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ABSTRACT

SIMPLE SECTION BISET FUNCTORS

Let G and H be finite groups and k be a commutative unitary ring. The Burnside
group B(G, H) is the Grothendieck group of the category of finite (G, H) - bisets. The
biset category kC of finite groups is the category defined over finite groups, whose
morphism sets are given by the kB(G, H) groups. A biset functor defined on kC, with
values in k-Mod is a k-linear functor from kC to the category of k-Mod. The remarkable
results as the evaluation of the Dade group of endopermutation modules of a p-group
and finding the unit group of the Burnside ring of a p-group are done using the theory
of biset functors. Looking for ring objects in the category of biset functors one gets
a more sophisticated structure, which is called a Green Biset Functor. Serge Bouc
introduced the slice Burnside ring and the section Burnside ring for a finite group G.
He also showed that these two rings have a natural structure of a Green Biset Functor.
In our work we classify simple modules over the section Burnside ring of G using the

approach of the paper Fibered Biset Functors by Robert Boltje and Olcay Coskun.



OZET

BASIT BOLUM IKiLI KUME iZLECLERI

G ve H sonlu gruplar ve k degismeli bir halka olsun. Burnside grubu B(G, H),
sonlu (G, H) ikili kiimeler kategorisinin Grothendieck grubudur. Sonlu gruplarin ik-
ili kiime kategorisi kC, nesneleri sonlu gruplar olan ve morfizm kiimeleri kB(G, H)
gruplart tarafindan verilen kategoridir. Ikili kiime izleci, kC kategorisinden k-Mod
kategorisine k-dogrusal bir izlectir. Ornegin p-grubunun ic permutasyon modiillerinin
Dade grubunun hesaplanmasi veya p-grubunun Burnside halkasinin birim grubunun
bulunmasi gibi dikkate deger sonuclar, ikili kiime izleci teorisi kullanilarak yapilmistir.
Ikili kiime izlecleri kategorisinde halka nesneleri dikkate alindiginda, Green ikili kiime
izleci adlandirilan daha geligmig bir yap1 elde edilir. Serge Bouc, sonlu bir grup G
igin dilim Burnside halkasimi ve boliim Burnside halkasini tanitti. Ayrica Bouc bu
iki halkanin bir Green ikili kiime izlecinin dogal bir yapisina sahip oldugunu dahi
gosterdi. Caligmamizda, Robert Boltje ve Olcay Cogkun tarafindan yazilan fiberli ik-
ili kiime izlegleri makalesinin yaklagimini kullanarak boliim Burnside halkasi tizerinde

basit modilleri simflandirdik.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . iii
ABSTRACT . . . e iv
OZET . .. .o v
LIST OF SYMBOLS . . . . . . . o viii
1. INTRODUCTION . . . . e 1
2. NOTATION AND PRELIMINARIES . . . . . ... .. ... ... ... 5
210 G-Sets . . .. 5
2.2. Morphisms of G-Sets . . . . . . ... 6
2.3. Slice and Section Burnside Rings . . . . . .. .. ... ... ... ... 7
2.4. Crossed Modules . . . . . . . ... . 11
2.5. Green Biset Functor . . . . . ... 13
3. DETERMINATION OF SIMPLE MODULES OVER GREEN BISET FUNC-
TOR © o o 16
3.1, A-Modules . . . . . .o 16
3.2, Simple Modules . . . . . . . .. 17
3.3. Covering Algebra . . . . . . . ... 18
4. THEOREMS FOR SECTIONS AND SECTION BURNSIDE RINGS . . .. 21
4.1. Goursat Theorem . . . . . . . . . ... .. 21
4.2. Decomposition of Sections . . . . . .. ... oL 24
5. THE ENDOMORPHISM RING . . . . . . . . ... . ... . .. 31
5.1. Idempotents . . . . . . . . .. 31
6. LINKAGE . . . . . .o 35
6.1. Linked Pairs . . . . . . . . . .. 35
6.2. Central Idempotents . . . . . . . . . . ... ... 36
7. THE COVERING ALGEBRA . . . . . . . ... .. . .. 38
7.1. Covering Pairs. . . . . . . . . .. 38
7.2. Technical Results . . . . . . . . .. . 40

7.3. Morita Equivalence . . . . . . . ... 44



8. THE ESSENTIAL ALGEBRA . . . . ... ... ... .. ... ....
8.1. Reduced Pairs . . . . . . . . ..
8.2. The Essential Algebra Eg . . . . . . . . ...

9. MAIN RESULT . . . . . . . e
9.1. Simple Functors over KI' . . . . . . . . . . .. ... ... ..

REFERENCES

vii



viil

LIST OF SYMBOLS

Crossed module

Automorphism group of G-equivariant maps of a G-set X
Double Burnside group

Centralizer of subgroup H in G

Deflation section biset

Category of the class of morphisms of G-sets
Category of the class of Galois morphisms of G-sets
The stabilizer of x in G

H is a subgroup of G

H is a normal subgroup of G

Induction section biset

Inflation section biset

Restriction section biset

Section Burnside ring of G
Section Burnside ring of G x H
{(a,a) [a € A}

The slice Burnside group of G
The set of sections of G

{((K,P)| K9G, PG and K < Cs(P)}



1. INTRODUCTION

(Classification of simple modules over Green Biset Functors is an open problem
more than three decades. Although there are partial solutions for some specific ex-
amples of Green Biset Functors like biset functors or fibered biset functors there is
no general classification theorem or conjecture for simple modules over Green Biset

Functors.

The classification of simple biset functors is done by Serge Bouc in [1]. He showed
that there is a bijection between isomorphism classes of simple biset functors and equiv-
alence classes of pairs (H,V'), where H is a finite group and V' is a simple ROut(H )-
module. He also conjectured that it can be generalized to the case of Green Biset Func-
tors. In her paper [2] Nadia Romero studied three examples of Green Biset Functors
for which their simple modules can be parametrized in the way as Bouc conjectured.
These examples are rhetorical biset functors (kRg), the functor of complex representa-
tions with coefficients in the complex field (CR¢), and the Yoneda-Dress construction
at a group C of prime order of the Burnside functor (RB¢). However, recently Robert
Boltje and Olcay Coskun, come up with a counterexample to Bouc’s conjecture classi-
fying the simple modules of fibered biset functor, which also has a structure of a Green

Biset Functor.

Our aim is to solve the classification problem for the functor of section Burnside
rings. It is shown in [3] that basic morphisms of G-sets are given by the natural maps
G/S — G/T associated to subgroups S < T < G and basic Galois morphisms are
those associated to subgroups S < T < G (a pair of this form is called a section of
G). With this result, the section Burnside ring I'(G) is free as an abelian group on
the G-conjugacy classes of sections of G. It is also shown in [3] that the functor T'

associating I'(G) to the finite group G induces a Green Biset Functor.



One of the important observations for classification is that section Burnside ring
has a similar structure with the Burnside ring of fibered bisets and so it is most likely to
have analogous results. First of all, in the article [4] the isomorphism class of transitive
fibered bisets are parametrized with the conjugacy classes of some tuples. Similarly
basis elements of section Burnside ring are in bijection with the representatives of

conjugacy classes of sections of the base group.

We start this thesis with the preliminaries chapter where we summarize the theory
of Green Biset Functors and mention facts about the section Burnside ring. In Chapter
3 we generalize the idea, given in [4], for evaluation of essential algebra of Green
Biset Functors. We carry out some facts like Mackey formula, which describes how
to compose two basis elements of the section Burnside ring in Chapter 4. Then we
show that the category of modules over the Green Biset Functor I' is equivalent to
the category of functors from the category Pir of finite groups in which composition
is given by the linear extension of the composition product. Here k is a commutative

ring of coefficients for I'. We call a module over kI" a section biset functor (over k).

Then we parametrize some idempotents in the endomorphism ring Fq := I'(G, G)
and establish linkage classes between the sections corresponding to the transitive ele-
ments of section Burnside ring. Following [4] we use these idempotent elements in Fg
to prove that the essential algebra Eg is isomorphic to a product of matrix algebras
over certain group algebras associated to these idempotents. Essential algebra Eg is
the quotient of Fg by the ideal generated by all the morphisms that factor through
a group of smaller order. In our case, the idempotents of interest in Fg are param-
eterized by pairs (K, P) of normal subgroups of G that centralizes each other, which
are also reduced. Given such a pair (K, P), the section (Ax(G), A(P)) of G x G gives
the idempotent element e py in Eg. Here Ax(G) = {(g,h) € G x Glh™'g € K}
and A(P) is the diagonal inclusion of P in G x G. In particular, we associate simple

Eg-modules to each reduced pair (K, P).



As mentioned in Chapter 5, it is also possible to associate crossed modules to
pairs (K, P) in a natural way and it turns out that two reduced pairs induce isomorphic

Eg-modules if and only if the corresponding crossed modules are isomorphic.

With this result, we classify simple modules over the algebra Eg, see Chapter 8
for details. Finally, in Chapter 9, we show that the relation defined on reduced pairs
can be extended to an equivalence relation on the set of quadruples (G, K, P, [V']) where
G is a finite group, (K, P) is a reduced pair for G and V' is an irreducible Eg-module
associated to the pair (K, P). Moreover there is a bijective correspondence between the
equivalence classes of these quadruples and the isomorphism classes of simple section

biset functors.

In order to complete the parametrization one needs to know the complete set of
reduced pairs for each finite group G. Although we do not know the complete answer,
we have some necessary and also some sufficient conditions to ensure that a pair (K, P)
is reduced. For example (K, P) is reduced if K < P. Hence the pairs (1, P) for any
P <G and the pairs (K, G) for any K < Z(G) are reduced. In particular, the algebra

FE¢ is non-zero for any finite group G.

Our reason for attempting to classify simple modules over the Green Biset Func-
tor kI' is that it is different from the previous known examples in the following sense.
The previous examples are known to have strong connections with the theory of repre-
sentations of finite groups and the classification in these cases uses these connections
in crucial ways. On the other hand, section Burnside rings are relatively new and these
kind of deep connections are not known yet. Therefore it is close to be an abstract
example. Having a successful application of the techniques from [4] signals a path

towards a more general theory of simple modules over Green Biset Functors.



A result that might be of general interest is the version of Goursat’s Theorem
for sections. The well-known Goursat’s Theorem for subgroups states that there is
a bijective correspondence between subgroups of a direct product G x H and the
quintuples (P, K,n, L,Q) where K AP < Gand LIQ < Handn:Q/L — P/K a
group isomorphism. Our version, given as Theorem 4.1.1, determines exact conditions
on the pairs of quintuples coming from Goursat’s Theorem so that the induced map

between sections of G x H and the pairs satisfying these conditions is bijective.



2. NOTATION AND PRELIMINARIES

In this chapter we fix some notation that will be used throughout this thesis and

recall some definitions from [3].

2.1. G-Sets

Definition 2.1.1. Let G be a finite group. A left G-set X is a finite set with an action
of group G on it. In other words, there is a map G x X — X, which satisfies the

following conditions

g-(h-z)=(gh)-z, (2.1)
lgrx=x (2.2)

for any g,h € G and x € X.

