching Mbps was introduced. The 3G technology supports

direct connection to Transmission Control Protocol/Internet Protocol (TCP/IP)

based services, including the Internet [2]. As this was the turning point for cellular

networks to transfer data rather than voice or video, the pressure to have better

latency and data rate values increased. Consequently, the 3rd Generation Part-

nership Project (3GPP) has presented the standardization of the fourth-generation

(4G) cellular systems, including the Long Term Evolution (LTE) along with Mobile

Worldwide Interoperability for Microwave Access (WiMAX), which can offer data

rates up to 50 Mbps [3]. Today, we see 5G deployments worldwide aiming to reach

Gbps data rates with milliseconds-level latency values.

As recent developments in cellular technologies are the first steps for numer-

ous latency-sensitive applications to switch to wireless networks, the future cellular

technology generations (i.e., 5G and Beyond) have much room to improve latency

while ensuring reliability. We, in fact, consider this trend within 5G to bring newer

radio and core network design that aims at several use cases, including ultra-reliable

low-latency communications (URLLC) aiming at mission-critical services such as

industrial networks. With the introduction of such systems to cellular networks, we

have started to see the trend of replacing wired networks with a cellular equivalent

that targets to achieve similar requirements. Switching to wireless systems is in-

deed more profitable for network providers as wireless technologies can reduce both

2

operating expenses (OPEX) (e.g., reduced maintenance costs) and capital expen-

ditures (CAPEX) (e.g., planning and infrastructure costs) in many wired-network

systems. Nevertheless, today’s cellular network technology is far from the expecta-

tion of 99.9999% reliability with 1 ms latency [4].

Initially introduced as a part of 5G New Radio (NR) by the 3GPP in the first

complete set of 5G standards (Release 15) [5], URLLC aims to achieve 1 ms latency

and target latency-sensitive applications, including industrial networks, smart grids,

tactile internet [6], and autonomous driving. URLLC thus promises to be one of the

critical features of not only the 5G but also the next generations of cellular networks.

Unfortunately, achieving URLLC is not straightforward because of both the physical

layer requirements and cellular networks’ current design. Apart from physical layer

drawbacks, the current cellular network designs have numerous latency-unaware

way of working that causes additional delays. This thesis focuses on low-latency

applications at the packet processing level. It introduces a programmable data

plane pipeline for URLLC in cellular networks to achieve lower latency. It targets

5G and Beyond cellular networks by introducing the concept of pre-authorization

where some of the cellular network functions (e.g., Access and Mobility Management

Function (AMF), Session Management Function (SMF)) are offloaded. We do so by

leveraging the recent advancements in Software-Defined Networking (SDN), specif-

ically using programmable data planes. In recent years, programmable data planes

proved their value mainly in a data center or service-provider networks. In this

thesis, we take a new approach to offload latency in cellular networks with higher

intra-cellular communication (e.g., industrial cellular networks) using programmable

data planes.

The principal idea of SDN is the decoupling of data and control paths into dif-

ferent devices to achieve more flexible and robust networks. In many SDN systems,

the control plane runs as a centralized system that manages the network equipment

responsible for the data plane in real-time. Further, these data plane devices have

limited processing capabilities, such as processing pre-defined types of packets. In

3

recent years, researchers have introduced the concept of programmable data planes,

where the data planes devices can be programmed so that they can have customized

behavior with the ability to process packets at the line rate. This consequently

allows network administrators to define application-aware network behavior such

as achieving latency-guarantees [7]. In this thesis, we use the P4 language [8] to

implement our cellular-specific data plane (i.e., our data plane can parse and pro-

cess cellular protocols such as GPRS Tunneling Protocol (GTP)) to achieve the

aforementioned cellular network design and demonstrate it on a software switch.

Figure 1.1. A simplified version of the 5G Network Architecture from the ETSI

Standard Number TS 123 501 Release 16 [9].

1.1. Contributions of This Thesis

This thesis aims to achieve URLLC on 5G and Beyond cellular networks. While

our high-level design can be applied to the newer generations of cellular networks

such as 5G, we use the 5G - Release 16 version in our implementation; therefore, we

discuss our implementation within the 5G specifications. As shown in Figure 1.1,

5G architecture consists of three main components: (a) User Equipment (UE); (b)

Radio Access Network (RAN), and 5G core functions; and (c) User Plane Function

(UPF) and Data Network (DN). The UE connects to the cellular network via RAN

and communicates with other devices/outside world via UPF. RAN connects (via

4

N2) to AMF, and UPF connects (via N4) to SMF on the cellular control path that

is responsible for signaling including a UE initialization or handover. The traffic

from and to the UE uses GTP over IP while it is carried between UE, RAN, and

UPF. As we mainly focus on the cellular data path, this thesis does not discuss the

other 5G core functions in detail.

The contributions of this thesis, therefore, are:

• Introduction of the concept of intra-cellular optimization with cellular preau-

thorization to significantly reduce the latency between two cellular devices in

the same cellular network,

• Achieving data plane-assisted network security without requiring any modifi-

cations on the cellular network hardware or software,

• Introducing fine-grained network monitoring for cellular networks via program-

mable data planes,

• Introduction of a novel L2-layer protocol, Unified Control Plane (UCP), to con-

trol the programmable data plane that connects cellular network components

in real-time,

• Introduction of a mathematical model to study intra-cellular latency behavior

in cellular networks,

• One of the first research work that uses programmable data planes to parse

both GTP and NGAP protocols.

Our evaluations and the analysis of the mathematical model of latency we

develop indicate that our design can reduce data latency by a factor of two com-

pared to traditional cellular network setups in 5G and Beyond. This optimization is

practical, especially for non-traditional cellular systems such as industrial networks,

where most devices (e.g., sensors) communicate within the network. One of the

concerns for URLLC is the possibility of reduced network security and traceability;

we show that our design can achieve detailed network monitoring and security using

the capabilities of programmable data planes.

5

The rest of this thesis is organized as follows. Chapter 2 discusses the overview

of the related work on cellular networks, SDN, and URLLC. Chapter 3 presents our

novel architecture, including the UCP and the programmable data path. Chapter 4,

then, discusses the details of our implementation. Chapter 5 gives the evaluation

results. Chapter 6, finally, concludes the thesis with the future research directions.

6

2. RELATED WORK

2.1. Cellular Networks: 5G and Beyond

Researchers categorize 5G and Beyond cellular networks under three cate-

gories: massive machine type communication (mMTC) addresses the applications

with high data rates, enhanced mobile broadband (eMBB) concentrates on machine-

to-machine (M2M) communication, and URLLC addresses low latency and highly

available services including industry-grade cellular networks and tactile internet [6,

10].

As many countries have already started to deploy 5G networks, researchers

have been working on the next-generation cellular networks, namely 5G and Be-

yond as well as the sixth generation (6G). A survey on 6G networks indicates that

such next-generation networks are needed to achieve more cost-efficient and better

quality of the use cases introduced in 5G, such as IoT, virtual reality (VR), and au-

tonomous driving [11]. A recent survey [12] on RAN architectures in next-generation

networks indicates SDN as a key to realizing high efficiency and high flexibility, and

consequently, we focus on achieving URLLC with SDN in our work.

2.2. URLLC

As introduced with the 5G NR in the 3GPP standards URLLC targets non-

traditional cellular networks aiming latency values on the order of milliseconds such

as tactile internet, autonomous driving, and industrial networks. Numerous studies

focus on the scheduling aspect of cellular networks to achieve URLLC. The authors

of [13] study a joint scheduling schema for URLLC and eMBB aiming broadband

utility while having URLLC requirements. Claiming to be the first formalization of

the joint URLLC and eMBB scheduling, they propose a scheduling framework with

linear, convex, and threshold models with theoretical guarantees on the algorithms.

