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ABSTRACT

SMOOTHING PROPERTIES OF INITIAL-BOUNDARY

VALUE PROBLEMS

This thesis discusses the smoothing properties of dispersive partial differential

equations. In the first part of the thesis, we consider the Davey–Stewartson system

on R2 and demonstrate that the nonlinear part of the solution flow is smoother than

the initial data. As an application of the smoothing result, we address the dissipa-

tive Davey–Stewartson system and give a simplified proof of the existence of a global

attractor for the system. In the next part, we study well-posedness and regularity

properties of the biharmonic Schrödinger equation on the half-line. More precisely,

we prove local existence and uniqueness and show that the data to solution map is

continuous. Moreover, we establish global well-posedness and global smoothing for

higher regular spaces by showing that the solution grows at most linearly. As regards

to the smoothing result, the derivative gain we obtain for the nonlinear part of the so-

lution is up to full derivative. The last part of the thesis addresses the Hirota–Satsuma

system on the torus. The Hirota–Satsuma system is given by two Korteweg-de Vries

equations exhibiting different dispersion relations which is due to the coupling coeffi-

cient a. The main result demonstrates the regularity level of the nonlinear part of the

evolution compared to initial data. The gain in regularity depends very much on the

arithmetic properties of the coefficient a. Then, we consider the forced and damped

Hirota–Satsuma system and establish the analogous smoothing estimates. By the help

of the smoothing estimates, we prove the existence and regularity of a global attractor

in the energy space.
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ÖZET

BAŞLANGIÇ-SINIR DEĞER PROBLEMLERİNİN

YUMUŞATMA ÖZELLİKLERİ

Bu tezde dispersif kısmi türevli denklemlerin yumuşatma özellikleri ele alınmıştır.

Tezin ilk kısmında, Davey–Stewartson sistemini R2 üstünde ele aldık ve çözümün

doğrusal olmayan kısmının başlangıç verisinden daha yumuşak olduğunu gösterdik. Bu

sonucun uygulaması olarak ise, sönümlemeli Davey–Stewarston sistemini göz önünde

bulundurup, sistemin global çekerinin varlığına dair basitleştirilmiş bir ispat verdik.

Bir sonraki kısımda, yarı doğru üstünde, çift-harmonik Schrödinger denkleminin iyi

konulmuşluğunu ve düzgünlük özelliklerini çalıştık. Daha iyi bir ifadeyle anlatmak

gerekirse, çözümün yerel varlığını ve tekliğini ispatladık, ayrıca veri-çözüm fonksiy-

onunun sürekli olduğunu gösterdik. Çözümün en fazla doğrusal büyüdüğünü göstererek

global iyi konulmuşluğu ve yumuşatmayı daha yüksek mertebeli düzgün uzaylar için

elde ettik. Yumuşatma sonucuna gelecek olursak, çözümün doğrusal olmayan kısmı için

elde ettiğimiz türev kazancı en fazla tam türev oldu. Tezin son kısmı Hirota–Satsuma

sistemini torus üstünde ele almıştır. Hirota–Satsuma sistemi bağlaşım katsayısı a’dan

ötürü farklı yayılma ilişkileri sergileyen iki Korteweg-de Vries denklemi tarafından be-

lirlenir. Ana sonuç, başlangıç verisine kıyasla, çözümün doğrusal olmayan kısmının

düzgünlük seviyesini gösterir. Düzgünlükteki kazanç daha çok a katsayısının aritmetik

özelliklerine bağlıdır. Daha sonra, zorlanmış ve sönümlenmiş Hirota–Satsuma sistemini

ele alıp benzer yumuşatma kestirimleri elde ettik. Yumuşatma kestirimleri sayesinde,

sistemin global çekerinin varlığını ve düzgünlüğünü enerji uzayında ispatladık.
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1. INTRODUCTION

This thesis is devoted to study the smoothing properties of nonlinear dispersive

equations on certain domains. In order to understand the dynamics of given nonlinear

dispersive equation nicely, one has to pay close attention to the corresponding linear

equation. The characterization of linear dispersive PDE is decided by its wave solu-

tions’ propagation in the medium in which large frequency components travel faster in

contrast to the smaller ones giving rise to a dispersion. This behavior is more apparent

for unbounded domains, whereas on bounded domains, e.g. torus, different frequency

solution components cannot spread out, rather they rotate around the torus with dis-

tinct velocities. The dispersive character exhibited by the nonlinear PDEs in this study

will shape the basis of our exploration of various frequency interactions stemming from

nonlinear nature of these equations. Consider a linear dispersive PDE of the form

∂tu(x, t) = Lu(x, t), u(x, 0) = u0(x) (1.1)

where L = ih(D), D := 1
i
∇ = 1

i
(∂x1 , · · · , ∂xd

) and h is a real-valued polynomial of

order k:

h(ξ) = h(ξ1, · · · , ξd) =
∑
|α|≤k

cαξ
α1
1 · · · ξαd

d ,

here, k ≥ 1 is an integer, α = (α1, · · · , αd) ∈ Zd
+ with |α| = α1 + · · ·+αd. The explicit

form of solutions to (1.1) can easily be found by taking spatial Fourier transform of

the equation (1.1) by which we obtain u(x, t) = etLu0(x) where e
tL denotes the linear

propagator

etLu0(x) =

∫
Rd

eith(ξ)+ix·ξû0(ξ) dξ.

Note that such solution exists globally in time. Perturbing the linear equation (1.1) by

the nonlinear term N(u), we next consider the nonlinear equation

∂tu(x, t) = Lu(x, t) +N(u(x, t)), u(x, 0) = u0(x). (1.2)
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The Cauchy problem (1.2) is equivalent to integral equation

u(x, t) = etLu0(x) +

∫ t

0

e(t−s)LN(u(x, s)) ds

that is called the Duhamel’s solution formula for the equation (1.2). In our discussion,

we study distributional solutions of nonlinear PDEs which are constructed by a fixed

point argument applied to Duhamel’s formula. Via this formulation, our primary

objective is to show that the nonlinear part u(x, t)−etLu0(x) of the Duhamel’s formula

lies in a more regular space than the initial data u0 belongs to.

Previous methods for establishing well-posedness of dispersive PDEs such as en-

ergy method, oscillatory integral method have proven to be successful for higher reg-

ularity spaces. In his seminal papers [1, 2], Bourgain introduced new function spaces,

Xs,b, that take dispersion relation of the given equation into consideration, although the

similar weighted spaces related to wave equations were used in the works of Beals [3],

Klainerman–Machedon [4] previously. Using these spaces together with Fourier restric-

tion methods, Bourgain improved the previous well-posedness result. The Xs,b space

theory is of extreme help in establishing low-regularity well-posedness results for dis-

persive equations in today’s research. Our work also uses Xs,b spaces to capture the

nonlinear smoothing effect for certain dispersive PDEs we next address.

The third chapter is concerned with the smoothing result of the Davey–Stewartson

(DS) system. DS systems appear in the theory of water waves and describe the evolu-

tion of weakly nonlinear water waves [5]. It is remarkable to note that the first study

of well-posedness for the system was initiated by Ghidaglia and Saut [6] in the spaces

L2, H1, H2. Since then considerable amount of work have still been dedicated to the

DS systems. The approach we follow in this study to prove multilinear estimate for DS

system is via Tao’s [k;Z] multiplier method [7], which is based on dyadic decomposition

and induction on scales type techniques as in restriction theory. As an application of

the smoothing result, we address the dissipative DS system and give a simplified proof

of the existence of a global attractor for this system.
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The next chapter deals with the biharmonic Schrödinger equation on the half-

line and establishes well-posedness and smoothing results. To reach the results, after

extending the initial data to the full line, we construct the nonlinear solution map via

Duhamel’s formula adapted to the boundary conditions. The explicit representation

formula for the solution of the linear IBVP is derived by the use of Laplace transform,

which is then used to establish bound for the boundary forcing term of the Duhamel’s

formula. To be able to run the fixed point argument on the nonlinear solution map

successfully, we require the restricted norm method, so we prove a number of estimates

on the terms of Duhamel’s formula to close the argument.

In the last chapter, we obtain the smoothing estimate for the Hirota–Satsuma

system on the torus. This is a system of coupled KdV type equations that models

the interactions of two long waves with separate dispersion relations. With the help of

normal form transformation, we rewrite the system in an equivalent form and make use

of oscillatory effects to cope with the derivative in the nonlinearities. The disadvantage

is that the transformation introduces trilinear terms rather than bilinear. The trilinear

terms are dealt with the restricted norm method so as to prove smoothing. We also

obtain the smoothing result for the forced and damped Hirota–Satsuma system. Using

the smoothing effect, we prove the existence and regularity of the global attractors for

the system.
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2. OVERVIEW OF THE THEORY

Consider a linear partial differential equation of the form

iut + h
(1
i
∇
)
u = 0 (2.1)

where h is a real-valued polynomial. We seek out plane wave solutions u(x, t) =

Aei(ξx−ωt) where A, ξ and ω represent the amplitude, the wave number and the fre-

quency respectively. The equation (2.1) imposes relationship between ξ and ω, ω =

ω(ξ). This is called dispersion relation. The phase velocity is defined by cp(ξ) = ω
ξ

with which the solution can also be written as u(x, t) = eiξ(x−cp(ξ)t) = u(x− cp(ξ)t, 0).

We say that the wave travels with velocity cp(ξ). Also, the related notion, the group

velocity is defined by cg =
dω
d ξ
. If cg is not a constant, that is

d2 ω
d ξ2

̸= 0, then the equation

(2.1) is called dispersive. In the context of physics, this means that the wave solutions

of different wavelength propagate at different phase velocities as time increases. Un-

der this characterization, the transport equation ut = ux, with the dispersion relation

w(ξ) = ξ, is not dispersive while the Schrödinger equation iut + uxx = 0, with the

respective dispersion relation w(ξ) = −ξ2, is dispersive.

2.1. Xs,b Spaces

The characterization of dispersive equations via Fourier transform motivates the

definition of Xs,b spaces. Taking the space-time Fourier transform of the linear equa-

tion (2.1) shows that the space-time Fourier transform û(ξ, τ) is supported on the

characteristic surface {(ξ, τ) ∈ Rd × R : τ = h(ξ)} of the frequency space. This on

the other hand is no true for the nonlinear perturbation iut + h(1
i
∇)u = N(u) of the

linear equation (2.1). However, the support of the space-time Fourier transform of the

localized solution concentrates near this surface. By this observation we introduce the

Xs,b space as the closure of the Schwartz functions under the norm

∥u∥Xs,b
τ=h(ξ)

(Rd×R) =
∥∥⟨ξ⟩s⟨τ − h(ξ)⟩bû(ξ, τ)

∥∥
L2
ξ,τ (Rd×R) .
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For functions on Td × R, the above norm is replaced by

∥u∥Xs,b
τ=h(k)

(Td×R) =
∥∥⟨k⟩s⟨τ − h(k)⟩bû(k, τ)

∥∥
ℓ2kL

2
τ (Td×R) .

In other words, differentiating functions in Xs,b spaces s-times with respect to elliptic

derivative ⟨∇⟩ and b-times using dispersive derivative i∂t+h(
1
i
∇) will produce square-

integrable functions. Alternatively, one can use yet another form of Xs,b norm:

∥u∥Xs,b
τ=h(ξ)

= ∥W (−t)u∥Hs
xH

b
t

where W (t) = exp(ith(1
i
∇)) is the unitary group corresponding to the linear equation

(2.1) and ∥g∥Hs
xH

b
t
=
∥∥⟨ξ⟩s⟨τ⟩bĝ(ξ, τ)∥∥

L2
ξ,τ

=

∥∥∥∥∥∥∥⟨ξ⟩sg(ξ̂, t)∥∥∥
Hb

t

∥∥∥∥
L2
ξ

. In particular, for

b = 0, the dispersion relation τ = h(ξ) is insignificant so that Xs,b = Hs
xL

2
t . The

restricted Xs,b space, Xs,b
δ , is also defined via the norm

∥u∥Xs,b
δ

= inf
ũ=u,|t|≤δ

∥ũ∥Xs,b .

We continue our discussion by introducing some properties of Xs,b spaces. Taking

advantage of Parseval’s identity and Cauchy-Schwarz one can observe the duality re-

lationship: (Xs,b
τ=h(ξ))

∗ = X−s,−b
τ=−h(−ξ). Also, the Xs,b spaces interpolate very well in

both indices s and b. Once b > 1
2
, Xs,b spaces turn out to be very useful in proving

well-posedness in the space C0
tH

s
x that the following lemma shows.

Lemma 2.1.1 (See [8]). For any b > 1
2
, s ∈ R, Xs,b space given by a continous

dispersion relation embeds into C0
tH

s
x.

In the following, we shall remove the dispersion relation subscript from the norm

of Xs,b functions. Let φ be a smooth function satisfying φ(t) = 0 if |t| ≥ 2, and

φ(t) = 1 for |t| ≤ 1. Also, let φδ(t) = φ(t/δ) for 0 < δ ≤ 1. Consider the Cauchy

problem

iut + h(1
i
∇)u = N(u), (x, t) ∈ Rd × R,

u(0) = u0.

(2.2)
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In order to find a unique solution for (2.2) in some subset of C0
tH

s
x within the

time existence interval [−δ, δ], the Banach fixed point argument is implemented to the

Duhamel operator

Γu(t) = φ(t)W (t)u0 − iφδ(t)

∫ t

0

W (t− s)N(u(s)) ds

=: φ(t)W (t)u0 − iφδ(t)[W ∗t N(u)](t)

on the ball Bδ = {u ∈ Xs,b : ∥u∥Xs,b ≤ C ∥u0∥Hs}. The localized linear solution is

bounded in Xs,b:

Lemma 2.1.2 (See [9]). For s, b ∈ R, we have

∥φ(t)W (t)g∥Xs,b ≲ ∥g∥Hs .

The remaining estimate for the integral part of the Duhamel formula is as follows:

Lemma 2.1.3 (See [10]). Let −1
2
< b′ ≤ 0 ≤ b ≤ b′ + 1. Then,

∥φδ(t)[W ∗t N(u)](t)∥Xs,b ≲ δ1−b+b′ ∥N(u)∥
Xs,b′

δ

.

Combining the above lemmas, we have

∥Γu∥Xs,b ≲ ∥u0∥Hs + δ1+b′−b ∥N(u)∥
Xs,b′

δ

.

In order to close the contraction argument on the ball Bδ, one has to prove an estimate

of the form ∥N(u)∥
Xs,b′

δ

≲ ∥u∥γ
Xs,b subjected to the nonlinearity and dispersion relation

associated to the given equation and has to seek sufficiently small δ.

2.2. Differentiation by Parts On the Torus

The essence of the method is based on a normal form transformation introduced

in [11]. In this paper, Shatah constructs a transformation that raises the degree of the

nonlinearity of Klein–Gordon equation in order to be able to use direct perturbation

methods in studying the equation on R3.
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This procedure is known as Poincaré’s theory of normal forms for ordinary dif-

ferential equations, see [12,13]. The well-posedness for the periodic KdV equation was

obtained by Babin–Ilyin–Titi [14] using the normal forms as an alternative method.

In our work, the normal forms transform method employed to the periodic Hirota–

Satsuma system is used as that in [15–17] to obtain smoothing. In the following we

shall give the idea of the method. In our case, taking the Fourier transform of the

system of equations leads to a system of differential equations for the Fourier sequence

of solutions. Multiplying each Fourier coefficient by a modulation factor, the result-

ing equation for a particular Fourier coefficient uk turns out roughly in the form:

∂tuk = eiΩtN(uk), Ω = Ω(k). Then,

∂tuk = ∂t

(eiΩt

iΩ
N(uk)

)
− eiΩt

iΩ
N ′(uk)∂tuk

= ∂t

(eiΩt

iΩ
N(uk)

)
− e2iΩt

iΩ
N ′(uk)N(uk).

Accordingly,

∂t

(
uk −

eiΩt

iΩ
N(uk)

)
= −e

2iΩt

iΩ
N ′(uk)N(uk).

The conclusion is that the gain Ω in the denominator eliminates the derivative in the

nonlinearity of the original equation, in return, the nonlinearity N changes to NN ′.

Nevertheless, the advantage is to gain large denominators. So if there are resonances

(frequencies at which Ω = 0), then each has to be treated separately.

2.3. Global Attrators

The long term dynamics of a given dissipative partial differential equation can

be described by compact, invariant, attracting subsets (global attractors) of the phase

space into which all trajectories converge as t→ ∞. Rather than working with infinite

dimensional phase space, one can study the long time asymptotics of the solution flow

via global attractors which may be finite dimensional, see for instance [18].
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Let H be a phase space and U(t) : H → H denote the evolution operator,

mapping data to solution. The family of operators {U(t)}t≥0 enjoy the semigroup

properties:

U(t+ s) = U(t)U(s), ∀t, s ≥ 0,

U(0) = I (Identity in H).

In the following, we give some required definitions from [19].

Definition 2.3.1. A set X is said to be invariant under the flow U(t) if we have

U(t)X = X for all t ≥ 0.

Definition 2.3.2. An attractor is a set A ⊂ H which is invariant under the flow and

possesses an open neighbourhood N such that for every u0 ∈ N it satisfies

d(U(t)u0,A) → 0 as t→ ∞. (2.3)

The distance in the definition 2.3.2 is in the sense of a distance of a point to a

set: d(a,B) = infb∈B d(a, b) where d(a, b) measures the distance from a to b in H. The

largest open set N satisfying (2.3) is called the basin of attraction of A. We say that

A uniformly attracts a set B ⊂ N if

d(U(t)B,A) → 0 as t→ ∞, (2.4)

where d(S1, S2) = supx∈S1
infy∈S2 d(x, y) for the two sets S1, S2. We also say that A

attracts the bounded sets of N if A uniformly attracts each bounded set of N . Note

that an attractor may or may not have such a property.

Definition 2.3.3. The subset A ⊂ H is called a global attractor for the semigroup

{U(t)}t≥0 if A is a compact attractor that attracts the bounded sets of H (the basin of

attraction of A is the whole phase space H then).
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Next definition is crucial in establishing the existence of a global attractor:

Definition 2.3.4. A bounded subset B of a phase space H is called an absorbing set

if for any bounded S ⊂ H, there exists T = T (S) such that U(t)S ⊂ B for all t ≥ T .

