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ABSTRACT

EPISTEMIC UNCERTAINTY IN THE ANALYTICALLY
DERIVED FRAGILITY FUNCTIONS: MULTIPLE STRIPE
ANALYSIS VERSUS CLOUD ANALYSIS

This study aims to examine the effects of epistemic uncertainty arising from dif-
ferent analysis approaches on the derived fragility functions. To this end, fragility
functions are developed by using two different methods namely multiple stripe analysis
(MSA) and cloud analysis, and compared for low-rise and mid-rise (3 and 6-story), re-
inforced concrete (RC), moment-resisting frame (MRF) buildings designed as per the
Turkish Seismic Codes (TSC) published in 1975 and 2018. Each building’s prelimi-
nary design complies with the minimum requirements specified in the relevant seismic
codes. A total of four buildings are studied considering different heights and different
seismic codes. The OpenSees Program (the Open System for Earthquake Engineering
Simulation) is used to perform nonlinear dynamic analyses of the structures. While
spectral displacement (Sd), spectral acceleration (Sa) and peak ground acceleration
(PGA) are chosen as intensity measures, maximum inter-story drift ratio (MIDR) and
top displacement (Dtop) are selected as engineering demand parameters. For the dam-
age state definitions through threshold values on the EDPs, nonlinear static (pushover)
analyses are conducted to pick the limit values of top displacements from the idealized
pushover curves whereas limit values for MIDR are drawn from the Hazus MR4 Tech-
nical Document. For MSA, 11 stripes and 22 pairs of earthquake records for each stripe
are used, while 44 sets of record pairs are used for cloud analysis. Fragility functions
for the aforementioned buildings are developed by using two methods and compared

to account for the epistemic uncertainty in the derivation of fragility functions.



OZET

KIRILGANLIK FONKSIYONLARININ TURETIMINDE
EPISTEMIK BELIRSIZLIGIN DEGERLENDIRILMESI:
COKLU CIZGI ANALIZI VE BULUT ANALIZI

Bu ¢aligma, farkl analiz yaklagimlari ile tiiretilmig kirilganlik egrilerinin, farklilik-
larindan kaynaklanan epistemik belirsizligin etkilerini incelemeyi amaglamaktadir. Bu
amagla kirilganlik fonksiyonlari; iki farkli yontem olan ¢oklu ¢izgi analizi ve bulut
analizi kullanilarak, 1975 ve 2018 Tiirkiye Deprem Yénetmeliklerine gore Istanbul’da
inga edilen algak ve orta kath (3 ve 6 katl), moment aktaran betonarme gergeve
yapilar i¢in geligtirilmig ve karsilagtirilmigtir. Her binanin 6n tasarimi icin ilgili de-
prem yonetmeliginde belirtilen minimum standartlara uyulmustur. Farkh kat seviyeleri
ve farkli deprem yonetmelikleri dikkate alinarak toplamda dort bina incelenmigtir.
Yapilarin dogrusal olmayan dinamik analizlerini gerceklestirmek i¢in OpenSees Pro-
grami kullanilmigtir. Spektral ivime (Sa), spektral yer degigtirme (Sd) ve maksimum
yer ivmesi (PGA) siddet 6l¢ii birimi olarak (IM) kullanilirken, maksimum goreli kat
otelenmesi (MIDR) ve gat1 yer degistirmesi (Dtop) miihendislik talep parametreleri
(EDP) olarak bu analizlerde kullamlmigtir. Miihendislik talep parametreleri (EDP)
i¢in hasar sinir durumlar ile ilgili olarak, MIDR sinir degerleri Hazus MR4 teknik el
kitabindan alinirken, Dtop icin limit degerleri belirlerken dogrusal olmayan statik itme
analizi kullanilmigtir. Coklu ¢izgi analizleri i¢in 11 ¢izgi ve her ¢izgi icin 22 ¢ift de-
prem kaydi kullanilirken, bulut analizleri i¢in 44 ¢ift deprem kaydi kullanilmistir. Bu
caligmada, kirilganlik egrileri iki farkli yontem kullanilarak tiiretilmis ve tiiretilmesinde-

ki epistemik belirsizligini gormek amaciyla karsilagtirma yapilmigtir.
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1. INTRODUCTION

An abrupt shaking of the earth’s crust is referred to as an earthquake. Earth-
quakes may range in magnitude from hardly felt to severe enough to fling humans
outside or wiped out entire towns. Unbearable and catastrophic results may occur
from an earthquake. It causes extensive house, hospital, and other structure destruc-
tion. Many humans suffer fatal, serious injuries and financial, material losses. It has
an impact on everyone’s physically and mentally well-being. In addition, in struc-
tures that don’t get the proper engineering servicing, we see that these impacts grow

exponentially.

While being an earthquake-prone nation, Turkey faces serious and unavoidable
earthquake-related problems. Turkey is located on active fault lines, and many of the
nation’s major cities are located quite close to these faults. The North Anatolian Fault
Zone (NAFZ), which passes under the Sea of Marmara, it is thought that its impact on a
metropolitan city like Istanbul will be more serious. Especially in Turkey, it is observed
that the structures built before 2000s are weak in terms of engineering service during
the design and construction stages. Therefore, it is thought that the capacities of these
structures will not be able to meet the possible large seismic demands. For this reason,
it is necessary to take serious measures and evaluate the structures according to the
new regulations and take the necessary actions immediately. Recently, governments
have started to give importance to earthquake risk assessment. Thanks to the risk
assessment, loss estimates are made according to the regions. With risk assessment, the
type and degree of damage to buildings can be determined and can be concentrated on
those areas in order to take precautions. Earthquake hazard, fragility, and inventory of

assets that are subjected to hazards are major determinants of seismic risk assessment

[1].

The focus of this study is the development and assessment of fragility functions
by using two different methods namely, multiple stripe analysis and cloud analysis, to

account for epistemic uncertainty in the development of fragility functions for low to



mid-rise reinforced concrete (RC) structures that are designed in accordance with the

1975 and 2018 Turkish Seismic Code requirements.

Uncertainty can be divided in two types which are epistemic and aleatory un-
certainty. Epistemic uncertainty derives from the lack of knowledge of a parameter or
process, while aleatory uncertainty refers to uncertainty caused by probabilistic varia-
tions in a random event. In addition, epistemic uncertainty can be reduced by changing
model or data. In this study, to account for the epistemic uncertainty in developing

fragility functions, two different models are used.

The approaches to create fragility functions are briefly covered in the next sec-
tion, along with its primary components. Following that, a study of the literature is

summarized, finally, the aims and scope of this study are explained.

1.1. Four Methods for Obtaining Fragility Functions

Fragility function is a cumulative distribution function (CDF) that shows the
probability of a building exceeding a damage limit such as safety and failure limits
against a ground motion intensity measure (IM) like Sd and Sa or peak ground motion
intensity parameters (PGA, PGV, etc.). There are four methods to obtain a fragility
function, which are, in decreasing reliability, empirical, analytical, expert opinion or

judgmental, and hybrid methods [2].

Empirical (observational) fragility functions are generated by using post- earth-
quake results and observations. Although the most realistic results are obtained from
this method, it has some disadvantages such as the lack of real earthquakes with high

magnitudes that the analysts can exploit.

Analytical (predicted) fragility functions are obtained by analyzing the mathema-
tical- analytical models of buildings. Analysts can scale the ground motions to represent
large earthquakes or can simulate ground motions when there are not enough recorded

accelerograms. Analysts can make some assumptions when using this method, but



they must be careful not to include unrealistic parameters in the analyses.

The judgmental fragility functions are generated by making use of expert opin-
ions. Experts know failure. Their thoughts about failures are collected in a pool and

used. The main drawback of this method is its lack of credibility.

In the hybrid methods, fragility functions are generated by using the combination
of the methods explained above. For instance, the analytical method can be used to
generate fragility functions for collapse limit state while the empirical method is used

to generate fragility function for light limit damage state.

1.2. Elements of Fragility Functions

Structural model, damage state, and intensity measure are the three main ele-
ments of fragility functions [3]. Typology of structures is also an important parameter
since the structures’ features play a crucial role in obtaining the correct fragility func-
tion. The geometry of the building, the height of the story, material properties, seismic
code, and structural system also affect the fragility function’s character. For example,
for the same building, different design parameters due to earthquake codes differentiate
the fragility functions. Moreover, region-to-region fragility functions show big changes
due to soil and design parameters. Story number is also an important factor and is
considered by the analysts to obtain its effect on the structures. Buildings with high

story numbers have high damage levels [4].

Damage state (DS) is an important element of fragility function. For instance,
minimum damage limit (ML), safety limit (SL), and failure limit (FL) are damage
limits defined by the Turkish seismic codes (TSC) 2007. Damage states are classified
as minor, moderate, substantial, or complete, according to FEMA 356 [5]. Limit values
of damage states are related to the level of engineering demand parameters (EDP)
that are used to measure the response. EDPs are classified as global and local demand
parameters. While base shear, top displacement, roof drift ratio, maximum inter-story

drift ratio (maximum inter-story drift normalized by story height) are examples of



global engineering demand parameters, strain and chord rotation are examples of local
demand parameters. EDPs should be appropriate with the structure’s behavior. The
analyst should be careful not to select ill-defined EDPs. For example, while base shear
force is not an appropriate EDP for structures with high periods, the inter-story drift

ratio is a meaningful measure for ductile structures.

Intensity measure (IM) is another important element of fragility function. Peak
ground motion intensity values (PGA, PGV, etc.), spectral values (Sa, Sd) for the first
natural vibration period, arias intensity (AlI), cumulative absolute velocity (CAV) are
the examples of intensity measures [6]. Al and CAV are energy-based parameters. IM
should be efficient and sufficient. Intensity measures should be selected attentively, and
the response of structures (EDP) should be well correlated with the intensity measures.
For instance, low-rise and brittle structures’” EDPs are convenient with peak ground
acceleration (PGA) whereas spectral displacement (Sd) and spectral acceleration (Sa)
are good IMs for ductile structures. Sa(T1) is a very prevalent intensity measure in

developing fragility curves.

Spectral acceleration with the five percent damping ratio for the first mode is not
fully sufficient when an analyst uses the high scale factor for ground motion records to
obtain collapse state especially for the structures that are designed according to high

codes [7].

In a fragility plot, the vertical axis indicates the cumulative probability of struc-
tural damage reaching or exceeding the threshold of a given damage state and the hor-
izontal axis shows the ground motion intensity measure [6]. An example of a fragility

curve is shown in Figure 1.1 [8].
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Figure 1.1. Example of fragility curves (Source: Hancilar et. al., 2010).

1.3. Literature Survey

There are plenty of studies about the derivation of fragility functions to evaluate
the probabilistic structural assessment of structures. The literature survey at this study

is focused on the studies that are related to the structures in Turkey.