7

Li et al. take a different approach on the same problem and use deep reinforce-

ment learning to schedule URLLC and eMBB [14]. They use the deep deterministic

policy gradient method to learn the tradeoff policy regarding reliability and service

satisfaction.

[15] discusses URLLC techniques, including the AI-enabled edge caching

frameworks focused on caching. Further, it discusses one of the most popular

URLLC techniques, grant-free access, that decreases the control overhead via dy-

namic allocation of the resources. The authors of [15] also present a comprehensive

study of URLLC while lacking SDN applications to achieve URLLC. Researchers

in [16] examines the URLLC on 5G Releases 15, 16, and 17. The authors of [17]

discuss diversity reception, automatic repeat query, and cognitive radio algorithm

for 5G URLLC at a 28GHz link to overcome link degradation and interference to

achieve lower latencies.

There are also a few studies discussing real-life use cases of URLLC technology.

One such study in [18] discusses the case of an Indonesian Operator. They use the

measurements of the existing network to propose the path to achieve the URLLC

target of 1 ms with a design of data center locations. Another study discusses

a scheme for factory automation targetting the resource allocation problem that

enables autonomous driving within the factory [19].

2.3. SDN and Programmable Data Planes

SDN brings the concept of data plane and control plane separation, where

the former contains the user data traffic and the latter contains the network control

signals. Researchers have extensively applied SDN techniques to wireless networks in

the last decade. SDN brings the concept of data plane and control plane separation,

where the first one contains the user data traffic and the second one contains the

network control signals. This separation, therefore, allows deployment of control

plane to be centralized and the use of distributed data plane over the network.

8

SDN increases both interoperability and manageability of devices, as it allows

generic data plane switches (e.g., OpenFlow [20]). When introducing a new protocol,

such devices do not need a new hardware design, as they can be defined via software.

This consequently decreases the development time and cost significantly.

One of the classical SDN design limitations is the limit of the data plane

behavior. Many existing solutions focus on the operation of the 5-tuple of TCP/IP,

thus lacking packet processing capabilities at the application layer. Programmable

data planes have materialized to define user-specific data plane behavior at the line

rate. Programmers can define customizable data paths with specific programmable

data plane languages. One of such languages, P4 [8], has been extensively used in

academia and industry in the last decade [7, 21]. This thesis uses P4 language to

implement a software switch’s cellular network-specific data plane.

2.4. SDN in Cellular Networks

Researchers have extensively applied the SDN techniques to wireless networks

in the last decade [22–24]. In [25], researchers indicate that SDN plays a crucial

role in achieving a flexible and virtualized 5G network, although the many existing

solutions are not SDN-ready, i.e., most SDN applications in the cellular networks are

work-in-progress. The authors of [26] and [27] study network slicing on a 5G core

network via decoupling UPF and SMF. [27] considers the dynamic traffic and struc-

tures the UPF programmable module integrated with SDN to give traffic flow rules

to achieve network slicing in URLLC. It also introduces a different programmable

switch to control the network flow and assure network security instead of replacing

network functions with other programmable switches such as UPF or SMF. The

authors of [26] do not consider any performance criteria such as latency, while [27]

aims to decrease the latency with security considerations on private industrial 5G

networks.

9

Many studies [28, 29] focuses to the user behavior and UPF with SDN on

mobile environments. Researchers predict the user behavior via an SDN containing a

foreseeing functionality of the UPF placement to reduce the user plane configuration

delay. They further propose pre-configured UPF as a handover mechanism [28] uses

the intermediate UPFs to anticipate the user behavior on SMF with a learning-based

approach.

10

3. ARCHITECTURE

In this chapter, we introduce the cellular network architecture with programmable

switches. The first section describes the state-of-the-art 5G architecture and related

network functions that we take as a basis for our implementation. Considering a

minimal-to-none change in the cellular network architecture and implementation,

we introduce our system running as a single P4-program on the P4 switches inter-

connecting the gNBs and core NFs as shown in Figure 1.1 in Section 3.2. The key

idea for our design is to achieve URLLC while being seamless to users of the cellular

network, i.e., users do not change their cellular network hardware or software. After

a high-level introduction of our architecture in Section 3.2, we investigate our design

in detail with three parts: (a) the unified control plane (UCP) that controls the P4

switches real-time using the high-level configuration from the network administra-

tion (Section 3.2.1). (b) the cellular control plane, where the P4 switch processes

the control messages between gNB and AMF using NGAP (Section 3.3), (c) the cel-

lular data plane, where the P4 switch processes the data packets between gNBs and

UPF encapsulated using GTP (Section 3.4). We finally introduce our mathematical

model for intra-cecullar latency estimation in cellular networks, which we use in our

evaluation results in Section 3.5.

3.1. Cellular Network Architecture and Functions

In this section, we discuss the details of the 5G cellular network architecture

since we take 5G architecture as the basis in our implementation. However, our ar-

chitecture design is independent of the 5G network and can be adapted into newer

cellular network generations. The Mobility Management Entity (MME) in 4G archi-

tecture, which is responsible for session and mobility management as well as the UE

authentication, is split into three functions in 5G, AMF, SMF, and Authentication

Server Function (AUSF) [30]. As our programmable data plane processes the sig-

naling between gNBs and these control functions, we investigate the characteristics

11

of the AMF, SMF, and AUSF, and partially implementing their functionality in the

data path as described in Section 3.3. We further discuss the potential extensions

in Chapter 6. The final subsection studies the cellular network’s data plane func-

tion, i.e., the UPF. Our programmable data path does not implement UPF itself;

it introduces intra-cellular network optimization. The communication between two

users in the same 5G network is processed at the switch interconnecting respective

gNBs rather than the UPF to reduce latency.

UPF DN

UCP

UCP Connection
NGAP Connection
GTP Connection

AMF SMF

Network
Admin
 Core Network

Data Connection
UCP

Configuration
Interface

RU Coverage

Figure 3.1. An architecture with four gNBs (gNBi) with the same signal coverage

(dashed-lined circles). Four programmable switches are connecting them to the

cellular network, and seven devices (UEi). Network administrators manage

switches via the UCP logically connected to the P4 switches in real-time.

12

3.1.1. Cellular Control Plane

As our programmable data plane design offloads some of the UE and cellular

CN signaling, we describe related 5G NFs (i.e., AMF and SMF) and the NG Ap-

plication Protocol (NGAP), which is the protocol for control signaling between 5G

RAN and CN, in this section. We, furthermore, discuss other potential behaviors

and NFs that can be offloaded by programmable design in Chapter 6.

3.1.1.1. NGAP. Specified by 3GPP, the NGAP defines the control signaling be-

tween RAN elements (i.e., UE and gNB) and cellular core via AMF [31]. NGAP

consists of a wide variety of procedures, from PDU session establishment [32] and

handover control to cell resource coordination. In this thesis, we focus on NGAP sig-

naling for individual UE and process UE initialization packets. As our work mainly

focuses on the cellular data plane, the NGAP processing only registers the IDs of

UE with its respective gNB.

3.1.1.2. AMF. AMF is mainly responsible for handling mobility and connection

management of the UE while it is the single point of contact with 5G-RAN, and

consequently, the UE. AMF forwards the information related to UE to session man-

agement SMF using the N11 link.

3.1.1.3. SMF. The SMF’s principal responsibility is to manage PDU sessions with

the UPF via the N4 interface introduced with 5G. The UE connects to the cellular

DN via UPF once the PDU session is established. A simplified UE initialization

signalling for PDU session establishment is shown in Figure 3.2.

