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ABSTRACT

SMOOTHING PROPERTIES OF INITIAL-BOUNDARY
VALUE PROBLEMS

This thesis discusses the smoothing properties of dispersive partial differential
equations. In the first part of the thesis, we consider the Davey-Stewartson system
on R? and demonstrate that the nonlinear part of the solution flow is smoother than
the initial data. As an application of the smoothing result, we address the dissipa-
tive Davey—-Stewartson system and give a simplified proof of the existence of a global
attractor for the system. In the next part, we study well-posedness and regularity
properties of the biharmonic Schrodinger equation on the half-line. More precisely,
we prove local existence and uniqueness and show that the data to solution map is
continuous. Moreover, we establish global well-posedness and global smoothing for
higher regular spaces by showing that the solution grows at most linearly. As regards
to the smoothing result, the derivative gain we obtain for the nonlinear part of the so-
lution is up to full derivative. The last part of the thesis addresses the Hirota—Satsuma
system on the torus. The Hirota—Satsuma system is given by two Korteweg-de Vries
equations exhibiting different dispersion relations which is due to the coupling coeffi-
cient a. The main result demonstrates the regularity level of the nonlinear part of the
evolution compared to initial data. The gain in regularity depends very much on the
arithmetic properties of the coefficient a. Then, we consider the forced and damped
Hirota—Satsuma system and establish the analogous smoothing estimates. By the help
of the smoothing estimates, we prove the existence and regularity of a global attractor

in the energy space.



OZET

BASLANGIC-SINIR DEGER PROBLEMLERININ
YUMUSATMA OZELLIKLERI

Bu tezde dispersif kismi tiirevli denklemlerin yumusatma ozellikleri ele alinmistir.
Tezin ilk kisminda, Davey-Stewartson sistemini R? iistiinde ele aldik ve ¢oziimiin
dogrusal olmayan kisminin baglangic verisinden daha yumusak oldugunu gosterdik. Bu
sonucun uygulamasi olarak ise, sontimlemeli Davey—Stewarston sistemini géz 6niinde
bulundurup, sistemin global ¢ekerinin varligina dair basitlestirilmis bir ispat verdik.
Bir sonraki kisimda, yari dogru iistiinde, ¢ift-harmonik Schrodinger denkleminin iyi
konulmusglugunu ve diizgiinliik ozelliklerini ¢aligtik. Daha iyi bir ifadeyle anlatmak
gerekirse, ¢oziimiin yerel varligini ve tekligini ispatladik, ayrica veri-¢oziim fonksiy-
onunun siirekli oldugunu gosterdik. Coziimiin en fazla dogrusal biiytidiigiinii gostererek
global iyi konulmuglugu ve yumusatmay1 daha yiiksek mertebeli diizgiin uzaylar icin
elde ettik. Yumugatma sonucuna gelecek olursak, ¢oziimiin dogrusal olmayan kismi i¢in
elde ettigimiz tiirev kazanci en fazla tam tiirev oldu. Tezin son kismi1 Hirota—Satsuma
sistemini torus tstiinde ele almigtir. Hirota—Satsuma sistemi baglasim katsayisi a’dan
otiirt farkl yayilma iligkileri sergileyen iki Korteweg-de Vries denklemi tarafindan be-
lirlenir. Ana sonug, baslangic verisine kiyasla, ¢oziimiin dogrusal olmayan kisminin
diizgiinliik seviyesini gosterir. Diizgiinliikteki kazang daha ¢ok a katsayisinin aritmetik
ozelliklerine baglidir. Daha sonra, zorlanmig ve séniimlenmis Hirota—Satsuma sistemini
ele alip benzer yumusatma kestirimleri elde ettik. Yumusatma kestirimleri sayesinde,

sistemin global ¢ekerinin varligini ve diizglinliiglinii enerji uzayinda ispatladik.
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1. INTRODUCTION

This thesis is devoted to study the smoothing properties of nonlinear dispersive
equations on certain domains. In order to understand the dynamics of given nonlinear
dispersive equation nicely, one has to pay close attention to the corresponding linear
equation. The characterization of linear dispersive PDE is decided by its wave solu-
tions’ propagation in the medium in which large frequency components travel faster in
contrast to the smaller ones giving rise to a dispersion. This behavior is more apparent
for unbounded domains, whereas on bounded domains, e.g. torus, different frequency
solution components cannot spread out, rather they rotate around the torus with dis-
tinct velocities. The dispersive character exhibited by the nonlinear PDEs in this study
will shape the basis of our exploration of various frequency interactions stemming from

nonlinear nature of these equations. Consider a linear dispersive PDE of the form
Owu(x,t) = Lu(x,t), u(x,0) = ug(x) (1.1)

where L = ih(D), D := %V = Y9,,, -+ ,0,,) and h is a real-valued polynomial of

2

order k:

WE) =&, &) = D) cabi - €57,

o<k

here, k > 1 is an integer, o = (aq, -+ ,aq) € Z% with |a] = a1 +- - - + a4. The explicit
form of solutions to (1.1) can easily be found by taking spatial Fourier transform of

L

the equation (1.1) by which we obtain u(z,t) = e'fuy(z) where X denotes the linear

propagator

unfa) = [ 1Sl de
R

Note that such solution exists globally in time. Perturbing the linear equation (1.1) by

the nonlinear term N (u), we next consider the nonlinear equation

Owu(z,t) = Lu(x,t) + N(u(x,t)), u(x,0) = ug(z). (1.2)



The Cauchy problem (1.2) is equivalent to integral equation
t
u(z,t) = ePug(x) +/ "IN (u(z, 5)) ds
0

that is called the Duhamel’s solution formula for the equation (1.2). In our discussion,
we study distributional solutions of nonlinear PDEs which are constructed by a fixed
point argument applied to Duhamel’s formula. Via this formulation, our primary

L

objective is to show that the nonlinear part u(x,t) — e ug(x) of the Duhamel’s formula

lies in a more regular space than the initial data uy belongs to.

Previous methods for establishing well-posedness of dispersive PDEs such as en-
ergy method, oscillatory integral method have proven to be successful for higher reg-
ularity spaces. In his seminal papers [1,2], Bourgain introduced new function spaces,
X*P that take dispersion relation of the given equation into consideration, although the
similar weighted spaces related to wave equations were used in the works of Beals [3],
Klainerman—Machedon [4] previously. Using these spaces together with Fourier restric-
tion methods, Bourgain improved the previous well-posedness result. The X*® space
theory is of extreme help in establishing low-regularity well-posedness results for dis-
persive equations in today’s research. Our work also uses X*? spaces to capture the

nonlinear smoothing effect for certain dispersive PDEs we next address.

The third chapter is concerned with the smoothing result of the Davey-Stewartson
(DS) system. DS systems appear in the theory of water waves and describe the evolu-
tion of weakly nonlinear water waves [5]. It is remarkable to note that the first study
of well-posedness for the system was initiated by Ghidaglia and Saut [6] in the spaces
L?, H', H?. Since then considerable amount of work have still been dedicated to the
DS systems. The approach we follow in this study to prove multilinear estimate for DS
system is via Tao’s [k; Z] multiplier method [7], which is based on dyadic decomposition
and induction on scales type techniques as in restriction theory. As an application of
the smoothing result, we address the dissipative DS system and give a simplified proof

of the existence of a global attractor for this system.



The next chapter deals with the biharmonic Schrodinger equation on the half-
line and establishes well-posedness and smoothing results. To reach the results, after
extending the initial data to the full line, we construct the nonlinear solution map via
Duhamel’s formula adapted to the boundary conditions. The explicit representation
formula for the solution of the linear IBVP is derived by the use of Laplace transform,
which is then used to establish bound for the boundary forcing term of the Duhamel’s
formula. To be able to run the fixed point argument on the nonlinear solution map
successfully, we require the restricted norm method, so we prove a number of estimates

on the terms of Duhamel’s formula to close the argument.

In the last chapter, we obtain the smoothing estimate for the Hirota—Satsuma
system on the torus. This is a system of coupled KdV type equations that models
the interactions of two long waves with separate dispersion relations. With the help of
normal form transformation, we rewrite the system in an equivalent form and make use
of oscillatory effects to cope with the derivative in the nonlinearities. The disadvantage
is that the transformation introduces trilinear terms rather than bilinear. The trilinear
terms are dealt with the restricted norm method so as to prove smoothing. We also
obtain the smoothing result for the forced and damped Hirota—Satsuma system. Using
the smoothing effect, we prove the existence and regularity of the global attractors for

the system.



2. OVERVIEW OF THE THEORY

Consider a linear partial differential equation of the form
1
iy + h(—_V)u =0 (2.1)
i

where h is a real-valued polynomial. We seek out plane wave solutions wu(z,t) =

A&t where A, € and w represent the amplitude, the wave number and the fre-

quency respectively. The equation (2.1) imposes relationship between ¢ and w, w
w(§). This is called dispersion relation. The phase velocity is defined by ¢,(§) = t
with which the solution can also be written as u(z,t) = e@=%©) = y(z — ¢,(£)t,0).
We say that the wave travels with velocity ¢,(§). Also, the related notion, the group
velocity is defined by ¢, = ‘fl—?. If ¢4 is not a constant, that is ‘fl%; # 0, then the equation
(2.1) is called dispersive. In the context of physics, this means that the wave solutions
of different wavelength propagate at different phase velocities as time increases. Un-
der this characterization, the transport equation u; = u,, with the dispersion relation

w(&) = &, is not dispersive while the Schrédinger equation iuy + uz, = 0, with the

respective dispersion relation w(§) = —¢2, is dispersive.
2.1. X*" Spaces

The characterization of dispersive equations via Fourier transform motivates the
definition of X*? spaces. Taking the space-time Fourier transform of the linear equa-
tion (2.1) shows that the space-time Fourier transform u(&,7) is supported on the
characteristic surface {(£,7) € R? x R : 7 = h(£)} of the frequency space. This on
the other hand is no true for the nonlinear perturbation iu, + h(3V)u = N(u) of the
linear equation (2.1). However, the support of the space-time Fourier transform of the
localized solution concentrates near this surface. By this observation we introduce the

X*? space as the closure of the Schwartz functions under the norm

oy = (%7 = HENTE T3 pavy

Jul X2



For functions on T? x R, the above norm is replaced by

H“”Xj”’ (TdxR) — H<k>s<7 - h(k»ba(k’ﬂuegu(wxm :

=h(k)
In other words, differentiating functions in X*® spaces s-times with respect to elliptic
derivative (V) and b-times using dispersive derivative i0; + h(%V) will produce square-

integrable functions. Alternatively, one can use yet another form of X*® norm:

[ u] Xt e W (—t)ul HsHb

where W (t) = exp(ith(3V)) is the unitary group corresponding to the linear equation
(21) and lglymy = (756D, = ||[€9ED)| [
s T L
¢

t
b = 0, the dispersion relation 7 = h(€) is insignificant so that X = HSL?. The

In particular, for

. b . .
restricted X*° space, X;”, is also defined via the norm

fullgge = _inf

a=ujt|<s X0

We continue our discussion by introducing some properties of X®° spaces. Taking
advantage of Parseval’s identity and Cauchy-Schwarz one can observe the duality re-
lationship: (Xfﬁh(g))* = X;:Sf:(_g). Also, the X*’ spaces interpolate very well in
both indices s and b. Once b > %, X*P spaces turn out to be very useful in proving

well-posedness in the space CY H? that the following lemma shows.

Lemma 2.1.1 (See [8]). For any b > 3, s € R, X** space given by a continous

dispersion relation embeds into Cy HE.

In the following, we shall remove the dispersion relation subscript from the norm
of X*b functions. Let ¢ be a smooth function satisfying ¢(t) = 0 if |[t| > 2, and
o(t) = 1 for [t| < 1. Also, let ps(t) = ¢(t/6) for 0 < § < 1. Consider the Cauchy

problem

(2.2)



In order to find a unique solution for (2.2) in some subset of CY H within the
time existence interval [—d, §], the Banach fixed point argument is implemented to the

Duhamel operator

Tu(t) = ()W (t)ug — igpg(t)/o W(t—s)N(u(s))ds

— P(W (D)o — ips(8)[WV 0 N(w)](1)

on the ball Bs = {u € X%t : ||u]
bounded in X*?:

xs0 < Clluol

s }- The localized linear solution is

Lemma 2.1.2 (See [9]). For s,b € R, we have

le()W ()g]

Xs.b 5 ||g| Hs -

The remaining estimate for the integral part of the Duhamel formula is as follows:

Lemma 2.1.3 (Sce [10]). Let =1 <& <0<b <V + 1. Then,

los(O)W 5 N(w)] ()] o0 £ 87" [N (w)]

s,b! -
X6

Combining the above lemmas, we have

117u| e+ 0V IN ()|

oo % ol v

In order to close the contraction argument on the ball By, one has to prove an estimate

of the form || N (u)]

X3 < JJul[%.., subjected to the nonlinearity and dispersion relation

associated to the given equation and has to seek sufficiently small 6.
2.2. Differentiation by Parts On the Torus

The essence of the method is based on a normal form transformation introduced
in [11]. In this paper, Shatah constructs a transformation that raises the degree of the
nonlinearity of Klein—-Gordon equation in order to be able to use direct perturbation

methods in studying the equation on R3.



This procedure is known as Poincaré’s theory of normal forms for ordinary dif-
ferential equations, see [12,13]. The well-posedness for the periodic KdV equation was
obtained by Babin—Ilyin—Titi [14] using the normal forms as an alternative method.
In our work, the normal forms transform method employed to the periodic Hirota—
Satsuma system is used as that in [15-17] to obtain smoothing. In the following we
shall give the idea of the method. In our case, taking the Fourier transform of the
system of equations leads to a system of differential equations for the Fourier sequence
of solutions. Multiplying each Fourier coefficient by a modulation factor, the result-
ing equation for a particular Fourier coefficient u; turns out roughly in the form:

Opuy, = €' N (uy,), 2 = Q(k). Then,

ei!?t

€ !

- at( — N(uk)) — S5 N () N ()

Accordingly,

ezﬂt 2102t

O, (uk T N(uk)) = —GZ,Q N (ug) N (ug).

The conclusion is that the gain {2 in the denominator eliminates the derivative in the
nonlinearity of the original equation, in return, the nonlinearity N changes to NNN’.
Nevertheless, the advantage is to gain large denominators. So if there are resonances

(frequencies at which {2 = 0), then each has to be treated separately.

2.3. Global Attrators

The long term dynamics of a given dissipative partial differential equation can
be described by compact, invariant, attracting subsets (global attractors) of the phase
space into which all trajectories converge as t — oo. Rather than working with infinite
dimensional phase space, one can study the long time asymptotics of the solution flow

via global attractors which may be finite dimensional, see for instance [18].



Let H be a phase space and U(t) : H — H denote the evolution operator,
mapping data to solution. The family of operators {U(t)};>0 enjoy the semigroup

properties:

Ult+s)=U(t)U(s), Vt, s >0,

U)=1 (Identity in H).

In the following, we give some required definitions from [19].

Definition 2.3.1. A set X is said to be invariant under the flow U(t) if we have
Ut)X =X forallt > 0.

Definition 2.3.2. An attractor is a set A C H which is invariant under the flow and

possesses an open neighbourhood N such that for every ug € N it satisfies

d(U(t)ugp, A) = 0 ast — oo. (2.3)

The distance in the definition 2.3.2 is in the sense of a distance of a point to a
set: d(a, B) = infyep d(a,b) where d(a, b) measures the distance from a to b in H. The
largest open set N satisfying (2.3) is called the basin of attraction of A. We say that
A uniformly attracts a set B C N if

dlU(t)B,A) =0 as t — oo, (2.4)

where d(S,52) = sup,cg, infyes, d(x,y) for the two sets Sy, S,. We also say that A
attracts the bounded sets of NV if A uniformly attracts each bounded set of V. Note

that an attractor may or may not have such a property.

Definition 2.3.3. The subset A C H is called a global attractor for the semigroup
{U(t)}i>0 if A is a compact attractor that attracts the bounded sets of H (the basin of

attraction of A is the whole phase space H then).



Next definition is crucial in establishing the existence of a global attractor:

Definition 2.3.4. A bounded subset B of a phase space H is called an absorbing set
if for any bounded S C H, there exists T = T(S) such that U(t)S C B for allt > T.

Note that a global attractor for a semigroup, if exists, implies the existence of
an absorbing set, to see this, use (2.4) for any bounded subset of H to conclude that
for any € > 0, e-neighbourhood of a global attractor A satisfies the requirement for an
absorbing set. Once having the absorbing set for the semigroup {U(t) }1>0, the existence

of global attractor is provided by the additional assumption for the semigroup:

Theorem 2.3.5 (See [19]). Suppose that H is a metric space and U(t) : H — H s
a continuous semigroup defined for all t > 0. Furthermore, suppose that there is an
absorbing set B. If the semigroup {U(t) }+>0 is asymptotically compact, that is, for every
bounded sequence {xy} in H and every sequence of times ty — oo, the set {U(ty)xy }r
15 relatively compact in H, then the w-limit set

w(B) = Jvwns

s>0t>s

15 a global attractor, where the closure is taken on H.

Note that ¢ € w(B) if and only if there exists a sequence ¢,, € B and a sequence
of times ¢, — oo such that U(t,)¢, — ¢ as n — co. In our context, we address the
problem of existence of global attractors for the Davey-Stewartson and the periodic
Hirota—Satsuma systems. The proofs of the existence of global attractors will essen-
tially be based on the smoothing estimates that will be obtained for the respective

dissipative systems.
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3. THE DAVEY-STEWARTSON SYSTEM

3.1. Introduction

The Davey—Stewartson equations in dimensionless are given by couple of equa-

tions of the form

10 + Coagu + qu = CI|U|2u + coudy ¢ (3 1)

070 + c3050 = Ou([ul?)

where u = u(z,y,t) is complex-valued and ¢ = ¢(x,y,t) is real-valued functions that
represent amplitude and mean velocity potential, respectively; here, the constants are
real numbers and their signs determine the character of the equation. The results of
this chapter have been announced in [20]. The systems (3.1) were first derived by
Davey and Stewartson [5], Benney and Roskes [21], Djordjevic and Redekopp [22] and
model the time evolution of 2D surface of water waves that propagate predominantly in
one direction, but the wave amplitude is modulated slowly in the horizontal directions.
In [22], Djordjevic and Redekopp showed that the parameter ¢3 can be negative when
capillary effects are important. According to the signs of ¢y and c¢3 respectively, the

system (3.1) is classified as follows

Elliptic — Elliptic Elliptic — Hyperbolic
(+7 +) (+7 _)

Hyperbolic — Elliptic Hyperbolic — Hyperbolic

(_7+) (_7_>

DS systems are very well studied in terms of well-posedness and stability, blow-up

profiles, existence of standing and travelling waves.
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The investigation of the system (3.1) in terms of well-posedness was initiated
by Ghidaglia and Saut [6] who established the local well-posedness in the elliptic—
elliptic, elliptic-hyperbolic and hyperbolic—elliptic cases. More precisely, they studied
the local and global properties of the elliptic—elliptic and the hyperbolic—elliptic cases in
L?, H', H?; also in the elliptic-hyperbolic case, they obtained a global existence of weak
solution of (3.1) under smallness assumption for data in L?. Linares and Ponce [23]
showed that under some smallness assumptions on the data, elliptic-hyperbolic and
hyperbolic-hyperbolic cases of (3.1) are locally well-posed in the spaces H*(R?) N
HS(R? : rSdxdy) for s > 12, and H*(R?*) N H3(R? : r’dxdy) for s > 6 respectively. As
regards to the initial value problem posed on the 2-torus, Godet [24] obtained a local
well-posedness result for the hyperbolic—elliptic problem in H*(T?) for s > 1/2 as well as
a blow-up rate for this equation. Concerning the half-plane problem, Fokas [25] studied
the DS equation on the half-plane by using the inverse scattering transform techniques
along with the formulation of a d-bar problem for a sectionally non-analytic function.
As for the problem of global well-posedness, it is conjectured that the elliptic—elliptic
type of (3.1) is globally well-posed in H*® for all s > 0. Toward this conjecture, Shen
and Guo [26] proved that the initial value problem of (3.1) in the elliptic—elliptic case
(with some assumptions on the constants) is globally well-posed for data in H*(R?),
for s > 4/7. Thereafter, Yang et al. [27] improved this result by establishing global
well-posedness in H*(R?) for s > 2/5 where they took advantage of the I-method. In
particular, they obtained a polynomial in time bound for the H® norm of the solution for
s > 2/5. Some of the other results regarding the system (3.1) can be found in [28-32].
Upon considering elliptic-elliptic type of the system (3.1), we will study the initial

value problem
(

i0u + Au = ci|ul*u + coudp, (z,y) € R?, t € R,

u(z,y,0) = uo(z,y) € H*(R?).
\
To reformulate (3.2) in a better form we implement the Fourier transform in the spatial

variable to the second equation of (3.2) so that the system reduces to a single equation

10+ Au = c1|ulPu + e K (Jul*)u
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where K is the pseudo-differential operator with symbol a given by
— : _ &

K(f)(§) = a(§) f(€) and a(§) = e § = (6,&) # (0,0).

Therefore, by the Duhamel formula, the equation (3.2) is equivalent to
t

u(z,y,t) = g — z/ ei(t_T)A(cl|u|2u + CQK(]u\z)u)(T)dT (3.3)
0

where €4 denotes the free solution operator of the corresponding linear problem for
the equation (3.2). In this chapter, our primary goal is to obtain smoothing properties
of (3.2) globally in time; therefore, in order to take advantage of global well-posedness
result of Theorem 3.2.1, we will assume the restriction that ¢;+cy > 0. In the absence of
this restriction, smoothing argument here works in the local sense only. The smoothing
in this text means that the nonlinear part of the solution flow in relation to (3.3) lies
in a more regular space than the initial data belong to. To make it rigorous, below we

state our result:

Theorem 3.1.1. Let ¢y + ¢, > 0. Fiz s > 3 and a < min(3,s — 3). Consider the

solution to IVP (3.2) on R? x R with data ug € H*(R?). Suppose that there is an a

priori growth bound ||u(t)|| g < C(||luol| ) ()P for some B(s). Then,
u(z,y,t) — e uy € CEHQ‘ZZCL; (3.4)

furthermore, we have the growth bound

Hu(t) . eitAu()’ )<t>1+6(s)(3+%)'

< C(s,a, [[uol

Hsta Hs

Let I denote the identity operator and K denote the multiplier operator intro-
duced as above, hence to be able to prove Theorem 3.1.1 we will need the key trilinear

estimate:

1

Proposition 3.1.2. For s > 3,

a < min(%, s — %) and b = % + € for € > 0 sufficiently

small, we have

[(erd + oK) (o)l xorar—t S Null xon [0l xn [[0]] 0 (3:5)
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Note that we can replace the X* norm in the above proposition with the time
restricted version of this norm. X*° spaces were introduced by Bourgain [1,2] in order
to capture the dispersive smoothing effect, that is intrinsic to the equation under con-
sideration. Taking into account its diverse applications, smoothing estimates as such
in Theorem 3.1.1 were established for numerous PDEs in the literature; for instance,
Linares and Scialom obtained the smoothing estimate for the mKdV equation, [33],
attaining one derivative gain for the nonlinear part of the solution with H*(R) initial
data, for s > 1. Using this smoothing result, they gave a simplified proof of dispersive
blow-up in solutions to the generalized KdV equation, which was studied previously
by Bona and Saut, [34]. Also, smoothing estimates of nonlinear Schrodinger type
equations on R™ were obtained in [35]; in particular, for n = 2 it was shown that
the nonlinear part of the solution lies in CYH:*([0,7] x R?), a = 1,1—, for H*(R?)
data when s > %. It is noted that this result extends to the elliptic—elliptic DS sys-
tem. Therefore, Theorem 3.1.1 extends the smoothing argument in [35] to the range
s € (%, %] by the gain of s — %, yet the gain achieved in [35] is still larger for s > %.
Their arguments in the proof rely on LPLI-type estimates, whereas our proof makes

use of the notion of Bourgain spaces X*°.

Smoothing estimates have many nice applications such as those appeared in the
nonlinear Talbot effect, the bounds for higher order Sobolev norms and the existence
of global attractors for dissipative and dispersive PDEs, see Chapter 5 of [9]. Hence
in the remaining part of the chapter, our motivation in this regard is to present the
simplified proof of the existence of a global attractor for the forced and damped Davey—
Stewartson system in the energy space H' by making use of the smoothing estimate of
Theorem 3.1.1. In [36], Wang and Guo obtained the existence of a global attractor in
H' yet with a proof based on the splitting argument that requires more regular initial
data to reach the compactness. The smoothing effect replaces the splitting method
of [36]; as a result simplifying the proof and also as a byproduct gives us that the

global attractor is indeed a compact subset of H 3
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Thus, we consider the forced and damped Davey—Stewartson system

iug + Au+ idu = ¢ |ulPu + cud.¢ + f, (z,y) € R? (36)

Ad = 0y (|uf?)
where the forcing term f € L?(R?) is time independent, § > 0, ¢; > 0 and ¢; + ¢p > 0.
The use of Theorem 2.3.5 which is provided by a smoothing estimate for the dissipative

problem (3.6) yields the following result:

Theorem 3.1.3. Consider the forced and weakly damped Davey—Stewartson system
(3.6) on R? x [0, 00) with the initial data u(x,0) = up(x) € H'(R?). Then, the equation
(3.6) possesses a global attractor in H*(R?). Furthermore, for any a € (0, 3) the global

attractor is a subset of H'T¢(R?).

We now briefly explain the organization of the chapter. In Section 3.2, we intro-
duce function spaces and necessary tools for the proof of Theorem 3.1.1. In Section 3.3,
we discuss Tao’s [k; Z] multiplier method in order to prove the key trilinear estimate
(3.5). The proof of (3.5) will be given in Section 3.4. In Section 3.5, we prove Theorem
3.1.1 and finally Section 3.6 is devoted to prove the existence of a global attractor for

the Davey—Stewartson system.
3.2. Notation and Preliminaries

For s,b € R, we require X*" spaces corresponding to the evolution u of the DS

system that is defined by means of the norm

xeo = € + 1) €D 2 -

Localized X*" space is also defined by

[l

fullgge = _int_ [l .o

Consider the IVP (3.2) with the local existence time . We will quantify the dependence

of § to an initial data which we use in the proof of Theorem 3.1.1.
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From the dilation symmetry of this equation, assuming that (u,¢) solve (3.2)

with initial data uy on [0, \72], we come up with the symmetry solutions

uMa,y,t) = N u(z /Ny /N N, oM,y t) = Ao/ y /A /)
with data u)(z,y) = A lug(z/\,y/)\) which solve the equation on [0,1]. Thus for
A > 1, by comparing the H* norms of uy and uj, the solution (u,¢) can be defined

with respect to the local existence time

_2

o) * (3.7)

where C' = C(||lugl|;2). Next we discuss a global well-posedness result for the elliptic—

6~ (C + [luol

elliptic problem. We will exploit it once iterating our local result. Note that recalling
the Sobolev index range s > 1/2 in our case, we indeed need a result that at least

covers this range. Hence, rewriting the elliptic—elliptic IVP

iug + Au = c1|ul?u + co K (|ul?)u

(3.8)
u(z,0) = uo(x) € H3(R?),
with a multiplier operator K given by
2
K(f) = F e P (39)

for & = (&1,&) # 0, the required global well-posedness result for (3.8) and (3.9) is

stated as follows:

Theorem 3.2.1 (Sece [27]). Let ¢1 + ¢, > 0. For any 1 > s > 2, the initial value
problem (3.8) & (3.9) is globally well-posed in H*(R?). Furthermore, there is a growth

bound

3s(l—s

)
ey < C(L+ 1)

sup |[u(?)]
te[0,7

where the constant C' depends only on the index s, ||ugl| -
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The essential ingredients of the proof of Theorem 3.2.1 are the interaction of
Morawetz-type estimate and the almost conservation of the modified energy obtained

from plugging the smoothing of order 1 — s operator ﬁ(&) =m(&)u(§),

1, €l <N

C R

in the usual Hamiltonian energy of the equation (3.8). The globalizing technique
used in [27] is called the I-method, in view of the operator I : H® — H' which
was introduced by Colliander—Keel-Staffilani-Takaoka—Tao, [37]. Next by virtue of

Theorem 3.2.1, we reserve the following growth bound to be used later. For s > %,

define 5(s) > ;’fé:;g so that we have the a priori estimate

lu(®)ll g < &) = T(1) (3.10)
for some non-decreasing function 7'(¢) (which we need in iterating the local result), and

where the implicit constant depends on the Sobolev index and L? norm of the initial

data.

