
DESIGN OF A SOCIAL ROBOT AND SAFE SOCIAL NAVIGATION WITH

DEEP REINFORCEMENT LEARNING

by

Kemal Bektaş

B.S., Mechanical Engineering, Boğaziçi University, 2018

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Systems and Control Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my supervisor, Prof. H.Işıl Bozma

for all of her support, assistance, and encouragement during the thesis.

I would like to thank Assoc. Prof. Emre Uğur for his support during the thesis

and accepting to be in my jury. I also would like to thank Prof. Erhan Öztop for

accepting to be in my thesis jury. I also would like to express my gratitude to academi-

cians of Boğaziçi University that make a stand for academic freedom for more than a

year.

Being a part of the Intelligent System Laboratory did not only make me a robotics

engineer, but also broadened my perspective about life. So I would like to express

my thanks and appreciation to my colleagues Meriç Durukan, Serhat İşcan, Doğan

Patar and Kadir Türksoy. They have always supported me and made my time in ISL

enjoyable.

Finally, I would like to use this opportunity to express my profound and sincere

gratitude to my family and all of my friends for their encouragement and endless

support.

This study has been supported in part by TUBITAK EEEAG-118E857 and BAP

19A02M5 projects.

iv

ABSTRACT

DESIGN OF A SOCIAL ROBOT AND SAFE SOCIAL

NAVIGATION WITH DEEP REINFORCEMENT

LEARNING

This thesis is concerned with the design and development of a social robot that

can navigate around in a socially compliant manner. The importance of this problem

is due to the growing demand of using robots in human-populated environments. In

this thesis, this problem is addressed in two concurrent parts. The first part has

focused on the physical design and development of a social robot - named as SempRob.

SempRob is aimed to have a sympathetic appearance while also having a design in

which its visual sensors are located appropriately for environmental sensing. In the

second part, the social navigation capability of the social robot is developed. First, a

novel navigation method referred to as artificial potential function with reinforcement

learning (APF-RL) method. In addition, an ellipse-based representation of obstacles is

developed for efficient obstacle representation. Furthermore, environmental complexity

measures are defined in order to ensure that learning scenarios incorporate a range of

maneuvering difficulties. Both simulation and experimental results with SempRob

demonstrate that APF-RL method enables the robot to move safely and efficiently

in complex environments. Following, APF-RL method is extended to Social APF-RL

method so that the robot additionally respects the comfort zones of the humans while

navigating. This requires the robot to detect the humans in its surroundings and to

track them spatially. A deep learning based human detection algorithm is combined

with a Kalman filter for this purpose. Finally, Social APF-RL method is modified to

be applicable in human following as well. All the proposed methods are tested on the

developed robot successfully.

v

ÖZET

SOSYAL ROBOT TASARIMI VE DERİN PEKİŞTİRMELİ

ÖĞRENME İLE GÜVENLİ VE SOSYAL HAREKET

PLANLAMASI

Bu tezde, sosyal olarak uyumlu bir şekilde hareket edebilen bir sosyal robo-

tun tasarımı ve geliştirilmesi amaçlanmıştır. Günlük hayatta ve insanların bulunduğu

ortamlarda robotların gittikçe daha fazla kullanılmaya başlanması bu problemi daha

önemli hale getirmektedir. Bu tezde, bu problem iki ayrı bölümde ele alınmıştır. İlk

bölümde SempRob adı verilen robotun tasarımına ve gerçeklenmesine odaklanılmıştır.

Robot tasarlanırken, görünüşünün insanlara sempatik gelecek şekilde olmasına ve sensör

lerin en uygun şekilde konumlandırılmasına dikkat edilmiştir. İkinci bölümde, robotun

hareket planlama algoritmalarının geliştirilmesine odaklanılmıştır. İlk olarak, robotun

karmaşık ortamlarda güvenli ve etkili hareketini sağlayan pekiştirmeli öğrenmeli ya-

pay potansiyel fonksiyonlar (APF-RL) yöntemi önerilmiştir. Bunu sağlamak için elips

tabanlı yeni bir engel modelleme yöntemi de geliştirilmiştir. Ayrıca, öğrenme senary-

olarının tüm karmaşık ortamları kapsaması için yeni karma şıklık seviyesi metrikleri

tanımlanmıştır. Hareketin modelinin eğitimi önce simülasyonda yapılmış sonrasında

fiziksel robota aktarılmıştır. Sonrasında, APF-RL yöntemi modifiye edilerek sosyal

navigasyon yöntemi olan sosyal APF-RL geliştirilmiştir. Bu yöntem APF-RL’den farklı

olarak ortamdaki insanların konfor alanlarına girmemeye özen gösterir. Sosyal navi-

gasyon ortamdaki insanların algılanmasını ve uzamsal olarak takip edilmesini gerek-

tirir. Bunun için bir derin öğrenme temelli insan algılama yöntemi Kalman filtre-

siyle birleştirilerek kullanılmıştır. Son olarak geliştirilen hareket yöntemleri insan tak-

ibi uygulamasında kullanılmak için de uygun haline getirilmiştir. Önerilen yöntemler

geliştirilen robot üzerinde gerçek hayatta başarıyla test edilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Contribution . 2

1.2. Organization of Thesis . 3

2. Social Robot Design . 4

2.1. Related Literature . 4

2.2. Our Design . 5

2.3. SempRob Software Design . 8

3. Mapless Robot Navigation . 9

3.1. Related Literature . 10

3.2. Artificial Potential Functions . 12

3.3. Elliptic Obstacle Modeling . 14

3.4. Reinforcement Learning . 17

3.5. APF-RL . 19

3.5.1. RL Method . 19

3.5.2. Environmental Complexity . 22

3.5.3. Training . 24

vii

3.6. Experimental Results . 25

3.6.1. Simulation Results . 26

3.6.2. Real Robot Experiments . 28

4. Socially Compliant Robot Navigation . 31

4.1. Related Literature . 32

4.2. Human Detection . 33

4.3. Human Tracking . 34

4.4. Socially Compliant Robot Navigation 35

4.5. Experimental Results . 40

4.5.1. Simulation Results . 40

4.5.2. Real Robot Results . 43

5. Socially Compliant Human Following . 45

5.1. Related Literature . 45

5.2. Human Following . 46

5.3. Experimental Results . 47

5.3.1. Simulation Results . 47

5.3.2. Real Robot Results . 48

6. CONCLUSION AND FUTURE WORK . 51

REFERENCES . 53

7. APPENDIX A: ROBOT MANUAL . 61

8. APPENDIX B: SOFTWARE USAGE . 63

9. APPENDIX C: IMAGE USAGE . 64

viii

LIST OF FIGURES

Figure 2.1. SempRob: Complete design. 6

Figure 2.2. SempRob: Head and face design. 6

Figure 2.3. Body Shell Parts. 7

Figure 2.4. SempRob robot. 7

Figure 2.5. SempRob head and face. 8

Figure 3.1. Potential Field Visualization. 12

Figure 3.2. Disk-Based Approximation. 15

Figure 3.3. Ellipse approximation. 15

Figure 3.4. Representation of obstacles as ellipses for APF. 16

Figure 3.5. Distance computation to an ellipse obstacle model. 16

Figure 3.6. Basic Scheme of Reinforcement Learning. 18

Figure 3.7. APF-RL method. 18

Figure 3.8. Intermediate goal region W. 19

Figure 3.9. Training Environment. 25

Figure 3.10. Learning Curve of APF-RL. 26

Figure 3.11. Simulation test environments. 27

ix

Figure 3.12. Comparative paths: APF-RL vs DWA+D. 30

Figure 4.1. Proxemics zones. 31

Figure 4.2. YOLO Human Detection Example. 34

Figure 4.3. Examples of enlargement of human ellipses. 37

Figure 4.4. Learning Curve of Social APF-RL. 39

Figure 4.5. Training Environment of Social APF-RL. 39

Figure 4.6. Test Environments for Social Navigation. 41

Figure 4.7. Sample test environment for real robot experiments. 43

Figure 4.8. Social APF-RL Example . 44

Figure 5.1. Flow of processing for human tracking. 45

Figure 5.2. Human Following Location Selection. 47

Figure 5.3. Human following simulation: Human path vs robot path. 48

Figure 5.4. Example Following Environment. 49

Figure 5.5. Following Paths Comparison. 49

x

LIST OF TABLES

Table 3.1. Related Works for Mapless Robot Navigation. 11

Table 3.2. Static environment simulation results. 28

Table 3.3. Dynamic environment simulation results. 28

Table 3.4. Real robot results. 29

Table 4.1. Socially Compliant Navigation: Simulation Results. 42

Table 4.2. Socially Compliant Navigation: Real Robot Results. 44

Table 5.1. Human Following: Simulation Results. 48

Table 5.2. Human Following: Real Robot Experiments. 50

Table 7.1. Characteristics of the Base Platform. 61

xi

LIST OF SYMBOLS

at Action at time t

c Robot pose

df Human following distance

EC Environment complexity

ECs Static environment complexity

ECd Dynamic environment complexity

g Goal position

g∗ Final goal location

hc Human coefficient for ellipse

hroom Length of the room

k Attraction parameter of APF

O Obstacles

o Obstacle

S State space

q Laser data

qh Label of the laser data

rg Goal reward function

rh Social penalty function

ro Obstacle reward function

rt Reward at time t

st State at time t

TM Episode time limit

Vh Velocity of the human

vi Velocity of ith obstacle

vmax Maximum linear Speed

vr Velocity of the robot

wmax Maximum angular Speed

wroom Width of the room

xii

βO Repulsion function of APF

γg Attraction function of APF

θf Human following angle

θi Yaw of ith obstacle

πt Policy at time t

ρ Radius of the robot

ρi Radius of ith obstacle

ρo Radius of the obstacle

τo Collision distance threshold

τp Goal proximity threshold

τx X size of waypoint region

τy Y size of waypoint region

φ̂ Potential function of APF

Ω Observation space

ω Observation

xiii

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

APF Artificial Potential Function

APF-RL Artificial Potential Functions with Reinforcement Learning

CNN Convolutional Neural Network

DRL Deep Reinforcement Learning

DWA Dynamic Window Approach

DWA+D Dynamic Window Approach with Dijkstra

HOG Histogram of Gradients

IRL Inverse Reinforcement Learning

LIDAR Light Detection and Ranging

SAC Soft Actor Critic

SFM Social Force Model

USB Universal Serial Bus

YOLO You Only Look Once

1

1. INTRODUCTION

While mobile robots have been initially used in the automation of industrial

work, more and more, they are aimed to be used in different sectors such as service,

health or education. This requires their operating in human-populated environments

such as homes, cafeterias, hospitals or airports. Sharing common workspaces leads to

new possibilities for human-robot interaction - such as robot guides [1]. As such, the

concept of ‘social robots’ has been introduced [2]. One of the primary features of these

robots is to consider explicitly human presence. This is observed to manifest itself in

two related aspects: physical realization and social navigation.