3.1.2. Cellular Data Plane

The UE data packets are encapsulated with GTP and transmitted between

gNBs and UPF using N3, N6, and N9 interfaces as shown in Figure 1.1.

13

Figure 3.2. A simplified version (steps between 5-14 and 10-21 are not shown) of

PDU session establishment initiated by the UE in ETSI TS 123 502 and ETSI 138

300 Release 16 [33,34].

14

3.1.2.1. GTP. Unlike the aforementioned protocols and network functions, GTP

has been used since the introduction of GPRS [35]. GTP is a protocol run on

top of the TCP/IP or UDP/IP, and used to carry the UE data between RAN

and core networks. GTP has two major versions, where older cellular generations

deploy GTPv1 and newer generations, including 5G, use GTPv2. In addition to

encapsulating user data, GTP is also used to check connectivity via echo messages.

Table 3.1. GTPv2 header fields defined in the 3GPP standard [36].

First Bit Length (bit) Field Description

0 3 Version

3 1 Piggybacking Flag

4 1 TEID Flag (T)

5 3 Spare

8 8 Message Type

16 16 Message Length

32 32 TEID when T = 1
64, if T = 1

32, otherwise

24 Sequence Number

As shown in Table 3.1, the GTP header contains the information about the user

data that is encapsulates, and also includes the Tunnel Endpoint Identifier (TEID)

that describes the tunnel between UE and gNB. Except for the echo messages, all

GTP packets belong to a UE, and therefore GTP header carries the associated

TEID. The sequence number indicates the order of the packet within the respective

tunnel.

3.1.2.2. UPF. The 5G architecture brings the concept of control and user plane

separation (CUPS) [37] to decouple the control functions from the data plane func-

tions so that the network can achieve higher data rates and more complex controls,

including network slicing. The UPF is the function responsible for user-plane com-

munication with the DN. UPF is responsible for encapsulation and decapsulation of

15

the GTP-encapsulated UE data, and the UE communicates outside of the cellular

network via the UPF. The UPF also communicates with SMF via the N4 interface,

where SMF reports the PDU sessions. UPF furthermore deploys the flow-grained

quality of service (QoS) rules.

3.2. High-Level View

Figure 3.3. The process flow of the programmable data plane with the RAN and

core network as appeared in our work [38].

16

This section discusses the high-level view of our programmable data path and

its control protocol, UCP. As shown in Figure 3.3, we handle three types of packets:

(a) UCP, (b) NGAP, i.e., cellular control plane, and (c) GTP, i.e., cellular data

plane. We define the UCP so that network administrators can modify the rules such

as network security and get network data such as user-specified traffic monitoring.

We further use UCP for switch-to-switch communication.

Figure 3.3 shows the packet-level processing at the programmable switches

between RAN and the cellular core network. The data plane first checks the type of

incoming packet to decide further processing. If it is a UCP frame (Ethernet Type

0xf1f1), the data plane checks its 8-bit CMI to understand the type of UCP frame.

Table 3.2 shows the supported types of UCP frames, including their description and

payload. The data plane finally replies with a UCP-reply frame if the received UCP

frame requires a reply.

Suppose there is an incoming packet to the switch. If the switch identifies this

packet as an NGAP packet (NGAP uses IP over SCTP with source or destination

port 38412), it processes this packet using the NGAP pipeline described in Sec-

tion 3.3. If it identifies the packet as a GTP packet (GTP uses IP over UDP with

source port 2152), then the switch processes it using the GTP pipeline described in

Section 3.4. Finally, if the packet does not match any of the aforementioned types,

the switch behaves as an L2-switch, i.e., forwards the packet using the MAC table.

3.2.1. Unified Control Plane (UCP)

The UCP uses a layer-2 protocol that we define to manage the P4 switches

between RAN and the core network. The control message is sent as Ethernet frames

having an 8-bit control message identifier (CMI). The first 3 bits of CMI describe

the operation type, and the following 5 bits describe the operation. The rest of

the frame carries operation-related data. We implement the operations shown in

Table 3.2.

17

Table 3.2. UCP messages are Ethernet Frames starting with an 8-bit CMI (first 3

bits for operation type and last 5 bits for operation ID) followed by operation data

if required. P4 switch generates a reply message and sends it back to the requester

with a descriptor indicating the status. Note that 8-bit switch ID is always added

to the frame data for the frames from and to a switch.

Operation Type Op. ID Description

000 - Security

00000 Get all whitelisted IPv4s

00001 Get all blacklisted IPv4s

10000 Add an IPv4 to whitelist

10001 Add an IPv4 to blacklist

001 - Monitoring

00000 Get monitoring stats

00001 Get monitoring rule

00010 Get number of monitoring rules

10000
Add a monitoring rule

(Specification as frame/packet header)

010 - 5G Control
00000 Get current number of UE

10000 Delete UE ID

011 - 5G Data 10000 Add UE IPv4

110 - gNB Control

10000 New TEID

10001 Remove TEID

10011 Path SWj to SWj
′

111 - Reply

00000 Reply without modification

10000 Modification succeeded

10001 Modification failed

10010 Nexthop is updated

3.2.1.1. Multi-Switch Communication. Many cellular networks contain hundreds

or thousands gNBs, requiring multi-switch topology to connect them to the core

networks.

18

In this section, we describe our interswitch protocol managing intra-cellular

optimization. As we elaborate in Section 3.4, intra-cellular optimization allows cer-

tain UE within the same cellular network to communicate without sending packets

to UPF. The packet forwarding is done within the P4 switches using the TEID of re-

ceiving UE to determine which gNB to forward. When a gNB receives a new TEID,

it broadcasts the 32-bit TEID as a UCP frame with operation code 11010000 as

shown in Table 3.2. Our protocol uses Dijkstra’s shortest path algorithm to deter-

mine the next point of TEID, and we give the pseudocode in Figure 3.4 and Fig-

ure 3.5 for a switch SWi and the UCP, respectively. UCP distributes the next-hop

information in a centralized fashion by running Dijkstra’s algorithm. P4 switches

thus only run the TEID matching algorithm to update their TEID registers. When

a path update occurs on a switch after a piece of new information from the UCP, the

switch sends an acknowledgment message with code 11010000 back to the UCP.

On SWi which has n number of gNBs, {gNBi,j|1 ≤ j ≤ n}, connected to it.

Uses the data structures teids(tk) : SWj and path(SWj) : {SWj1 , ...}

Initially teids(tk) : ∅, path(SWj) : ∅

on receive TEID tk from switch SWj

teids(tk) := SWj

on receive NEXTHOP SWj′ to SWj

if nexthop(SWj) ̸= SWj′ then

nexthop(SWj) = SWj′

unicast (SWi, 11110010, SWj)
a to UCP

end if

on new TEID tk from gNBi,j

teids(tk) := gNBi,j

broadcast (SWi, 11010001, tk)
b to all switches

aReply: Nexthop Updated for SWj on the switch SWi.
bNew TEID tk on the switch SWi.

Figure 3.4. Multi-switch Intra-cellular Optimization Algorithms on switch SWi

19

Run at UCP with ordered routing path path(SWj, SWj′)

on topology change

compute path for all (SWj, SWj′) pairs

mark updated(SWj, SWj′) if path(SWj, SWj′) is changed

for (SWj, SWj′) do

if updated(SWj, SWj′) then

unicast (SWj, 11010011, {SWj1 , ..., SWj′}) to SWj

end if

end for

on receive REPLY message m

store m

Figure 3.5. Multi-switch Intra-cellular Optimization Algorithms on the UCP.

3.3. The Cellular Control Plane

In addition to the cellular data plane packet processing, our architecture con-

tains a cellular control plane packet processing within the same switch.