The forced and weakly damped DS system (3.6) can be reduced to the single

equation
iy + Au + idu = ¢y Jul*u 4+ co K (|ul*)u + f (3.11)

with the same multiplier operator K as in (3.9). Below we list a few properties of K

to be used in the energy calculations of (3.11):

(i) K is a bounded linear operator on LP, 1 < p < oo,
(i) K(¢) = K(¥),
(i) [ K (W)= [VE(p).
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As a consequence of the smoothing estimate, we will study the existence of global
attractors for the dissipative DS equation. The theory of existence of global attractors
is only meaningful for systems as ¢ — oo. Thus to see that the equation (3.6) is
globally well-posed in the energy space, we can proceed in a similar fashion to the
proof of the existence of an absorbing set in section 2 of [36] to obtain the following a

priori estimate:
u(t)|| g < Ae™ P+ C, t >0, (3.12)

where A = A(|f| 2. [uoll;n), B = B(§) > 0, C = C(,||fll,2). Note that (3.12)

implies the existence of an absorbing ball with radius C' = C(4, || f|,2) as well.
3.3. Main Method

In this section, we discuss Tao’s [k; Z] multipliers method [7] so as to study the
estimate of multilinear expression associated with the elliptic—elliptic type of Davey—
Stewartson system. Suppose that Z is any additive abelian group with an invariant
measure d€, as an example, one can take Z = R"™! with Lebesgue measure or Z" x R
with the product of counting and Lebesgue measures. Let k > 2 be any integer, and

let I.(Z) C Z* denote the hyperplane

L Z) = {(&1, &) € Z" 1 &+ - + & = 0}

endowed with the measure

/ F= 1 FEn G — = ) der - dey.
I'(Z)

Zk—1
Definition 3.3.1. A complexz-valued function m : I (Z) — C is called the [k;Z]

multiplier if the inequality

k k
[ i @ TLAE] < s TLIE 0
I'v(2) i=1 i=1

holds for all test functions f; on Z and the best constant, denoted by |[m/ .-
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Note that [|-||;.; determines a norm on the [k; Z] multipliers m. Since multi-
linear estimates might boil down to bilinear estimates of some sort (reason later), we
emphasize the case k = 3 which specifically associates with the bilinear estimates for

our Schrodinger-type equation. So we write

S +&+86=0, m+n+1=0, (3.13)
No=T1+hi(&),  hi(&) = £ for 1< 5 <3, (3.14)

Here, )\; measures how close in frequency the j" wave is to a free solution. It is
remarkable to note that for d > 2, whenever the two of the frequencies &1, &, &5 form
an orthogonal pair, \;’s simultaneously vanish. Thus in order to take care of this

situation, we introduce the function h : I'3(R?) — R defined by

h(&1,82,83) = h1(&1) + ha(&2) + h3(&3) = M+ Ao + A3 (3.15)

which measures to what extent the frequencies &1, &, &3 resonate with each other so let
it be referred as a resonance function. The domain on which the resonance function
may vanish depends on the sign of Schrodinger dispersion relation h;(€;) = £[¢;*. Up

to symmetry, we have two possibilities: the (+ + +) case

hi(€) = ha(€) = hs(€) = €] (3.16)

and the (+ + —) case

hi(€) = ha(€) = €7, ha(€) = —[¢]*. (3.17)
Comparing the two cases, analysis of the first one is rather easier since the resonance

function

W1, &,8) = 1G] + & + &)

vanishes only at the origin. As for the second case, the resonance function

M1, &, &) = &) + |&]? — &)

can vanish whenever the frequencies & and & become orthogonal.
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More precisely, for (&1, &, &) € I3(R?), we write

\h(&1, 60, &) = ||&1 12 + |&f® — |&)°] = 2161 - & ~ [&1]|&l|m/2 — £(&, &)

where Z(&;,&) denotes the angle between & and &. So the extent to which & and
&5 get closer to being orthogonal, the more rapidly resonance function tends to vanish.

At this point, we assume that

h(&1, &2, 85)| < [&l[&l, (3.18)

and

|1(€1, €2, 65)]

L& &) =n/2+ 0=

). (3.19)
We will estimate the [3; R3] norm of multipliers by making use of the dyadic decompo-
sition of the variables §;, A; and the function h(&;, &2, &s). Thus, we use the capitalized
variables N;, L; and H to denote the magnitude of the pieces into which the variables
&, A; and the resonance function h decomposed, respectively. Here, these variables are
assumed to be dyadic; that is, they range over the numbers of the form 2%, k € Z. In
terms of sizes of the variables N; > 0, j = 1,2,3, we write Npin < Nped < Npax to
denote the minimum, median and maximum of Ny, No, N3. This, in its own right, saves
us from repetitive analysis and reduces the number of cases substantially. Likewise we
define Lyin < Limed < Linax for Lj >0, j = 1,2, 3. Next we make some assumptions on

the sizes of these variables. Before doing so, we need to state several lemmas from [7].

Lemma 3.3.2 (Comparison Principle). Let m and M be [k; Z] multipliers, if for all
€ € I(2) Im(&)] < M(E), then [mlly. 5 < [[M|,z- Furthermore, if ay,...,ax are

real-valued functions on Z and m is a [k; Z] multiplier, then

Hm<§) Hai({fi)

<Al [T laill oz -
=1 (k2] =1
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Lemma 3.3.3. For any &, € I'.(Z) and any [k; Z] multiplier m, we have the translation

invariance of the norm

1172(€ + €0)ll g 2) = I ()Ml (3.20)

also we have the averaging estimate

[[m % NH[k;Z] < ||m||[k;z} ||M||L1(Fk(Z)) (3.21)

for any finite measure p on I(Z).

It is remarkable that by the finiteness assumption of the measure p, the mapping
m — m* p can be regarded as an averaging of m. Therefore by an averaging over unit

time scales, implementation of the lemmas above allows us to restrict the multiplier

m(éh 527 53) to the region
A2l j=1,2.3.

Furthermore, since we deal with a multiplier with no singularities for |{;| < 1, by using

the similar reason we may assume that

max(|&1], €2, [€]) Z 1.

Therefore, through a decomposition of the variables we may assume without loss of

generality that
Nmax z 17 Lmin Z 1.

We now fix some summation conventions in order to be used in the rest. Any sum-
mation of the form L., ~ ... is a sum over the three dyadic variables Lq, Lo, L3, for

example,

Y- ¥

LmaXNH Ll,LQ,nglleaXNH



21

Furthermore, any summation of the form N,., ~ ... is a sum over the three dyadic
variables Ny, Ny, N3 > 0, for instance,

> - %

Nmax~Nmea~N N1,N2,N3>0:Nmax~Nmed~N

Let m be a [3; R? x R] multiplier. Next we intend to study the problem of controlling

Im((&1:71), (&2, 7o) (35 7)) 3:m2 g - (3.22)

By a dyadic decomposition of the support of m in the variables §;, A; together with a

dyadic decomposition of the resonance function h, we write

(322)5 Z Z Z N17L1 (N27L2)7(NSaL3))XN1,N2,N3;H;L1,L2,L3

Nmax21l H Li,La,L3 [3;R2XR]

(3.23)

where Xn, Ny, Ng:H:L1 Lo, L5 15 the multiplier
3

XNl,N2,N3;H;L17L2,L3 (57 T) = X[n(&)|~H HX|§j|NNjX|>\j\NLJ"
j=1

Note that /N; and L;, in turn, measure the size of the frequency of the 4" wave and how
closely it approximates a free solution, whereas H measures the amount of resonance.
From (3.13), (3.14) and (3.15), it can be deduced that Xy, n, Ny:H:L1 Lo,Ls Vanishes

unless
Nimax ~ Nied (3.24)
and
Linax ~ max(Lyeq, H). (3.25)

Therefore, using (3.24), (3.25) and implementing Schur’s test [7] (which enables us to

replace sum with a supremum) to the sums in Npax and Npeq, we obtain

(3.23) <sup
NZ1

Z Z Z m((N1, L), (N2, La), (N3, Ls))

Nmax~Nmed~N H Ly qz~max Lmed 7H)

X XN17N27N3%H;L1,L27L3

[3:;R2xR]
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Therefore, by the triangle inequality and (3.25) it suffices to control

Z Z N1> Ll (N27 L2)> (N3a LS)) ||XN17N27N3§LmaX§L17L27L3 H[3;R2><R]

Nmax~Nmea~N Ly,Lo, L3>1

(3.26)

or

> S Y (Vi Ly), (Na, Ly), (N5, L)

Nmax~Nmed~N Lmax~Lmed H<K Lmax

XN XN No N L Lo L 3 2y (3-27)

for all N 2 1. The following lemma gives a sharp bound for the quantity
HXN1,N2,N3;H;L17L27L3 “[3;1&2 xR] * (328)

Lemma 3.3.4 (See [7]). Suppose that N1, Ny, N3 > 0, L1, Ly, L3 > 0 and H > 0 satisfy
(3.24) and (3.25).

(1) In the case (+ + +), let the dispersion relations be given by (3.16) so we may
assume that H ~ N2 Then,

max

(3.28) < L2 N2 N2 1in (N Nanins Limed) (3.29)

min max min

(ii) In the case (++—), let the dispersion relations be given by (3.17) and from (3.18)
H 5 N1N2. Then,
o ((++) case) If Ny ~ Ny 2> N3, then (3.28) vanishes unless H ~ N} in this

case we have

(3.28) < Ly Nosa 2N it Ny N, Lined) 2 (3.30)

o ((+—) coherence) If Ny ~ N3 2 Ny and H ~ Ly > Ly, L3, N3 then

H
—5—Lupea)? (3.31)

min

(3.28) < LM2N-12NY2 min(H,

min max min

The same estimate holds with the roles of 1 and 2 reversed.

e In all other cases,

H
E — )2, (3.32)

min

(3.28) < LY2 N-1/2 N2 min(H, Lmed)l/2 min(1,

min max min
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Also the lemma below demonstrates that higher-order multilinear estimates might

be reduced to the lower-ordered ones and by this means the analysis of the whole

multiplier splits up.

Lemma 3.3.5 (See [7]). If ki, ks > 1 and my and my are functions on Z* and Z*?

respectively, then we have the composition estimate

||m1(£17 ceey §k1>m2(§k1+17 Sz} §k1+k2)||[k1+k2;z]

< Hml(gh “'7€k1)|’[k1+1;2] HmQ(fl, "'7£k2)H[k2+1;Z] :

In particular, for every m : Z%¥ — R we have the TT* identity

[ gom(=€, =, = &, 8l

[2k;7]

3.4. Proof of Proposition 3.1.2: Trilinear X*’ Estimate

The required X*° estimate amounts to showing that

4
‘/1“4(JRQ><R m((&1, 1), (&2, 72), (§3,73), (€45 Ta) 1;[ (&, i)

4

(3.33)

(3.34)

S Hm||[4;R2XR] H ||fj||L2(]R2><R)

J=1

where

m((glv 7-1)7 (527 TQ)? (&’n 7—3)7 (547 7—4))
[c1 + cpar(§1 + &) [(€a)°

[T_ (&) (m + |6]2)5 (T2 — &) (75 + (€520 (ms — &2

Thus, it suffices to show that

“m((§17 7—1)7 (527 7—2)7 (537 7—3)7 (547 7-4))H[4;R2><IR] S; L.

%
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We may suppose without loss of generality that

~ max |&;
64 1<j<4 |€]‘
because other cases are easier and follow immediately. In this case, the structure of

the hyperplane I'}(R? x R) suggests three cases to consider:

o Case 1 [€4f = [&]
o Case 2 |&] ~ |&]
e Case 3 |&] ~ |&]

We begin by examining the Case 2. In this case, the multiplier is estimated by

‘m((éla 7—1)7 (527 7-2)7(537 T3)= (547 7—4>>‘

< (&1)~° « (€0)(&)~°
~Am G = (&) (T4 |€]2)0 (T — &)

=:my2((&1,71), (§2,72)) X m3a((&3,73), (€4574)).

Using Lemma 3.3.2 and Lemma 3.3.5, we have the bound

Hm((gla 7—1)7 (527 7_2)7 (537 7—3)7 (547 7_4))"[4;R2><]R] 5 ||m1,2((€17 Tl)a (f?a 7_2))H[3;R2><R]

X ||m374((§3,7'3), (&4, T4))||[3;R2XR] :

We shall introduce the variables &40, £43, Ta2, Tas satisfying

(&1, 71) + (&2, 2) + (§as, Ta3) = 0, (3.35)
(a2, Taz) + (§3,73) + (§4,72) = 0. (3.36)

By the decomposition of the support of m; s, ms4 and the corresponding resonance

functions, it suffices to estimate the related sums (3.26) or (3.27).
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Then, we start with controlling m3 4 and need to consider the following cases

(i) Nag ~ N3 ~ N,
(il) N3 ~ Ny> Ngo
(iii) Nga ~ N3 > N,
(iv) Nz ~ Ny > Nj.

In the first of these cases Npin ~ Nmax ~ N 2 1, so by the estimate (3.32) of Lemma
3.3.4 we obtain

<N4>G<N3>—S ” H N— s+aH25
T rr r1-b Ng2,N3,Na;H;Lgo,L3,L 2 ~ 1 1.
LgLi b d2,4V3,4V4 d2,43,0L4 3R XR} Lfanfned

It follows that if H ~ Ly, then since H < N2 | we have that

max’

N-stap N—S+“+65
Le. Le . ™ Le . L¢
NmazNNmedNNLd27L37L421 min~~med Nmaz"‘NmedNNLdg,Lg,L421 min“~med ~max

which is finite provided that a < s. When H < L.y, then Lyeq ~ Lpax; Summing
in H first, the sum is finite for a < s as well. For the second case, we consider the
estimates (3.31) and (3.32) in Lemma 3.3.4. As N3 ~ Ny ~ N 2 1, we may establish
the estimates corresponding to the estimate (3.32) by following just the same lines of
the previous case. So it suffices to make use of the estimate (3.31) merely, in which

case we have H ~ Lgy > Ls, Ly, N3, ~ N2, . Consequently, bearing in mind that

min*

Liax ~ H < N2, the sum is controlled by

(Ny)*(N3)~* X
> > T XN Vs NatLnasian Lo L | o)

brl-b
NmazNNmedNN Ld27L37L421 L3L4
N—sta— 1/2N1/2(H1/2+6(HLmed)1/2 6)1/2

5 Z Z — LI/Q eNmm

€
Nmaa:N medNN Ld27L37L421 me med

N— s+a+1/2+35Ne

s Yy e

(Nuin)?
Nmaz~Nmed~N Lqz,L3,L421 ~“min med max min

provided that a < s—1/2. Note at this point that for a non-trivial smoothing argument

it is necessary to make the assumption that s > 1/2.
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In the third and fourth cases, due to its effect in the use of Lemma 3.3.4, we
have to decide the sign in the quantity Ao = 742 £ ]§d2|2. No selection would lose the
generality though, we prefer to set Aga = Tq2 + |€q2|?. Hence for the third case, by this
choice of the dummy modulation variable, we fall under the (4++) case which leads to

H ~ N?

max*

Thus, the estimate (3.30) in Lemma 3.3.4 is to be used. Once H ~ Lpax,

the sum is bounded by

N —s+at3e/2 \3¢/2

Z Z = L€/2 min

Npmaz~ medNNLdg,Lg,[qzl min——med

N—s+a+9s/2N3€/2

S Z Z Le LE/2 Le/2 -

| (Vo
Nmaz~Npmed~N Lqgo,L3,Ls4>1 ~min"~med~Mmax min

this is finite as long as a < s. Also, if H < Ly, then as H ~ N? and Lieq ~ Limax,

we have the bound

—s+a+e rye/4 nr3€/2
DR DR D
€ €/8 13¢/8
Nmaz~Nmed~N Lmaz~Lmed HL Limax LmianedLmaX

N—s-l—a-‘,—e N35/2

D DI D )

Nmaz~Nmed~N Lmaz~Lmeq *~min"~med —max

which is finite for @ < s. In the last case, sign analysis of the modulations Aga (which
is set in the previous case) and A4 suggests utilizing (3.31) and (3.32) in Lemma 3.3.4.
In the separate case H ~ Ly, ~ L3 > Lqa, Ly, N3, the bound (3.31) gives rise to

(Na)*(Ng) ™
Z Z LbLl—b || Nd27N31N4§Lmax§Ld2,L3,L4||[3;R2XR]
Nmaz~ medNNLd2,L3,L421 34
DS
~

Nmaz~Nmea~N Lqz,L3 7L421

min min

<]\/vmin>S-Lrln/zg)j_6

Z Na_1/2N1/~2H1/2LE

1—e
max

Na71/2+eNe'
Z Z <Nmin>s_1/2+€Lfr{2xLE/6 Le/6

Nmaz~Nmed~N Lqa,L3,L421 med-~min

Using the inequality H < L1-¢ N?¢ the above sum can be controlled by

which is summable provided that a < 1/2.
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For the situations with L.« > H, where the estimate (3.32) is available, we have

the bound
a—1/2 pTe 2¢ 71/2—2¢
§ : 2 2 : N lenH Lmed
)STL/2HeLe L2
Nimaz~Nmed~N Lmaz~Lmed H<<me min min~“med
a—1/2+4€ nTe
< § : § : N / len
~Y
. \s—1/2+eJe€ €/2 1€/2
Nmaz~Nmed~N Lmaz~Lmed <Nm1 > / L LmedLmaX

S

provided that a < 1/2. Also for the instances with Ly, ~ H where the estimate (3.32)
is available, we proceed similarly as above to show that the sum is finite for a < 1/2:

a—1/245€e pTe
> Y s
s—1/24efe 2 [

Nmaz~Nmed~N Lgs,L3,L421 <Nmiﬂ> min"~med~“max

This completes controlling ms4. The proof with regard to ms 4 is the repetition of
performed for ms 4 without the multiplier ({4)%, and it follows by assuming (3.35) and
s> 1/2. As for the Case 1, we write

’m<<§17 Tl)? (527 7—2)7(537 7—3)7 (547 T4))|
< (&s)~° y (€4)(€2)""
YA+ 6D (G120 (2 — &) — [§afP)P

=:mi3((€1, 1), (€3, 73)) X maa((€2,72), (§45T4))-

X

As before pick dummy variables g5, 7q; for j = 2, 3 satisfying

(&2, 72) + (€as, Tas) + (&4, 7a) =0,
(&1, 711) + (azs Ta2) + (&3,713) =0

and Ag2 = Tao + |€a2|?, Aas = Taz — |€a3|>. Then, the analysis of these multipliers falls
into (4 + +) case which is substantially easier to handle, and only the estimate (3.29)

for (3.28) is taken into consideration.



28

In the spirit of the analysis of the subcase (iii), [3; R®*] norms of the two multipliers
my 3 and mgy can be shown to be finite provided that a < 1/2 and s > 1/2. Lastly,
Case 3 immediately follows from Case 1 because the variables & and &5 appear to be

symmetric.

Remark 3.4.1. To see that the trilinear estimate (3.5) fails for a > 1/2, set

a:XQn iJ\ZXQW W= XQ2

where yg is the characteristic function of the set S and

Q1 ={(6,&,7) ER*: G| < 1,6 — N| < 1/N, |7+ N[ < 1}
Q= {(&.&7) eR*: |6 < L|&| < 1/VN,|7| <1}

for N € N large. On the one hand, since the volume of the former set ~ 1/N and of
the latter &~ N=1/2, we have ||ul| y., = N*"Y2 and ||[v]| yop = ||w]| xs0 & N7V, on the
other

1/2

||uwvw||xssass > ON*( / (T + [€[7)201(e)?tr) de dT)

1

1/2
~ CNeral(/ d£ dT) > CNs+a73/2'

1

Thus for @ > 1/2, Proposition 3.1.2 implies that CN*+e=3/2 < Ns—1/2N-1/4N—1/4 —

N*l = C < NV

In the sequel, we make use of the ideas in [16] and [38] so as to finish the proof

of Theorem 3.1.1.
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3.5. Proof of Theorem 3.1.1
Let § be the local existence time given by the local theory. Since b > % we use

the embedding X*t%? — CP?H5 along with Lemma 2.1.3, Proposition 3.1.2 and local

theory bound to obtain

t
Hu(t) - e’mu(())HCgH;H([_M]X]RQ) < H/ DA [u)Pu + e K (|ul?)u)(T)dr
0

s+a,b
X5

< Hcl|u\2u + CQK(’U|2>U’

s+a,b—1
X5

3 3
S llullyee S lluolls - (3.37)

Therefore, (3.37) proves (3.4) in the local time interval [—d, ¢], in order to prove it for
all times we have to iterate this result and then prove the continuity argument. To do
so, fix t large, then for if r < ¢, from (3.10) with the choice of 5(s) (remember that for

s > 1/2 this choice makes T'(t) non-decreasing function of time) we have

lu(r)|

Thus, under favor of global well-posedness result of Theorem 3.2.1, considering the

we ST(r) <T().

initial value problem (3.2) with u((j — 1)d) being the initial data, and implementing
(3.37) to this local problem, we obtain, for any j with 7§ < ¢, that

[u(j8) = €*2u((j = 1)8)|| yor S Iu((G = DO

By the local theory, we pick & ~ T'(t)" so that, for J = t/6 ~ tT(t)s, we get

L ST

J
ea < Z ui(J J)A ) ez&(Jf]Jrl)Au((j _ 1)5>‘

o ztA

lu®) = "ol

Hs+a

2

S JT() S (OT()* .

Hs+a ~

Z ¢*?u((j - 1)9)|

This finishes the iteration argument. In order for (3.4) to hold, we are left to show

that the difference D(t) — D(r), where

t
D(t) := u(t) — g = —2’/ ei(t’T)A(cﬂu\zu + czK(\u|2)u)(7)dT,
0
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is continuous in H*%t%. Assume that r is fixed and that ¢ > r, then

I1D(#) = D(r)] s+

<[l rer (s ) [ ernaaupu s arupear)

L¢
Sl Il + 12.
12

i@ ([ et s ar)

Using the inequality e’ 91" — 1] < min(1, |¢]2[t—r]) < (|€[2[t—7|)¢ in the subsequent

calculation (for a sufficiently small ¢ > 0), we obtain
r/é

LS,
j=1

where we pick the same d given by the local existence time of the solution. Dependence

J6 ,
/ 'R (egulPu + o K (Jul*)u)(7)dr
(J-1)8

(3.38)

Hs+2£+a

of 0 on sup |[[u(t)]
te[0,r]
of integration is d, by the time translation and time reversal symmetries of the solution,

prs(r2) implies that this is a finite sum. As the length of each interval
it suffices just to estimate the following integral for ¢ € [—§/2,0/2]:

¢
/ ei(t_T)A(cl|u|2u + CQK(|U|2)U)(T)dT
0

Hs+26+a

<

‘n(t/@/o D erfulPu+ 2K (Jul*)u)(r)dr

s+2e+a
Lo Hzy

< [atwss) [ et aluu+ caruyoiar

Xs+2€+a,%+e

< o€ H01]u|2u + ch(]u\z)u‘

Xs+2€+u,b71
8

S 8 lulfsraen S 6 luollzresac

where we have used Lemma 2.1.3 with b = % + 2¢, Proposition 3.1.2 with s + 2¢ and
finally the local theory bound. As a result, the sum in (3.38) is bounded and hence Iy
converges to 0 as t — r. Also, the same result follows for I, by using Proposition 3.1.2

and Lemma 2.1.3.



31

3.6. Existence of a Global Attractor: Proof of Theorem 3.1.3

This section is devoted to give an alternative proof of the existence of a global
attractor for the forced and weakly damped DS by using the smoothing estimates.
Firstly, we show that the evolution operator is weakly continuous and then we exploit
this in handling the corresponding energy equation to upgrade the weak convergence,
resulting from boundedness of the flow, to strong convergence giving rise to the asymp-
totic compactness of the flow. Throughout this section, = and “"s will denote the weak

and the weak® convergences, respectively.

Lemma 3.6.1. If uf = ug in H', then for allT > 0 and a € (0,1), the linear and the

nonlinear parts of the semigroup operator U(t) of (3.6) satisfy

LO(t)ul 2 LO(t)ug in L*([0,T); H)

N(t)uf 2 N(t)ug in L*([0,T); H).