The former is important since the design of a robot has a significant effect on

what people think about them. Therefore, a robot with all necessary social features

but having an unappealing design cannot be successful at social interaction. The latter

is important since most service tasks require the robot to move around people. There

are two primary considerations in regards to social robots and navigation.

• First, social mobile robots are expected to be capable of navigating reliably even

in dynamically changing environments. Thus, they should be able to navigate

without using maps or external plans. This is because map building and updating

may not be practical due to time-sensory data constraints and/or the environment

might be dynamic. As such, they differ from most of their industrial counterparts

that typically rely on such maps or plans. Rather, their navigation needs to be

reactive - namely they should rely solely on the incoming sensory data. The robots

need to be capable of reaching to their goal locations without any collisions along

the way.

• Second, again differing from their industrial counterparts, social mobile robots

are additionally expected to navigate considering the social norms and human

comfort - even if map knowledge is not available [3]. There are two primary

scenarios that differ in the robot’s goal.

2

– Socially compliant navigation in human-populated areas: In these scenarios,

socially compliant navigation can be explained as navigating like a human

without disturbing the people around. Social robots must have this feature

so they can work in settings like airports and shopping malls.

– Socially compliant human following: In these scenarios, socially compliant

navigation can be explained as navigating behind the human while respect-

ing his/her personal zone.

This thesis has focused on both the physical realization of a social robot and social

navigation methods - considering mapless navigation, socially compliant navigation in

human-populated areas and socially compliant human following.

1.1. Contribution

The contributions of this thesis can be summarized as follows:

• Physical realization: A social robot named as SempRob has been designed and

developed. Likability has been the primary consideration in the design. In ad-

dition, it is equipped with the necessary visual sensors in order to perceive the

environment and act accordingly. SempRob is used for experiments of this thesis

and it can be used for a variety of daily-life tasks.

• Mapless robot navigation: A novel reactive navigation method referred to as

Artificial Potential Function with Reinforcement Learning (APF-RL) method is

proposed. In addition, an ellipse-based representation of obstacles is developed.

Furthermore, environmental complexity measures are defined as to ensure a wide

range of scenarios are used in learning. Differing from previous work, while APF-

RL method does not require map of the environment, it can also be used even in

complex environmental settings.

• Socially compliant robot navigation: APF-RL method is extended to Social APF-

RL so that the robot’s navigation becomes socially compliant. As such, the robot

takes social conventions into account while navigating and aims to stay away from

3

the personal zones of pedestrians around as much as possible.

• Socially compliant human following: The proposed Social APF-RL is modified

for human following. The method is evaluated both in simulation and on the real

robot.

1.2. Organization of Thesis

The organization of the thesis is as follows:

Chapter 2: The social robot designed and manufactured is presented in in this chap-

ter. First, related work is discussed. Then, the proposed design is explained in

detail.

Chapter 3: The proposed mapless navigation method artificial potential functions

with reinforcement learning (APF-RL) is presented in this chapter. First, re-

lated literature on mobile robot navigation is summarized. Following, the details

of the proposed method are explained. First, navigation based on artificial po-

tential functions is discussed. Here, obstacle representation based on ellipses is

formulated. Following, the usage of deep reinforcement learning is explained.

Two measures of environmental complexity are defined and used to determine

the range of learning scenarios. Finally, both simulation and experimental re-

sults along with a comparative study are presented.

Chapter 4: The proposed socially compliant navigation method - Social APF-RL, is

presented in this chapter. First, related literature on social navigation is dis-

cussed. Next, the details of the proposed method are explained. Finally, experi-

mental results with a comparative study are presented.

Chapter 5: The details of human following based on modifying Social APF-RL method

are given in this chapter. First, related literature on human following is discussed.

Next, the details on human detection and following methods are explained. Fi-

nally, experimental results are presented.

Chapter 6: The thesis concludes with a summary and future work as presented in

this chapter.

4

2. Social Robot Design

This chapter focuses on the design and development of a social mobile robot. The

robot is expected to have both likable appearance and social navigation capability as

to realize its given tasks. The head and the face of the robot are known to be the

main attention regions for humans, so their designs needed to be addressed separately.

Social navigation requires the robot to be able to navigate around without any collisions

while also taking human presence into account. As this requires the robot to sense its

surroundings and in particular to detect humans, the robot should be endowed with

the appropriate visual sensors.

The outline of the chapter is as follows: First, a brief summary of existing social

robot designs is presented in Section 2.1. Following the design and development of

SempRob is explained in Section 2.2 with the explanation of the design choices.

2.1. Related Literature

The design of a social robot can be viewed as consisting of two main parts: the

head and the body. While, simple shapes that encase the hardware of the robot might

be sufficient, head design requires more craftsmanship. This is primarily attributed

to the fact that the face plays a key role in the robot’s social acceptability. Mathur

and Reichling’s work aims to explain likability of robot designs based on real life ex-

amples [4]. By looking these examples, one can notice that initial designs are too edgy

and mechanical which makes them unattractive. Some recent robots are designed to

resemble human appearance. A human-like appearance is often preferred for robots

that operate in human environments. However, a completely anthropomorphic design

has the disadvantage that it implicitly raises expectations regarding certain cognitive

capabilities of the platform, which cannot be accomplished with current technology.

This can lead to disappointments or to refusal of the system, which is known as Un-

canny Valley effect [5]. Using an LCD screen as a face has recently become popular -

5

as it is modular and relatively simple. Face animations are shown in these screens and

the animations might be updated based on the situation, for example it can be used

to express emotions.

The body of the robot must also encase the hardware of the robot and be likable.

There are two main approaches on body design: designs that resemble upper human

torso and designs that resemble the whole human body. Two well-known examples are

Jackrabbot [6] and Pepper [7]. Jackrabbot has a design similar to an upper body while

it has a single arm and visible wheels. On the other hand, Pepper has much more

human-like design with a human-like stance.

2.2. Our Design

The design and development of our social robot SempRob has been done as

follows:

• Robot base: The robot base is realized using self-balancing system developed by

Segway [8]. This is a a commercially available differential wheel mechanism.

• Body encasing: The robot’s base is to be encased by a body shell printed from

3D printer.

• Head: The head is realized using a pan-tilt mechanism. As such, the head is

rotatable.

• Sensing: The head will have a stereo camera and a LIDAR for environmental sens-

ing. The stereo camera is a ZED 2 stereo camera and the LIDAR is a RoboSense

RS-16 3D.

• Face: A screen will be placed on the head for the face animations, because it is

prettier and easier than adding facial components. An open-source animations

are used [9] and it lets our robot to express emotions.

• Processing: A powerful on-board computer will be used to process the data col-

lected from the sensors and to send control commands to the motion controller.

In particular, Nvidia Jetson Xavier board is used.

6

(a) Front view.
(b) Side view.

Figure 2.1. SempRob: Complete design.

In the design of body and head, the two primary considerations have been design

cuteness and ease of production. The complete design with the body shell and the

head is shown as front and side view in Figure 2.1. A simple torso-like part has been

designed to be used as the body shell. As it can be seen, the body shell covers the

front of the robot and resembles a torso. The design of the head and face is shown as

front and side view in Figure 2.2. As it can be seen, it has a sympathetic expression

with soft lines and face animation. The sensors are placed on top of it so that they

can rotate with the head.

(a) Front view. (b) Side view.

Figure 2.2. SempRob: Head and face design.

7

Figure 2.3. Body Shell Parts.

The body and head parts are manufactured using a 3d printer. However, it is not

possible to print them as a single part because of size limitations of the printer. So,

they are split to smaller parts and printed as parts as can be seen in Figure 2.3. The

parts have plug connectors to merge them after they are all printed.

The complete realization of SempRob can be seen in Figure 2.4. And the realized

head can be seen in Figure 2.5.

Figure 2.4. SempRob robot.

8

(a) Front view.
(b) Side view.

Figure 2.5. SempRob head and face.

2.3. SempRob Software Design

The base robotic platform has a host computer that handles inner-loop control

and reads data from base sensors like wheel encoders and imu. The onboard Nvidia

Xavier computer is connected to this host using ethernet and communication between

these is handled using scripts provided by Segway. These scripts use Robot Operating

System (ROS) to publish incoming data so that other modules can listen and use them.

It also listens to velocity commands and sends them to the host computer. The velocity

command is expected at 20 hz by default but it can be changed if needed. The velocity

command is then converted to wheel speeds in host computer and applied to the robot.

Odometry calculation is done using wheel speeds and it is used to localize the robot in

the environment.

The camera and lidar sensors are directly connected to the onboard computer.

Robosense lidar is connected using an ethernet cable. Its ROS packages are also pro-

vided and it publishes point cloud data that can be used for sensing the environment.

The ZED 2 stereo camera is connected using USB. The company is provided an SDK

and ROS wrappers. When the ROS scripts are run all topics including left, right, and

merged RGB data and corresponding depth data. It also has an object detection model

that can be activated if desired. The camera also has an inertial measurement unit

(IMU) and its output can be used to improve odometry.

9

3. Mapless Robot Navigation

This chapter is focused on the first aspect of social navigation - namely mapless

navigation. Here, the robot’s navigation needs to be reactive - namely they should rely

solely on the incoming sensory data and should be capable of reaching to their goal

locations without any collisions along the way. Here, there may be static or dynamic

entities in the environment. While some of these entities may be humans, the robot

does not take this into account specifically. All are treated as obstacles with which

there must be no collisions.

There has been extensive work done in this area [10,11]. Classical reactive meth-

ods such as artificial potential functions (APF) are known to have safety guarantees in

certain conditions [12]. However, while they have well-proven performance in simple

spherical worlds, such performance does not extend to real-life environments that tend

to be more complex. In particular, the robot is likely to get stuck in some local minima

points so that arrival at the goal location is not ensured.

Recently, learning-based approaches are shown to scale well to complex environ-

ments [13]. However, they also have problems like sample inefficiency and generaliza-

tion. It is hard to predict their performance in unseen environments and they do not

have a safety guarantee.

In this chapter, a novel navigation method is proposed. This method is built

upon prior work on navigation using artificial potential functions and reinforcement

learning. The motivation has been to combine the classical and learning-based naviga-

tion methods to obtain the best of both worlds. As explained, APF is theoretically a

collision-free reactive method and it is proven to work well in convex worlds. However,

it doesn’t show such performance in real-life scenarios where the spatial arrangement

of the environment is more complex. On the other hand, learning-based navigation

methods perform better in complex environments. However, they don’t have a safety

10

guarantee especially in environments that are very different from the training envi-

ronment. The proposed method combines these two methods to obtain safe mapless

navigation in complex real-life scenarios.

The outline of the chapter is as follows: Related literature is summarized in Sec-

tion 3.1. This is followed by a brief description of artificial potential function based

navigation in Section 3.2. The APF method is modified so that obstacles are repre-

sented by ellipsoids as presented in Section 3.3. Deep reinforcement learning is de-

scribed briefly in Section 3.4 respectively. The proposed approach - namely artificial

potential functions with reinforcement learning (APF-RL) - is explained in detail in

Section 3.5. The chapter concludes with experimental results for both simulation and

real robot tests in Section 3.6.