Our cellular control plane program is rather a proof-of-concept work that pro-

cesses NGAP packets at the line rate. It filters the PDU establishment message

between the UE and RAN and stores the UE IDs on the programmable switch.

We implement a type of UCP message (with message code 010xxxxx as seen in

Table 3.2) to query the live UE data from the programmable data path.

3.4. The Cellular Data Plane

This section details the packet processing pipeline at the cellular data plane

aiming to achieve URLLC latency targets, specifically on the N3 link, as shown in

Figure 1.1. In addition to latency gains, our design empowers cellular networks to

achieve monitoring up to the application layer with enhanced network security.

20

Figure 3.6. The NGAP pipeline between between gNBs and AMF as appeared in

our work [38].

As next-generation cellular networks, including the 5G, target massive net-

works with increased in-network communication (e.g., industrial cellular networks),

we aim to reduce the latency between users of the same cellular network. To this

end, we propose a novel method, intra-cellular optimization, that allows an autho-

rized set of users to communicate without involving UPF with the packet transfer.

Thanks to the programmable switches that interconnect the gNBs and cellular core,

the switches forward the GTP packets from known UE pairs back to the respective

gNB. Intra-cellular optimization, therefore, significantly reduces the latency of the

UE pairs. It further reduces the load on UPF and consequently improves the overall

network performance in terms of latency and throughput. UCP allows network en-

gineers to manage the authorization set at the programmable switches in real-time

while actively updating the table with the TEID from the GTP packets matched

with UE IP addresses. Further, UCP runs a centralized shortest-path routing al-

gorithm between switches to distribute paths with TEID data so that switches can

forward GTP packets to switch connecting to the respective gNB.

In addition to intra-cellular optimization, we implement a fine-grained network

monitoring mechanism on the programmable switch and utilize UCP to poll real-

time monitoring statistics. Finally, we design a fine-grained firewall with either

whitelisting or blacklisting behavior (depending on the decision of default forwarding

behavior). We implement our design in P4 to support IPv4, ICMP, TCP, UDP, and

SCTP, yet our implementation can further be extended to support different types

of network protocols.

21

Figure 3.7. The pipeline parsing GTP packets on the N3 link as appeared in our

preliminary work [39].

As shown in Figure 3.7, our packet processing pipeline supports GTPv2 packets

that encapsulate IPv4 packets from the UE. We keep a mapping between UE IP

addresses with their respective GTP downstream TEID, where the downstream is

the GTP packet from gNB to UE. We use this map to determine destination gNB

on intra-cellular optimization. The pipeline then examines the packet in terms of

the security rules and takes the necessary actions, such as dropping the packet. If

the pipeline does not drop the packet due to security rules, it applies the intra-

cellular network optimization table, keeping the authorized UE IP addresses. In

case of a hit on this table, the pipeline modifies the packet into a GTP downstream,

updates the TEID, and forwards it to gNB with the respective UE (or another switch

that connects to that gNB). Before forwarding the packet, the pipeline applies the

monitoring rules on the decapsulated IP packet. The pipeline finally encapsulates

the packet back to GTP and forwards it accordingly.

3.5. Mathematical Model of the Intra-Cellular Latency

In this section, we present the mathematical model that we design to evaluate

the end-to-end latency of UE communication. We utilize our model in the evaluation

section for the bigger cellular networks.

Definition 3.1 (Node). A node is either (a) UE, (b) gNB, (c) a switch, (d) UPF.

22

Definition 3.2 (Network). A network (N) is a graph of nodes, where the node types

have the following limitations

(i) UE (uei), can only be the first or the last node in the graph

(ii) gNB (gnbj) can only be in between UE and a switch

(iii) a switch (swk) cannot be connected to UE

(iv) UPF (u) is one-and-only in a network, and it only connects to a switch

We use the following definitions from our preliminary work [38].

Definition 3.3 (Link). A link lij is an undirected pair between two nodes (ni and

nj), where lij = lji,∀i, j ∈ N. A link has a latency value lij.latency ∈ Q≥0, ∀i, j.

Definition 3.4 (Path). A path Pij of uei and uej is the smallest (in terms of number

of unique nodes) sub-network Pij ⊆ N that connects uei and uej and contains the

UPF node, that is, u ∈ Pij and ∀u ∈ P ′
ij connecting uei and uej, ∥Pij∥ ≤ ∥P ′

ij∥.

In addition to the path, we define an optimized path for intra-cellular opti-

mization, as shown below.

Definition 3.5 (Optimized Path). An optimized path Pij of uei and uej is the

smallest (in terms of number of unique nodes) sub-network Pij ⊆ N that connects

uei and uej and does not contain the UPF node, that is, u /∈ Pij and ∀u /∈ P ′
ij

connecting uei and uej, ∥Pij∥ ≤ ∥P ′
ij∥.

Definition 3.6 (End-to-end Latency). We define the path end-to-end latency (Lij

of path Pij = {uei, gnb′i, ..., gnb′j, uej}) as the sum of latency of each link in path Pij.

That is,

Lij =
∑

(n′
i,n

′
j)∈Pij

li′j′ .latency (3.1)

where and ∀lij = 0 iff ni is UE or nj is UE.

23

The end-to-end latency without intra-cellular optimization for an optimized

path Pij is:

lp = gnb′i + gnb′j + Siu + Suj + u (3.2)

where Sij is the switch latency between nodes ni nj. Similarly, the latency equation

becomes as follows for an optimized path:

lo = gnb′i + gnb′j + Sij (3.3)

since the link to UPF from uei and another connection back from the UPF to uej

are not in the the path.

24

4. IMPLEMENTATION

This section gives the details of the implementation of our architecture that we

introduced in Chapter 3. The implementation contains two parts: (a) Emulation:

we have implemented a single switch topology with two gNBs (each having a single

UE) with an open-source 5G core, Open5GS. We run the P4 code on BMV2, a

P4 software switch, and deploy each gNB and the 5G core in individual virtual

machines. This implementation aims to evaluate and demonstrate our architecture’s

capabilities in a real 5G network and evaluate the latency gain. (b) Simulation:

As we mentioned earlier, UCP can also run on multi-switch topologies. Due to

the hardness of emulating multiple P4 software switches, we implement a Python

simulator that simulates the switch behavior. We use this simulation implementation

to evaluate the UCP under different switches and gNBs.

4.1. Emulation

UERANSIM on
Ubuntu 20.04

UERANSIM on
Ubuntu 20.04

P4 BMV2 on
Ubuntu 16.04

VirtualBox
Host Only Adapter

VirtualBox
Host Only Adapter

Open5GS on
Ubuntu 20.04

AMF UPF

VirtualBox
Host Only Adapter

Figure 4.1. Emulation topology with VirtualBox [40]. Table 4.1 shows the

specification of each VM in the topology.

25

In the first part of our implementation, we design a 2-UE topology to demon-

strate our programmable data path on a full 5G stack. We pick the P4’s behavioral

model (BMV2) [41] software switch to run our pipeline written in P4 version 16

(P416 [42]). We pick Open5GS [43] for 5G stack that provides core network func-

tions and UERANSIM [44] as the UE and RAN simulator, which provides RAN

implementation including UE and gNBs. As depicted in Figure 4.1, we deploy

two virtual machines (VM) where each runs a UE and gNB, another VM running

Open5Gs, and one final VM that interconnects other VMs and deploys the P4 soft-

ware switch on a MacBookPro with 16 GB RAM and an Intel i7 (4-cores) clocked

at 2.9 GHz. We use Host-Only Adapter [45] as the network adapter between each

VM. We use Ubuntu Server 20.04 [46] as the OS in each VM, except for the VM

running P4, which has Ubuntu Server 16.04.