Moreover, fort € [0,T],

Proof. We just verify the assertions concerning the nonlinear part as the ones for the
linear part will follow from the Fourier representation of the linear flow at once. To
make use of the smoothing result for the forced problem (3.6), we shall transform the

equation (3.6) with data uy by setting
9= (T =1 -4 f e,
and v = u + g. As a result we obtain the equation
v + Av +idv = ¢ |v — g]*(v — g) + c2(v — 9) b, + (1 +idg), (3.39)

with ¢, = K(Jv — g|*) and data v(-,0) = ug(-) + g(-).
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Let L? denote the semigroup for the corresponding homogeneous linear equation
twy + Aw 4 idw = 0. (3.40)

Then, the nonlinear part n = v — w satisfies the equation

ing + An +idn = ci|n +w — g|*(n + w — g)

+ca(n+w—g)K(In+w — g*) + (1 +idg) (3.41)

with data n(-,0) = 0. Proceeding as in Section 3.5, notably using the trilinear estimate

(3.5) with s =1, a € (0,3), for T < 1, we get

1l o prisaqo.ryxrey S Mol + gl grams < lolzn + [1F 12 - (3.42)
Note that in the above estimate we use a variant of Lemma 2.1.3 that replaces the
linear group for the non-dissipative equation by the dissipative group L°(t) = 4%,
For a proof of this, see [39]. Using the H' global well-posedness (a priori bound (3.12))

in iterating the local result above, we obtain the global bound

()| grva < Clas 6, ([ f1] 22 1uoll )5 (3.43)

for the details, see the section 3 of [39], or section 6 of [17]. Lastly, the continuity in

H'* follows as in Section 3.5, so for any 7' > 0 and initial data uo € H', we have
n € COH™([0,T] x R?). (3.44)

In order to show that N (t)uf < N(t)ug in spaces given by the statement of the lemma,
it suffices to show that every subsequence of N(t)uf has a further subsequence which
converges weakly to the same limit. Let w* denote the solution to (3.40) with data uf.
In relation to this denote by n* the nonlinear part. Since weak convergence uf = g
in H' implies that sup, ||u’§HH1 < M for some M > 0, using this in (3.42) and (3.43),

we infer that, for every T' > 0, {n*};, is bounded in
C([o,T]; H ) nC'([0,T]; H*™) (3.45)

with a uniform bound of (3.43). Firstly, in conjunction with this boundedness we infer,

by Arzela-Ascoli theorem, that {n*} is relatively compact in C([0,T]; H ') thanks

loc

to the uniform boundedness of the derivatives which implies equicontinuity.
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Therefore, interpolating between this and (3.45) gives us a subsequence of {n*};
that converges strongly in C([0,T]; H.5*). Secondly, by the Banach—Alaoglu theorem,
boundedness of {n*}; in (3.45) yields a weak* convergent subsequence in L>([0, T']; H*).
Therefore combining these two, we reach a further subsequence, denoted also by {n*},
convergent in the above spaces with the corresponding type of convergences. We shall
write nf %5 n in L([0, T]; H'*?), and n* — n strongly in C([0,7]; H.*) (weak* lim-
its are unique). The analogous arguments for the linear parts w* hold in H! as well,
so denote the corresponding limit by w. Later we will see that the limit n is indeed
the weak limit in the spaces dictated by the lemma. Using local strong convergence
above, next, we will show that n is a distributional solution. Note that n* satisfies the
equation (3.41) and let F(p,q) = ci|lp+q—gl*(p+q—9) +c2(p+q—9)K(lp+q—gl).
Thus for any ¢ € C>([0,T]; R?),

// (int+An+i5n—F(n,w)—(1+i5)g>gpdxdt
://([—Wt%-ﬂap%—iégp}n— |:(1+Z.(Sg)—‘—F(n7w):|gp> dz dt
- ;}EEO// ([—i% + Ap + idp]n* — [(1 +idg) —l—F(nk,wk)}gp) da dt

= lim // (mf + An* 4-ionk — F(nF w®) — (1 + i5)g)gpdxdt =0,

k—o0

which proves that n is a distributional solution. It is just left to verify the second

equality above. It suffices to show that the following identity

‘ // ([ — g + Ap + 6] (n* —n) — [F(n*,w*) — F(n,w)}gJ) dz dt’
< ‘//[_iﬁthrASDﬂLi&p}(nk_n)dxdt‘+||¢||L;?t // [F(, )~ F(n,w)]

suppy

eventually decreases to zero for increasing k.
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The first integral is clearly decaying due to strong local convergence of n*, whereas

the integral part of the second summand is majorized by

// (" —n+w" —w) [l + K| (|n* +w" - g]?) dxdt‘

Suppy

+ //(nk —n+wk —w)(n* +w” —g)[cJ—FQK}(n—i-w—g)dxdt’
Suppe

+ // (n" —n+w* —w)(nFw—y9) [cll+ch}(n+w—g)d$dt’
SuUppy

where we have used the property (iii) of the operator K given in Section 3.2 in the com-
putation above. Owing to the strong local convergences of n* and w* along with the
boundedness of K, we conclude that these sums vanish in the limit. Moreover, by the
uniqueness of the weak* limits, n is a unique distribution belonging to C'([0,T]; H'**)
yielding that n = N(t)ug (since n has shown to be the distributional solution of (3.41)).
Therefore, using the fact that L*([0, T]; H'**) embeds in the dual of L>([0,T]; H'™),
weak* convergence in L ([0, T]; H'**) implies the weak convergence in L*([0, T]; H'®).
This finishes the proof of the first assertion in the lemma. To prove the second argu-
ment, fix a £ € [0,7]. As before smoothing estimate together with the boundedness
of the initial data uf imply that {N(#)uk}, is bounded in H'*®. Thus, there exists a
weakly convergent subsequence, still denoted by {N(f)uk}, that converges in H'*¢, say
to n. But as we know, from the previous discussion above, that N (t)uf YN (t)up in

C([0,T); H'*). So the uniqueness entails that 7 = N (#)uo. O

Proof of Theorem 3.1.3. To begin with, we note that the existence of an absorbing
ball B of the evolution follows from (3.12); indeed the detailed proof was given in [36].
Hence to attain a global attractor, it is just left to affirm that the propagator U(t) is

asymptotically compact.
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Therefore, it is sufficient to show that for any sequence of initial data {ug}; in
absorbing ball and any sequence of times ¢, — oo, the sequence {U(tx)uo}r has a
convergent subsequence in H'. Note that for uyg € B, (3.43) implies that the nonlinear

part N (t)ug of
U(t)ug = L (t)ug + N(t)ug

is contained in a ball Bg in H'** with radius R = R(a, 4, f||;2), a € (0,3). As a result,
{N(tx)uor}tr C Bgr. Therefore, we can find a subsequence, still denoted by N (tx)uo.,
that converges weakly in H1T¢. Moreover, since the weak and weak* topologies agree
on a reflexive spaces, the Banach—Alaoglu theorem yields that, up to a subsequence,
U(ty)uoy converges weakly in H'. As L°(t;)ugs — 0 strongly in H! as t, — oo,
N (tg)uox and U(ty)upy converge to the same limit, say to u. Furthermore, for every
T > 0, we can find a further subsequence so that N(ty — T)uoy and U(tx, — T)ug
converge weakly in H'*% and H!, respectively. As above, by the decay of the linear

part, the limits are the same, so denote it by uy. By Lemma 3.6.1,
U(tk — T)Uo,k ﬂ) ur in Hl - U(tk)uM = U(T) (U(tk - T)U(Lk) ﬂ) U(T)’U,T n Hl.

Therefore, by the uniqueness of a weak limit, U(T)ur = u. In a subsequent discussion,
sometimes we need to take 7' — oo in order to obtain strong convergences. So to
make sense of this, we may implement a diagonalization argument for a countable set
{T € N} so that, up to a same subsequence for all T, U(t, — -)uox and N (tx, — )uox
converge weakly at each T"in the corresponding spaces above. Next we want to upgrade
the weak H' convergence of the solution flow U(t;)ugy to a strong H' convergence.
Firstly using the equation (3.11), we can obtain that 4 |lul|;2+26 |lul| > = 2Im(f, u) 2,

and then application of the Gronwall lemma for the evolution U(t) gives that

U () uolze = e Ut — T)uosll.

T
+21Im / e PINFUty — T + T)ugp)z dr
0

T
IU(T)urllze = e [lurll. + 21m/ eI fU(T)ur) 2 d
0
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which yields

IU ) uorllzz = 1U(T)urllze = e (Ut — T)uoxll;z — llurllz:)

+21m/ ST Uty — T 4 Tuoy — U(T T)ur) 2 dT.

The first summand becomes negligible by taking sufficiently large T since letting £ — oo
and using the fact that ug; € B, we ensure that the norms in the parentheses are finite
(weak convergence in H' implies that |lur]|,;. < li]£n inf ||U(t), — T)uol||;2). The second

summand vanishes in the limit by Lemma 3.6.1 because, with U(T")ur = u, we have

Ul(ty)uo D uin H' =

Uty =T+ m)ugy = U(r — T)(U(tr)uox) — U()ur in L*([0,T); H').

As a consequence we get that
. 2 2 . 2 2
limsup (1| (t)uoell}2 — |U(Tyur ]2 ) = limsup (U (B)uoxl7s = fulfs) <0,

which, along with U(ty)uor — u in H', implies that U(t;)uor — u strongly in L2
This strong L? convergence will be important in the upcoming energy calculations. So

define the functional E by

B(un)(t) = [VU©uol: + 10 Oulfs + F [ KUOuP)U @l do

+2Re /fU(t)uo dz,

and the time derivative is as follows

%E(Uo)( £) = —20E(up)(t) + F(uo)(t)

where

F(up)(t) = —dey |U(t)uol|74 — 502/K(|U(t)u0|2)|U(t)u0|2dx + 20 Re /fU(t)uO dz.
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Gronwall lemma implies that
4

E(uox)(te) — E(ur)(T) = ) I,

Jj=1

where

I = T (B(uoy)(tx — T) — E(ur)(0))
L= —éc: /OT e 2T (1U(t — T+ Thuosllta — U (r)urja )dr
Iy = —bcs /O ' / T (K (Ut — T+ Tuor Ut — T + 7)o
— K(|U(7)ur|)|U (1)ur|*)dz dr

T
I, = 20 Re / e PEN U — T + Tuoy — U(T)ug ) r2dr.
0
I, gets arbitrarily small by increasing 7', and I, can be majorized by

T
501/ e 20(T=7) Uty =T + 7)uop — U(T)url|
0

X (1t = T+ 7Yuonl g + U (7)ur] o) *dr.

Note that by L* Gagliardo-Nirenberg inequality

WUty =T+ 7)ugr — U(T)UT||L4

1/2
L2

1/2

SO =) (Ute)uow — UT)ur) || 5 Ut = T + 7)uos — U(T)ur| g -

Then, by the strong continuity of U(7 —T') and the strong L? convergence U (tx)ug —
U(T)ur, the majorant of I, above vanishes in the limit as weak H' convergence yields

the H! boundedness of the norms. Write the third term as

I = —be, / / e BTN [K(|U(ty — T + m)uoxl?) — K(U(7)ur]?)

X |U<tk —-T+ T)UO,deJI dr
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T
_ 5@/ /6—25(T—T)K(|U(T)UT|2)(\U(tk — T4 7)o l? — |U(r)ugp|?)da dr
0

first use the linearity and the L” boundedness of the operator K, and then proceed by
using the same reasoning as above to conclude that I3 decays to zero. Finally, by using
the weak continuity (Lemma 3.6.1), I, vanishes in the limit. Therefore, as U(T)ur = u,

we get that

lim sup (F(uo.e)(t) — F(w)(0)) = lim sup (Bun,e)(t) = Fur)(T)) < 0.

k—o0

This inequality together with the definition of £ and taking limits as above implies
that

lim sup [ VU (b )ual3 < [Vl
Therefore, this with U(ty)upr — u in H' leads to the L? strong convergence of
VU (tp)ugr to Vu. Consequently, U(tg)ugr — u strongly in H'. This finishes the

proof of asymptotic compactness, so the proof is complete. n
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4. BIHARMONIC SCHRODINGER EQUATION ON R*

4.1. Introduction

This chapter is devoted to study the initial boundary value problem (IBVP) for
the cubic biharmonic nonlinear Schréodinger equation (biharmonic NLS) on the half

line

(

iug + Otu+ plufPu =0, € R teRT,
w(0,t) = by (1), ug(0,t) = ha(t), (4.1)

u(z,0) = g(z).

\

The results of this work have appeared in [40]. Here, u = 41 and the data (g, hy, h) are
2s5+3 2s+1
8 8

taken in the space H:(R™) x H, ® (R*)x H, ® (R") with the compatibility conditions
9(0) = hy(0) when 3 < s < 2, and g(0) = h1(0), ¢'(0) = ho(0) when 3 < s < 3.
These compatibility conditions are necessary since the solutions we are concerned with

have continuous L? traces for s > % For the notion of traces of functions in H*(R),

we assume, for our throughout discussion, that s # n + % forn = 0,1,2,---. Note
2543 2541
that choosing data triples (g, hy, ho) € HE(R') x H, ® (RT) x H, ® (R*) is due to the
local smoothing inequalities of [41], [42]: H@’;eita;lg 2ss-2k S || g s, for kB =0,1
z e (0,T)
and these inequalities are sharp in the sense that the numbers 25—;3 and % cannot

be replaced by any bigger number and hence taking such data makes sense. We also
verify the appropriateness of the selected spaces in our computations. Fourth order

NLS with power-type nonlinearity
iug + Au+ A%+ [uffu =0, v €R", teR

was introduced by Karpman and Shagalov [43,44] to consider the effect of the small
fourth order dispersion terms in the propagation of intense laser beams in a bulk
medium with Kerr nonlinearity. Indeed, when A\ < 0, they studied the stability /instability

of solutions depending on certain restrictions on the parameters A, p.
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When Laplacian is removed, the equation
iy + AA%u + pluffu =0, v €R" tER (4.2)

is called biharmonic NLS, in addition it is said to be defocusing if A > 0, and focusing
if A < 0. From a physical point of view, as a model equation, biharmonic NLS arises
in many context such as deep water wave dynamics [45], vortex filaments [46], solitary
waves [43,44]. Furthermore it was used as a model equation in [47], [48] to study
the stability of solitons in magnetic materials once the effective quasi particle mass
becomes infinite. Fourth order NLS with various nonlinearities have been extensively
studied on the well-posedness in the periodic and non-periodic settings. As half line
problems are relavent to the initial value problems posed in the non-periodic setting,

here it is better to review some of those posed on R?. So we write

iug + kAu + AA%*u + F(u) = 0,
(4.3)

u(z,0) = g(z).

The initial value problem (IVP) (4.3) on R™ x (0, 00) with x = 0, A = 1 and nonlineari-
ties F'(u) = 0, (Ju|P~'u), 2 < p € N have been studied in [49] in terms of well-posedness
and scattering of the solution. In particular, it turns out that when n =1 and p = 3,
the authors obtained the local well-posedness of (4.3) in the Sobolev spaces H*(R) for
s > 0. Furthermore this result is almost sharp in the sense that the flow map from
H*(R) to C(R, H*(R)) is not C3. The local and global well-posedness for the IVP (4.3)
on R x R with k = 0, A = —1 and F(u) = %|u|?u, were established in [50] for data
g € H*(R) with s > —%, also the equation was shown to be ill-posed below this range
(s < —3), by proving that the flow map is not uniformly continuous. In [51], the IVP
(4.3) on R x R with x = 1, A # 0 and the nonlinearity

1
F(u) = —§|u|2u + e |ul*u + ex(0pu)*u + e3]0,ul? + cyu® 02U + cslul*0u (4.4)

(with certain restrictions on the constants) was proved to be locally well-posed in
H*(R), s > 1 by the restricted norm method. For higher dimensions, Pausader [52]
showed that the equation (4.3) with k = 0, A = 1 and F(u) = |u|?u is globally well-

posed for n < 8, and ill-posed for n > 9.
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For the other well-posedness results related to the equation (4.3) see for instance
[53-59]. Initial boundary value problems for the fourth order NLS have been recently
started to be addressed. In the case of the half line, Hu etal [60] obtained a solution of
some form of the equation (4.3) in the IBVP setting (with a similar nonlinearity as in
(4.4)) after reformulating the problem as a Riemann-Hilbert problem. Ozsari-Yolcu [42]
studied the IBVP of the equation (4.2) with A = 1, p € C and the inhomogeneous
Dirichlet-Neumann boundary data on the half line where they make use of the unified
transform method in obtaining the solution. By making some assumptions on the
relation of s and p, the authors obtained the local well-posedness in H*(R™) for s €
(%, g), s # g, and s € [0, %) separately. Moreover, for the defocusing problem they
established the global well-posedness in the energy space H?(RT). It is remarkable
to note that [42] is the first treatment of the fourth order Schrédinger equations on
a half line subject to the inhomogeneous boundary conditions. Lastly, more recently
Filho-Cavalcante-Gallego [61] addressed the IBVP of the cubic biharmonic NLS (4.2)
when A = —1 with the same set of initial-boundary data as in [42]. The authors
proved the local well-posedness in H*(R*) for 0 < s < § by the Fourier restriction
norm method and using the Duhamel boundary forcing operator for the corresponding

linear equation.

In this chapter, we continue the program initiated in [62] that establishes the
regularity properties of cubic NLS on a half line using the tools available in the case
of the full line. Biharmonic cubic NLS is higher order dispersive PDE version of cubic
NLS, so as expected, we obtain well-posedness in a less regular space by adapting
the estimates of [62]. We will use Laplace transform method proposed by Bona-Sun-
Zhang [63] to divide the problem into a linear IBVP on the half line and nonlinear
IVP on the full line after extending the data into R. By this method we can write the
explicit solution for a linear IBVP and then using it, we set up an equivalent integral
equation on R x R for the full solution. We then examine the integral equation with

the X* method, see [1,2]. To state our theorems we begin with a definition.



42

Definition 4.1.1. We say that the biharmonic NLS equatz’on (4.1) s locally well-
2541

posed in H*(RT) if for any data (g, hy,hy) € HE(RT) x H (R*) x H, ® (R") with

the additional compatibility conditions discussed above, the integral equation (4.8) has

a unique solution in

2543

X R x [0,T]) N CYH:([0,T] x RYNCYH, ® (R x [0, 7))

for some b < 1 and sufficiently small T = T(]|g|

Hs(RT) > ||h1||H27+r3 (R+) ||h2||H2%,#1 R+))
Furthermore, if u; and us are two such solutions coming from different extensions ge
and ges, then their restriction to RT x [0,T] are the same. In addition, if g, — g in
HYRY), hpy — hy in HS(RY) and hny — he in H™5 (RY), then u, — u in the

space above.

We state our local result below and note that it improves the result for the cubic
biharmonic NLS in [42] which establishes the well-posedness for s > 0. As already
mentioned [42] utilizes the uniform transform method of Fokas to obtain the local well-
posedness for the biharmonic NLS with power nonlinearities. The method is based on
inverse-scattering techniques and used to obtain representation formula for the solution
of the linear biharmonic Schrodinger equation. In order to establish the local theory we
will need to obtain some essential estimates regarding the linear and nonlinear terms

of the integral equation representation for the solution in Section 4.4 below.

Theorem 4.1.2. For any s € (—g, 5) s # 1 > 2, the equation (4.1) is locally well-posed

in H*(R™) with the local existence time T satisfying T ~ (C + |]gHHs(R+)) B yhere

the constant C' depends on [|gl ;2 + [[hal 2eps o [[o]] 2o

¥ @)

(R+)

Next theorem is concerned with the smoothing result of the equation (4.1) that

is, it demonstrates that the nonlinear part of the solution is smoother than the initial

9

data. It reads that smoothing vanishes at the upper end point s = 5, nevertheless, the

gain of a derivative at the lower end point s = —% is still %
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The proof of the smoothing theorem below will be based on the restricted norm
method of Bourgain [1,2] and in the sequel, we will denote the operator W as the
linear part of the solution of the equation (4.1).

2543
Theorem 4.1.3. Fiz s € (—%,5), s # 3,2, (9,h1,ho) € Hi(R") x H, ® (RY) x
2541
H, ® (RY) with the compatibility conditions given for the equation (4.1). Then for

a <min(1,2s+ 1,2 — s) and t in the local existence interval [0,T)], we have

u(z,t) — Wi(g, hi, hy) € CPHET([0,T] x RY).

The smoothing estimates of this sort were obtained for NLS in certain papers in
the periodic, see [38,64,65] and non-periodic cases, see [66,67]. The first smoothing
result related to the initial boundary value problem is established for cubic NLS, [62].
Also using the same approach as in [62], the papers [68], [69] establish the regularity
properties of the Boussinesq equation and the Zakharov system on the half line re-
spectively. In order to prove the above theorems we take advantage of the Duhamel
formulation by which we run a fixed point argument. With this formulation we express
the solution as a superposition of the linear evolutions which incorporate the boundary
term and the initial data with the nonlinearity. Also to estimate the terms coming from
Duhamel formula, we first solve the corresponding linear problem by taking Laplace
transform of the equation in the temporal variable and inverting back by the Mellin
transform so that we obtain an explicit formula for the linear evolution after extending
the initial data to the whole line. Afterwards the nonlinear part of the formula will
be treated by the X** method. Note that in the boundary value problems b < % is
necessary in order to carry out the contraction argument, while b > % is required on
the full line. As for the uniqueness, the solution we constructed is the unique fixed
point of the Duhamel operator (4.18) by the contraction argument, yet it is not clear if
the restriction of the fixed point of (4.18) to the half line is independent of the different

extensions of the initial data.
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In this regard, the proof of uniqueness in our case proceeds in two steps: one is
for the case s > % where we exploit the Sobolev embedding and well-known Gronwall’s
inequality on R, and the other is for the low regularity case —% < s < % where we
make use of the uniqueness obtained for s > % and the smoothing estimate of Theorem
4.1.3 to establish the uniqueness in this range, also in contrast to the case s > %, it is not
immediate to exhibit that different extensions produce the same solution. In particular,
in order to establish uniqueness down to the local theory threshold H -3 (RT), we require

smoothing estimate of Theorem 4.1.3.

When g = 1in (4.1) (the defocusing case), the following theorem provides bounds
for higher order Sobolev norms. This is based on smoothing result obtained in Theorem

4.1.3 and a priori estimate at the energy level, Lemma A.0.1.

Theorem 4.1.4. Let i =1 in the equation (4.1). In the case s € [2,3), g € H*(RT),

2s+3

hleH 8

2s+1

(RTYNHY(RT) and hy € H™s (RY)NHY(R™T), the associated local solution

is global and the smoothing result holds globally. Furthermore, for 2 < s < g the

solution has the growth bound

[u(t)]

Hs (R) S (1)

Here we note that the equation (4.1) does not satisfy the mass and energy conser-
vations once the boundary data hy and h, are nonzero. Hence the global well-posedness
at the energy level, H?, for the equation (4.1) is a nontrivial problem in the presence
of inhomogeneous boundary conditions, see Theorem 1.3 of [42]. The Lemma A.0.1,
which is the key to obtaining the growth bound in Theorem 4.1.4, results from the
proof of Theorem 1.3 of [42].

As far as we know this work is the first treatment of the fourth order biharmonic
Schrodinger equation subject to the inhomogeneous boundary conditions where well-

posed solutions are constructed below the L? space.
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Now we outline the organization of the chapter. In Section 4.2, we define the
notion of a solution. To be more precise we reformulate (4.1) as an integral equation
(Duhamel’s formula) and set this to be a solution map which we then show is a con-
traction in a suitable metric space. Thus by using the Duhamel’s formula, the solution
we constructed is a superposition of a linear and a nonlinear evolutions. We also intro-
duce the space H*(R™) and discuss whenever one can extend the initial and boundary
data. In Section 4.3 we illustrate, by an application of the Laplace transform on the
half line, how to find the explicit solution formula for the linear problem with zero
initial data. In Section 4.4, we state and prove linear and nonlinear a priori estimates.
Linear estimates relate to two separate processes one is for a solution to a free fourth
order Schrodinger equation and the other is for a solution to IBVP subject to the in-
homogeneous boundary data. The estimates for the latter also clarify the regularity
level of the boundary data h;, hy and the selection of the spaces they are taken. In
the remaining part of the Section 4.4, we prove the multilinear estimates associated
to the nonlinear term coming from the integral part of the solution representation. In
Section 4.5, we prove Theorem 4.1.2 by establishing the local well-posedness theory via
the contraction argument and argue the dependence of the local existence time to the
initial and boundary data. Theorems 4.1.3 and 4.1.4 are proved in Section 4.6 and the

uniqueness is proved in Section 4.5.1.
4.1.1. Notation

We define the space time Fourier transform as

~

f&m)=Ff )= / e~ f (2, t) dadt.
]RQ
For s > —%, Sobolev spaces H*(R™) on the half line are defined as
H*(RY) = {g € D(RT) : 37 € H*(R) such that IX(0,00) = g}

with the norm

9] Hs(RT) = inf{ HﬂHs(R) D gX(0,00) = g}.
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The restriction s > —% is necessary because multiplication with the characteristic

function x(g,o0) is not well-defined for H*® distributions when s < —1  Moreover we

[\

write Wg for the linear biharmonic Scrodinger propagator

R B K (GULS
For a space time function f, the notation Dy means the evaluation at the boundary

x =0, that is

DO(f(xvt» - f(O,t)

Throughout we write n for a smooth compactly supported function that is equal to 1
on [—1,1] and suppn C [—2,2]. Also let p € C™ be a cut-off function satisfying p = 1
on [0,00) and supp p C [—1, 00).

4.2. Notion of a Solution

In order to find solutions of (4.1) we start with constructing the solution of the

linear IBVP

(

Wt + Ugger = 0
w(0,t) = hi(t), ug(0,t) = ho(t), (4.5)

u(z,0) = g(),

\

with the compatibility conditions g(0) = h;(0) for + < s <

5 % and ¢(0) = hy(0),
g'(0) = hy(0) for 2 < s < 5. We shall denote the solution of (4.5) by W¢(g, ki, ha).
This solution can be written as

Wi (g, b1, ha) = WEO, hy — pr, ha — ps) + Wge

where ¢, is an extension of g to the full line R such that |/g.|

we®) S 19 s @+ and

the traces p(t) = n(t)Do(W'ge), pa(t) = n(t)Do (0. [W'g.]) are well well-defined and

2s+1

belong to the spaces H>5* (RT), H*5 (R") respectively, by Lemma 4.4.1 below.
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As a result we decomposed the solution operator as a sum of free biharmonic
Scrodinger evolution and the boundary operator corresponding to the zero initial data.

Therefore we consider

(
Wy + Ugpze = 0,  (2,8) € RT x RT

w(0,8) = hy (1),  uy(0,1) = hy(t), (4.6)

u(z,0) =0
\

where W{(0, hq, hy) denotes the solution to this problem. By an application of the

Laplace transform described in the next section, we obtain explicit representation for

WE(O, hy, ha).

Lemma 4.2.1. Assume that hy and hy are Schwartz functions. The solution of (4.6)

can explicitly be written in the form

w(z,t) = _1: ! [Wahs — iWahy — Wiy — Wi,
- % [WSh2 (\/7— + zi) Wehy + (—\/— + z£> Why — Wihs
where

Wita(a,t) = [ 75 R 3)p(3)d5,

Wata,t) = [ 75 b (3)p(3)d5,

Wata,) = [ 705 B (35,

Wabaa,t) = [ 70055 R 3)a,

Wty 1) = [~ el F 405102 R ) o( )5,

Wat(a,t) = [ e el Fof g () 5a)as,

Wahi(i,t) = [~ el F 0510 By (- )p( )5
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Weha(z,t) = / e = R0 32 (34 p(B) dB.
0

Here by an abuse of notation we take

B0 = Flxamoh) (O = [ e hy (o (47)
We use this explicit form to obtain bounds on W{(0, hy, hy) in Section 4.4 below. Next,
by the Duhamel formulation, we consider the integral equation equivalent to (4.1) on
0, 7], t<T < 1
u(t) = n(t)Wg. +n(t) /Ot WY F(u)dt 4 n(t) W (0,1 —p1—q1, ha —pa—q2) (t), (4.8)
where

F(u) =n(t/T)|u*u, pi(t) = n(t) Do(W'ge), P2 (t) 1(t) Do (9 [W'ge]).

)= a0 [ WR@a). ) = / WPt ]).

In the following, we want to prove that the integral equation (4.8) has a unique solution
in a suitable function space (given by definition4.1.1) on R x R for sufficiently small
T. Note that the restriction of u to RT x [0,7] is a distributional solution of (4.1)

whereas smooth solutions of the equation (4.8) are classical solutions of (4.1).

We implement contraction argument in X*°(R x R) spaces:

xeo = |[{€)°( = £4>bﬁ(5,7)HL3L§ : (4.9)

[[ul

In order to carry out the contraction argument in the local theory we will need the

following standard results from [§]
1
for anys € R and b > 3 We have X** C CLHE. (4.10)

For any s, b € R,

|n(t)W'g|

(4.11)
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ForT<1and—%<bl<bg<%wehave

ln(t/T)F|

We also need the following estimate whose proof can be obtained by adapting the proof

XS b1~ Tb2 bl ||F‘

o - (4.12)

of Lemma 3.12 in [9]. For any s € R, 0 < b; < 5 and by =1 — by, we have

SIIF
Xs,b2

H Wt—t’th’ o (4.13)

Next for the boundary data h1 and hy, we need estimates on the sizes of the norms

HX(O’OO)thHLS#(R) and “X(O’Oo)h2||H2isﬂ(R) which is the content of the next lemma.

Lemma 4.2.2 (See [62]). Assume h € H*(RT) for some s € (—1,3).

1. If =5 < s < 5, then Hx(om)h”Hs(R) S AN gy -
2. If < s <% and h(0) =0, then ||x(0,00)h|

Hs(R) rS ||h||H5(R+)

8. If L <s <3, then ||h B S Nl e ey -
4. If S <s<32, s#3 and h(0) =0, then ||hoad| @) S Il s @y
h(lzl)  ifz >0

where hepen(r) = h(|x|) and hoge(x) =
—h(lz]) ifz <O0.