3.1. Related Literature

Classical navigation methods can be divided into two groups based on using

maps. In the methods of the first group, the robot uses a global and potentially

dynamic map of the environment to follow a collision-free path to reach the target

location. Dynamic Window Approach (DWA) is one of the well-known methods in

this group [14]. It is usually combined with a global planner which produces a global

plan which DWA follows. The required memory and computational resources increase

as the complexity of the environment increases. The methods in the second group

like artificial potential function (APF) do not use external inputs such as a map or a

global plan. Rather, the control input is calculated based on the robot’s instantaneous

or short-term knowledge of obstacles around only [12, 15]. While these methods have

behavioral guarantees, they only hold for restricted environmental settings i.e. convex

worlds. These limitations have been addressed by using a sequence of intermediate

goal locations that lead to the real goal in several works [16–20]. However, these

methods also have some environmental restrictions or they require rigorous tuning of

the method parameters including the locations of the intermediate goals. So both

groups have drawbacks that need to be addressed.

11

Table 3.1. Related Works for Mapless Robot Navigation.

Work Learning Mapless Setting
Obstacles

Internal Dynamic

[21] E2E ✓ Roads ✓ ✗

[22] E2E ✓ Maze ✗ ✗

[23] E2E ✓ Indoor ✓ ✗

[24] Mod ✓ Roads ✗ ✗

[25] Mod ✗ Indoor ✓ ✓

[26] E2E ✗ Maze ✗ ✗

[27] Mod ✓ Indoor ✓ ✓

[28] Mod ✗ Indoor ✓ ✓

Proposed Mod ✓ Indoor ✓ ✓

Deep reinforcement learning (DRL) is observed to offer a lot of potential in this

regard. Since it is proven to work well in several robotics tasks, navigation task can

also be learned with trial and error. The related works on this topic can be classified

depending on the structure of the method, usage of the maps and application areas as

can be seen in Table 3.1. Most of these works are end-to-end which means the problem

is directly solved with DRL and the output of the network is velocity command [21,23].

Although they work well in environments similar to their training environments, they

have problems in more realistic settings. To handle sample inefficiency of E2E methods,

works that use expert or imitation data for learning are proposed [24,29]. The drawback

of using imitation data is that it makes the method biased with the data. Some E2E

approaches such as [22, 26] consider maze-like game environments. However they may

not be suitable for use in everyday scenarios since the agents have never encountered

internal obstacles.

In order to obtain the best of both classical and learning-based methods, modular

approaches that combines them are proposed. For example, learning agent selects way-

points and reactive controller calculates velocity command for next way-point. [25]

and [28] combines well know sampling-based global planners with DRL. However, they

12

require map of the environment for calculating the global plan. [27] teaches way-point

selection to an agent using expert MPC data, then combines it with a feedback-based

trajectory tracking controller.

3.2. Artificial Potential Functions

Navigation based on Artificial potential function (APFs) is a reactive navigation

approach that proposes a safe and smooth navigation in disk-like worlds [12]. In this

approach, all obstacles are assumed to known and are represented by enclosing disks.

the gradient of the APF is used to construct a velocity vector field. The robot’s

navigation is achieved via simply moving on the resulting vector field. The APF is

constructed so that the goal location creates an attractive field while the obstacles

create a repulsive field. An example scenario with potential field visualization is shown

in Figure 3.1.

Figure 3.1. Potential Field Visualization.

Consider a robot with radius ρr that is located at c ∈ R2 with coordinates c =[
c1 c2

]
. The potential function φ̂g,O is defined as

φ̂g,O(c) =
γk
g (c)

βO(c)
. (3.1)

13

Here, the numerator term defines attraction and depends on the goal position g ∈ R2.

The formulation of the γg(c) is as follows:

γg(c) = (g − c)T (g − c). (3.2)

The denominator term βO(c) encodes the obstacles as

βO(c) =
∏
o∈O

β(c, o) =
∏
o∈O

(∥c− co∥2 − (ρr + ρo)
2). (3.3)

O refers to the set of obstacles. Each obstacle o ∈ O is defined by its center co and

radius ρo > 0. The obstacle function is defined so that as the robot approaches to an

obstacle o ∈ O, β(c, o) → 0. If the robot touches the obstacle, then β(c, o) = 0 which

will result infinite potential. This is what makes APF theoretically safety guaranteed.

The k > 0 parameter designates the weight of γg(c) with respect to the obstacle

function β(c). Thus, it determines the balance between goal attraction and obstacle

avoidance.

The velocity control u is derived from potential φg,O as

u(t) =

 vmax cos (∠(∇cφg,O(c)))

ωmax sin (∠(∇cφg,O(c)))

 . (3.4)

Here, vmax and ωmax are linear and angular speed limits and ∠(∇cφ(c)) ∈ S1 is heading

as defined by the gradient ∇cφg,O of the artificial potential function φ as

∠(∇cφg,O(c)) = arctan(
∂φg,O(c)

dc2
,
∂φg,O(c)

dc1
). (3.5)

The control input u is given to robot at each time step and the navigation is completed

when goal location is reached, namely: |c−g| < τp. The parameter τp denotes proximity

threshold for goal position.

14

In this perspective, the APF method is observed to have the following shortcom-

ings:

• First, the goal is set directly as the final goal, g = g∗. This is assuming that all

obstacles are known and have convex shapes. However, both assumptions are not

practical in real-life environments. As such, theoretical guarantees cease to hold.

The robot might get trapped in some regions like u-shaped areas. This suggests

that the robot should not aim at the goal location directly. Rather, it could try

to reach a sequence of intermediate goal locations that eventually lead to the goal

location. The intermediate goal locations would depend on both the environment

and the robot’s current location. Consequently, the goal function g needs to be

defined as a piece-wise constant function g : R → C with g∗ as its limit - namely

limt→∞ g(t) = g∗.

• Second, k− parameter is set as a constant - namely k = k∗ and this value needs to

be set depending on the environment. However, it is not possible to find optimal

value in unknown or dynamic environments. Setting it as small might cause

problems in narrow passages while a larger value may result in robot speeding up

unnecessarily. This suggests that it should be selected online and hence it needs

to be defined as a function k : R → R≥0.

3.3. Elliptic Obstacle Modeling

As previously stated, the robot is endowed with two-dimensional (2D) laser with

360 ◦horizontal field. The incoming laser data is used to detect the obstacles in the

environment. Obstacles have been modeled as disks in the original APF method.

However, objects in real life usually do not have circular shape. This has been addressed

using two alternative circular approximation methods: single disk and multiple disks.

Approximation results for a single rectangular block is visualized in Figure 3.2. In

the former, the approximation covers much more space than the real obstacle and

it narrows down available navigation space. In the multiple disks model, while the

representation is much more realistic, the construction of the potential field becomes

15

much more complex and navigation performance is adversely affected.

(a) Single Circle. (b) Subcircles.

Figure 3.2. Disk-Based Approximation.

Figure 3.3. Ellipse approximation.

In this thesis, the representation of obstacles is modified to ellipsoid approxima-

tion. A sample case is shown in Figure 3.3. As observed, the representation is much

more realistic while also not increasing the complexity of APF formulation. The outer

boundary is obtained from the ellipse fitted to the convex hull of the laser points.

Distinct interior obstacles are detected via applying connected component analysis to

the rest of the laser data. Each component is then approximated by an ellipse using

a least square based method called numerically stable direct least squares fitting of

ellipses [30]. A sample case is shown in Figure 3.4a. The corresponding laser data is

shown in red in Figure 3.4b. The resulting obstacles are shown as ellipses and the outer

ellipse is visualized as a faint white ellipse.

16

(a) Robot’s environment. (b) Laser data (red) and corresponding

obstacles (white ellipses).

Figure 3.4. Representation of obstacles as ellipses for APF.

Figure 3.5. Distance computation to an ellipse obstacle model.

The ellipse representation requires the modification of the APF formulation - since

the distance between the robot and the obstacle changes depending on their relative

positioning and the orientation of the ellipse as seen in Figure 3.5. In particular, the

term ρo is defined as

ρo =
ab√

a2 sin2(θ) + b2 cos2(θ)
where θ = arctan(c− o)− θo. (3.6)

17

Here, a and b refers to the width and height of the corresponding ellipse along major

and minor axis directions as shown in Figure 3.5. As this term is part of the obstacle

avoidance term, the gradient of β(c, o) is derived as

Dcβ(c, o) = 2(c− o)− 2(ρr + ρo)Dcρo, (3.7)

Dcρo =
dρo
dθ

Dcθ, (3.8)

dρo
dθ

=
ab sin(θ)cos(θ)(a2 − b2)

(a2 sin2(θ) + b2 cos2(θ))
3
2

, (3.9)

Dcθ =

 dθ
dc1

dθ
dc2

 =

 − c2−co2
(c1−co1)2+(c2−co2)2

c1−co1
(c1−co1)2+(c2−co2)2

 (3.10)

where co =
[
co1 co2

]
refers to the center of obstacle o.

3.4. Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning that is mainly used

for decision-making problems. The basic scheme of reinforcement learning is shown

in Figure 3.6. Unlike supervised and unsupervised learning, RL doesn’t require pre-

collected or labeled data. Rather, it uses trial and error for learning. RL problems are

usually modeled as a Markov Decision Process (MDP). In this process, the agent takes

an action based on the observation or state of the environment. Then the state of the

environment changes and the agent chooses new action for this new state. It also gets

a reward for each action and the reward amount measures the goodness of the selected

action. The agent aims to find a policy that selects actions as to maximize the total

reward.

In the simplest case the state space is finite and small. Hence, the agent can

explore most of the state action pair quickly. Tabular reinforcement learning methods

are used for such problems. As the space becomes bigger or is defined to be continuous,

tabular methods cease to be practical. In these cases, function approximators that cal-

culate the value of a state-action pair are used for such problems. These approximator

18

functions can be linear in the simplest case, but nowadays neural networks are mostly

used.

Figure 3.6. Basic Scheme of Reinforcement Learning.

The pioneer deep reinforcement (DRL) learning methods are deep deterministic

policy gradient (DDPG) [31] and deep Q-learning(DQN) [32]. Many other DRL meth-

ods are developed based on them. Soft Actor Critic (SAC) is one of the most popular

DRL methods, it is an actor critic method as it name suggests [33]. It separates action

selection and value function learning using two networks - actor and critic. One of

the key contributions of SAC is entropy regularization. It tries to maximize entropy,

a measure of randomness in the policy, besides the expected return, which accelerates

the exploration.

Figure 3.7. APF-RL method.

19

3.5. APF-RL

The proposed artificial potential function with reinforcement learning (APF-RL)

method is shown in Fig. 3.7. In this approach, the two input parameters to the APF

are considered:

• Intermediate goal locations g

• k-parameter

Our proposed approach APF-RL is focused on these two parameters. As such, our

goal is to use reinforcement learning for learning the k− parameter function and the

intermediate goal function g so that the robot can use the learned functions for reliable

APF-based navigation. Soft Actor-critic method is selected as the deep reinforcement

learning method [33]. In addition, two novel measures of environmental complexity

are introduced. The first is for static environments while the second is for dynamic

environments. These measures are used to ensure the training scenarios encompass a

range of environmental complexities.