As our implementation works on top of software emulation, we evaluate the

gain of intra-cellular optimization compared to traditional cellular network usage

on the same topology. This is because BMV2 is instead a development tool that is

not designed as a production-grade software switch, per its documentation. It is,

therefore, logical to expect higher latency gains on a hardware P4 switch such as

Tofino.

Table 4.1. The specification of each VM in our evaluation. We have distributed all

available resources (4 vCPU Cores) and near 10 GB of RAM with respect to the

workload of each VM after running a couple of experiments with different sets of

specifications.

VM OS v-CPU Cores RAM

Open 5Gs Ubuntu 20.04 1 3072 MB

UERANSIM (gNB1/gNB2) Ubuntu 20.04 1 2048 MB

P4 BMV2 Ubuntu 16.04 2 4096 MB

26

4.1.1. P4 Implementation

Our programmable data plane contains two parts: (a) A fine state machine

(FSM) that parses the incoming packet’s headers as shown in Figure 4.2 and Fig-

ure 4.3, and (b) packet processing algorithm. We first parse the L2 (i.e., Ethernet)

header and continue until the application layer (i.e., GTP and NGAP), depending

on the content. For the cellular data packets (i.e., GTP), we also parse up to the

IPv4 packet encapsulated into the GTP. Note that parsing of the encapsulated IPv4

packet can be modified depending on the user’s needs. The parsing FSM we use in

our evaluation is shown in Figure 4.3.

P4 program runs the processing algorithm utilizing the headers that are parsed

in the first stage as shown in Figure 4.1.1 after the packet header processing. The

algorithm applies tables we define in Table 4.2 in order to update P4 registers (e.g.,

for counting) depending on the packet content. Note that our P4 program has an

L2-switch behavior (i.e., MAC-based frame forwarding) for other types of packets

as shown in Figure 3.3.

27

Figure 4.2. FSM diagram for header parsing. At each state, a protocol layer is

decapsulated. States after parse gtp is shown in Figure 4.3. Initially appeared

in [38].

parse_gtp

parse_tcp_ue

parse_ip4v_ue parse_udp_ue parse_http
(9 bytes)

parse_icmp

proto == UDP

proto == TCP
 proto
 ==
ICMP

srcPort == HTTP

parse_tcp_dst
srcPort != HTTP

 dstPort
 ==
HTTP

Figure 4.3. P4 header parsing finite state machine diagram for GTP packets.

HTTP port is 80 [47]. Only 9-byte HTTP packets are parsed at the parse http

state as P4 only allows constant header size.

28

if ipv4 ue then

apply table ipv4 downstream teid

apply table ipv4 in network

apply table ipv4 {in, out} {wlist, blist}

apply {tcp, udp} {in, out}

{wlist, blist}

if tcp ue then

apply http sensor and increment related counter

end if

else if ngap init then

add ngap init.value to ue ids list

else if ucp then

match on ucp.opId and take the related action in Table 3.2

end if

Figure 4.4. Main processing algorithm implemented in P4. Note that for all other

types of frames, we have implemented a L2-switch behavior.

4.2. Multi-Switch Simulation

As our emulation implementation requires high computing resources, we de-

velop a Python simulation to evaluate the performance of our system on larger

topologies having multiple P4 switches. Our simulation implementation consists

of four parts, namely: (a) topology generation, (b) route computation and TEID

announcement, (c) UCP implementation, and (d) intra-cellular latency simulation.

4.2.1. Topology Generation

We randomly generate topologies with gNBs between up to 200 and 40 switches

at maximum. Each gNB has at most 10 devices.

1longest prefix match: matching with the most specific address [48].

29

Table 4.2. Tables we define in the P4 program. We create a separate table for each

name in parentheses, such as ipv4 in blist.

Table Match

ngap ue ngap ue id

ipv4 down teid ipv4.src, ipv4 ue.dst (lpm1)

ipv4 in network ipv4.src, ipv4 ue.dst (lpm)

ipv4 {in, out} {wlist, blist} ipv4.{src, dst} (lpm)

{tcp, udp} {in, out}

{wlist, blist}
{tcp, udp}.{srcPort, dstPort}

http sensor http ue.command

The UPF and AMF connect to a topology via separate P4 switches, as shown

in Figure 4.2.1. An example topology generated by this algorithm is shown in

Figure 4.6. We vary the switch-to-gNB ratio to evaluate the effect of the switch-to-

gNB ratio on the end-to-end latency.

Given switch-to-gNB ratio (G), number of switches (S), and maximum

gNB-to-UE ratio (U).

Use nodes an array of Node

nodes := {UPF,AMF, SWi, gNBij, UEijkij}

where i ≤ S, j ≤ G, kij ≤ Kij =uniform(1, U)

connect (SW1, UPF) and (SW2, AMF) pairs

connect SWi and gNBij, ∀i ≤ S, j ≤ G

connect gNBij and UEijkij , ∀i ≤ S, j ≤ G, kij ≤ Kij

E = uniform(s/2, s− 1)

connect SWi and SWj for a total of E randomly

generated unique pairs of (i, j)

Figure 4.5. Topology generation algorithm simulation.

30

UPF

SW1

AMF

SW2

gNB1

SW3

UE1,1
UE1,2

gNB2

UE2,1

gNB3

UE3,1
gNB4

UE4,1

gNB5

UE5,1

gNB6

UE6,1

UE6,2

Figure 4.6. A randomly generated topology with 6 gNBs and 3 P4 switches where

a gNB has at most 2 UE. UPF is connected to topology via SW1 while AMF is

connected via SW2. We generate this topology with the algorithm in Figure 4.2.1.

4.2.2. Route Computation and TEID Announcement

In the first part of our simulation, we implement the simulated behavior of

each switch. We implement a Link State Routing (LSR) algorithm, inspired by the

OSPF [49], between switches where each switch announces its link-state periodically.

Similar to the routing, we have also implemented a TEID announcement algorithm

where each switch announces the updates on its TEID table instantaneously. We

evaluate the TEID distribution behavior in Section 5.2.1.

4.2.3. UCP Implementation

We run a process for each switch in the topology using the Python’s

multiprocessing [50] library. We further execute another process that runs as the

UCP controller. Each switch process runs a simulation version of the P4 main loop

we describe above, where a switch process can (a) receive and create UCP messages,

(b) process data messages from and to the other switches.

31

4.2.4. Intra-Cellular Latency Evaluation Simulation

Due to computational resource limitations, we design our emulation platform

with two pairs of gNB-UE. On the other hand, real-world cellular applications can

contain many more devices and gNBs, requiring multiple programmable switches

to interconnect them. To demonstrate our design’s performance on a large-scale

topology, we implement a Python simulation of the switches where each switch

runs the algorithms in Figure 3.4 as a process based on Python’s multiprocessing

library. We then implement another process that is responsible for the UCP and

based on the algorithms in Figure 3.5. We use the mathematical model of latency

in Section 3.5 to normalize the latency values we gather from the simulation.

32

5. EVALUATION

In this section, we first present the evaluation results using the emulation

defined in Section 4.1. With our emulation platform, we evaluate (a) latency im-

provement with the intra-cellular optimization, (b) NGAP processing at the data

plane using P4, (c) in-network security capabilities, and (d) fine-grained network

monitoring. We, then, discuss the evaluation results with our simulation focusing

on multi-switch topologies: (a) TEID announcement and route computation with

UCP, and (b) latency improvement with intra-cellular optimization. We finally con-

clude this chapter with a comparison between latency results and the mathematical

model of latency described in Section 3.5.