As a final note following will be useful in establishing the Theorem 4.1.4.
Remark 4.2.3. By the definition of linear flow W' and the Lemma 4.2.1 we may write
Wé(Q? hla h2) - Wé(é? hla h2) = W(§<g - §, O, O)

Moreover, by writing W{(g,0,0) with the method of odd extension and then utilizing
Lemma 4.4.3, Lemma 4.4.1 below and 4. of Lemma 4.2.2 we obtain the bound

|[W5(g.0,0)|

Hs(R+) N Hthodd} Hs(R) — |goaal H*(R) < gl Hs(Rt) -
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4.3. Proof of Lemma 4.2.1: Boundary Term

In this section we obtain explicit solution formula for the linear problem (4.6)
by the application of the Laplace transform. So taking the Laplace transform of the

equation (4.6) in ¢ leads to the initial value problem in the spatial variable x

Upgpe + AU = 0
(4.14)

U(0,0) =hi(N),  We(0,A) = ha(N)

where
u(z, \) = / h e Mu(x, t)dt,  h;j(\) = / h e Mh(t)dt, j=1,2.
0 0
The solution of (4.14) can be written as follows
Uz, ) = c; (M) ™o 4 ey(N)er2Me

where r1(\) and ro(\) are solutions of the characteristic equation r*(\) 4+ i\ = 0 for
which Rer; < 0, Rery < 0. Employing the initial conditions and suppressing the A
dependence of 7 (\) and 79(\), we have

() = ha(A) — 7”2}11()\)’ 600 = rih(A) = ha(A)

rr—T2 r —T2

Then by Mellin inversion we can express the solution as

y+i00 eAt _ . _ B
uat) = 5 / [ (Ba(X) = ol (W)™ + (rifn (A) = ha(A) ] dA

270 ) ing T1— T2

for z,t > 0 and where v > 0 is fixed. Letting v — 0, we have

oo bt N N |
u(z,t) = %/ [( ha(if) — Tth(ZB)) r(8) (T1h1(2ﬂ) - hQ(iﬂ))em(Zﬁ)x} dg

coT1 — T2

e i (o) )

+%/_l%[<_§+7/£)\/_hl (iB) — h2 15)] ( E g)wxdﬁ

L[~ et ~ . CASET .
+ % W[}lg(lﬁ) — Z\/Bhl(lﬁ)]e p dﬁ
1 * w i V/Bx
+ o /. (1+—[ VB (i) — ha @5)] dp



o1

-5 /OM%W‘W” (22 + i 2) (i) | F )543

1 oo e_iﬂ‘lt \/_ \/_ . 7 . _ 22_1.72 B
o 0 Z‘\/§5[<_7+Z_)5h1( i6%) —hz(—254)]e< ) 45%dB
00 iB*t . _
+ % ﬁ [ha(iB*) — By (iB")] e " 4p%dS3

_'_i oo eiﬁ4t [_ﬁﬁ (254)—% (iﬂ‘})}ewxllﬁgdﬁ
o Jo —(ropl "M : |

By a slight abuse of notation after writing /ﬂj instead of ﬁj to denote the Fourier

transform of x(0,00);, j = 1,2, we obtain

V2, [~ e*iﬁzlte(fiﬂ'i)ﬁx [ﬁ2(_54) + (? + g)ﬁ ha(— ﬁ4>}52d5
V2, [ e‘iﬁ‘ite(_*?_i%)ﬁx [( - g + Z\/—_>/@ hi(=p") — /}22(—54)} p2dp

—14+4 [ el 4t—Bx
[ e () — i 5] a5
-1+ / 67;,84t+i,3:1: [ . B/ﬁl(54) o EQ(BZL)] BQdﬁ
T 0

Finally, we add the cut-off function p in the above integrals except the last one to

extend the solution to all z. Note that with this choice the integrals converge for all x.

4.4. A Priori Estimates

4.4.1. Estimates for the Linear Terms

In this section we justify that the linear terms in (4.8) stay in the function space
given in the definition 4.1.1. First we begin with the Kato smoothing inequality de-
picting interaction between the space and time derivatives. Note that this affirms the

selection of the spaces that the data g, hy and hy reside in.
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Lemma 4.4.1 (Kato smoothing inequality). For any s € R, g € H*(R), we have
2541
8

n(t)Wtg e CgHt% (R x R) and n(t)0,[W'g] € C°H, 1 (R x R). Moreover,

InOW'g|| _ 2ses Slglluy and [n@0Wgl]| 2o S gl -
x t t

LeH
Proof. We start by writing that

FinW'g)(r) = / R — E5(€)de
- / ¢ER(r — ENG(E)dE + / R — ENF(E)de.
|€]<1

|€]>1

2543
Using the fact that n is a Schwarz function, the contribution of the H, ®* norm of the

first term above is bounded by

[ e=ae-e  woues [ o -], @mee
|£‘<1 T |£|<1 T
S [ @51 5 gl
l¢1<1

Next by the inequality (x + )" < (z)/"/(y)" for any r € R, and a change of variable,

the contribution for the second term is estimated by

2543

< / (r— €920 22 A — €196 |de
[€]>1

/|§|>1<7'>2s;3 T(r — €9([5(6)|de

L2

2
L2
2s—3

S|[ =00 i - pllatEehlds

25—3 1

p s g(Ep7)

L2

24\
[

3

—~

2
Lpzl

2s—3

5 G(p7)

A
S

2
Lpzl

where we have used Young’s inequality in the third inequality.
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Changing variable back to £ this is bounded by

([ peored)’ < ([exmere)’ -

From these and the dominated convergence theorem continuity statement follows. Us-

ing the same argument we estimate ||n(¢)d,[W'g ]HHQSTH likewise. O
t

Proposition 4.4.2, Lemma 4.4.3, and Lemma 4.4.4 below verify that the boundary

operator belongs to the space from definition 4.1.1.

25+3

Proposition 4.4.2. For any s > —%, b < 5 and hy, hy satisfying Xo,c)h1 € H

1
2

X (0,00) 112 € H™, we have

[n(OW5(0, ha, ha)

won S Hx<o,oo>h1||Ht2s,%3 + HX<0,oo>h2HHt% :

Proof. First recall that

14 |
W0, by, hy) = [Wlhz — iWahy — Wahy — W4h2]

— % [W5h2 (% + Zi) Wehi + (—\/_ + Z£> Wrhy — Wghs

where the terms Wiho, Wohy, W3hy, Wyho, Wshe, Wshy, Wrhy and Wghs are given in
Lemma 4.2.1, also recall the notation of expressing 1 as Fi(X(0,00)h). Note that

Wghl = Wt@bg and W4h2 = Wt’gbz

where

V() = BT (8" X(0.00) (8) and Pa(B) = 5*ha(B*)xX(0.00) (8). (4.15)

By change of variables we have

= [erdam],, = ( / " ()5 (89)a8)

1
< ( / (0 >2”3|h1< Pdp)" < st s (4.16)

V3] i




o4

and similarly

ol = [ 833)], = ([0t atsyias)
< ( / O Fa0)dn)’ S xombell . (@17)

Then using (4.11) together with the bounds (4.16) and (4.17), we have

In(E)Wahal| o = ||nW 43
S sl

Xs:b

S ol e

and

() Wahallxon = ||[nW s
S 194

Xs:b

S ol s

For Wihy and Whhy, set f(z) = e *p(x). Note that f is a Schwarz function. Assume

s € 4N, we can write

Wida = [ e )R
0
= () [ 5B 021 el ()8

and
O Wahy = (—i)/n / P FO (B2) B2 F [X 0,000 I ) (B*) .
0

Then using these with the interpolation it suffices to prove the bounds for s = 0. We

have

Wka(é.r) = 7 () [ P 5 Ra(5) 71 (50))a5) ()
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_ / i — B8R84 (/BB

and

TWaln (€. 7) = / e — B (BYF(e/B)dB

Since f is a Schwarz function,

1

(&/8)*
<L
~ 14 (&/8)
__

ﬁ4_{_€4'

F&/BI S

Also, as 7 is a compact supported C'™° function, we may write
(= Y < (r =857
as well. Therefore,

[Wihs|l o S

=g [Ty

We separate the integral into regions where

64 + §4 |h2(ﬁ4)

4t <1land pr4+€'>1.

In the first case, we have

|/ ey P e

55
511 ¢t S H<T>

p _ / Frd,

\£|<1
1
< 2 ho(BYd
Nfoﬁ a8

1
~ / ot o)l dp
0

S HX(O,OO)MHL?(R)

< HX(OOO)h?HH%(R)

|§\<

(hs

ha (B

)|dp

25
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where we have used Minkowski’s and Cauchy-Schwarz inequalities in the first and third
bounds respectively. For the other case where 8% + ¢* > 1, making use of relations

(1 — &Y < (7= BY(B+ &Y and B* + & ~ (B + £*) we have the bound

/OOO<T - 54>b_3(‘;_|ﬁ2(54)|d5

ﬁ4+£4)1 b Lgﬂ—
o0 B 65 Y
< Y A 4
S A e P
< / e = sy (8Y)
0
< > b—3 b h d
N/0<r o) r<>\pL2

00l

o [ P IR

p)

) 12 S HX(OOO)h?”Hg( )

where we have used Minkowski’s and Young inequalities and note that we require b < %
in the fourth inequality so that b — = S %. Accordingly, using the similar arguments,

we have

o

1 S
liWatillan S [ 8335 + | [t - S5 (e

/ Hilo |dp+H/ 304 iy (o) dp
>*%ﬁ<>\

L% 5 HX(O»OO)hlnH%(R)'

12

S Ixosohull; + 17 | ¢ p
;

< ool e, + ]|

3 ‘

For the remaining terms of W{(0, hy, hs), estimates are similar; for Wshy and Wshy we
let fi(x) = e(~V2/24iV2/22 () and for Wrhy and Wihy set fo(x) = e(~V2/271V2/2)7 ()
both of which are clearly Schwarz functions. So we adapt the previous estimates by
swapping f with f; and f; for the terms Wiho, Wghy and Wrhy, Wgho respectively.
Eventually we have the bounds

HnthQHXO,b S HX(opo)thHl for j = 5,8,

(R)
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[nWihill xo0 S HX(O,oo)thH%(R) for j =6,7.

As before interpolating between the integers s € 4N we obtain the bounds for any
_1
s > 0. To treat the s < 0 case we define the Fourier multiplier operator (D), ? given

by (€)~2 on the Fourier side. In this case,

_1 > ~ _1
(D)2 2 [gWihs] (2, t) = 77(15)/ 7 B hy(8Y)(D). [ f(B))dp3
0
with similar formulas for the other terms of WE(0, hy, ho) other than W3hy and Wyhs.
Note that

Foa(4D)* [1Wih] ) €, 7)
_ / e — 898%ha(8YF, (D)5 [ (5] dB
(€)~zdp.

N

- / T - BB F (D)2 1] (B)) (6)(€/8)

_1
As (D), * f is a Schwarz function, we are free to establish the bounds

D)) @] = [50) 168 5 ey

and

(=AY < (r = 6577

This leads to the bound

[ P S U R R SR NE R T
wo [ 4\ —3 B e 4
$le-e [T - gl

1

5 and s = 0 yields

which has been treated above. Thus interpolation between s = —

the result. Other terms are handled similarly. ]
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Lemma 4.4.3. For s > —1 and boundary data (hy, ha) satisfying (X (0,001, X (0,00)2) €

25+3 ( 2s+1

H™5 (R) x H™s (R), we have

W0, by, hy) € CYHE(R x R).

Proof. We begin by showing that Wsh; and Wjhy belong to CYHS(R x R). Since

; 2 . . .
Wt = 4" is unitary in H*, we have

| Wh,|

s = |4l

HW4h2HH§ = “Wt¢4|

s =

e S ||X(0700)h1HH¥(R)

Hs — H¢4”H; S HX(O@O)h?HH%(R)

where we have used (4.16) and (4.17) in the above inequalities respectively, and 15, ¥4
are defined as in (4.15). Continuity in the temporal variable follows from these bounds
and the continuity of the linear group W' in H®. To show that the remaining terms of
W2(0, hy, he) lie in CPHE(R x R), recalling the explicit form of the boundary operator

from Lemma 4.2.1, we rewrite the remaining terms as follows

Wita(o.t) = [ JBDF( 4035, 31(8) = FTa(5)x0.0(9)
Waha(o,8) = [ FBDF( S 02)(3)d5, 52(8) = FTa(5)x0.0(5)
Waha(o.t) = [ fi(B2)Fle™ 4 s) BB T5(8) = FFa(=Bx000(9)
Wala(2.8) = [ fi(82)Fle™ 4 50) D)8 a(8) = (=B x0.0(9)
Wik (a,t) = /R F2(B)Fo(e ™" 42) (B)dB, P7(B) = Bha(—B")X(0.00)(B):
Waha(o.t) = [ fa(Ba) e 4 5s) D)8, 5(8) = FFa(=Bx0.0(9)

where f(r) = ep(x), filz) = eVAHV2D(0) and fola) = el=V2/2-VEDe ()

Note that following the same computations done in (4.16) and (4.17), we have

1451

mp S oo ] 2 o forj =2,6,7
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1451

Hs < HX(O,oo)h2HH%(R) forj =1,5,8.

Using these and the continuity of the group e*#4* on H* it suffices to show that the

maps

9> Tg= [ f32)3(B)d3. 9> Tig = [ H(B0GE)S, 9 Tog = [ L(B0)G(5)a5
R R R

are bounded in H®. We show this for the map g — T'g only as each f, f; and f, are

Schwarz functions leading to the same result. Consider first s = 0, we rewrite T'g(z)

by using the change of variable Sz — g as follows

/f r 1Bzt dp.

Therefore,

ol < [ 11O la™'5la D)) 45

= [1so0( [ = a6 p)rar) g
= [1ro1( [ 5 mteraz) as
~lall» [ s

S llgll

where the validity of the final inequality is due to the fact that f is a Schwarz function.

Note that for any s € N we write

Tyl /f (62)8°5(8)dP.

This with s = 0 result implies that || Tg|

s S lgllys, s € N Hence by interpolation,
s > 0 case follows. As for s = —1, we pick p such that [ fdz = 0 so that 9, f belongs

to the Schwarz space. Then we write

o Tole) = [ 01 B)ds = [ o 7(6)875(6)d5.
Combining this with s = 0 result and then applying the interpolation argument we get

the bound for s > —1. O
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Lemma 4.4.4. For s > —1 and boundary data (hy, ha) satisfying (X (0,001, X (0,00)12) €

25+3 ( 2s+1

H™5 (R) x H™s (R), we have

2543
"

(W0, hy, hy) € COH, * (R x R).

Proof. Recalling Wshy = Wiihs and Wyih, = Wty the claim for these terms follows by
(4.7), (4.16), (4.17), the continuity of W* and the Kato smoothing inequality (Lemma
4.4.1). With the notations of the previous lemma we rewrite the remaining terms of

WE(O, hy, he) as follows

Wita(o.t) = | Fo(£(50) ()W '4n (2},
Waha(o,8) = [ Fo(£(50) ()W '4a (2},
Waha(z.0) = | Fs(A(B0) W vs(2)d=
Wala(o.6) = [ Fo(f(30) (IW v (2},
Waha(o,8) = [ Fo(fa(5) (IW v (2)d,
Whs(z, 1) = /R Fafo(B2)) (2)W b (2)dz.

2543
"

We show only n(t)Wihy € C°H, ® (R x R) since the estimates for the other terms

follow by the same arguments. Hence

Wihy(z,t) :/]ng(f(ﬁ:r))(z)wtwl(z)dz
Iy e

T

_ /R Flo)Whin (22)dz.

Then Minkowski’s and Kato smoothing inequalities lead to the bound

Wikl s < [ (T I on(e)] e i
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< |l InW ebr (22)]] 20

H, 8 L

z

S ¢l

e & Ixomal

since J/C\ € L'. Finally, continuity in the spatial variable follows from the dominated

convergence theorem. O]

4.4.2. Estimates for the Nonlinear Term

This section discusses the estimates for the nonlinear term in (4.8). These esti-
mates will play crucial role in establishing the smoothing theorem and closing the fixed

point argument.

Proposition 4.4.5. For any compactly supported smooth function n and % —b>0

sufficiently small, we have

2s+1

t
Hn(t) / Wt Fdt’
0

s Hn(t)ax( /0 W par)

Cof, T (Rx®) com, * (@x®)
< [P Zf—%SSS%,
1F'[] o0 + |’F"X%+¥ if s> 1.
Proof. Assume first that % s < %7 then

/R e = B e ) dedt
/ s e / eTE(E, 7)dr ) di'd
/ / e ( / ) B¢, m)dgdr

// iat & T‘_i€4 F(¢, 7)dedr.

¢ , t
/ Wt Fdt = /
0 0
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First, we wish to bound

{e zt§4
o [ Pl rdgdr|
H, 8

t

Let ¢ be a smooth cut-off function such that ¢ = 1 on [—1, 1] and suppy C {x : |z| < 2}
and let ¢° =1 — p. We will proceed by writing

n(t) / WY Fdt’ = n(t) / / e (17 f_) 54() ~9p F(&,7)dedr
o) [ [ T‘f‘” oriar

// zzéeltg‘:p T—)§4) (&, 7)dedr

=: I+ II 4 III.

By Taylor expansion, we write

e'it‘r o eit§4 y 1 ” . ) o (—Zt)k

it —it(r—£*) N _ \k-1
) ie 7__54(6 1) =ie E o (=&
k=1

For I, using Lemma A.0.3, we have the bound

Z” HHHI // M (1 — € (r — €N F (€, m)dEdr

which is bounded by

2s+3
H, ® (R)

where we have used

1 nll =~ ¢l 2 + 0] o

S Rl o+ [l S B
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Using Cauchy-Schwarz inequality in £, this is bounded by

e (e ([ _£4|<1<§>28|ﬁ<§7T>|2d§)d7}5

2s+3

Ssup (07 [ _£4|<1<5>28d5)5 1P s

T

S xss -

For |7| < 1, the supremum is apparently bounded whereas for |7| > 1, by the change

of variable p = £%, it is bounded by

IT|+1 1 |7]+1
2543 —s 2543 —2s—3
(r) ™ / T —Ldp < (1) /| (o) 5 dp <1

3
7l-1 ol 7|-1

since |p| ~ |7| > 1. Next we consider II. By using Lemma A.0.3 we have

2ot |E(€,7)|
8 >’
O p

S| /R<T>234+3(/ <£>25<Td_§g4>2_2b)( JGREE (€. de)r]

sl [ Ggiaga] 19

I} 20 g S Dl

Xs,—b

we have applied Cauchy-Schwarz inequality in the second line. To see that the supre-

mum above is finite we write

25+3 d¢ d¢
(r) 2 [/I£I<1 (r — E02-2b(g)2s +/|£|>1 (r _£4>2—2b<§>25}

2543 252 dg d
S e [<T> ’ /|£<1 (€)2s +/|p|>1 (r —p>2—2b<p>2s4+3}

S ) ) ) T S

where we have used Lemma A.0.5 in the p—integral and % < 2313 < 1 with b < %

Next for III, we divide the region of integration into two pieces || < 1 and [£] > 1.
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For |[£| < 1 using Minkowski’s inequality and then Cauchy-Schwarz inequality we have

w:§ ited R
Mgl s o, = ) [ [ S yetr = €IF G

R m) T

117'—54 2643
itg* M(T—_@F ded
< [ [ o |z T P e

//%]iEwaT
//|<1 )2~ ngdT // €)% (r — e72|F (e, )|dfd7‘%

SIIF

Xs:—b

since 2b — 2 < —1 for b < . To treat the case regarding the region |£] > 1, we use
change of variable p = £* as before to get

zzf eztg R
/Lmz o(r — &) P(E, 7| dédr

g [ 250

2543

HtT
zxfeztp 1

S [l g / / F(¢/p,7)—dpdr

lr—p|>1 J |p|>1 |T Ip|% Hf%ﬁ

iwyp 1
25+3 _ e
S || +}—t0~7‘— (/ F(%,T)—édr)(p)
r—pl>1, ol>1 [T — P lp|2 e
sl [ LRy,
T —plelt |,
[p|>1

AN

o= n? ([ —T=)( Eﬁi@dﬂ@yﬂg

<[]0 =B emnp o]

S IF

Xs,—b

where we used Cauchy-Schwarz inequality in the fifth line and changed variables back

to & in the last line. This finishes the proof for —% <s< %
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Next we consider s > %, in which case, instead of Lemma A.0.3, proof makes use

of algebra property of Sobolev spaces

1 gll s < 11l ers Nl s

in order to extract the Sobolev norm of 7. As 7 is a smooth compactly supported
function, the proof proceeds along the same lines as with the case —l <s<li 5 except

for the one for II just because we needed s < 1 to obtain the bound [|II|| 2es <
78 (R)

| F'|| ¢s,—- Thus to estimate II, we use the identity

(M) 75 S{r—=€)75 +¢

25+3 25+3 2s+3
2

to write

T 2540 g S Wl

2 [ |F(ET)|
) /<T e

<Ife-ercs

Using the Cauchy-Schwarz inequality in the {—integral, the second term is bounded by

H / |§|

L2
23+3

€1
| g I Pe e

_l’_
12

L2

25+3

F(&,7)ld¢

L2

<[ ([t ([ girentae]

1 2
§Slip[/mdl)] [E N o0 S NIF]

since 2 —2b > 1. Applying the Cauchy-Schwarz inequality in the {-integral for the first

Xs,—b

term in this case

| [ir-er 1P miae],
e [/</<g—§+></<5>1+<T—€4>2S45\f(6,7>!2d5)d7]% SIFI, g 2s



66

As a result we have obtained

£

: 1 1
X's,—b lf—§§8§§
2s+3 ~Y

o2, T @®) || Py IF] y s (5> 4

t
Hn(t) / Wt Fat’
0

Now we move to the estimate on the derivative term where we take less time derivatives
QSSTH while we have additional £ factor coming from the spatial derivative. As before

we divide the Duhamel integral into three pieces as follows

Wt t’th =n(t) [ 0.(W'F)dt
(] I

zt‘r_ ited ¢4
/ / gemf eT _)gi(T D pe.r\dedr

itT c _ ¢4
//é— ’L-Ife _7—645 ) (5 T)dde
ztf ¢4
) [ [ e B ryacar

= I" + II" 4 IIT*.

To bound I*, note that on the region of integration we have |7| & £* hence the additional
factor & leads to the situation (r)°5 |¢| < (7)5° which was examined before for the
integral I. In order to estimate III* we divide the region of integration as before into
pieces [{] < 1 and [{] > 1. For the former case, the bounds are identical to those
obtained for III, for the latter case, we make the same change of variable p = ¢*
as done for IIT so that the additional factor of £ contributes the additional factor of
p|7 to the integral III* that brings us back to the situation handled in bounding III.
Nevertheless estimation for the term II* needs verification. When —% <s< %, using

Cauchy-Schwarz inequality we have the bound:

HHz”H%(R)

N ||77||H1

2541 13 =~
: S P )
o [ P )

s[ [ (/) <§)2s<75_2§4>22bd€> ([iome ey (€pPae)ar]
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2s+1

S sgp <<T> ! / <£>2$<7-§_2£4>2—2bd€) HFHXSH?-

To see that the supremum above is bounded, we proceed as follows

- &
”>4LAKMT—8P%@>dﬂﬁﬂpmf—ﬁv%@>dq
S P /| Lpfbwsﬁdp]

SJ <T>2s+1+2b 2+< 7—> 25 1 < 1
where we have used Lemma A.0.5 in the p-integral and the fact that 0 < % < % with

b < % In the case s > %, we estimate II® by

2e41 €l mee ,
0 [ alFen

We consider the cases |7] 2 €% and |7| < &, in the first case, the above integral is

bounded by

I 2o
H ™3

(R)N‘

s [ |P(E7)
H“) =t

which was addressed before for II. For the second case notice that |7 — &*| ~ ¢* with

12

which one has [¢| < (7 — €4)1. Thus we bound the integral by

oy / P&, )l
r<cer (T — €4>3
On the region where |7| < £*, we have the relation
(N S r =€)+l

through which we bound the above integral by
Jir - i

which was handled in bounding II. O]

2

2s+1 2s+1

P r-g)
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Proposition 4.4.6. For fized s > —% with a < min{2s+1,1} and $—b > 0 sufficiently

small, we have

Xs+a,—b 5 H “u]’

j=1

w1 aus] b -

Proof. Expressing the space time Fourier transform of u %sus as a convolution

Fop(utizuz)(§,7) = / / U (&1, 1)Ua(E2, 2)Us (€ — & + &2, 7 — 1+ T2)
§1,62 J 71,12
and then using the definition of X** norm we write

/ / <f>s+aa1(§1,7'1)a2(52, 7'2)@3@ &+ &, T -1+ 7'2)
&1,82 J 11,72

2

| ur o us|

(T —&u)°

2 j—
Xsta,—b —

2
Ler

and define

fj(é.a’r) = <€>S<T - £4>b’aj(§77>’ fOI'j - 17273'

Thus the desired bound is equivalent to showing that

2

H/ M (&, 81,8, 7,71, 72) f1(81, 71) fo (62, T2) f3(€ — &1 + &2, 7 — 71 + 7o)
£1,82 J 11,12

12

&7

3
2
STLIANZ = 11 !
j=1

Jj=1

2
Xs,b

where

()T &) (&) -G +&)°
(T =N =N - (T —n+ 71— (=& +8&)HY

By an application of the Cauchy-Schwarz inequality in the &, &, 71, 72 integrals and

M(£7£17£27777—17T2>:

then using Holder’s and Young’s inequalities respectively the norm above is majorized

by

112

H(/g . /TT M2)§</5 ) f12(51,71)f22(£2,72)f§(5_51+52’7_71+T2)>2

LQ

&7
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) H (/51 &2 /7172 MQ) (/51 & Jrim fH&m) 5 (Em) f(€ =&+ &7 =T +7’2)>

L1

&,
<SUP / M2 ‘/ fl(ébﬁ)fz(f%ﬁ)f?)(g 51‘1‘52,7'—7'1—1—7'2)
&1,62 J 1,12 1,62 J 1,10 L%,‘r

—sup ([ [ ar) s e sy, <o (
§1,62 V71,72 &7 3

1,82 J 711,72

Mﬁllwm;.
j=1

Therefore, it suffices to show that the supremum above is finite. Application of Lemma

A.0.5 in the 11, 75 integrals bounds the supremum by

(F12(&) (&) > L+ &)
w | T e a o
Implementing the identity (o« — ) < (7 — a)(7 — ) and then using Lemma A.0.2, this

is bounded by

6b—2 d€1 d£2

sup

(E)224(61) (&) HE =& + &) 2
w |

(€t =&l + & — (6= &+ &)1 d51d52
S sup/ ()* (&) > (L) > =& + &) 72

Sd dés,.
£ (+E+)(&—8& — &) §1d&o

We divide the integration region into two pieces

Ry ={(&1,&) 1 [& — & < lor|& — & < 1}
Ry = {(&,&2) 1 161 — & 2 Tand |§; — & 2 1}

to control the supremum. Clearly we have £ + &2 + &2 > 1 on Ry, so the supremum

on this region is estimated by

(E)2H2(6) (&) (6 — & + &)
AQ«Q+§+8mlerfm1d“@
</<§>28+2a<§1>_28<52> -6+ &)
(G+E+) (G- (&G — &)

d£1d€2

Since the sign of the Sobolev index s affects the way we follow in the proof, we begin

with considering the case s > 0 first.
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In this case, there are three separate cases to examine:

i) € =&+ & 2 |¢]

(€)% 20(61) (&) (€ — &+ &)™
/ <£% + 622 + §2>1*<§1 — 5)17 <§1 _ 52>1, d§1d€2

(€)% (&) (&)~

S 20G1

~ / <£1 _ £>1_<£2 . £1>1_ df df

a— gbmax s,1— (g )
S <5>2 2+/ <£1 _5)1—2251;25)+n111n(2$,1—)d£1

where we have used the Lemma A.0.5 in the last line above. For s > 1, using the

27
Lemma A.0.5, this is bounded by

2a—2+ log(1 + (&1)) 2a—3+
O [ e e S 7 S

provided that a < % Asfor 0 < s < %, the Lemma A.0.5 yields the bound

d (€)207275t for 0 < s <
<£>2a2+/ <£1 _g 51 < {

1
4

1— 4s—
> <§1> <§>2a—3+ for le < s < %

which is finite as long as a < min{2s + 1, 2}.

i) & 2 1€

(€)> 2 (6) (&) (€ -+ &)™
/ (24 2+)1-(6 — (& — &) d&1dg,
< / (E)20 2 (6 — & + &) 725(€,) 72
- (&= (& &)t

d&2dg; .