Figure 3.8. Intermediate goal region W.

3.5.1. RL Method

Deep reinforcement learning is used to learn the inputs and parameters of APF

- namely the goal function g and k-parameter function k. The problem is formu-

20

lated as a partially-observable Markov decision process (POMDP) as defined by the

tuple (S,Ω,A,P , r). The state space S defines the full state of the agent in the en-

vironment. At each time step, state s(t) ∈ S contains global information about the

environment including the robot but the state is only partially observable by the robot.

The observation space is denoted by Ω defines this partial information that the robot

gets from the environment. The observation ω(t) consists of the current laser scan

data q(t) and the previous one q(t − δt) and the respective goal positions - namely

ω(t) = (q(t), q(t − δt), g(t), g(t − δt)) where δt is the time-step of processing. The

previous range data is added to the observation in order to encode the movement of

the robot and obstacles.

The radius of the robot ρr is subtracted from the range data before adding to

observation, so the trained model is independent from the robot size. Let A ⊂ R3

define the action space. Each action a ∈ A is defined by the 3-tuple a =
[
k gT

]
where k ∈ K defines the k−parameter and g ∈ W corresponds to an intermediate

goal location. The set K ⊂ R defines the range of the k function. P is the state

transition model and represents dynamics of the system. It is encoded in the physics

simulator or implicit in the real world. The region W ⊂ C denotes the region where

intermediate goals are selected in. It is a rectangular region with sizes of 2τx × τy as

shown in Fig. 3.8. You can see that it is defined in front of the robot to encourage

it to move forward and explore. The agent is continually rewarded during training

considering goodness of the taken action. Selection of reward function has significant

importance on the performance of the agent since the reward is the only feedback given

to it. Let r : R → [Rmin, Rmax] denote the reward function with the parameters Rmin,

Rmax corresponding to the minimum and maximum reward respectively. It is defined

based on the proximity of the robot to the goal location as well as the range data in

the observation ω(t) as

r (t) = rg (a(t), ω(t)) + ro (a(t), ω(t)) . (3.11)

21

The first term rg considers the main objective which is reaching to the goal. A

big reward is given when the goal is reached and small incremental rewards are given

with each time step for getting closer to the goal as measured by δ |c(t)− g(t)|. τp

is the proximity threshold for reaching to goal so the episode ends successfully if the

robot gets this close the target. Incremental rewards are positive when the robot gets

closer to the goal and negative if it get away. Thus, the robot is encouraged to move

towards the goal locations. In practice, we set Rg1 = 10 and Rg2 = 2 which resulted

in the best performance after testing with different values. So goal reward function is

defined as

rg (a(t), ω(t)) =

 Rg1 if |c(t)− g(t)| < τp,

Rg2δ |c(t)− g(t)| otherwise .
(3.12)

The second term ro is related to the obstacle avoidance objective and penalizes the

agent for collisions and getting close to obstacles. Distance to each obstacle o ∈ O(t)

is calculated using the function β(c, o) ≥ 0. Obstacles are considered to have a safety

zone τo around them where localization errors or a wrong move may result in collisions.

Collision penalty is selected as large since navigation safety is critically important.

Thus, the robot is encouraged to follow a safe path. In practice, we set Ro1 = −0.1

and Ro2 = −10 which are observed to result in good balance with the obstacle avoidance

and target reaching. So obstacle reward function is defined as

ro (a(t), ω(t)) =

 Ro1 ∃o ∈ O(t) s.t. 0 < β(c, o) < τo,

Ro2 if βO(c) = 0.
(3.13)

End-to-end methods tend to fail in maze-like environments with long walls, be-

cause reward function encourages the agent to get closer to the goal. However, in such

scenarios the robot needs to move away from the goal to get behind of these walls. Get-

ting away is undesirable for the agent since it means taking negative rewards for tens of

steps. As such behaviors are associated with long-term planning, they are problematic

22

for reinforcement learning methods. In the proposed system, the takes less frequent

actions than end-to-end agents as it is integrated with APF. So, it can handle such

situations by taking only a few negative rewarded actions.

Soft Actor-critic (SAC) method is selected as deep reinforcement learning method

[33]. It is an off-policy actor-critic method that is based on the maximum entropy

reinforcement learning framework. Here, policy learning and value function evaluation

are done separately. Consequently, there are two networks. The actor network decides

which action to take while the critic network tells the actor how good the action was

and how it should adjust. The former is achieved via maximizing expected reward

while also maximizing entropy. It has three main advantages. Firstly, it is more

sample efficient compared to on-policy methods such as TRPO [34], PPO [35] and

A3C [36]. Secondly, the method has been shown to have outstanding performance in

several continuous control tasks [33], so it could also be suitable for navigation tasks.

Finally, it is robust to hyperparameters which means intensive tuning is not necessary

unlike DDPG [37] and this characteristic decreases computational needs considerably.

The radius of the learning robot is ρr = 0.4 meters. The set K ⊂ R is defined

as K = [1, 5] from practical considerations - namely the maximum number of obstacles

the robot is likely to encounter at a time. The W region is set with τx = 1 m and τy = 1

m by experimenting with different values. These values are set as those that give the

smoothest path. The architectures of both actor and critic networks are the same. They

consist of three hidden layers - each having 512,512,512 neurons respectively. ReLu is

used as the activation function except in the action layer with tanh as suggested in [33].

3.5.2. Environmental Complexity

During training, the scenarios that the robot is exposed to need to cover a wide

range of environmental complexities as possible. The effectiveness of robot’s learning

will depend on the range of this exposure. Hence, it is important to quantify this

23

measure. For the static environments, an environmental complexity ECs is defined as

ECs =
No(No − 1)κ

2βs

(3.14)

where No = |O| refers to the cardinality of the set of obstacles O. βs is calculated

based on distances between obstacles in the environment as

βs =
No−1∑
i=1

No∑
j=i+1

βij where κ =
max(we, le)

2

ρ2r
.

Here we and le are the respective width and length of the corresponding environment.

βij is calculated as the minimum distance between ith and jth obstacles similar to β

in APF formulation, it is formulated as

βij = ∥coi − coj∥2 − (ρoi + ρoj)
2. (3.15)

Calculation of ρ of an ellipse is explained in Section 3.3. The complexity measure is

observed to have the following properties:

• Environmental complexity increases as the number of obstacles No increases.

• It increases as the obstacles are located closer to each other. Relatively, it in-

creases as the obstacle size gets larger.

• Finally, it increases as the room gets smaller while the inner obstacles don’t

change.

Using this definition, static environmental complexity levels are defined as easy

(ECs < 20), medium (20 ≤ ECs < 30) and hard (ECs > 30). It is harder to define

complexity for dynamic environments. In that case speed and number of the dynamic

obstacles are used in addition to static complexity. The formula for the complexity of

24

dynamic environments is

ECd = ECs +

Nobs∑
i=1

vi
vr
. (3.16)

In this case, as the speed of a dynamic obstacle increases, dynamic environmental

complexity increases accordingly. Speed of the robot, vr is used as a normalizer here.

3.5.3. Training

It is not usually possible to train DRL agents using real robots due to safety

constraints, so the training is done using Gazebo simulation software. A training

environment with 13 various sized rooms are designed as can be seen in Fig. 3.9. These

room are designed to cover complexity space as much as possible.The first three are

relatively smaller and differ primarily in the number and shape of obstacles. The

next three (4,5,6) have larger size and they are more complex. The next three rooms

(7,8,9) have a smaller number of static obstacles, but they additional contain dynamic

obstacles with varying velocities. Then there are two corridor-like rooms with long and

narrow passages. Finally, the last two rooms (12,13) have a maze-like very complex

design. Rooms have defined initial and target spawn regions and the robot and the

target is placed inside these randomly at the start of each episode. Episodes continue

until one of the three conditions are realized:

• i) robot reaches the goal position,

• ii) robot collides with an obstacle,

• iii) the predefined maximum time TM = 120 seconds is exceeded.

The proximity threshold for reaching the goal τp = 0.2 m and safety zone for

collision τo = 0.2 m. The training starts at the first room and continues with the next

one when it is learned. When all rooms are learned, a new room for training is selected

at every 10 episodes and selection is done inversely proportional the respective success

rate of the rooms. Training is continued until convergence of the average reward r̄ is

25

obtained. For each episode m > NT , average reward r̄(m) is defined as

r̄(m) =
1

NT

m−NT∑
m=0

1

Tm

∫ Tm

0

r(t′)dt′. (3.17)

Here, Tm refers to the duration of m-th episode and NT refers to the number of last

episodes considered in the averaging. In particular, we consider NT = 300 episodes.

The evolution of r̄ is shown in Figure 3.10. It is observed that convergence occurs

between m ∈ [4000, 5000] episodes.

Figure 3.9. Training Environment.

3.6. Experimental Results

The proposed method, APF-RL, is tested both in simulation and with a physical

robot. Testing environments are different than training environments and totally un-

seen by the agent. Performance metrics are selected as success rate (safe arrival at the

goal) and path length until reaching the goal. Path lengths are computed considering

only successful runs and are meaningful only with high success rates.

26

Figure 3.10. Learning Curve of APF-RL.

As the reactive baseline method, we use a modified version of classical APF

algorithm in which k−parameter is not constant, but rather is set based on number

of detected obstacles. As DRL baseline, we trained an end-to-end model. It has a

similar network to APF-RL and it outputs linear and angular velocity directly. It

is also trained in the same training environment shown in 3.9. Finally as a strong

baseline, we use the mapping-based DWA method together with global planner based

on Dijkstra (DWA+D). DWA+D has 14 planner parameters that should be tuned

properly as they have significant effect on navigation performance. In addition, there

are more than 10 additional parameters. While these parameters are less significant,

nevertheless they need to be set according to robot and environment specifications.

3.6.1. Simulation Results

The evaluation is first done in the simulation environments. 10 environments

with only static obstacles are generated as shown in Fig. 3.11a. 3 of them are easy

with ECs < 20, 4 of them have medium environmental complexity and finally 3 of

them are hard. For evaluating navigation performance with the presence of dynamic

obstacles, 6 rooms with moving obstacles are designed as shown in Fig. 3.11b. 2 of

these rooms are easy, other 2 of them have medium complexity and the last 2 of them

27

are hard. 5 initial and goal locations are selected in each room. All methods are tested

in these rooms with same initial and target locations.Results of the static environment

tests are given in Table 3.2. APF is observed to have worst performance even in the

easy rooms. E2E performs average in easy environments but its performance degrades

critically as the complexity increases. On the other hand, APF-RL and DWA+D have

shown very close performance in all measures. This is promising considering DWA+D

make use of a global planner and is a search-based online optimization method while

APF-RL is a learning-based reactive method.

(a) Static test scenarios.

(b) Dynamic test scenarios.