Similarly one can define a right G-set. Unless otherwise stated we consider left

(G-sets in this thesis.

Definition 2.1.2. Let G be a finite group. Given G-sets X and Y, we define a
morphism (G-equivariant map) between X and Y as a map f : X — Y such that
flg-x)=g- f(x). Morphisms of G-sets can be composed and the identity map from
X to itself is an identity morphism. A G-equivariant map is an isomorphism if it is

bijection.

Definition 2.1.3. Let G be a finite group. We call a G-set X transitive if for any two

elements v,y € X there is a group element g € G such that g - = y.



The following Lemma from [5] describes transitive G-sets.

Lemma 2.1.4. Let G be a finite group.

(a) For any transitive G-set X there is a subgroup H of G such that X is isomorphic
to G/H as a G-set.

(b) For subgroups H and K of G there is an isomorphism between G-sets G/H and
G/K if and only if H and K are conjugate in G.

2.2. Morphisms of G-Sets

Notation 2.2.1. Let G be a finite group. Denote by g the set of sections of G.
That is, the set of all pairs (T,S) where S and T are subgroups of G and S is normal
subgroup of T'.

Notation 2.2.2. We use the notation Gg for the set of all pairs (K, P) where K and
P are normal subgroups of finite group G and K < Cq(P). That is,

Go={(K,P)| K<G,P<Gand K < Cq(P)}. (2.3)

The set Gg has a poset structure given by (K, P) < (L,Q) if K < L and P > Q.

Definition 2.2.3. Let G be a group. If fi : X1 — Y] and fy: Xo — Y5 are morphisms
of G-sets, a morphism from fi to fs is a pair of morphisms of G-sets o : X1 — X

and o' : Y1 = Y5 such that o/ (f1(x)) = fo(a(x)) for any x in X;.

If f3: X3 — Y3 is also a morphism of G-sets and (3, ') is a morphism from f5 to
f3 then the composition (a0, a’ o) obviously is a morphism from f; to f3. With the
composition described above the class of morphisms of G-sets become category, which

we denote by G' — Mor.



Definition 2.2.4. Let G be a group. A G-set morphism f: X — Y is called a Galois
morphism if Autq(X) acts transitively on the fibers f~'(y). In other words, f is a
Galois morphism if for any x,x’ € X with f(x) = f(a'), there exists ¢ € Autg(X)
such that fo¢ = f and ¢(x) = 2.

Proposition 2.2.5. Let G be a group. A morphism f: X —Y of G-sets is a Galois
morphism if for any y € f(X) one can find a normal subgroup M, of G, such that

G, = M, for any x € f~*(y).

Remark 2.2.6. If S and T are subgroups of a finite group G such that S < T, then
the projection morphism G/S — G/T is a Galois morphism of G-sets if and only if
S<T. Moreover by [3, Section 9], the class of all Galois morphisms of G-sets forms a
subcategory of G —Mor and the product and coproduct in G —Mor restricts to a product

and a coproduct in this subcategory. We denote the category of Galois morphisms by

G — Mor®,

2.3. Slice and Section Burnside Rings

In Proposition 2.2 of [3] it’s shown that disjoint union and direct product of G-
sets induces coproduct and product respectively in the category G — Mor. Hence the

slice Burnside group can be defined as follows.

Definition 2.3.1. Let G be a finite group. The slice Burnside group Z(G) of G is the
Grothendieck group of the category G — Mor. As usual it is defined as the quotient
of the free abelian group on the set of isomorphism classes [X EN Y] of morphisms of

finite G-sets, by the subgroup generated by elements of the form
B x5 ) - X B
[(XiUXo) =7 Y] = [Xh = f(X)] = [Xo = f(Xy)], (2.4)
whenever X 5 Y is a morphism of finite G-sets with a decomposition X = X U X,

as a disjoint union of G-sets, where f1 = fix, and fy = fix,. Moreover, the product of

morphisms induces a commutative unital ring structure on =(G).



Notation 2.3.2. We use 7(f) to denote the image of the isomorphism class of [ X EN

Y] in Z(G). Also for the section (T, S) € Xq, set (I, S)c =n(G/S — G/T).

Definition 2.3.3 ( [3], Definition 10.2). Let G be a finite group. The section Burnside
ring U'(G) of G is the subring of the slice Burnside ring =(G) generated by the classes

of Galois morphisms of G-sets.

By Corollary 10.4 of [3] we know that the elements (T, S)q, where (7',.5) runs
through a set [Y¢] of representatives of conjugacy classes of sections of GG, form a basis

of I'(G).

Notation 2.3.4. The group I'(G, H). Let G and H be finite groups. For (T, S) €
Yexu we denote the corresponding Galois morphism (G x H)/S — (G x H)/T and its

isomorphism class by

X
T
X

T

(C; > and [C; T} (2:5)

A
~
IA

respectively.

Moreover we write I'(G, H) for the section Burnside ring of G x H. It has a basis
parameterized by the representatives of G x H-conjugacy classes of sections of the direct

product G x H. As usual we shall consider the elements of I'(G, H) as morphisms from

H to Q.

Notation 2.3.5. Let A be a subgroup of G x H, then we set

e pi(A)={9g€G|3IheH, (g,h) € A},
o py(A)={h e H|3geq, (g.h) € A},
o h(A)={g€G|(g,1) € A},

(

e O
M
PN
- =
=
- >
M
==
ij,:
s =
A om
~
F o=
=
>
o
[\
=
Na)
o
2
=
=3

3
<
oW
@)
QL
o
=
m

h



By Goursat Theorem, the map na above is a group isomorphism and the corre-
spondence mapping A to the quintuple (p1(A), k1(A),na, k2(A), p2(A)) establishes a bi-
jective correspondence between the subgroups A of GX H and the quintuples (P, K,n, L, Q)
with K <P <G and LIQ < Handn: Q/L — P/K a group isomorphism. We
call (p1(A), ki1(A),na, ka(A),p2(A)) the Goursat correspondent of A. Also we call a
quintuple (P, K,n, L, Q) satisfying the above conditions a Goursal quintuple.

Notation 2.3.6. Let G, H and K be finite groups. For the subgroups A and B of
G x H and H x K respectively, we set

AxB={(g,k) € Gx K | thereexist h € Hwith (g,h) € Aand (h,k) € B}. (2.6)

Notation 2.3.7. Invariants of sections. Let (T,S) € Ygxu. We associate (T, S)

with its left and right invariants

l(T S) = (pl(T)vkl(T)*pl(S)vkl(S))v (27)
r(T,S) == (p2(T'), ko(T), p2(S), k2(S)). (2.8)

Moreover, by lo(T,S) andro(T, S) we denote the pairs (ki (1), p1(S)) and (ka(T'), p2(S))

respectively.

Notation 2.3.8. Let f : X — Y be a Galois morphism in I'(G,H). We define
the opposite [P € TI'(H,G) of [ as the Galois morphism f : X — YP where
fP(xz) = f(x) for any x € X. Here the opposite biset X is the (H,G)-biset equal
to X as a set with the action defined in the following way. For all h € H, v € X,

g€G h-x-g(in XP) =gt -x-h(in X). In particular, if f = (%) then
op o (SHﬂg) where S .= {(h,g) € H x G | (g.h) € S}.
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Notation 2.3.9. Let G and H be finite groups. For any subgroups A < B < H and

any group homomorphism o : B — G, we set
oA(A) :={(a(a),a) |a e A} <G x H.

For any subgroups C < D < G and any group homomorphism o : D — H, we set
AL (C):={(c,a(c)) | c€ C} <G x H.

If a is the inclusion map of a subgroup, we write A(A) and A(C) respectively.
Notation 2.3.10. Let G be a finite group and N be a normal subgroup of G. Denote
by

AN(G) :={(91,92) € GXG | 1N = 2N} = (Nx{1})A(G) = ({1} x N)A(G). (2.9)

Note that Ay(G) is a subgroup of G x G, since N is normal in G.

Furthermore, for a subgroup H of G if N < C(H), then for any (g1, g2) € An(G)
we have g;'g, € N and hence g;'gs € Cq(H). So A(H) is normal in Ax(G). In
particular, (Ax(G),A(H)) € Ygxa, i-€., it is a section of G x G.

Notation 2.3.11. Let G be a finite group. H and N subgroups of G such that N I G
and N < Ce(H). We write

J§ = Inf y xq/v Defll,y € B(G,G) (2.10)

and I§ :=Ind$ xy Res% € B(G, G). (2.11)



11

Here, B(G, G) is the biset Burnside group B(G x GP), which is the Grothendieck
group of the category of finite (G x GP)-sets.

Definition 2.3.12. For a finite group G and a pair (K, P) € Gg we define Galois

morphism g py in I'(G,G) as

GxG > , (2.12)

Buer = (A(P) I AK(G)

then the map I§ — J$ is a Galois morphism and its image in (G, G) is [E(x p)). The
left and the right invariants of the section (A (G), A(P)) are both given by (G, K, P, 1).

Definition 2.3.13. For each pair (K, P) € Gg we set

= —[E(KJD)] € Eg. (213)

2.4. Crossed Modules

Since a basis for I'(G, H) is given in terms of sections of G x H, we first tried to
parametrize sections of direct products. For this result, which we will demonstrate in
the subsequent section, we need the crossed modules. Crossed modules has been defined
by J. H. C. Whitehead in 1946, and then Katherine Norrie in her paper [6] generalized
some aspects of the theory of automorphisms from groups to crossed modules. Here
we give briefly the necessary information about crossed modules. See [6] for further

details.
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Definition 2.4.1. Let G and A be finite groups. We call the triple (A, G,0) crossed
module if G acts on A, which we denote by (g,a) — 9a and 0 : A — G is a group

homomorphism such that

(i) 0(%a) = go(a)g™",
(ii) °®a = bab™!

forall g e G and a,b € A.

Definition 2.4.2. Given crossed modules (A, G,0) and (A',G',0'), we define a mor-
phism from (A, G, 0) to (A", G',d') as a pair (a, B) of group homomorphisms o : A — A’
and 5 : G — G’ satisfying

(a) J'(a(a)) = B(0(a)) for any a € A and
(b)  a(¥a) =P9a(a) for any g € G and a € A.

Notation 2.4.3. The pair (o, B) is called an isomorphism, a monomorphism, an epi-
morphism or an automorphism of crossed modules if the homomorphisms («, ) are
both isomorphisms, monomorphisms, epimorphisms or automorphisms, respectively.

The group of automorphisms of (A, G, 0) is defined and denoted by Aut(A, G, 0).

Definition 2.4.4. Let o : G — Aut(A), g — oy be the action of G on A and c: G —
Aut(G), g — ¢, be the conjugation action of G on itself. For any g € G the pair (o, cg)
is an automorphism of (A, G,0) and it is called an inner automorphism. The induced
function 6 : G — Aut(A, G, ) is a homomorphism, its image is a normal subgroup, de-
noted by Inn(A, G,0). As usual the quotient Out(A, G,0) = Aut(A, G,0)/Inn(A, G, )
is called the group of outer automorphisms of (A, G,0).
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2.5. Green Biset Functor

Definition 2.5.1. Let k be a commutative ring with unity. We define Cy to be the

following category.