From the substitutions x1 = £ — & + & and x5 = & the integral above is replaced by

[ e,

(1 = (2 — 1)

which is identical to the integral estimated in the previous case.

i) [&2] 2 [¢]

/ <£>2s+2a<€1>—25<£2>—25<£ _ 61 + €2>—25d€ d€
(E+E+ (G- G -6

< / (E)2272H(E =& + &) 725 (&) ™
~ (&1 = (& — &)

d€2dg; .



71

In this case after making change of variables z; = & and x5 = £ — & + & in the

above integral and then applying the Lemma A.0.5 we have the bound

() ()2 () - i e
| emar s g nan =0 (| g pm)
{(§>2“245+ for 0 <s <3

<€>2a74+ for s >

IS <£>2a7272 min(28,17)+¢3nax(23717) (5) 5

1
2

which is bounded provided that a < min{2s + 1,2}. Next we focus on the case —% <

s < 0. In this case, since (&) 72(&)725(E — & + &) 2 S (G + &+ £2)73

n (ErE+OE-OE-G)
S
< @rarerE o e e

< <§> 2s+2a

~ / (§a + &)1 (& — &)1 (& — &)1

—d&,dgs.

Since % — b > 0 was taken sufficiently small, using Lemma A.0.5 twice this integral is

bounded by

2s+2a dgl 2a—45—2+
€ [ e S O s

provided that a < 2s 4+ 1. Next we move on estimating the supremum on the region

R;. In this region notice that

(€ =&+ &) (&) = (&) (6)-
Thus

/ <£>28+2a <£1>_2S <€2>_2S <£ B 51 + €2>_2S d€1d§2
Ry

(G+E+)(& -G — &)
< / (€)% (&)~*
~ ) A6+ EE -G — &)

T d&1dSs.
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Note that on R; the relation £3+¢&* < 1 implies that [¢] S 1, || S 1forj =1,21n
which case the integral above turns out to be finite at once. So for a nontrivial situation
we assume that £ +&% > 1. Then making the substitution z = (£ 4 £2)(&; — &) (& —€)

in the & integral and using the relations

26 =+ & (86 + 52)_%\/‘” + (£ = &2)%(&5 +£2) and % = (26 — & — §)d&

along with the Lemma A.0.7, we have the bound

/ (€)2(€a) ™
(6 + €23 (a) /o + (& — )& + )]

(€)% (&)~
S 1 1 d2-
</ GreniG-ngrept

dx d€2

We estimate the integral in the separate regions |&| < 1 and |&] > 1. In the former

region this is bounded by

/ (€)% (&)~
&)<t (65 + §2>%<(§2 — 2+ 52»%_

provided that a < % As regards to the latter region, using the relation
(62— €&+ &%) 2 (& —€7)?

and then making the change of variable x = &2 entails the bound

2a —4s 2a
/ o emet o / G,
el (&3 + &%)2((& — §)(& + €%))2 a1 (§5) T2 (85 — &)

%/ 1 (&) iz
a1 ()% 2 (@ — £2)1 |2

o —

~ <.T>2S+1<£L’ _ €2>1—

(§)2a—274% for — 2 <5 <0

dé S <1

S
(€)2e=2  for s >0

which is finite provided that a < min{1,2s + 1}. O
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We take 224201 — p = 25524=5 4 (1 — p) rather than 2#2¢=2 in the Proposition
4.4.7 so as to extract a positive power of T" in the contraction argument below in the

local theory.

Proposition 4.4.7. For fized —% <s < %, 0 <a<min{l,2s+1, g—s}, and %—b >0

sufficiently small, we have

xeracs S [T Il

Jj=1

1 1 _
for — 3 <sta < > [urTpus] Xebo

3

1 9

for 5 <sta<g, utus| g, e, S T sl s -
j=1

Proof. When —% <s+a< %, given statement follows from Proposition 4.4.6. So we

only take account of the case % <s4+a< % here. In this case, using the fact that

a < 2s+1 we take s > —% all along. Next let
I / (r =€) O T 6) P () P~ b+ &)
' (T =& +& — (£ =&+ &)H)e-2

Thus using the arguments of Proposition 4.4.6 we are required to show that

d&1de.

sup I < oo.
577-

We will demonstrate this in the separate cases % <s+a< % and g <s+a< g.
Casel) s <s+a<?2

Note that taking % — b > 0 sufficiently small we infer that %(s +a) —2b— }L < 0, also
s+ a > 1 implies that 2b + 1 — (s + a) < 6b — 2. Hence using these, the identity
(T —a)(T — by 2 (a — b) and then Lemma A.0.2 we have

(O G) () PE-a+ &)™
B / R BT A I
S / (O(&) (&) -6 + &)™
“JHE+HE+)E-9E - 52)>2b+i—§(s+a)

(SIS

which is easily estimated, for s > %, by

(" (€)1 -
| eraricararties | grgmie s 0 s
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by using Lemma A.0.5 twice. It is left to treat the case —% < s < % For this case,
we will analyze the integral on the sets Ry = {(&1,&) : |& — & < lor|& — &] < 1}
and Ry = {(&,&) : 1& —&] 2 land & — &] 2 1} as before. Recalling the identity

(€ — & + &) (&) = (£)(&) that holds on the set Ry, we have the bound

d&1d&s

< / (€)1 (gy) 4
YA+ )(& - (& — &)l

/ () > 6) € -G+ &)
(& + &+ )& -6 - 52)>2b+z—5 sta)

d&1d&s.

Making substitution z = (€2 + £€2)(& — €)(& — &) in the & integral and assuming
&% + €2 > 1 as in the Proposition 4.4.6, the integral above is bounded by

/ ey () )

(€ + )5 (@) 150 lln + (€ - &£)2(€ + )]
< / @t

(€2 +E3)2((6 — L)+ &))yPi—alta)

zds

A€y

where we have used Lemma A.0.5 which is applicable due to the fact that % —b>0is
sufficiently small, and a < min{2s + 1,1}. So we estimate this by

/ <£>1—25+ <£2>—4s
(€ + )€~ Q)¢+ G))Pimitr

dgs

(&) ()
S ; A&
| e e

In the case |&] < 1, the integral is bounded by

<€> 1+2a—8b+ 5 1

provided that a < %, whereas for the other case || > 1, we change variable z = &3 to

estimate the integral, using Lemma A.0.5, by

o 24+2a—8b 1
e — @7 for0<s <)
(z)1+25 (1 — §2>4bfrsfa <§>274s+2a78b+ for — % <s5<0

which is bounded since a < min{2s + 1,1} and % — b > 0 is sufficiently small.
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Next we estimate the integral on the set Ry by

/ ) {6) () -G +86)7*
(€2 4 €2 4 2)Bri—a(sta) (g _ g)2bra—s(sta) (g, _ g\ 2+g—3(sta

-dédsa

We bound this in the separate cases —é <s<0and 0 <s< % In the former case,

using the identity

(E)2 (&) -+ &) > SEG+E+8)™
we obtain the bound

<§>1+<§1 _ €>2b+%—%(s+a) <§1 _ £2>2b+i—%(s+a)
/ <€1>2b+%+%(5sfa) <5 - 51 + €2>2b+%+%(557a)
By a change of variable £, — & + &2, & — & + &, it suffices to estimate

dfl 2
<§>1+</ <€1+§>2b+i+%(5sa)<51>2b+ié(s+a)> '

Nothing that 2b+ 3 — 3(s +a) < 1 and 2b+  + 3(5s — a) < 1 and then applying
Lemma A.0.5 this is bounded by

d&1dSs.

<€>2—8b—4s+2a+

I

which is finite for a < min{2s + 1,1} and % — b > 0 sufficiently small. Now for the
latter case 0 < s < 1, after using the bound (&) 2 (&) "2 (¢ — & + &)~ < (€)% and

~

applying the same change of variables as above, the integral is bounded by

<§>172s+
d&d
/<£1>26+ié(s+a)<€1_‘_§>2b+ié(s+a)<€2>2b+}1;(s+a)<§2+€>2b+i;(s+a) 51 £2

< d§1 < <£>278b+2a+ 5 1

2
~ <§>1 ? +</ <€1>2b+%—%(s+a)<51 +€>2b+}1—%(s+a)> ~

by using the Lemma A.0.5, a < min{2s + 1,1} and the assumption that % —b>0is
sufficiently small.
5 9
Case2) 5 <s+a<3
Note in this case 0 < 3(s 4+ a) — 2b — 1 < 6b — 2. Making use of the proof of Lemma

A.0.2, we write

C-g+H-(E-a+8&)!
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= (- &) - &) SE+ar +E +E +2(6 - 56— 26
= 9(5761762)‘

Therefore, we have

(r—€)=(r—g+&6 - (E-&+&)"—9(66,8))
S{r—&+&—(E-&a+6)N+ (9(6,6,8))
Sr—&+86—(E—a+8&)")+ (€))7 a — )& — &).

From this identity we obtain

< / <€1 — f>%(s+a)—%—2b<§l o §2>%(8+a)_%—2b<§>%+s+a—4b+

- (Gr)smat i (gy)matatib(e — ¢ 4 &)
Substitutions & — & + & and & — & + € in the above integral lead to

d&1dSs.

g+sta—dbt <§1>%(S+a)7%*2b<52>%(Ha)fidb .y
¢ / {61+ §>s_a+%+4b<§1 + &+ f>s_a+%+4b<f + &§2)% s

< <§>§+s+a4b+/ (&) 2T =12 (¢, )5 (sa) 5 —2b
~ <€1 +§>s—a+%+4b<€l + & +§>S—a+%+4b<€+£2>s—a+%+4b

(STS

where we have used s+ a —4b— 3 > 0 in the last line above. Since a < min{2s+1, 1},

we note that s > 2. Now by symmetry we have two cases [ + & + &| 2 [€] and

1€ +&1| 2 |€] to consider. For the first one, using (§1) < (& + &) (€) we have the bound

2
<£>2a8b+</<§1>§(s+a)}12b<§1 +€>75+a7%74bd§1> < <£>3a+57%712b+ <1
owing to the the restrictions on a, b and s. For the second one, the integral is bounded

by

d&1dSs.

2a—8b+ (&) (@) =520 (g, 3 (sa)—5 -2
: / (a4 )7 rHatih(e, 4 & + &)roratt

The inequalities (&1) < (&1 +E&+E) (& +E) and (&) S (§2+€)(€) give rise to the bound

3a

<£>§+52<141110b+/<£2 +£>2a78b71<€1 +€2 +§>*§+7*%76bdf1d§2
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which can be easily verified to be finite by the restrictions on a, b and s. O

4.5. Local Theory: The Proof of Theorem 4.1.2

In this section, we establish the local existence of solutions to (4.18). Firstly we

aim to show that I defined by

t
Tu(t) = n(t)W'ge +n(t) / W' F(u)ds 4+ n(t)Wi(0,h1 —p1 — g1, ha — p2 — q2) (4.18)
0

has a fixed point in the space X*° and recall where g. € H*(R) is the extension of g
such that [|ge|

H®) S HQHHS(Rﬂ and

F(u) =n(t/T)uf*u,  pi(t) =nt)Do(W'ge),  pa(t) = n(t)Do(0:(W'ge)),

a)=a0u( [ W E@a), w0 =p(o.] [ W Fwar])

We also recall that s € (— 1, %), s # 5,% and = — b > 0 is sufficiently small. We start

with showing that I" is a bounded operator on X*°. To do so, we gather necessary

bounds we have so far. Using (4.11) we have

Hn(t)the\ b < 1l gel Hs(R) < llgl Hs(R+)

Next by (4.13), (4.12) followed by Proposition 4.4.6 we obtain

t

HT]/ W' *F(u)ds H /Wt *F(u
0 Xs:b

S [F(u

XS%+
Wl oy

< T37b- H|u]2u}

Xs,—b

ST JJul5ees -

By using Proposition 4.4.2 and Lemma 4.2.2, we have

In@)W5(0, ha — p1 — q1, ha — pa — @2) || xs

S HX(o,oo)(h1 —p1— Ch)Hthg#(R) + ||X(O,oo)(h2 — P2 — %)HHt%(R)
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S lha —leHw(Rﬂ +l1hs = pa|| 2em
t

t e L

H, ¥ (R

(R
e

(R+)

R+

S thHHtw -

T thHHj% 2 T P2l 2e1

H, ¢ o (B

ol s+ el

By the Kato smoothing estimate

<
|!p1||Ht246ﬁ(R) + szllHth;ﬁl(R) S N9ell s @y S 119l are ) -
Moreover, to bound the ¢; norms, we use Proposition 4.4.5, (4.12) and Proposition

4.4.7 to get

IIQ1||Ht2%ﬁ(R) + HqZ”Ht%(R)

- [ R [ for— 3 <s<3
~ 1 9
”F‘XSY,%Jr—f—HFHX%%%jJF for 5 <s<35
u|?ul] o for —l<s<1i
ST%_b_ ||| | |st b 3 — 2
Pl oo + Pl g sy for 3 < s < 2
ST [fufles -

Putting these estimates together for (4.18), we arrive at

1 b 3
1Pl o S Mglloguey + Wl asgo o+ el g o+ T3 e

Having shown that I' is bounded, our next objective is to reveal that ' is indeed a
contraction. To achieve this, we implement the similar calculations for the difference

I'u — I't as follows:

1w = T'a s
t
<y / WS F () — F)ds|  + [nWe0, G — g1, G — 32)| o
0 Xs:b
t t
<l [wr - ranas| ol [t - rane]
0 x5+ 0 Ly H, ®
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([l = ]|y + X

(Il

1oy () [[JulPu = [ala g 2500 )

2 ~12 ~
oo+ [Ellxen ) [l — |

Xs,b .

In the last line, we have used Proposition 4.4.7 along with the inequality

A% f = 1glgl < CUF* + g™ f — g

for some absolute constant C' and a > 0. Therefore, taking 0 < 7" < 1 sufficiently

small, " is a contraction on the ball

B={ue X" :|u

xe0 < C (gl

Hs(R+) T ||h1||H2ﬁSfr3(R+) + ||h2||H2ﬁSjr1(R+) )}

with radius depending on the initial and boundary data. Hence by the Banach fixed
point theorem, this ensures the existence of a solution to (4.1) in X*° spaces. Next
we establish that the fixed point of I" lies in CPHZ([0,T] x R). Since the operator

Wt = ¢i4” is unitary on H*(R) we have

HntheHC?H; S ||ge| Hs(R) S ||9| Hs(RT) *

By the embedding (4.10) and the contraction argument
t t

Hn/ W' F(u)ds 77/ W' F(u)ds
0 0

Next from Lemma 4.4.3 and the previous estimates in the contraction argument

<
Y
CYHS

< < T |y

~

3
Xs:b .

Xsa%"r

||77W(f(07h1 —p1—qi,he —p2 — Q2)HC§H§;
N HX(O,oo)(hl —P1— ql)HHf%S(R) + HX(O,oo)(h2 — D2 — %)HHfS—S“

S-Sl

(R)

14
Hs(RT) + ”thHjs‘%s(Rﬂ + ||h2||Ht2Sf;rl(R+) + T2 b ||U|

3
Xs:b -

s+3

2543
We also show that v = I'u belongs to the space C°H, ® ([0, T] x R). We have already

obtained the following bounds in the contraction argument

HntheHCgths;s S lgell oy S 9l zrs gty »
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Hn/()t W' F(u)ds

CgHtT
For the remaining term of I we exploit Lemma 4.4.4 and the contraction argument to

get

W50, = p1 = @1, he = ps = @o)||  2epn

coH, 3
S gl

3
Xs:b -

Rl LEY IR U5 FEESE S e (1
As a result we have established that © = I'u lies in the Banach space of the definition
4.1.1. Therefore this finishes the proof of local existence of solutions to (4.1). The
uniqueness of these solutions will be treated in the subsequent Section 4.5.1 below.
The continuous dependence of these local solutions on the initial and boundary data
follows from the fixed point argument and the a priori estimates as well. To see this let
u and u, be solutions of (4.1) with initial and boundary data g, hy, ho and g, b1, hno
respectively. Then from what we have already shown in the contraction argument, we

have

= tall o < Collg = Gnllgury + W = bl sgs |+ e = gl s )

t

(R+)
+ O T2 |u =

Xsb

where Cy > 0 is a positive constant and C; depends on the radius of the ball in the fixed
point argument and hence on the initial and boundary data. By means of contraction

argument, we may take existence time 7' < 1 so that C|T 270~ < 1. So by the inequality

Co
i = tnll e < (19 = Gallegery + s = ]2

(1—cy720) Y

+ ||hg — hnzllHthépl )

(R+)
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the continuous dependence in X *? follows. In a similar manner, we prove the continuous
dependence in the spaces CY H? and C;)Ht% as well. In order to complete the proof
of the Theorem 4.1.2, it is left to establish the quantification of the dependence of
existence time 7T to the initial and boundary data. By a scaling argument, we easily
see that if u solves the equation (4.1) with data g, hy and hy on [0, \74], then v (z,t) =
A 2u(Atx, A74) solves the equation (4.1) with data ¢g*(x) = A 2g(\~tx), hi(t) =
A72h (A7) and hy(t) = A3hy (A7) on [0, 1]. Therefore, for A > 1,

2] :
||h/\HH2%+r1(R+) ~ HhZHH%ﬁ( R+)
Furthermore, (for s > 0)
19| ey < 17| 2geery + 197 \Hs ®+)

<A gl + 475 g

He(R+)

_3_,
<llgllps + A2 |g|

Hs(R¥) -

Then for A=27%||g]| e (r+) & 1, the solution is defined up to the local existence time

_s
T=(C+lgllge@sy) =7

23 e —l—thH ST Moreover,

in order to have local existence interval without imphC1t dependence on ||g[|;2 (to be

where the constant C' depends on [|g]| 2 + [[ha] |, 2sps

used later in Section 4.6), we make use of the following bound
lg*]
that gives rise to the local existence time T = (

+ Aol 2

_3 _3_g
e SA2 gl + AT g

e < [191 2 + [l

s S

_s
H) 3. in this case, with

constant C' dependent to Hh1Hstgg(
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4.5.1. Uniqueness of Solutions

In this section, we exhibit that the solutions to the equation (4.1) constructed
above are unique. The uniqueness statement of the Theorem 4.1.2 for s > % follows
from an energy argument which we want to illustrate next, and then using the smooth-
ing theorem we will extend the uniqueness argument to the whole well-posedness range.
Hence first consider the smooth solutions u and v of (4.1) with sufficient decay. Then

using u(x,0) = v(x,0), u(0,t) = v(0,t) and u,(0,t) = v,(0,t), we compute

O|lu — UH2LQ(R+) =2Re iu/o (|ul*u = [v]*v) (u — v)dz,
hence, for any ¢ > 0, integrating this and then using Sobolev embedding H*(R") C
L>*(RT), s > 1/2, we obtain

2
H(U—U)(t)HLg(Rﬂ_ (HuHLtOZ[OT]LOO(RJr +HUHLt°Z[ L (RY) /H HLZ(RﬂdS
2 2
S (il e + 100, eny) [ 10— 006 ey
0

Since, by the local theory, the solutions u and v belong to CYH:([0,T] x RT), this
with the Gronwall’s inequality imply that « = v. The uniqueness of rougher solutions
follows from taking convolution of u — v with smooth approximate identities and then
carrying out a limiting argument as usual, see for instance [70]. Also since the norms
are taken on R™ in the energy estimate above, the restriction of solution to the right
half line is independent of the choice of extension of the initial data. Next we will

prove the uniqueness of the local solutions in the case s € (—1 by utilizing the

33)
uniqueness obtained above for s > % and the smoothing estimate from Theorem 4.1.3.
Here we follow the arguments of [68]. We get started by considering data (g, hy, ho) in
H:(RT) x H (R+) X H (R+) for s € (0,3%). Let g. and g. be two H*(R) extensions
of g € H*(RT). Associated to these extensions let v and @ be the fixed points of I’

defined in (4.18). Next pick a sequence g* € H2(R1) converging to g in H*(R™).
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Then, by Lemma 4.5.1 below, we may assume that ¢g* and G." are H%JF(R) ex-
tensions of g¥ that converge respectively to g. and g, in H"(R) for r < s < % Running

a contraction argument on the set By N By where

Bl = {u : HUHX%wa S C( ||ngH%+(R+) + thuH%Jr(RJr) + Hh‘QHH%vL(R+) )}

By = {u: Jullos < OOl + il y2ss o + el 21 )
we construct H %JF(R) solutions u* and ¥ to the equation (4.1) associated to the exten-
sions g* and gNe]€ respectively. At this juncture we make use of the smoothing estimate

of Theorem 4.1.3 to obtain local existence time

T = T(1lgll ooy Wl 2 g Il 251 )

for s < % By the uniqueness of H 2% solutions obtained above, the restrictions of
solutions u* and @* to RT are the same. Since, by the fixed point argument, u* — u
and ¥ — @ in H* (R), we then have u|lg+ = U|g+. Iterating this argument the

uniqueness for s > —% follows.

Lemma 4.5.1 (See [69]). Fiz —3 < s < 1 and k > s. Let f € H*(R") and g €

HF(RY). Let f¢ be an H*® extension of f to R. Then there is an H* extension g¢ of g
to R such that

er - geHHT(R) S Hf - g”H$(R+) forr <s.

4.6. Proofs of Theorem 4.1.3 and Theorem 4.1.4

Proof of Theorem 4.1.3. By (4.18), for t € [0,T] we write the difference of nonlinear

and linear solutions as

u(t) = W(0, hy — p1, ha — pa)(t) = 1(t) /0 W ()T uPudt’ — n(t)W5 (0, a1, 42)(2)
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where

q1(t) = n(t) Dy ( /O t Wt /T)|u|2udt’),
qa(t) = n(t) Do ((91 [/Ot Wt’tln(t’/T)|u\2udt/} )

Therefore using the embedding X*2+ ¢ COH? in (4.10), (4.13), Lemma 4.4.3 and then

Proposition 4.4.5, we have

lu — W5(0,hy — p1,ha — p2)llco gota

t€[0,T] " zer+
t
5W/Ww4mwnmﬁM'
0

Xs+a’%+ + HWS(07QI’Q2)HC’?H;+‘1

S H77|u|2u‘ yota—d+ T ||Q1||H;25+2E+3 + ||C]2||Ht25+2a+1
2 ||77|u|2u||Xs+a,—%+ for — % <s+a< %
< ol .-
H77|u‘2u‘ so+a—b+ + H’]’/|u‘2u‘|x%+’2s+2¢175 for % <s+ta< g

By Propositions 4.4.6, Proposition 4.4.7 and Theorem 4.1.2 along with the local theory,
this is bounded by

oo S (gl

so the claim follows. O

3
Jul ey + Il yosgs g+ el ) )’

Proof of Theorem 4.1.4. Fix T > 0 and assume the growth bound ||u|

Hs(RT) < f(T)

2543
Ho2(R+) for some s; > =57 S2 2

for f depending on ||g|

Hs(R+)> |7 | o1ty and |72

2£l - Using the final claim of the proof of Theorem 4.1.2, we may pick the local
existence time based on f(T): § ~ (C + f(T))~3 where C is a constant proportional

to ||h1||H2ﬁsi+r3(R+) + ||h2||H%(R+). Therefore for J ~ T/§

|u(J8) — W (g, ha, ho

Mirzzz,
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J
D Wi (u(kd), b, ha) = Wil s (u((k = 1)8), hu, ho)

5 ze§+

Z W5 (k). i, o) = WLy = 1)0) P, )|y

S Z Wi ([u(kd) = W )s(u((k = 1)6), ha, ha)], 0,0)] mete,
< Z [u(kd) = W 5(u((k = 1)8), h, hs)| e, S JH(TP SAT)VH(T)S

where we have used Remark 4.2.3 in the second and third inequalities. Also the implicit

constants just depend on ||h1|| 2543 oy , || A2 g2 )’ Then we have

[u(T)] Hs+a(R+) ST AT ? + ||W0 97h17h2)‘

To bound this, first recall that

Hsta (R+) .

W(;F(%hljh?) = WTge + WOT<Oa hi —p1, ho _pZ)

where py(t) = n(t/(T))Do(W'ge), pa(t) = n(t/(T))Do(0:[W'ge]). Then by Lemma
4.2.2

||W0T(9,h1> h2)||Hs(R)

S llgel

S llgl

HoR) T HX(O,OO)(hl - + HX(O@O)(hQ - p2)HH25T+1

()
w T P2l 2

ey +llRall2sgs )+ llhell 2 ot [ e

(R+) ®

We estimate p; and ps by writing n(t/(T)) = Z§21 n;(t) and then using Kato smoothing

inequality (Lemma 4.4.1) as follows

1P1ll zsge g + IP2ll 2 ) S AT N 9ell oy S (1) 9]

Hs(RF) -

So then we have

W5 (9, hu, hz)|

ey S Oy + 1l y2sgs )+ ol

2 R+
which leads to the bound

(D) teqry S D AD)T + gl

H5+a(R+ :| + ||h1||H23+§a+3

+ ||h2||st+§a+1

(R) (R¥)
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When s = 2 and s; = s = 1, Lemma A.0.1 implies that f(¢) ~ 1. As a result

Y

this and above bound yield that ||u(t)]| . g+ S (T) for 2 < s < 3. O
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5. THE PERIODIC HIROTA-SATSUMA SYSTEM

5.1. Introduction

The Hirota-Satsuma system is a system of coupled KdV equations, introduced
by Hirota and Satsuma in 1981, [71]. In this chapter, we consider the Hirota-Satsuma

system with periodic boundary conditions

(

Us + AUy + 3a(u?), + B0}, =0, =z €T

UVt + Vpae + 3uv, = 0, (5.1)

K(u, V) |t=0 = (ug, vo) € HS(']I‘) x H*(T)

2w

o f(x)dz = 0}. The results of

where a € (3,1), 8 € R and H*(T) = {f € H*(T) :
this chapter have appeared in [72]. Here the choice of the parameter a is related to
the resonance equations coming from after applying the normal form transformation
to the system (5.1). The system (5.1) is a generalization of the KdV equation (when
v = 0) and describes the interplay of two long waves evolving with different dispersion
relations. Note that the mean zero condition on v cannot be applicable since the system

(5.1) does not preserve the mean value of v, and that the momentum conservation holds

for uw only:

/u(x,t) dz = /uo(x) dz.