5.1. Evaluation with Cellular Network Emulation

Figure 5.1 shows that we use a topology with a single P4 switch that connects

the gNBs to each other and the 5G cellular network. We describe the details of the

implementation in Section 4.1. We use the same topology for all experiments in this

section except for the last one, where we define a slightly different topology that

includes connection to the outside of the cellular network.

5.1.1. Intra-Cellular Latency Evaluation

The devices on a cellular network use a dedicated network function (e.g., UPF

in 5G) to reach to the outside networks (e.g., the Internet). Moreover, this re-

quirement is still valid for two users in the same network, as the RAN passes data

path packets (tunneled using GTP) between UE and respective cellular function.

Unfortunately, this creates an additional delay for the users in the same cellular

networks. With the emergence of the newer use cases for cellular networks such

as industrial networks, this problem further exacerbates since many devices in such

networks communicate with other devices within the network.

33

AMF

UPF Internet

UCP

Control Link
5G Control Links

Data Link

SMF

 Open5GS Core

P4
BMV2

RU Coverage
Area

Figure 5.1. The emulation architecture with two gNBs (gNBi) with the same

signal coverage (shown in circles). UCP manages the P4 switch in real-time, and

the switch processes both NGAP and GTP packets.

Moreover, network administrators in such private networks have control over

the devices (e.g., IIoT sensors in an industrial cellular network); therefore, they can

control or pre-authorize the devices for network usage and make session management

controls for such devices ”unnecessary”. With such considerations in mind, we

design architecture in programmable switches where we utilize a TCAM table to

hold the IP addresses and GTP TEIDs to forward GTP packets from known UE

to the relative gNB instead of sending them to the UPF. We discuss the details

of our design in Section 3.4. As shown in Figure 5.2, our design can decrease

latency by a factor of two in most of the cases with an average of 1.5x. In addition,

our experiment shows that our system can work on packet sizes smaller than the

Ethernet’s conventional MTU of 1500 bytes. This limitation can be avoided by

modifying our implementation to handle IP packets spanned to multiple Ethernet

Frames. An earlier version of this experiment appeared in our preliminary work [39].

34

200 400 600 800 1000 1200
Packet Size (bytes)

12

14

16

18

20

22

24
Ro

un
d-

tri
p

Ti
m

e
(m

s)

Intra-Cellular Optimization
No Intra-Cellular Optimization

Figure 5.2. Average RTT evaluation between UE1 and UE2 with ping [51] tool.

We take an average of 100 runs for each packet size. Intra-cellular optimization

always performs better than the traditional 5G setup and can achieve up to 2.2x

fewer latency values. The results indicate no correlation between packet sizes and

latency.

5.1.2. NGAP Processing

In addition to the GTP processing pipeline, we design an NGAP processing

pipeline at the programmable data plane to parse the NGAP packets. It is relatively

simple, matching initial UE messages and storing the UE IDs in a P4 register. Our

design is a proof-of-concept demonstrating a complex protocol such as NGAP could

be processed at the switch at line speed. Consequently, in this experiment, we

demonstrate the scenario where numerous UE registers send the initial UE message,

and then we poll the registered UE IDs using UCP.

35

Table 5.1. Average progressing time of programmable switch on UE ID requests on

a topology containing four devices and two gNBs. We execute a total of 500

experiments on each poll frequency and take the average processing time.

Poll Frequency Average Processing Time (ms)

0.1 Hz 67.4

1 Hz 65.6

10 Hz 63.4

100 Hz 57.2

1000 Hz 47.2

∞ Hz 29.2

Table 5.1 shows the average register retrieval time via UCP with respect to

poll interval, where we run 500 experiments for each poll interval. We see that the

average interval time is between 29 - 68 ms, and the higher poll interval causes the

higher average time.

5.1.3. Security Evaluation

One aspect of our framework is network security. To this end, we implement

a network firewall dedicated to UE traffic tunneled via GTP. The firewall uses the

TCAM tables of P4 and is updated via UCP in real-time. While our design works

at the line speed, it reduces the hardware cost of cellular networks as it can the

traditional firewalls.

In this experiment, we evaluate the performance of our UCP implementation

and P4-software switch. We update the security rules and measure the rule update

time considering the total number of rules on the switch. We measure the rule

update time from the UCP input until the rule’s effect is seen on the dataplane.

36

We implement a Python script to create HTTP servers with incremental port

numbers, and it marks as the rule update when the connection to the server is broken,

as we send ”deny” rules with the specific port numbers. As shown in Figure 5.3, We

found no significant evidence indicating a relation between the total number of rules

and average rule update time. We measure the average rule update time less than

10 ms when the total number of rules exceeds 100 with a 95% confidence interval.

0 2000 4000 6000 8000 10000 12000 14000 16000
Total Number of Rules

6

7

8

9

10

11

12

Av
er

ag
e

Ru
le

 U
pd

at
e

Ti
m

e
(m

s)

Average
95% Confidence Interval

Figure 5.3. Average security rule update time with the total number of security

rules on the P4 switch. Our results indicate no significant effect of the total

number of rules on the rule update time, and, we can achieve less than 10 ms for

each rule to be deployed on the dataplane with the P4 BMV2 software switch.

5.1.4. Monitoring Evaluation

This experiment adds IP, TCP, and HTTP counters for UE traffic via GTP.

With the HTTP counter, we evaluate a scenario with IoT sensors. Each sensor

sends a 2-byte heartbeat signal containing their ID. Our HTTP counter counts the

number of heartbeat signals for each sensor, and we poll the counter status of each

sensor via UCP. We also consider a TCP traffic with iPerf3 [52] between a server

in Google Cloud and the UE, where the UE and IoT sensors are on the same cellular

network. We show the whole evaluation topology in Figure 5.4.

37

UPF

Internet

Counter
Polling

Control Link
Data Link

P4

Radio Link

Ubuntu VM
on Google

Cloud

Figure 5.4. Two IoT sensors (S1 and S2) send heartbeat signals with a 10 ms

period via HTTP to Server. The packet counter mechanism increments the

counter for the respective sensor. In addition to the sensors, we run a live TCP

traffic between the VM on Google Cloud and the UE, shown in the figure using

iPerf3 [52].

We measure the throughput of the traffic between the UE and the server with

respect to the polling interval of the HTTP counter via UCP. Table 5.2, shows that

the traffic is significantly affected for less than 10 ms polling intervals.

As we perform our evaluation on the BMV2 software switch, which runs on

the same machine running the 5G network, the results with polling intervals shorter

than 10 ms are insignificant. Further, a 10 ms polling interval for such a counter is

unrealistic as many IoT devices have heartbeat intervals much higher than 10 ms.

38

Table 5.2. TCP throughput between the UE and VM with respect to packet

counter polling intervals on the P4 switch via the UCP, as appeared in our

preliminary work [39]. We run each iPerf3 session five times on a pooling

frequency of up to 10000 Hz.

UCP Poll Frequency Throughput

no polling (0 Hz) 100.0%

1 Hz 98.8%

10 Hz 96.4%

100 Hz 93.3%

1000 Hz 89.1%

10000 Hz 84.2%

no interval (∞ Hz) 74.5%

5.2. Multi-Switch Simulation

Due to resource constraints, we evaluate the multi-switch topology with a

higher number of gNBs by implementing a Python simulation. The simulation runs

for any arbitrary topology where n P4 switches connect m gNBs to AMF and UPF.

We evaluate (a) the route computation and TEID advertisement performance at

switches, and (b) the end-to-end communication latency with intra-cellular opti-

mization and without it. Figure 5.5 shows some of the network topologies we use in

the experimentation. Note that all of the topologies are randomly generated using

Algorithm 4.2.1.