The objects of Cy. are finite groups.
If G and H are finite groups, then Home, (G, H) := kB(H,G).

If G, H and K are finite groups, then the composition x oy of the morphisms
r € kB(H,G) and y € kB(K, H) is equal to y X x.

For any finite group G, the identity morphism of G in Cy, is equal to [Idg}.

We name this category Cj, as the biset category of finite groups. The category Cx
is a preadditive category, and it is generated as preadditive category by the five types of
morphisms, Ind, Res, Inf, Def and Iso, which we call elementary morphisms. Moreover,
in [5] it is shown that any preadditive category whose objects are finite groups, and

morphisms are generated by elementary morphisms is equivalent to the biset category.

Notation 2.5.2. A k-linear functor F' : Cy, — k-mod is called a biset functor over k.

We denote the functor category of all biset functors over k by Fy.

For an example, let M be the subcategory of Cj such that the objects of M
are all finite groups and Hom (G, H) is the subgroup of kB(H, G) generated by the
classes of finite left and right free (H, G)-bisets. Then the biset functors on M are the

global Mackey functors.

Definition 2.5.3. Let A be a biset functor over k. We call A a Green Biset Functor
over k if there are bilinear maps A(G) x A(H) — A(G x H),(a,b) — a x b for each
pair of finite groups G and H and an element ¢4 € A(1) with the following properties.
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(i) For any finite groups G, H and K and any (a,b,c) € A(G) x A(H) x A(K) we

have
(axb) x c= A(Iso%)(a x (b x ¢)), (2.14)

where « is the canonical isomorphism from G x (H x K) to (G x H) x K.

(i) For any finite group G and any a € A(G) we have
A(TsoM)(e4 x a) = a = A(Tso™ )(a x €4), (2.15)

where A : 1 X G — G and N : G x 1 — G denote the canonical isomorphisms.

(11i) Let X € kB(G',G) andY € kB(H', H). For any (a,b) € A(G) x A(H) we have

A(X % Y)(a x b) = A(X)(a) x AY)(b). (2.16)

A Green Biset Functor is a biset functor with a ring structure. More precisely, a
Green Biset Functor on Cy, with values in k-Mod is a monoid in the monoidal category
Fi. This means that a Green Biset Functor is an object A of Fj together with a

bilinear product
A(G) x A(H) — A(G x H) (a,b) — axb (2.17)

satisfying associativity, functoriality, and identity element conditions for objects G,
H, K of Cy, and for any elements a, b, ¢ of A(G), A(H) and A(K) respectively and
€4 € A(l)

Associativity (a x b) x ¢ =Iso(a)(a x (b X ¢)), where « is the canonical group

isomorphism from G x (H x K) to the group (G x H) x K.
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Identity Element a = Iso(Ag)(€a X a) = Iso(pg)(a X €4), where A\¢ : 1 X G — G

and pg : G X 1 — G denote the canonical group isomorphisms.

Functoriality A(¢ x 1)(a x b) = A(¢)(a) x A(¢)(b), where ¢ : G — G’ and

Y : H — H' are morphisms in Cy.

Given two Green Biset Functors A and A’ on C;, over k, a morphism of Green Biset

Functors from A to A’ is a morphism of biset functors f : A — A’ such that

fa(a) x fu(b) = faxu(a xb) (2.18)

for any finite groups G, H € Ob(Cy) and any a € A(G), b € A(H).

Then Green Biset Functors on C; with values on k-Mod form a category Greeny.

Example 2.5.4. For instance, the Burnside functor B is a Green Biset Functor on Cy
with values in Z-Mod. For finite groups G and H, bilinear product B(G) x B(H) —
B(G x H) is defined by sending (X,Y), where X is a G-set and Y is an H-set, to the
(G x H)-set X x Y. The identity element is 1 € B(1) = Z.
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3. DETERMINATION OF SIMPLE MODULES OVER
GREEN BISET FUNCTOR

3.1. A-Modules

3.1.1. The category P4. Let A be a Green Biset Functor. We associate a category
P4 to A as follows ( [5, Section 8.6]). The objects of Pa are all finite groups.

(i) For finite groups G and H, we put Homp,(H,G) = A(G x H).
(i1) For finite groups G, H, K, and morphisms o € A(H x K) and € A(G x H),
the composition is defined by

Boa=ADefe M ResG NN (B x ). (3.1)

Here we identify G x K with (G x A(H) x K)/(1 x A(H) x 1) via the obvious

canonical isomorphism.

(111) For a finite group G, the identity morphism of G in Py is
A(d$ St ) (ea). (3.2)

Note that the unique morphism kB — A of Green Biset Functors induces a

functor Cr, — Pa. In particular we may consider the basic operations associated to

bisets as operations in Py.

Definition 3.1.2. A-modules. An A-module is a k-linear functor P — k-mod.
Then A-Mod stands for the category of all A-modules. In particular if we take A = kB
then Fy and kB-Mod are the same categories. Moreover, note that any A-module is a

biset functor.
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Notation 3.1.3. Let G be a finite group. Denote by E4 = Endp,(G) the endomor-
phism ring of G in Pa. Let I stands for the ideal of Ef generated by the endomor-
phisms that factor through a group of smaller order. Then we call the quotient ES /14

the essential algebra of A at G and denote it by A(G).

Remark 3.1.4. For an A-module F' of a Green Biset Functor A and finite group G,
the evaluation F(G) is a module over EA. Furthermore, if G is a minimal group such

that F(QG) is non-zero, then F(G) becomes an A(G)-module.

3.2. Simple Modules

Definition 3.2.1. For a simple A-module S the pair (G, S(G)) is called a seed for
S, where G is the minimal for S. By the general results in [5], we know that simple
A-module S is determined by its seed. Note that S(G) is a simple A(G)-module. So we
denote the simple A-module determined by the seed (G,V') by S& . We call two seeds

equivalent if the corresponding simple A-modules are isomorphic.

3.2.2. Construction of simple A-module from the given seed.

Let V' be a module of the endomorphism ring E¢. Construct an A-module L¢ v

such that its evaluation at any finite group H is given as follows
LG7v(H) = A(H X G) ®EG V. (33)
Note that the endomorphism ring acts by composition on the right and the action of A

is given by composition on the left. So by [1, Lemma 1], if V is a simple module then

the A-module Lg v has a unique mazimal submodule Jg v given by

Jav(H) = {Z T, ®v; € Lay(H) | Z(y ox;)v; =0 foranyy € A(G x H)}. (3.4)



18

Thus we construct the simple head Sgv as the quotient Lgyv/Jav, furthermore

it satisfies Sqv(G) = V.

3.3. Covering Algebra

Definition 3.3.1. Let A be a Green Biset Functor and G a finite group. If Ef, is a

subalgebra of the endomorphism ring E5 such that
E& = E;+ 14, (3.5)

then we call it a covering algebra for E&.

Observe that by the definition of covering algebra we can approximate the essen-

tial algebra A(G)
A(G) = Bu/(EL 0 12, (3.6)

Then under some assumptions we generalize very basic results about the covering

algebra using its central idempotents.

Notation 3.3.2. Let E¢ be the covering algebra for A. Let (X,<) be a finite lattice

with minimum element xq. Suppose there is a function

e: X = Ef, x> e, suchthat (3.7)

(a) €xy = 1ge, and (b)es e, = epyy. (3.8)
In particular e, is an idempotent in E¢. for each v € X. We define

Jo= Z Mo,y €y, (39)

r<yeX

where iy, 15 the Mobius function of the poset X.
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Then by the Mobius inversion formula, we also get

Cp = Z fy and g = ey = fo (3.10)

r<yeX zeX

The following result is a generalization of Proposition 4.4 from [4] and Theorem

10.1 from [7].

Proposition 3.3.3. For all v,y € X, we have

(

fy it <y,

o fy="Fy 0= (3.11)
\0 otherwise
fx if x= Y,

and  fy- fy = (3.12)

0 otherwise.

\

Proof. The proof is almost identical to the proof of [4, Proposition 4.4]. We repeat it

for completeness. For the first case, if © < y, then

ey fy = E fly,z€3 - €2 = 5 flyz€: = [y

(54 Yz

Here the second equality holds since z < z implies e, - e, = e,. Also it is clear that e,
and f, commute. For the rest of the claims, we argue by induction on d = d, +d,, where
for any x € X, the natural number d, is the largest n € Ny such that there exists a chain
r=ag<a; <---<a,in X. Now if d = 0, then both x and y are maximal in X, hence
we have y = x. Therefore e, - f, = e, = f,. If d = 1, either z is maximal and y < x or
y is maximal and so x < y. If z is maximal then e, - f, = e, - (ey —€2) = €xvy — €, = 0.
If y is maximal and x < y then e, - f, = €, - ¢y, = exvy = €, = f,. Next suppose d > 1

and that the proposition holds for all smaller d.
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We claim that if f, - f, is non-zero, then x = y. Indeed we have

fac ’ fy = Z Mg z by €z * €t

r<zYst

Here the product e, - e, = e,y and x Vy < 2z Vt. Hence the above equality becomes

fm : fy = Z Moz by, z€ -

rVy<Lz

In particular ezyy - fo - fy = fo - fy 7 0. Hence by the first part, either x < 2V y or
y <z Vy and we get e,y - fr - fy = 0 by induction. This is a contradiction, so we must

have x = y.

Finally if x = y, then

=l =f1+> [

<y

and hence f? = f, as required. O

Note that the elements e,, # € X generate a commutative subalgebra @, Ze,
of E¢ and the set {f, | © € X} is a basis of this algebra consisting of orthogonal

idempotents summing up to the identity element.
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4. THEOREMS FOR SECTIONS AND SECTION
BURNSIDE RINGS

4.1. Goursat Theorem

Theorem 4.1.1 (Goursat Theorem for sections). Let G and H be finite groups. Then

there is a bijective correspondence between

(a) the set of all sections (T, S) of G x H and
(b) the set of all pairs ((Pr, K1,m, L1, Q1), (P, K2,1m9, Lo, Q2)) of Goursat quintuples
satisfying the following conditions.
(i) P, C P, Ky C Ky,Ly C L1,Q2 C Q1.
(1) (Py/ Ky, Pi/Ky,0) and (Q2/ Ly, Q1/ L1, ") are crossed modules where O and
d" are given by (xKs) = 2K, and O(xLsy) = xLy and the actions are given

by
aK; - cKy =aca 'Ky, 'Ly Ly =a'cd L. (4.1)

(11i) (na,m) @ (Q2/Le,Q1/L1,0") — (Po/Ky, Pi/Ky,0) is an isomorphism of

crossed modules.

The correspondence is given by mapping a section (1',S) of Gx H to the pair of Goursat

correspondents of T and S.