The system (5.1) also satisfies the following conservation laws [71]:

Ey(u,v) = /u2 — %02 dz,

(5.2)
Es(u,v) = /(1 —a)u? —26v? — 2(1 — a)u® + 2puv? dr.
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As a consequence of these conserved energies, it turns out that the energy space
for the system is H' x H'. No other conserved quantities seem to exist for (5.1) that
holds for any a and ; nevertheless for a = —%, the system is known to be completely
integrable, [71,73]. Before discussing the literature of the coupled KdV type systems,

it makes sense to review more recent well-posedness results of the KdV equation

Up + Upge + Uy, = 0

u(z,0) = ug(x) € H*(K) for K =R or T. o
Introducing the Fourier restriction spaces Bourgain extended the previous local well-
posedness results of the KAV equation to the L? level on R and T, [2]. Later in [74],
Kenig, Ponce and Vega proved the local well-posedness in H*(R) for s > —% and in
H*(T) for s > —1. The local well-posedness in H ~1(R) was established by Christ-

Colliander-Tao in [75]. In [76], Colliander-Keel-Staffilani-Takaoka-Tao obtained the

local and global well-posedness in H _%(T). The global well-posedness for R at the

endpoint s = —2 was proved by Guo [77]. By using the integrability properties of the
KdV equation, Kappeler and Topalov established the local and global well-posedness
in H~(T), [78]. Later, in [79,80], Molinet showed that the KdV equation is ill-posed
in H*(K) for K = R, T, s < —1. Finally, the global well-posedness in H~'(R) has
recently been obtained by Killip and Visan [81], and the study of the well-posedness

of (5.3) has been brought to a satisfactory conclusion.

The well-posedness theory of the Hirota-Satsuma system began with the work of
He [82], with the assumptions 0 < a < 1 and 5 < 0 on the coefficients, He obtained
the existence and uniqueness of the global solutions in L>([0,T]; H3(K) x H*(K)) for
K = T,R. In the real case, Feng [83] improved this result to the range s > 1 by
considering slightly general coupled KdV-KdV system. In particular, it was shown
that for @ # 1 and 8 < 0, the system is locally well-posed in H*(R) x H*(R) for s > 1.
Also with the additional assumption 0 < a < 1, the system was shown to be globally
well-posed in H*(R) x H*(R) for s > 1. Later, Alvarez and Carvajal [84] pushed the
local result down to s > % for the real case. They also showed that the system with

a # 0 is ill-posed in H*(R) x H*(R) for s € [~1,—-3/4) and s’ € R.
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Recently, Yang and Zhang [85] have studied the well-posedness of the Cauchy
problem for a class of coupled KdV-KdV (cKdV) systems in H*(R) x H*(R), those
including Gear-Grimshaw system, Hirota-Satsuma system, the Majdo-Biello system
etc. In particular, regarding the Hirota-Satsuma system, they have given critical in-
dex s* € {—%, 0, %} depending on the numeric value of the coefficient a for which the
Hirota-Satsuma Cauchy problem is locally well-posed in H*(R) x H*(R) when s > s*.
As regards to the periodic case, Angulo [86] showed that for a # 0, 1 the Hirota-
Satsuma system is locally well-posed in H*(T) x H*(T) for s > 1. With the additional
assumptions § < 0 and a < 1, Angulo further obtained the global well-posedness in the
same space within the same Sobolev index range that follows from the conservation of
the energy. Finally, in [87], Yang and Zhang have recently obtained the well-posedness
results of the cKdV systems on the periodic domain T as a follow up of their corre-
sponding work [85]. Here we shall merely summarize the well-posedness results of [87]
concerning the Cauchy problem (5.1). The results depend on the arithmetic properties
of the coefficients a and 5. When a = 1 and § = 0, the system (5.1) is locally well-posed
in H%(T) x H*(T) for s > 5. In the case a € (—o0, 1)\ {0}, as the resonace interactions
are relatively easier to control, the local well-posedness is established in H*(T) x H*(T)
for s > —}1; whereas in the remaining regime, a € [}L, 00) \ {1}, the resonances raise
special difficulties in which case one needs to know how well a given number can be
approximated by rational numbers (Diophantine approximation). The idea of con-
trolling resonances via the Diophantine approximation was initially implemented by
Oh [88] to the Majdo-Biello system on the torus to establish the well-posedness. Using
this approach, Yang and Zhang proved the local well-posedness in H*(T) x H*(T) for
s > min{l, s,+} with the mean zero assumption on the initial data uy. Here s, is
defined by means of a number theoretic parameter based on the arithmetic properties
of a. On account of the conserved energies (5.2) for the system (5.1), when 1 <a <1
and § < 0, the local well-posedness can be upgraded to global well-posedness for s > 1.
Also when a € (—o0, 1) \ {0} and § < 0, the direct application of the conservation of

FE4(u,v) and the corresponding local result yield the global well-posedness for s > 0.
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In the first part of the chapter, we study the smoothing property of the Hirota-
Satsuma system, in other words, we prove that the difference between the nonlinear
evolution and the linear evolution lies in a more regular space than the inital data
under consideration. The proof is based on the method of normal forms through dif-
ferentiation by parts introduced by Babin-Ilyin-Titi [14] and the Bourgain’s Fourier
restricted norm method, [2]. The idea of using combination of these methods in prov-
ing nonlinear smoothing effect on a bounded domain was first used by Erdogan and
Tzirakis for the KdV equation [16] and the Zakharov system [17]. The result for the
KdV equation is somewhat surprising since the KdV equation is known to have no
smoothing estimate on the real line. Recently, Compaan [15] studied the smoothing
properties of the Majdo-Biello system on the torus and proved the existence of global
attractors in the sense of arguments in [16,17]|. Here we continue the program initiated
by these papers. In our proof, via the normal form reduction, the derivatives in the
nonlinearities can be eliminated, and in return for this, the orders of the nonlinearities
increase (from quadratic to cubic) and many resonant terms come into play based on
the arithmetic properties of the coupling parameter a. In order to control the new

trilinear nonlinearities we rely on the X*? estimates.

In the second part, we concentrate on the description of long time dynamics of

the forced and weakly damped system:

/

U + AUz + Tu + 3a(u2>z + B<U2)fﬂ = f

UV + VUpgw + Y20 + U0, = g (54)

\(u,v)]tzo = (ug, v) € HY(T) x H'(T)

where the damping coefficients =1, v, are positive, § < 0, f, g are time independent,
and f € H' is mean zero, g € H'. To simplify the calculations, we will take v; = ~s;
the general case follows from minor modifications in the computations. The smoothing
estimates obtained in the first part will play an essential role in demonstrating that the
system (5.4) possesses a global attractor, also the result here answers the regularity of

the attractor above the energy level.
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Using the method of [15,17,39], roughly, the idea is to write the solution in terms
of linear and nonlinear parts and then to implement the smoothing estimates to the

nonlinear part.

5.1.1. Notation

In order to simplify the calculations, the notation O(9) is to be used in place of
a constant C'0 where C' might be dependent on the coupling parameter a yet not on
the variables involved in the calculations. The Fourier sequence of a 2 periodic L?

function w is defined as
1 27

:% ;

By recalling the notation (-) = /1 + | - |2, we define the Sobolev norms of u € H*(T)

(o u(z)e ™ dx, ke Z.

as follows

[l s = [1CR) u(R) 2 -

k

Note that for a mean zero function u € H?,

[l s = IR u(R) 2 -

The spaces X5 and X7 ? associated to the system (5.1) are defined by the norms

[l

xob = H<]€>S<T — ak?’)bﬂ(l{:, T)Heng

xob = H<l€>s<7 - k3>b@\(k77)He§LZ‘

0]

The restricted norms are also defined by

[l inf __|a|

ijg - t=u on [—4,0] X
s = -
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5.2. Statement of Results
5.2.1. Preliminaries

In order to state well-posedness results and hence to study the smoothing prop-
erties of the system (5.1) on the torus, we require special parameters related to given
numbers, called “irrationality exponent”, which might be used to learn how close given
numbers can be approximated by rational numbers. Irrationality exponent of a real
number arises in the study of Diophantine approximation theory. In our discussion, we

utilize these quantities in controlling resonances.

Definition 5.2.1 (See [89]). A number r € R is said to be approximable with power
i, if the inequality

0<‘ n‘< 1
7"__ —_—
kLo [kl

holds for infinitely many (n, k) € Z x Z*, and
w(r) = sup{p € R : ris approzimable with power u} (5.5)

is called the irrationality exponent of r.

We now review some properties of the irrationality exponent. Irrationality expo-
nent maps the set of real numbers onto the set {1} U [2, 00], see [90,91]. In particular,
for r € Q, u(r) = 1 whereas for irrational number r we have p(r) > 2. By the Thue-
Siegel-Roth theorem [92-94], for an irrational algebraic number r, u(r) = 2, also by
the Khintchine theorem [95], for almost every r € R, u(r) = 2. The local theory for
the Cauchy problem (5.1) is based on the critical index s, for 7 > 1 defined by

1 if p(pr) =1 or p(py) 23
Sy =
i3 < () <3
where p, = y/12r — 3. In connection with the well-posedness of the system (5.1), we

state some of the results of [87].
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Theorem 5.2.2 (See [87]). For a € [},00) \ {1} and s > min{1, s,+}, the Hirota-

Satsuma system (5.1) is locally well-posed in H*® x H*. In particular, given any initial

data (ug,vo) € H® x H® there exists 6 ~ (||uo] Hs)_% and a unique solution

ws + [[o]

(u,v) € C([—0,0]; H® x H®)

ws + [[vo]

satisfying ||U||Xs,;/2 + HUHX;(;M S [luol Hs
a, ’

Theorem 5.2.3 (See [87]). Let § < 0 and a € [,1). Then for s > 1, the Hirota-

Satsuma initial value problem (5.1) is globally well-posed in H® x H*.

5.2.2. Smoothing Estimates for the Hirota-Satsuma System

Applying normal form transformation to the system (5.1) leads to the resonance

equations (for ky + ko = k)

ak® — k3 — k3 = =3k(ky — rik)(ky — rok)
k* —aki — ki = (1 — a)k(ky — 71k) (k1 — Tak)

where
1 +/12a -3 1 12a — 3 " -
T1:§++7 r2:§—+and lel/’f‘h T2:1/T2‘ (56)

Note that ry, r are the roots of the equation 3z? — 3z + (1 — a), which immediately
implies that 77, 75 are the roots of the equation (1 — a)a? — 3z + 3. Therefore, r; and
7; are algebraic only when a € Q. By (5.6), we notice that r1,7, € R if and only if
a > }1, and that 71,75 € R if and only if a € [}1, 1)U(1,00). In this chapter, we consider
the problem (5.1) for a € (4,1), also the problem for interval (1,00) can be handled
in a similar vein. As performing smoothing estimates, we will be dealing with many
expressions such as ak® — k3 — k3 and k® — ak? — k3 that appear in the denominators.
Controlling such expressions in the case they get close to zero relies on the following

lemma.
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Lemma 5.2.4 (See [87]). Ifr € R\ Q with u(r) < oo, then for any € > 0, there ezists

a constant K = K(r,€) > 0 such that the inequality
n K

e e[ Te (5:)

holds for any (n, k) € Z x Z*.

Note that when r;, 7, as introduced in (5.6), are rational numbers, by the Propo-
sition 5.3.1 below, we will still be able to use the inequality (5.7) for these numbers with
p(r;) = p(r;) = 1. Next lemma collects some invariance properties of the irrationality

exponent, which is proved in [87].

Lemma 5.2.5. The irrationality exponent defined by (5.5) satisfies

(i) For anyr € R and ¢ € Q, p(qg+r) = p(r),
(ii) For anyr € R and ¢ € Q\ {0}, u(qr) = p(r),
(iii) For any r € R\ {0}, u(3) = u(r).

Using the lemma above we may write

1(r2) = pu(71) = p(r1) = plra) = p(vV12a — 3) =: p(pa). (5.8)

With the notations introduced above we state our smoothing result as follows:

Theorem 5.2.6. Fiz s > 1 and a € (1,1). Consider the solution of (5.1) with initial
data (u(0,z),v(0,)) = (uo(x), vo(x)) € H¥(T) x H*(T). Let

1
§1—s8< min{l, S — 5, 5+2— M(pa)a 2s+1— :u(pa)}

Then, we have

u(z,t) — e %y € COHS, (5.9)

v(z,t) — e Py € COH. (5.10)

For almost every a, (5.9) and (5.10) hold with s; — s < min{l,s — 1}.
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When a = ?’m’;#(f, (p.q) € ZXZ with L <p <gq, firs > 1, then the smoothing

statements (5.9) and (5.10) are valid for sy —s < min{l—, s —1} instead. Assume that

~Y

we have a growth bound ||u(t)|| . + [[v(@®) |l S )P, for some B(s) > 0. Then

Hu(t) — e tadiy, ‘

_+93 0
e = e || < Classy sy ol Tuoll ) (34,

Remark 5.2.7. In the case the coefficients r; and ry in (5.6) are rational numbers,

which is the case when a is a rational of the form M

as stated in the above
theorem, we have to control some additional terms due to the resonances, in which
case smoothing is attained solely for s > 1. On the other side, if the coefficients rq, ro
are irrational algebraic numbers, which is the case when a is a rational number such
that a # ?’W’;#qz with € < p < ¢, then by (5.8), 11(pa) = 2 in Theorem 5.2.6 yields the
best possible smoothing. Indeed, the best regularity gain given by the Theorem 5.2.6 is
reached for almost every a € (;11, 1). As a consequence, with regards to smoothing, the
above discussion shows how the regularity level is unstable under a slight perturbation
of a within (1, 1).

Using smoothing estimates one can obtain growth bounds for higher order Sobolev

norms in the lack of complete integrability. As a corollory of the smoothing theorem

above, we obtain the following result.

Corollary 5.2.8. For any s > 1 and almost every a € Gp 1) for which p(p,) = 2, the
global solution of (5.1) with H® x H* data satisfies the growth bound

[u(®)]

where Cy depends on a, s, ||up

e < Co(1+ [t

e+ o)

s+ ||voll s and Cy depends on s.

Proof. Due to the conserved energies, H' norms of u and v are bounded for all times.
The idea is to use the result of Theorem 5.2.6 repeatedly to obtain the growth bound
for the Sobolev norms above the energy level. To use this, suppose that the claim of

the corollory holds for s > 1.
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Hence for s1 € (s, s+ min{l, s — 1}), Theorem 5.2.6 leads to
Hu(t) - e_“tagUOH + Hv(t) - e_wgz;oH <C(1+ |t|)1+%5(5),
He1 He1
from this and the fact that linear groups are unitary, we get
[[u(t)]

Continuing iteratively in this way, we reach any index s;. O

e+ Co(1+[¢).

e F 0@ gy < Nlwoll grer + vl

5.2.3. Existence of a Global Attractor for the Hirota-Satsuma System

The essential tool in establishing the existence of a global atractor for the dis-
sipative Hirota-Satsuma system (5.4) in this context will be the smoothing estimates
which are to be discussed later. The existence of global attractors makes sense only for
the globally well-posed problems, in this regard we note that the initial value problem
(5.4) is locally and globally well-posed in H' x H'. The local well-posedness follows by
using the estimates of [87] and the global well-posedness follows from the energy esti-
mate of Lemma 5.5.1 which also implies the existence of an absorbing ball. To set the
stage for the description of the problem, let U(t) be the semigroup operator mapping
data to solution in the phase space and recall the definitions 2.3.1-2.3.4. Therefore, by
Theorem 2.3.5, in the presence of an absorbing set, the proof of existence of a global
attractor reduces to proving asymptotic compactness of the evolution operator. In our
discussion, the proof of the asymptotic compactness of the flow depends very much on
the smoothing estimate for the forced and weakly damped system that we establish

later. Here we have the result:

Theorem 5.2.9. Consider the forced and weakly damped Hirota-Satsuma system (5.4)
on T x [0,00) with (ug,ve) € H' x H'. Then, for almost every a € (3,1), the equation
has a global attractor in H' x H*. Moreover, for any a < %, the global attractor is a

subset of H'T® x H*«,
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5.3. Proof of Theorem 5.2.6

We start by writing (5.1) in an equivalent form through differentiation parts. Be-
low >~" denotes the summation over all terms for which the corresponding denominator
is never zero. The requirement of the nonzero denominators for the sums not written

by this notation is provided by the mean zero assumption on wuy.

Proposition 5.3.1. Let ug € H°. The system (5.1) can be written as

)
8t(e*iak3t[uk + Bi(u,u) + Ba(v,v);]) = ekt [Ri(u,v,v)g + Ro(u,u, u)y
+Rs(u, v,0)i + p1(u, w)i + pa(v,v)]

0; (e (v, + Bs(u, v)x]) = e [Ra(u, u,v)i + o Ra(v,v,0)x

+R5(u7 u, U)k + P3(U, U)k}

\

where the terms are defined as follows

(f g Z fk1gk2 Bg(f g = —pk Z %
mtha=k 1 k1+ko= 2
k2fk1gk2
Bs( =-3 Z = ok —
k1+ko=
k2fklgk2hk3
y Y - —22
ot ﬁk1+kzz+:kg=k (kv + ko — r1k) (k1 + kg — 72k)
h
Ry(f, g, ), = 6ia Z W
k1+k2+k3:k 1
(k1+k2) (ka+ks) (ks+k1)#0
h
Ry(f.g.h)e=2i8 > fwk#
k1+k2+k3:k 1

2*: ks(kv + k2) fiey iy Pk

R
Ry(f,g,h), = 9ia k3 — aky + ko)® — k3

ki+ko+ks=k
" ks(ka + k3) fi, ro i
Rs(f,9,h)x = Z 3 3 — 33
Ky ey =k — CLk?l — (/{32 -+ ]{33)
6ta }
pi(f,9)k = __|fk| Gk, p2(f, 9)k = =28k frikGrok

p3(f) g)k = —3ik [(1 - rl)fmkg 1—i)k T+ ( )fmkg 1- rz)kz}
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Proof. Writing (5.1) on the Fourier side we have
Opuy — tak3uy, + 3iak > upup, +i8k >, vpvp, =0
k1+ke=k k1+ka=k

8tvk — ik?’vk + 31 Z kg’ukl Vg = 0.
ki1+ko=k

Via the substitution fi(t) = e "ty (t) and gp(t) = e *’tuy(t), the above system

transforms to

. _ tk:3—k:3—k:3 . —it k3—k23—k3
Oufx = —3iak >, e dat( 1 2)fk1fk2 —ifk > e (@ 1 2)gk19k2
ky+Ra=k b Lok

g = =31 > kpe MK ek £ gy

k1+ko=k
(5.11)
Implementing differentiation by parts to the first equation in (5.11) we get
8 e*3ikk1k2t 673i(lkk1k2ta
atfk: Z t( fk1fl€2) . Z t(fk’lsz)
k1 ko k1 ko
k’l-‘rk‘gfk: ki1+ko=k
—zt 3_k3—k3) et (ak®—k3— k2)8
gk1gk2 t(gk gkz)
oy U )y, 5 o
k1+ko=k ki1+ko=k
— 208k gr kGrak-

Note here that ak® — k3 — k3 = —3k(k; — rik)(ky — rok) where r; and ry are the roots
of the quadratic equation 3z% — 3z + (1 — a). So the resonant term corresponding to
the second sum of the first equation in (5.11) come up when r1k € Z, in which case we
would have 1,7y € Q. There is no contribution from k£ = 0 solution to the resonant
term owing to the mean zero assumption on uy. Following the arguments of [14], [16]

and using the first line of (5.11), we have

e—3z’akk:1 kgtat (fkl ka )
kiks

ki1+ko=k
—3ia(k1 +k2)(k2 +k3)(k3 +k1 )t

= —61a Z ¢ k’l fklkafkg

ki+ko+ksz=k
(k1+k2) (k2+ks) (ks +k1)#0

‘ e—it(ak3—ak‘;’—k§’—k3) Gia
—2if3 Z i fk19k29k5+_|fk:| k-

ki+ko+ks=k
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Likewise using the second line of (5.11), the fourth sum in 9, f; can be written as
k2€—it(ak3—ak‘;’—k§’—k§’)

—N
Z/B Z (kl + kg — le)(kl + kg —

k1+ko+ks=k

Qk)fklgkzgkg-

As for the second equation in (5.11), again we use differentiation by parts to get

* k2at(e—it(k3—ak3 fk gk * k, 6—1t(k —ak3 k3)
az‘,gk =3 Z k3 _ akd — =2 =3 Z ]{/’3 (atfklng)
ey +ko=k ! ey ko=

— 3ik [(1 = 71) fronga—rk + (1 — 72) frangi- 7’2)’6}

Note that in obtaining the resonant term we use the identity k% — ak? — k3 = (1 —
a)ki(ky — 71k) (k1 — 7ok) where 7; = 1/r;, j = 1,2. By the mean zero assumption on
ug, the only contribution comes just when 71k, 79k € Z in which case we need to have

71,72 € Q. Using (5.11), we rewrite the second sum above as follows

fzt 3—ak$—k3) ]{32

3 Z k% (atfhgkz)

k1+ko=

i e it(k? —aki—aki kD) (] 4 ko) ks
k1+ko+ks=k k? — a’(kl + k2)3 - kg

* e —RP—RS =R (kg + kg ks
_3i3 Z - 3 3 9k19ko Gk
k1+ko+ks=k k N a(kl + kZ) B k3

* etk —ak?—ak3 k) (Lo 4 Jog) kg
Z k® — ak? — (kg + k3)?

= —9%a Jr1 Fra Gk

-9 Jier JraGhs-

ki1+ko+ksz=k

Bringing all the terms together and reinstating the v and v variables yield the assertion.

]
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We integrate the system in Proposition 5.3.1 from 0 to ¢ to get
ug(t) — €%y, (0) = — By (u, u)i(t) — By(v,0),(t) + €t By (u, u)(0)
t -
By (0, 0)u(0) + [ IR 0, 00 (5)
0

+R2<u7 u, u)k(s) + RS(ua v, v)k(s) + P1 <u> u)k(s) + p2(v> U)k(s)] ds

t
0u(t) = €04(0) = ~Balu, o)u(t) + ¥ Bofu, 0h(0) + | [Rafusw,v)e(s

0

+ L Ry(v,v,0)1(8) + Rs(u, u,v)i(s) + p3(u, v)(s)]ds

(5.12)

In the following we give the proofs of a priori estimates for p; and Bj, j = 1,2, 3.

Proposition 5.3.2. For s; — s < 2s+ 1, we have

vl

2

o1 (u, )| H; -

Fors; —s<s—1,

15 (s )| gz S Mll g 0l g > 7= 2,3

Also for s1 — s <1,

1B (w, )l gz < lul

Hs U|H;-

Proof. The proofs of the first and third inequalities were given in [16]. As for the other

terms, for s; — s < s — 1, we have

o2 (s )l gz S (| ()™ 72 (k) (o) v

<R uell e 166 el S

H: U‘H;,?

where the last inequality is due to £ < (. ps estimate follows by the same argument
as well. ]

Proposition 5.3.3. For s > 5 and sy —s < min{1,s + 2 — u(p,)}, we have

1Ba(u, v)]

e S llul Hs v Hs -
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When a = W, (p,q) € Z x Z with £ < p < q, we replace the above

requirement by s; — s < 1.

Proof. Tt is enough solely to consider the case |ki| = |k2| by the symmetry.
Case A. |ky —rik| > %, |ky — k| > %
In this region,

\ak?’—k?—kg] = |3k(k1—r1k)(/€1—r2k)| Z ]k]maxﬂk’l—rlk\, |]{Z1—T2k} Z (Tl—T2)|]{Z|2.

Accordingly, since |k1| 2 |k|, we have the estimate

D R g [fo|

k1+ko=k

(k)*
(k)*

||B2(U,U) s S.J

< e (i

i
Assuming that s; — s < 1 and using Young’s and Hoélder’s inequalities successively, the

last norm above is majorized by

(k) il 1) o 5 I

1) kg [ (R 0k ()~ S el s a0l g -

Case B. |k — k| < % or [k —rok| < %

We consider the case |k —r1k| < i only, the other one is similar. Then as ry +17, = 1,
ki ~ rik and ky ~ r9k. This means that the sum under consideration consists of
a single term of order ~ k. We next make use of the estimate due to irrationality

exponent of ry:

r Y
oy — il = [bl [y — ’ > |k||k’£:1 9

for any € > 0. This allows us to estimate the multiplier in the definition of By(u,v) as

follows:

|ak® — K — k3| = 3|k||ky — rik||ky — rak]
> 3K (rq, 6)“€|2_“(T1)_6[(T1 —1y)|k| — 1/3} > |k‘3_“(”)_
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Therefore, using Holder’s inequality and the embedding ¢? < ¢*, we obtain that

| Ba(w ) n < ([ (k) =240 Ry |, || (R Gt =209 2 |,

< H <k>(51—28+,u(7‘1)—2+€)/2<k>5uk||£2 H <k>(51—25+,u,(7"1)—2+e)/2 <k>svk||g2
k k

S [lul

H: U|H;

where the last inequality stems from the assumption that s; —s < s+ 2 — p(ry). O

Proposition 5.3.4. Assume thatu € H*. Fors > 5 and s;—s < min{1, s+2—p(p,)},

we have

|Bs(u, )|

iz S g 0l -

When a = 3”(?;—3”‘12, (p.q) € Z X Z with £ < p < q, we replace the above requirement

by s; —s < 1.

Proof. Since there is no symmetry in this case, we consider the two cases:
Case A. k1| > |k|

In this region, |k1| 2 |k2|, so it suffices to show that

z*: <k>81uklvk2
oLy Uy =Tk by~ 7o) ||

Case A.1. “{31 - ?1k5| Z (5, |]€1 — ?2]{?| Z )
Notice that

S llul

Hs U|H;'

|(k’1 - ’7:1]{3)(]{51 — F2k>| Z 5max{|k1 - ’7:1]{3|, |k’1 - ’ng|} Z 5(7’:2 - ’7:1)|]€| Z |]€|
which yields the estimate:

LHS of (5.13) S || Y (k)™ Husy |[vg

k1+ko=k

i
but this has already been handled in the proof of the previous proposition, thus the

estimate in (5.13) holds when s; — s < 1.
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Case A.2. |[ky — k| < dor |k — k| <o

We consider the first case |k; — 71k| < §. Second case is analogous. In this case, we
have k; ~ 7k and ky = k — ky ~ (1 — 71)k, and hence |k| =~ |ki| = |k2|. As a result,
the values of k; and ks in the sum are dependent on k. Therefore, the bound

(b — 70k) (b — Tok)| 2 K|S HO0Fe by — k| > [K[2 1=

implies that

LHS of (5.13) S [[ (k)" >0y v, |

e I e I
provided that s; — s < s+ 2 — u(7).
Case B. |k1| < |K|
In this region |ks| < |k|. Thus
ke)* 1 g, vy
B -t 2 5.13
|| 3( w5 k3 CLkS k3 ( )
1 2=

By the mean zero presumption on u, k; # 0, thus we may write k&, = nk for some

|k~ <|n| < 1. Tt follows that
k* — ak} — k3| = [nk?||(1 — a)n* + 3 — 3n| > [k[*|(1 — a)n® + 3 — 3n| 2 |k|*.

Then the right side of (5.13) is bounded by

> R g o

k1+ko=k

UH;

2
lk

as long as s;1 — s < 1. O

Writing the equations in (5.12) in the space side and then using the estimates in

Propositions 5.3.2-5.3.4, we arrive at

t
—atd3 2 2 2 2 2 2
[ty = e 2o S ol o+ ull o3+ / o) e+ o) e
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t

|| [ e R v, 0)0) + Bafusw,0)(r) + R v 0)r)]ar| - (519)

0 H#1

and
o2 t
Jotey =] < Tl ool + e Wl + [ Tl o)
t

+ /e(tr)ag[R4(u7u7U)(r)—|-3%R4(U’U,U)(T)—|—R5(u,u,2})<7’)]d7" (5.15)

0 H#1

Let 6 be the local existence time coming from the local existence theory for the Hirota-
Satsuma system. Let ¢s(t) = (/) where ¢ is a compactly supported function
supported on [—2,2] and ¢ = 1 on [—1,1]. For t € [, 0], to estimate the H*' norms

of the integral parts in (5.14), (5.15), we need the following standard lemma, see [10].
Lemma 5.3.5. For % <b<1l,anda#0

' wd(t) /Ot e—a@i(t—T)F(r) dr

Therefore by the Lemma 5.3.5 and the embedding Xif(gb — L;’é[f 5.8 H? for b > %,

NP o -
Xé,b a,d

a # 0, we have

S

H!