Duran (2020) developed fragility functions (curves) for mid-rise, no-code RC
frame structures. He used sixteen different types of buildings to represent the ty-
pologies of 800 buildings that are located in the district of Zeytinburnu in Istanbul. He
classified the buildings into two groups according to the confinement conditions of their
structural members, namely, confined and unconfined. He used the maximum inter-
story drift ratio (MIDR) as engineering demand parameter (EDP), and peak ground
acceleration (PGV) as intensity measure (IM). He utilized incremental dynamic anal-
ysis (IDA) and nonlinear static analysis (pushover) to evaluate the responses of the

buildings, he compared the responses that are obtained from these two types of anal-



yses. He used the maximum likelihood method to obtain the fragility curves [3].

Akkar et al. (2005) generated fragility functions for low and mid-rise reinforced
concrete buildings. Thirty-two reinforced concrete buildings with 2 and 3-stories were
analyzed. These buildings represent the typology of buildings that were affected by
the 1999 Diizce earthquake in Turkey. Fragility functions were obtained by using the
hybrid method. When generating fragility functions, the lateral deformation capacity,
strength, and stiffness of the buildings are obtained from the field observation database.
He performed nonlinear response history analysis (NRHA). He used the global(roof)
drift ratio as EDP and PGV as intensity measures because of its good correlation with
the response of these types of buildings. The author indicated that the story number

of buildings is an important parameter when developing fragility function [4].

Hancilar et al. (2014) generated fragility functions for mid-rise RC frames and RC
shear buildings that were constructed in the 1990s. Fifty-five public school buildings in
Istanbul were examined in this study and a standardized school building was modeled.
Material and geometrical properties and dimensions of the structural elements were
considered aleatory uncertainty, while the direction of ground motion excitation was
considered epistemic uncertainty. The Monte Carlo approach was used in the study
to see the effects of these uncertainties. The analytical method was used for gener-
ating the fragility functions. 107 earthquake records were utilized for the nonlinear
dynamic analyses of the buildings. Five damage states (no damage, slight, moderate,
extensive, complete) and three intensity measures (PGA, PGV, Sd (T1)) were used to
develop fragility curves. The maximum inter-story drift ratio was also selected as the
engineering demand parameter. This study showed that the uncertainties and control

mechanisms to implement the standards have big effects on the fragility functions of

buildings [9].

Kirgil and Polat (2006) developed fragility functions for mid-rise RC frame build-
ings which were designed according to the 1975 Turkish seismic code (TSC 1975).
Buildings were classified by their story numbers. (3-, 5-, 7- story). Yielding and col-

lapse limits were chosen for damage levels. Maximum inter-story drift ratio (MIDR)



was used as the engineering demand parameter to measure structures’ response and
first mode spectral acceleration, spectral displacement, and peak ground acceleration
were used as the intensity measures. Incremental dynamic analyses were performed.
The limit of yield capacity was defined as a point when the linear IDA curve became
nonlinear, while the limit of collapse capacity was defined as a point when little incre-
ment of spectral acceleration leads to infinite MIDR. Fragility curves were developed

based on Sa, Sd, and PGA as IM [10].

Tiiziin (2008) developed analytical fragility curves for RC-MRF structures with
story numbers ranging between two to seven. Building data were gathered from the
existing RC frame buildings in Bolu, Turkey. He classified these structures into six
groups according to their story numbers. Fragility curves were developed by using the
analytical method. Spectrum-based ground motions were used for nonlinear dynamic
analysis. He scaled the records with 0.05 g increments up to 1.00 g fir IDA. The Park-
Ang damage index was used to define the damage levels. Sa(T1) and SA(T1) were used
as intensity measures. He showed that the near-field effect of ground motion, material

uncertainty, and structural geometry has important effects on the fragility curves [11].

Dolagan (2019) generated fragility functions for mid-rise RC frame buildings
which do not conform to any seismic code released after 1975. She used sixteen different
types of buildings to represent the typologies of 800 buildings which are located in the
district of Zeytinburnu in Istanbul. Nonlinear time-history analyses of the buildings
were conducted with the use of OpenSees. She utilized incremental dynamic analysis
(IDA) to evaluate the responses of the buildings. PGA was chosen as the intensity
measure due to its convenience with pre-code structures’ responses, and the maximum
inter-story drift ratio was used as the engineering demand parameter. Damage levels
were defined as strain values of structural members by considering TSC 2018. She
indicated that structure’s low geometrical and material quality cause early dynamic

instability [12].

Hancilar and Cakt1 (2015) studied the correlation between the engineering de-

mand parameters (EDPs) and mtensity measures (IMs). Buildings were classified by



their story numbers as 5-, 10-, 15-, and 20- stories in this study. Unscaled ground mo-
tion records were used for nonlinear time history analysis (NRHA) to develop fragility
curves. In this study, peak ground acceleration, velocity, and displacement (PGA,
PGV, PGD), spectral acceleration, velocity, and displacement for first mode vibration
period (Sa(T1), Sv(T1), Sd(T1)), arias intensity (AI), cumulative absolute velocity
(CAV) were used as intensity measures. Maximum plastic end rotation (MPR), strain,
maximum inter-story drift ratio (MIDR), maximum floor acceleration (MFA) were used
as engineering demand parameters by the authors. According to this study, maximum
inter-story drift ratio and plastic end rotation are well correlated with the first mode
spectral acceleration for 5,10-story buildings, while for 15, 20-story buildings, maxi-
mum inter-story drift ratio, and plastic end rotation demand parameters show a good
correlation with PGV. For low-rise buildings, peak ground acceleration is also well

correlated with MFAs [6].

From the literature surveys, we conclude that there are various ways to develop
fragility functions (curves). Intensity measure, engineering demand parameter, struc-
ture typology, material properties, geometrical configuration, ground motion selection,
design code rules, etc. are the factors that affect fragility functions. Difference, defi-
ciency, and uncertainty of any of these components can lead to different results when
creating the fragility function. While defining damage states, analysts can prefer global
or local engineering demand levels according to their time and effort. Some researchers
may define the limit of engineering demand parameters by using capacity curves by
converting the capacity curves to bilinear elastic-perfectly curves with the equal en-
ergy principle. Damage thresholds can be obtained by using yield and ultimate spectral

displacement values.

Methods that are used to generate fragility functions are another factor that leads
to different results. Most accurate results are obtained from the empirical method
which does not give reliable results for high magnitude earthquakes. The analytical

method is the second most chosen method to develop an accurate fragility curve.

Different building’s finite element (FE) models also lead to different fragility



functions. Since 2D models are easy to develop, analysts often prefer to use them but,

they cause more uncertainties than 3D models.

1.4. Scope and Objective of Thesis

The aim of this thesis is to account for the epistemic uncertainty in the devel-
opment of fragility functions by using two different methods namely, multiple stripe
analysis and cloud analysis. The fragility functions are developed and compared for
low-rise and mid-rise (3 and 6-story) reinforced concrete-moment resisting frame build-
ings designed in accordance with the TSC 1975 and TSC 2018 minimum standards.
Four buildings are designed taking into account, two different story numbers (3 and
6-story), and two seismic regulations (TSC 1975 and TSC 2018). Four categories are
made up of these buildings: two 6-story buildings designed per TSC 1975 and TSC
2018, two 3-story buildings designed per TSC 1975 and TSC 2018.

The OpenSees Software is used to perform the nonlinear dynamic analyses of the
structures. Multiple stripe analysis (MSA) and cloud analysis approaches are used to
obtain the fragility functions for the specified buildings. While spectral displacement
(Sd), spectral acceleration (Sa) and peak ground acceleration (PGA) are chosen as
intensity measures (IM), maximum inter-story drift ratio (MIDR) and top displacement

(Dtop) are used as engineering parameters (EDP).

Regarding the threshold values of maximum inter-story drift ratio (MIDR), those
are drawn from the Hazus MR4 Document while pushover curves are utilized to de-
termine the limit values for Dtop. There are eleven stripes for multiple stripe analysis
(MSA), and 22 couples of earthquake record sets are chosen for each stripe. For cloud
analysis 44 pairs of records are utilized. All the records are taken from the PEER data

base.

For low-rise and mid-rise RC buildings (3 and 6-story) designed per TSC 1975
and TSC 2018, fragility functions based on several types of intensity measures (IM)

such as spectral acceleration (Sa), spectral displacement (Sd) and peak ground accel-



10

eration (PGA) and several types of engineering demand parameters (EDP) such as
maximum inter-story drift ratio (MIDR) and top displacement (Dtop) are generated

and compared.
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2. STRUCTURAL SYSTEMS AND GROUND MOTION
SELECTION

2.1. Definition of Structural Models

For 3 and 6-story buildings, fragility functions are developed by using two dif-
ferent methods in this study. The buildings are designed considering the minimum
standards specified in the relevant seismic codes (TSC 1975 and TSC 2018). In addi-
tion, consideration is given to the capacity design principles described in the seismic

codes.

Figure 2.1. Site location in Istanbul (Source: Google Earth).

A location in Istanbul is chosen, and 3 and 6-story buildings are designed there
in accordance with the earthquake hazard characteristics on the specified site. This
site is depicted in Figure 2.1. Table 2.1 lists the longitude and latitude and the related
shear wave velocity to 30 meters, (V's)so. Four buildings in total, two with various

story numbers and two with distinct design codes, analyzed and developed. Figure 2.2
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and Figure 2.3 show the layouts for the 3 and 6-story structures. Figure 2.4 shows the

structures’ 3D finite element (FE) models.

Table 2.1. Location parameters.

Location ID | Coordinates | (Vs)3g[m/s]

1 28.705, 41.045 178

The minimum requirements of TSC 1975 and T'SC 2018 are being used to analyze
and design the buildings. Table 2.2 lists the design criteria for both seismic codes. The
preliminary design and analysis of the buildings are done using ETABS programme
[13]. Buildings’ linear analyses are conducted using the equivalent lateral force (ELF)
approach. Figures 2.5 and 2.6 show the first three mode shapes for 3 and 6-story
buildings.

Table 2.3 contains information on the free vibration periods of the 3 and 6-story
buildings. The need for the cracked sectional stiffness of components is not obligatory
in the TSC 1975. Therefore, even though their elasticity modulus values are lower
than those of the structures that are designed in accordance with the TSC 2018, the

structures that are designed in accordance with the TSC 1975 have lower periods.
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Figure 2.3. Floor plans and dimensions for the buildings designed as per the TSC

1975.
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(a) 3-story buildings

(b) 6-story buildings

Figure 2.4. Representative 3D views of the FEM models.
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Figure 2.5. The first three mode shapes of 3-story buildings designed per 1975 TSC

(left) and 2018 TSC (right). The top row shows the first modes, the last row shows

the third modes.
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Table 2.2. Design parameters.
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Design Parameters TSC,1975 TSC,2018
Concrete Class C16 C25
Reinforcing Steel Grade 5220 S420
Building usage purpose Residential Residential
h basement, m 2.9 2.9

h normal, m 2.9 2.9

Footprint Area, m?