Proof. Let (Py, K1,m, L1,Q1) and ( Py, Ko, 1, L2, Q)2) be the Goursat quintuples of T’

and S respectively. Then by Goursat Theorem, we have

(*) 1<KX§1PXgGandlngﬁngHforXE{1,2},
(**) m : Q1/Ly — Pi/Ky and g : Qy/ Ly — P,/ K5 induced respectively by 7" and S
are isomorphisms ( i.e., ni(yLy) = z K iff (z,y) € T ).
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In addition, the condition S < T implies that the following statements also hold:
Ky QK Ly <Ly, B AP, and Qy <Q. (4.2)

It is straightforward to check that Ko <K and Ly<UL;. To prove that <Py, let x € P
and (g,h) € T with (z,y) € S then since S is normal in T, (Yz,hy) =91 (2,y) € S,
that is, 9 € P,. The rest is proved in the same way. So we have the condition (i)
of (b). To prove that (P,/Ks, P;/K1,0) is a crossed module first observe that P;/K>
contains P,/ Ky as a subgroup and P;/K; as a quotient. Hence we have the following

diagram

P /K,

/ K (4.3)

P,/ K, Pi/K.

That is the composition is d = 7 o ¢, which is given by d(zK,) = xK;. Note that we
can restrict a conjugation action of P,/Kj, on Py/ K, to a conjugation action of Py/K;
on P/Ky if Ki/K, is a subgroup of the centralizer of Po/Ky in P /K. 1t is easy
to observe that the last condition is equivalent to [Ki, Po] < K. Indeed let z € Py
with (z,y) € S and g € K;. Note that (¢,1) € T. Then since S is normal in T, we
get 9D (z,y) = (2,y) € S. In particular 27! - 92 € K, which implies 2K, = 92K,
as required. Hence to prove that (P,/Ky, P/K1,0) is a crossed module, one needs
to justify the two conditions given in Definition 2.4.1. For the first condition, let

gK, € Pi/K, and x Ky € P,/K5. Then
8(9K1xK2) = 8(ng2) = gﬂ?Kl = 9K18($K2), (44)

hence the first condition of the definition holds.
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For the second condition, let also yKy € P/ K,. Then
B(xKg)szzxKlyK2 =xyK2 =xK2yK2, (45)
which proves the second condition. Thus (Py/ Ky, P/ K;,0) is a crossed module. Re-
placing K with L and P with @ in the above arguments, one can also prove that
(Q2/Ls, Q1/Ly,d') is a crossed module.
Lastly, since n; and 7y are already isomorphisms, we only need to check that the

pair (72,71) is a morphism of crossed modules, see Definition 2.4.2. Let qLo € Q2/ Lo
and let 179(qLs) = pKs. Then

m(0'(qL2)) = mlqly) = pKy, (4.6)

where the last equation holds since (p,q) € S implies it is in 7. On the other hand

9(na(qLa)) = O(pK>) = pkK, (4.7)

and hence the diagram in Definition 2.4.2 commutes. For the other condition, let also

(g,h) € T so that n(hL;) = gK;. Then
("1 qLy) = mo("qLy) = IpKs. (4.8)
Here the last equality holds since S <T. We clearly have
IpIy = "y (gLy). (4.9)
Hence (n2,m;) is a morphism of crossed modules and the mapping is well-defined and

injective. Hence it is sufficient to prove that any element of the later set corresponds

to a section in G x H.
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Let ((Py, Ky,m1, L1, Q1), (Pa, Ko, 19, Lo, Q2)) be a pair of Goursat quintuples sat-
isfying the above conditions. Also let (7, S) be the pair of subgroups of G x H corre-

sponding to these Goursat quintuples. Explicitly we have

S ={(z,y) € Py x Qa2 | q2(yLs) = K3} and T = {(g,h) € P, x Qy | ;i (hLy) = gK}.

(4.10)
We have to show that S < T. Let (x,y) be an element of S. Since by condition
(1) P, C Py and Q2 C @4, the pair (z,y) is also an element of P; x ;. Moreover,
by condition (i) we have d(na(yLs)) = m1 (9 (yLs)) and so xK; = n1(yL1), hence
(x,y) € T. Then take an arbitrary element (g, h) of T. Now since the action given in
(ii) is well defined grg 'K, € P»/K,. Hence grg™' is in P, and P, < P;. Similarly
Qs is normal in Q;. So WM(x,y) € P, x Qy and the condition (4#ii) implies that
No("ME1y Ly) =951 0y (yLy), that is ny("yLy) = 92K, and therefore S is normal in 7. O

4.2. Decomposition of Sections

Proposition 4.2.1. Let G and H be finite groups, (T,S) € Ygxy with Goursat cor-
respondents (Pr, Ky, np, Ly, Qr) and (Ps, Ks,ng, Ls,Qs). Then there are group iso-

morphisms

(a)

Pg Qs
o 4.11
PsNKy QsNLy’ ( )
(b)
PT QT
~ 4.12
PsKr  QsLr ( )

and
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(c)

PsNKr  QsNLy

4.1
s T (4.13)

In particular if Pr = G, Kg =1 and Ky < Ps then |G| < |H|.

Proof. (a) First note that since K and Ps are both normal in Pr, the intersection
PsN Ky is normal in Pg. Hence the isomorphism ng : Qs/Ls — Ps/Kg pre-composed
by 7 : Qs — Qs/Ls and post-composed with 7 : Ps/Ks — Ps/(Ps N Kr) becomes a

surjective homomorphism

ﬁsIQséps/(PSmKT).

The kernel of 7)g is clearly Qs N Lr. Note that by the second isomorphism theorem we

also have the isomorphisms

PsKy/Ky = Ps/(Ps N Ky) = Qs/(Qs N Ly) = QsLy/Ly.

(b) As in the above case, post-compose nr with the canonical homomorphism 7 :

PT/KT — PT/(PsKT) to obtain

ﬁT : QT/LT — PT/(PSKT)

Let (p,q) € T. Then we have gLy € ker 7y if and only if pKyp € PsKyp/Kyp. We claim
that the last condition is equivalent to gLy € QsLy/Ly. There is nothing to prove if
p € Kp. Suppose p € Ps. It is sufficient to prove that ¢Lr € QgLy/ Ly and this follows
directly from the compatibility of ng and n,. Hence the kernel of 7y is QsLy/Qs and

the result follows from the first and the third isomorphism theorems.
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(¢) Consider the restriction fjs of ng to the subgroup (Qs N Ly)/Ls. Since ng is
an isomorphism, the restriction of 7g to its image is an isomorphism. To determine its
image, let ¢ € Qg N Ly and let p € G be such that (p,q) € S. Then since (1,q) € T,
we also get (p,1) € T, that is, p € Ky. Therefore pKg is contained in (Ps N Kp)/Kg,

as required.

For the final statement, we write the order of G as

|G|:|G1PT|‘|PTZP5KT|'|PSKT1KT|-|KT1PSmKT|-|PSOKTZKS|-|K5|

and similarly the order of H as

|H| = |H : Qr|-|Qr: QsLy| - |QsLy : Ly|-|Ly: Qs N Ly|-|Qs N Ly : Lg| - |Lg|

Then with the above isomorphisms we have

|G| . |GPT||KTPSmKT||K5|

|H| N |HQT|‘LTQSFILT||LS‘

Since by the assumption Pr = G, Kg =1 and Ky < Ps we deduce that % < 1. O

The following result collects relations between the left and the right invariants of

the sections.

Proposition 4.2.2. Let G, H and K be finite groups. Then the following hold for the
sections (T,S) € Xaxn and (V,U) € Ypvk-

(a) ki(T) < ka(T+V) < pr(T+V) < pi(T) and ka (V') < ko(T%V) < po(T*V) < pa(V)
simalarly
E1(S) < k1 (SxU) < pr(SxU) < pi(S) and ka(U) < ko(SxU) < po(SxU) < po(U).
(b) In particular, lo(T,S) < lo(T «V, S« U) and ro(T,S) 2 ro(T *V,S % U).
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(¢) Let nr : pa(T)/ka(T) — p1(T)/k1(T) and s = p2(S)/k2(S) — p1(S)/k1(S) be the
isomorphisms from Proposition 4.2.1. Then one has
k(T V) [k (T') = mr((p2(T) MR (V) ka(T)) [ R2(T)),
simalarly

k(S # U)/ki(S) = ns((p2(S) Nk1(U)ka(5))/ ka2(5)).
(d) If r(T,S) = UV, U) then (T« V,S«U)=UT,S) and r(T xV,S+«U) =r(V,U).

Proof. The parts (a) and (c) are reformulations of [5, Lemma 2.3.22]. Part (b) follows

from part (a) and the definition of the partial order and (d) is an easy calculation. O

Definition 4.2.3. Given finite groups G, H, K and Galois morphisms (%) and

f

(—HXK ) we define their composition as the morphism
XI_>Y/

< Gx K ) (4.14)
X xpy X0 L8y oy

Here X xy X' and Y xgY' are the usual amalgamated products of bisets and (g X g
z,ga) = (g(m),H f(a:’)). It is a Galois Morphism of G x K -sets by Proposition 9.13

of [3]. Moreover the above composition induces a bilinear associative product

(G, H) x T(H,K) — (G, K). (4.15)

The following corollary gives an explicit formula for the composition of two bases

elements of the section Burnside ring.

Corollary 4.2.4 (Mackey Formula). Let (T,S) € Yaxn and (V,U) € Ygxx. There

exists an isomorphism of Galois morphisms

(i;g) H (g;{/() = |_| (S* (t,1)g;§*(t,1)v>' (4.16)

tep2(S)\H/p1(U)
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Proof. By definition
(G
S
Then applying the Mackey formula for bisets to the right hand side we get
(G
S

So by Lemma 3.3 of [3] we have the isomorphism of the following Galois morphisms

<G><H>>< (HXK)& <G><K>_> <G><K)
ST 4 uv<v/, |—| Sx &L |_| T DY )"
tep2(S)\H/p1(U) tep2(S)\H/p1(U)

X

) (ay) = () o (557) = (557)  (557)

(4.17)

IA

X

Ao U Grag) = U ()

tep2(S)\H/p1(U) tepa(T)\H/p1(V)

A

(4.18)

(4.19)

Hence by the definition of composition

Gx H Hx K\ _ Gx K Gx K
(S<]T) XH (U<] - |_| (tl)U> - (T*(t’l)v> (420)
- tep2(S)\H/p1(U)
~ Gx K
- |_| (5* (t,l)U<]T*(t,1)V>' (4.21)
tep2(S)\H/p1(U) -
O

4.2.5. Basic bisets. Let G be a finite group and X be a G-set. The identity morphism
X — X is a Galois morphism and induces a homomorphism from the Burnside ring
B(G) to I'(G). More explicitly if X = G/H for some subgroup H of G, then its image
in I'(G) is [H, Hlg. In particular the basic bisets of induction, restriction, inflation

and deflation have images in I'(G, G) as listed below.
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Let H<L G and N <G and 7 : G — G/N be the natural homomorphism.

GxH
<A<H> TA(H) A(H) < A(H)

¢ . (_GxG/N ¢« _( G/INxG
mts = (AW(G) . Aﬁ(G)) € I(G, G/N), Def&y = (WA(G) SI,TA(G)) e I(G/N, G).

Hxd

IndS = ) e (G, H), ResC = ( ) e T(H,G),

With these definitions we may decompose any section into a product as follows.