/O e—a(t_r)ag [Rl (u7 v, 'U) (T) + RQ(uv U, u)(r) + R3(u’ v, U)(T)} dr

Liei-s4)

t
< wg(t)/ e a(t=r); [Ri(u,v,v)(r) + Ra(u,u,w)(r) + Rs(u,v,v)(r)]dr b
0 X
S Ry (u, v, )| xop-t + || Ro(u, u, u)| xooet o+ | Rs(u,v,v)| P (5.16)
and similarly
' t—r)o2 5
/ e (=)0 [R4(u, u,v)(r) + — Ry(v,v,v)(r) + Rs(u, u, v)(r)]dr
0 3a oo Hsl
te[—46,6]77F
S |]R4(u,u,v)\|Xf15,b_1 + HR4(U,U,U)HX1315,I;—1 + || Rs (u, u, /U)HXfl(s,b—l . (5.17)
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The following estimates for R;, j = 1,2,3,4,5 are necessary so as to close the

argument. Their proofs will be given later on.

Proposition 5.3.6. Assume that u € H*. For s > %, b— % > 0 sufficiently small and

sy —s<min{l,s — 3,5 +2— p(pa), 25 + 1 — pu(pa)}, we have

HRl (ua U, w)‘

it S Ml aore 0] geava o

X Xs,1/2 . (518)

When a = 3’*?;—?“2, (p,q) € Z x Z with < p < q, we replace the above requirement

by s1 —s <min{l,s — 3}.

Proposition 5.3.7. Assume that uw € H. For s > %, b— % > 0 sufficiently small and

s1— s < 1—, we have

||R2(U, v, w)|

ot S Nullggvm ol e ol g

Proposition 5.3.8. Assume that uw € HS. For s > %, b— % > 0 sufficiently small and

s1— s <1, we have

||R3(U, v, w)|

coror S g ol e g

Proposition 5.3.9. Assume that uw € H*. For s > %, b— % > 0 sufficiently small and

sp—s <min{l,s+ 2 — u(pa),2s +1— p(pa)}, we have

|’R4(U,U,U)‘|Xf1,b—1 5 HU‘ 15’1/2 HU’ Xf’l/Q :

When a = 3’)(’3;—3)%, (p.q) € Z x Z with £ < p < q, we replace the above requirement

by s; —s < 1.

Proposition 5.3.10. For s > %, b— % > 0 sufficiently small and s; — s < min{1l, s +

5 — 11(pa), 25 + 1 — p(pa)}, we have

||R4(u= v, U))|

ot S ellggorn [0l e 0

X Xls,1/2 .
When a = :”p(p*q—g”f, (p,q) € Z x Z with < p < q, we replace the above requirement

by s; —s < 1.

Proposition 5.3.11. Assume that v € H*. For s > %, b— % > 0 sufficiently small

and s1 —s <min{l,s — 1, s+ 3 — ju(p,), 25 + 1 — p(pa)}, we have

1Rs (, w, 0) | goro-1 S Nullianre [10]] sz
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When a = ?’Mpfq#‘f, (p,q) € Z x Z with £ < p < q, we replace the above

requirement by s; — s < min{l1—,s — 1}.

Using (5.16) and (5.17) together with the Propositions 5.3.6-5.3.11 in (5.14) and
(5.15), we have

—a 3 _+H3 2
Hu(t) —e tafuo‘ ot Hv(t) —e taZUOHHa < (Nluoll g + llvoll g+ )
t
2 2 3
(e RO )*+ [ O+ B0 e (g ol )

Next we shall obtain the polynomial growth bound stated in the theorem. To do so fix
t large. Let T'(r) = (r)?®). For r < t, we have that

[w() s + 10 ()l gge S T(E).

Therefore, for 6 ~ T(t)"2 and any j < t/8 ~ tT(t)2,

|utio) = (G = 0a)| |+ ||otio) = (G- 1) ST
Hs1 Hs1
where we have used the local theory bound
s,1 s < ) — s < .
fullges s S (G = D8 ge S T

Letting J = t/8 ~ tT(t)? yields that

HU(J(D _ efJéaagu()’ (ij)aaagu(j(;) _ ef(ijH)éaaiu((j _ 1)5)‘

<

N

Hs1

M-

7=1

S JT ()3 =~ tT (1),

B

Juti8) = (i = 1)9)

1

<.
Il

The similar estimate gives the same bound for v completing the demonstration of the
growth bound. The continuity in H** x H*®' follows from the continuity of u and v in

H*, the embedding X**, X" < CYH?, and the estimates stated above, see [16].
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5.4. Proofs of Smoothing Estimates
5.4.1. Proof of Proposition 5.3.6

We start by defining the functions:

filk,7) = (k)* (T — ak®)2 [y (7)),
falk,m) = (k)* (1 — k®)2 [0 (7)]
falk,7) = (k)*(r — k)2 |y (7))

Therefore using these functions, the convolution structure suggest to prove that
2

3
/ S MG ) )| T, (5.19)
S ki=k Jj=1

.
e

where

_ Koo (K)° (K1) % (ko) " (hs)
’]{1 =+ kQ — leHkl + kg — 7"2]?’<T — ak3>17b<7'1 — Cl]{:f>1/2<’7'2 — k§>1/2<7'3 — k§>1/2

By the Cauchy-Schwarz inequality in 7, 7, ki, ko variables, and the application of

Young’s inequality, the norm in the left hand side of (5.19) is estimated by
([ 30 a8) i 5+ gy S / > ) H 1z
S rj=r 2ki=k S = D ks=k
Accordingly it suffices to demonstrate that the supremum above is finite. The imple-
mentation of the Lemma A.0.6 in the 71 and 75 integrals remove the 7 dependence in
the supremum and yields a bound

25 e 2 (Fey ) =28 () =25 (k — kg — kip) 2
sup (k)= Z — —
K (k1 + ko — 11k)2(ky + kg — rok)2(ak® — ak$ — k3 — (k — ky — ky)3)2-2

k1,k2

By a change of variable ky — n — ky, it suffices to estimate

251 N (k1) (n — k1) > (n — k) "*|n — ky|?
sup(k) 2 (0 =) — rak 2 ek — ok — (n—a)r = (h—mmr s 20

k1,n

Case A. ky =k
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In this case, the supremum in (5.20) is replaced by

251—25 <n_k>_4s|n_k‘2
sup (k) Zn: (n —r1k)2(n —rok)?

*

k

Case A.1. |n —rk| > d|k|, |n — rok| > k|
Note that |n| < [@} |n —r;k|, 7 = 1,2. Therefore, in this region [n — k| < |n — rjk|,

j = 1,2. Then the supremum is bounded by

*

Sup<k>25172372 Z<n o k>74s S Sup<k>25172372 S 1’
k k

n

for s1 — s <1.

Case A.2. § < |n—rk| < 0|kl or § <|n—rak| < 0|k

Assume that § < |n —r1k| < 0|k|, the other case is similar. Notice that since |[n — k| <
(1 —ry)|k| 4 0|k|, we have |[n — k| < |k|. Also the estimate |n — rok| 2 |k| follows from
|n —rok| > (11 — ro)|k| — |n — k| > (r1 — ro)|k| — 9. As a result, for small but fixed

0 > 0, using the Lemma A.0.6, the supremum is majorized by

s1—2s - n— k,>—4s s1—2s — 51—25—
sup 7 30 It = g < G S

k

provided that s; — s < 1.

Case A.3. |[n—rk| <dor|n—rkl<d

Suppose that |n — rk| < 9, the other case can be dealt in the same way. We note
that |n — k| > |k|, |n — k| > |k| and |n — rik| > |k|'"#(")=¢ These estimates

251 —65—242u(r1)+2¢
wr+2¢ < 1 whenever

imply that the supremum above is bounded by sup, (k)
s1—85<2s+1—pu(ry).
Case B. k1 # k
In this case we consider the following cases to show that the supremum (5.20) is finite.
Case B.1. [n —rik| < d or |n —rk| <0
Assume the first case |n — k| < §, the other case follows from a similar treatment. In
this region, |n — k| 2 |k|, |n — rok| 2 |k|. Via these estimates, the resulting bound for
(5.20) is as follows

L Z 3 _<k1>32i<n __k1>323_(n __kl)23 226"

k (ak3 — ak} — (n — k1)? — (k —n)3)

n~rik
k1

(5.21)
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Case B.1.1. |ky| < 0|k
In this region, (1 —d)|k| — 3 < |n —rk| < (r1 +6)|k| + 0. As u is mean zero, k; # 0,
hence we may write k; = mk for some |k|™' < || < 8. Also n = rik + 1, for some

|n2| < 0. Using these we obtain

lak® — ak? — (n — k1) — (k —n)?|
— [ = ) (mik2 (1 = @) (1 ) = B10) =+ Ba(2rs — 1= )k + 303
> |k — k| <|k!(3r1 — (1= a)(1+40) —36(2r — 1 +6)) — 352)

2 K[k — k.

Therefore,

(521) 5 Sup<k>2s174574+2b+2u(r1)+26 Z<kl>72s <l€1 o k>2b72 5 Sup<k>2$174576+4b+2,u(r1)+26
k k
k1
which is finite so long as s —s < s+ 2 — u(ry).
Case B.1.2. |n — k| < 0|k|

Firstly note that (r; — 0)|k| — 6 < k1| < (r1 + 0)|k| + 0. We need to bound:

. k >725
[\ 251~ 4s—2+2u(r1)+2¢ (n 1 .
supth) ; (P —akd —(n—Tn)? — (k—n)3)2 &
1
n~rik

In the case kk; < 0, we write n — ky = mk and n = rk + 1 for some |n;| < 9, [n2] < 9

(5.22)

to get

lak® — ak?—(n — k)® — (k —n)?|
= (1} = m))k* — aki + 3ma(1 — 11)*k* = 35 (1 — r1)k + 3|
> |(r] — m)k® — ak?] = 30(1 — r1)*k* — 36%(1 — r1)[k| — &°
> (13 — k> = 35(1 — r)?k* — 36%(1 — ry)|k| — 6°

2 kP

by taking sufficiently small .
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This yields that the supremum is bounded when s; — s < s+ g — pu(r):

(522) 5 Sup<k>2$1—45—8+6b+2u(r1)+25 Z <TL . k1>—2s
k

k1
n~rik

5 Sup<k>231—45—8+6b+2u(r1)+26 5 1.
k

Next we consider the case in which kk; > 0. Observing that (n, k, ky) — (—n, —k, —ki)
is a symmetry for (5.22), we may assume that k,k; > 0. By this assumption and the
inequality |n — rik| < §, we must have n > 0 as well, otherwise we would have

|n— k1| > |n| ~ r1]k|. For this case we just write n = r1k+mn for some |n| < ¢ to obtain

lak® — akd—(n —ky)® — (k —n)?|
= |ky — k||(1 — @) (K* + kky + k2) + 3(rik +1)2 — (rik +n) (ks + k)|
= k1 — k||(1 — @)k} + (=3r1 + 1 — a)kk; + O()(k + k1) + O(5?)|
2 |k — klle

where the last inequality is always valid for k; satisfying (1 —§)k—0 < k1 < (r1+0)k+4
with sufficiently small 6. Since |k — k| 2 1,

(n — k’1>72s
(0~ R

(522) 5 Sup<k>251_43_2+2ﬂ(’f1)+26 Z
* k
n~rik

_ —2s
< sup ()2 B ) H2e < Z (k1 —rik) ™ _ Doy o862 ()2
k1

k Gk P

is finite provided that s; — s < s+ 2 — p(ry).
Case B.1.3. |n — k| > 0|kl |k1| > 6|k|
Note that |n — k| < (27% + 1) |k1| + 0. Since s > 1/2, we have

<k1>723+1 <TL _ k1>725+1
(ak? — ak} — (n — k1)? — (k — n)3)2-2

5.21) < sup(k 251 —2s—44+2p(r1)+2€
(5:21)  sup(h >

nx>~ry

k1



S Sup<k>281*6872+2u(7'1)+26 Z <CL/€3 _ ak:i’ _ (n _ k1>3 _ (k’ _ n)3>2b72

k n~rik

k1

5 Sup<k>2sl—65—2+2p(r1)+2e 5 1
k

whenever s; —s < 2s+ 1 — pu(r).
Case B.2. 0 < |n — k| < d|k| or 0 < |n —rok| < J|k|

111

Assume that 6 < |n—mrk| < §|k|, the other case can be treated in a similar fashion. In

this region we note that |n — rok| > (11 — ro — 0)|k| which implies |n — rok| 2 |k|. The

other required estimates are (1 — 9)|k| < |n| < (r1 +9)|k|, |n — k| 2 |k|. Accordingly

we need to bound:

o k’ >—23<n _ k,l>—25(n _ k,l)Q

92 < k 281 —2s—2 < 1 .

(5.20) < SI;P< ) %: (ak® — ak? — (n — k1) — (k — n)3)2-2
|k|/4<|n|<2|k|

Case B.2.1. |ky| < dk|

Notice in this case that |[n — ki| < |k|. Hence the supremum above is bounded by

sup(k)zsl_QS Z <k1>_28<n—k51>_25 55up<k‘)251_28 Z <n>—25
g iy g In|>[K|/4
In|>|k|/4
5 sup<k>251_48+1 S 1
k

provided that s; —s < s —1/2.

Case B.2.2. |n — k| < 0|k

The computation for this case is the same as that in the previous case.
Case B.2.3. |ki| > dlk|, |n — k1| > O|k|

Here |n — k1| < |k1| which leads to the bound

k —2s+1 _ k —2s+1

sup (k)72 Z 3 < 31> in 3 ) 3\2-2b

k ™ (ak? —ak? — (n — k1) — (kK —n)3)
|n|<2|k|

k ™
In|<2[k|

< sup (k) > 7% Z (ak® — ak? — (n — ky)® — (k —n)®)?72 <sup(k)?1 707 <1
k
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1

for s; — s < 2s — 3

Case B.3. |n — rik| > 0|k, |n — rok| > 0|k

In this case, we make use of the inequality |n — k1| < (%) |n — rik| + |ki| so as to
have |n — ki[> S (n — ki) (Jki| + |n — mik]).

Case B.3.1. |ki| > §lk|, |n — k1| > O|k]

In this region, using the inequality above, the supremum (5.20) can be bounded by

251 —45—2 (n— k)2
Sllip<k'> Z <ak3 _ ak% _ (n _ k1)3 _ (k _ n)3>2*2b

ki,n

< k, 281 —4s5—2 n— k’ —2s
< sup(k) > (n—k)

n

S Sup<k>251—4s—2 5 1
k

as long as s1 —s < s+ 1.

Case B.3.2. |k1| < 0|k

In this case, the inequality |n — k1| < <%) |n — r1k| gives rise to the bound

(5.20) S sup(k)** 2 Y (ki) 72 (0 — ki) P (n — k)7

k ki,n

< sup()1 2 S () 2 — )7 S sup(l) 1 H 2 S 1
k k

n

for s; — s < 1.

Case B.3.3. |n — ky| < 0|k|

The computation in the preceding case works for this case as well.
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5.4.2. Proof of Proposition 5.3.7

Following the argument in the proof of Proposition 5.3.6, we need to show that

the supremum

kl 2s k,2 —2s k—kl—kz —2s
3 (k1) ™™ (k) > )

sup(k)™ TP (= k) (E — o) (ks & k)7 7

k

k1 0
(k1) (k=) (k— k) £0
is finite. By the change of variable ky — n — ky, it suffices to show that

25, kl —2s5—2 n — kl —2s n—k —2s
S%p<k> Z<n§2—>2b<k1 _< k>2—2b><n _< k — ]{?1>2—2b' (523)

k1,n
is finite.
Case A. k1| 2 |k|
In this region,
a2\ k) T — k) 2 — k) .
(5.23) < sup(k)’ > O S sup(k)*or
ki,n

which is finite provided that s; —s <2 —b.
Case B. |ki| < |k

In this case, the spremum is finite for s; — s < 2 — 20b:

—25—2<n o k1>—2s<n o k>—2s
(n)2=2(n — k — k)22

(5.23) < Sup(k>251—2+2bz (k1)

ki,n
k >—25—2 <n _ k1>—25<n _ k>—2s
< k’ 251 —2+2b < 1
~ Sl;p< > kzh; <k’—|— k1>2,2b

S Sup<k>251—25—4+4b S 1.
k

5.4.3. Proof of Proposition 5.3.8

Proceeding as in the proof of Proposition 5.3.6, it suffices to show that the supre-

muin

L i Y L e

p ot {ak — ok — K — (k= by — k)22
ko



114

is finite, or equivalently, by the change of variable ko — n — k1, we shall show that the

supremum
25—2( _ k1>—2s<n _ k>—2s
5.24
sup z?; ak3 — ak:?’ (n—ky)3 — (k —n)3)2-2 (5.24)
is finite.
Case A. k1 =k

In this case, we have

(5.24) < sup(K)* 223 (0 — k) < sup() 22 < 1
k

k
n

for s; —s <1.

Case B. k1 # k

Case B.1. |ki| > dk|

In this case, (5.24) is finite provide that s; — s < 1:

Sup<k>251722<k1>72s<n _ k1>725<n - k>725 5 Sup<k>25172572 S 1.
k

k k10
n

Case B.2. |ky| < |k|
Case B.2.1. |n — k| < dk|
In this case, we have |n — k| > |ky — k| — |k1 —n| > (1 — 20)|k|. By writing k1 = ik,

n — ki = ok for some |k|71 < || <6 and 0 < |ny| < §, we obtain

|ak® — ak} — (n — k1)* — (k —n)*| = ‘/f?’((l —m =)’ —a+ an +77§’)‘

=K1 —a+ 00l 2 k.

Using the bound above we get

<k1> —2s5—2 <k1 _ n>—25

5.24) < sup(k)?172s
(5.24) kp<> Z

3\2—-2b
= (k)
[n|<|k|
< SUp(k?)QSl —25—6-+6b Z —25—2 <k’1 _ n>—25 5 Sup<k3>281_25_6+6b 5 1

ki,n k
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as long as s;1 — s < 3 — 3b.

Case B.2.2. |n — k| < §k|

In this case, we have |n — ki| = |k|. Writing k; = mk, n — k = ok for some |k|™! <
Im| <0 and 0 < |no| <6, we get

ak? —ak] = (n— k1) = (k= 0)’| = & (1 =+ )" = a+ an} — )

=K1 —a+ 00| 2 k.

Proceeding as in the previous case the supremum (5.24) can be shown to be finite in

this region if s; — s < 3 — 3b.
5.4.4. Proof of Proposition 5.3.9

Using the arguments of the proof of Proposition 5.3.6 we are left with a supremum

*

—2s —2s _ o —2s
sup(k:>251 Z <k1> <k2> <k k1 k2> _
k ko (B2 —a(ky + ka)® — (k — k1 — ko)?)
|k — k1 — ko|?|ky + kol?

(k3 — (k — ky — ko)? — ak? — ak3)>=20"

X

By a change of variable ko — n — kq, the supremum above takes the form

260\ (k1)=*(n — k)~ (n — k)~**|n — k[?
sup(k) ; (TR — k)2 — ok —a(n — k) = (k= mrs (O)
k170

Note here that the condition n # 0 results from the factor n? appearing in the denom-
inator of the prior sum that is reduced to the one in (5.25).
Case A. [n —mk| <dor|n—mk|l <6

Assume the first case |n — k| < . Handling the other one is similar. Note that

(ri—D]k| =0 <|n—Fk < (r—1)|kl+0
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and |n — k| > |k ‘,flf%ﬂe > |k|'=#(1)=¢ These estimates imply that
_ * k >—25<n _ /{;1>_25

5.95) < k 251 —25—2+2u(71)+2¢ < 1

(5.25) S Sl;p< ) 2 (k3 — ak} —a(n — k)3 — (k —n)3)2-2

nz?l k
k10

Case A.1. [k1| > 6|k|, [n — k1| > ok|

The supremum above in this case is bounded by

*

Sup<k>23176572+2u(?1)+26 Z <k3 _ ak? _ a(n _ k1)3 _ (k _ n)3>2672‘
k

nzﬂ k
k1740

Write n = 7k + n for some |n| < 0 to get

k® — aki—a(n —ky)* — (k —n)?|
= |(71k +n)[3ak} — 3ari1kik + O0) (k1 + k) + O(62)]]
> |3ak? — 3arikik + O(8) (k1 + k) + O(6?)).

Use this estimate along with the second claim of Lemma A.0.6 for the sum in k; to
conclude that the supremum is finite whenever s; — s < 2s + 1 — u(7).

Case A.2. k| < 0|k

Here |n — ky| 2 |k| since |n — ky| > (71 — §)|k| — d. As above we write n = 1k + 7 for

some |n| < J to obtain

|k® — aki—a(n — ky)* — (k —n)?|
= |(F1k + n)[Baky (T1k — k1) + O(0) (ks + k) + O(0%)]] Z [k ||k,

It follows that the supremum is bounded by

—2s5—1
2s1—4s—2+2u(71)+2€ <k1>
Sl;p(/@ ' . ’;7&0: (kY= f,S%p(k)
1

that is finite only if s; — s < s+ 2 — u(r).

251 —4s—64+4b+2u(71)+2€
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Case A.3. [n — kq| < k|
Clearly |ki| 2 |k|. Moreover, first writing n = Tk + 7 for some |n| < d, and then

reinstating the variable n we get
k* — ak? —a(n — k)? — (k —n)?| = |n||3aki(n — ki) + O(8)k + O(8%)| = |k|*|n — ki).

Therefore, by the mean zero assumption on u, n — k; # 0, we have
_ —2s—1
<k1 TL> <

251 —4s—242(71 ) +2¢ 251 —4s—6+4b+2u(71)+26 <
s%pr) >, D Sl;p(/f) Sl
nﬁ?lk’
a2k

provided that s; —s < s+ 2 — u(r).

Case B. § <|n —7k| < d|k| or 6 < |n— k| < J|k|

Suppose that § < |n—7k| < J|k|, the other case is analogous. Notice in this case that
|n —Taok| 2 |k| since |n —rok| > (Fo —71)|k| — |n —T1k| > (72 — 71 — 0)|k|. Furthermore,

(r1—1—=20)|k| <|n—k| <(ri —1+0)|k|]. So we have

26125 (k) (n — ky) 2
(5.25) 5 sup(k) % (% — ak? —a(n— ky)® — (k — n)Pyz-2"

k150

Case B.1. |ki| > k|, |n — k1| > d]k|

In this region, using Lemma A.0.6 the supremum is bounded by

Sup<k>23174s Z <k1>728

k = (k3 —ak? —a(n — k)3 — (k — n)3)2-2
k1|2 [K]
<k,>2sl—4s Z <k1>—2s
k1|2 [kl

< sup
k
< Sup<k>251—65+1 5 17

1

Whensl—s§2s—2

Case B.2. |ki| < 0|k
Notice that |n — k| 2 |k| because |n — ky| > (71 — 20)|k|. We write n = (71 + n)k for

some |n| < 0 to attain

[k — ak§ — a(n — k1)* — (k = n)?| = |71 + n)k[3aky (7 + )k — k) + O]
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> 3a(F — 20)° [k [[k[* 2 [K[*[Kal.

Thus the supremum is finite when s; — s < s + %:

s17a8 —<k1>_2s S§1 45— —2s— s1—4s—
s%p<k>2 1—4 Z IR Ssip<k>2 1 —45—3+4b Z (k)2 2+2b§81;p(/€)2 1—45—3+4b.
In| <kl k1 |< k|
k1 70

Case B.3. |n — k| < d|k|
In this case |ki| 2 |k| due to |ki| > (71 — 20)|k|. Accordingly, as in the previous case,

first writing n = (7, +n)k for some |n| < 0 and then reinstating the variable n, we have

k% — aki — a(n — k1)° — (k —n)*| = [(71 + n)k(3aki (71 + n)k — k1) + O(0)k?) |

2 |k n — k.

This, recalling the mean zero assumption on u, gives rise to the bound for the supremum

sup (k)14 Z (n— k)~ < sup (k)21 153+ <
In|<IE|
k1|2 |kl

on the condition that s; — s < s+ %

Case C. |[n —mk| > dlk|, |n — k| > d|k|

We note that |n| < rj;&] |n —7;k|, 5 = 1,2. In this region, this implies that [n — k| <

|n — 1 k|. Hence the supremum is finite if s — s < 1:

2512 (k)72 — ky)72%(n — k)%
(5.25) < S%P<k> ;0 B — ak? —a(n— k1) — (k — n)?y2-2b
k170
S sup(k)* 2 (k) > (n — k) — )
o
<k>23172 Z<n>723<n _ k>725

n

<k>23172572 5 1.

k
S sup

k
< sup

k
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5.4.5. Proof of Proposition 5.3.10

We are to handle the supremum

* k >—25<k2>72s<k‘ _ kl _ ]{;2>*23
k_ 281 < 1
Sl;p< > Z (kl + k2)2<k1 + k’g — 'Flk;)Q(k‘l -+ ka — ’7:2]{;)2
Bk kol R
((k — k) (k — ko) (k1 + k2))2-20

k1,k2

which is equivalent, by a change of variable ky — n — kq, to

25O (k1) ~2(n — k1) 7>°(n — k)>*|n — kJ?
sup (k) nzﬂ (n — 7k)2(n — 7ak)2(n(k — k1) (k + k1 — n))2—2" (5.26)
k1

In the case n(k — ky)(k + k1 —n) = 0, that is either k; = k or k; = n — k, (5.26) boils

down to

*

(n—k)~|n — kP

k‘ 2s81—2s _ _
sgp( ) nz#o (n —1k)?(n — mk)?

which essentially can be treated as that in the Case A. of the proof of Proposition
5.3.6. Hence the supremum is finite if 51 —s < 1 and s; —s < 25+ 1 — p(7;). Next we

move to the complementary case:
Case A. n(k —ky)(k+ ki —n) #0

In this case,

*

(5.26) < s%p<k>2slz (k1) (n — k1) (n — k)"**In — k?

(n — T1k)2(n — Tak)2(n)>2(n — k — ky)2> 2 (ky — k)22

Case A.1. |n — k| > d|k|, |n — k| > k|
In this region, |n| < <7T+5> |n — k|, j =1,2. Thus, |n — k| S |n — 71k, by which the

supremum above is estimated by

2512 (k1)=25(n — ky) 7% (n — k)~
sl,ip</€> Z (N2 2(n — k — k)220 (ky — k)22

n#0
k1
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5 Sup<k>281—28—2 S/ 1
k

Case A.2. § < |n—T1k| <0|k| or § <|n —Tak| < 0|k

Assume the case 0 < |n —71k| < J|k|, the other one is treated similarly. In this case,

the estimates

[0 —Tok| > (7 = F)Ik| = |n — 1k > (72 =71 = 6)|H,

(7 — O)k| < |n| < F + O)|k|, and (71 — 1 — &)|k| < |n — k| < (7, — 1+ 8)|k| lead to

the bound

(k)= (0 — k)~
(on — )22 (ky + i — )2

S%p<k>25172372+2bz

n#0
k1
251 —25—A4+4b (ki)
< sup(k)* " Zm
k1

S Sup<k>231—2s—6+6b 5 1
k

provided that s; — s < 3 — 3b.