101.4(for 3-story)

101.4(for 3-story)

Footprint Area, m?

413.74(for 6-story)

413.74(for 6-story)

Slab thickness, mm

120.0(for 3-story)

120.0(for 3-story)

Slab thickness, mm

160.0(for 6-story)

160.0(for 6-story)

Type of The Lateral Load Resisting System

MRF

MRF

Super-imposed Dead Load, kN /m? 2 2

Peripheral wall load, kN /m? 4.325 4.325
Interior wall load, kN /m? 2.5 2.5

Live Load, kN /m? 2 2
Super-imposed Dead Load (roof), kN/m? 4 4

Live Load (roof), kN/m? 1.5 1.5

Analysis Type ELF method ELF method

Table 2.3. The free vibration periods of the buildings in seconds.

First Mode | Second Mode | Third Mode
3-story,1975 0.530 0.513 0.483
3-story,2018 0.309 0.277 0.245
6-story,1975 0.541 0.531 0.500
6-story,2018 0.727 0.724 0.679
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During the design stages, the capacity design concepts are considered. By taking
into account the capacity design principles, the nonlinear ductile behavior at the load-
carrying mechanism is assured, allowing the energy of an earthquake to be dampened
with the deformation of structural parts that are built as ductile. Shear deformation
failures occur suddenly, whereas flexural failures happen gradually in a ductile manner.
By increasing the shear capacity of the structural members, brittle failures are avoided.
The internal forces of the structure rise during the earthquake, but because of the
capacity design concepts, the structural elements may securely adapt by utilising their
inelastic deformation capabilities in a ductile way. The structural member shear force
capacities have to be high enough to guarantee the bending type yielding. The strong
column-weak beam concept is maintained. Additionally, frame joints are designed to

also be strong enough to distribute moments among frame parts.

2.2. Differences Between TSC 1975 and TSC 2018 for Low-Rise and
Mid-Rise RC MRF Buildings

There are a few distinctions between these two seismic codes, so in this chapter,

those distinctions which come up during the structure’s design phases are highlighted.

Firstly, Turkey is classified into four earthquake zones in the TSC 1975 seismic
code. The computation of the earthquake effects is further clarified in the TSC 1975
seismic code compared to the previous ones and spectral acceleration is first included
in this seismic code. The earthquake coefficient (C') is calculated by using earthquake
zone coefficients (Cp) that are established in accordance with the earthquake zones

named as 1, 2, 3 and 4.

In the TSC 2018 seismic code, on the other hand, building performance objective
is established based on the seismic design category and building height class, after
which design method is chosen for new structures. The vertical design spectrum and
the seismic hazard according to the location are both specified. The significant distinc-
tion between this code and others including TSC 1975 is that it allows the design of

structures in accordance with multiple building performance objective. In addition to
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this, the TSC 2018 seismic code bases its assessment of earthquake hazard on a point’s
location rather than the seismic hazard maps that are used in the previous codes,
which divided Turkey into seismic zones. In this regard, the site effect and seismic
hazard parameters, which together make up the conventional acceleration spectrum,
have drastically changed. Lastly, earthquake hazard is defined not at a single ground
motion level, but at four different levels namely, DD1, DD2, DD2 and DD4 levels.

There are also more variations between the two seismic codes throughout the
design phase of RC structural elements. The lowest level of concrete class is one of
them. While C14 is the minimal concrete class in TSC 1975, C25 is the minimum
allowable concrete class in TSC 2018. The other is the dimensions of the column
sections; in T'SC 2018, the minimum section of the column sections is 300 mm, whereas

in TSC 1975, the minimum column section dimension is 250 mm.

2.3. Nonlinear Modelling

Using OpenSees software is used to perform the nonlinear dynamic analyses. The
software’s “nonlinearBeamColumn” component is used to simulate columns, while its
“beamWithHinges” component is used to simulate beams. Figure 2.7 shows the stress-

strain hysteresis produced by using concrete04 and steel02 models.

The structural components’ cross-sections are divided into several fibers. The
“Concrete04” material of OpenSees Programme is utilized for the core and cover con-
crete in the concrete model. The identical concrete model put out by Mander et al.
(1988) is generated with the command “Concrete04”. The concrete model’s tensile
strength is disregarded. The OpenSees “Steel02” material is utilized for the reinforc-
ing model. Using the “Section Aggregator” OpenSees Programme command, torsional

and shear behavior of sections are treated as elastic and are executed in the analyses.

Although the slab and foundation are not represented in the models, gravity
analysis takes slab weight into account. At the base level, the columns’ degrees of

freedom are fixed. To take into account the in-plane behavior of slabs and to convey
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-language manuel), (b) Hysteretic behavior of steel02 model w/o isotropic hardening

(Opensees 3.0.3 user command -language manual).
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the seismic loads to the columns, slabs are modeled as rigid diaphragms. In addition, in
order to examine the second-order effects, the P-Delta effect is taken into consideration
in the thesis. Also, the implementation of masses at nodes at each story level is based
on the notion that they represent a dead load and a third of the live load (G+0.3Q).

Rayleigh damping is used with 5% damping ratio for the first and third modes.

2.4. Ground Motion Selection and Scaling

In this study, fragility functions are created by using multiple stripe analysis
(MSA) and cloud analysis to account for epistemic uncertainty. It takes a significant
number of ground motion data to obtain a reliable structural response. According to
ATC-58 [7] [14] the usage of 11 couples of ground motions is advised for non-linear
dynamic analysis. For multiple stripe analysis (MSA), 11 stripe which are made up of
22 pairs of ground motion recordings, are specified in this thesis to illustrate intensity
measure levels, Sa(T1), and are used to develop one of the fragility curves for each
structure . A code-based target response spectrum is initially established for each IM
level in order to choose the ground motion records for each stripe. Next, 22 couples of
ground motion recordings are chosen from the PEER Ground Motion Database using

each given target response spectrum.

The Disaster and Emergency Management Authority (AFAD) provided four de-
sign spectra based on seismic ground motion levels with 43, 72, 475, and 2475 years
return periods that took into account the structures’ site and soil class. The basic pe-
riod spectral acceleration values for the four design spectra are then calculated. Figure

2.8 shows four lateral elastic design spectra.
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Figure 2.8. 5% damped horizontal elastic design spectra.

11 stripes (IM levels) are created between 0.1 g and 2.90 g with the increments of
0.30g (0.1 g,0.25¢,0.50¢g,0.8¢g,1.10¢g,1.40 g, 1.70 g, 2.00 g, 2.30 g, 2.60 g, and 2.90
g). To select ground motions, a design spectrum for each IM level is created. While
creating the 11 design spectra for each IM level, DD1, DD2, DD3, and DD4 earthquake
ground motion levels are scaled to obtain eleven IM levels (0.1 g, 0.25 g, 0.50 g, 0.8 g,
1.10 g, 1.40 g, 1.70 g, 2.00 g, 2.30 g, 2.60 g, and 2.90 g). Eleven scaled lateral elastic

design spectra are given in Figure 2.9.

With increments of 0.30 g, 11 stripes (IM levels) are produced between 0.1 g and
2.90 g. A design spectrum is made for each IM level in order to choose the ground
motions. Earthquake ground motion levels DD1, DD2, DD3, and DD4 are scaled to
produce eleven IM levels while developing the 11 design spectra for each IM level.

Figure 2.9 presents eleven scaled lateral elastic design spectra.
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Figure 2.9. Scaled lateral elastic design spectra.

When developing the design spectra for the 11 IM levels, the DD4 spectrum,
whose Sa(T1) value is 0.525 g, is scaled to provide the design spectrum for the intensity
measure of Sa(T1)=0.1 g, the DD4 spectrum, whose Sa(T1) value is 0.525 g, is scaled
to provide the design spectrum for the intensity measure of Sa(T1)=0.25 g, the DD4
spectrum, whose Sa(T1) value is 0.525 g, is scaled to provide the design spectrum for
the intensity measure of Sa(T1)=0.50 g, the DD3 spectrum, whose Sa(T1) value is 0.756
g, is scaled to provide the design spectrum for the intensity measure of Sa(T1)=0.80
g, the DD2 spectrum, whose Sa(T1) value is 1.08 g, is scaled to provide the design
spectrum for the intensity measure of Sa(T1)=1.10 g, the DD1 spectrum, whose Sa(T1)
value is 1.314 g, is scaled to provide the design spectrum for the intensity measure of

Sa(T1)=1.40 g,the DD1 spectrum, whose Sa(T1) value is 1.314 g, is scaled to provide
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the design spectrum for the intensity measure of Sa(T1)=1.70 g, the DD1 spectrum,
whose Sa(T1) value is 1.314 g, is scaled to provide the design spectrum for the intensity
measure of Sa(T1)=2.00 g, the DD1 spectrum, whose Sa(T1) value is 1.314 g, is scaled
to provide the design spectrum for the intensity measure of Sa(T1)=2.30 g, the DD1
spectrum, whose Sa(T1) value is 1.314 g, is scaled to provide the design spectrum for
the intensity measure of Sa(T1)=2.60 g, the DD1 spectrum, whose Sa(T1) value is 1.314

g, is scaled to provide the design spectrum for the intensity measure of Sa(T1)=2.90 g.

To account for the directional uncertainty in the perpendicular components of
the records, the chosen ground motions are scaled by a ratio of 1.3. Table 2.4 lists
an illustration of the search criteria used to choose the ground motions from PEER
for assessments of structures. Figure 2.10 provides an illustration of the scaled ground
motion spectrum for the third stripe used for the analyses of 3-story building according

to the built in TSC 1975.

Regarding the cloud analysis, 44 pairs of records are chosen from the PEER
Database with uniform distribution of PGA ranging from 0.1 g to 1.5 g. Figure 2.11

shows the 5% response spectra of the selected 44 pairs of records.

Table 2.4. Ground motion search parameters for 3-story building (TSC 1975).

Fault type Strike-Slip
Magnitude 6.0 - 8.0
R;p (km) 15 - 300
Vs (m/s) 150 - 260

Spectral Ordinate Geomean

ScaleFactor 0.8-9.0

Scaling Period 0.53
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Figure 2.10. Response spectra of the scaled ground motions for the second stripe

(Sa=0.25 g) used for the analyses of 3-story building.
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3. DETERMINATION OF DAMAGE STATE LIMITS AND
INTENSITY MEASURES

3.1. Determination of the Damage State Limits

We must describe the damage states and their EDP limitations for which the
fragility functions are designed in order to establish the fragility functions for the
structures. The choice of the intensity measurements and the determination of the

damage state limitations are covered in the this section.