39

UPFSW1

AMF

SW2
gNB1

SW5

UE1,1

gNB2

SW7

SW4

UE2,1
UE2,2

UE2,3

gNB3

SW3
UE3,1

UE3,2

UE3,3
UE3,4UE3,5

gNB4

UE4,1 UE4,2

UE4,3

SW8

SW6
UPF

SW1

AMF

SW2

gNB1

SW5

SW7

SW3

SW6
SW4

UE1,1

UE1,2

gNB2

SW8

UE2,1

gNB3

UE3,1

UE3,2
gNB4

UE4,1

UE4,2
UE4,3

gNB5 UE5,1

UE5,2
UE5,3

UPF

SW1

AMF

SW2

gNB1

SW4SW5SW3

UE1,1
UE1,2UE1,3

UE1,4

gNB2

UE2,1

UE2,2

gNB3
UE3,1

UE3,2

UE3,3
UE3,4 UE3,5

gNB4

UE4,1
UE4,2

UE4,3

gNB5
UE5,1

UE5,2
UPF

SW1

AMF

SW2

gNB1

SW5

SW3
UE1,1

UE1,2
gNB2

SW4

UE2,1

gNB3 SW7

SW6

UE3,1

UE3,2
UE3,3

gNB4

UE4,1
UE4,2

UE4,3

Figure 5.5. Some of the randomly generated topologies used in the evaluation.

5.2.1. Route Computation and TEID Announcement

In this experiment, we test the implementation of TEID announcement algo-

rithms that are deployed at the programmable switches shown in Figure 3.4.

We see a direct proportion between the number of switches and average re-

trieval and announcement durations; the larger network means a higher average

distance between any pair of nodes. The results, therefore, suggest 250 ms or

smaller average advertisement and retrieval times on networks containing 20 or

fewer switches. For example, in a border case network with 100 switches, the aver-

age advertisement time reaches 1500 ms while the average retrieval time is around

500 ms.

40

0 20 40 60 80 100
Number of Switches

0

500

1000

1500

2000

2500

3000

3500
M

illi
se

co
nd

s (
m

s)
Avg. Retrieval Dur.
Avg. Announcement Dur.

Figure 5.6. TEID advertisement and retrieval results are generated with the

Python simulation. The topologies have fixed a switch-to-gNB and gNB-to-UE

ratio of 5.

5.2.2. Intra-Cellular Latency Evaluation on Simulation

In this set of experiments, we evaluate the intra-cellular latency optimization

behavior on larger topologies with multiple P4 switches using the Python simulation

we described in Section 4.2. As shown in Figure 5.7, we can achieve latency gain

between 20% and 50%, where the average is between 35% and 40%. The results

show that the higher gNB/SW ratio leads to more stable latency gain with respect

to the number of gNBs as the higher gNB/SW ratio leads to less SW, i.e., smaller

networks. We see similar results yet with less latency gain because of the cases

where the intra-cellular optimization is not advantageous as it is on a topology with

two gNBs.

41

0 10 20 30 40 50 60
Number of gNBs

20

25

30

35

40

45

50

55
La

te
nc

y
ga

in
 (%

)
gNB/SW ratio (max): 3
gNB/SW ratio (max): 5
gNB/SW ratio (max): 8
gNB/SW ratio (max): 10
gNB/SW ratio (max): 20

Figure 5.7. The lines in the figure show the average latency gain percentage for the

different numbers of gNBs with a fixed switch-to-gNB ratio. We compute the

average latency gain by taking the average of pair-wise UE latency where each UE

connects to a different gNB.

42

6. CONCLUSION

This thesis presents an SDN architecture for the next-generation cellular net-

works to achieve URLLC, explicitly targeting networks with a high frequency of

intra-network communication. It utilizes the programmable data planes between

cellular core and radio network, and it presents the concept of intra-cellular op-

timization, that allows pre-authorized in-network devices to communicate without

the requirement of cellular control signals. Further, this thesis introduces a novel

control structure, Unified Control Plane (UCP), on top of the Ethernet Layer with

an adapted version of UE information distribution link-state routing. We implement

the architecture in this thesis on the P4 programming language for programmable

data planes with a 5G implementation and a UE/RAN simulator. We further imple-

ment a simulation framework to evaluate the performance of our design in large-scale

topologies on Python. We show that the concept of intra-cellular optimization can

achieve latency reduction up to 2x, whereas it can tremendously increase the net-

work security and monitoring capabilities compared to traditional cellular networks

while having a ten-millisecond level of control latency.

43

REFERENCES

1. Korhonen, J., O. Aalto, A. Gurtov and H. Laamanen, “Measured Performance of

GSM HSCSD and GPRS”, IEEE International Conference on Communications ,

Vol. 5, Helsinki, Finland, 2001.

2. Tan, W. L., F. Lam and W. C. Lau, “An Empirical Study on The Capacity

and Performance of 3G Networks”, IEEE Transactions on Mobile Computing ,

Vol. 7, No. 6, pp. 737–750, 2008.

3. Krapichler, C., “LTE, HSPA and Mobile WiMAX A Comparison of Technical

Performance”, Media, pp. 1–31, 2007.

4. Li, Z., H. Shariatmadari, B. Singh and M. A. Uusitalo, “5G URLLC: Design

Challenges and System Concepts”, Proceedings of the International Symposium

on Wireless Communication Systems , Vol. 2018-August, Lisbon, Portugal, 2018.

5. “TS 123 501 - V15.2.0 - 5G; System Architecture for The 5G System (5GS)

(3GPP TS 23.501 Version 15.2.0 Release 15)”, European Telecommunications

Standards Institute (ETSI), 2018.

6. ITU-T, “The Tactile Internet”, https://www.itu.int/dms_pub/itu-t/oth/

23/01/T23010000230001PDFE.pdf, accessed on August 02, 2022.

7. Bifulco, R. and G. Retvari, “A Survey on The Programmable Data Plane: Ab-

stractions, Architectures, and Open Problems”, IEEE International Conference

on High Performance Switching and Routing, HPSR, Bucharest, Romania, 2018.

8. Bosshart, P., D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat and Varghese, “P4: Programming

Protocol-Independent Packet Processors”, ACM Special Interest Group on Data

Communication Computer Communication Review , Chicago, IL, 2014.

44

9. “TS 123 501 - V16.6.0 - 5G; System Architecture for The 5G System (5GS)

(3GPP TS 23.501 Version 16.6.0 Release 16)”, European Telecommunications

Standards Institute (ETSI), 2020.

10. Popovski, P., K. F. Trillingsgaard, O. Simeone and G. Durisi, “5G Wireless

Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic

View”, Ieee Access , Vol. 6, pp. 55765–55779, 2018.

11. Jiang, W., B. Han, M. A. Habibi and H. D. Schotten, “The Road Towards 6G:

A Comprehensive Survey”, IEEE Open Journal of the Communications Society ,

Vol. 2, pp. 334–366, 2021.

12. Habibi, M. A., M. Nasimi, B. Han and H. D. Schotten, “A Comprehensive Sur-

vey of RAN Architectures Toward 5G Mobile Communication System”, IEEE

Access , Vol. 7, pp. 70371–70421, 2019.

13. Anand, A., G. de Veciana and S. Shakkottai, “Joint Scheduling of URLLC and

eMBB Traffic in 5G Wireless Networks”, IEEE/ACM Transactions on Network-

ing , Vol. 28, No. 2, pp. 477–490, 2020.

14. Li, J. and X. Zhang, “Deep Reinforcement Learning-Based Joint Scheduling of

eMBB and URLLC in 5G Networks”, IEEE Wireless Communications Letters ,

Vol. 9, No. 9, pp. 1543–1546, 2020.