Figure 3.11. Simulation test environments.

Table 3.3 shows the results for dynamic environments. APF has a better perfor-

mance in dynamic environments than static environments. It is related to the fact that,

it can reactively escape from obstacles and wait for a passage to be opened. DWA+D

performs worse than other methods in the dynamic scenarios because dynamic entities

require fast response to the environmental changes and DWA+D is a computationally

heavy method. Furthermore, moving obstacles can possibly collide with robot while

28

it tries to update its plan because a collision avoidance model is not implemented for

obstacles. E2E method performs better in dynamic environments but it it has higher

collision rate thab APF-RL. APF-RL showed the best performance in dynamic envi-

ronment tests. It is observed that the robot does not wait for the dynamic entities to

move away like APF, rather it preserves its velocity while steering away from them.

Table 3.2. Static environment simulation results.

Method
Success Rate Path Length (m)

Easy Med Hard Easy Med Hard

APF 0,40 0,25 0,07 15,09 12,53 11,44

E2E 0,67 0,35 0,13 14,39 12,85 15,39

DWA+D 0,87 0,75 0,67 12,86 12,75 12,58

APF-RL 0,80 0,70 0,47 13,27 13,90 13,99

Table 3.3. Dynamic environment simulation results.

Method
Success Rate Path Length (m)

Easy Med Hard Easy Med Hard

APF 0,70 0,60 0,90 7,98 10,31 14,84

E2E 0,90 0,70 0,40 7,73 10,03 11,80

DWA+D 0,70 0,50 0,40 5,97 10,19 16,72

APF-RL 1,00 0,70 0,60 7,58 8,86 12,00

3.6.2. Real Robot Experiments

The real robots are done using SempRob as explained in Chapter 2. As its

RoboSense RS-16 3D Lidar provides point cloud data, it is mapped to a 2D laser scan.

The experiments are conducted in 5 static and 2 dynamic scenarios. The static test

environments are set up in a way that each has a unique challenge. For example, the

robot needs to get behind of the obstacles that form an L-shape in one of them while

in another it needs to pass a sequence of narrow passages. In dynamic tests, there

are people walking and they follow the social convention also try not to collide unlike

simulation tests. In the first scenario, there are people crossing the path of the robot

while in the second, pedestrians are approaching the robot from the opposite directions.

29

For all cases, methods are repeated 10 times with different initial and goal locations

g∗. The results of the physical robot tests are presented in Table 3.4 including results

for the baseline methods.

Table 3.4. Real robot results.

Method

Static Environment Dynamic Environment

Success

Rate (%)

Path

Length (m)

Success

Rate (%)

Path

Length (m)

DWA+D 93 6.3 100 5.8

APF 30 10.1 100 6.3

E2E 60 9.2 100 5.7

APF-RL 93 8.5 100 5.5

Similar to the simulation results, APF has the worst performance in static tests.

E2E performs better than APF but it is still not good as APF-RL or DWA+D. Inter-

estingly, both DWA+D and APF-RL achieved similar success rates. DWA+D method

is observed to generate slightly smoother paths. This is attributed to the fact that it

makes use of a search-based global planner. Some sample paths followed using these two

methods are shown in Figure 3.12 for comparison. For the case in Fig. 3.12a, DWA+D

has smoother and shorter trajectory. In the case of Fig. 3.12b, while path lengths are

almost equal, the path of DWA+D is still smoother. In dynamic environments, all

methods perform satisfactorily which might be surprising by looking the simulation

results. It is attributed to the fact that passing people tend to avoid collisions by stop-

ping or moving away from the path of the robot slightly. This gives DWA+D a chance

to stop and update its plan so its success rate is increased considerably. Nevertheless,

APF-RL method perform better in dynamic environments in terms of path length and

time measures.

30

(a) Case 1. (b) Case 2.

Figure 3.12. Comparative paths: APF-RL vs DWA+D.

31

4. Socially Compliant Robot Navigation

This chapter is focused on socially compliant navigation. As discussed previ-

ously, dynamic environments are challenging for mobile robots. Unfortunately, human

presence further exacerbates the difficulty. Hence, mere collision avoidance does not

suffice. Rather, the presence of humans requires novel approaches that consider both

the constraints of human comfort and social rules. Proxemics define zones for interper-

sonal distances for human comfort [38]. These zones are classified depending on their

proximity to the human - as seen in Figure 4.1.

• Intimate: 0 - 45 cm

• Personal: 45 - 120 cm

• Social: 1.2 - 3.6 m

• Public: 3.6 - 7.6 m

Figure 4.1. Proxemics zones.

In addition to the individual social zones, the individual’s interaction with the

environment creates other virtual spaces that people around recognize and respect.

These are called group, activity and affordance spaces. The group space is based on

the interaction with other humans, while the activity space is related to action carried

out like taking a photo. The affordance space is related to the potential activity-based

of affordance of objects around [39] . In socially compliant navigation, the goal is to

32

make robots navigate like a human and not invade the personal or intimate space of

people around unless direct interaction with them is intended.

The outline of the chapter is as follows: Firstly, related literature is summarized

in Section 4.1. Next, human detection is explained in Section 4.2. Then, the details

of human tracking method is explained in Section 4.3. Following, the proposed Social

Apf-RL method will be detailed in Section 4.4. The chapter concludes with a discussion

of experimental study including both simulation and real robot results in Section 4.5.

4.1. Related Literature

Robots that work in human-populated areas and interact with people need to

have socially compliant navigation. They should be able to reason about various crite-

ria ranging from clearance, environment structure, social conventions, proximity con-

straints, presence of a person as well as human groups [40].

Earlier work in this area mostly rely on Social Force Model [41]. In the social

force model, the movement of a pedestrian is defined through the sum of attractive and

repulsive forces. Attractive forces are based on the the pedestrian’s target position and

speed, while repulsive forces are applied by obstacles and other humans around. This

model has been applied in an application requiring a robot to accompany a person

in a socially compliant manner [42]. In this work, an attractive force is associated

with the accompanied person. This approach has been extended as to better represent

person–person, object–person and robot–person interactions [43].

Recent work has focused on using learning methods for social navigation. These

work differ with respect to the learning method and the inputs their method use.

For learning, they commonly use either reinforcement learning (RL) and inverse rein-

forcement learning (IRL). The difference RL and IRL methods lies on the design of the

reward function. While the former uses a hand-crafted reward function, the latter is de-

signed using expert demonstrations. A method that combines long short term memory

33

(LSTM) with deep RL is proposed in [44]. An attention mechanism is used to increase

performance of a deep RL approach [45]. The problem is divided into ego safety and

social safety and solved suing an end-to-end deep RL method [46]. A hybrid method

that addresses both freezing robot problem and socially compliant navigation based

on RL is presented in [47]. IRL with different feature sets has been used to achieve

socially compliant navigation [48]. Bayesian IRL is used to learn socially normative

robot navigation behaviors [49]. A multiagent collision avoidance algorithm that ex-

hibits socially compliant behaviors is proposed in [50]. An imitation learning based

method uses a pedestrian trajectory data set to obtain human-like movement [51].

These works also differ in the input that their methods use. They are mainly

two categories: i) Human position and velocities are externally provided; or ii) Laser

scan readings are input. The former methods take advantage of the recent progress

in human detection [50], [44] and [45]. This is considered as a sub-problem of object

detection that has become very popular in recent years. Initial work are done using

classical image descriptors like histogram of gradients (HOG). However, the use of

deep learning methods has caused a leap in recognition performance. Nowadays, a

convolutional neural networks (CNN) are extensively used for this problem. YOLO

(You Only Look Once) [52] is of the well-known object detection methods. YOLO and

most of the other methods outputs only bounding boxes in image space, but there are

also methods that directly outputs spatial positions of the objects directly [53]. In the

latter, the network also derives the human-related information [47], [51] and [46]. As

such, these networks tend to more more complex and require more data.

4.2. Human Detection

Socially compliant navigation requires human detection. Convolutional neural

network-based YOLO method is used for this purpose. It has a really complex model

with 106 layers. It is trained to classify 80 object classes but only human predictions

are used for this work. YOLO takes an RGB image input and returns bounding boxes

of the detected objects in the image as output. A sample detection output can be seen

34

in Figure 4.2. Since YOLO uses RGB image and its outputs are in the image space,

we need to locate the detected person in the physical world. The depth stream of the

stereo camera is for this purpose. First, the distance of each human is calculated by

taking average of depth values from a square region at the upper center of the bounding

box. Then the distance is converted to relative planar position based on the location

of the person in the image.

Figure 4.2. YOLO Human Detection Example.

4.3. Human Tracking

For social navigation tasks locating the human target accurately is critically im-

portant. Hence, human detection results are augmented with Kalman filtering - as to

smooth noisy depth measurements and also predict the location when a human is not

detected. It is also used to calculate velocity based on the position measurements. The

flow of processing in human tracking is shown in Figure 5.1. The design of the filter

is as follows: The state X =
[
x1 x2 ẋ1 ẋ2

]
. Here, x1 and x2 are planar positions

and ẋ1, ẋ2 are the respective speeds of the human target. The human is assumed to

move with constant velocity and the system dynamics matrix Ais constructed accord-

ingly. Human localization module only gives position information so the columns of

the observation matrix H corresponding to velocity states are set to zero. The matrices

35

of the filter are defined as

X =

x

y

ẋ

ẏ

 , A =

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , H =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

In order to eliminate the impact of the movement of the robot, Kalman filter

calculations are done in a fixed frame which is created using localization of the robot.

4.4. Socially Compliant Robot Navigation

For socially compliant navigation, Social APF-RL method is proposed. This is

based on APF-RL. Although APF-RL is developed and tested with dynamic obstacles,

it doesn’t take human comfort and social rules into account. In the Social APF-RL

method, the following changes are introduced:

• Obstacle representation of humans

• Inputs of DRL

• Outputs of DRL

• Rewards of DRL

First, the obstacle representations of humans are modified as to encode move-

ment direction. Recall that each obstacle is represented by an ellipse. This holds for

both static and dynamic objects. However, humans might be uncomfortable if a robot

gets very close to them - differing from non-living obstacles. We propose an approach

in which the ellipse representations of the humans are expanded depending on their

motion. Recall that each ellipse is defined by its major ea and minor axes eb with corre-

sponding width a and height b as seen in Figure 3.5. Then, the amount of enlargement

36

is defined by the expansion of the ellipse along the major and minor axis directions as

a = ao + δa, (4.1)

b = bo + δb (4.2)

where ao and bo refer to the width and length along the respective axes ea and eb

corresponding to the initial ellipse representation of the human. Suppose the human

is detected to be moving with planar velocity vh. It is calculated using Kalman filter

as explained in Section 4.3 as

vh = [ẋ ẏ]. (4.3)

The expansion is done as to minimize the possibility of the robot intercepting with

the pedestrian’s path. Hence, rather than a symmetric increase in size, corresponding

ellipse representations are enlarged in the direction of their movements. To make

enlargement possible without increasing the size in the back side, the center is moved

in the enlargement direction by half of the enlargement. The amount of expansion is

defined by the product of an expansion parameter hc and the speed of the human along

this direction - namely

δa = ξahc∥vh∥, (4.4a)

δb = ξbhc∥vh∥, (4.4b)

ξa =

1 if vTh ea > vTh eb,

0.5 otherwise.