For the various performance levels of the structures, the threshold values of dam-
age states must be specified. Engineering demand parameters are used to assess the
structural responses to a specific degree of intensity measure (IM). Although there
are many different kinds of EDPs, they are categorized into two: global and local
EDPs. For local EDPs, end rotation and strain of structural components are em-
ployed, whereas maximum inter-story drift ratio (MIDR), permanent deformation, and
roof displacement are used for global EDPs. Local EDPs are not time efficient as the
number of structures rises. There are four buildings in this study, and several nonlinear
dynamic analyses have been done on each one of them. As a result, MIDR and top

displacement are chosen as the EDP parameters in this thesis.

By doing a pushover analysis and obtaining a pushover curve for each building,
we were able to identify the upper and lower bounds of top displacement. By analyzing
the pushover curves and idealizing them, we chose the limit values. The mean of the
limit values from all pushover curves is chosen as the limit value for that building type
and for that damage state for determining the top displacement limit value for one
building type (i.e., 3-story or 6-story) and one damage state. Regarding the MIDR
limit values, they are drawn from the Hazus MR4 Technical Manual, which is intended

for MRF constructions.
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By utilizing the global capacity curve in Equation (3.1), Lagomarsino and Giov-
inazzi (2006) were able to distinguish between the following four damage states: slight,
moderate, extensive, and complete [7]. In Figure 3.1, a pushover curve is shown to-

gether with an idealized one.

Sslight = de
Smoderate =15x de
Se:rtensive =15x (de + SSdu)

Scomplete - Sdu

The global damage threshold values for MIDR are specified in the Hazus MR4
Technical Manual. According to this document, the load bearing capacity, code class,
and building height class are taken into account when determining the MIDR threshold
values [15]. In this technical handbook, C1 is used for the structural type such as
concrete moment frame while L and M are used for height type such as low-rise and

mid-rise.

Table 3.1 lists the global damage threshold values (MIDR) that were derived
from the Hazus MR4 Technical Manual for buildings 3-story TSC 2018, 6-story TSC
2018, 3-story TSC 1975, and 6-story TSC 1975, respectively. While, Figures 3.2 and
3.3 provide pushover curves for 3 and 6-story buildings, Figures 3.4 and 3.5 provide
capacity curves for 3 and 6-story buildings. The number of stories, the axis of the
study, and the seismic design code year are shown in the explanations written over the

figures.
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Figure 3.1. (a) Example of pushover curve and damage thresholds (Source: GEM
Technical Report 2014-12 V1.0.0)), (b) Idealized pushover curve. (Source: GEM
Technical Report 2014-12 V1.0.0).
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Table 3.1. Limit values for the maximum inter-story drift ratio (MIDR)

Building

Properties

Interstory Drift at Tresholds of Damage State

Slight

Moderate

Extensive
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Figure 3.2. Pushover curves for 3-story buildings.
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Figure 3.3. Pushover curves for 6-story buildings.
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3.2. Selection of the Intensity Measures

Experimental and instrumental intensity measures are two separate categories of
intensity measurements. Two examples of experimental intensity measurements are the
EMS98 scale and the Modified Mercalli Intensity Scale (MMI). The spectral accelera-
tion (Sa), spectral velocity (Sv), spectral displacement (Sd), peak ground acceleration
(PGA), peak ground velocity (PGV), peak ground displacement (PGD), and arias in-
tensity (Al) are some examples of the instrumental intensity measurements [6]. Because
they provide more precise findings, correctly depict the structure’s response, and take
ground motion uncertainty into account, instrumental intensity measurements are the
most practical and effective intensity measures. When choosing an intensity measure,

the type of building and the number of stories are crucial factors.

Since intensity measure (IM) is a crucial fragility criterion, it must be effective
and adequate. The chosen intensity measure type should be consistent with the en-
gineering demand parameter type. The response of structures (EDP) should be well
associated with intensity measures, and intensity measures should be carefully cho-
sen. For instance, peak ground acceleration (PGA) and EDPs for low-rise and brittle
structures are closely associated, but spectral displacement (Sd) and spectral accelera-
tion (Sa) are closely related to the response of ductile structures. Period independent
intensity measurements (i.e., PGA) are more effective to utilize when the number of
buildings to be evaluated rises [6]. Buildings in this research are ductile, low and mid-
rise, and the major vibration periods are those of the first mode. As a result, the
intensity measurements are based on spectral displacements and spectral accelerations
at the initial natural vibration periods. Additionally, pga is used as IM parameter to

see its effects on the fragility functions.
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4. DEVELOPMENT OF FRAGILITY CURVES

The likelihood of going beyond a specific damage state versus various intensity
measure (IM) levels is provided by fragility functions. The statistical technique of
maximum likelihood estimation and simple logarithmic regression are employed in this
study to create fragility curves from the findings of nonlinear dynamic analyses. Nu-
merous nonlinear dynamic analyses are conducted in this study, and the results are
compiled to produce the fragility curves. Different methods can be used for nonlinear
dynamic analysis. The two most often used analysis methods for creating fragility

functions are multiple stripe analysis (MSA) and incremental dynamic analysis (IDA).

In order to determine the response for the incremental dynamic analysis (IDA)
presented by Vamvatsikos and Cornel (2002), a set of ground motion records are in-
creased incrementally up until the structure approaches the dynamic instability. From
there, the intensity measure level that correlates to the damage level is generated [16].
The content of the ground motions is corrupted by the technique’s use of unrealisti-
cally high scaling factors, which is one of its main drawbacks. However, the structural
response is determined for several sets of ground motions that are chosen to reflect
a certain degree of intensity measure for the MSA. Instead of scaling identical set of
ground motion data repeatedly, separate sets of ground motion records are utilized for
various intensity metrics. Analysts have the opportunity to restrict the scale factors of
ground motion records so as to prevent the content of such records from being tainted
since different sets of ground motion can be utilized for various IM levels. Additionally,
the uncertainty brought on by record-to-record variability is compensated for to some

extent since alternative sets of ground motions can be employed.

4.1. Multiple Stripe Analysis of the Buildings

Based on the IM parameters of Sa(T1), Sa(T1) and PGA eleven IM levels (stripes)
are created, and 22 couples of records are employed for the nonlinear dynamic analyses

for every stripe.
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The relevant ground motion pairings are applied to the structure for each type of
structure and each IM level (stripe), and the associated EDP (MIDR and Dtop) values
are stored. The results of MSA for different IM parameters (Sa, Sd and PGA) and
the EDPs (MIDR and Dtop) are given in Figures 4.1 to 4.18 which are developed in
MATLAB [17]. Also, the damage state limits in terms of the selected EDP are shown
in these figures with vertical red dotted lines. The number of EDP values exceeding

the limit values can easily be seen in the figures.
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Figure 4.1. Results of MSA for 3-story buildings, IM(Sa)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.2. Results of MSA for 6-story buildings, IM(Sa)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.



a2 [T G 0000 mmh
]
018 | ! oéaaoé\mccmmm o
O I |
0.16 ] GTE 10@IDOW@ @
' |
b liobob @ ao ao o o
E O I I | T
L a2 I £
—_ %oog £ oo @om WO s} -
E a1 £ z = =
2 7 5 @D @ED @D @ © 2
 onde| = W O .
=" y P @Emo®m @ o 000 @ =
0.06 ¢ !n!oo!mm!o 00000
H i1
o.M opmm® P O
o coml | |
O P Y |
ws w2 ! 0° w! w?
MIDR
(a) 3-story 1975 in x-direction
02
1
018 q)o! @!o a&momm
1
016 clo!cnola o!o oon @
U I
014 d cln i@c?tm omoo
— ' —
E E
=g ob ao ap oo cooo =
[y To 5 2 =
= ot o5 £ Lt
3 o Gomgoop  c0® 3
. = 0 o H
008 - .
= of @mo; ] o =
el o) !@:!csmjo ! o
H 1111
b O O CIE ) ]
w o oumnl |
o o |1 1L . L©
w* w3 02 10! w° 0! 0?
MIDR

(¢) 3-story 2018 in x-direction

38

62 [T B oo Ea06s
1
a1 [ ! wlm)!ommo oo o o
RN
016 Iuoiommo 0o
' 1
Gy |ioi3m|» om owo o
]
Lazr g_pg Zoomm @ o
1 gué § ELc:m)ooo @ o
o
L =Nings
.00 !np @XO0 o
0.6 - ”nhu! omo © 00
oM f 11 I0 o
o ¥
" o)l 11 . .
0+ w2 10° 102 LI
MICR
(b) 3-story 1975 in y-direction
02 T O O G0 00 O
1
018 0|o!o O!GBDI!TD Do [¢)
1
016 op !oo!m ! @omD @O
OO I
0ur ol i (D}iﬂ) cloooﬂnmj
1
a1y o batoaw om0 0
a1 S5 2 &
0 G058 W@ boowm
= W o
0 -
oo!cqompo o o o
o b |
F 11 1 1
am O COEmmC ) I
L I 11 )
a2 0o oo
a VamardB W R OOV . ‘ 2
w w3 w2 w! w° w! 1w
MICR

(d) 3-story 2018 in y-direction

Figure 4.3. Results of MSA for 3-story buildings, IM(Sd)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.4. Results of MSA for 6-story buildings, IM(Sd)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.5. Results of MSA for 3-story buildings, IM(PGA)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.6. Results of MSA for 6-story buildings, IM(PGA)-EDP(MIDR). The black

circles show the MIDR values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.7. Results of MSA for 3-story buildings, IM(Sa)-EDP(Dtop). The black

circles show the Dtop values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.8. Results of MSA for 6-story buildings, IM(Sa)-EDP(Dtop). The black

circles show the Dtop values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.9. Results of MSA for 3-story buildings, IM(Sd)-EDP(Dtop). The black

circles show the Dtop values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.10. Results of MSA for 6-story buildings, IM(Sd)-EDP(Dtop). The black

circles show the Dtop values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.11. Results of MSA for 3-story buildings designed per TSC 2018,
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IM(PGA)-EDP(Dtop). The black circles show the Dtop values obtained from

nonlinear dynamic analyses, and the vertical red dashed lines denote slight, moderate,

extensive and complete damage state thresholds from left to the right, respectively.
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Figure 4.12. Results of MSA for 6-story buildings, IM(PGA)-EDP(Dtop). The black

circles show the Dtop values obtained from nonlinear dynamic analyses, and the

vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.13. Direction-free results of MSA for all buildings, IM(Sa)-EDP(MIDR).