Proposition 4.2.6. Let G and H be finite groups and (T,S) be a section of G x H
with Z(T, S) = (PT, KT, PS, KS) and T’(T, S) = (QT, LT, QS, LS) Deﬁne é = PT/KS,
H:=Qy/Ls, S :=can(S/(Ks x Lg)) < GxH and T := can(T/(Ks x Lg)) < Gx H,

where

can (PT X QT)/(KS X LS) —)é X H

is the canonical homomorphism. Then

(557

Tl QX

IA | X
N

) ~ IndgT X p, Inng X G (—> X i DengT XQy Reng. (4.22)

A

Furthermore we have

kl(‘g) = 17 kQ(g) = 17 and Pl(T) = G; pQ(T) - F[

Proof. Let denote the middle element in the equation 4.22 by X. Then, by definition
4.2.5 of induction, restriction, deflation and inflation we know that the product

IndgTInfg I X Defg; / LSReng is congruent to

( GxPr )( PrxPr/Ks )( Pr/KsxQr/Lg )( Qr/LsxQr )( QrxH )
A(Pr)<A(Pr) Ar(Pr)dAx(Pr) S/(KsxLg)<dT/(KsxLg) rA(QT) I A(QT) AQT)SA(QT) J°
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Now using the Mackey formula 4.2.4 let first compose two paranthesis in the left

hand side and then the morphisms in the right hand side of X.

14

G x Pr Pp x Pr/Kg
(A(PT) < A(PT)) (Aw(PT) < AN(PT))
G x PT/KS )

|_| ( @D 3 @ :
epa (AN Tr /s (g DT # VA (Pr) L A(Pr) 0D Ar(Pr)

We have only the case t = 1, since po(A(Pr)) = Pp. Thus the sum above

G x PT/KS
(A(PT) * AW(PT) S] A(PT) * AW(PT)>

12

and with an easy computation A(Pr) * A (Pr) = A-(Pr). Hence

2

(s sim)

(A(Pf) ><ﬁiT(PT) ) (Aﬂf;;; gTii{(‘qPT) )

For the composition of morphisms in the right hand side, note that similarly to the

previous case po(A(Qr)) = Qr and A(Qr) * A(Qr) =» A(Q7). Thus by the Mackey

formula

I

( Qr/Ls x Qr )( (QTXH )

( QT/LS x H )
A(Qr) < A(Qr)/ \A(Qr) L A(Qr)

A(Qr) <= A(Qr)/”

Now again applying the Mackey formula it follows that

I

(AGXPT/KS ))(S/( Pr/Kg x Qr/Ls )( Qr/Ls x H >

(Pr) <A (P Ksx Ls) dT/(Ks x Ls)/ \zA(Qr) <z A(Qr)
~ G x Qr/Lg Qr/Ls x H o (GxH
- (PS x Lg/Ls < Pp x QT/LS>( A(Qr) < WA(QT)> B (S aT )
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5. THE ENDOMORPHISM RING

In chapter 3 we introduced a machinery for Green Biset Functors that helps us
to study essential algebra more explicitly. In this chapter we apply this method to the
section biset functor and demonstrate every detail how this machinery works. Let k
be a field of characteristic zero. We denote the endomorphism ring & ® I'(G x G) by

E% or Eg.
5.1. Idempotents

To apply Proposition 3.3.3 to our specific case we introduce the poset G5, which
is already has been defined in the Chapter 2. Due to the poset structure on Gg
the pair (1,G) is the minimum element and the pair (G, 1) is the maximum element
of this set. In particular joins exists in Gg and given (K, P),(L,Q) € Gg, one has
(K,P)V(L,Q)=(KL,PNQ). So we define the map e as the follows.

Definition 5.1.1. Let Ef. be the covering algebra for I' and G be a finite group. For
each (K, P) € G we define

e:Go — L (5.1)
(K, P) = €(k,P)- (52)

XG

Note that, by definition eq oy = [Eqq)] = [m} = lpe.

Our next proposition aims to show that those elements are idempotents of the

covering algebra.
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Proposition 5.1.2. Let G and H be finite groups.

If (K,P),(K',P") € Go and
(1,S) € gxn with I(T,S) = (G, K', P', 1) then

(a) Erp) X (gg?) = |P\G/P’|(%) with ((V,U) = (G,KK', PN P’ 1), In par-
ticular one has

E(K,P) Xa E(K’,P’) = |P\G/P/|E(KK’,P0P’)~

(5.3)
(b) Assume that (K, P) < (K', P"). Then
Gx H\ GxH
B xG(SﬁT):|G.P|(S T). (5.4)
In particular
E(KJD) Xa E(K/fu) = |G : PlE(K/)p/). (55)
(¢) Assume that r(T,S) = (H,L,Q,1) for some (L,Q) € Gu. Then
Gx H G x H\or
(a7 ) GGog) = 1H - QlEwr (5.6)
Proof. (a) By definition Ex py = 7(I§ — J§), and since I§ = (g(xpﬁ), and J =
( AGKX(g)) the given product is
GxH GxH GxH
B : = .
ter) Xa (g g) <A(P)§1AK(G)><S§T>’ (5:7)
and then using the Mackey formula
GxH
S (5.8)
teP%/P/ (A(P) (b1 S T AR (G) +(D T>

o Gx H
B teP%/p/ (A(P) * S)t1) < (Ag(G) * T) D ) (5.9)




33

Now since the morphisms G/S — G/T and G/9S — G /9T are isomorphic, for
any g € GG, and any section (7',.S) of G' the above sum isomorphic to the following

one

GxH )

= |P\G/Pl|(A(P)*S§1AK(G)*T

(5.10)

Then it is an easy computation to show that the left invariant of the section above
is equal to (G, KK', PN P’ 1).

Furthermore we also have,

Euepy %o Eng =7l — Ji) x¢ w(IS — J) (5.11)

Z W(Ing = Jgor) = [P\ G/Q|ExL.rrq) (5.12)
2eP\G/Q

since () and L are normal subgroups in G.

(b) Recall that (K,P) < (K',P') means K < K’ and P > P’. Hence we have
|P\ G/P'| = |G : P|. If (9,h) € Ag(G) * T then there exists © € G such that
(9,2) € Ag(G) and (z,h) € T. But then gK = 2K and so z7'g € K < K'.
Thus (z7'g,1) € T, which implies that (g,h) € T. Therefore Ax(G)*T =T
and similarly A(P)* S = S. So we are done by part (a).

(¢) Observer that S % S = A(p1(S)) = A(P') and T' % TP = Ag+(G). Thus using

Mackey formula we have the desired result.

O

Proposition 5.1.3. The elements ek py, (K, P) € G are idempotents in E¢ and we

have

€(k,P) " €(L,Q) = €k PVv(LQ) and eqq = lgg. (5.13)
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Proof. By definition ek, py := !

GP [E(K,p)}. Hence by the Proposition 5.1.2

€(K,P) * €(L,Q) = E(KLPNQ) = E(K,P)V(L.Q)- (5.14)

In particular the conditions in Notation 3.3.2 are satisfied. Also setting

fuc,py == Z UK, P, (L,Q)E(L,Q) (5.15)
(K,P)=(L,Q)ebq

where pi7 - is the Mobius function of the poset Gg, we get

€(K,p) = Z f(LQ) and (516)
(K,P)j(L,Q)EgG

Z Jn) =cue =1€ Eq (5.17)
(KVL)EQG

and the following corollary of Proposition 3.3.3.

Proposition 5.1.4. For all (K, P),(L,Q) € Go we have

fog, if (K, P)=(LQ),
ew.p) - fe) = flo - ewp) = (5.18)
0, otherwise,
fK.P 9 Zf (K P) - (L7Q)7
and  fk,p) - e, = e (5.19)

, otherwise.
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6. LINKAGE

In this chapter we introduce an equivalence relation on the poset G, which we
call Linkage system. Our aim is to determine the central idempotents of the covering
algebra Ef. Moreover, we unearth the relation between crossed modules and the

Linkage system.
6.1. Linked Pairs

Definition 6.1.1. Let G and H be finite groups. For (K,P) € Gg and (L,Q) €
Gu, we say that the quadruples (G, K, P,1) and (H,L,Q,1) are linked if there exists
(T,S) € Yguy with (T,S) = (G,K,P,1) and r(T,S) = (H,L,Q,1). In this case, we
write (G, K, P,1) (Tr,VS) (H,L,Q,1) or just (G,K,P,1) ~ (H,L,Q,1). If H= G, and
(K, P),(L,Q) € Gg then we call it being G-linked. We write (K, P) ~¢ (L, Q) or just
(K, P) ~ (L,Q). Being linked is clearly an equivalence relation and we write {K, P}q
for the G-linkage class of (K, P).

Definition 6.1.2. Let (K, P) € Go. Define an action of G/K on P as follows

gK -p=gpg". (6.1)

It is well defined since P is normal in G and [K,P] = 1. Let ip : P — G/K be
the restriction of the natural homomorphism G — G/K.Then (P,G/K,ip) becomes a

crossed module.

Proposition 6.1.3. Let G and H be finite groups and (K, P) € Gg and (L, Q) € Gy.

Then the following are equivalent:

(a) (G, K, P,1) ~ (H,L,Q,1).
(b) (P,G/K,ip) isomorphic to (Q.H/L,ig) as crossed modules.
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Proof. We first show that (a) implies (b). Since (G, K, P,1) ~ (H, L, @, 1) there exists
(T, S) € Xgxy with left invariant (G, K, P, 1) and right invariant (H, L, @), 1). Thus by
the Goursat theorem there are group isomorphisms 7, : H/L — G/K and 15 : Q — P.
Now since (7.,S5) is a section of G x H, by the Theorem 4.1.1 we have (n,7) is
an isomorphism of crossed modules (Q), H/L,ig) and (P,G/K,ip). For the converse,
if (a,p) : (Q,H/L,ig) — (P G/K,ip) is an isomorphism of crossed modules, then
the pair ((G,K,(,L,H),(P,1,a,1,Q)) of Goursat quintuples satisfy the conditions
of the Theorem 4.1.1 (b) and hence there exists a section (7, S) with left and right
invariants given by (G, K, P,1) and (H, L, ), 1), respectively. In particular (G, K, P, 1)
and (H, L,Q,1) are linked. O

6.2. Central Idempotents

Notation 6.2.1. Let G be a finite group. For (K, P),(L,Q) € Gg, we write { K, P} <
{L.Q}c if and only if there exists (K', P') € {K,P}s and (L',Q") € {L,Q}s with
(K/? P/) j (L/?Q/).

Proposition 6.2.2. Let G be a finite group. Then {K,P}q = {L,Q}q is a partial

order on the set Go/ ~ of linkage classes of Gg.

Proof. 1t is obviously reflexive since (K, P) =< (K, P) implies {K, P} = {K,P}g
for every element (K, P) € Gg. To see that this relation is transitive, we show that
{K,P}¢ < {L,Q}¢ if and only if for each (K’, P") ~¢ (K, P) there exists (L', Q') ~
(L, Q) such that (K', P") = (L', Q"). Clearly the converse follows from the definition.
To prove the forward implication, suppose (K, P) < (L,Q) and (K', P’) (’KS) (K, P)

and consider

(6.2)

Q
X
()
N
|
—~
Q
X
Q
N

Ero - (

)
A
~

By Proposition 5.1.2(a), we have lo(T", ") = (L, Q). Also putting ro(7", ") = (L', Q"),
we get (L', Q") ~ (L,Q) and (K', P') < (L, Q).
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Then transitivity and anstisymmetry properties easily follow from this fact. [

Now we take the class sums of the idempotents defined in the previous chapter.