Note that a global attractor for a semigroup, if exists, implies the existence of

an absorbing set, to see this, use (2.4) for any bounded subset of H to conclude that

for any ϵ > 0, ϵ-neighbourhood of a global attractor A satisfies the requirement for an

absorbing set. Once having the absorbing set for the semigroup {U(t)}t≥0, the existence

of global attractor is provided by the additional assumption for the semigroup:

Theorem 2.3.5 (See [19]). Suppose that H is a metric space and U(t) : H → H is

a continuous semigroup defined for all t ≥ 0. Furthermore, suppose that there is an

absorbing set B. If the semigroup {U(t)}t≥0 is asymptotically compact, that is, for every

bounded sequence {xk} in H and every sequence of times tk → ∞, the set {U(tk)xk}k
is relatively compact in H, then the ω-limit set

ω(B) =
⋂
s≥0

⋃
t≥s

U(t)B

is a global attractor, where the closure is taken on H.

Note that φ ∈ ω(B) if and only if there exists a sequence φn ∈ B and a sequence

of times tn → ∞ such that U(tn)φn → φ as n → ∞. In our context, we address the

problem of existence of global attractors for the Davey–Stewartson and the periodic

Hirota–Satsuma systems. The proofs of the existence of global attractors will essen-

tially be based on the smoothing estimates that will be obtained for the respective

dissipative systems.
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3. THE DAVEY–STEWARTSON SYSTEM

3.1. Introduction

The Davey–Stewartson equations in dimensionless are given by couple of equa-

tions of the form

i∂tu+ c0∂
2
xu+ ∂2yu = c1|u|2u+ c2u∂xϕ

∂2xϕ+ c3∂
2
yϕ = ∂x(|u|2)

(3.1)

where u = u(x, y, t) is complex-valued and ϕ = ϕ(x, y, t) is real-valued functions that

represent amplitude and mean velocity potential, respectively; here, the constants are

real numbers and their signs determine the character of the equation. The results of

this chapter have been announced in [20]. The systems (3.1) were first derived by

Davey and Stewartson [5], Benney and Roskes [21], Djordjevic and Redekopp [22] and

model the time evolution of 2D surface of water waves that propagate predominantly in

one direction, but the wave amplitude is modulated slowly in the horizontal directions.

In [22], Djordjevic and Redekopp showed that the parameter c3 can be negative when

capillary effects are important. According to the signs of c0 and c3 respectively, the

system (3.1) is classified as follows

Elliptic− Elliptic

(+,+)

Elliptic−Hyperbolic

(+,−)

Hyperbolic− Elliptic

(−,+)

Hyperbolic−Hyperbolic

(−,−)

DS systems are very well studied in terms of well-posedness and stability, blow-up

profiles, existence of standing and travelling waves.
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The investigation of the system (3.1) in terms of well-posedness was initiated

by Ghidaglia and Saut [6] who established the local well-posedness in the elliptic–

elliptic, elliptic–hyperbolic and hyperbolic–elliptic cases. More precisely, they studied

the local and global properties of the elliptic–elliptic and the hyperbolic–elliptic cases in

L2, H1, H2; also in the elliptic–hyperbolic case, they obtained a global existence of weak

solution of (3.1) under smallness assumption for data in L2. Linares and Ponce [23]

showed that under some smallness assumptions on the data, elliptic–hyperbolic and

hyperbolic–hyperbolic cases of (3.1) are locally well-posed in the spaces Hs(R2) ∩

H6(R2 : r6dxdy) for s ≥ 12, and Hs(R2) ∩H3(R2 : r2dxdy) for s ≥ 6 respectively. As

regards to the initial value problem posed on the 2-torus, Godet [24] obtained a local

well-posedness result for the hyperbolic–elliptic problem inHs(T2) for s > 1/2 as well as

a blow-up rate for this equation. Concerning the half-plane problem, Fokas [25] studied

the DS equation on the half-plane by using the inverse scattering transform techniques

along with the formulation of a d-bar problem for a sectionally non-analytic function.

As for the problem of global well-posedness, it is conjectured that the elliptic–elliptic

type of (3.1) is globally well-posed in Hs for all s ≥ 0. Toward this conjecture, Shen

and Guo [26] proved that the initial value problem of (3.1) in the elliptic–elliptic case

(with some assumptions on the constants) is globally well-posed for data in Hs(R2),

for s > 4/7. Thereafter, Yang et al. [27] improved this result by establishing global

well-posedness in Hs(R2) for s > 2/5 where they took advantage of the I-method. In

particular, they obtained a polynomial in time bound for theHs norm of the solution for

s > 2/5. Some of the other results regarding the system (3.1) can be found in [28–32].

Upon considering elliptic–elliptic type of the system (3.1), we will study the initial

value problem 
i∂tu+∆u = c1|u|2u+ c2u∂xϕ, (x, y) ∈ R2, t ∈ R,

∂2xϕ+ ∂2yϕ = ∂x(|u|2),

u(x, y, 0) = u0(x, y) ∈ Hs(R2).

(3.2)

To reformulate (3.2) in a better form we implement the Fourier transform in the spatial

variable to the second equation of (3.2) so that the system reduces to a single equation

i∂tu+∆u = c1|u|2u+ c2K(|u|2)u
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where K is the pseudo-differential operator with symbol α given by

K̂(f)(ξ) = α(ξ)f̂(ξ) and α(ξ) =
ξ21
|ξ|2

, ξ = (ξ1, ξ2) ̸= (0, 0).

Therefore, by the Duhamel formula, the equation (3.2) is equivalent to

u(x, y, t) = eit∆u0 − i

∫ t

0

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ (3.3)

where eit∆ denotes the free solution operator of the corresponding linear problem for

the equation (3.2). In this chapter, our primary goal is to obtain smoothing properties

of (3.2) globally in time; therefore, in order to take advantage of global well-posedness

result of Theorem 3.2.1, we will assume the restriction that c1+c2 > 0. In the absence of

this restriction, smoothing argument here works in the local sense only. The smoothing

in this text means that the nonlinear part of the solution flow in relation to (3.3) lies

in a more regular space than the initial data belong to. To make it rigorous, below we

state our result:

Theorem 3.1.1. Let c1 + c2 > 0 . Fix s > 1
2
and a < min(1

2
, s − 1

2
). Consider the

solution to IVP (3.2) on R2 × R with data u0 ∈ Hs(R2). Suppose that there is an a

priori growth bound ∥u(t)∥Hs ≤ C(∥u0∥Hs)⟨t⟩β(s) for some β(s). Then,

u(x, y, t)− eit∆u0 ∈ C0
tH

s+a
x,y ; (3.4)

furthermore, we have the growth bound∥∥u(t)− eit∆u0
∥∥
Hs+a ≤ C(s, a, ∥u0∥Hs)⟨t⟩1+β(s)(3+ 2

s
).

Let I denote the identity operator and K denote the multiplier operator intro-

duced as above, hence to be able to prove Theorem 3.1.1 we will need the key trilinear

estimate:

Proposition 3.1.2. For s > 1
2
, a < min(1

2
, s− 1

2
) and b = 1

2
+ ϵ for ϵ > 0 sufficiently

small, we have

∥(c1I + c2K)(uv)w∥Xs+a,b−1 ≲ ∥u∥Xs,b ∥v∥Xs,b ∥w∥Xs,b . (3.5)
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Note that we can replace the Xs,b norm in the above proposition with the time

restricted version of this norm. Xs,b spaces were introduced by Bourgain [1,2] in order

to capture the dispersive smoothing effect, that is intrinsic to the equation under con-

sideration. Taking into account its diverse applications, smoothing estimates as such

in Theorem 3.1.1 were established for numerous PDEs in the literature; for instance,

Linares and Scialom obtained the smoothing estimate for the mKdV equation, [33],

attaining one derivative gain for the nonlinear part of the solution with Hs(R) initial

data, for s ≥ 1. Using this smoothing result, they gave a simplified proof of dispersive

blow-up in solutions to the generalized KdV equation, which was studied previously

by Bona and Saut, [34]. Also, smoothing estimates of nonlinear Schrödinger type

equations on Rn were obtained in [35]; in particular, for n = 2 it was shown that

the nonlinear part of the solution lies in C0
tH

s+a
x ([0, T ] × R2), a = 1

2
, 1−, for Hs(R2)

data when s > 3
4
. It is noted that this result extends to the elliptic–elliptic DS sys-

tem. Therefore, Theorem 3.1.1 extends the smoothing argument in [35] to the range

s ∈ (1
2
, 3
4
] by the gain of s − 1

2
, yet the gain achieved in [35] is still larger for s > 3

4
.

Their arguments in the proof rely on LpLq-type estimates, whereas our proof makes

use of the notion of Bourgain spaces Xs,b.

Smoothing estimates have many nice applications such as those appeared in the

nonlinear Talbot effect, the bounds for higher order Sobolev norms and the existence

of global attractors for dissipative and dispersive PDEs, see Chapter 5 of [9]. Hence

in the remaining part of the chapter, our motivation in this regard is to present the

simplified proof of the existence of a global attractor for the forced and damped Davey–

Stewartson system in the energy space H1 by making use of the smoothing estimate of

Theorem 3.1.1. In [36], Wang and Guo obtained the existence of a global attractor in

H1 yet with a proof based on the splitting argument that requires more regular initial

data to reach the compactness. The smoothing effect replaces the splitting method

of [36]; as a result simplifying the proof and also as a byproduct gives us that the

global attractor is indeed a compact subset of H
3
2
−.
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Thus, we consider the forced and damped Davey–Stewartson systemiut +∆u+ iδu = c1|u|2u+ c2u∂xϕ+ f, (x, y) ∈ R2

∆ϕ = ∂x(|u|2)
(3.6)

where the forcing term f ∈ L2(R2) is time independent, δ > 0, c1 ≥ 0 and c1 + c2 ≥ 0.

The use of Theorem 2.3.5 which is provided by a smoothing estimate for the dissipative

problem (3.6) yields the following result:

Theorem 3.1.3. Consider the forced and weakly damped Davey–Stewartson system

(3.6) on R2× [0,∞) with the initial data u(x, 0) = u0(x) ∈ H1(R2). Then, the equation

(3.6) possesses a global attractor in H1(R2). Furthermore, for any a ∈ (0, 1
2
) the global

attractor is a subset of H1+a(R2).

We now briefly explain the organization of the chapter. In Section 3.2, we intro-

duce function spaces and necessary tools for the proof of Theorem 3.1.1. In Section 3.3,

we discuss Tao’s [k;Z] multiplier method in order to prove the key trilinear estimate

(3.5). The proof of (3.5) will be given in Section 3.4. In Section 3.5, we prove Theorem

3.1.1 and finally Section 3.6 is devoted to prove the existence of a global attractor for

the Davey–Stewartson system.

3.2. Notation and Preliminaries

For s, b ∈ R, we require Xs,b spaces corresponding to the evolution u of the DS

system that is defined by means of the norm

∥u∥Xs,b =
∥∥⟨ξ⟩s⟨τ + |ξ|2⟩bû(ξ, τ)

∥∥
L2
ξ,τ

.

Localized Xs,b space is also defined by

∥u∥Xs,b
δ

= inf
ũ=u, |t|≤δ

∥ũ∥Xs,b .

Consider the IVP (3.2) with the local existence time δ. We will quantify the dependence

of δ to an initial data which we use in the proof of Theorem 3.1.1.
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From the dilation symmetry of this equation, assuming that (u, ϕ) solve (3.2)

with initial data u0 on [0, λ−2], we come up with the symmetry solutions

uλ(x, y, t) = λ−1u(x/λ, y/λ, t/λ2), ϕλ(x, y, t) = λ−1ϕ(x/λ, y/λ, t/λ2)

with data uλ0(x, y) = λ−1u0(x/λ, y/λ) which solve the equation on [0, 1]. Thus for

λ > 1, by comparing the Hs norms of u0 and uλ0 , the solution (u, ϕ) can be defined

with respect to the local existence time

δ ∼ (C + ∥u0∥Hs)
− 2

s (3.7)

where C = C(∥u0∥L2). Next we discuss a global well-posedness result for the elliptic–

elliptic problem. We will exploit it once iterating our local result. Note that recalling

the Sobolev index range s > 1/2 in our case, we indeed need a result that at least

covers this range. Hence, rewriting the elliptic–elliptic IVPiut +∆u = c1|u|2u+ c2K(|u|2)u

u(x, 0) = u0(x) ∈ Hs
x(R2),

(3.8)

with a multiplier operator K given by

K(f) = F−1 ξ
2
1

|ξ|2
Ff (3.9)

for ξ = (ξ1, ξ2) ̸= 0, the required global well-posedness result for (3.8) and (3.9) is

stated as follows:

Theorem 3.2.1 (See [27]). Let c1 + c2 > 0. For any 1 > s > 2
5
, the initial value

problem (3.8) & (3.9) is globally well-posed in Hs(R2). Furthermore, there is a growth

bound

sup
t∈[0,T ]

∥u(t)∥Hs(R2) ≤ C(1 + T )
3s(1−s)
2(5s−2)

+

where the constant C depends only on the index s, ∥u0∥L2.
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The essential ingredients of the proof of Theorem 3.2.1 are the interaction of

Morawetz-type estimate and the almost conservation of the modified energy obtained

from plugging the smoothing of order 1− s operator Îu(ξ) = m(ξ)û(ξ),

m(ξ) :=

 1, |ξ| < N(
|ξ|
N

)s−1

, |ξ| > 2N

in the usual Hamiltonian energy of the equation (3.8). The globalizing technique

used in [27] is called the I-method, in view of the operator I : Hs → H1, which

was introduced by Colliander–Keel–Staffilani–Takaoka–Tao, [37]. Next by virtue of

Theorem 3.2.1, we reserve the following growth bound to be used later. For s > 1
2
,

define β(s) ≥ 3s(1−s)
2(5s−2)

so that we have the a priori estimate

∥u(t)∥Hs ≲ ⟨t⟩β(s) =: T (t) (3.10)

for some non-decreasing function T (t) (which we need in iterating the local result), and

where the implicit constant depends on the Sobolev index and L2 norm of the initial

data.

The forced and weakly damped DS system (3.6) can be reduced to the single

equation

iut +∆u+ iδu = c1|u|2u+ c2K(|u|2)u+ f (3.11)

with the same multiplier operator K as in (3.9). Below we list a few properties of K

to be used in the energy calculations of (3.11):

(i) K is a bounded linear operator on Lp, 1 < p <∞,

(ii) K(ψ) = K(ψ),

(iii)
∫
K(ψ)φ =

∫
ψK(φ).
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As a consequence of the smoothing estimate, we will study the existence of global

attractors for the dissipative DS equation. The theory of existence of global attractors

is only meaningful for systems as t → ∞. Thus to see that the equation (3.6) is

globally well-posed in the energy space, we can proceed in a similar fashion to the

proof of the existence of an absorbing set in section 2 of [36] to obtain the following a

priori estimate:

∥u(t)∥H1 ≤ Ae−Bt + C, t > 0, (3.12)

where A = A(∥f∥L2 , ∥u0∥H1), B = B(δ) > 0, C = C(δ, ∥f∥L2). Note that (3.12)

implies the existence of an absorbing ball with radius C = C(δ, ∥f∥L2) as well.

3.3. Main Method

In this section, we discuss Tao’s [k;Z] multipliers method [7] so as to study the

estimate of multilinear expression associated with the elliptic–elliptic type of Davey–

Stewartson system. Suppose that Z is any additive abelian group with an invariant

measure dξ, as an example, one can take Z = Rn+1 with Lebesgue measure or Zn ×R

with the product of counting and Lebesgue measures. Let k ≥ 2 be any integer, and

let Γk(Z) ⊂ Zk denote the hyperplane

Γk(Z) := {(ξ1, · · · , ξk) ∈ Zk : ξ1 + · · ·+ ξk = 0}

endowed with the measure∫
Γk(Z)

f =

∫
Zk−1

f(ξ1, · · · , ξk−1,−ξ1 − · · · − ξk−1) dξ1 · · · dξk−1.

Definition 3.3.1. A complex-valued function m : Γk(Z) → C is called the [k;Z]

multiplier if the inequality∣∣∣ ∫
Γk(Z)

m(ξ1, · · · , ξk)
k∏

i=1

fi(ξi)
∣∣∣ ≤ ∥m∥[k;Z]

k∏
i=1

∥fi∥L2(Z)

holds for all test functions fi on Z and the best constant, denoted by ∥m∥[k;Z].
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Note that ∥·∥[k;Z] determines a norm on the [k;Z] multipliers m. Since multi-

linear estimates might boil down to bilinear estimates of some sort (reason later), we

emphasize the case k = 3 which specifically associates with the bilinear estimates for

our Schrödinger-type equation. So we write

ξ1 + ξ2 + ξ3 = 0, τ1 + τ2 + τ3 = 0, (3.13)

λj := τj + hj(ξj), hj(ξj) = ±|ξj|2 for 1 ≤ j ≤ 3. (3.14)

Here, λj measures how close in frequency the jth wave is to a free solution. It is

remarkable to note that for d ≥ 2, whenever the two of the frequencies ξ1, ξ2, ξ3 form

an orthogonal pair, λj’s simultaneously vanish. Thus in order to take care of this

situation, we introduce the function h : Γ3(R2) → R defined by

h(ξ1, ξ2, ξ3) := h1(ξ1) + h2(ξ2) + h3(ξ3) = λ1 + λ2 + λ3 (3.15)

which measures to what extent the frequencies ξ1, ξ2, ξ3 resonate with each other so let

it be referred as a resonance function. The domain on which the resonance function

may vanish depends on the sign of Schrödinger dispersion relation hj(ξj) = ±|ξj|2. Up

to symmetry, we have two possibilities: the (+ + +) case

h1(ξ) = h2(ξ) = h3(ξ) = |ξ|2 (3.16)

and the (+ +−) case

h1(ξ) = h2(ξ) = |ξ|2, h3(ξ) = −|ξ|2. (3.17)

Comparing the two cases, analysis of the first one is rather easier since the resonance

function

h(ξ1, ξ2, ξ3) = |ξ1|2 + |ξ2|2 + |ξ3|2

vanishes only at the origin. As for the second case, the resonance function

h(ξ1, ξ2, ξ3) = |ξ1|2 + |ξ2|2 − |ξ3|2

can vanish whenever the frequencies ξ1 and ξ2 become orthogonal.
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More precisely, for (ξ1, ξ2, ξ3) ∈ Γ3(R2), we write

|h(ξ1, ξ2, ξ3)| = ||ξ1|2 + |ξ2|2 − |ξ3|2| = 2|ξ1 · ξ2| ∼ |ξ1||ξ2||π/2− ∠(ξ1, ξ2)|

where ∠(ξ1, ξ2) denotes the angle between ξ1 and ξ2. So the extent to which ξ1 and

ξ2 get closer to being orthogonal, the more rapidly resonance function tends to vanish.