The black circles show the MIDR values obtained from nonlinear dynamic analyses,

and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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Figure 4.14. Direction-free results of MSA for all buildings, IM(Sd)-EDP(MIDR).
The black circles show the MIDR values obtained from nonlinear dynamic analyses,
and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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Figure 4.15. Direction-free results of MSA for all buildings, IM(PGA)-EDP(MIDR).

The black circles show the MIDR values obtained from nonlinear dynamic analyses,

and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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Figure 4.16. Direction-free results of MSA for all buildings, IM(Sa)-EDP(Dtop). The
black circles show the Dtop values obtained from nonlinear dynamic analyses, and
the vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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black circles show the Dtop values obtained from nonlinear dynamic analyses, and

the vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.18. Direction-free results of MSA for all buildings, IM(PGA)-EDP(Dtop).
The black circles show the Dtop values obtained from nonlinear dynamic analyses,
and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.

4.2. Cloud Analysis of the Buildings

Compared with IDA and MSA, Cloud Analysis is much more efficient, which
requires a relatively smaller number of nonlinear dynamic analyses to develop a simple
regression (e.g., linear) in the logarithmic space of structural responses versus IM based
on a set of ground motions with a wide range of intensities. The quality of the simple

linear regression is not only sensitive to the selected set of ground motions, but also
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influenced by the collapse data [18], thus may noticeably reducing the accuracy of

fragility estimates [19].
Cloud analysis uses the linear regression in the logarithmic scale by least squares

to establish the relationship between engineering demand parameter (EDP) and inten-

sity measure (IM) [20] as follows:

E[ln(EDP) = DS | IM] = In(uqs) =In(a)+ bin (IM) (4.1)

N (in( EDP — In(ug)
Z 2) (Md)] :

04 = (42)

Jj=1

where FE [In (EDP) | IM] is expected value for the logarithm of EDP given IM, p14 is
median of EDP given IM, o, is dispersion of EDP given IM, EDP; is EDP obtained
from the j-th ground motion, a and b are regression coefficients; and N is number of
ground motions. The fragility function is expressed as the damage probability that
EDP exceeds the pre-defined value threshold for each damage state (DS) conditional
on IM, which can be derived based on the above linear relationship between EDP and

IM under the lognormal probability distribution as follows:

PEDP > DS | IM,6, 8] — o | W) = l”(Dsq _ V”(IM) — In(0)

IO S

04

where ®(.) is standard normal cumulative distribution function (CDF); 6 is median
of the fragility function, i.e., In(0) = [In(DS) — In(a)]/b, and B is dispersion of the
fragility function, i.e., 8 = 04/b given IM.
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The results of Cloud Analysis for different IM parameters (Sa, Sd and PGA)
and EDPs (MIDR and Dtop) are given in Figures 4.19 to 4.36 which are developed in
MATLAB [17]. Also, the damage state limits in terms of the selected EDP are shown
in these figures with vertical red dotted lines. The number of EDP values exceeding

the limit values can easily be seen in the figures.
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Figure 4.19. Results of Cloud Analysis for 3-story buildings, IM(Sa)-EDP(MIDR).
The blue circles show the MIDR values obtained from nonlinear dynamic analyses,
and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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(d) 6-story 2018 in y-direction

26

The blue circles show the MIDR values obtained from nonlinear dynamic analyses,

and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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Figure 4.21. Results of Cloud Analysis for 3-story buildings, IM(Sd)-EDP(MIDR).
The blue circles show the MIDR values obtained from nonlinear dynamic analyses,
and the vertical red dashed lines denote slight, moderate, extensive and complete

damage state thresholds from left to the right, respectively.
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The blue circles show the Dtop values obtained from nonlinear dynamic analyses, and
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state thresholds from left to the right, respectively.
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The blue circles show the Dtop values obtained from nonlinear dynamic analyses, and

the vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.30. Results of Cloud Analysis for 6-story buildings, IM(PGA)-EDP(Dtop).

The blue circles show the Dtop values obtained from nonlinear dynamic analyses, and

the vertical red dashed lines denote slight, moderate, extensive and complete damage

state thresholds from left to the right, respectively.
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Figure 4.31. Direction-free results of Cloud Analysis for all buildings,
IM(Sa)-EDP(MIDR). The blue circles show the MIDR values obtained from nonlinear
dynamic analyses, and the vertical red dashed lines denote slight, moderate, extensive

and complete damage state thresholds from left to the right, respectively.
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Figure 4.32. Direction-free results of Cloud Analysis for all buildings,
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IM - PGA [g]

IM- PGA [g]

. . T v
_ . '
4= 0.98536 Pl .
a = 0.040985 . 4
b=13472 °! .
ol . ]
" i O:/ d/) ° &
]
o
6 ¢
(S
H ] ]
i P >4 ]
10! o - : :
s
LV i I
Ve | @ ® @
I = G B
. 58 & B
/ »= w &
w w? w? 1w
MIDR
(a) 3-story 1975
1 T P2 7
a,= 0.83585 i i L7
a=0.01589 : i %
b=11673 ® i S
0L s
10 o
|
C)I
H &/ i
Fa ]
i i
wlt i 1 1 1
! |
I ]
e 2 e
1 = 48 |
w* w3 102 1w
MIDR

Figure 4.33. Direction-free results of Cloud Analysis for all buildings,
IM(PGA)-EDP(MIDR). The blue circles show the MIDR values obtained from

(c) 6-story 1975

IM- PGA[g]

M- PGAIg]

! v, .
0,=0.73226 - l
a=0.019659 e d
b = 1.0925 i

wor ng ! z
/(J I
I
|
I
I
I
I
|
}
wlt | I
] |
| |
2 2 =
= @ o
.~ g = £
d . = 4 8,
w3 w2 1w
MIDR
(b) 3-story 2018
1 ; T
- 1 7
74= 058105 i L. :
a = 0.0081679 i i i,
b = 084843 ! b
0wt io “ )
o °
O I
I
|
I I
I I
I I
| |
wlr I !
I I
| |
b 2 £
e 3 g
= it i

w2

(d) 6-story 2018

69

nonlinear dynamic analyses, and the vertical red dashed lines denote slight, moderate,

extensive and complete damage state thresholds from left to the right, respectively.
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Figure 4.34. Direction-free results of Cloud Analysis for all buildings,
IM(Sa)-EDP(Dtop). The blue circles show the Dtop values obtained from nonlinear
dynamic analyses, and the vertical red dashed lines denote slight, moderate, extensive

and complete damage state thresholds from left to the right, respectively.
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Figure 4.35. Direction-free results of Cloud Analysis for all buildings,
IM(Sd)-EDP(Dtop). The blue circles show the Dtop values obtained from nonlinear
dynamic analyses, and the vertical red dashed lines denote slight, moderate, extensive

and complete damage state thresholds from left to the right, respectively.
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Figure 4.36. Direction-free results of Cloud Analysis for all buildings,
IM(PGA)-EDP(Dtop). The blue circles show the Dtop values obtained from
nonlinear dynamic analyses, and the vertical red dashed lines denote slight, moderate,

extensive and complete damage state thresholds from left to the right, respectively.

4.3. Development of Fragility Functions for the Buildings using the MSA
Results

The maximum likelihood estimation (MLE) method is utilized to generate the
fragility functions. The procedure of the MLE method is explained in the article written
by Jack Baker (2015). The study (Baker, 2015) defines the statistical methods to get

the fragility functions parameters by using the nonlinear dynamic analysis results.
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Fragility functions are obtained by using a lognormal cumulative distribution function
which is given in Equation (4.4). The goal is to find the best 6 and [ values which are

the median and logarithmic standard deviation of the fragility function, respectively.

P(DS/IM > z) = ¢ (%) | (4.4)

P(DS/IM > x) is probability of exceeding a damage state (DS) for a given
intensity measure (IM=x). ¢ () is the standard normal cumulative distribution function

and 0, 5 are the median of /M and the standard deviation of In(IM), respectively.

By using the maximum likelihood estimation (MLE) method, 6 and S are pre-
dicted. For a given IM level, the probability of observing z; collapses in n; ground

motions for a certain IM is obtained by the binomial distribution in Equation (4.5).

P(z; collapses inn; ground motions) = (nj)pjj (1 —p;)"i . (4.5)
%

In equation (4.5), p; is the probability of ground motions with IM=xj to exceed
a DS for a given building that is previously defined as P(DS/IM > xz) in Equation

(4.4). The maximum likelihood method provides the highest probability of p;.

When different IM levels are used for the analyses, the likelihood function that
is the product of the binomial probabilities (from Equation (4.5)) at each IM level is
defined by using Equation (4.6).
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Likelihood = H (Zj>pj](1 —p;)"T, (4.6)
j J

If p; is written in the Likelihood equation, Equation (4.6) is converted to;

Likelihood = ﬁ (2]3)@5 (%) (1-¢ (%) )i (4.7)

Since it is easier to maximize a sum equation than maximizing a product equation,
Equation (4.6) is converted into Equation (4.7) by taking the natural logarithm of both
sides of Equation (4.7).

The 6 and /3 values which maximize Equation (4.8) are selected as the parameters

of the fragility functions.

10,8} = arggﬁmaxji {In <Zj> + Ing (%) +(n; — 2)In(l1— ¢ (M) } .

By using the MSA results and the MLE method explained above, the fragility
functions are developed for the 3 and 6-story buildings. The fragility curves and the
fragility parameters’ values are given in Figures 4.37 to 4.54 and Tables 4.1 to 4.6.
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Figure 4.37. Fragility curves for 3-story buildings obtained from MSA (IM: Sd and

EDP: MIDR).
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Figure 4.38. Fragility curves for 6-story buildings obtained from MSA (IM: Sd and
EDP: MIDR).
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Figure 4.39. Fragility curves for 3-story buildings obtained from MSA (IM: Sa and

EDP: MIDR).
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Figure 4.40. Fragility curves for 6-story buildings obtained from MSA (IM: Sa and
EDP: MIDR).
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Figure 4.41. Fragility curves for 3-story buildings obtained from MSA (IM: PGA and
EDP: MIDR).
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Figure 4.42. Fragility curves for 6-story buildings obtained from MSA (IM: PGA and
EDP: MIDR).