Case A.3. |[n—mk| <dor|n—rk| <6

Assume that |n — 71k| < ¢, the treatment of the other case is similar. Note that

(i — D]kl =0 < |n—Fk| < (r —1)|k|+ 0, (5.27)

In — k| > (7o — 71)|k| — |n — 71k| > (72 — 71)|k| — 0. (5.28)

Therefore the supremum is majorized by

Sup<k>251—2s—4+2b+2u(a)+2e Z

(k)= (n — k)
<k _ k1>2—2b<n k= k1>2—2b'

(5.29)

n:?lk
k1
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There is merely a single term for the sum in n, that is the one with n ~ k.
So only the estimate regarding the sum in k; matters here. If |k1| < |k| then all
the other factors in the sum in (5.27) are of order 2 |k|; likewise if |n — k1| < |k
then the remaining factors are again of order 2 |k|. Thus in these cases, the sum in
(5.27) < (k)47 entailing (5.27) < (k)21 45 8+65+2u()+2¢ which is finite as long as
251 —4s—8+6b+2u(71)+2¢ < 0 or equivalently s1—s < s+5/2—pu(r). If |k —k| < |k
then the factors with exponent —2s in the numerator are of order = |k|; likewise if
|n — k — k1| < |k| then the factors in the numerator are of order 2 |k|. In the either
case, the sum in (5.27) < (k)~*73+4 giving rise to (5.27) < (k)21 0~ TH6b+2u(M)+2¢ <

provided that s; — s < 2s + 2 — pu(77).

5.4.6. Proof of Proposition 5.3.11

In order to handle Rj5, we need to divide the sum into pieces where k; + kg # 0

and kl +k'2 =0.

R5(u,u,v)k:_9kvkz 5 ( )|t | . 19 Z 3 (ko + K3 ) g, Uky Uy

— 13 (1 _ —— :
k140 (l/ﬁ (k kl) k1+k2+k3:k/€ (Lk‘l (k2 + /{33)
k1+ko#£0
k1#£0
* ]{7 ‘I‘ kl k, _ kl )
= -9k
Uk;) <k3 Tk~ (ht kP B ak — (k- ms) [ |
1
; - k3(k52 + ]{Zg)uk Uk, VE
+ 9 Z 3 3 17K2 33
k1+k2+k3:kk — aky — (k2 + k3)
k1+ko#0
k17#0

* ]{2‘1% ’2
= 18k 1
8 Uk Z (1 — (I)(k’l — ’IA“/lkf)(k’l + ?1k5)(/€1 — ?2]{?)(]{31 + ?2]{:)

k1>0
*

/{:3(162 + k3)uk1ukzvk3 .
Z k3 —ak§ — (ky + ks)® e

+ 97

ki1+ko+kz=k
k1+ko#0
k17#£0
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For the first sum, using Cauchy-Schwarz and Young inequalities and the Lemma

A.0.6 yields that,

* k >474s
. < L 251+2—2s < 1
xS sup(k) 2. (kr — 71k)2(k1 + 71k)2(ky — Tok)2(ky + Tok)2

k1>0

154

2
<l lfoll s

Thus it is required to show that the supremum above is finite. Since k; > 0 and
r1,73 > 0, to take advantage of the multipliers in the denominator of the sum in the
supremum, we consider the cases in which £ < 0 and k£ > 0. We just examine the k < 0
case as the other case can be treated similarly. Thus, by the sign considerations, both
|k — r1k| and |k; — Tok| are of order 2 |k|, k; by which the supremum is replaced by
the bound

* k >274s
)21 28 ~< ! S— 5.30
sup(k) kzw (ky + 71k)2 (ky + 72k)? (5.30)

First we observe that the case |ky + 71kl |k1 + 72k| < d]k| cannot arise concurrently,

because choosing § < @ entails that
(ro — 1) |k| < |k + T1k| + |k + Tok| < 26|k| < (T2 — 71) K]
We consider the following cases:
Case A. |]€1 +5:1k‘, ’kl -+ ;:Qk’ 2 (S‘k‘
In this case, |ky + k| > (%)kl, j = 1,2, that implies
5.30) < sup(k)s1—22 k)~
(5:30) S sup()* 272 3 ()

k1>0
which is finite provided that s; — s < 1.

Case B. |ky + k| > 0lk|, 0 < |k1 + T2k| < J|k| (or with the roles of ¥, and 7, are
switched)
Note that (7 — 0)|k| < k1 < (72 + 9)|k|. Then the supremum is bounded by

Sup<k3>251_25_1 Z <k1>—4s+1

k ey > k|
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5 Sup<k>251*65+1 g 1
k

forsl—s§23—%.
Case C. |ky +7k| > 0|k|, |k1 4+ r2k| < ¢ (or with the roles of 7 and 75 are switched)
Using the bound |k + 72k| 2> [k['7#(2)=¢ and k; ~ —7k,
(5.30) < sup(k)21-6s-242u) 42 <
k

as long as s; — s < 25+ 1 — (7). As for the X"~ norm of the sum S, proceeding

as before, we need to show that

sup(k)> 3 (k1) 72 (ko) 25 (k — ki — ko) 7|k — by — Kok — F|? <1
k b Tk, (K5 — akd — (hy + ks)] (k3 — ak — akf — (k — ky — kp)3)22 ™
k1+ko#£0
This, by the change of variable ky +— n — ky, is equivalent to estimate
k —25—2 —k —2s _k—2s —/{3216—]62
sup<k>2slz ~< 1>2 <Tl 21>3 (n 3 )l L | 1 = (031
k k17é0<k1 —7r1k)?(ky — 1m2k)2(k3 — aki{ — a(n — k1)? — (k —n)3)
n#0

Case A. |ky — k| < or |[ky —Tak| <0
The treatment of the both cases are similar, so assume that |k; — k| < 0. We have

the following estimates

Case A.1. |n — ky| > d|k|, |n — k| > 0|k
Using the inequality |n — k| < |n — ky| + |k1 — k[, the relation —2s 4+ 1 < 0 and the

above estimates,

k >72572<n o k1>725+1 <n _ k>723+1
31) < sup(k)? thy
(5:31) 5 sup(k) kauﬁ “RRPR =kl — a(n — k)P — (k= n)y2
1=7r1
n#0

281 +1 (k)72 2(n — k)72 (n — k)~25H!
+ Sgp%) Z (br — k)2 (R® — ak? —a(n — kn)? — (k —n)B)2—2

klﬁ?ﬂc
n#0
. 1
< k 281 —6s—242u(71)+2€
N St;p< ) 2 (k3 — ak? — a(n — k)? — (k — n)3)2-2

k)l Z;ﬁk

n#0
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which is finite provided that s; — s < 2s+ 1 — pu(7).
Case A.2. |n — k| < J|k|
Here [n — ky| > (r1 — 1)|k| — |k — n| — |k1 — 71k] > (r1 — 1 — 0)|k| — d. In this region

for |m|, |n2] < 0, we may write n — k = mk and k; — 71k = 1. So we have

k% —ak? —a(n —k)® — (k—n)®| = [k* —a(Fik +m0)® — a((L+m —71)k —12)° + 0}k

= [(1 = a+ 3ar; — 3ar} + O(8))k* + O(§)k* + O(6°)k + O(8°)] Z |k|?,

the last inequality follows since 77 is the root of the quadratic (1 —a)z? — 3z +3. Using

these bounds

% S St;p(/@

251 —45—8+6b+2u(71)+2e < 1
~J

(5.31) < Sup(k)231—4s—2+2u(’f1)+2ez
k o
for s — s < s+4—3b— pu(r).

Case A.3. |n — ki| < dk|
In this region, (1, — 1 = 9)|k| = < |n — k| < (r1 — 1+ 9)|k| + J. So we may write
n —k = nk for some n; with |k|™! < || < € and ky — 7k = 19 for some 7, with

In2| < & < e. Therefore,

kK —aki —a(n—k1)* — (k—n)*| = |k* —a(Fik+m)* —a((1+m —?1)k—n2)3+n§’k3\

= [(1 = a+ 3ar; — 3ar} + O(e))k* + O(8)k* + O(6*)k + O(6%)| Z |k,

it follows, as in the previous case, that the supremum is bounded for s; — s < s+ 4 —
3b — p(r):

s1—45— 1 € <n B k1>—23
(5:31) S sup(k)2 -t 22n I ZW < sup
n#0

<k>251—4s—8+6b+2u(ﬁ)+25 <1.
Case B. § < |ky — k| < d|k| or § < |k — rak| < 6|k
We assume the first case 6 < |k; — k| < d|k|; the second one can be treated in

a similar fashion. In this region, we have the estimates: |k; — k| < (71 — 1 + §)|k|,

[k = Tok| = (7 = F)Ik| = [k = Fik| > (72 — 71 — 6) K.
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Also |ky — r1k| < §]k| implies |k1| > |k|. Thus,

k1>72372<n _ ]{?1>72S<7’L _ k>72s|n _ k|2

5.31) < sup(k)*t < , . 5.32

( ) < kp< ) |kl|z>k (k3 — akf —a(n — k)3 — (k — n)3)2-2 ( )
n#0

Case B.1. |n — k1| > k|, |n — k| > d|k|
In this case,
<k1>—25—2<n _ k1>—28+1<n _ k.>—2s+1

5.32) < sup(k)?
( ) S kp< ) |k§k|<k3 — ak% —a(n — k1 )? — (k — n)3)2-2
n#0

—2s—2<n _ kl>_28 <n _ k>_2s+1|]€1 _ k‘

251 <kl>
+ s%p(/@ Z (k5 —ak? —a(n — ky ) — (k —n)3)2-2

ki[> |k
n#0
k >725
< ]C 2s1—4s < 1
S sup(h) §:<m—a@—am—kﬁuwk—m%%%
k1| > k|
n#0
Ssup()* 1 D7 () S sup(k) 0 1
|k1|>k|

Case B.2. |n — k| < §k|
The required estimate specific to this region is

Also the restriction |n — k| < d|k| entailing |n| < |k| is essential for the summability
in the n-variable. Let 7; be some constants satisfying |n;| < d, j = 1,2, for which

n —k =mk and k; — rk = nok. Then

kE —akd—a(n — k)% — (k—n)?

1
=k = a(f +m)’k® — a(l+m — 71 — )’ k® — ik
= |(1 —a+3ari (1 —71) + 0(5))k3| > |k]3.
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Using the above estimates

5.32 < sun(k 2s1—25—6+6b k —2s < sun(k 251 —25—5+6b k —2s
(5.32) < sup(k) > (k) Nkp<> > (k)

k
k1 |> || k1> |k
In| <1kl
5 Sup<k>2sl—4s—4+66 5 1,

k

as long as s1 — s < s+ 2 — 3b.
Case B.3. |n — k| < d|k|
Here |n — k| =~ |k, since (17 — 1 — 2)|k| < |n — k| < (17 — 1 + 2§)|k|. Hence for

sl—sgs—%,wehave

k >—25
5.32) < sup(k)21—2s (K
( ) NS%p< ) Z (k3 — ak? — a(n — k1)3 — (k — n)3)2-2b
|k1|>1k|
n#0
5 Sup<k>251—25 Z </{51>_28 5 sup<k>281_45+1 5 1.
k ke |> k| k

Case C. |k31 - 771]€| Z 5|]€|, |k51 - ?2]43' Z (5|k3|
We note that |ky — k| < |k — Tk|, because |k — k| < |k — mk| + (1 — 1)]k| <
(B=2) |ky — 71k|. We need to bound

2512 (ky)™272(n — k) 725 (n — k)—2s+L
(5:31) stk ) st P = (h— n)P

k1#0
n#0
k —25—2 —k —2s —k —2s54+1 k—k
D D L
K = (k3 —ak? —a(n — k)3 — (k —n)3)2-
n#0
=: Il -+ IQ.

Case C.1. |ky| > 0|k|

In this case, since —2s + 1 < 0,

_— <l€1>_28_2<k1 _ k>_28+1
(k) Z (k3 — ak? — a(n — k1) — (k — n)3)2—2

I} < sup
k k120
n#0
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g Sl;p<k>251f4 Z<k1>f2s<k1 i k>725+1 5 Sl;p<k>25172373 5 1
k1#0

whenever s; — s < % In the same way, the boundedness of Iy can be shown provided
that s; — s < 1.

Case C.2. k1| < d|k|

In this case, |k — k1| < |k| implies the bound

<k1>72572 <TL . k1>728+1 <7’L _ k>723+1
(k3 — ak} —a(n — k1)? — (k —n)3)2-2

I+ T S sup(k)> 2
k k1220

n#0

<k1>72572<n - k1>725<n o k>f2s+1

]{Z 2s1—1
+ Sl;p< > ]§)<k3 —_ aki” — a(n _ /f1)3 _ (k; _ n)3>2—2b
n#0

= Jl + Jg.

Case C.2.1. |n — k| < k|

Note here that |n — k| > |k| — |k1| — |n — k1| > (1 — 29)|k|. Moreover, since u is mean
zero, we have, for some n; # 0 satisfying |k|™' < |n;| < 4, j = 1,2, that k; = mk and
n — ki1 = nok. Hence the restriction (1, + 12)k = n # 0 provides us with a parameter

n =1 + 1o satisfying [k|7! < |n| < 2§, and yielding the following bound

k% — aki — a(n — k1)° — (k —n)*| = |(1 = a( +13) — (1 —n)*) &’

= kP Inl13(1 = n) +n*(1 — a) + 3anume| 2 [K[*.

Exploiting the above estimates we arrive at

Jl S/ Sup<k>25172575+4b Z <k1>72572 5 Sup<k>25172574+4b S 1
k k

k140
In|<|k|

and

Ty ’S Sup<k>23175+4bz<k1>72572<n o k1>723<n . k>725+1
k

k170
n#0



128

< Sup<k>23175+4b Z<k1>72572<k1 _ k>—2s+1 < Sup<k>231*2574+4b <1
k k
k1#£0

provided that s; — s < 2 — 2b.

Case C.2.2. |n — k| < J|k|

In this region, |n — k1| > |k| — |ki| — |[n — k| > (1 — 26)|k|. Then, we write ky = nk
for some 7, with |[k|™' < || < §, and n — k = nok for some 1y with 0 < || < 4. Via
these

[k* — aki —a(n — k1)* = (k = n)’| = |(L+ 5 — a(n + (1= +12)*)) K|

= [kP1—a+00)] 2 |k
As above we get
I+ s < Sl’ip<k>23172376+6b <1
whenever s; — s < 3 — 3b.
5.5. Existence of Global Attractor

This section is devoted to the proof of Theorem 5.2.9. We consider the system

p

Us + QUgee + YU+ 3a(u?), + B(0?), = f

Vg + Uggz + YU + 3uv, = g (5.33)

\(7«% 0)|i=o = (uo,vo) € H'(T) x H'(T).
Recall that § < 0. Firstly we show the existence of an absorbing set corresponding to

the system (5.33). To achieve this we use conserved energies (5.2) to obtain:

Lemma 5.5.1. Let (u,v) be a solution of the system (5.33) with data (ug,vo), we have

the a priori estimate:

[u(O)ll g+ vl < C = Cla, 8,7, llwoll g, [[voll g s 1 g s Ngll ),

fort > 0.
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Proof. We start by noting that the constants in the following calculations are denoted
by C, Cp, and C; whose value may change, their dependence are to be highlighted
though. To obtain the L? bounds for u and v, we use B (t) := Fy(u,v)(t) = |Jul3. —

? |v]|7,. Thus

Ap

< 2lullpe 112 = - Mollz2 gl

<2(V2|fll2 + V=B llgll ) VEL()-

Setting Fy(t) = e ?""Fy(t) and using the above inequality we obtain

V() < (V2 f 2+ V=B llgll2)-

Integrating this inequality from 0 to ¢ and then utilizing the resulting inequality in the

norms of v and v, we arrive at

a2 + | 22 Jol0)]

- 28 1—et
< V2e 7’f\/HuOHiz iy lvoll 7 + 2 fllp2 + V=289l 12)-

v

Regarding the bounds for the spatial derivatives of u and v, we consider Fs(t) :=

By(u,v)(t) = (1 — a) (|Juzl72 — 2 [ uPdx) — 28(||ve72 — [ uv?dz). Note that

(1 —a) Jugll72 — 28 |Jvell22 = BEa(t) +2(1 — a) /u3 dz — 25/1&)2 dz
< Bo(t) + C llull g (72 + [loll72)

< Ey(t) + O+ Clual

where the constants depend on the bounds on ||ul|;2, ||v]|;2 in the final inequality. By

this inequality, we have

2
) =28l

C C
V CL“U HL 2m = \/(V CLHU HL ZM
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< VEy(t)+C+C?/4(1 —a) S V]E(t)| + C

and

C \?
V=2b|lve 2 < \/(V 1—aljugll > — ﬁ) =28 val7= S VIE2()] + C.

Thus [Jug ()] ;2 + [|[va()] 2 S VIE2(t)] + C. To end up the argument it suffices to
show that E, is bounded. Using this bound and the embedding H' < L* we obtain

Oy Eo(t)+2vEs(t) = 2(1—@)/fxux—3fu2+’yu3 d[B—Qﬂ/QQIUx—fU2—29uU—|—")/U?12 dx

< CollJuell g2 + llvall 2) + Cr < Cov/ [ Ea(t)] + C

where the constants Cy, C; depend on the norms || f|| 41, |9/l g1, the constants a, 3, v

and the bounds on ||ul| 2, ||v]|2. Setting Es(t) = e 2" Fy(t), we get that

6tF2 6%(00\/ |F2 + 016%)

from which we have that

1 — —27t
Es(t) §e25tE2(O)+C'1++CO/ —2=) /By (t)] At
Y 0
Var

< |E5(0)] + Cy + Cy

Leo([0,t])

for ¢ > 0. This shows that F5 is bounded from above because if it were the case that
t might be the first time at which E, assumes its largest value, say C, over [0, ¢] with
Es(t) = C > |FE»(0)] + C, + Cy =: C, then by the above inequality we would have
c<C (1++/C), but this is impossible for sufficiently large C' > 1. Also the Sobolev

embedding and the bounds on [|u||,, ||v]|;. suggest that E, is bounded below. O

As a consequence of the Lemma 5.5.1, the existence of an absorbing ball By C
H' x H* follows. As for the verification of the asymptotic compactness of the flow, the

second task is to obtain smoothing estimate as done in the non-dissipative case.
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Theorem 5.5.2. Consider the solution of (5.33) with initial data (ug,v) € H' x H'.

Then for any o < min{3,3 — pu(pa)}, we have

t
u(t) — e~ @Oty / e~ tNE=) o (1 0 (r) drr
0

H1+a

¢
+ ||u(t) = e=@atnty, — / e 04N o (4, 0) (r) dr
0

H1+a

< O(OQ% ||U0||H1 ) ||U0||H1 ) ||f||H1 ) ||9||H1)

where py and ps are as in Proposition 5.3.1.

Proof. We write the system (5.33) by the Fourier transform as follows
Oup, — (1ak® — Y uy, + 3iak > upup, + 18k Y. vp vk, = fr
ki1+ko=k k1+ko=k (534)

O, — (K> — Yo +31 Y. kop, Vg, = Gr-
kitka=k

Using the change of variables vy, = e " 47y, 2z, = e~ * %y, and dj, = e F £,

—ik3t4yt

hy =€ gk, the above system transforms to

. g 3_1.3_13 . . 3_1.3_13
Oy = —3iak > e W kiky)y, g —iBk YD e MR kiR o o+ dy
ki1+ko=k k1+ko=k

= ; —it(k3—ak$—k3
Oz = =30 > ke st(k® —aky 2)yklzk2 + hy.
k1+ko=k

After differentiation by parts as in Proposition 5.3.1, the system (5.34) can be written

in the form
(

o [e_iakgtﬂtuk} + e Y, [e‘mkgt““’t(Bl (u,u) + Bs(v, v)k)}
= e-iak?ttnt [Ri(u,v,v) + Ro(u,u,w)y, + Rs(u,v,v)x
+2B1(u, f)i + 2Ba(g, )i + pr(u, )i + p2(v,0)i + fi]
o, [e—ik3t+wtvk:| + e, |:e—z’k:3t+2thS<u7 U)k]
= gkttt [Ry(u, u,v)), + ;%R4(v, 0,0 + Rs(u, u,v)g

+Bs(f,v)r + Bs(u, 9)x + p3(u,v)x + gk}

\
where Bj, R;, and p; are as in Proposition 5.3.1.
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Integrating these equations from 0 to ¢ leads to the equations

Uk(t) — eiakst_ﬂytuk(()) = —Bl (U, u)k — Bg(v, U)k + eiak3t—'yt [Bl (Uo, Uo)k + BQ(U[), Uo)k}
t
+ / eliak*=(t=s) [ — By (u,u)r — vBa(v,0)k + p1(u, w)i + pa(v, )i + fr +2B1(u, )i
0

+2B5(g,v)i+ Ri(u, v, )+ Ro(u, u,u) + R3(u, v, v);]ds

and

vk(t) = €10 (0) = = Bs(u, 0)i + €7 By (ug, vo )i + / eI [ — By (u, ),
0

+p3(u> U)k + Gk —|—R4(U, u, U)k + %Rﬁl('u? v, U)k —|—R5(U, U, U)k +B3(f> U)k —|—B3('LL, g)j| ds.

Note that
t 1+a
(—ad3—7)(t—s) d (k)" fr 1 — pliak®=)t <
e xr)as = |- € ~ =2
‘/0 f(x) s ik 7( ) p 11l a2

analogous estimate holds for e(=02=)(t=s) g as well. These bounds, the estimates utilized
in obtaining main smoothing result, and the growth bound of Lemma 5.5.1 yield, for

t < ¢, that

t
u(t) — e~ @0ty — / e~ (@024 o) (1 0 (r) dr
0

H1+a

+

t
o(t) — e~ @y, — / e~ 2N po (w, 0) (1) dr
0

H1+a
2
S gz + lgllgas + (1 L+ gl + lwollgn + llvoll )

3
+ (llull i + lloll g2

< C(as v 1 g s gl ol g+ Nlvoll g1 )

1,1/2 1 1,1/2 )
where we use the local theory bounds for X, ’5'", X, 5" norms for the local existence
time ¢ in the final inequality. By virtue of dissipation, this bound also holds for
arbitrarily large times making use of the local bound above, for the full discussion, see

Section 6 in [17]. N
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Proof of Theorem 5.2.9. For the existence of a global attractor, we check the asymp-
totic compactness of the flow. It suffices to show that for any sequence (ug,., vo,) in
an absorbing set By and for any sequence of times ¢, — oo, the sequence Uy, (uq,, Vo )
possesses a convergent subsequence in H* x H'. Next we use Theorem 5.5.2, for almost

every a € (1,1) such that a < 5 and ps = p3 = 0, to write

Utr (UO,M UO,r) = (67(a82+7)tTU0 rs

(93
o€ Oy ) Ny, (o r, o)

where the nonlinear part N, (ug,,vo,) is contained within a ball in H'™® x H*e,
Therefore by Rellich’s theorem the sequence { N, (uo,vo,) : 7 € N} has a convergent

subsequence in H' x H'. This implies the existence of a convergent subsequence of the

sequence {Uy, (ug,,vo,) : 7 € N}, since

H(e—(aafﬁrv)tru(]w e—(aiﬂ)trvo’r)u < ot (o, UO,T)HHIXHl < e s
HlxH!

as t, — oo uniformly. Therefore U, is asymptotically compact. To prove the com-

pactness of the attractor A in the space H!™® x H'*® for any a € (0, %), we need to
show, by using Rellich’s theorem, that the attractor is bounded in HTete x fitate
for some € > 0 satisfying oo + € < % In this regard, it suffices to find some closed ball
By C HTote x Hitate guch that A C Bage where

a-NUuB= N

T>0t>T 7>0

As above, using Theorem 5.5.2, we can express each element of V, as a sum of linear
evolution which decays to zero exponentially and the nonlinear evolution contained by
some ball By, in H!ToTe x [Hete This implies that the set V; is contained in a ¢,
neighbourhood N, of Ba,. in H'toT¢ x H1*ete Here §, — 0 as 7 — oo due to the
exponential decay of linear evolutions. Therefore,

A= V- €[] Nr = Baje

>0 7>0
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6. CONCLUSION

In this thesis, we were concerned with the smoothing properties of several dis-
persive equations on certain domains. In the first part of the thesis, we addressed the
Davey—Stewartson system on R? and established the smoothing properties, also proved
the existence of a global attractor for this system. In the second part, we considered the
biharmonic NLS equation on the half line and studied local and global well-posedness
and regularity properties of this equation. In the final part, our aim was to establish
the smoothing estimates of the Hirota—Satsuma system on the torus. After obtaining
the estimates for the nondissipative system, we established the analogous estimates for
the dissipative HS system, also with the use of these estimates, we proved the existence
of global attractor in the energy space. Our plan for a future project involves proving
smoothing effect for the Schréodinger—-KdV system with periodic boundary conditions

and the Kuramoto—Sivashinsky equation on the half-line.
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APPENDIX A: USEFUL ESTIMATES

In this section, we start by reserving some useful inequalities to be used in the
text when necessary. Firstly we start with a lemma which is a consequence of the proof

of Theorem 1.3 in [42].

Lemma A.0.1. When p = 1 (defocusing nonlinearity), the solutions of the equation
(4.1) satisfy the following a priori estimate

”u||H2(R+) < Cllgll gz Nl g s 12l gr2)-

Next lemma is used in the proofs of Proposition 4.4.6 and Proposition 4.4.7.

Lemma A.0.2. For m,n,k € R, we have

Im* —n* + k' — (m —n+ k)Y = |m —n|ln — k|[(m* +n® + k?).

Proof. Let g(m,n, k) :=m* —n*+k* — (m —n + k)*. Then

g(mn, k)
= (m—n)[(m*+n*)(m+n) — (m —n)> — 4(m —n)’k — 6(m — n)k* — 4k%]
= (m —n)(n — k)[4m® + 2n® + 4k* — 2mn — 2nk]

— (m—m)n— &) [ 2+ ) m? K 20— S Y]

which gives the desired estimate. O]

Lemma A.0.3 (See [96]). For —3 < s < 3, we have

1
2

1f9]

e S ||fHH%+ 191l g7 -
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We state the Gagliardo—Nirenberg inequality [97]:

Theorem A.0.4. Assume that g € LY(R™) and D™g € L"(R"). Fiz 1 < g,r < oo and

m € N. Then, we have

1Dig||,, S 1D™ g5 gl b

where%:%—i-(%—m)oz%—% and%ﬁ&él. When j =0, rm <n and q = o0,

n
assume additional assumption that either g € L° for some s > 0 or g vanishes at
n

infinity. Also if m — j — 2 is a non-negative integer for 1 < r < oo, then we need

a < 1.

The following lemmas are used frequently in our discussions. For proofs of the

first two, see [17] and for the last one we refer [62].

Lemma A.0.5. If 3>~ >0 and B+~ > 1 then

dx e 4
/R (r — a1)’(x — az)? S {an — a2) sl 2)

where

(1 g>1
1
SOB(G):H ||W’V log(1+4 {a)) 8=
) (a)1=# B<1.

\
Lemma A.0.6. (i) If6>~y>0and~v+5>1,

S TR T S B k) Ttk — k)

where pg is defined as in Lemma A.0.5.

(it) If B > 1 and v > %, then we have

1 1
<1 d <1
;<n2+an+b>5’\’ > ;(n3+an2+bn+c>7’\“

where the implicit constants are independent of a,b and c.
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Lemma A.0.7. For fized p € (3,1), we have

N|=

/ L dr < L :
(x)ry/]x — al (@)~