Definition 6.2.3. We write

erye = Y, ewr €N(G,G) (6.3)
(K',PYe{K,P}c
and  fixpe = Y,  fuwr €T(GG) (6.4)

(K,vP/)e{Kv-P}G

for (K, P) € Gg.

Since the conditions of Notation 3.3.2 are also satisfied by the elements ek p),,

and f{x py, as (K, P) runs over linkage classes in G¢;, we obtain the following corollary.

Proposition 6.2.4. Let (K, P),(L,Q) € Gg. Then

ek.Pyaf11.Qle = flr.giceinrye =0 unless {K,P}qc = {L,Q}q, (6.5)
e(r.Pyo J1K,PYe = ik, ProCikPle = [1KP)q (6.6)

. . f{K,P} ) Zf {K7 P}G = {L»Q}G7
and  fxpyofle.oye = ¢ (6.7)

0, otherwise.
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7. THE COVERING ALGEBRA

7.1. Covering Pairs

As in the Section 3.3 we observed that to aproximate the essential algebra for a
Green Biset Functor one can use the covering algebra we give an explicit definition of
the covering algebra for section biset functors in this chapter. First we introduced some
invariants for the basis elements of section Burnside ring, which we could not managed
to do generally for any Green Biset Functor. Then we define covering elements in Fg, by
putting some condition on the invariants. Then we shove that the subalgebra generated
by this covering elements indeed is a covering algebra which we defined before more
generally for any Green Biset Functor. Moreover we prove that it is Morita equivalent
to the direct sum of group algebras over some groups, which we introduce here. So the

intersection of the ideal /5 with covering algebra can be easily calculated.

Definition 7.1.1. Let G and H be finite groups. We call the pair (T,S) € Yoxn
covering if p1(T) = G,po(T) = H and ki(S) = kao(S) = 1, and denote the set of all
such pairs by X%, ;. Notice that for a covering pair (T,S), we have ly(T, S) € Go and
ro(T,S) € Gu.

GXG
S<4T

Proposition 7.1.2. Let G be a finite group. The elements | as (T, S) runs over all
covering pairs generates a subalgebra of Eg. Denote it by E¢. Then E¢ is a covering

algebra in the sense it was defined in Section 3.3.

Proof. By the Mackey formula and the Proposition 4.2.2 it is clear that E¢ is a sub-
algebra of Eg. Moreover, it is a covering algebra since by Proposition 4.2.6 any basis

element outside of Ef, factors through a group of smaller order. O
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Next we define the groups that we indicated in the introduction of this chapter.

Definition 7.1.3. Let G, H be finite groups and let (K, P) € Gg and (L, Q) € Gy be
linked pairs. Define

r B 1 G x G
(GKP) = |G:P| | ST

G x H
and (G,K,P)F(H,L,Q) = { {U DY V:| | l(‘/7 U) = (G, K7 P7 1)7T(V7 U) = (H7 L7 Q? ]')} (72)

} | U(T, S) = (G, K, P,1) = (T, S)} (7.1)

Theorem 7.1.4. (a) The set I'q k py is a finite group under the multiplication in-
duced by the product in Eq. The identity is ek, p) and inverses are given by taking
opposites.

(b) The set . rx.p\ g 5 o (Uarp)s L Lo)-biset which is both left and right
transitive and left and right free.

(c) Any v € .k.p) L (11,q) induces a group isomorphism

v:Twre — Texp)- (7.3)

(d) The functor

k[(G»K‘,P)F(HL,Q)] ®M‘(H,L,Q) B kF(H,L,Q)mOd - kF(G,K,P)InOd (7'4)

s an equivalence of categories. It induces a canonical bijection

II'I'(I{ZF(}LL’Q)) % II'I'(I{?F(G’K’P)). (75)

(e) There is an isomorphism of groups

F(G,K,P) = OUt(P, G/K, ip), (76)

where the right hand side is the group of outer automorphisms of the crossed

module (P,G/K,ip).
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Proof. All except the last claim are easy justifications, we leave the details to the

reader. We only prove the last part by constructing an isomorphism. Define
O Aut(P, G/K, Zp) — F(G,K,P) (77)
associating (, B) to the element in I'( x p) corresponding to the section (7', S), where

T=A{(z,y) | K = B(yK) forz,y € G} (7.8)

and S = {(a(p),p)|pe€ P} (7.9)

Note that (7',5) is indeed a section by Goursat’s theorem for sections. It is easy to
check that © is a group homomorphism. Moreover if (T, .5) is a section of G x G with
I(T,S) = (K,P) = ro(T,S) then by Goursat’s Theorem for sections, we obtain an
automorphism of the crossed module (P,G/K,tp). It remains to show that the kernel

of © is the group of inner automorphisms. O

7.2. Technical Results

We need the following technical results for the proof of Theorem 7.3.1. The

following proposition is the version of Lemma 6.3 and its corollary from [4].

Proposition 7.2.1. With the above notation

(a) Let (T, S) be covering and (K, P),(L,Q) € Gg. If f{K7P}G[%]f{L?Q}G is mon
zero, then {K, P} = {L,Q}¢.

(b) The set {fixric | {K.P}a € Go/ ~} is a set of mutually orthogonal central
idempotents of £, and their sum is 1.

(¢) The covering algebra Ef, decomposes into its two-sided ideals as

Et= @B fwreEe (7.10)
{K.PYacta/~
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Proof. (a) By definition fix py is a sum of f(x+ py as (K', P') runs through the link-

()

age class of {K, P}q. Hence for the product given in (a) being non-zero, there
must exist at least a pair, say (K’, P’'), in the linkage class {K, P}s and a pair
(I, Q') in the linkage class of {L,Q}¢ such that the product fixr pr[S55%] fr o)
is non-zero . Moreover, f(1/ ) is the sum of e, o) where (L”, Q") runs through

all the poset elements of Go which are bigger than (L',Q’). Then similarly

fxrpr) [§2$]6(L//?QN) must be non-zero at least for some (L', Q') < (L”, Q"). Hence
we have [$2%]e (1 o) # 0, and by the Proposition 5.1.2 it is in the form [£XC] for

some (V,U) € X¢,. Also by the same proposition, we know that the right middle
invariant of the section (V,U) is bigger than (L”,Q"). Let (K", P") be the left
middle invariant of the section (V,U). Then

GxG G

: . G
f(K’,P’)ﬁ(K”,P”) [S T]C(L//’QH) = j(K’,P’) [S

T ] e(L”,Q”) 7£ 0

X

IA
A

Hence f(x/ pryexrpry # 0, which implies (K", P") = (K', P") by Proposition
5.1.4. If we gather it all together,

{L,Qtc ={L,Q}tc 2{L". Q"}c 2 {ro(V.U)}c = {lb(V.U)}e = {K", P"}c =

{K', P'te ={K, P}

Note that by the similar reasoning we also can derive {K, P}¢ = {L,Q}s and
hence there must be an equality.

By Proposition 6.2.4, for {K, P}q € G/ ~, the elements f{x py,, are the mutually
orthogonal idempotents of the covering algebra. Also their sum is equal to the
sum of all f(k, py where (K, P) run through all the poset elements of G and this
sum is equal to 1 by Equation (5.17). Hence for any b € Ef, we have

Z Jigpycb=0b= Z bfik,Pyes

{K,P}g€Gqa/~ {K,P}g€Gq/~

and hence we obtain f{x py.b = bf(x p}. for every {K, P}s € Go/ ~.

This is immediate from case (b).
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7.2.2. We can also decompose E¢, into k-submodules via linkage classes. For any

{K,P}e € G/ ~, let ESV"Y be the submodule of ES, generated by all (S with

(T,S) € 2% and lo(T, S) ~q (K, P) (or equivalently ro(T,S) ~¢ (K, P)). Then

E,= P EST (7.11)
{K,P}c€Gc/~

This decomposition is related to the ideal decomposition in the following way.

Lemma 7.2.3. Let (K, P) € Gg.

(a) The following equality holds

c c,{L,
D E¢ firqye = b EG9, (7.12)
{K.P}a={L.Q}c€Gc/~ {K.P}a={L,Q}c€Cq/~
(b) The projection
W Eg{KvP} — Eéf{K’p}G, b+ bf{K’p}G (713)

with respect to the ideal decomposition of E¢, is an isomorphism of k-modules. Its
inverse is given by the projection with respect to the submodule decomposition of
E¢.

(c) If {K,P}c = {(K1, P), (K3, P),...,(Kp, P,)} then w becomes the direct sum,

over i and 7, of the k-module isomorphisms

wij + Kl p)Uic ;. ppl = fpy EG L. py),s (7.14)

gwen by bij = fx, p)bf(x;.P)-

(d) The isomorphism wy; defined above induces an isomorphism of k-algebras

kLG xp)) = fiemEGfucrp givenby avw— fpyafixp). (7.15)
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Gi?]f(L»Q) is zero for

any section (T, S) € X¢,, ., with ro(7, S) = (K, P) and (K, P) £ (L, Q) € Gg. Similarly

one can get its left-sided version too.

(a)

To prove the equality first note that by Proposition 7.2.1 the left hand side equals
the annihilator of the set of all fix: pry, with {K’, P'}¢ % {K, P}¢. On the other
hand by the observation above the right hand side also annihilates f{xs pr , for
all {K', P'}¢ # {K, P}¢, which shows that the right hand side is contained in
the left hand side. But right hand side obviously contains the left hand side since
it contains frz, 01, for every {L,Q}q = {K, P}q¢.

By the same way we proved previous case one can also show that

C C, L7
&5 E¢finore = &5 E59} (7.16)

{K,P}a={L,Q}c€Ga/~ {K,P}a={L,Q}c€Ga/~

Hence Eg{K’P} and EE fix P}, are both complements to the same submodule
given above. So w is an isomorphism of k-modules.
By definition, and since f{x py, is central in Ef, we have a direct sum decompo-

sition

Eg{K)P} — @ k[(G,Ki,Pi)F(G,Kj,Pj)L (717)
ij=1

E¢ fik.pye = fiepye Eafixrye = @ Jik.rye Bafix; rhe (7.18)
ij=1

into k-submodules. Moreover for bj; € k[ x,r) (K, p)| using the fact we

observed in the beginning of the proof its clear that

w(bij) = firpyebijfiepye = fuar)bisfa ) € fua.py G fug.py)- (7.19)

Then each w;; is an isomorphism of k-modules since w is an isomorphism of -

modules.
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(d) Let @ and b be arbitrarily chosen elements in the k-algebra k[I'¢ k). Also
enumerate { K, P}¢ as in the previous case, and choose (K, P) = (K, P;). Using

the fact that fyx py, is central and f(, p,)’s are orthogonal idempotents in Eg

we have
wii((l)wii(b) = f(K,P)(lf(K,P)bf(K,P) = f(K,P)(If{K,P}be(K,P) (7-20)
= fix.p) f.praabfix,py = fix,pyabfix,py = wiiab). (7.21)
O

7.3. Morita Equivalence

Now we are ready to state the main result of this Chapter.