ξb =

1 if vTh ea < vTh eb,

0.5 otherwise.

(4.4c)

37

Three different cases are shown in Figure 4.3. In each figure, the arrows represent the

velocity vector.

(a) vTh ea = 1.0 hc = 0.4. (b) vh = 1.0; vTh eb = 0.8;

hc = 0.4.

(c) vTh ea = 1.0; hc = 0.8.

Figure 4.3. Examples of enlargement of human ellipses.

Secondly, the input to the DL network is changed as to incorporate this infor-

mation. APF-RL only had current range data q(t) and the previous one q(t− δt) and

the respective goal positions. Now, each data is labeled as human or not, qh(t). Thus,

the observation is as follows ω(t) = (q(t), q(t− δt), g(t), g(t− δt), qh(t)) where δt is the

time-step of processing. The motivation for using human labels is to make agent take

extra precautions for humans.

In Social APF-RL, the set of learned parameters consisting of the k-parameter

function and the waypoint function g is expanded to learning the hc parameter function.

Let A ⊂ R4 be the action space. Each action a ∈ A is now defined by the 4-tuple

a =
[
k gT hc

]
where k ∈ K defines the k−parameter, g ∈ W corresponds to

an intermediate goal location and hc ∈ H corresponds human ellipse enlargement

coefficient . The set K ⊂ R defines range for the k function. denotes the region where

intermediate goals are selected in. It is a rectangular region with sizes of 2τx × τy as

shown in Fig. 3.8. It is defined in front of the robot to encourage it to move forward

and explore. And the set H ⊂ R defines range for the ch function. During training,

the agent is continually rewarded considering goodness of the taken action.

The selection of reward function has significant effect on the performance of the

agent since the reward is the only feedback given to it. Let r : R → [Rmin, Rmax] denote

the reward function with the parameters Rmin, Rmax corresponding to the minimum

38

and maximum reward respectively. It is defined based on the proximity of the robot

to the goal location as well as the obstacles sensed based on the observation ω(t). A

penalty for intruding the personal zone of the humans is added in order to obtain a

socially compliant navigation. Thus, it is defined as

r(t) = rg (a(t), ω(t)) + ro (a(t), ω(t)) + rh (a(t), ω(t)) . (4.5)

Here, the definitions of rg and ro are the same with those in the definition of APF-RL

as formulated in Section 3.5.1. The human reward function rh is defined as

rh (a(t), ω(t)) =

Nh∑
i=1

rhi (a(t), ω(t)) where (4.6a)

rhi (a(t), ω(t)) =

 Rh(Dh − |c(t)− hi(t)|) if |c(t)− hi(t)| < Dh,

0 else.
(4.6b)

Here, Dh denotes human distance threshold for social penalty and the penalty increases

proportionally as the robot get closer to the pedestrian. Rh is the multiplier of the

social penalty and it determines its importance against other rewards. In practice,

human distance threshold Dh is set as 1.4 as the sum of personal zone distance and

robot radius and Rh is set as 0.6 after testing with different values.

Soft Actor Critic is used as the deep learning method again for social navigation.

Actor and critic networks have three hidden layers and each of them has 512 neurons.

Hidden layer weights of the learned APF-RL model are used as initial values of this

new model to jump-start the training.

Training environment for the social training is shown in Figure 4.5. First two

rooms have only static obstacles because the agent needs to learn reaching the target

and obstacle avoidance first. Then, the pedestrians are added with increasing numbers

to each room. The training starts at the first room and continues with the next one

39

when it is learned. When all rooms are learned, a new room for training is selected

at every 10 episodes and selection is done inversely proportional the respective success

rate of the rooms. Training is continued until convergence of the average reward r̄(t)

is obtained. Again, it is computed using last NT = 300 episodes. The evolution of r̄(t)

is shown in Figure 4.4. Its convergence occurs around 3500 episodes.

Figure 4.4. Learning Curve of Social APF-RL.

Figure 4.5. Training Environment of Social APF-RL.

40

4.5. Experimental Results

The proposed method, APF-RL, is tested both in simulation and with a physi-

cal robot. Testing environments are different than training environments and totally

unseen by the agent. Performance metrics are selected as success rate (safe arrival

at the goal), travel distance until reaching the goal and mean distance to humans in

the environment. Path lengths are computed considering only successful runs and are

meaningful only with high success rates.

To observe the novelty of the proposed method a comparative study is done. The

classical social navigation method social force model is selected as a baseline. Also,

APF and APF-RL are used as the other baselines.

4.5.1. Simulation Results

The evaluation is first done in the simulation environments. Nine test rooms are

designed as can be seen in Figure 4.6. In each row, the static complexity of the room

increases as the number of obstacles increases and the arrangement of obstacles is more

complex. In each column, dynamic complexity which is represented by the number of

obstacles increases. In the third row, humans walk in groups so it is additionally harder

to avoid them. All methods are tested in these rooms with the same initial and target

locations. The evaluation is done based on these 20 location couples and metrics are

given as the average of them.

41

Figure 4.6. Test Environments for Social Navigation.

Results of the simulation tests are given in Table 4.1. The rooms are named

based on the complexity levels and results are given for each of them. The number after

”S” represents static complexity and the complexity level gets higher as the number

increases. Same applies for dynamic complexity and it is represented by the number

after ”D”. It can be seen that the proposed method has the best success rate in all

scenarios. Its travel distance is usually higher than APF-RL which can be related to

moving away from people around. The mean human distance of Social APF-RL is

higher than both APF and APF-RL, and it is comparable to SFM. However, SFM

has a much lower success rate, especially in complex environments. It is observed that

SFM struggles at avoiding humans and obstacles at the same time. It has parameters

for the weights of obstacle and human avoidance, they might need to be tuned based

on the scenario for better performance.

T
ab

le
4.
1.

S
o
ci
al
ly

C
om

p
li
an

t
N
av
ig
at
io
n
:
S
im

u
la
ti
on

R
es
u
lt
s.

M
e
th

o
d
s

S
u
cc

e
ss

R
a
te

(%
)

T
ra
v
e
l

D
is
t
(m

)

H
u
m
a
n

D
is
t
(m

)

S
u
cc

e
ss

R
a
te

(%
)

T
ra
v
e
l

D
is
t
(m

)

H
u
m
a
n

D
is
t
(m

)

S
u
cc

e
ss

R
a
te

(%
)

T
ra
v
e
l

D
is
t
(m

)

H
u
m
a
n

D
is
t
(m

)

S
1
D
1

S
2
D
1

S
3
D
1

A
P
F

90
11
.3

4.
7

75
13
.8

4.
5

65
14
.9

4.
1

A
P
F
-R

L
10
0

10
.1

4.
5

10
0

12
.2

4.
3

95
13
.5

3.
8

S
F
M

90
11
.8

5.
3

70
13
.1

5.
0

60
14
.0

4.
7

S
o
ci
a
l

A
P
F
-R

L
10
0

11
.1

5.
2

10
0

12
.9

4.
9

95
13
.9

4.
5

S
1
D
2

S
2
D
2

S
3
D
2

A
P
F

85
12
.9

4.
2

70
15
.2

3.
9

60
15
.3

3.
7

A
P
F
-R

L
90

10
.6

4.
0

85
12
.4

3.
6

80
13
.9

3.
3

S
F
M

85
12
.3

4.
7

65
13
.9

4.
5

50
14
.5

4.
1

S
o
ci
a
l

A
P
F
-R

L
10
0

11
.9

4.
7

90
13
.4

4.
3

85
14
.9

3.
9

S
1
D
3

S
2
D
3

S
3
D
3

A
P
F

75
13
.7

3.
1

60
13
.7

3.
1

50
15
.7

3.
0

A
P
F
-R

L
80

11
.4

2.
9

75
11
.4

2.
9

60
14
.5

2.
8

S
F
M

75
13
.0

3.
9

60
13
.0

3.
9

40
14
.9

3.
7

S
o
ci
a
l

A
P
F
-R

L
90

12
.5

3.
6

80
12
.5

3.
6

70
15
.6

3.
2

43

4.5.2. Real Robot Results

The real robot experiments are done using SempRob which is described in Chap-

ter 2. ZED2 camera has its own human detection module and it outputs positions

and velocities of the humans around. The social navigation performance is tested at 2

types of scenarios: i) only humans, ii) humans and static obstacles. The humans follow

different paths like crossing the road and approaching from the opposite direction. An

example test environment can be seen in Figure 4.7. Each scenario is repeated 5 times

and evaluation is done based on the average of them.

Figure 4.7. Sample test environment for real robot experiments.

The results for the real robot experiments can be seen in Table 4.2. Similar to

simulation results proposed method has the best performance in terms of success rate

and mean distance to humans. Its path length performance is also on par with the

best result by the APF-RL method. An example path followed by the robot using

social APF-RL is shown in Figure 4.8. Here the green curve represents trajectory of

the human, the yellow one represents the path of the robot. The robot successfully

avoids obstacles and the pedestrian and reaches the goal location. Classical APF has

a low success rate and human distance. It makes the robot oscillate back and forth

around humans which might be scary for the people around. So it doesn’t have socially

compliant behavior. The social force model also has a low success rate. It fails to avoid

obstacles when there is a human nearby and the robot gets stuck or collides with the

44

obstacles.

Table 4.2. Socially Compliant Navigation: Real Robot Results.

Method
Success

Rate (%)

Travel

Dist. (m)

Human

Dist. (m)

APF 65 8,2 2,7

APF-RL 90 7,1 3,1

SFM 65 7,7 3,2

Social APF-RL 95 7,0 3,4

Figure 4.8. Social APF-RL Example: Human path (green) vs robot path (yellow).

The robot successfully reaches its goal while also avoiding obstacles and respecting

the comfort zone of the pedestrian.

45

5. Socially Compliant Human Following

The chapter focuses on socially compliant human following. Here, differing from

previous navigation scenarios, the robot is expected to stay close to the accompanied

person and not lose its sight of him/her. This requires the robot to be capable of

detecting and tracking the target person. Furthermore, its movement must be suffi-

ciently fast and smooth. Simultaneously, it shall avoid all collisions and should not

disturb other people around. Thus, the navigation method needs to be both reactive

and social.

The outline of the chapter is as follows: Firstly, related literature is summarized

in Section 5.1. Next, human following method is explained in detail in Section5.2.

The chapter concludes with an experimental evaluation - including both simulation

and real robot results in Section 5.3.

5.1. Related Literature

Most work in human following has focused on how to control the robot to fol-

low the detected human. One of the early work in this area has proposed a simple

curvature-velocity model [54] - based on [55]. A vision based method that makes use

of a simple neural controller has been proposed in [56]. Ellipse-shaped social zones

are to be avoided using a social force based model in [57]. However, it doesn’t have a

human detection system on the robot and it uses scene information obtained from a

ceiling camera. Long-short term memory based human motion prediction with model

predictive controller is proposed for human following in complex environments [58].