At this point, we assume that

|h(ξ1, ξ2, ξ3)| ≲ |ξ1||ξ2|, (3.18)

and

∠(ξ1, ξ2) = π/2 +O(
|h(ξ1, ξ2, ξ3)|

|ξ1||ξ2|
). (3.19)

We will estimate the [3;R3] norm of multipliers by making use of the dyadic decompo-

sition of the variables ξj, λj and the function h(ξ1, ξ2, ξ3). Thus, we use the capitalized

variables Nj, Lj and H to denote the magnitude of the pieces into which the variables

ξj, λj and the resonance function h decomposed, respectively. Here, these variables are

assumed to be dyadic; that is, they range over the numbers of the form 2k, k ∈ Z. In

terms of sizes of the variables Nj > 0, j = 1, 2, 3, we write Nmin ≤ Nmed ≤ Nmax to

denote the minimum, median and maximum of N1, N2, N3. This, in its own right, saves

us from repetitive analysis and reduces the number of cases substantially. Likewise we

define Lmin ≤ Lmed ≤ Lmax for Lj > 0, j = 1, 2, 3. Next we make some assumptions on

the sizes of these variables. Before doing so, we need to state several lemmas from [7].

Lemma 3.3.2 (Comparison Principle). Let m and M be [k;Z] multipliers, if for all

ξ ∈ Γk(Z) |m(ξ)| ≤ M(ξ), then ∥m∥[k;Z] ≤ ∥M∥[k;Z]. Furthermore, if a1, ..., ak are

real-valued functions on Z and m is a [k;Z] multiplier, then∥∥∥∥∥m(ξ)
k∏

i=1

ai(ξi)

∥∥∥∥∥
[k;Z]

≤ ∥m∥[k;Z]

k∏
i=1

∥ai∥L∞(Z) .
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Lemma 3.3.3. For any ξ0 ∈ Γk(Z) and any [k;Z] multiplier m, we have the translation

invariance of the norm

∥m(ξ + ξ0)∥[k;Z] = ∥m(ξ)∥[k;Z] (3.20)

also we have the averaging estimate

∥m ∗ µ∥[k;Z] ≤ ∥m∥[k;Z] ∥µ∥L1(Γk(Z)) (3.21)

for any finite measure µ on Γk(Z).

It is remarkable that by the finiteness assumption of the measure µ, the mapping

m→ m ∗µ can be regarded as an averaging of m. Therefore by an averaging over unit

time scales, implementation of the lemmas above allows us to restrict the multiplier

m(ξ1, ξ2, ξ3) to the region

|λj| ≳ 1, j = 1, 2, 3.

Furthermore, since we deal with a multiplier with no singularities for |ξj| ≪ 1, by using

the similar reason we may assume that

max(|ξ1|, |ξ2|, |ξ3|) ≳ 1.

Therefore, through a decomposition of the variables we may assume without loss of

generality that

Nmax ≳ 1, Lmin ≳ 1.

We now fix some summation conventions in order to be used in the rest. Any sum-

mation of the form Lmax ∼ ... is a sum over the three dyadic variables L1, L2, L3, for

example,

∑
Lmax∼H

:=
∑

L1,L2,L3≳1:Lmax∼H

.
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Furthermore, any summation of the form Nmax ∼ ... is a sum over the three dyadic

variables N1, N2, N3 > 0, for instance,∑
Nmax∼Nmed∼N

:=
∑

N1,N2,N3>0:Nmax∼Nmed∼N

.

Let m be a [3;R2 × R] multiplier. Next we intend to study the problem of controlling

∥m((ξ1, τ1), (ξ2, τ2), (ξ3, τ3))∥[3;R2×R] . (3.22)

By a dyadic decomposition of the support of m in the variables ξj, λj together with a

dyadic decomposition of the resonance function h, we write

(3.22) ≲

∥∥∥∥∥∥
∑

Nmax≳1

∑
H

∑
L1,L2,L3

m((N1, L1), (N2, L2), (N3, L3))XN1,N2,N3;H;L1,L2,L3

∥∥∥∥∥∥
[3;R2×R]
(3.23)

where XN1,N2,N3;H;L1,L2,L3 is the multiplier

XN1,N2,N3;H;L1,L2,L3(ξ, τ) := χ|h(ξ)|∼H

3∏
j=1

χ|ξj |∼Nj
χ|λj |∼Lj

.

Note that Nj and Lj, in turn, measure the size of the frequency of the jth wave and how

closely it approximates a free solution, whereas H measures the amount of resonance.

From (3.13), (3.14) and (3.15), it can be deduced that XN1,N2,N3;H;L1,L2,L3 vanishes

unless

Nmax ∼ Nmed (3.24)

and

Lmax ∼ max(Lmed, H). (3.25)

Therefore, using (3.24), (3.25) and implementing Schur’s test [7] (which enables us to

replace sum with a supremum) to the sums in Nmax and Nmed, we obtain

(3.23) ≲ sup
N≳1

∥∥∥ ∑
Nmax∼Nmed∼N

∑
H

∑
Lmax∼max (Lmed,H)

m((N1, L1), (N2, L2), (N3, L3))

×XN1,N2,N3;H;L1,L2,L3

∥∥∥
[3;R2×R]

.
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Therefore, by the triangle inequality and (3.25) it suffices to control∑
Nmax∼Nmed∼N

∑
L1,L2,L3≳1

m((N1, L1), (N2, L2), (N3, L3)) ∥XN1,N2,N3;Lmax;L1,L2,L3∥[3;R2×R]

(3.26)

or

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H≪Lmax

m((N1, L1), (N2, L2), (N3, L3))

× ∥XN1,N2,N3;H;L1,L2,L3∥[3;R2×R] (3.27)

for all N ≳ 1. The following lemma gives a sharp bound for the quantity

∥XN1,N2,N3;H;L1,L2,L3∥[3;R2×R] . (3.28)

Lemma 3.3.4 (See [7]). Suppose that N1, N2, N3 > 0, L1, L2, L3 > 0 and H > 0 satisfy

(3.24) and (3.25).

(i) In the case (+ + +), let the dispersion relations be given by (3.16) so we may

assume that H ∼ N2
max. Then,

(3.28) ≲ L
1/2
minN

−1/2
max N

1/2
minmin(NmaxNmin, Lmed)

1/2 (3.29)

(ii) In the case (++−), let the dispersion relations be given by (3.17) and from (3.18)

H ≲ N1N2. Then,

• ((++) case) If N1 ∼ N2 ≳ N3, then (3.28) vanishes unless H ∼ N2
1 in this

case we have

(3.28) ≲ L
1/2
minN

−1/2
max N

1/2
min min(NmaxNmin, Lmed)

1/2 (3.30)

• ((+−) coherence) If N1 ∼ N3 ≳ N2 and H ∼ L2 ≫ L1, L3, N
2
2 then

(3.28) ≲ L
1/2
minN

−1/2
max N

1/2
minmin(H,

H

N2
min

Lmed)
1/2 (3.31)

The same estimate holds with the roles of 1 and 2 reversed.

• In all other cases,

(3.28) ≲ L
1/2
minN

−1/2
max N

1/2
min min(H,Lmed)

1/2min(1,
H

N2
min

)1/2. (3.32)
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Also the lemma below demonstrates that higher-order multilinear estimates might

be reduced to the lower-ordered ones and by this means the analysis of the whole

multiplier splits up.

Lemma 3.3.5 (See [7]). If k1, k2 ≥ 1 and m1 and m2 are functions on Zk1 and Zk2

respectively, then we have the composition estimate

∥m1(ξ1, ..., ξk1)m2(ξk1+1, ..., ξk1+k2)∥[k1+k2;Z]

≤ ∥m1(ξ1, ..., ξk1)∥[k1+1;Z] ∥m2(ξ1, ..., ξk2)∥[k2+1;Z] . (3.33)

In particular, for every m : Zk → R we have the TT ∗ identity∥∥∥m(ξ1, ..., ξk)m(−ξk+1, ...,−ξ2k)
∥∥∥
[2k;Z]

= ∥m(ξ1, ..., ξk)∥2[k+1;Z] . (3.34)

3.4. Proof of Proposition 3.1.2: Trilinear Xs,b Estimate

The required Xs,b estimate amounts to showing that

∣∣∣ ∫
Γ4(R2×R)

m((ξ1, τ1), (ξ2, τ2), (ξ3, τ3), (ξ4, τ4))
4∏

j=1

fj(ξj, τj)
∣∣∣

≤ ∥m∥[4;R2×R]

4∏
j=1

∥fj∥L2(R2×R)

where

m((ξ1, τ1), (ξ2, τ2), (ξ3, τ3), (ξ4, τ4))

=
[c1 + c2α(ξ1 + ξ2)]⟨ξ4⟩s+a∏3

j=1⟨ξj⟩s⟨τ1 + |ξ1|2⟩b⟨τ2 − |ξ2|2⟩b⟨τ3 + |ξ3|2⟩b⟨τ4 − |ξ4|2⟩1−b
.

Thus, it suffices to show that

∥m((ξ1, τ1), (ξ2, τ2), (ξ3, τ3), (ξ4, τ4))∥[4;R2×R] ≲ 1.
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We may suppose without loss of generality that

ξ4| ≈ max
1≤j≤4

|ξj|

because other cases are easier and follow immediately. In this case, the structure of

the hyperplane Γ4(R2 × R) suggests three cases to consider:

• Case 1 |ξ4| ≈ |ξ1|

• Case 2 |ξ4| ≈ |ξ2|

• Case 3 |ξ4| ≈ |ξ3|

We begin by examining the Case 2. In this case, the multiplier is estimated by

∣∣m((ξ1, τ1), (ξ2, τ2),(ξ3, τ3), (ξ4, τ4))
∣∣

≲
⟨ξ1⟩−s

⟨τ1 + |ξ1|2⟩b⟨τ2 − |ξ2|2⟩b
× ⟨ξ4⟩a⟨ξ3⟩−s

⟨τ3 + |ξ3|2⟩b⟨τ4 − |ξ4|2⟩1−b

=: m1,2((ξ1, τ1), (ξ2, τ2))×m3,4((ξ3, τ3), (ξ4, τ4)).

Using Lemma 3.3.2 and Lemma 3.3.5, we have the bound

∥m((ξ1, τ1), (ξ2, τ2), (ξ3, τ3), (ξ4, τ4))∥[4;R2×R] ≲ ∥m1,2((ξ1, τ1), (ξ2, τ2))∥[3;R2×R]

× ∥m3,4((ξ3, τ3), (ξ4, τ4))∥[3;R2×R] .

We shall introduce the variables ξd2, ξd3, τd2, τd3 satisfying

(ξ1, τ1) + (ξ2, τ2) + (ξd3, τd3) = 0, (3.35)

(ξd2, τd2) + (ξ3, τ3) + (ξ4, τ4) = 0. (3.36)

By the decomposition of the support of m1,2, m3,4 and the corresponding resonance

functions, it suffices to estimate the related sums (3.26) or (3.27).
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Then, we start with controlling m3,4 and need to consider the following cases

(i) Nd2 ∼ N3 ∼ N4

(ii) N3 ∼ N4 ≫ Nd2

(iii) Nd2 ∼ N3 ≫ N4

(iv) Nd2 ∼ N4 ≫ N3.

In the first of these cases Nmin ∼ Nmax ∼ N ≳ 1, so by the estimate (3.32) of Lemma

3.3.4 we obtain

⟨N4⟩a⟨N3⟩−s

Lb
3L

1−b
4

∥XNd2,N3,N4;H;Ld2,L3,L4∥[3;R2×R] ≲
N−s+aH2ϵ

Lϵ
minL

ϵ
med

.

It follows that if H ∼ Lmax, then since H ≲ N2
max, we have that∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+aH2ϵ

Lϵ
minL

ϵ
med

≲
∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+a+6ϵ

Lϵ
minL

ϵ
medL

ϵ
max

which is finite provided that a < s. When H ≪ Lmax, then Lmed ∼ Lmax; summing

in H first, the sum is finite for a < s as well. For the second case, we consider the

estimates (3.31) and (3.32) in Lemma 3.3.4. As N3 ∼ N4 ∼ N ≳ 1, we may establish

the estimates corresponding to the estimate (3.32) by following just the same lines of

the previous case. So it suffices to make use of the estimate (3.31) merely, in which

case we have H ∼ Ld2 ≫ L3, L4, N
2
d2 ∼ N2

min. Consequently, bearing in mind that

Lmax ∼ H ≲ N2, the sum is controlled by

∑
Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

⟨N4⟩a⟨N3⟩−s

Lb
3L

1−b
4

∥XNd2,N3,N4;Lmax;Ld2,L3,L4∥[3;R2×R]

≲
∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+a−1/2N
1/2
min(H

1/2+ϵ(HLmed

N2
min

)1/2−ϵ)1/2

Lϵ
minL

1/2−ϵ
med

≲
∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+a+1/2+3ϵN ϵ
min

Lϵ
minL

1/4−ϵ/2
med L

ϵ/2
max⟨Nmin⟩2ϵ

≲ 1

provided that a < s−1/2. Note at this point that for a non-trivial smoothing argument

it is necessary to make the assumption that s > 1/2.
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In the third and fourth cases, due to its effect in the use of Lemma 3.3.4, we

have to decide the sign in the quantity λd2 = τd2 ± |ξd2|2. No selection would lose the

generality though, we prefer to set λd2 = τd2 + |ξd2|2. Hence for the third case, by this

choice of the dummy modulation variable, we fall under the (++) case which leads to

H ∼ N2
max. Thus, the estimate (3.30) in Lemma 3.3.4 is to be used. Once H ∼ Lmax,

the sum is bounded by

∑
Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+a+3ϵ/2N
3ϵ/2
min

Lϵ
minL

ϵ/2
med

≲
∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

N−s+a+9ϵ/2N
3ϵ/2
min

Lϵ
minL

ϵ/2
medL

ϵ/2
max⟨Nmin⟩2ϵ

this is finite as long as a < s. Also, if H ≪ Lmax, then as H ∼ N2 and Lmed ∼ Lmax,

we have the bound

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H≪Lmax

N−s+a+ϵHϵ/4N
3ϵ/2
min

Lϵ
minL

ϵ/8
medL

3ϵ/8
max

≲
∑

Nmax∼Nmed∼N

∑
Lmax∼Lmed

N−s+a+ϵN
3ϵ/2
min

Lϵ
minL

ϵ/8
medL

ϵ/8
max

which is finite for a < s. In the last case, sign analysis of the modulations λd2 (which

is set in the previous case) and λ4 suggests utilizing (3.31) and (3.32) in Lemma 3.3.4.

In the separate case H ∼ Lmax ∼ L3 ≫ Ld2, L4, N
2
3 , the bound (3.31) gives rise to

∑
Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

⟨N4⟩a⟨N3⟩−s

Lb
3L

1−b
4

∥XNd2,N3,N4;Lmax;Ld2,L3,L4∥[3;R2×R]

≲
∑

Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

Na−1/2N
1/2
minH

1/2Lϵ
min

⟨Nmin⟩sL1/2+ϵ
max

.

Using the inequality H ≲ L1−ϵ
maxN

2ϵ, the above sum can be controlled by∑
Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

Na−1/2+ϵN ϵ
min

⟨Nmin⟩s−1/2+ϵL
ϵ/6
maxL

ϵ/6
medL

ϵ/6
min

which is summable provided that a < 1/2.
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For the situations with Lmax ≫ H, where the estimate (3.32) is available, we have

the bound

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H≪Lmax

Na−1/2N ϵ
minH

2ϵL
1/2−2ϵ
med

⟨Nmin⟩s−1/2+ϵLϵ
minL

1/2−ϵ
med

≲
∑

Nmax∼Nmed∼N

∑
Lmax∼Lmed

Na−1/2+4ϵN ϵ
min

⟨Nmin⟩s−1/2+ϵLϵ
minL

ϵ/2
medL

ϵ/2
max

≲ 1

provided that a < 1/2. Also for the instances with Lmax ∼ H where the estimate (3.32)

is available, we proceed similarly as above to show that the sum is finite for a < 1/2:∑
Nmax∼Nmed∼N

∑
Ld2,L3,L4≳1

Na−1/2+5ϵN ϵ
min

⟨Nmin⟩s−1/2+ϵLϵ
minL

ϵ/2
medL

ϵ
max

≲ 1.

This completes controlling m3,4. The proof with regard to m1,2 is the repetition of

performed for m3,4 without the multiplier ⟨ξ4⟩a, and it follows by assuming (3.35) and

s > 1/2. As for the Case 1, we write

|m((ξ1, τ1), (ξ2, τ2),(ξ3, τ3), (ξ4, τ4))|

≲
⟨ξ3⟩−s

⟨τ1 + |ξ1|2⟩b⟨τ3 + |ξ3|2⟩b
× ⟨ξ4⟩a⟨ξ2⟩−s

⟨τ2 − |ξ2|2⟩b⟨τ4 − |ξ4|2⟩1−b
×

=: m1,3((ξ1, τ1), (ξ3, τ3))×m2,4((ξ2, τ2), (ξ4, τ4)).

As before pick dummy variables ξdj, τdj for j = 2, 3 satisfying

(ξ2, τ2) + (ξd3, τd3) + (ξ4, τ4) = 0,

(ξ1, τ1) + (ξd2, τd2) + (ξ3, τ3) = 0

and λd2 = τd2 + |ξd2|2, λd3 = τd3 − |ξd3|2. Then, the analysis of these multipliers falls

into (+++) case which is substantially easier to handle, and only the estimate (3.29)

for (3.28) is taken into consideration.
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In the spirit of the analysis of the subcase (iii), [3;R3] norms of the two multipliers

m1,3 and m2,4 can be shown to be finite provided that a < 1/2 and s > 1/2. Lastly,

Case 3 immediately follows from Case 1 because the variables ξ1 and ξ3 appear to be

symmetric.