=
-
T
L
=
-
T

=
-
T
I

s Slight

Frob. of sxzsadancs
=
(5]

Prob. of axcesdance
= o=
- (L]

=
w
T
L
=
w
T

—Sight

Moderate
Extensive | 4
s C0mMplete

a2y m— \loderate | | 02r
Extensive
o1 — Complete | | o1
o \ . . . . L . 0
L1} LT 1 15 02 025 3 [ -] [LE ] L)
IM - Sd (T} [m]
(a) 3-story 1975 in x-direction
1 1
LE) [LE]
s [LE]

Prob. of axzsadancs
-
N

Prob. of axcesdancs
-
[

0B 61 015 82 02 03 035 04
IM - Sd (T} m]

(b) 3-story 1975 in y-direction

— S |ight
== Moderate

Extensive | |
—Complete

4 04
03 03
— S|ight
02 Moderate | 02
Extensive
o1 s Comnplete | | o1
o L ' . L . ' L 0
L] o1 02 03 04 05 06 oy LY ] L]

IM - Sd (T} [m]

(¢) 3-story 2018 in x-direction

a1 02 03 04 05 06 07 08
IM - Sd (T, } fm]

(d) 3-story 2018 in y-direction

81

Figure 4.43. Fragility curves for 3-story buildings obtained from MSA (IM: Sd and

EDP: Dtop).
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Figure 4.44. Fragility curves for 6-story buildings obtained from MSA (IM: Sd and

EDP: Dtop).
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Figure 4.45. Fragility curves for 3-story buildings obtained from MSA (IM: Sa and

EDP: Dtop).
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Figure 4.46. Fragility curves for 6-story buildings obtained from MSA (IM: Sa and
EDP: Dtop).
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Figure 4.47. Fragility curves for 3-story buildings obtained from MSA (IM: PGA and
EDP: Dtop).
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Figure 4.48. Fragility curves for 6-story buildings obtained from MSA (IM: PGA and
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Figure 4.49. Direction-free fragility curves for all buildings obtained from MSA (IM:

Sd and EDP: MIDR).

Table 4.1. Parameters of direction-free fragility curves obtained from MSA (EDP =
MIDR, IM = Sd(m). (©=Sd[m]|, f=In(Sd[m]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.0166 | 0.0841 | 0.0239 | 0.2049 | 0.0433 | 0.6319 | 0.0713 | 0.7430
3-2018 0.0202 | 0.9290 | 0.0385 | 0.8578 | 0.0785 | 0.7096 | 0.1238 | 0.8307
6-1975 0.0180 | 0.0784 | 0.0311 | 0.2759 | 0.0635 | 0.4858 | 0.0691 | 0.5071
6-2018 0.0143 | 0.0976 | 0.0306 | 0.0902 | 0.0641 | 0.0564 | 0.2907 | 0.6871
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Figure 4.50. Direction-free fragility curves for all buildings obtained from MSA (IM:

Sa and EDP: MIDR).

Table 4.2. Parameters of direction-free fragility curves obtained from MSA (EDP =
MIDR, IM = Sa(g). (©=Salg], /=In(Salg]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.2452 | 0.0851 | 0.3535 | 0.2049 | 0.6404 | 0.6319 | 1.0545 | 0.7430
3-2018 0.2969 | 0.9291 | 0.5666 | 0.8578 | 1.1551 | 0.7095 | 1.8219 | 0.8306
6-1975 0.2523 | 0.0803 | 0.4356 | 0.2760 | 0.8902 | 0.4851 | 0.9676 | 0.5071
6-2018 0.1093 | 0.0982 | 0.2336 | 0.0909 | 0.4901 | 0.0576 | 2.2223 | 0.6871
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Figure 4.51. Direction-free fragility curves for all buildings obtained from MSA (IM:
PGA and EDP: MIDR).

Table 4.3. Parameters of direction-free fragility curves obtained from MSA (EDP =
MIDR, IM = PGA(g). (6=PGA[g], f=In(PGAJg]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.1748 | 0.3658 | 0.2725 | 0.3745 | 0.4637 | 0.5151 | 0.6862 | 0.5810
3-2018 0.2748 | 0.7006 | 0.5058 | 0.4628 | 0.9070 | 0.2731 | 1.1970 | 0.2804
6-1975 0.1865 | 0.3594 | 0.3341 | 0.3414 | 0.6497 | 0.3929 | 0.7202 | 0.4030
6-2018 0.2074 | 0.0727 | 0.3764 | 0.2872 | 0.7751 | 0.2201 | 1.0884 | 0.4913
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Figure 4.52. Direction-free fragility curves for all buildings obtained from MSA (IM:

Sd and EDP: Dtop)

Table 4.4. Parameters of direction-free fragility curves obtained from MSA (EDP =
Dtop, IM = Sd(m). (©=Sd[m], f=In(Sd[m]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.0160 | 0.0878 | 0.0179 | 0.0739 | 0.0417 | 0.4906 | 0.0620 | 0.6598
3-2018 0.0136 | 0.8278 | 0.0245 | 0.9323 | 0.0715 | 0.6879 | 0.1127 | 0.7481
6-1975 0.0252 | 0.2049 | 0.0423 | 0.3520 | 0.0541 | 0.3033 | 0.0651 | 0.4925
6-2018 0.0618 | 0.0631 | 0.1846 | 1.1653 | 0.6108 | 1.0393 | 1.1170 | 0.9343
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Figure 4.53. Direction-free fragility curves for all buildings obtained from MSA (IM:

Sa and EDP: Dtop).

Table 4.5. Parameters of direction-free fragility curves obtained from MSA (EDP =
Dtop, IM = Sa(g). (©6=Salg|, f=In(Sa[g]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.2368 | 0.0897 | 0.2637 | 0.0712 | 0.6168 | 0.4906 | 0.9174 | 0.6598
3-2018 0.2001 | 0.8278 | 0.3604 | 0.9322 | 1.0518 | 0.6879 | 1.6582 | 0.7481
6-1975 0.3535 | 0.2049 | 0.5922 | 0.3519 | 0.7574 | 0.3032 | 0.9122 | 4925
6-2018 0.4725 | 0.0622 | 1.4112 | 1.1653 | 4.6700 | 1.0394 | 8.5401 | 0.9343
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Figure 4.54. Direction-free fragility curves for all buildings obtained from MSA (IM:
PGA and EDP: Dtop).

Table 4.6. Parameters of direction-free fragility curves obtained from MSA (EDP =
Dtop, IM = PGA(g). (6=PGA[g|, =In(PGAlg]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.1536 | 0.3680 | 0.2356 | 0.3062 | 0.4391 | 0.4041 | 0.5979 | 0.5383
3-2018 0.2170 | 0.6759 | 0.2845 | 0.6849 | 0.8740 | 0.2978 | 1.1395 | 0.2816
6-1975 0.2587 | 0.3507 | 0.4127 | 0.3793 | 0.5198 | 0.3547 | 0.6724 | 0.3552
6-2018 0.3260 | 0.3554 | 0.8574 | 0.8404 | 2.2388 | 0.7902 | 1.5347 | 0.2147
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4.4. Development of Fragility Functions for the Buildings using the Cloud

Analyses Results

By using the Cloud Analysis’ results (Figures 4.19 to 4.36) , the fragility functions

are developed for the 3-story and 6-story buildings. The fragility curves and the fragility

parameters’ values are given in Figures 4.55 to 4.72 and Tables 4.7 to 4.12.

BB =2 8 2
& ;| W =m @
T T T T T T

Prob. of axzeadarce

=
w
T

s Slight
e \oderate
Extensive | |

=
1Y)
T

Complete

0 05 01 015 02 025 03 035 04 045 05
IM—&:IfTi)[m]

(a) 3-story 1975 in x-direction

—Slight

=====Moderate
Extensive | |
Complete

] II,‘S 1‘ 15
IM - Sd (T I) [m]

(¢) 3-story 2018 in x-direction

=22 2 2 =52 =
a W ;W s s o=
T T T

Prob. of axcesdance

=
w

— Slight
e \oderate
Extensive | |

=
1Y)

Complete

O 005 01 045 02 035 A3 Q35 04 045 05
IM - Sd (T, } fm]

(b) 3-story 1975 in y-direction

wf

— Slight
s oderate
Extensive |4
Complete

o 01 n,lz n,la D,‘d n,ls ll,.ﬁ nj? n,‘n e 1
1M - Sd (T} fm]

(d) 3-story 2018 in y-direction

Figure 4.55. Fragility curves for 3-story buildings obtained from cloud analyses (IM:
Sd and EDP: MIDR).
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Figure 4.56. Fragility curves for 6-story buildings obtained from cloud analyses (IM:
Sd and EDP: MIDR).
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Figure 4.57. Fragility curves for 3-story buildings obtained from cloud analyses (IM:

Sa and EDP: MIDR).
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Figure 4.58. Fragility curves for 6-story buildings obtained from cloud analyses (IM:

Sa and EDP: MIDR).
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Figure 4.59. Fragility curves for 3-story buildings obtained from cloud analyses (IM:
PGA and EDP: MIDR).
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Figure 4.60. Fragility curves for 6-story buildings obtained from cloud analyses (IM:
PGA and EDP: MIDR).
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Figure 4.61. Fragility curves for 3-story buildings obtained from cloud analyses (IM:
Sd and EDP: Dtop).
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Figure 4.62. Fragility curves for 6-story buildings obtained from cloud analyses (IM:
Sd and EDP: Dtop).
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Figure 4.63. Fragility curves for 3-story buildings obtained from cloud analyses (IM:
Sa and EDP: Dtop).
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Figure 4.64. Fragility curves for 6-story buildings obtained from cloud analyses (IM:
Sa and EDP: Dtop).
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Figure 4.65. Fragility curves for 3-story buildings obtained from cloud analyses (IM:
PGA and EDP: Dtop).
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Figure 4.66. Fragility curves for 6-story buildings obtained from cloud analyses (IM:
PGA and EDP: Dtop).
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Figure 4.67. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: Sd and EDP: MIDR).

Table 4.7. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = MIDR, IM = Sd(m). (©=Sd[m], f=In(Sd[m]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.0209 | 0.5830 | 0.0295 | 0.5830 | 0.0577 | 0.5830 | 0.1128 | 0.5830
3-2018 0.0284 | 0.4254 | 0.0521 | 0.4254 | 0.1361 | 0.4254 | 0.3209 | 0.4254
6-1975 0.0268 | 0.4569 | 0.0393 | 0.4569 | 0.0825 | 0.4569 | 0.1729 | 0.4569
6-2018 0.0491 | 0.3566 | 0.1143 | 0.3566 | 0.4215 | 0.3566 | 1.3577 | 0.3566
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Figure 4.68. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: Sa and EDP: MIDR).

Table 4.8. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = MIDR, IM = Sa(g). (6=Sa|g], f=In(Sa[g]))

Slight Moderate Extensive Complete
Building Type
© g © g © G o 5
3-1975 0.3096 | 0.5830 | 0.4367 | 0.5830 | 0.8538 | 0.5830 | 1.6695 | 0.5830
3-2018 0.4183 | 0.4254 | 0.7667 | 0.4254 | 2.0031 | 0.4254 | 4.7212 | 0.4254
6-1975 0.3759 | 0.4569 | 0.5507 | 0.4569 | 1.1559 | 0.4569 | 2.4219 | 0.4569
6-2018 0.3754 | 0.3566 | 0.8740 | 0.3566 | 3.2229 | 0.3566 | 10.3802 | 0.3566
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Figure 4.69. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: PGA and EDP: MIDR).