15. Mutalemwa, L. C. and S. Shin, “A Classification of the Enabling Techniques

for Low Latency and Reliable Communications in 5G and Beyond: AI-Enabled

Edge Caching”, IEEE Access , Vol. 8, pp. 205502–205533, 2020.

16. Le, T. K., U. Salim and F. Kaltenberger, “An Overview of Physical Layer Design

for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and

17”, IEEE Access , Vol. 9, pp. 433–444, 2021.

17. Ray, J. K., A. Singh, Q. M. Alfred, S. Shome and R. Bera, “5G URLLC Com-

45

munication System with Cognitive Radio and Frequency Diversity Reception

for Improving Reliability in Smart Factory E-cranes operation”, IEEE MTT-S

International Microwave and RF Conference (IMARC), Mumbai, India, 2019.

18. Yogapratama, A. S. and M. Suryanegara, “Dealing with the Latency Problem to

Support 5G-URLLC: A Strategic View in the Case of An Indonesian Operator”,

2nd International Conference on Broadband Communications, Wireless Sensors

and Powering (BCWSP), Jakarta, Indonesia, 2020.

19. Jayaweera, N., D. Marasinghe, N. Rajatheva and M. Latva-Aho, “Factory Au-

tomation: Resource Allocation of An Elevated LiDAR System with URLLC Re-

quirements”, 2nd 6G Wireless Summit (6G SUMMIT), Porto, Portugal, 2020.

20. McKeown, N., T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker and J. Turner, “OpenFlow: Enabling Innovation in Campus

Networks”, Special Interest Group on Data Communication (SIGCOMM) Com-

putuer Communication Reviews , Vol. 38, No. 2, Mar. Seattle, WA, 2008.

21. Kfoury, E. F., J. Crichigno and E. Bou-Harb, “An Exhaustive Survey on P4

Programmable Data Plane Switches: Taxonomy, Applications, Challenges, and

Future Trends”, IEEE Access , 2021.

22. Sun, S., L. Gong, B. Rong and K. Lu, “An Intelligent SDN Framework for 5G

Heterogeneous Networks”, IEEE Communications Magazine, Vol. 53, No. 11,

pp. 142–147, 2015.

23. Prados-Garzon, J., O. Adamuz-Hinojosa, P. Ameigeiras, J. J. Ramos-Munoz,

P. Andres-Maldonado and J. M. Lopez-Soler, “Handover Implementation in A

5G SDN-based Mobile Network Architecture”, IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC), Valencia,

Spain, 2016.

46

24. Ricart-Sanchez, R., P. Malagon, J. M. Alcaraz-Calero and Q. Wang, “P4-

NetFPGA-based Metwork Slicing Solution for 5G MEC Architectures”,

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems , Cambridge, UK, 2019.

25. Zaidi, Z., V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler and H. Aghvami,

“Will SDN Be Part of 5G?”, IEEE Communications Surveys Tutorials , Vol. 20,

No. 4, pp. 3220–3258, 2018.

26. Eichhorn, F., M. Corici, T. Magedanz, P. Du, Y. Kiriha and A. Nakao, “SDN

Enhancements for The Sliced, Deep Programmable 5G Core”, 13th International

Conference on Network and Service Management (CNSM), pp. 1–4, Tokyo,

Japan, 2017.

27. Costa-Requena, J., A. Poutanen, S. Vural, G. Kamel, C. Clark and S. K. Roy,

“SDN-Based UPF for Mobile Backhaul Network Slicing”, European Conference

on Networks and Communications (EuCNC), Ljubljana, Slovenia, 2018.

28. Peters, S. and M. A. Khan, “Anticipatory Session Management and User Plane

Function Placement for AI-Driven Beyond 5G Networks”, Procedia Computer

Science, Vol. 160, pp. 214–223, 2019.

29. Peters, S. and M. A. Khan, “Anticipatory User Plane Management for 5G”,

IEEE 8th International Symposium on Cloud and Service Computing (SC2),

Paris, France, 2018.

30. Paul, S., “Discover 5G Core Network Functions Compared to 4G

LTE”, https://www.linkedin.com/pulse/discover-5g-core-network-

functions-compared-4g-lte-paul-shepherd, accessed on August 02, 2022.

31. “TS 138 423 - V16.3.0 - 5G; NG-RAN; Xn Application Protocol (XnAP) (3GPP

TS 38.423 Version 16.3.0 Release 16)”, European Telecommunications Standards

47

Institute (ETSI), 2020.

32. “TS 138 415 - V16.1.0 - 5G; NG-RAN; PDU Session User Plane Protocol (3GPP

TS 38.415 Version 16.1.0 Release 16)”, European Telecommunications Standards

Institute (ETSI), 2020.

33. “TS 123 502 - V16.5.0 - 5G; Procedures for The 5G System (5GS) (3GPP TS

23.502 Version 16.5.0 Release 16)”, European Telecommunications Standards

Institute (ETSI), 2020.

34. “TS 138 300 - V16.2.0 - 5G; NG; NR and NG-RAN Overall Description; Stage-

2 (3GPP TS 38.300 Version 16.2.0 Release 16)”, European Telecommunications

Standards Institute (ETSI), 2020.

35. “General Packet Radio Service (GPRS); GPRS Tunnelling Protocol

(GTP) Across The Gn and Gp Interface”, 3rd Generation Partner-

ship Project (3GPP), 2020, https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=1595, ver-

sion 16.0.0.

36. “3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service

(GPRS) Tunnelling Protocol for Control Plane (GTPv2-C); Stage 3”, 3rd Gen-

eration Partnership Project (3GPP), 2020, Version 16.7.0.

37. “Architecture Enhancements for Control and User Plane Separation of EPC

Nodes ”, 3rd Generation Partnership Project (3GPP), September 2020, version

16.2.0.

38. Gökarslan, K. and T. Tugcu, “Velox: Next-Generation Industrial Cellular Net-

works With Programmable Data Planes”, IEEE International Black Sea Con-

ference on Communications and Networking (BlackSeaCom), Sofia, Bulgaria,

2022.

48

39. Gökarslan, K., Y. S. Sandal and T. Tugcu, “Towards a URLLC-Aware Pro-

grammable Data Path with P4 for Industrial 5G Networks”, IEEE Interna-

tional Conference on Communications Workshops (ICC Workshops), Montreal,

Canada, 2021.

40. “Oracle VM VirtualBox”, http://virtualbox.org/, accessed on August 02,

2022.

41. “P4 Behavioral Model”, https://github.com/p4lang/behavioral-model, ac-

cessed on August 02, 2022.

42. “P4-16 Language Specification”, https://p4.org/p4-spec/docs/P4-16-v1.

0.0-spec.html, accessed on August 02, 2022.

43. “Open5GS”, https://github.com/open5gs/open5gs, accessed on August 02,

2022.

44. “UERANSIM”, https://github.com/aligungr/UERANSIM, accessed on Au-

gust 02, 2022.

45. “VirtualBox Virtual Networking”, https://www.virtualbox.org/manual/

ch06.html, accessed on August 02, 2022.

46. “Canonical Ubuntu”, https://ubuntu.com/, accessed on August 02, 2022.

47. Fielding, R. and R. J., “RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing”, 2014.

48. “Longest prefix match - Microsoft Academic”, https://academic.microsoft.

com/topic/50363770/publication, accessed on August 02, 2022.

49. Moy, J., “RFC 2328 - OSPF Version 2”, 1998.

49

50. “Multiprocessing”, https://docs.python.org/3/library/

multiprocessing.html, accessed on August 02, 2022.

51. “Ping”, https://man7.org/linux/man-pages/man8/ping.8.html, accessed

on August 02, 2022.

52. “iPerf”, https://iperf.fr/, accessed on August 02, 2022.