Remark 3.4.1. To see that the trilinear estimate (3.5) fails for a > 1/2, set

û = χQ1 , v̂ = χQ2 , ŵ = χQ2

where χS is the characteristic function of the set S and

Q1 = {(ξ1, ξ2, τ) ∈ R3 : |ξ1| ≤ 1, |ξ2 −N | ≤ 1/N, |τ +N2| ≤ 1}

Q2 = {(ξ1, ξ2, τ) ∈ R3 : |ξ1| ≤ 1, |ξ2| ≤ 1/
√
N, |τ | ≤ 1}

for N ∈ N large. On the one hand, since the volume of the former set ≈ 1/N and of

the latter ≈ N−1/2, we have ∥u∥Xs,b ≈ N s−1/2 and ∥v∥Xs,b = ∥w∥Xs,b ≈ N−1/4, on the

other

||uvw||Xs+a,b−1 ≥ CN−1
(∫

Q1

⟨τ + |ξ|2⟩2(b−1)⟨ξ⟩2(s+a) dξ dτ
)1/2

≈ CN s+a−1
(∫

Q1

dξ dτ
)1/2

≥ CN s+a−3/2.

Thus for a > 1/2, Proposition 3.1.2 implies that CN s+a−3/2 ≲ N s−1/2N−1/4N−1/4 =

N s−1 =⇒ C ≲ N1/2−a.

In the sequel, we make use of the ideas in [16] and [38] so as to finish the proof

of Theorem 3.1.1.
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3.5. Proof of Theorem 3.1.1

Let δ be the local existence time given by the local theory. Since b > 1
2
we use

the embedding Xs+a,b ↪→ C0
tH

s+a
x along with Lemma 2.1.3, Proposition 3.1.2 and local

theory bound to obtain

∥∥u(t)− eit∆u(0)
∥∥
C0

t H
s+a
x ([−δ,δ]×R2)

≲

∥∥∥∥∫ t

0

ei(t−τ)∆[c1|u|2u+ c2K(|u|2)u](τ)dτ
∥∥∥∥
Xs+a,b

δ

≲
∥∥c1|u|2u+ c2K(|u|2)u

∥∥
Xs+a,b−1

δ

≲ ∥u∥3
Xs,b

δ
≲ ∥u0∥3Hs . (3.37)

Therefore, (3.37) proves (3.4) in the local time interval [−δ, δ], in order to prove it for

all times we have to iterate this result and then prove the continuity argument. To do

so, fix t large, then for if r ≤ t, from (3.10) with the choice of β(s) (remember that for

s > 1/2 this choice makes T (t) non-decreasing function of time) we have

∥u(r)∥Hs ≲ T (r) ≤ T (t).

Thus, under favor of global well-posedness result of Theorem 3.2.1, considering the

initial value problem (3.2) with u((j − 1)δ) being the initial data, and implementing

(3.37) to this local problem, we obtain, for any j with jδ ≤ t, that∥∥u(jδ)− eiδ∆u((j − 1)δ)
∥∥
Hs+a ≲ ∥u((j − 1)δ)∥3Hs ≲ T (t)3.

By the local theory, we pick δ ∼ T (t)−
2
s so that, for J = t/δ ∼ tT (t)

2
s , we get

∥∥u(t)− eit∆u0
∥∥
Hs+a ≤

J∑
j=1

∥∥eiδ(J−j)∆u(jδ)− eiδ(J−j+1)∆u((j − 1)δ)
∥∥
Hs+a

=
J∑

j=1

∥∥u(jδ)− eiδ∆u((j − 1)δ)
∥∥
Hs+a ≲ JT (t)3 ≲ ⟨t⟩T (t)3+

2
s .

This finishes the iteration argument. In order for (3.4) to hold, we are left to show

that the difference D(t)−D(r), where

D(t) := u(t)− eit∆u0 = −i
∫ t

0

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ,



30

is continuous in Hs+a. Assume that r is fixed and that t > r, then

∥D(t)−D(r)∥Hs+a

≲

∥∥∥∥⟨ξ⟩s+aF
(
(ei(t−r)∆ − Id)

∫ r

0

ei(r−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
)∥∥∥∥

L2
ξ

+

∥∥∥∥⟨ξ⟩s+aF
(∫ t

r

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
)∥∥∥∥

L2
ξ

=: I1 + I2.

Using the inequality |ei(r−t)|ξ|2 −1| ≲ min(1, |ξ|2|t−r|) ≤ (|ξ|2|t−r|)ϵ in the subsequent

calculation (for a sufficiently small ϵ > 0), we obtain

I1 ≲
r/δ∑
j=1

∥∥∥∥∫ jδ

(j−1)δ

ei(r−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
∥∥∥∥
Hs+2ϵ+a

(3.38)

where we pick the same δ given by the local existence time of the solution. Dependence

of δ on sup
t∈[0,r]

∥u(t)∥Hs(R2) implies that this is a finite sum. As the length of each interval

of integration is δ, by the time translation and time reversal symmetries of the solution,

it suffices just to estimate the following integral for t ∈ [−δ/2, δ/2]:

∥∥∥∥∫ t

0

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
∥∥∥∥
Hs+2ϵ+a

≤
∥∥∥∥η(t/δ)∫ t

0

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
∥∥∥∥
L∞
t Hs+2ϵ+a

x,y

≲

∥∥∥∥η(t/δ)∫ t

0

ei(t−τ)∆(c1|u|2u+ c2K(|u|2)u)(τ)dτ
∥∥∥∥
Xs+2ϵ+a, 12+ϵ

≲ δϵ
∥∥c1|u|2u+ c2K(|u|2)u

∥∥
Xs+2ϵ+a,b−1

δ

≲ δϵ ∥u∥3
Xs+2ϵ,b

δ
≲ δϵ ∥u0∥3Hs+2ϵ

where we have used Lemma 2.1.3 with b = 1
2
+ 2ϵ, Proposition 3.1.2 with s + 2ϵ and

finally the local theory bound. As a result, the sum in (3.38) is bounded and hence I1

converges to 0 as t→ r. Also, the same result follows for I2 by using Proposition 3.1.2

and Lemma 2.1.3.
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3.6. Existence of a Global Attractor: Proof of Theorem 3.1.3

This section is devoted to give an alternative proof of the existence of a global

attractor for the forced and weakly damped DS by using the smoothing estimates.

Firstly, we show that the evolution operator is weakly continuous and then we exploit

this in handling the corresponding energy equation to upgrade the weak convergence,

resulting from boundedness of the flow, to strong convergence giving rise to the asymp-

totic compactness of the flow. Throughout this section,
w−→ and

w∗
−→ will denote the weak

and the weak∗ convergences, respectively.

Lemma 3.6.1. If uk0
w−→ u0 in H1, then for all T > 0 and a ∈ (0, 1

2
), the linear and the

nonlinear parts of the semigroup operator U(t) of (3.6) satisfy

Lδ(t)uk0
w−→ Lδ(t)u0 in L2([0, T ];H1)

N(t)uk0
w−→ N(t)u0 in L2([0, T ];H1+a).

Moreover, for t ∈ [0, T ],

Lδ(t)uk0
w−→ Lδ(t)u0 in H1

N(t)uk0
w−→ N(t)u0 in H1+a.

Proof. We just verify the assertions concerning the nonlinear part as the ones for the

linear part will follow from the Fourier representation of the linear flow at once. To

make use of the smoothing result for the forced problem (3.6), we shall transform the

equation (3.6) with data u0 by setting

g =
(
f̂/⟨ξ⟩2

)∨
= (1−∆)−1f ∈ H2,

and v = u+ g. As a result we obtain the equation

ivt +∆v + iδv = c1|v − g|2(v − g) + c2(v − g)ϕx + (1 + iδg), (3.39)

with ϕx = K(|v − g|2) and data v(·, 0) = u0(·) + g(·).
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Let Lδ denote the semigroup for the corresponding homogeneous linear equation

iwt +∆w + iδw = 0. (3.40)

Then, the nonlinear part n = v − w satisfies the equation

int +∆n+ iδn = c1|n+ w − g|2(n+ w − g)

+ c2(n+ w − g)K(|n+ w − g|2) + (1 + iδg) (3.41)

with data n(·, 0) = 0. Proceeding as in Section 3.5, notably using the trilinear estimate

(3.5) with s = 1, a ∈ (0, 1
2
), for T ≤ 1, we get

∥n∥C0
t H

1+a([0,T ]×R2) ≲ ∥u0∥3H1 + ∥g∥Ha−1 ≤ ∥u0∥3H1 + ∥f∥L2 . (3.42)

Note that in the above estimate we use a variant of Lemma 2.1.3 that replaces the

linear group for the non-dissipative equation by the dissipative group Lδ(t) = eit∆−tδ.

For a proof of this, see [39]. Using the H1 global well-posedness (a priori bound (3.12))

in iterating the local result above, we obtain the global bound

∥n(t)∥H1+a ≤ C(a, δ, ∥f∥L2 ∥u0∥H1); (3.43)

for the details, see the section 3 of [39], or section 6 of [17]. Lastly, the continuity in

H1+a follows as in Section 3.5, so for any T > 0 and initial data u0 ∈ H1, we have

n ∈ C0
tH

1+a([0, T ]× R2). (3.44)

In order to show that N(t)uk0
w−→ N(t)u0 in spaces given by the statement of the lemma,

it suffices to show that every subsequence of N(t)uk0 has a further subsequence which

converges weakly to the same limit. Let wk denote the solution to (3.40) with data uk0.

In relation to this denote by nk the nonlinear part. Since weak convergence uk0
w−→ u0

in H1 implies that supk

∥∥uk0∥∥H1 ≤ M for some M > 0, using this in (3.42) and (3.43),

we infer that, for every T > 0, {nk}k is bounded in

C([0, T ];H1+a) ∩ C1([0, T ];Ha−1) (3.45)

with a uniform bound of (3.43). Firstly, in conjunction with this boundedness we infer,

by Arzelà–Ascoli theorem, that {nk}k is relatively compact in C([0, T ];Ha−1
loc ) thanks

to the uniform boundedness of the derivatives which implies equicontinuity.
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Therefore, interpolating between this and (3.45) gives us a subsequence of {nk}k
that converges strongly in C([0, T ];H1+a

loc ). Secondly, by the Banach–Alaoglu theorem,

boundedness of {nk}k in (3.45) yields a weak* convergent subsequence in L∞([0, T ];H1+a).

Therefore combining these two, we reach a further subsequence, denoted also by {nk}k,

convergent in the above spaces with the corresponding type of convergences. We shall

write nk w∗
−→ n in L∞([0, T ];H1+a), and nk → n strongly in C([0, T ];H1+a

loc ) (weak∗ lim-

its are unique). The analogous arguments for the linear parts wk hold in H1 as well,

so denote the corresponding limit by w. Later we will see that the limit n is indeed

the weak limit in the spaces dictated by the lemma. Using local strong convergence

above, next, we will show that n is a distributional solution. Note that nk satisfies the

equation (3.41) and let F (p, q) = c1|p+ q− g|2(p+ q− g)+ c2(p+ q− g)K(|p+ q− g|2).

Thus for any φ ∈ C∞
c ([0, T ];R2),

∫∫ (
int +∆n+ iδn− F (n,w)− (1 + iδ)g

)
φ dx dt

=

∫∫ ([
− iφt +∆φ+ iδφ

]
n−

[
(1 + iδg) + F (n,w)

]
φ
)
dx dt

= lim
k→∞

∫∫ ([
− iφt +∆φ+ iδφ

]
nk −

[
(1 + iδg) + F (nk, wk)

]
φ
)
dx dt

= lim
k→∞

∫∫ (
ink

t +∆nk + iδnk − F (nk, wk)− (1 + iδ)g
)
φ dx dt = 0,

which proves that n is a distributional solution. It is just left to verify the second

equality above. It suffices to show that the following identity

∣∣∣ ∫∫ ([− iφt +∆φ+ iδφ
]
(nk − n)−

[
F (nk, wk)− F (n,w)

]
φ
)
dx dt

∣∣∣
≤
∣∣∣ ∫∫ [− iφt+∆φ+ iδφ

]
(nk−n)dx dt

∣∣∣+∥φ∥L∞
x,t

∣∣∣ ∫∫
suppφ

[
F (nk, wk)−F (n,w)

]
dx dt

∣∣∣
eventually decreases to zero for increasing k.
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The first integral is clearly decaying due to strong local convergence of nk, whereas

the integral part of the second summand is majorized by

∣∣∣ ∫∫
suppφ

(
nk − n+ wk − w

)[
c1I + c2K

]
(|nk + wk − g|2) dx dt

∣∣∣
+
∣∣∣ ∫∫
suppφ

(nk − n+ wk − w)(nk + wk − g)
[
c1I + c2K

]
(n+ w − g) dx dt

∣∣∣
+
∣∣∣ ∫∫
suppφ

(
nk − n+ wk − w

)(
n+ w − g

)[
c1I + c2K

]
(n+ w − g) dx dt

∣∣∣
where we have used the property (iii) of the operator K given in Section 3.2 in the com-

putation above. Owing to the strong local convergences of nk and wk along with the

boundedness of K, we conclude that these sums vanish in the limit. Moreover, by the

uniqueness of the weak∗ limits, n is a unique distribution belonging to C([0, T ];H1+a)

yielding that n = N(t)u0 (since n has shown to be the distributional solution of (3.41)).

Therefore, using the fact that L2([0, T ];H1+a) embeds in the dual of L∞([0, T ];H1+a),

weak∗ convergence in L∞([0, T ];H1+a) implies the weak convergence in L2([0, T ];H1+a).

This finishes the proof of the first assertion in the lemma. To prove the second argu-

ment, fix a t̃ ∈ [0, T ]. As before smoothing estimate together with the boundedness

of the initial data uk0 imply that {N(t̃)uk0}k is bounded in H1+a. Thus, there exists a

weakly convergent subsequence, still denoted by {N(t̃)uk0}, that converges in H1+a, say

to ñ. But as we know, from the previous discussion above, that N(t)uk0
w∗
−→ N(t)u0 in

C([0, T ];H1+a). So the uniqueness entails that ñ = N(t̃)u0.

Proof of Theorem 3.1.3. To begin with, we note that the existence of an absorbing

ball B of the evolution follows from (3.12); indeed the detailed proof was given in [36].

Hence to attain a global attractor, it is just left to affirm that the propagator U(t) is

asymptotically compact.



35

Therefore, it is sufficient to show that for any sequence of initial data {u0,k}k in

absorbing ball and any sequence of times tk → ∞, the sequence {U(tk)u0,k}k has a

convergent subsequence in H1. Note that for u0 ∈ B, (3.43) implies that the nonlinear

part N(t)u0 of

U(t)u0 = Lδ(t)u0 +N(t)u0

is contained in a ball BR inH1+a with radius R = R(a, δ, ∥f∥L2), a ∈ (0, 1
2
). As a result,

{N(tk)u0,k}k ⊂ BR. Therefore, we can find a subsequence, still denoted by N(tk)u0,k,

that converges weakly in H1+a. Moreover, since the weak and weak∗ topologies agree

on a reflexive spaces, the Banach–Alaoglu theorem yields that, up to a subsequence,

U(tk)u0,k converges weakly in H1. As Lδ(tk)u0,k → 0 strongly in H1 as tk → ∞,

N(tk)u0,k and U(tk)u0,k converge to the same limit, say to u. Furthermore, for every

T > 0, we can find a further subsequence so that N(tk − T )u0,k and U(tk − T )u0,k

converge weakly in H1+a and H1, respectively. As above, by the decay of the linear

part, the limits are the same, so denote it by uT . By Lemma 3.6.1,

U(tk − T )u0,k
w−→ uT in H1 =⇒ U(tk)u0,k = U(T )

(
U(tk − T )u0,k

) w−→ U(T )uT in H1.

Therefore, by the uniqueness of a weak limit, U(T )uT = u. In a subsequent discussion,

sometimes we need to take T → ∞ in order to obtain strong convergences. So to

make sense of this, we may implement a diagonalization argument for a countable set

{T ∈ N} so that, up to a same subsequence for all T , U(tk − ·)u0,k and N(tk − ·)u0,k
converge weakly at each T in the corresponding spaces above. Next we want to upgrade

the weak H1 convergence of the solution flow U(tk)u0,k to a strong H1 convergence.

Firstly using the equation (3.11), we can obtain that d
dt
∥u∥L2+2 δ ∥u∥L2 = 2 Im⟨f, u⟩L2 ,

and then application of the Gronwall lemma for the evolution U(t) gives that

∥U(tk)u0,k∥2L2 = e−2δT ∥U(tk − T )u0,k∥2L2

+ 2 Im

∫ T

0

e−2δ(T−τ)⟨f, U(tk − T + τ)u0,k⟩L2
x
d τ

∥U(T )uT∥2L2 = e−2δT ∥uT∥2L2 + 2 Im

∫ T

0

e−2δ(T−τ)⟨f, U(τ)uT ⟩L2
x
d τ,
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which yields

∥U(tk)u0,k∥2L2 −∥U(T )uT∥2L2 = e−2δT
(
∥U(tk − T )u0,k∥2L2 − ∥uT∥2L2

)
+ 2 Im

∫ T

0

e−2δ(T−τ)⟨f, U(tk − T + τ)u0,k − U(τ)uT ⟩L2
x
d τ.

The first summand becomes negligible by taking sufficiently large T since letting k → ∞

and using the fact that u0,k ∈ B, we ensure that the norms in the parentheses are finite

(weak convergence in H1 implies that ∥uT∥L2 ≤ lim
k

inf ∥U(tk − T )u0,k∥L2). The second

summand vanishes in the limit by Lemma 3.6.1 because, with U(T )uT = u, we have

U(tk)u0,k
w−→ u in H1 =⇒

U(tk − T + τ)u0,k = U(τ − T )
(
U(tk)u0,k

) w−→ U(τ)uT in L2([0, T ];H1).

As a consequence we get that

lim
k

sup
(
∥U(tk)u0,k∥2L2 − ∥U(T )uT∥2L2

)
= lim

k
sup

(
∥U(tk)u0,k∥2L2 − ∥u∥2L2

)
≤ 0,

which, along with U(tk)u0,k
w−→ u in H1, implies that U(tk)u0,k → u strongly in L2.