Figure 5.1. Flow of processing for human tracking.

46

5.2. Human Following

In the human following task, the target location dynamically changes based on

the location of the followed human. This differentiates human following from the

previously discussed navigation scenarios. The target might be directly selected as the

human location, however, this location is occupied by the human. In order to eliminate

the impact of the movement of the robot, Kalman filter calculations are done in a fixed

frame which is created using localization of the robot. So it might result in failure to

find a path for search-based planners and oscillations or collision for reactive methods.

Instead of directly using human location, a point around the human must be selected.

In the presence of the other humans in the scene, the human detected first is

selected as the target. In case multiple humans are detected, the detection which is

nearest to the target’s last detection is fed to the target localization and target modules.

The target location relative to the human location can be selected based on the

preferred companion location. The preference can be represented with two parameters

as shown in Figure 5.2:

• Following angle θf ,

• Following distance df

All possible locations are in the back of the human because the robot needs to keep

visual contact. The limits of the following angle must be set based on the horizontal

field of view of the used camera. In order to determine which side is the back of the

human,the moving direction is used. The direction is calculated based on the velocity

output of the tracking module.

Once the human is detected and the target location is selected, it is given to

a navigation module to follow the target. For navigation, both APF-RL and Social

APF-RL methods are used. If the visual contact with the target person is lost, the

47

robot goes to the latest target and makes a 360 degrees rotation to in order to gain its

sight again.

Figure 5.2. Human Following Location Selection.

5.3. Experimental Results

Human following is tested both in simulation and with a physical robot. The

following distance rf is set as 1.5 m and the following angle θf is set as 180◦ which

means the robot will follow the human from the back. Two performance metrics are

computed:

• Average distance error: It calculated as the robot’s distance to the target location.

• Human path deviation: The deviation of the robot’s path from the path followed

by the human is computed.

APF-RL and Social APF-RL methods are tested and their performances are compared.

5.3.1. Simulation Results

First, simulation tests are done. A more realistic house-like test environment is

used for simulation tests. A single person is added to this room and a set of way-points

are given to it for each scenario. The simulated person follows the path with constant

velocity as long as the path is not occupied. The robot is placed 1.5 meters back of the

human initially and the test starts with the movement of the human. The simulation

environment and sample paths followed by the human and the robot are shown in

48

Figure 5.3. Here, the blue path is that of the human while the yellow one corresponds

to that of the robot’s.

Figure 5.3. Human following simulation: Human path vs robot path.

Tests are repeated for 5 times for each trajectory and metrics are calculated as

the average. The results are given in Table 5.1. As can be seen in the results, there is

no significant difference between these methods. They both can successfully follow the

human.

Table 5.1. Human Following: Simulation Results.

Method
Follow Dist.

Error (m)

Path

Deviation (m)

APF-RL 0.35 0.21

Social APF-RL 0.31 0.24

5.3.2. Real Robot Results

Real robot experiments are done using SempRob. Two scenarios are considered:

i) A long square corridor, ii) Straight with obstacles. In the first scenario, there are no

obstacles except the walls around. The human completes a full lap which is approxi-

mately 80 meters and the robot follows it. In the second, the human moves straight

49

while avoiding obstacles and the robot tries to keep following without collision. En-

vironment for the second scenario is shown in Figure 5.4. Example paths followed by

the human and the robot in this environment is shown in Figure 5.5. Here, the blue

trajectory shows the path of the human and the yellow one shows the robot’s path.

Figure 5.4. Example Following Environment.

Figure 5.5. Following Paths Comparison.

50

Tests are repeated for 5 times for both scenarios and metrics are calculated as the

average. The results are given in Table 5.2. Similar to simulation results, there is no

significant difference between these methods as can be seen in the results. Both enable

the robot to follow the human successfully. Interestingly, they both perform better in

long scenario that doesn’t have obstacles. In the presence of obstacles, they sometimes

struggle and lose time around obstacles so their performance metrics get worse.

Table 5.2. Human Following: Real Robot Experiments.

Long Scenario Obstacle Scenario

Method
Follow Dist.

Error (m)

Path

Deviation (m)

Follow Dist.

Error (m)

Path

Deviation (m)

APF-RL 0.23 0.12 0.38 0.25

Social APF-RL 0.21 0.13 0.39 0.27

51

6. CONCLUSION AND FUTURE WORK

This thesis is focused on the design and development of a social robot that can

navigate around in a socially compliant manner. In this thesis, this problem is ad-

dressed in two parts. The first part has focused on the physical design and develop-

ment of a social robot named as SempRob. In the second part, the social navigation

capability of the social robot is developed.

Chapter 2 has presented the development of a social robot. It is designed by

taking likability and usability into consideration. After manufacturing the body and

head parts, it is equipped with the necessary visual sensing hardware as to perceive the

environment. It is used for experiments of this thesis and it can be used for a variety

of daily-life tasks. As future work, head rotation capability can be added by using a

pan-tilt mechanism.

Chapter 3 has presented a novel mapless robot navigation method. This method

combines artificial potential functions and deep reinforcement learning in order to ob-

tain safe and efficient navigation. The method is fully trained via a simulation envi-

ronment and the learned functions are then successfully transferred to the real robot.

Differing from the previous work, this method does not require map of the environment

and it can be used even in complex environmental settings as well. Additionally, ellipse

representation of obstacles is introduced and novel environmental complexity measures

are proposed in this chapter.

Chapter 4 has extended APF-RL to human-populated environments to obtain a

socially compliant navigation method - namely Social APF-RL. The robot using this

method takes social conventions into account while navigating and aims to stay away

from the personal zones of pedestrians around as much as possible. Human detection

is also added to the robot for this task. In the future, human-likeness of the trajectory

of the robot can be improved by comparing and using human trajectory data sets.

52

Finally, Chapter 5 is on adaptation of proposed navigation methods for the human

following task. These methods are updated to make use of dynamic goal locations.

The goal is placed at a point behind the human based on the human preferences.

Human detection is augmented with human tracking capability. Human following

performance is experimentally evaluated both in simulations and on the developed

SempRob robot. In the future, human following can be tested in crowded areas based

on social compliancy and can be updated according the results.

53

REFERENCES

1. Kruse, T., A. K. Pandey, R. Alami and A. Kirsch, “Human-Aware Robot Naviga-

tion: A Survey”, Robotics and Autonomous Systems , Vol. 61, No. 12, pp. 1726 –

1743, 2013.

2. Dautenhahn, K., “Socially Intelligent Robots: Dimensions of Human-Robot In-

teraction.”, Philosophical transactions of the Royal Society of London. Series B,

Biological Sciences , Vol. 362 1480, pp. 679–704, 2007.

3. Charalampous, K., I. Kostavelis and A. Gasteratos, “Recent Trends in Social

Aware Robot Navigation: A Survey”, Robotics and Autonomous Systems , Vol. 93,

pp. 85–104, 2017.

4. Mathur, M. B. and D. B. Reichling, “Navigating a Social World with Robot Part-

ners: A Quantitative Cartography of the Uncanny Valley”, Cognition, Vol. 146,

pp. 22 – 32, 2016.

5. MORI, M., “Bukimi No Tani The Uncanny Valley”, Energy , Vol. 7, pp. 33–35,

1970.

6. Kubota, T., “JackRabbot 2: The Polite Pedestrian Robot | Stanford Univer-

sity School of Engineering”, , Sep. 2018, https://engineering.stanford.edu/

magazine/article/jackrabbot-2-polite-pedestrian-Robot, accessed in De-

cember 2021.

7. Pandey, A. K. and R. Gelin, “A Mass-Produced Sociable Humanoid Robot: Pep-

per: The First Machine of Its Kind”, IEEE Robotics & Automation Magazine,

Vol. 25, pp. 40–48, 2018.

8. Sun, H., H. Zhou, X. Li, Y. Wei and X. Li, “Design of Two-Wheel Self-

Balanced Electric Vehicle Based on MEMS”, 4th IEEE International Conference

54

on Nano/Micro Engineered and Molecular Systems , pp. 143–146, 2009.

9. Murtagh, A., “Robot Faces”, https://github.com/AndrewMurtagh/Robot_

faces, 2021, accessed in October 2021.

10. Patle, B., G. Babu L, A. Pandey, D. Parhi and A. Jagadeesh, “A Review: On Path

Planning Strategies for Navigation of Mobile Robot”, Defence Technology , Vol. 15,

No. 4, pp. 582–606, 2019.

11. Esan, O., S. Du and B. Lodewyk, “Review on Autonomous Indoor Wheel Mobile

Robot Navigation Systems”, International Conference on Artificial Intelligence,

Big Data, Computing and Data Communication Systems (icABCD), pp. 1–6, 2020.

12. Rimon, E. D. and D. E. Koditschek, “Exact Robot Navigation Using Artificial

Potential Functions”, IEEE Transactions Robotics and Automation, Vol. 8, pp.

501–518, 1992.

13. Bishop, C. M., “Novelty Detection and Neural Network Validation”, IEE Proceed-

ings - Vision, Image and Signal Processing , Vol. 141, No. 4, pp. 217–222, 1994.

14. Fox, D., W. Burgard and S. Thrun, “The Dynamic Window Approach to Collision

Avoidance”, IEEE Robotics and Automation Magazine, Vol. 4, pp. 23–33, 1997.

15. Karagöz, C. S., H. I. Bozma and D. E. Koditschek, “Coordinated Navigation

of Multiple Independent Disk-Shaped Robots”, IEEE Transactions on Robotics ,

Vol. 30, No. 6, pp. 1289–1304, 2014.

16. Lionis, G., X. Papageorgiou and K. J. Kyriakopoulos, “Locally Computable Navi-

gation Functions for Sphere Worlds”, IEEE International Conference on Robotics

and Automation, pp. 1998–2003, April 2007.

17. Filippidis, I. and K. J. Kyriakopoulos, “Adjustable Navigation Functions for Un-

known Sphere Worlds”, 50th IEEE Conference on Decision and Control and Eu-

55

ropean Control Conference, pp. 4276–4281, Dec 2011.

18. Conner, D. C., H. Choset and A. A. Rizzi, “Integrating Planning and Control for

Single-Bodied Wheeled Mobile Robots”, Autonomous Robots , Vol. 30, No. 3, pp.

243–264, Apr 2011.

19. Arslan, O. and D. E. Koditschek, “Sensor-Based Reactive Navigation in unknown

convex sphere worlds”, The International Journal of Robotics Research, Vol. 38,

pp. 196 – 223, 2019.

20. Vasilopoulos, V., W. Vega-Brown, Ö. Arslan, N. Roy and D. E. Koditschek,

“Sensor-Based Reactive Symbolic Planning in Partially Known Environments”,

IEEE International Conference on Robotics and Automation, pp. 1–5, 2017.