Table 4.9. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = MIDR, IM = PGA(g). (6=PGA][g|, f=In(PGA[g]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.2098 | 0.7314 | 0.2974 | 0.7314 | 0.5871 | 0.7314 | 1.1590 | 0.7314
3-2018 0.2856 | 0.6702 | 0.5386 | 0.6702 | 1.4724 | 0.6702 | 3.6133 | 0.6702
6-1975 0.2602 | 0.7161 | 0.3904 | 0.7161 | 0.8586 | 0.7161 | 1.8848 | 0.7161
6-2018 0.3436 | 0.6849 | 0.7918 | 0.6849 | 2.8734 | 0.6849 | 9.1232 | 0.6849
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Figure 4.70. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: Sd and EDP: Dtop).

Table 4.10. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = Dtop, IM = Sd(m). (©=Sd[m], f=In(Sd[m]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.0212 | 0.4957 | 0.0296 | 0.4957 | 0.0519 | 0.4957 | 0.0789 | 0.4957
3-2018 0.0232 | 0.3269 | 0.0338 | 0.3269 | 0.1051 | 0.3269 | 0.1816 | 0.3269
6-1975 0.0365 | 0.3080 | 0.0517 | 0.3080 | 0.0622 | 0.3080 | 0.0863 | 0.3080
6-2018 0.0874 | 0.3132 | 0.1411 | 0.3132 | 0.2590 | 0.3132 | 0.4518 | 0.3132
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Figure 4.71. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: Sa and EDP: Dtop).

Table 4.11. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = Dtop, IM = Sa(g). (©=Salg], S=In(Salg]))

Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.3138 | 0.4957 | 0.4381 | 0.4957 | 0.7682 | 0.4957 | 1.1677 | 0.4957
3-2018 0.3414 | 0.3269 | 0.4970 | 0.3269 | 1.5470 | 0.3269 | 2.6723 | 0.3269
6-1975 0.5113 | 0.3080 | 0.7236 | 0.3080 | 0.8720 | 0.3080 | 1.2085 | 0.3080
6-2018 0.6682 | 0.3132 | 1.0789 | 0.3132 | 1.9803 | 0.3132 | 3.4542 | 0.3132
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Figure 4.72. Direction-free fragility curves for all buildings obtained from cloud

analyses (IM: PGA and EDP: Dtop).

Table 4.12. Parameters of direction-free fragility curves obtained from cloud analyses

(EDP = Dtop, IM = PGA(g). (6=PGAlg], S=In(PGAJg)))

Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} 6]
3-1975 0.2099 | 0.7547 | 0.2996 | 0.7547 | 0.5450 | 0.7547 | 0.8516 | 0.7547
3-2018 0.2286 | 0.7116 | 0.3463 | 0.7116 | 1.2156 | 0.7116 | 2.2249 | 0.7116
6-1975 0.3670 | 0.7356 | 0.5433 | 0.7356 | 0.6706 | 0.7356 | 0.9696 | 0.7356
6-2018 0.6437 | 0.7968 | 1.0700 | 0.7968 | 2.0377 | 0.7968 | 3.6760 | 0.7968
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5. RESULTS AND DISCUSSIONS

In this study, in order to account for epistemic uncertainty in the derivation
of fragility functions, fragility functions are derived by using two different methods
namely, multiple stripe analysis and cloud analysis for low-rise and mid-rise (3 and 6-
stories) MRF, RC buildings which are designed by considering the minimum conditions
of Turkish Seismic Codes released in 1975 and 2018. The buildings’ responses are
obtained by performing multiple stripe analysis (MSA) and cloud analysis. The fragility

curves are compared conveniently in Figures 5.1 to 5.6 and in Tables 5.1 to 5.12.

As can be seen from Figures 5.1 to 5.6, fragility curves are examined for four
damage levels. Firstly, for the 3-story buildings, it can be observed that for slight,
moderate and extensive damage levels both methods give similar results while for
complete damage state they give slightly different results. On the other hand, when
the curves are superimposed for the 6-story buildings, for complete damage state,

methods give different results.

So, it can be observed that different methods can result in different fragility
curves. One of the reason of this situation is because while regression analysis is
performed for the cloud analysis, maximum likelihood estimation method is used for

multiple stripe analysis.

In order to increase the representativeness of a fragility function, combinations
of the fragility functions can be taken for each fragility curve. One can combine the
fragility functions developed via different methods as in the logic tree. This is a common
way to handle the epistemic uncertainty. In addition, logic trees are also used to allow
multiple models to be considered with weights that reflected the degree of belief of the
analysts in the alternative models. In this way, all proposed models that were credible

could be considered without having to select a single best model.
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Figure 5.1. Comparison of direction-free fragility curves of MSA and Cloud Analysis
of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story TSC 2018, (d) 6-story TSC 1975, IM(Sa)-EDP(MIDR).



Table 5.1. Parameters of direction-free fragility curves obtained from MSA

(IM(Sa)-EDP(MIDR)).
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Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} Ié]
3-1975 0.2452 | 0.0851 | 0.3535 | 0.2049 | 0.6404 | 0.6319 | 1.0545 | 0.7430
3-2018 0.2969 | 0.9291 | 0.5666 | 0.8578 | 1.1551 | 0.7095 | 1.8219 | 0.8306
6-1975 0.2523 | 0.0803 | 0.4356 | 0.2760 | 0.8902 | 0.4851 | 0.9676 | 0.5071
6-2018 0.1093 | 0.0982 | 0.2336 | 0.0909 | 0.4901 | 0.0576 | 2.2223 | 0.6871

Table 5.2. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(Sa)-EDP(MIDR)).

Slight Moderate Extensive Complete
Building Type
o g © g © 5 o 5
3-1975 0.3096 | 0.5830 | 0.4367 | 0.5830 | 0.8538 | 0.5830 | 1.6695 | 0.5830
3-2018 0.4183 | 0.4254 | 0.7667 | 0.4254 | 2.0031 | 0.4254 | 4.7212 | 0.4254
6-1975 0.3759 | 0.4569 | 0.5507 | 0.4569 | 1.1559 | 0.4569 | 2.4219 | 0.4569
6-2018 0.3754 | 0.3566 | 0.8740 | 0.3566 | 3.2229 | 0.3566 | 10.3802 | 0.3566
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Figure 5.2. Comparison of direction-free fragility curves of MSA and Cloud Analysis

of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story TSC 2018, (d) 6-story TSC 1975, IM(Sd)-EDP(MIDR).



Table 5.3. Parameters of direction-free fragility curves obtained from MSA

(IM(Sd)-EDP(MIDR)).
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Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} Ié]
3-1975 0.0166 | 0.0841 | 0.0239 | 0.2049 | 0.0433 | 0.6319 | 0.0713 | 0.7430
3-2018 0.0202 | 0.9290 | 0.0385 | 0.8578 | 0.0785 | 0.7096 | 0.1238 | 0.8307
6-1975 0.0180 | 0.0784 | 0.0311 | 0.2759 | 0.0635 | 0.4858 | 0.0691 | 0.5071
6-2018 0.0143 | 0.0976 | 0.0306 | 0.0902 | 0.0641 | 0.0564 | 0.2907 | 0.6871

Table 5.4. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(Sd)-EDP(MIDR)).

Slight Moderate Extensive Complete
Building Type
G s S B S B o p
3-1975 0.0209 | 0.5830 | 0.0295 | 0.5830 | 0.0577 | 0.5830 | 0.1128 | 0.5830
3-2018 0.0284 | 0.4254 | 0.0521 | 0.4254 | 0.1361 | 0.4254 | 0.3209 | 0.4254
6-1975 0.0268 | 0.4569 | 0.0393 | 0.4569 | 0.0825 | 0.4569 | 0.1729 | 0.4569
6-2018 0.0491 | 0.3566 | 0.1143 | 0.3566 | 0.4215 | 0.3566 | 1.3577 | 0.3566
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Figure 5.3. Comparison of direction-free fragility curves of MSA and Cloud Analysis
of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story TSC 2018, (d) 6-story TSC 1975, IM(PGA)-EDP(MIDR).
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Table 5.5. Parameters of direction-free fragility curves obtained from MSA

(IM(PGA)-EDP(MIDR)).

Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} Ié]
3-1975 0.1748 | 0.3658 | 0.2725 | 0.3745 | 0.4637 | 0.5151 | 0.6862 | 0.5810
3-2018 0.2748 | 0.7006 | 0.5058 | 0.4628 | 0.9070 | 0.2731 | 1.1970 | 0.2804
6-1975 0.1865 | 0.3594 | 0.3341 | 0.3414 | 0.6497 | 0.3929 | 0.7202 | 0.4030
6-2018 0.2074 | 0.0727 | 0.3764 | 0.2872 | 0.7751 | 0.2201 | 1.0884 | 0.4913

Table 5.6. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(PGA)-EDP(MIDR)).

Slight Moderate Extensive Complete
Building Type
G s S B S B o p
3-1975 0.2098 | 0.7314 | 0.2974 | 0.7314 | 0.5871 | 0.7314 | 1.1590 | 0.7314
3-2018 0.2856 | 0.6702 | 0.5386 | 0.6702 | 1.4724 | 0.6702 | 3.6133 | 0.6702
6-1975 0.2602 | 0.7161 | 0.3904 | 0.7161 | 0.8586 | 0.7161 | 1.8848 | 0.7161
6-2018 0.3436 | 0.6849 | 0.7918 | 0.6849 | 2.8734 | 0.6849 | 9.1232 | 0.6849
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Figure 5.4. Comparison of direction-free fragility curves of MSA and Cloud Analysis
of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story TSC 2018, (d) 6-story TSC 1975, IM(Sa)-EDP(Dtop).
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Table 5.7. Parameters of direction-free fragility curves obtained from MSA

(IM(Sa)-EDP(Dtop)).

Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} Ié]
3-1975 0.2368 | 0.0897 | 0.2637 | 0.0712 | 0.6168 | 0.4906 | 0.9174 | 0.6598
3-2018 0.2001 | 0.8278 | 0.3604 | 0.9322 | 1.0518 | 0.6879 | 1.6582 | 0.7481
6-1975 0.3535 | 0.2049 | 0.5922 | 0.3519 | 0.7574 | 0.3032 | 0.9122 | 4925
6-2018 0.4725 | 0.0622 | 1.4112 | 1.1653 | 4.6700 | 1.0394 | 8.5401 | 0.9343

Table 5.8. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(Sa)-EDP(Dtop)).