This strong L2 convergence will be important in the upcoming energy calculations. So

define the functional E by

E(u0)(t) = ∥∇U(t)u0∥2L2 +
c1
2
∥U(t)u0∥4L4 +

c2
2

∫
K(|U(t)u0|2)|U(t)u0|2 dx

+ 2Re

∫
fU(t)u0 dx,

and the time derivative is as follows

d

dt
E(u0)(t) = −2δE(u0)(t) + F (u0)(t)

where

F (u0)(t) = −δc1 ∥U(t)u0∥4L4 − δc2

∫
K(|U(t)u0|2)|U(t)u0|2 dx+ 2δRe

∫
fU(t)u0 dx.
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Gronwall lemma implies that

E(u0,k)(tk)− E(uT )(T ) =
4∑

j=1

Ij,

where

I1 = e−2δT
(
E(u0,k)(tk − T )− E(uT )(0)

)
I2 = −δc1

∫ T

0

e−2δ(T−τ)
(
∥U(tk − T + τ)u0,k∥4L4 − ∥U(τ)uT∥4L4

)
dτ

I3 = −δc2
∫ T

0

∫
e−2δ(T−τ)

(
K(|U(tk − T + τ)u0,k|2)|U(tk − T + τ)u0,k|2

−K(|U(τ)uT |2)|U(τ)uT |2
)
dx dτ

I4 = 2δRe

∫ T

0

e−2δ(T−τ)⟨f, U(tk − T + τ)u0,k − U(τ)u0,k⟩L2
x
dτ.

I1 gets arbitrarily small by increasing T , and I2 can be majorized by

δc1

∫ T

0

e−2δ(T−τ) ∥U(tk − T + τ)u0,k − U(τ)uT∥L4

×
(
∥U(tk − T + τ)u0,k∥L4 + ∥U(τ)uT∥L4

)3
dτ.

Note that by L4 Gagliardo–Nirenberg inequality

∥U(tk − T + τ)u0,k − U(τ)uT∥L4

≲
∥∥U(τ − T )

(
U(tk)u0,k − U(T )uT

)∥∥1/2
L2 ∥U(tk − T + τ)u0,k − U(τ)uT∥1/2H1 .

Then, by the strong continuity of U(τ −T ) and the strong L2 convergence U(tk)u0,k →

U(T )uT , the majorant of I2 above vanishes in the limit as weak H1 convergence yields

the H1 boundedness of the norms. Write the third term as

I3 = −δc2
∫ T

0

∫
e−2δ(T−τ)

[
K(|U(tk − T + τ)u0,k|2)−K(|U(τ)uT |2)

]
× |U(tk − T + τ)u0,k|2dx dτ
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− δc2

∫ T

0

∫
e−2δ(T−τ)K(|U(τ)uT |2)

(
|U(tk − T + τ)u0,k|2 − |U(τ)uT |2

)
dx dτ ;

first use the linearity and the Lp boundedness of the operator K, and then proceed by

using the same reasoning as above to conclude that I3 decays to zero. Finally, by using

the weak continuity (Lemma 3.6.1), I4 vanishes in the limit. Therefore, as U(T )uT = u,

we get that

lim
k→∞

sup
(
E(u0,k)(tk)− E(u)(0)

)
= lim

k→∞
sup

(
E(u0,k)(tk)− E(uT )(T )

)
≤ 0.

This inequality together with the definition of E and taking limits as above implies

that

lim
k→∞

sup ∥∇U(tk)u0,k∥2L2 ≤ ∥∇u∥2L2 .

Therefore, this with U(tk)u0,k
w−→ u in H1 leads to the L2 strong convergence of

∇U(tk)u0,k to ∇u. Consequently, U(tk)u0,k → u strongly in H1. This finishes the

proof of asymptotic compactness, so the proof is complete.
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4. BIHARMONIC SCHRÖDINGER EQUATION ON R+

4.1. Introduction

This chapter is devoted to study the initial boundary value problem (IBVP) for

the cubic biharmonic nonlinear Schrödinger equation (biharmonic NLS) on the half

line


iut + ∂4xu+ µ|u|2u = 0, x ∈ R+, t ∈ R+,

u(0, t) = h1(t), ux(0, t) = h2(t),

u(x, 0) = g(x).

(4.1)

The results of this work have appeared in [40]. Here, µ = ±1 and the data (g, h1, h2) are

taken in the space Hs
x(R+)×H

2s+3
8

t (R+)×H
2s+1

8
t (R+) with the compatibility conditions

g(0) = h1(0) when 1
2
< s ≤ 3

2
, and g(0) = h1(0), g

′(0) = h2(0) when 3
2
< s ≤ 9

2
.

These compatibility conditions are necessary since the solutions we are concerned with

have continuous L2
x traces for s > 1

2
. For the notion of traces of functions in Hs(R),

we assume, for our throughout discussion, that s ̸= n + 1
2
for n = 0, 1, 2, · · · . Note

that choosing data triples (g, h1, h2) ∈ Hs
x(R+)×H

2s+3
8

t (R+)×H
2s+1

8
t (R+) is due to the

local smoothing inequalities of [41], [42]:
∥∥∥∂kxeit∂4

xg
∥∥∥
L∞
x H

2s+3−2k
8

t∈(0,T )

≲ ∥g∥Hs , for k = 0, 1

and these inequalities are sharp in the sense that the numbers 2s+3
8

and 2s+1
8

cannot

be replaced by any bigger number and hence taking such data makes sense. We also

verify the appropriateness of the selected spaces in our computations. Fourth order

NLS with power-type nonlinearity

iut +∆u+ λ∆2u+ |u|pu = 0, x ∈ Rn, t ∈ R

was introduced by Karpman and Shagalov [43, 44] to consider the effect of the small

fourth order dispersion terms in the propagation of intense laser beams in a bulk

medium with Kerr nonlinearity. Indeed, when λ < 0, they studied the stability/instability

of solutions depending on certain restrictions on the parameters λ, p.
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When Laplacian is removed, the equation

iut + λ∆2u+ µ|u|pu = 0, x ∈ Rn, t ∈ R (4.2)

is called biharmonic NLS, in addition it is said to be defocusing if λµ > 0, and focusing

if λµ < 0. From a physical point of view, as a model equation, biharmonic NLS arises

in many context such as deep water wave dynamics [45], vortex filaments [46], solitary

waves [43, 44]. Furthermore it was used as a model equation in [47], [48] to study

the stability of solitons in magnetic materials once the effective quasi particle mass

becomes infinite. Fourth order NLS with various nonlinearities have been extensively

studied on the well-posedness in the periodic and non-periodic settings. As half line

problems are relavent to the initial value problems posed in the non-periodic setting,

here it is better to review some of those posed on Rd. So we write

iut + κ∆u+ λ∆2u+ F (u) = 0,

u(x, 0) = g(x).

(4.3)

The initial value problem (IVP) (4.3) on Rn× (0,∞) with κ = 0, λ = 1 and nonlineari-

ties F (u) = ∂x(|u|p−1u), 2 ≤ p ∈ N have been studied in [49] in terms of well-posedness

and scattering of the solution. In particular, it turns out that when n = 1 and p = 3,

the authors obtained the local well-posedness of (4.3) in the Sobolev spaces Hs(R) for

s ≥ 0. Furthermore this result is almost sharp in the sense that the flow map from

Hs(R) to C(R, Hs(R)) is not C3. The local and global well-posedness for the IVP (4.3)

on R × R with κ = 0, λ = −1 and F (u) = ±|u|2u, were established in [50] for data

g ∈ Hs(R) with s ≥ −1
2
, also the equation was shown to be ill-posed below this range

(s < −1
2
), by proving that the flow map is not uniformly continuous. In [51], the IVP

(4.3) on R× R with κ = 1, λ ̸= 0 and the nonlinearity

F (u) = −1

2
|u|2u+ c1|u|4u+ c2(∂xu)

2ū+ c3|∂xu|2 + c4u
2∂2xū+ c5|u|2∂2xu (4.4)

(with certain restrictions on the constants) was proved to be locally well-posed in

Hs(R), s ≥ 1
2
by the restricted norm method. For higher dimensions, Pausader [52]

showed that the equation (4.3) with κ = 0, λ = 1 and F (u) = |u|2u is globally well-

posed for n ≤ 8, and ill-posed for n ≥ 9.
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For the other well-posedness results related to the equation (4.3) see for instance

[53–59]. Initial boundary value problems for the fourth order NLS have been recently

started to be addressed. In the case of the half line, Hu etal [60] obtained a solution of

some form of the equation (4.3) in the IBVP setting (with a similar nonlinearity as in

(4.4)) after reformulating the problem as a Riemann-Hilbert problem. Özsarı-Yolcu [42]

studied the IBVP of the equation (4.2) with λ = 1, µ ∈ C and the inhomogeneous

Dirichlet-Neumann boundary data on the half line where they make use of the unified

transform method in obtaining the solution. By making some assumptions on the

relation of s and p, the authors obtained the local well-posedness in Hs(R+) for s ∈

(1
2
, 9
2
), s ̸= 3

2
, and s ∈ [0, 1

2
) separately. Moreover, for the defocusing problem they

established the global well-posedness in the energy space H2(R+). It is remarkable

to note that [42] is the first treatment of the fourth order Schrödinger equations on

a half line subject to the inhomogeneous boundary conditions. Lastly, more recently

Filho-Cavalcante-Gallego [61] addressed the IBVP of the cubic biharmonic NLS (4.2)

when λ = −1 with the same set of initial-boundary data as in [42]. The authors

proved the local well-posedness in Hs(R+) for 0 ≤ s < 1
2
by the Fourier restriction

norm method and using the Duhamel boundary forcing operator for the corresponding

linear equation.

In this chapter, we continue the program initiated in [62] that establishes the

regularity properties of cubic NLS on a half line using the tools available in the case

of the full line. Biharmonic cubic NLS is higher order dispersive PDE version of cubic

NLS, so as expected, we obtain well-posedness in a less regular space by adapting

the estimates of [62]. We will use Laplace transform method proposed by Bona-Sun-

Zhang [63] to divide the problem into a linear IBVP on the half line and nonlinear

IVP on the full line after extending the data into R. By this method we can write the

explicit solution for a linear IBVP and then using it, we set up an equivalent integral

equation on R × R for the full solution. We then examine the integral equation with

the Xs,b method, see [1, 2]. To state our theorems we begin with a definition.
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Definition 4.1.1. We say that the biharmonic NLS equation (4.1) is locally well-

posed in Hs(R+) if for any data (g, h1, h2) ∈ Hs
x(R+) ×H

2s+3
8

t (R+) ×H
2s+1

8
t (R+) with

the additional compatibility conditions discussed above, the integral equation (4.8) has

a unique solution in

Xs,b(R× [0, T ]) ∩ C0
tH

s
x([0, T ]× R) ∩ C0

xH
2s+3

8
t (R× [0, T ])

for some b < 1
2
and sufficiently small T = T (∥g∥Hs(R+) , ∥h1∥H 2s+3

8 (R+)
, ∥h2∥

H
2s+1

8 (R+)
).

Furthermore, if u1 and u2 are two such solutions coming from different extensions ge1

and ge2, then their restriction to R+ × [0, T ] are the same. In addition, if gn → g in

Hs(R+), hn1 → h1 in H
2s+3

8 (R+) and hn2 → h2 in H
2s+1

8 (R+), then un → u in the

space above.

We state our local result below and note that it improves the result for the cubic

biharmonic NLS in [42] which establishes the well-posedness for s ≥ 0. As already

mentioned [42] utilizes the uniform transform method of Fokas to obtain the local well-

posedness for the biharmonic NLS with power nonlinearities. The method is based on

inverse-scattering techniques and used to obtain representation formula for the solution

of the linear biharmonic Schrödinger equation. In order to establish the local theory we

will need to obtain some essential estimates regarding the linear and nonlinear terms

of the integral equation representation for the solution in Section 4.4 below.

Theorem 4.1.2. For any s ∈ (−1
3
, 9
2
), s ̸= 1

2
, 3
2
, the equation (4.1) is locally well-posed

in Hs(R+) with the local existence time T satisfying T ≈
(
C + ∥g∥Hs(R+)

)− 8
2s+3 where

the constant C depends on ∥g∥L2 + ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

.

Next theorem is concerned with the smoothing result of the equation (4.1) that

is, it demonstrates that the nonlinear part of the solution is smoother than the initial

data. It reads that smoothing vanishes at the upper end point s = 9
2
, nevertheless, the

gain of a derivative at the lower end point s = −1
3
is still 1

3
.
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The proof of the smoothing theorem below will be based on the restricted norm

method of Bourgain [1, 2] and in the sequel, we will denote the operator W t
0 as the

linear part of the solution of the equation (4.1).

Theorem 4.1.3. Fix s ∈ (−1
3
, 9
2
), s ̸= 1

2
, 3
2
, (g, h1, h2) ∈ Hs

x(R+) × H
2s+3

8
t (R+) ×

H
2s+1

8
t (R+) with the compatibility conditions given for the equation (4.1). Then for

a < min(1, 2s+ 1, 9
2
− s) and t in the local existence interval [0, T ], we have

u(x, t)−W t
0(g, h1, h2) ∈ C0

tH
s+a
x ([0, T ]× R+).

The smoothing estimates of this sort were obtained for NLS in certain papers in

the periodic, see [38, 64, 65] and non-periodic cases, see [66, 67]. The first smoothing

result related to the initial boundary value problem is established for cubic NLS, [62].

Also using the same approach as in [62], the papers [68], [69] establish the regularity

properties of the Boussinesq equation and the Zakharov system on the half line re-

spectively. In order to prove the above theorems we take advantage of the Duhamel

formulation by which we run a fixed point argument. With this formulation we express

the solution as a superposition of the linear evolutions which incorporate the boundary

term and the initial data with the nonlinearity. Also to estimate the terms coming from

Duhamel formula, we first solve the corresponding linear problem by taking Laplace

transform of the equation in the temporal variable and inverting back by the Mellin

transform so that we obtain an explicit formula for the linear evolution after extending

the initial data to the whole line. Afterwards the nonlinear part of the formula will

be treated by the Xs,b method. Note that in the boundary value problems b < 1
2
is

necessary in order to carry out the contraction argument, while b > 1
2
is required on

the full line. As for the uniqueness, the solution we constructed is the unique fixed

point of the Duhamel operator (4.18) by the contraction argument, yet it is not clear if

the restriction of the fixed point of (4.18) to the half line is independent of the different

extensions of the initial data.
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In this regard, the proof of uniqueness in our case proceeds in two steps: one is

for the case s > 1
2
where we exploit the Sobolev embedding and well-known Gronwall’s

inequality on R+, and the other is for the low regularity case −1
3
< s < 1

2
where we

make use of the uniqueness obtained for s > 1
2
and the smoothing estimate of Theorem

4.1.3 to establish the uniqueness in this range, also in contrast to the case s > 1
2
, it is not

immediate to exhibit that different extensions produce the same solution. In particular,

in order to establish uniqueness down to the local theory thresholdH− 1
3 (R+), we require

smoothing estimate of Theorem 4.1.3.

When µ = 1 in (4.1) (the defocusing case), the following theorem provides bounds

for higher order Sobolev norms. This is based on smoothing result obtained in Theorem

4.1.3 and a priori estimate at the energy level, Lemma A.0.1.

Theorem 4.1.4. Let µ = 1 in the equation (4.1). In the case s ∈ [2, 5
2
), g ∈ Hs(R+),

h1 ∈ H
2s+3

8 (R+)∩H1(R+) and h2 ∈ H
2s+1

8 (R+)∩H1(R+), the associated local solution

is global and the smoothing result holds globally. Furthermore, for 2 < s < 5
2
the

solution has the growth bound

∥u(t)∥Hs(R+) ≲ ⟨T ⟩.

Here we note that the equation (4.1) does not satisfy the mass and energy conser-

vations once the boundary data h1 and h2 are nonzero. Hence the global well-posedness

at the energy level, H2, for the equation (4.1) is a nontrivial problem in the presence

of inhomogeneous boundary conditions, see Theorem 1.3 of [42]. The Lemma A.0.1,

which is the key to obtaining the growth bound in Theorem 4.1.4, results from the

proof of Theorem 1.3 of [42].

As far as we know this work is the first treatment of the fourth order biharmonic

Schrödinger equation subject to the inhomogeneous boundary conditions where well-

posed solutions are constructed below the L2 space.
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Now we outline the organization of the chapter. In Section 4.2, we define the

notion of a solution. To be more precise we reformulate (4.1) as an integral equation

(Duhamel’s formula) and set this to be a solution map which we then show is a con-

traction in a suitable metric space. Thus by using the Duhamel’s formula, the solution

we constructed is a superposition of a linear and a nonlinear evolutions. We also intro-

duce the space Hs(R+) and discuss whenever one can extend the initial and boundary

data. In Section 4.3 we illustrate, by an application of the Laplace transform on the

half line, how to find the explicit solution formula for the linear problem with zero

initial data. In Section 4.4, we state and prove linear and nonlinear a priori estimates.

Linear estimates relate to two separate processes one is for a solution to a free fourth

order Schrödinger equation and the other is for a solution to IBVP subject to the in-

homogeneous boundary data. The estimates for the latter also clarify the regularity

level of the boundary data h1, h2 and the selection of the spaces they are taken. In

the remaining part of the Section 4.4, we prove the multilinear estimates associated

to the nonlinear term coming from the integral part of the solution representation. In

Section 4.5, we prove Theorem 4.1.2 by establishing the local well-posedness theory via

the contraction argument and argue the dependence of the local existence time to the

initial and boundary data. Theorems 4.1.3 and 4.1.4 are proved in Section 4.6 and the

uniqueness is proved in Section 4.5.1.

4.1.1. Notation

We define the space time Fourier transform as

f̂(ξ, τ) = Ff(ξ, τ) =
∫
R2

e−ixξ−itτf(x, t)dxdt.

For s > −1
2
, Sobolev spaces Hs(R+) on the half line are defined as

Hs(R+) =
{
g ∈ D(R+) : ∃ g̃ ∈ Hs(R) such that g̃χ(0,∞) = g

}
with the norm

∥g∥Hs(R+) = inf
{
∥g̃∥Hs(R) : g̃χ(0,∞) = g

}
.
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The restriction s > −1
2
is necessary because multiplication with the characteristic

function χ(0,∞) is not well-defined for Hs distributions when s ≤ −1
2
. Moreover we

write W tg for the linear biharmonic Scrödinger propagator

W tg(x, t) = eit∆
2

g =

∫
eixξ+itξ4 ĝ(ξ, t)dξ.