Theorem 7.3.1. There exists a k-algebra isomorphism

E; S D Matgrahlcrr) (7.22)

{K.Pyaeda/~

with the following property:

For every {K,P}c = {(Ki,P), - ,(Kn P} € Ga/ ~, the isomorphism maps
fk, p) € E¢ to the idempotent matriz

e; = diag(0,---,0,1,0,---,0) € Matjik pyo|(kl (¢ r.p)), fori=1,--- {K, P}g|, in
the { K, P}qg-component.

Proof. In Proposition 7.2.1 we have given a decomposition of Ef. into two-sided ideals.
So it suffices to show that there exists a k-algebra isomorphism between EE, fix py., and
Mat,, (kI'(¢ k,p)). Aiming this we construct a map from Mat, (k"¢ k. p)) to EZ;{K’P} and
since we already have a k-algebra isomorphisms w, composing these two maps we get

the desired isomorphism.



45

Enumerate the elements of {K, P}¢ as in Lemma 7.2.3. Then chose an element

(13,5;) € X%, with Ih(T3,S;) = (K, P) and ro(7;,5;) = (K;, P;), and set z; =

[GXG
ST

|. Denote by y; = ﬁﬂiz and by y; = _\G}pﬁ’?

op
i

Then its an easy calculation to
show that ; G Ui = ex,p) and ; oY = e P Hence the maps oy; : k(¢ x,p) —
El.x,.r)l e, K;, pj)], a — ;ay; are k-module isomorphisms with the inverse maps b
y;byy;. Taking the direct sum of the maps oy; and using the direct sum decomposition
in (7.17) we obtain a k-module isomorphism o : Mat, (k' x,p)) — ES{K’P}. In fact
it is a k-algebra isomorphism. So we have a desired isomorphism w o o of k-algebras,

which maps diagonal idempotent matrix e; to fik, p,)- O
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8. THE ESSENTIAL ALGEBRA

Let k be a field of characteristic zero, and fix a finite group G. In this chapter
we determine the essential algebra Fg and its simple modules. Once more the results

in this section are similar to the results in [4, Section §].
8.1. Reduced Pairs

As in the case of fibered biset functors, the essential algebra is isomorphic to a
subalgebra of the covering algebra. To describe the generators of this subalgebra we

introduce reduced element as follows.

Definition 8.1.1. Let (K, P) € Go. We call (K, P) a reduced pair if ex p is not
contained in the essential ideal Io. We denote the subset of Go consisting of the reduced

pairs by R = Ri(G).

It is easy to prove that being reduced is compatible with being linked, that is,
if (K,P),(K',P'") € Gg are G-linked then (K, P) is reduced if and only if (K’, P') is
reduced. (cf. [4, Notation 8.1]) We write R¢ for the set of linkage classes of reduced
pairs for G. Note also that R is a lower set, that is, if (K, P) is reduced and (K’, P') <
(K, P), then (K’, P’) is also reduced.

Theorem 8.1.2. Let (K, P) € Gg.

(a) The pair (K, P) is reduced if K < P.

(b) If (K, P) is reduced, then for any non-triviel N < G with N < K, we have
PNN#1.

(¢c) The pair (K, P) is not reduced if there is a group H and a pair (L, Q) € Gy such
that |H| < |G| and (G, K, P,1) ~ (H,L,Q,1).
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Proof. (a) Assume for contradiction that (I, P) is not reduced. Hence ek p) € I,

()

that is there exist a finite group H with order strictly less than the order of G
and sections (7, 5) and (V,U) in G x H and H x G respectively such that e(x p)

occurs as a summand in [g;? ] M [g;g ] Then by the Mackey formula there is

a section of H x G, say (V',U’), such that (S« U, T x V') = (Ax(G), A(P)).
Thus it follows that I(T,S) = (G, K', P',1) for some (K', ") < (K, P). Now
by Proposition 5.1.2(b), we have ek p) 5 [g;?] = [g;g] with (17,5") € Xaxnu
satisfying [(T",S") = (G, K, P, 1). Finally Proposition 4.2.1(c) applied to (7", 5")

implies that |G| < |H|, a contradiction.
Let (K, P) € Rg. Assume, for contradiction, that there exist N <G with N < K
such that PN N = 1. Let

r = [Infg/KIso(/r)T)Def%g, InngS()(/r]s)Resg{V]\/]N] (8.1)
and y = [Inf%glso(ngl)Defg/K,Ind%\,]\/[NIso(ngl)Resg], (8.2)

with the canonical isomorphisms
nr % = G/K and 5 : PN/N = P. Then e(x.p) = gip -a/n gpmiy € lo:
which is a contradiction since |G/N| < |G].

This part is straightforward by the definition of linkage.

Corollary 8.1.3. The pair (K, P) € G is reduced in each of the following cases:

(a) K =1,
(b) P=G.

In particular the essential algebra E¢ is non-zero for any finite group G.
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Corollary 8.1.4. The pair (K, P) € Gg is not reduced in each of the following cases:

(a) P < K,
(b) PK =G and K £ P.

Proof. In both cases it is sufficient to find a triple (H, L, Q) with |H| < |G|, which is
linked to (G, K, P).

(a)

Let G/K act on P by conjugation and construct the semi-direct product G' =
P x G/K. Write P for the image (under a~' : z + (x,1)) of P in G so that we
have an isomorphism 3 : G/P = G/K.

We define the subgroups S = {(z, (z,1)) : x € P} and T = {(g, (z,yK)) : gK =
B((x,yK)P)} of G x G and claim that S < T. Indeed we clearly have S < T
and the normality follows by direct calculations. Also note that P < K and
[K,P] = 1, hence P is abelian. The Goursat correspondents of T" and S are
(G,K,B,P.G) and (P, 1, a, 1, P) respectively. Hence the quadruples (G, K, P, 1)
and (G, P, P, 1) are linked, as required.

Let S = A(P) < Gx Pand T = {(g9,h) € G x Plg7'h € K}. Clearly S is
a normal subgroup of T. Since G = PK, the pair (T,5) is covering and hence
(G, K, P) is linked to (P, K N P, P). Note that K € P is also necessary since
otherwise G = PK implies G = P and the factorization is not over a group of

smaller order.
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8.2. The Essential Algebra E

The following lemma determines a basis for the essential ideal. Its proof is similar

to the proof of [4, Lemma 8.2].

Lemma 8.2.1. The ideal I of Eq is generated as a k-module by the standard basis

elements [f;g] with (T, S) € Yaxa satisfying
(i) p1(T) # G and k1(S) # 1 or
(ZZ) pl(T) = G, k’l(S) =1 and l()(T, S) g R(;.

Equivalently, it 1s generated by the standard basis elements [%] with (T,S) € Yaxa

satisfying

(i') po(T) # G and ky(S) # 1 or
(it') po(T) = G, kao(S) =1 and ro(T,S) € R

Proof. Let (T,S) € Yaxg. If (T, 5) satisfies (7) then by the decomposition in Proposi-

tion 4.2.6 we have [g;g] € Iq. Ifit satisfies (i) then (K, P) := lo(T, S) &€ R, which by

definition means that e(x p) € I, but then since I is an ideal [SX5] = e, p)[ %] €

Ic.

Conversely, to prove that every element in I can be written as a k-linear combination

| can

of elements as given in the lemma, it suffices to show that the product [ZXZ ]H[H X

S<T U<V

be written as such a linear combination for any group |H| < |G| and (T, 5) € Yaxu,
(V,U) € ¥pxg. By the Mackey formula this product consist of the elements of the
form [%] for some (V',U’) € X« Assume that (T'+V’, SxU’) does not satisfy
conditions (i) and (i7). So we have that the left invariant of the section (T V', S*U’)
is equal to (G, K, P, 1) for some (K, P) € G and (K, P) € R¢. Then by the [4, Propo-
sition 2.6], we have [(T,S) = (G, K', P',1) with (K', P') <X (K, P).
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But then since R is a lower set the pair (K’, P’) also is reduced and we obtain

the contradiction

C(K",P) =

Now we are ready to determine the intersection of the covering algebra and the

ideal I5. This also reveals the structure of the essential algebra.

Proposition 8.2.2. (a) The algebra E¢, is a covering algebra for Eq, in the sense
of Section 2.5.
(b) The equality

Esnle= @ fikreEe (84)

{K,P}g€eGg/~
(K,P)¢Rc

holds.

(c) The canonical epimorphism Eg — Eq maps the subalgebra

D Suerial (85)
{KvP}GEﬁG
of E¢ isomorphically onto Eq.
(d) For each (K, P) € Rq, the map
kD .rx.py = ficp Eaficpy,  a— fucpafix.p (8.6)

15 a k-algebra isomorphism.
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(e) There is a bijective correspondence between the isomorphism classes of simple Eg-
modules and the set of triples (K, P,[V]) where (K, P) runs over linkage classes
of reduced pairs for G and for a representative (K, P) of the linkage class of
(K, P), [V] runs over irreducible kT x py-modules. The correspondence is given

by associating the triple (K, P,[V]) to the Eg-module E_’Gf(K,p) Okl V-

GxXG
ST

Proof. (a) By Lemma 8.2.1 a standart basis element [ } of Eq belongs to covering
algebra if (1',S) € 3¢, and it belongs to I if (1',.5) & 3¢, o so their sum is a
whole endomorphism ring. Thus Ef is a covering algebra for E;.

(b) The basis elements [%’Y;? | with (T, S) € 3¢, such that lo(T, S) € R¢ generate

the intersection of covering algebra and ideal I as k-module. Hence we have an

equality

Egnle= P B (8.7)

{KvP}GEgG/N
(K,P)¢Rc

Since the set of reduced elements is a lower set and due to Lemma 7.2.3 we have

the equality

c{K,P c
@ == P fwmeb (8.8)
{K,P}g€Gc/~ {K,P}g€Ga/~
(K,P)¢Ra (K,P)¢Rq

Thus we get the desired result.

(¢) This follows from Proposition 7.2.1 and Part (b).

(d) This follows from Proposition 7.2.3(d) and Part (c).

(e) Let [V] be the class of simple AI'(¢ x p)-module and (K, P) € R such that
(K, P) = (K, P;) where the elements of {K, P}s are enumerated as in Lemma
7.2.3. Then by the Morita equivalence between the algebras Mat,, (k¢ p)) and
kT (¢ i py, the class of the simple module [V] corresponds to the class of the simple

module Mat, (kL' k. p))€i Rk g 4. p) V-
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Then for y; = e; = ek, p) the isomorphism woo (from the proof of Theorem 7.3.1)
transports this simple module to the irreducible module fix py; E¢ fx,p) @rr (P
V' = B¢ [f(k,P) Qkrxp V- The last equality is due to the fact that fix py, is
central in the covering algebra, and f(x, py are orthogonal idempotents. So by the

isomorphism in Part (c) we are done.