Slight Moderate Extensive Complete
Building Type
G s S B S B o p
3-1975 0.3138 | 0.4957 | 0.4381 | 0.4957 | 0.7682 | 0.4957 | 1.1677 | 0.4957
3-2018 0.3414 | 0.3269 | 0.4970 | 0.3269 | 1.5470 | 0.3269 | 2.6723 | 0.3269
6-1975 0.5113 | 0.3080 | 0.7236 | 0.3080 | 0.8720 | 0.3080 | 1.2085 | 0.3080
6-2018 0.6682 | 0.3132 | 1.0789 | 0.3132 | 1.9803 | 0.3132 | 3.4542 | 0.3132
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Figure 5.5. Comparison of direction-free fragility curves of MSA and Cloud Analysis
of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story T'SC 2018, (d) 6-story T'SC 1975, IM(Sd)-EDP(Dtop).



Table 5.9. Parameters of direction-free fragility curves obtained from MSA

(IM(Sd)-EDP(Dtop)).
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Slight Moderate Extensive Complete
Building Type
© g © g © G © g
3-1975 0.0160 | 0.0878 | 0.0179 | 0.0739 | 0.0417 | 0.4906 | 0.0620 | 0.6598
3-2018 0.0136 | 0.8278 | 0.0245 | 0.9323 | 0.0715 | 0.6879 | 0.1127 | 0.7481
6-1975 0.0252 | 0.2049 | 0.0423 | 0.3520 | 0.0541 | 0.3033 | 0.0651 | 0.4925
6-2018 0.0618 | 0.0631 | 0.1846 | 1.1653 | 0.6108 | 1.0393 | 1.1170 | 0.9343

Table 5.10. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(Sd)-EDP(Dtop)).

Slight Moderate Extensive Complete
Building Type
G s S B S B o p
3-1975 0.0212 | 0.4957 | 0.0296 | 0.4957 | 0.0519 | 0.4957 | 0.0789 | 0.4957
3-2018 0.0232 | 0.3269 | 0.0338 | 0.3269 | 0.1051 | 0.3269 | 0.1816 | 0.3269
6-1975 0.0365 | 0.3080 | 0.0517 | 0.3080 | 0.0622 | 0.3080 | 0.0863 | 0.3080
6-2018 0.0874 | 0.3132 | 0.1411 | 0.3132 | 0.2590 | 0.3132 | 0.4518 | 0.3132
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Figure 5.6. Comparison of direction-free fragility curves of MSA and Cloud Analysis

of all buildings for different damage states (a) 3-story TSC 2018 (b) 3-story T'SC
1975, (c) 6-story TSC 2018, (d) 6-story TSC 1975, IM(PGA)-EDP(Dtop).
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Table 5.11. Parameters of direction-free fragility curves obtained from MSA

(IM(PGA)-EDP(Dtop)).

Slight Moderate Extensive Complete
Building Type
G} B O 6] ) o] S} Ié]
3-1975 0.1536 | 0.3680 | 0.2356 | 0.3062 | 0.4391 | 0.4041 | 0.5979 | 0.5383
3-2018 0.2170 | 0.6759 | 0.2845 | 0.6849 | 0.8740 | 0.2978 | 1.1395 | 0.2816
6-1975 0.2587 | 0.3507 | 0.4127 | 0.3793 | 0.5198 | 0.3547 | 0.6724 | 0.3552
6-2018 0.3260 | 0.3554 | 0.8574 | 0.8404 | 2.2388 | 0.7902 | 1.5347 | 0.2147

Table 5.12. Parameters of direction-free fragility curves obtained from Cloud Analysis

(IM(PGA)-EDP(Dtop)).

Slight Moderate Extensive Complete
Building Type
G s S B S B o p
3-1975 0.2099 | 0.7547 | 0.2996 | 0.7547 | 0.5450 | 0.7547 | 0.8516 | 0.7547
3-2018 0.2286 | 0.7116 | 0.3463 | 0.7116 | 1.2156 | 0.7116 | 2.2249 | 0.7116
6-1975 0.3670 | 0.7356 | 0.5433 | 0.7356 | 0.6706 | 0.7356 | 0.9696 | 0.7356
6-2018 0.6437 | 0.7968 | 1.0700 | 0.7968 | 2.0377 | 0.7968 | 3.6760 | 0.7968
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6. CONCLUSION

In this study, fragility functions are developed by using two different methods
namely, cloud analysis and multiple stripe analysis in order to address the effects of
modeling uncertainty (i.e. for epistemic uncertainty) on the fragility functions derived
for low-rise and mid-rise (3 and 6-story), reinforced concrete (RC), moment-resisting
frame (MRF) buildings, which are designed as per the Turkish Seismic Codes (TSC)
released in 1975 and 2018.

To generate fragility functions, nonlinear dynamic analyses of study buildings
are performed within the frameworks of cloud analysis and multiple stripe analysis
(MSA), separately. Spectral displacement (Sd), spectral acceleration (Sa) and peak
ground acceleration (PGA) are selected as the intensity measures (IM) whereas the
maximum inter-story drift ratio (MIDR) and top displacement (Dtop) are used as
engineering demand parameters (EDP). The fragility functions are developed for four
damage states which are defined as slight damage, moderate damage, extensive damage,

and complete damage.

For both 3 and 6-story buildings and for all IMs and EDPs, the fragility curves de-
rived through cloud and multiple stripe analyses are well compared with each other for
lower damage state levels, i.e. for slight and moderate damage states. When the dam-
age level increases, i.e. for extensive and complete damage states, the estimated median
values of the fragility curves are getting very different. In general, fragility curves re-
sulting from multiple stripe analyses estimate higher damage exceedance probabilities
than the curves obtained from cloud analyses. One exception to this is that the cases
for 6-story TSC 2018 building in which the IMs are Sa and Sd, and the EDP is top
displacement. In these cases, even the shapes of the curves are dissimilar. Another
observation is that the differences between the fragility functions resulting from cloud
and multiple stripe analyses are much more prominent for the buildings designed as
per the TSC 2018. This might be related to the ductile behavior of the buildings and

the number of inelastic displacement responses reaching or not reaching the damage
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state thresholds, which are assessed with different numbers of ground motion records

in multiple stripe and cloud analyses.

Thus, different analytical frameworks/approaches, i.e. cloud and multiple stripe
analyses, produces different fragility functions as it might be expected. In order to
increase the representativeness of a fragility function, combinations of the fragility
functions can be taken for each fragility curve. One can combine the fragility functions
developed via different methods as in the logic tree. This is a common way to handle
the epistemic uncertainty. In addition, logic trees are also used to allow multiple
models to be considered with weights that reflected the degree of belief of the analysts
in the alternative models. In this way, all proposed models that were credible could be

considered without having to select a single best model.
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APPENDIX A: REINFORCEMENT DETAILINGS OF
LATERAL LOAD CARRYING SYSTEMS

The model and reinforcement of designed buildings for 3 and 6-story buildings
designed as per TSC 2018 and TSC 1975 are given in this section. The following tables
summarize the selected amount of steel bars for 3 and 6-story buildings designed as

per TSC 2018 and TSC 1975.
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Figure A.1. 3-story building model TSC 2018.
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Figure A.2. 3-story building model TSC 2018. cont.
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Figure A.4. 3-story building model TSC 2018. cont.
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Figure A.6. 3-story building model designed per TSC 2018.
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Figure A.7. Reinforcement for 3-story building model designed per TSC 2018.
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Figure A.8. Reinforcement for 3-story building model designed per TSC 2018. cont.
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Figure A.10. 6-story building model TSC 2018.
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Figure A.11. 6-story building model TSC 2018. cont.
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Figure A.12. 6-story building model TSC 2018. cont.
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Figure A.15. 6-story building model TSC 2018. cont.
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Figure A.17. Reinforcement for 6-story building model designed per TSC 2018 (a)

Beams between 5-6 story (b) Beams between 1-4 story
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Figure A.18. 6-story building model TSC 1975.
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Figure A.19. 6-story building model TSC 1975. cont.
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Figure A.20. 6-story building model TSC 1975.

cont.
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Figure A.21. 6-story building model TSC 1975. cont.
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Figure A.22. 6-story building model TSC 1975. cont.
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Figure A.23. 6-story building model TSC 1975. cont.
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Figure A.24. Reinforcement for 6-story building model designed per TSC 1975 (a)

Columns between 3-6 story (b) Columns between 1-2 story



B1 B2 B3
Top Bottom Top Bottom Top Bottom
4024 4022 4024 4022 4022 4022
B17 B18 B19
Top Bottom Top Bottom Top Bottom
4024 422 424 422 422 422
B15 B16 B28
Top Bottom Top Bottom Top Bottom
4022 4022 4022 4022 4022 4022
B29 B31 B32
Top Bottom Top Bottom Top Bottom
4022 4022 4022 4022 4022 4022
(a)
Bl B2 B3
Top Bottom Top Bottom Top Bottom
4028 4022 4028 4022 4028 4022
20024 - 2022 - 2022 -
B17 B18 B19
Top Bottom Top Bottom Top Bottom
4028 422 4028 4022 4028 4022
2022 - 2022 - 2022 -
B15 B16 B28
Top Bottom Top Bottom Top Bottom
4022 4022 4022 4022 4022 4022
B29 B31 B32
Top Bottom Top Bottom Top Bottom
4022 4022 4022 4022 4022 4022
(b)

151

Figure A.25. Reinforcement for 6-story building model designed per TSC 1975 (a)

Beams between 5-6 story (b) Beams between 1-4 story
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Figure A.26. 3-story building model TSC 1975.
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Figure A.27. 3-story building model TSC 1975. cont.
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Figure A.28. 3-story building model TSC 1975. cont.



155

A B C D E
59 §m) 3 jm) [ 3 fm) L 58 m)
4 . B3040 B340 lil B3040 r-I B340 i
cgam - C40x40 © ca0pd0 =
E ¢ g g 2 =
g 8= 2l 38 a(3 HE
w m | -] i il
Cd%éﬂ] C40x40 C$4ﬂ
) B30 /40 B30/ 40 B30 40 B30 /40
3 [ B1E [TFT] B30 w BT i
E g Te Tle *la g
ﬁ a m § [} 5 =1} E 11} g E
} B30 40 B30/ 40 B30V 40 B30 /40
2 . B8 * B28 W B31 W GE i
=] =2 k=4 s . E
§ i e 38 : 38
m il o i o
b
E s
. B30MO B340 B3040 B3040
1 L% Bz w B11 w B10 W B9 #
Figure A.29. 3-story building model TSC 1975.
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Figure A.30. Reinforcement of columns for 3-story building model designed per TSC
1975.



156

Figure A.31. Reinforcement of beams for 3-story building model designed per TSC
1975.