For a space time function f , the notation D0 means the evaluation at the boundary

x = 0, that is

D0

(
f(x, t)

)
= f(0, t).

Throughout we write η for a smooth compactly supported function that is equal to 1

on [−1, 1] and supp η ⊂ [−2, 2]. Also let ρ ∈ C∞ be a cut-off function satisfying ρ = 1

on [0,∞) and supp ρ ⊂ [−1,∞).

4.2. Notion of a Solution

In order to find solutions of (4.1) we start with constructing the solution of the

linear IBVP


iut + uxxxx = 0

u(0, t) = h1(t), ux(0, t) = h2(t),

u(x, 0) = g(x),

(4.5)

with the compatibility conditions g(0) = h1(0) for 1
2
< s ≤ 3

2
and g(0) = h1(0),

g′(0) = h2(0) for 3
2
< s ≤ 9

2
. We shall denote the solution of (4.5) by W t

0(g, h1, h2).

This solution can be written as

W t
0(g, h1, h2) = W t

0(0, h1 − p1, h2 − p2) +W tge

where ge is an extension of g to the full line R such that ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) and

the traces p1(t) = η(t)D0(W
tge), p2(t) = η(t)D0

(
∂x
[
W tge

])
are well well-defined and

belong to the spaces H
2s+3

8 (R+), H
2s+1

8 (R+) respectively, by Lemma 4.4.1 below.
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As a result we decomposed the solution operator as a sum of free biharmonic

Scrödinger evolution and the boundary operator corresponding to the zero initial data.

Therefore we consider


iut + uxxxx = 0, (x, t) ∈ R+ × R+

u(0, t) = h1(t), ux(0, t) = h2(t),

u(x, 0) = 0

(4.6)

where W t
0(0, h1, h2) denotes the solution to this problem. By an application of the

Laplace transform described in the next section, we obtain explicit representation for

W t
0(0, h1, h2).

Lemma 4.2.1. Assume that h1 and h2 are Schwartz functions. The solution of (4.6)

can explicitly be written in the form

u(x, t) =
−1 + i

π

[
W1h2 − iW2h1 −W3h1 −W4h2

]
−

√
2i

π

[
W5h2 +

(√2

2
+ i

√
2

2

)
W6h1 +

(−√
2

2
+ i

√
2

2

)
W7h1 −W8h2

]

where

W1h2(x, t) =

∫ ∞

0

eiβ
4t−βxβ2 ĥ2(β

4)ρ(βx)dβ,

W2h1(x, t) =

∫ ∞

0

eiβ
4t−βxβ3 ĥ1(β

4)ρ(βx)dβ,

W3h1(x, t) =

∫ ∞

0

eiβ
4t+iβxβ3 ĥ1(β

4)dβ,

W4h2(x, t) =

∫ ∞

0

eiβ
4t+iβxβ2 ĥ2(β

4)dβ,

W5h2(x, t) =

∫ ∞

0

e−iβ4te[−
√
2

2
+i

√
2

2
]βxβ2 ĥ2(−β4)ρ(βx)dβ,

W6h1(x, t) =

∫ ∞

0

e−iβ4te[−
√
2

2
+i

√
2

2
]βxβ3 ĥ1(−β4)ρ(βx)dβ,

W7h1(x, t) =

∫ ∞

0

e−iβ4te[−
√
2

2
−i

√
2

2
]βxβ3 ĥ1(−β4)ρ(βx)dβ,
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W8h2(x, t) =

∫ ∞

0

e−iβ4te[−
√
2

2
−i

√
2

2
]βxβ2 ĥ2(−β4)ρ(βx)dβ.

Here by an abuse of notation we take

ĥj(ξ) = F
(
χ(0,∞)hj

)
(ξ) =

∫ ∞

0

e−iξthj(t)dt. (4.7)

We use this explicit form to obtain bounds onW t
0(0, h1, h2) in Section 4.4 below. Next,

by the Duhamel formulation, we consider the integral equation equivalent to (4.1) on

[0, T ], t ≤ T < 1:

u(t) = η(t)W tge+η(t)

∫ t

0

W t−t′F (u)dt′+η(t)W t
0

(
0, h1−p1−q1, h2−p2−q2

)
(t), (4.8)

where

F (u) = η(t/T )|u|2u, p1(t) = η(t)D0(W
tge), p2(t) = η(t)D0

(
∂x
[
W tge

])
,

q1(t) = η(t)D0

(∫ t

0

W t−t′F (u)dt′
)
, q2(t) = η(t)D0

(
∂x

[ ∫ t

0

W t−t′F (u)dt′
])
.

In the following, we want to prove that the integral equation (4.8) has a unique solution

in a suitable function space (given by definition 4.1.1) on R × R for sufficiently small

T . Note that the restriction of u to R+ × [0, T ] is a distributional solution of (4.1)

whereas smooth solutions of the equation (4.8) are classical solutions of (4.1).

We implement contraction argument in Xs,b(R× R) spaces:

∥u∥Xs,b =
∥∥⟨ξ⟩s⟨τ − ξ4⟩bû(ξ, τ)

∥∥
L2
τL

2
ξ

. (4.9)

In order to carry out the contraction argument in the local theory we will need the

following standard results from [8]

for any s ∈ R and b >
1

2
, we have Xs,b ⊂ Ct

0H
s
x. (4.10)

For any s, b ∈ R,

∥∥η(t)W tg
∥∥
Xs,b ≲ ∥g∥Hs . (4.11)
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For T < 1 and −1
2
< b1 < b2 <

1
2
we have

∥η(t/T )F∥Xs,b1 ≲ T b2−b1 ∥F∥Xs,b2 . (4.12)

We also need the following estimate whose proof can be obtained by adapting the proof

of Lemma 3.12 in [9]. For any s ∈ R, 0 ≤ b1 <
1
2
and b2 = 1− b1, we have∥∥∥∥η(t)∫ t

0

W t−t′Fdt′
∥∥∥∥
Xs,b2

≲ ∥F∥Xs,−b1 . (4.13)

Next for the boundary data h1 and h2, we need estimates on the sizes of the norms∥∥χ(0,∞)h1
∥∥
H

2s+3
8 (R)

and
∥∥χ(0,∞)h2

∥∥
H

2s+1
8 (R)

which is the content of the next lemma.

Lemma 4.2.2 (See [62]). Assume h ∈ Hs(R+) for some s ∈ (−1
2
, 5
2
).

1. If −1
2
< s < 1

2
, then

∥∥χ(0,∞)h
∥∥
Hs(R) ≲ ∥h∥Hs(R+).

2. If 1
2
< s < 3

2
and h(0) = 0, then

∥∥χ(0,∞)h
∥∥
Hs(R) ≲ ∥h∥Hs(R+).

3. If 1
2
< s < 3

2
, then ∥heven∥Hs(R) ≲ ∥h∥Hs(R+).

4. If 1
2
< s < 5

2
, s ̸= 3

2
and h(0) = 0, then ∥hodd∥Hs(R) ≲ ∥h∥Hs(R+).

where heven(x) = h(|x|) and hodd(x) =

 h(|x|) if x ≥ 0

−h(|x|) if x ≤ 0.

As a final note following will be useful in establishing the Theorem 4.1.4.

Remark 4.2.3. By the definition of linear flow W t and the Lemma 4.2.1 we may write

W t
0(g, h1, h2)−W t

0(g̃, h1, h2) = W t
0(g − g̃, 0, 0).

Moreover, by writing W t
0(g, 0, 0) with the method of odd extension and then utilizing

Lemma 4.4.3, Lemma 4.4.1 below and 4. of Lemma 4.2.2 we obtain the bound∥∥W t
0(g, 0, 0)

∥∥
Hs(R+)

≲
∥∥W tgodd

∥∥
Hs(R) = ∥godd∥Hs(R) ≲ ∥g∥Hs(R+) .
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4.3. Proof of Lemma 4.2.1: Boundary Term

In this section we obtain explicit solution formula for the linear problem (4.6)

by the application of the Laplace transform. So taking the Laplace transform of the

equation (4.6) in t leads to the initial value problem in the spatial variable x

ũxxxx + iλũ = 0

ũ(0, λ) = h̃1(λ), ũx(0, λ) = h̃2(λ)

(4.14)

where

ũ(x, λ) =

∫ ∞

0

e−λtu(x, t)dt, h̃j(λ) =

∫ ∞

0

e−λthj(t)dt, j = 1, 2.

The solution of (4.14) can be written as follows

ũ(x, λ) = c1(λ)e
r1(λ)x + c2(λ)e

r2(λ)x

where r1(λ) and r2(λ) are solutions of the characteristic equation r4(λ) + iλ = 0 for

which Re r1 < 0, Re r2 < 0. Employing the initial conditions and suppressing the λ

dependence of r1(λ) and r2(λ), we have

c1(λ) =
h̃2(λ)− r2h̃1(λ)

r1 − r2
, c2(λ) =

r1h̃1(λ)− h̃2(λ)

r1 − r2
.

Then by Mellin inversion we can express the solution as

u(x, t) =
1

2πi

∫ γ+i∞

γ−i∞

eλt

r1 − r2

[(
h̃2(λ)− r2h̃1(λ)

)
er1x +

(
r1h̃1(λ)− h̃2(λ)

)
er2x
]
dλ

for x, t > 0 and where γ > 0 is fixed. Letting γ → 0, we have

u(x, t) =
1

2π

∫ ∞

−∞

eiβt

r1 − r2

[(
h̃2(iβ)− r2h̃1(iβ)

)
er1(iβ)x +

(
r1h̃1(iβ)− h̃2(iβ)

)
er2(iβ)x

]
dβ

=
1

2π

∫ 0

−∞

eiβt

i
√
2 4
√
−β

[
h̃2(iβ) +

(√2

2
+ i

√
2

2

)
4
√

−β h̃1(iβ)
]
e

(
−

√
2
2
+i

√
2
2

)
4√−βxdβ

+
1

2π

∫ 0

−∞

eiβt

i
√
2 4
√
−β

[ (
−

√
2

2
+ i

√
2

2

)
4
√

−β h̃1(iβ)− h̃2(iβ)
]
e

(
−

√
2

2
−i

√
2
2

)
4√−βxdβ

+
1

2π

∫ ∞

0

eiβt

−(1 + i) 4
√
β

[
h̃2(iβ)− i 4

√
β h̃1(iβ)

]
e−

4√βxdβ

+
1

2π

∫ ∞

0

eiβt

−(1 + i) 4
√
β

[
− 4
√
β h̃1(iβ)− h̃2(iβ)

]
ei

4√βxdβ
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=
1

2π

∫ ∞

0

e−iβ4t

i
√
2β

[
h̃2(−iβ4) +

(√2

2
+ i

√
2

2

)
β h̃1(−iβ4)

]
e

(
−

√
2

2
+i

√
2

2

)
βx4β3dβ

+
1

2π

∫ ∞

0

e−iβ4t

i
√
2β

[ (
−

√
2

2
+ i

√
2

2

)
β h̃1(−iβ4)− h̃2(−iβ4)

]
e

(
−

√
2

2
−i

√
2

2

)
βx4β3dβ

+
1

2π

∫ ∞

0

eiβ
4t

−(1 + i)β

[
h̃2(iβ

4)− iβh̃1(iβ
4)
]
e−βx4β3dβ

+
1

2π

∫ ∞

0

eiβ
4t

−(1 + i)β

[
− β h̃1(iβ

4)− h̃2(iβ
4)
]
eiβx4β3dβ.

By a slight abuse of notation after writing ĥj instead of h̃j to denote the Fourier

transform of χ(0,∞)hj, j = 1, 2, we obtain

u(x, t) = −
√
2

π
i

∫ ∞

0

e−iβ4te

(
−

√
2

2
+i

√
2

2

)
βx
[
ĥ2(−β4) +

(√2

2
+ i

√
2

2

)
β ĥ1(−β4)

]
β2dβ

−
√
2

π
i

∫ ∞

0

e−iβ4te

(
−

√
2

2
−i

√
2

2

)
βx
[(

−
√
2

2
+ i

√
2

2

)
β ĥ1(−β4)− ĥ2(−β4)

]
β2dβ

+
−1 + i

π

∫ ∞

0

eiβ
4t−βx

[
ĥ2(β

4)− iβĥ1(β
4)
]
β2dβ

+
−1 + i

π

∫ ∞

0

eiβ
4t+iβx

[
− β ĥ1(β

4)− ĥ2(β
4)
]
β2dβ.

Finally, we add the cut-off function ρ in the above integrals except the last one to

extend the solution to all x. Note that with this choice the integrals converge for all x.

4.4. A Priori Estimates

4.4.1. Estimates for the Linear Terms

In this section we justify that the linear terms in (4.8) stay in the function space

given in the definition 4.1.1. First we begin with the Kato smoothing inequality de-

picting interaction between the space and time derivatives. Note that this affirms the

selection of the spaces that the data g, h1 and h2 reside in.



52

Lemma 4.4.1 (Kato smoothing inequality). For any s ∈ R, g ∈ Hs(R), we have

η(t)W tg ∈ C0
xH

2s+3
8

t (R× R) and η(t)∂x[W tg] ∈ C0
xH

2s+1
8

t (R× R). Moreover,∥∥η(t)W tg
∥∥
L∞
x H

2s+3
8

t

≲ ∥g∥Hs
x
and

∥∥η(t)∂x[W tg]
∥∥
L∞
x H

2s+1
8

t

≲ ∥g∥Hs
x
.

Proof. We start by writing that

Ft(ηW
tg)(τ) =

∫
eixξη̂(τ − ξ4)ĝ(ξ)dξ

=

∫
|ξ|<1

eixξη̂(τ − ξ4)ĝ(ξ)dξ +

∫
|ξ|≥1

eixξη̂(τ − ξ4)ĝ(ξ)dξ.

Using the fact that η is a Schwarz function, the contribution of the H
2s+3

8
t norm of the

first term above is bounded by

∫
|ξ|<1

∥∥∥⟨τ⟩ 2s+3
8 η̂(τ − ξ4)

∥∥∥
L2
τ

|ĝ(ξ)|dξ ≲
∫
|ξ|<1

∥∥∥⟨τ⟩ 2s+3
8 η̂(τ − ξ4)

∥∥∥
L2
τ

⟨ξ⟩s|ĝ(ξ)|dξ

≲
∫
|ξ|<1

⟨ξ⟩s|ĝ(ξ)|dξ ≲ ∥g∥Hs .

Next by the inequality ⟨x + y⟩r ≲ ⟨x⟩|r|⟨y⟩r for any r ∈ R, and a change of variable,

the contribution for the second term is estimated by

∥∥∥∥∫
|ξ|≥1

⟨τ⟩
2s+3

8 |η̂(τ − ξ4)||ĝ(ξ)|dξ
∥∥∥∥
L2
τ

≲

∥∥∥∥∫
|ξ|≥1

⟨τ − ξ4⟩
|2s+3|

8 ⟨ξ⟩
2s+3

2 |η̂(τ − ξ4)||ĝ(ξ)|dξ
∥∥∥∥
L2
τ

≲

∥∥∥∥∫
|ρ|≥1

⟨τ − ρ⟩
|2s+3|

8 ⟨ρ⟩
2s−3

8 |η̂(τ − ρ)||ĝ(±ρ
1
4 )|dρ

∥∥∥∥
L2
τ

≲
∥∥∥⟨·⟩ |2s+3|

8 η̂(·)
∥∥∥
L1

∥∥∥ρ 2s−3
8 ĝ(±ρ

1
4 )
∥∥∥
L2
ρ≥1

≲
∥∥∥ρ 2s−3

8 ĝ(±ρ
1
4 )
∥∥∥
L2
ρ≥1

where we have used Young’s inequality in the third inequality.
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Changing variable back to ξ this is bounded by(∫ ∞

1

⟨ξ⟩2s−3|ĝ(±ξ)|2ξ3dξ
) 1

2
≲
(∫

⟨ξ⟩2s|ĝ(ξ)|2dξ
) 1

2
= ∥g∥Hs .

From these and the dominated convergence theorem continuity statement follows. Us-

ing the same argument we estimate ∥η(t)∂x[W tg]∥
H

2s+1
8

t

likewise.

Proposition 4.4.2, Lemma 4.4.3, and Lemma 4.4.4 below verify that the boundary

operator belongs to the space from definition 4.1.1.

Proposition 4.4.2. For any s ≥ −1
2
, b ≤ 1

2
and h1, h2 satisfying χ(0,∞)h1 ∈ H

2s+3
8 ,

χ(0,∞)h2 ∈ H
2s+1

8 , we have∥∥η(t)W t
0(0, h1, h2)

∥∥
Xs,b ≲

∥∥χ(0,∞)h1
∥∥
H

2s+3
8

t

+
∥∥χ(0,∞)h2

∥∥
H

2s+1
8

t

.

Proof. First recall that

W t
0(0, h1, h2) =

−1 + i

π

[
W1h2 − iW2h1 −W3h1 −W4h2

]
−

√
2i

π

[
W5h2 +

(√2

2
+ i

√
2

2

)
W6h1 +

(−√
2

2
+ i

√
2

2

)
W7h1 −W8h2

]

where the terms W1h2, W2h1, W3h1, W4h2, W5h2, W6h1, W7h1 and W8h2 are given in

Lemma 4.2.1, also recall the notation of expressing ĥ as Ft(χ(0,∞)h). Note that

W3h1 = W tψ3 and W4h2 = W tψ2

where

ψ̂3(β) = β3ĥ1(β
4)χ(0,∞)(β) and ψ̂4(β) = β2ĥ2(β

4)χ(0,∞)(β). (4.15)

By change of variables we have

∥ψ3∥Hs =
∥∥∥⟨β⟩sψ̂3(β)

∥∥∥
L2
β

=
(∫ ∞

0

⟨β⟩2sβ6|ĥ1(β4)|2dβ
) 1

2

≲
(∫ ∞

0

⟨ρ⟩
2s+3

4 |ĥ1(ρ)|2dρ
) 1

2
≲
∥∥χ(0,∞)h1

∥∥
H

2s+3
8

(4.16)



54

and similarly

∥ψ4∥Hs =
∥∥∥⟨β⟩sψ̂4(β)

∥∥∥
L2
β

=
(∫ ∞

0

⟨β⟩2sβ4|ĥ2(β4)|2dβ
) 1

2

≲
(∫ ∞

0

⟨ρ⟩
2s+1

4 |ĥ2(ρ)|2dρ
) 1

2
≲
∥∥χ(0,∞)h2

∥∥
H

2s+1
8
. (4.17)

Then using (4.11) together with the bounds (4.16) and (4.17), we have

∥η(t)W3h1∥Xs,b =
∥∥ηW tψ3

∥∥
Xs,b

≲ ∥ψ3∥Hs ≲
∥∥χ(0,∞)h1

∥∥
H

2s+3
8

t (R)

and

∥η(t)W4h2∥Xs,b =
∥∥ηW tψ4

∥∥
Xs,b

≲ ∥ψ4∥Hs ≲
∥∥χ(0,∞)h2

∥∥
H

2s+1
8

t (R)
.