21. Richter, C., W. Vega-Brown and N. Roy, “Bayesian Learning for Safe High-Speed

Navigation in Unknown Environments”, A. Bicchi and W. Burgard (Editors), In-

ternational Symposium on Robotics Research, Vol. 3, pp. 325–341, Springer, 2015.

22. Duan, Y., J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever and P. Abbeel, “RL2:

Fast Reinforcement Learning via Slow Reinforcement Learning”, Computing Re-

search Repository (CoRR), Vol. abs/1611.02779, 2016.

23. Tai, L., G. Paolo and M. Liu, “Virtual-to-Real Deep Reinforcement Learning:

Continuous Control of Mobile Robots for Mapless Navigation”, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems , pp. 31–36, 2017.

24. Pan, Y., C. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou and B. Boots,

“Agile Off-Road Autonomous Driving Using End-to-End Deep Imitation Learn-

ing”, Computing Research Repository (CoRR), Vol. abs/1709.07174, 2017.

25. Faust, A., O. Ramı́rez, M. Fiser, K. Oslund, A. Francis, J. O. Davidson and

L. Tapia, “PRM-RL: Long-range Robotic Navigation Tasks by Combining Re-

inforcement Learning and Sampling-Based Planning”, IEEE International Confer-

56

ence on Robotics and Automation, pp. 5113–5120, 2017.

26. Savinov, N., A. Dosovitskiy and V. Koltun, “Semi-Parametric Topological Memory

for Navigation”, Computing Research Repository (CoRR), Vol. abs/1803.00653,

2018.

27. Bansal, S., V. Tolani, S. Gupta, J. Malik and C. J. Tomlin, “Combining Optimal

Control and Learning for Visual Navigation in Novel Environments”, Computing

Research Repository (CoRR), Vol. abs/1903.02531, 2019.

28. Chiang, H.-T. L., J. Hsu, M. Fiser, L. Tapia and A. Faust, “RL-RRT: Kinodynamic

Motion Planning via Learning Reachability Estimators From RL Policies”, IEEE

Robotics and Automation Letters , Vol. 4, pp. 4298–4305, 2019.

29. Pfeiffer, M., M. Schaeuble, J. Nieto, R. Siegwart and C. Cadena, “From Percep-

tion to Decision: A Data-Driven Approach to End-to-End Motion Planning for

Autonomous Ground Robots”, IEEE International Conference on Robotics and

Automation, pp. 1527–1533, 2016.

30. Halır, R. and J. Flusser, “Numerically Stable Direct Least Squares Fitting of El-

lipses”, Proc. 6th International Conference in Central Europe on Computer Graph-

ics and Visualization. WSCG , Vol. 98, pp. 125–132, Citeseer, 1998.

31. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Sil-

ver and D. Wierstra, “Continuous Control with Deep Reinforcement Learning”,

Computing Research Repository (CoRR), Vol. abs/1509.02971, 2016.

32. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and

M. A. Riedmiller, “Playing Atari with Deep Reinforcement Learning”, Computing

Research Repository (CoRR), Vol. abs/1312.5602, 2013.

33. Haarnoja, T., A. Zhou, P. Abbeel and S. Levine, “Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”, Inter-

57

national Conference on Machine Learning (ICML), 2018.

34. Schulman, J., S. Levine, P. Abbeel, M. I. Jordan and P. Moritz, “Trust Region Pol-

icy Optimization”, International Conference on Machine Learning (ICML), 2015.

35. Schulman, J., F. Wolski, P. Dhariwal, A. Radford and O. Klimov, “Proximal

Policy Optimization Algorithms”, Computing Research Repository (CoRR), Vol.

abs/1707.06347, 2017.

36. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver

and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learning”,

International Conference on Machine Learning (ICML), 2016.

37. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Sil-

ver and D. Wierstra, “Continuous Control with Deep Reinforcement Learning”,

Computing Research Repository (CoRR), Vol. abs/1509.02971, 2015.

38. Hall, E. T. and E. T. Hall, The Hidden Dimension, Vol. 609, Anchor, 1966.

39. Daza, M., D. Barrios-Aranibar, J. Diaz-Amado, Y. Cardinale and J. P. Vilasboas,

“An Approach of Social Navigation Based on Proxemics for Crowded Environments

of Humans and Robots”, Micromachines , Vol. 12, 2021.

40. Pandey, A. K. and R. Alami, “A Framework Towards a Socially Aware Mobile

Robot Motion In Human-Centered Dynamic Environment”, IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems , pp. 5855–5860, 2010.

41. Helbing and Molnar, “Social Force Model for Pedestrian Dynamics.”, Physical

Review, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics ,

Vol. 51 5, pp. 4282–4286, 1995.

42. Ferrer, G., A. Garrell and A. Sanfeliu, “Robot Companion: A Social-Force

Based Approach With human Awareness-Navigation in Crowded Environments”,

58

IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1688–

1694, 2013.

43. Ferrer, G., A. Garrell and A. Sanfeliu, “Social-Aware Robot Navigation in Urban

Environments”, 2013 European Conference on Mobile Robots , pp. 331–336, 2013.

44. Everett, M., Y. F. Chen and J. P. How, “Motion Planning Among Dynamic,

Decision-Making Agents with Deep Reinforcement Learning”, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pp. 3052–3059,

2018.

45. Chen, C., Y. Liu, S. Kreiss and A. Alahi, “Crowd-Robot Interaction: Crowd-

Aware Robot Navigation With Attention-Based Deep Reinforcement Learning”,

International Conference on Robotics and Automation (ICRA), pp. 6015–6022,

2018.

46. Jin, J., N. M. Nguyen, N. Sakib, D. E. Graves, H. Yao and M. Jägersand, “Map-

less Navigation Among Dynamics with Social-Safety-Awareness: A Reinforce-

ment Learning Approach From 2D Laser Scans”, Computing Research Repository

(CoRR), Vol. abs/1911.03074, 2019.

47. Sathyamoorthy, A. J., U. Patel, T. Guan and D. Manocha, “Frozone: Freezing-

Free, Pedestrian-Friendly Navigation in Human Crowds”, IEEE Robotics and Au-

tomation Letters , Vol. 5, pp. 4352–4359, 2020.

48. Vasquez, D., B. Okal and K. O. Arras, “Inverse Reinforcement Learning Algorithms

and Features for Robot Navigation in Crowds: An Experimental Comparison”,

IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1341–

1346, 2014.

49. Okal, B. and K. O. Arras, “Learning Socially Normative Robot Navigation Behav-

iors with Bayesian Inverse Reinforcement Learning”, IEEE International Confer-

59

ence on Robotics and Automation (ICRA), pp. 2889–2895, 2016.

50. Chen, Y. F., M. Everett, M. Liu and J. P. How, “Socially Aware Motion Plan-

ning with Deep Reinforcement Learning”, IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1343–1350, 2017.

51. Hamandi, M., M. D’Arcy and P. Fazli, “DeepMoTIon: Learning to Navigate Like

Humans”, 28th IEEE International Conference on Robot and Human Interactive

Communication (RO-MAN), pp. 1–7, 2019.

52. Redmon, J., S. K. Divvala, R. B. Girshick and A. Farhadi, “You Only Look Once:

Unified, Real-Time Object Detection”, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 779–788, 2016.

53. Bertoni, L., S. Kreiss and A. Alahi, “MonoLoco: Monocular 3D Pedestrian Lo-

calization and Uncertainty Estimation”, IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 6860–6870, 2019.

54. Gockley, R., J. Forlizzi and R. G. Simmons, “Natural Person-Following Behavior

for Social Robots”, 2nd ACM/IEEE International Conference on Human-Robot

Interaction (HRI), pp. 17–24, 2007.

55. Simmons, R. G., “The Curvature-Velocity Method for Local Obstacle Avoidance”,

Proceedings of IEEE International Conference on Robotics and Automation, Vol. 4,

pp. 3375–3382 vol.4, 1996.

56. Capi, G., H. Toda and T. Nagasaki, “A Vision Based Robot Navigation and Hu-

man Tracking for Social Robotics”, IEEE International Workshop on Robotic and

Sensors Environments , pp. 1–6, 2010.

57. Herrera, D., M. Monllor, D. Santiago, F. Roberti and R. O. Carelli, “Null-Space

Based Control for Human Following and Social Field Avoidance”, XVII Workshop

on Information Processing and Control (RPIC), pp. 1–6, 2017.

60

58. Ashe, A. K. and K. M. Krishna, “Followman: Control of Social Person Follow-

ing Robot”, IEEE International Intelligent Transportation Systems Conference

(ITSC), pp. 3590–3595, 2021.

61

7. APPENDIX A: ROBOT MANUAL

The detailed specifications of the base platform are given in Table 7.1. Camera

and lidar sensors are placed on this robot and a Nvidia Xavier AGX computer is used to

run software modules. All sensors and computer get power from the robotic platform.

The platform can be charged using an external power supply. The charging steps are

as follows:

• Make sure the the robot is powered off.

• Connect the External Power Supply to the charge port (Connector IV).

• Plug the power cord into the IEC connector on the External Power Supply and

into a grounded AC outlet (100 – 240 V, 50 – 60 Hz).

• Toggle the power switch on the External Power Supply to the ON (l) position.

• When charging is complete, toggle the power switch to the OFF position, unplug

the External Power Supply from the grounded AC outlet, and disconnect the

External Power Supply from the robot.

Table 7.1. Characteristics of the Base Platform.

Characteristic Value Unit

Max. Speed 8 m/s

Turn Radius 0 m

Max. Slope 10 ◦

Peak Torque

(Each Wheel)
100 Nm

Maximum Range 50 km

Max. Run Time 24 h

Max. Payload 181 kg

To start the robot first toggle the power switch to the ON position. This will

power the base platform. Then to connect to it power on the onboard Nvidia Xavier

computer. After logging into Xavier, run start all.sh that will start connection to the

62

robot and the sensors. If there is a connection error, check ip addresses of ethernet

connections. It should be 192.168.0.100 for the robot and 192.168.1.102 for the lidar.

63

8. APPENDIX B: SOFTWARE USAGE

After the robot and sensors are powered and start all script is run, the robot is

ready to perform navigation tasks.

• To use APF-RL, run:

roslaunch apfrl apfrl.launch

This will start obstacle generator, APF-RL and APF nodes. It will also open the

visualization module, here you can give it a target using ”2D Nav Goal” tool.

• To use Social APF-RL, run:

roslaunch apfrl social apfrl.launch

This will start obstacle generator, Social APF-RL and APF nodes. Again it will

be waiting for a target.

• To use human following, start APF-RL or Social APF-RL first. Then run:

rosrun apfrl human goal pub node

This will publish target location based on the human detection.

64

9. APPENDIX C: IMAGE USAGE

The images are generated within the scope of this thesis and whose copyright

have been transferred to the publishers, were used in accordance with the publication

policy of the publisher.

The human figure in Figure 5.2 is licensed with Creative Commons so it can be

used freely without asking for permission.

Figure 5.3 depicts a simulation environment which is distributed freely so it can

be used without restriction.