8.2.3. Finally we parameterize simple modules over E¢. Let
Se = Si(G) = {((K,P),[V]) | (K,P) € Re,[V] €lr(kI'¢.x.p)}- (8.9)

Define an equivalence relation on Sg by (K, P),[V]) ~ ((K', P"),[V']) if (K, P) and
(K', P') are G-linked and the canonical bijection Irr(kT' G 7 pry) — Ire(kD(a k.p)) from
Theorem 7.1.4 maps [V'] to [V]. Also let Sg be a set of representatives of the equivalence

classes of S, that 1is,
Sa = {((K,P),[V]) | (K,P) € R, V] € lrr(kT (. xc.p)) }- (8.10)

By the canonical isomorphism from Proposition 8.2.2(c), we can view each simple
kT k,p)-module as a simple f(K,p)ng(Kep)—module, and we can view EGf(Kp) as
(Eg, kL (¢ k,p))-bimodule. Hence ng(K,p) Okl x.p) V is a simple Eg-module for each

simple kI'(q k py-module. This induces a bijection between the set S¢ and Irr(Eg).
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9. MAIN RESULT

9.1. Simple Functors over kI’

In this final section we parameterize simple section biset functors. In the previous
section we have classified simple modules over the endomorphism ring F for any finite
group G. This gives us a map from seeds to isomorphism classes of simple section biset
functors. In this section we introduce an equivalence relation on seeds to make this
map bijective.

By the parametrization in Section 8.2.3 we may write the set of all seeds for k" as
Seeds(kT') = {(G, K, P,[V])|G € Ob(Py), (K, P,[V]) € Sa}. (9.1)

Definition 9.1.1. Given a seed (G, K, P,[V]), we construct a simple Eg-module 1% by

V = ng(}gp) ®kF(G,K,P> V. (9.2)

Hence as explained in Section 3.2, we associate a simple section functor S =
Sc.k.pv] to the seed (G, K, P,[V]). Clearly replacing V' with an isomorphic copy of
V' does not change the isomorphism type of the corresponding simple section biset

functor. In particular we obtain a function
w : Seeds(kI') — Irr(kD), (9.3)

where Irr(kT") denotes the set of isomorphism classes of simple section biset functors.
Note that w is surjective. Indeed if S is a simple section biset functor, we let G be a

minimal group for S.
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Then S(G) is a simple module for the essential algebra Eg, and hence there is
a triple (K, P,[V]) € S¢ such that S(G) = ng(K,p) kT . x.py V- Therefore S =

Sa,k.p[v]-

Definition 9.1.2. As in [4], we define an equivalence relation on Seeds(kI') by
(G,K,P,[V])~ (H,LQ, W] (9.4)

if and only if (G, K, P,1) ~ (H,L,Q,1) and V = k[(q x p)U'(41,0.Q) | ®kr . o) W - If these
conditions are satisfied, we say that the quadruples (G, K, P,[V]) and (H, L, Q, [W]) are
linked.

We claim that the function w induced by w on the set of linkage classes Seeds(kI")/ ~

of seeds is bijective. Ideas used in the proof below can be found in [4, Section 9].

Theorem 9.1.3. There is a bijective correspondence between

(a) the set Irr(kT') of isomorphism classes of simple section biset functors,

(b) the set Seeds(kI')/ ~ of linkage classes of quadruples (G, K, P,[V]).

9.1.4. Let M be a section biset functor and G and H be finite groups. We have

decompositions

MG = P fxpM@), MH= @ feoMH). (9.5)

(K,P)eba (L,Q)€GH
Although these decompositions may not be related to each other, in general, the terms
corresponding to linked quadruples are isomorphic. Indeed suppose there are pairs

(K, P) € Gg and (L, Q) € Gy such that the triples (G, K, P) and (H, L, Q) are linked,

so that the set . x.p)l'(m,1,Q) 15 non-empty.
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Then, for each x € (¢ kP (H,1,0) the map

f(K?p)M(G) — f(L,Q)]W(H),m —> |G : P|_1I -m (96)

is an isomorphism of k-modules with the inverse given by multiplication by x°P (cf.

[4, Lemma 9.3]). This follows easily since we have xx°® = e p), t°Px = e ),

er.p) fx,p) = fir,py and e fr.) = fi1.Q)-

We will also need the following lemma.

Lemma 9.1.5. Let G and H be finite groups, (K, P) € Rg and (L,Q) € Ry be such
that (G, K, P,1) ~ (H,L,Q,1). Then G and H have the same order.

Proof. Since (G, K, P,1) and (H, L, @, 1) are linked, there is a section ggg] € kP (H,,0)

Assume |G| > |H|. Then there is a factorization |H : Q||G : Ple,py = [Z52] xp

[GxH

SaT |P. This is impossible since ek, py is reduced. O

9.1.6. Let (H,L,Q,[W]) be a seed and Sy, be the corresponding simple section biset

functor so that

—~

SywH) =W = Enfr.q) @rryp0 W- (9.7)
Note that since there is an isomorphism

of k-algebras, by Lemma 7.2.3, we may regard fi,0)Sy5w(H) as a kT (g,1,0)-module,

and as such, it is isomorphic to W.
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In order to determine other seeds which corresponds to the functor S(H’W), we
need to know the evaluations Sy (G) for groups with |G| = |H|. Hence let G be a
group of order |H|. Clearly there is a seed of the form (G, K, P,[V]) corresponding to
SH,W only if SH,W(G) 1s non-zero, which we assume from now on. Then since H is a
minimal group for SH,W7 G is also minimal. In particular SHW(G) 1s annihilated by
I, and hence it is a simple Eg-module. Put V=35 H,W(G)’ By Section 8.2.3, there
is a triple (K, P,[V]) such that V = Eafc.p) Qkrg e V. Hence f(K,p)SH’W(G) =V

—_ ~
and Sy = 56

In particular Syw has a seed (G, K, P, [V]) if and only if G is minimal for Spw
and as a simple Eg-module, Sy w(G) corresponds to the triple (K, P,[V]). In this case,

we additionally have the following result.

Lemma 9.1.7. Let G and H be finite groups of the same order, let I'S(G, H) be the
submodule of T'y(G, H) spanned by all sections corresponding to covering pairs. Also

let (K, P) € Gg and (L,Q) € Gy. Then
(a) There is an isomorphism of (kI'¢ k,p), kI (1 1.q))-bimodules
klox.plwrgl = furli(G H) fiLg), (9.9)
given by mapping b to fx p)bf,q). Here the actions on the left and on the right
of fik.mI(G, H) f1.0) are given through the isomorphism in Theorem 7.1.4.
(b) Suppose (L.Q) € Ry and W is a simple kI' (g 1.gy-module. Then there is an
epimorphism

klio.x.p L m1,Q)) @kt .00 W = fe,p) Sy (G) (9.10)

of kI, i, p)-modules.
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Proof. The proof is very similar to the proof of [4, Lemma 9.5]. We give a sketch
since as the original version, it follows from previous results. For part (a), if the set

,x,P)L(m,1,0) is non-empty, then by Section 7.4, there are isomorphisms

kl.re.m gl = kL k.p) (9.11)

and [ Ui(G H) fg) = JuenTaliwe (9.12)

of kI'(¢, k py-modules. Also by Lemma 5.17 (d), there is an isomorphism
Kl xp) = fueplcfia)- (9.13)
We get the result by composing these isomorphisms. The case that (¢ x,r)'(m,1,0) is
empty follows from basic properties of ex p and fx p. We leave the justification to the

reader.

Part (b) basically follows from part (a) and the general construction of simple

functors we explained above. O

Now by Lemma 9.1.7, we must have a surjective homomorphism

kerx.p) Ui @wrgo W =V (9.14)

of k', k,p-modules.
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In particular the set (¢ x,p)I'(#,1,0) is non-empty, which implies that the quadru-
ples (G, K. P,1) and (H, L, (), 1) are linked. Moreover by Theorem 7.1.4, the kI'(¢ k,p)-

module k¢ k. p)L'(1,1,0) QKT (1.1,.0) W is simple. Hence we must have an isomorphism

ke k.mLm,0,Q) @urgp .0 WEV (9.15)

of kTG k,p)-modules. As a result the seeds (G, K, P, [V]) and (H, L, Q, [W]) are linked,
that is, seeds corresponding to the simple functor .S i are all linked to (H, L, @, [IV]).

9.1.8. Finally we show that if (G, K, P, [V]) and (H, L, Q. [W]) are linked then S, =
SH,W' First note that by Lemma 9.1.5, the groups G and H are of the same or-
der. As discussed above, the evaluation Sy 7(G) is a simple Eg-module. Also since
(G,K,P/1) ~ (H,L,Q,1), we get f(K,p)SHW(G) = .]?(L,Q)S}LW(H) as k-modules, by
Section 9.1.4. In particular f(K,p)SHW(G) is non-zero. It remains to show that there

s an isomorphism SHW(G) >~ | of Ec;-modules. We already know that
V= kerrliaLe QKL (41,1,,) w. (9.16)

Hence by Lemma 9.1.7, there is a homomorphism V — (}‘_'(K,p)SHW(G) of kI (¢, k,p)-

modules. Now we have the following isomorphisms.

{0} 7é HomkF(G’K’P)(V, .](_I(K,P)SHfW(G)) (917)
HomkF(G’K’p) (V7 HOHIEG (EG‘]F(K,P)a SH,W(G))) (9~18)

= Homﬁg(E_’Gf_‘(K,P) ®kF(G,K,P) V? SH’W(G)) = Homég(v7 S_H7W(G)) (919)

14

In particular there is a non-zero homomorphism V - Sy w(G). Since both of these
modules are simple, they must be isomorphic. With this step, we have completed the

proof of Theorem 9.1.3.
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Remark 9.1.9. Let G and H be non-isomorphic finite groups. For reduced pairs
(K,P) € R¢g and (L, Q) € Ry if there exists a section (T, S) such that (G, K, P, 1) )
(H,L,Q,1) then we can take V := k¢ k' u,L,0) Q.0 W to be the irreducible
kT (G k,p)-module corresponding to W € Irr(k'(gr,q)). Then Siy = S, 5, which
shows that there exists simple section biset functors with non-isomorphic minimal
groups.

For example let G be the group of quaternions, (x,y|z* =1, yoy ' = 27! 22 =
y?) and H := {(a,b|a* = b*> = 1, bab~! = a™ ') the dihedral group of order 8. Consider
the section (T,S) of G x H given by

T :=((x,a),(y,b))and S := ((x, a)). (9.20)
Clearly S is a subgroup of T and since WY (x,a) = (z7*,a™') moreover S is normal in
T and hence (T, S) is a section of G x H. The left and right invariant of (T, S) are as
follows

(T, S) = (G, (%), (2),1), r(T,S) = (H,{a®,{a),1). (9.21)

So (K, P) :=1o(T,S) = ((x?), (x)) € Go and (L, Q) :=ro(T,S) = ((a*),{(a)) € Gy are
linked pairs. Moreover by Theorem 8.1.2 (a) both (K, P) and (L, Q) are reduced pairs.
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