For W1h2 and W2h1, set f(x) = e−xρ(x). Note that f is a Schwarz function. Assume

s ∈ 4N, we can write

∂sxW1h2 = η

∫ ∞

0

eiβ
4tf (s)(βx)βs+2ĥ2(β

4)dβ

= (−i)s/4η
∫ ∞

0

eiβ
4tf (s)(βx)β2Ft[χ(0,∞)∂

(s/4)
t h2](β

4)dβ

and

∂sxW2h1 = (−i)s/4η
∫ ∞

0

eiβ
4tf (s)(βx)β3Ft[χ(0,∞)∂

(s/4)
t h1](β

4)dβ.

Then using these with the interpolation it suffices to prove the bounds for s = 0. We

have

η̂W1h2(ξ, τ) = Ft

(
η(t)

∫ ∞

0

eiβ
4tβ2ĥ2(β

4)Fx(f(βx))dβ
)
(τ)
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=

∫ ∞

0

η̂(τ − β4)βĥ2(β
4)f̂(ξ/β)dβ

and

η̂W2h1(ξ, τ) =

∫ ∞

0

η̂(τ − β4)β2ĥ1(β
4)f̂(ξ/β)dβ.

Since f is a Schwarz function,

|f̂(ξ/β)| ≲ 1

⟨ξ/β⟩4

≲
1

1 + (ξ/β)4

=
β4

β4 + ξ4
.

Also, as η is a compact supported C∞ function, we may write

|η̂(τ − β4)| ≲ ⟨τ − β4⟩−3

as well. Therefore,

∥ηW1h2∥X0,b ≲

∥∥∥∥⟨τ − ξ4⟩b
∫ ∞

0

⟨τ − β4⟩−3 β5

β4 + ξ4
|ĥ2(β4)|dβ

∥∥∥∥
L2
ξ,τ

.

We separate the integral into regions where

β4 + ξ4 ≤ 1 and β4 + ξ4 > 1.

In the first case, we have

∥∥∥∥∫ 1

0

⟨τ⟩b−3 β5

β4 + ξ4
|ĥ2(β4)|dβ

∥∥∥∥
L2
|ξ|≤1

L2
τ

≲
∥∥⟨τ⟩b−3

∥∥
L2
τ

∫ 1

0

∥∥∥∥ β5

β4 + ξ4

∥∥∥∥
L2
|ξ|≤1

|ĥ2(β4)|dβ

≲
∫ 1

0

β
3
2 |ĥ2(β4)|dβ

≈
∫ 1

0

ρ−
3
8 |ĥ2(ρ)|dρ

≲
∥∥χ(0,∞)h2

∥∥
L2(R)

≤
∥∥χ(0,∞)h2

∥∥
H

1
8 (R)
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where we have used Minkowski’s and Cauchy-Schwarz inequalities in the first and third

bounds respectively. For the other case where β4 + ξ4 > 1, making use of relations

⟨τ − ξ4⟩ ≲ ⟨τ − β4⟩⟨β4 + ξ4⟩ and β4 + ξ4 ∼ ⟨β4 + ξ4⟩ we have the bound

∥∥∥∥∥
∫ ∞

0

⟨τ − β4⟩b−3 β5

(β4 + ξ4)1−b
|ĥ2(β4)|dβ

∥∥∥∥∥
L2
ξ,τ

≲

∥∥∥∥∥
∫ ∞

0

⟨τ − β4⟩b−3

∥∥∥∥ β5

(β4 + ξ4)1−b

∥∥∥∥
L2
ξ

|ĥ2(β4)|dβ

∥∥∥∥∥
L2
τ

≲

∥∥∥∥∫ ∞

0

⟨τ − β4⟩b−3β
3
2
+4b|ĥ2(β4)|dβ

∥∥∥∥
L2
τ

≲

∥∥∥∥∫ ∞

0

⟨τ − ρ⟩b−3ρb−
3
8 |ĥ2(ρ)|dρ

∥∥∥∥
L2
τ

≲
∥∥⟨τ⟩b−3

∥∥
L1
τ

∥∥∥⟨ρ⟩ 1
8 ĥ2(ρ)

∥∥∥
L2
ρ

≲
∥∥χ(0,∞)h2

∥∥
H

1
8 (R)

where we have used Minkowski’s and Young inequalities and note that we require b ≤ 1
2

in the fourth inequality so that b − 3
8
≤ 1

8
. Accordingly, using the similar arguments,

we have

∥ηW2h1∥X0,b ≲
∫ 1

0

β
5
2 |ĥ1(β4)|dβ +

∥∥∥∥∫ ∞

0

⟨τ − β4⟩b−3β
5
2
+4b|ĥ1(β4)|dβ

∥∥∥∥
L2
τ

≲
∫ 1

0

ρ−
1
8 |ĥ1(ρ)|dρ+

∥∥∥∥∫ ∞

0

⟨τ − ρ⟩b−3ρb−
1
8 |ĥ1(ρ)|dρ

∥∥∥∥
L2
τ

≲
∥∥χ(0,∞)h1

∥∥
L2
ρ
+
∥∥⟨τ⟩b−3

∥∥
L1
τ

∥∥∥⟨ρ⟩b− 1
8 ĥ1(ρ)

∥∥∥
L2
ρ

≲
∥∥χ(0,∞)h1

∥∥
H

3
8 (R)

+
∥∥∥⟨ρ⟩ 3

8 ĥ1(ρ)
∥∥∥
L2
ρ

≲
∥∥χ(0,∞)h1

∥∥
H

3
8 (R)

.

For the remaining terms of W t
0(0, h1, h2), estimates are similar; for W5h2 and W6h1 we

let f1(x) = e(−
√
2/2+i

√
2/2)xρ(x) and for W7h1 and W8h2 set f2(x) = e(−

√
2/2−i

√
2/2)xρ(x)

both of which are clearly Schwarz functions. So we adapt the previous estimates by

swapping f with f1 and f2 for the terms W5h2, W6h1 and W7h1, W8h2 respectively.

Eventually we have the bounds

∥ηWjh2∥X0,b ≲
∥∥χ(0,∞)h2

∥∥
H

1
8 (R)

for j = 5, 8,
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∥ηWjh1∥X0,b ≲
∥∥χ(0,∞)h1

∥∥
H

3
8 (R)

for j = 6, 7.

As before interpolating between the integers s ∈ 4N we obtain the bounds for any

s ≥ 0. To treat the s < 0 case we define the Fourier multiplier operator ⟨D⟩−
1
2

x given

by ⟨ξ⟩− 1
2 on the Fourier side. In this case,

⟨D⟩−
1
2

x

[
ηW1h2

]
(x, t) = η(t)

∫ ∞

0

eiβ
4tβ2ĥ2(β

4)⟨D⟩−
1
2

x

[
f(βx)

]
dβ

with similar formulas for the other terms of W t
0(0, h1, h2) other than W3h1 and W4h2.

Note that

Fx,t

(
⟨D⟩−

1
2

x

[
ηW1h2

])
(ξ, τ)

=

∫ ∞

0

η̂(τ − β4)β2ĥ2(β
4)Fx

(
⟨D⟩−

1
2

x

[
f(βx)

])
dβ

=

∫ ∞

0

η̂(τ − β4)β2ĥ2(β
4)Fx

([
⟨D⟩−

1
2

x f
]
(βx)

)
(ξ)⟨ξ/β⟩

1
2 ⟨ξ⟩−

1
2dβ.

As ⟨D⟩−
1
2

x f is a Schwarz function, we are free to establish the bounds∣∣∣Fx

([
⟨D⟩−

1
2

x f
]
(βx)

)
(ξ)
∣∣∣ = ∣∣∣ 1

β

̂
⟨D⟩−

1
2

x f(ξ/β)
∣∣∣ ≲ 1

|β|
⟨ξ/β⟩−

9
2

and

|η̂(τ − β4)| ≲ ⟨τ − β4⟩−3.

This leads to the bound

∥∥∥⟨D⟩−
1
2

x ηW1h2

∥∥∥
X0,b

≲

∥∥∥∥⟨τ − ξ4⟩b
∫ ∞

0

⟨τ − β4⟩−3β⟨ξ/β⟩−4⟨ξ⟩−
1
2 |ĥ2(β4)|dβ

∥∥∥∥
L2
ξ,τ

≲

∥∥∥∥⟨τ − ξ4⟩b
∫ ∞

0

⟨τ − β4⟩−3 β5

β4 + ξ4
|ĥ2(β4)|dβ

∥∥∥∥
L2
ξ,τ

which has been treated above. Thus interpolation between s = −1
2
and s = 0 yields

the result. Other terms are handled similarly.
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Lemma 4.4.3. For s ≥ −1 and boundary data (h1, h2) satisfying (χ(0,∞)h1, χ(0,∞)h2) ∈

H
2s+3

8 (R)×H
2s+1

8 (R), we have

W t
0(0, h1, h2) ∈ C0

tH
s
x(R× R).

Proof. We begin by showing that W3h1 and W4h2 belong to C0
tH

s
x(R × R). Since

W t = eit∆
2
is unitary in Hs, we have

∥W3h1∥Hs
x
=
∥∥W tψ3

∥∥
Hs

x
= ∥ψ3∥Hs

x
≲
∥∥χ(0,∞)h1

∥∥
H

2s+3
8 (R)

∥W4h2∥Hs
x
=
∥∥W tψ4

∥∥
Hs

x
= ∥ψ4∥Hs

x
≲
∥∥χ(0,∞)h2

∥∥
H

2s+1
8 (R)

where we have used (4.16) and (4.17) in the above inequalities respectively, and ψ3, ψ4

are defined as in (4.15). Continuity in the temporal variable follows from these bounds

and the continuity of the linear group W t in Hs. To show that the remaining terms of

W 0
t (0, h1, h2) lie in C

0
tH

s
x(R×R), recalling the explicit form of the boundary operator

from Lemma 4.2.1, we rewrite the remaining terms as follows

W1h2(x, t) =

∫
R
f(βx)Fx(e

it∆2

ψ1)(β)dβ, ψ̂1(β) = β2ĥ2(β
4)χ(0,∞)(β),

W2h1(x, t) =

∫
R
f(βx)Fx(e

it∆2

ψ2)(β)dβ, ψ̂2(β) = β3ĥ1(β
4)χ(0,∞)(β),

W5h2(x, t) =

∫
R
f1(βx)Fx(e

−it∆2

ψ5)(β)dβ, ψ̂5(β) = β2ĥ2(−β4)χ(0,∞)(β),

W6h1(x, t) =

∫
R
f1(βx)Fx(e

−it∆2

ψ6)(β)dβ, ψ̂6(β) = β3ĥ1(−β4)χ(0,∞)(β),

W7h1(x, t) =

∫
R
f2(βx)Fx(e

−it∆2

ψ7)(β)dβ, ψ̂7(β) = β3ĥ1(−β4)χ(0,∞)(β),

W8h2(x, t) =

∫
R
f2(βx)Fx(e

−it∆2

ψ8)(β)dβ, ψ̂8(β) = β2ĥ2(−β4)χ(0,∞)(β),

where f(x) = e−xρ(x), f1(x) = e(−
√
2/2+i

√
2/2)xρ(x) and f2(x) = e(−

√
2/2−i

√
2/2)xρ(x).

Note that following the same computations done in (4.16) and (4.17), we have

∥ψj∥Hs
x
≲
∥∥χ(0,∞)h1

∥∥
H

2s+3
8 (R)

for j = 2, 6, 7
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∥ψj∥Hs
x
≲
∥∥χ(0,∞)h2

∥∥
H

2s+1
8 (R)

for j = 1, 5, 8.

Using these and the continuity of the group e±it∆2
on Hs it suffices to show that the

maps

g 7→ Tg =

∫
R
f(βx)ĝ(β)dβ, g 7→ T1g =

∫
R
f1(βx)ĝ(β)dβ, g 7→ T2g =

∫
R
f2(βx)ĝ(β)dβ

are bounded in Hs. We show this for the map g 7→ Tg only as each f, f1 and f2 are

Schwarz functions leading to the same result. Consider first s = 0, we rewrite Tg(x)

by using the change of variable βx→ β as follows

Tg(x) =

∫
R
f(β)ĝ(x−1β)x−1dβ.

Therefore,

∥Tg∥L2
x
≤
∫
R
|f(β)|

∥∥x−1ĝ(x−1β)
∥∥
L2
x
dβ

=

∫
R
|f(β)|

(∫
x−2|ĝ(x−1β)|2dx

) 1
2
dβ

=

∫
R
|f(β)|

(∫
β−1|ĝ(z)|2dz

) 1
2
dβ

= ∥g∥L2

∫
R

|f(β)|√
β
dβ

≲ ∥g∥L2

where the validity of the final inequality is due to the fact that f is a Schwarz function.

Note that for any s ∈ N we write

∂sxTg(x) =

∫
R
f (s)(βx)βsĝ(β)dβ.

This with s = 0 result implies that ∥Tg∥Hs ≲ ∥g∥Hs , s ∈ N. Hence by interpolation,

s ≥ 0 case follows. As for s = −1, we pick ρ such that
∫
fdx = 0 so that ∂−1

x f belongs

to the Schwarz space. Then we write

∂−1
x Tg(x) =

∫
R
∂−1
x

(
f(βx)

)
ĝ(β)dβ =

∫
R
∂−1
x f(βx)β−1ĝ(β)dβ.

Combining this with s = 0 result and then applying the interpolation argument we get

the bound for s ≥ −1.
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Lemma 4.4.4. For s ≥ −1 and boundary data (h1, h2) satisfying (χ(0,∞)h1, χ(0,∞)h2) ∈

H
2s+3

8 (R)×H
2s+1

8 (R), we have

η(t)W t
0(0, h1, h2) ∈ C0

xH
2s+3

8
t (R× R).

Proof. RecallingW3h2 = W tψ3 andW4h1 = W tψ4, the claim for these terms follows by

(4.7), (4.16), (4.17), the continuity of W t and the Kato smoothing inequality (Lemma

4.4.1). With the notations of the previous lemma we rewrite the remaining terms of

W t
0(0, h1, h2) as follows

W1h2(x, t) =

∫
R
Fβ

(
f(βx)

)
(z)W tψ1(z)dz,

W2h1(x, t) =

∫
R
Fβ

(
f(βx)

)
(z)W tψ2(z)dz,

W5h2(x, t) =

∫
R
Fβ

(
f1(βx)

)
(z)W−tψ5(z)dz,

W6h1(x, t) =

∫
R
Fβ

(
f1(βx)

)
(z)W−tψ6(z)dz,

W7h1(x, t) =

∫
R
Fβ

(
f2(βx)

)
(z)W−tψ7(z)dz,

W8h2(x, t) =

∫
R
Fβ

(
f2(βx)

)
(z)W−tψ8(z)dz.

We show only η(t)W1h2 ∈ C0
xH

2s+3
8

t (R × R) since the estimates for the other terms

follow by the same arguments. Hence

W1h2(x, t) =

∫
R
Fβ

(
f(βx)

)
(z)W tψ1(z)dz

=

∫
R

1

x
f̂
(z
x

)
W tψ1(z)dz

=

∫
R
f̂(z)W tψ1(xz)dz.

Then Minkowski’s and Kato smoothing inequalities lead to the bound

∥ηW1h2∥
H

2s+3
8

t

≤
∫
R
|f̂(z)|

∥∥ηW tψ1(xz)
∥∥
H

2s+3
8

t

dz
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≤ ∥f̂∥L1

∥∥ηW tψ1(xz)
∥∥
H

2s+3
8

t L∞
z

≲ ∥ψ1∥Hs
z
≲
∥∥χ(0,∞)h2

∥∥
H

2s+1
8

t (R)

since f̂ ∈ L1. Finally, continuity in the spatial variable follows from the dominated

convergence theorem.

4.4.2. Estimates for the Nonlinear Term

This section discusses the estimates for the nonlinear term in (4.8). These esti-

mates will play crucial role in establishing the smoothing theorem and closing the fixed

point argument.

Proposition 4.4.5. For any compactly supported smooth function η and 1
2
− b > 0

sufficiently small, we have

∥∥∥∥η(t)∫ t

0

W t−t′Fdt′
∥∥∥∥
C0

xH
2s+3

8
t (R×R)

+

∥∥∥∥η(t)∂x(∫ t

0

W t−t′Fdt′
)∥∥∥∥

C0
xH

2s+1
8

t (R×R)

≲

∥F∥Xs,−b if − 1
2
≤ s ≤ 1

2
,

∥F∥Xs,−b + ∥F∥
X

1
2+, 2s−5

8
if s > 1

2
.

Proof. Assume first that −1
2
≤ s ≤ 1

2
, then

∫ t

0

W t−t′Fdt′ =

∫ t

0

∫
R
eixξei(t−t′)ξ4F̂ (ξ, t′)dξdt′

=

∫
R

∫ t

0

eixξei(t−t′)ξ4
(∫

R
eit

′τ F̂ (ξ, τ)dτ
)
dt′dξ

=

∫
R

∫
R
eixξeitξ

4
(∫ t

0

eit
′(τ−ξ4)dt′

)
F̂ (ξ, τ)dξdτ

=

∫
R

∫
R
eixξ

eitτ − eitξ
4

i(τ − ξ4)
F̂ (ξ, τ)dξdτ.
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First, we wish to bound

∥∥∥∥∥η
∫
R

∫
R
eixξ

eitτ − eitξ
4

i(τ − ξ4)
F̂ (ξ, τ)dξdτ

∥∥∥∥∥
H

2s+3
8

t

.

Let φ be a smooth cut-off function such that φ = 1 on [−1, 1] and suppφ ⊂ {x : |x| ≤ 2}

and let φc = 1− φ. We will proceed by writing

η(t)

∫ t

0

W t−t′Fdt′ = η(t)

∫
R

∫
R
eixξ
(
eitτ − eitξ

4)
φ(τ − ξ4)

i(τ − ξ4)
F̂ (ξ, τ)dξdτ

+ η(t)

∫
R

∫
R
eixξ

eitτφc(τ − ξ4)

i(τ − ξ4)
F̂ (ξ, τ)dξdτ

− η(t)

∫
R

∫
R
eixξ

eitξ
4
φc(τ − ξ4)

i(τ − ξ4)
F̂ (ξ, τ)dξdτ

=: I + II + III.

By Taylor expansion, we write

eitτ − eitξ
4

i(τ − ξ4)
= ieitτ

1

τ − ξ4
(
e−it(τ−ξ4) − 1

)
= ieitτ

∞∑
k=1

(−it)k

k!
(τ − ξ4)k−1.

For I, using Lemma A.0.3, we have the bound

∥I∥
H

2s+3
8 (R)

≲
∞∑
k=1

∥∥tkη∥∥
H1

k!

∥∥∥∥∫
R

∫
R
eixξeitτ (τ − ξ4)k−1φ(τ − ξ4)F̂ (ξ, τ)dξdτ

∥∥∥∥
H

2s+3
8

t (R)

which is bounded by

∞∑
k=1

1

(k − 1)!

∥∥∥∥⟨τ⟩ 2s+3
8

∫
R
eixξ(τ − ξ4)k−1φ(τ − ξ4)F̂ (ξ, τ)dξdτ

∥∥∥∥
L2
τ

≲

∥∥∥∥⟨τ⟩ 2s+3
8

∫
|τ−ξ4|<1

F̂ (ξ, τ)dξ

∥∥∥∥
L2
τ

where we have used

∥∥tkη∥∥
H1 ≈

∥∥tkη∥∥
L2 +

∥∥∂t(tkη)∥∥L2

≲ k
∥∥tk−1η

∥∥
L2 +

∥∥tkη′∥∥
L2 ≲ k.
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Using Cauchy-Schwarz inequality in ξ, this is bounded by

[ ∫
R
⟨τ⟩

2s+3
4

(∫
|τ−ξ4|<1

⟨ξ⟩−2sdξ
)(∫

|τ−ξ4|<1

⟨ξ⟩2s|F̂ (ξ, τ)|2dξ
)
dτ
] 1

2

≲ sup
τ

(
⟨τ⟩

2s+3
4

∫
|τ−ξ4|<1

⟨ξ⟩−2sdξ
) 1

2 ∥F∥Xs,−b

≲ ∥F∥Xs,−b .

For |τ | ≲ 1, the supremum is apparently bounded whereas for |τ | ≫ 1, by the change

of variable ρ = ξ4, it is bounded by

⟨τ⟩
2s+3

4

∫ |τ |+1

|τ |−1

⟨ρ⟩
−s
2

1

|ρ| 34
dρ ≲ ⟨τ⟩

2s+3
4

∫ |τ |+1

|τ |−1

⟨ρ⟩
−2s−3

4 dρ ≲ 1

since |ρ| ∼ |τ | ≫ 1. Next we consider II. By using Lemma A.0.3 we have

∥II∥
H

2s+3
8 (R)

≲ ∥η∥H1

∥∥∥∥∥⟨τ⟩ 2s+3
8

∫
|τ−ξ4|≥1

|F̂ (ξ, τ)|
⟨τ − ξ4⟩

dξ

∥∥∥∥∥
L2
τ

≲
[ ∫

R
⟨τ⟩

2s+3
4

(∫ dξ

⟨ξ⟩2s⟨τ − ξ4⟩2−2b

)(∫
⟨ξ⟩2s⟨τ − ξ4⟩−2b|F̂ (ξ, τ)|2dξ

)
dτ
] 1

2

≲ sup
τ

[
⟨τ⟩

2s+3
4

∫
dξ

⟨τ − ξ4⟩2−2b⟨ξ⟩2s
] 1

2 ∥F∥Xs,−b

≲ ∥F∥Xs,−b

we have applied Cauchy-Schwarz inequality in the second line. To see that the supre-

mum above is finite we write

⟨τ⟩
2s+3

4

[ ∫
|ξ|<1

dξ

⟨τ − ξ4⟩2−2b⟨ξ⟩2s
+

∫
|ξ|≥1

dξ

⟨τ − ξ4⟩2−2b⟨ξ⟩2s
]

≲ ⟨τ⟩
2s+3

4

[
⟨τ⟩2b−2

∫
|ξ|<1

dξ

⟨ξ⟩2s
+

∫
|ρ|≥1

dρ

⟨τ − ρ⟩2−2b⟨ρ⟩ 2s+3
4

]
≲ ⟨τ⟩

2s+3
4

+2b−2 + ⟨τ⟩
2s+3

4 ⟨τ⟩
−2s−3

4 ≲ 1

where we have used Lemma A.0.5 in the ρ−integral and 1
2
≤ 2s+3

4
≤ 1 with b < 1

2
.

Next for III, we divide the region of integration into two pieces |ξ| < 1 and |ξ| ≥ 1.
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For |ξ| < 1 using Minkowski’s inequality and then Cauchy-Schwarz inequality we have

∥∥III|ξ|<1

∥∥
H

2s+3
8 (R)

:=

∥∥∥∥∥η(t)
∫ ∫

|ξ|<1

eixξeitξ
4

i(τ − ξ4)
φc(τ − ξ4)|F̂ (ξ, τ)|dξdτ

∥∥∥∥∥
H

2s+3
8

t

≤
∫ ∫

|ξ|<1

∥∥∥η(t)eitξ4∥∥∥
H

2s+3
8

t

φc(τ − ξ4)

|τ − ξ4|
|F̂ (ξ, τ)|dξdτ

≲
∫ ∫

|ξ|<1

|F̂ (ξ, τ)|
⟨τ − ξ4⟩

dξdτ

≲
[ ∫ ∫

|ξ|<1

⟨τ⟩2b−2dξdτ
] 1

2
[ ∫∫

⟨ξ⟩2s⟨τ − ξ4⟩−2b|F̂ (ξ, τ)|dξdτ
] 1

2

≲ ∥F∥Xs,−b

since 2b − 2 < −1 for b < 1
2
. To treat the case regarding the region |ξ| ≥ 1, we use

change of variable ρ = ξ4 as before to get

∥∥III|ξ|≥1

∥∥
H

2s+3
8 (R)

:=

∥∥∥∥∥η(t)
∫ ∫

|ξ|≥1

eixξeitξ
4

i(τ − ξ4)
φc(τ − ξ4)|F̂ (ξ, τ)|dξdτ

∥∥∥∥∥
H

2s+3
8

t

≲ ∥η∥H1

∥∥∥∥∥
∫
|τ−ρ|>1

∫
|ρ|>1

eix
4
√
ρeitρ

|τ − ρ|
F̂ ( 4

√
ρ, τ)

1

|ρ| 34
dρdτ

∥∥∥∥∥
H

2s+3
8

t

≲

∥∥∥∥∥⟨ρ⟩ 2s+3
8 Ft ◦ F−1

ρ

(∫
|τ−ρ|>1, |ρ|>1

eix
4
√
ρ

|τ − ρ|
F̂ ( 4

√
ρ, τ)

1

|ρ| 34
dτ
)
(ρ)

∥∥∥∥∥
L2
ρ

≲

∥∥∥∥∥⟨ρ⟩ 2s+3
8

∫
F̂ ( 4

√
ρ, τ)

⟨τ − ρ⟩|ρ| 34
dτ

∥∥∥∥∥
L2
|ρ|≥1

≲
[ ∫

⟨ρ⟩
2s+3

4 ⟨ρ⟩
−3
4

(∫ dτ

⟨τ − ρ⟩2−2b

)(∫ |F̂ ( 4
√
ρ, τ)|2

⟨τ − ρ⟩2b
dτ
) 1

|ρ| 34
dρ
] 1

2

≲
[ ∫∫

⟨ρ⟩
s
2 ⟨τ − ρ⟩−2b|F̂ ( 4

√
ρ, τ)|2 1

|ρ| 34
dρdτ

] 1
2

≲ ∥F∥Xs,−b

where we used Cauchy-Schwarz inequality in the fifth line and changed variables back

to ξ in the last line. This finishes the proof for −1
2
≤ s ≤ 1

2
.
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Next we consider s > 1
2
, in which case, instead of Lemma A.0.3, proof makes use

of algebra property of Sobolev spaces

∥fg∥Hs ≲ ∥f∥Hs ∥g∥Hs

in order to extract the Sobolev norm of η. As η is a smooth compactly supported

function, the proof proceeds along the same lines as with the case −1
2
≤ s ≤ 1

2
except

for the one for II just because we needed s ≤ 1
2
to obtain the bound ∥II∥

H
2s+3

8 (R)
≲

∥F∥Xs,−b . Thus to estimate II, we use the identity

⟨τ⟩
2s+3

8 ≲ ⟨τ − ξ4⟩
2s+3

8 + |ξ|
2s+3

2

to write

∥II∥
H

2s+3
8 (R)

≲ ∥η∥H1

∥∥∥∥∥⟨τ⟩ 2s+3
8

∫
|F̂ (ξ, τ)|
⟨τ − ξ4⟩

dξ

∥∥∥∥∥
L2
τ

≲

∥∥∥∥∫ ⟨τ − ξ4⟩
2s−5

8 |F̂ (ξ, τ)|dξ
∥∥∥∥
L2
τ

+

∥∥∥∥∥
∫

|ξ| 2s+3
2

⟨τ − ξ4⟩
|F̂ (ξ, τ)|dξ

∥∥∥∥∥
L2
τ

.

Using the Cauchy-Schwarz inequality in the ξ–integral, the second term is bounded by

∥∥∥∥∥
∫

|ξ| 2s+3
2

⟨τ − ξ4⟩
|F̂ (ξ, τ)|dξ

∥∥∥∥∥
L2
τ

≲
[ ∫ ( ∫ |ξ|3

⟨τ − ξ4⟩2−2b
dξ
)(∫ |ξ|2s

⟨τ − ξ4⟩2b
|F̂ (ξ, τ)|2dξ

)
dτ
] 1

2

≲ sup
τ

[ ∫ |ξ|3

⟨τ − ξ4⟩2−2b
dξ
] 1

2 ∥F∥Xs,−b

≲ sup
τ

[ ∫ 1

⟨τ − ρ⟩2−2b
dρ
] 1

2 ∥F∥Xs,−b ≲ ∥F∥Xs,−b .

since 2−2b > 1. Applying the Cauchy-Schwarz inequality in the ξ–integral for the first

term in this case

∥∥∥∫ ⟨τ − ξ4⟩
2s−5

8 |F̂ (ξ, τ)|dξ
∥∥∥
L2
τ

≲
[ ∫ (∫ dξ

⟨ξ⟩1+
)(∫

⟨ξ⟩1+⟨τ − ξ4⟩
2s−5

4 |F̂ (ξ, τ)|2dξ
)
dτ
] 1

2
≲ ∥F∥

X
1
2+, 2s−5

8
.
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As a result we have obtained∥∥∥∥η(t)∫ t

0

W t−t′Fdt′
∥∥∥∥
C0

xH
2s+3

8
t (R×R)

≲

∥F∥Xs,−b if − 1
2
≤ s ≤ 1

2

∥F∥Xs,−b + ∥F∥
X

1
2+, 2s−5

8
if s > 1

2
.

Now we move to the estimate on the derivative term where we take less time derivatives

2s+1
8

while we have additional iξ factor coming from the spatial derivative. As before

we divide the Duhamel integral into three pieces as follows

η(t)∂x

(∫ t

0

W t−t′Fdt′
)
= η(t)

∫ t

0

∂x
(
W t−t′F

)
dt′

= η(t)

∫
R

∫
R
ξeixξ

(
eitτ − eitξ

4)
φ(τ − ξ4)

τ − ξ4
F̂ (ξ, τ)dξdτ

+ η(t)

∫
R

∫
R
ξeixξ

eitτφc(τ − ξ4)

τ − ξ4
F̂ (ξ, τ)dξdτ

− η(t)

∫
R

∫
R
ξeixξ

eitξ
4
φc(τ − ξ4)

τ − ξ4
F̂ (ξ, τ)dξdτ

=: Ix + IIx + IIIx.

To bound Ix, note that on the region of integration we have |τ | ≈ ξ4 hence the additional

factor ξ leads to the situation ⟨τ⟩ 2s+1
8 |ξ| ≲ ⟨τ⟩ 2s+3

8 which was examined before for the

integral I. In order to estimate IIIx we divide the region of integration as before into

pieces |ξ| < 1 and |ξ| ≥ 1. For the former case, the bounds are identical to those

obtained for III, for the latter case, we make the same change of variable ρ = ξ4

as done for III so that the additional factor of ξ contributes the additional factor of

|ρ| 14 to the integral IIIx that brings us back to the situation handled in bounding III.

Nevertheless estimation for the term IIx needs verification. When −1
2
≤ s ≤ 1

2
, using

Cauchy-Schwarz inequality we have the bound:

∥IIx∥
H

2s+1
8 (R)

≲ ∥η∥H1

∥∥∥∥⟨τ⟩ 2s+1
8

∫
|τ−ξ4|≥1

ξ

⟨τ − ξ4⟩
|F̂ (ξ, τ)|dξ

∥∥∥∥
L2
τ

≲
[ ∫

⟨τ⟩
2s+1

4

(∫ ξ2

⟨ξ⟩2s⟨τ − ξ4⟩2−2b
dξ
)(∫

⟨ξ⟩2s⟨τ − ξ4⟩−2b|F̂ (ξ, τ)|2dξ
)
dτ
] 1

2
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≲ sup
τ

(
⟨τ⟩

2s+1
4

∫
ξ2

⟨ξ⟩2s⟨τ − ξ4⟩2−2b
dξ
)
∥F∥Xs,−b .

To see that the supremum above is bounded, we proceed as follows

⟨τ⟩
2s+1

4

[ ∫
|ξ|<1

ξ2

⟨τ − ξ4⟩2−2b⟨ξ⟩2s
dξ +

∫
|ξ|≥1

ξ2

⟨τ − ξ4⟩2−2b⟨ξ⟩2s
dξ
]

≲ ⟨τ⟩
2s+1

4

[
⟨τ⟩2b−2 +

∫
|ρ|≥1

|ρ| 12
⟨τ − ρ⟩2−2b⟨ρ⟩ 2s+3

4

dρ
]

≲ ⟨τ⟩
2s+1

4
+2b−2 + ⟨τ⟩

2s+1
4 ⟨τ⟩

−2s−1
4 ≲ 1

where we have used Lemma A.0.5 in the ρ-integral and the fact that 0 ≤ 2s+1
4

≤ 1
2
with

b < 1
2
. In the case s > 1

2
, we estimate IIx by

∥IIx∥
H

2s+1
8 (R)

≲

∥∥∥∥⟨τ⟩ 2s+1
8

∫
|ξ|

⟨τ − ξ4⟩
|F̂ (ξ, τ)|dξ

∥∥∥∥
L2
τ

.

We consider the cases |τ | ≳ ξ4 and |τ | ≪ ξ4, in the first case, the above integral is

bounded by

∥∥∥∥∥⟨τ⟩ 2s+3
8

∫
|F̂ (ξ, τ)|
⟨τ − ξ4⟩

dξ

∥∥∥∥∥
L2
τ

which was addressed before for II. For the second case notice that |τ − ξ4| ≈ ξ4 with

which one has |ξ| ≲ ⟨τ − ξ4⟩ 1
4 . Thus we bound the integral by∥∥∥∥∥⟨τ⟩ 2s+1

8

∫
|τ |≪ξ4

|F̂ (ξ, τ)|
⟨τ − ξ4⟩ 3

4

dξ

∥∥∥∥∥
L2
τ

.

On the region where |τ | ≪ ξ4, we have the relation

⟨τ⟩
2s+1

8 ≲ ⟨τ − ξ4⟩
2s+1

8 + |ξ|
2s+1

2 ≲ ⟨τ − ξ4⟩
2s+1

8

through which we bound the above integral by∥∥∥∥∫ ⟨τ − ξ4⟩
2s−5

8 |F̂ (ξ, τ)|dξ
∥∥∥∥
L2
τ

which was handled in bounding II.
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Proposition 4.4.6. For fixed s > −1
3
with a < min{2s+1, 1} and 1

2
−b > 0 sufficiently

small, we have

∥u1u2u3∥Xs+a,−b ≲
3∏

j=1

∥uj∥Xs,b .

Proof. Expressing the space time Fourier transform of u1u2u3 as a convolution

Fx,t(u1u2u3)(ξ, τ) =

∫
ξ1,ξ2

∫
τ1,τ2

û1(ξ1, τ1)û2(ξ2, τ2)û3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

and then using the definition of Xs,b norm we write

∥u1u2u3∥2Xs+a,−b =

∥∥∥∥∥
∫
ξ1,ξ2

∫
τ1,τ2

⟨ξ⟩s+aû1(ξ1, τ1)û2(ξ2, τ2)û3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

⟨τ − ξ4⟩b

∥∥∥∥∥
2

L2
ξ,τ

and define

fj(ξ, τ) = ⟨ξ⟩s⟨τ − ξ4⟩b|ûj(ξ, τ)| for j = 1, 2, 3.

Thus the desired bound is equivalent to showing that

∥∥∥∥∫
ξ1,ξ2

∫
τ1,τ2

M(ξ, ξ1, ξ2, τ, τ1, τ2)f1(ξ1, τ1)f2(ξ2, τ2)f3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

∥∥∥∥2
L2
ξ,τ

≲
3∏

j=1

∥fj∥2L2 =
3∏

j=1

∥uj∥2Xs,b

where

M(ξ, ξ1, ξ2, τ, τ1, τ2) =
⟨ξ⟩s+a⟨ξ1⟩−s⟨ξ2⟩−s⟨ξ − ξ1 + ξ2⟩−s

⟨τ − ξ4⟩b⟨τ1 − ξ41⟩b⟨τ2 − ξ42⟩b⟨τ − τ1 + τ2 − (ξ − ξ1 + ξ2)4⟩b
.

By an application of the Cauchy-Schwarz inequality in the ξ1, ξ2, τ1, τ2 integrals and

then using Hölder’s and Young’s inequalities respectively the norm above is majorized

by

∥∥∥∥(∫
ξ1,ξ2

∫
τ1,τ2

M2
) 1

2
(∫

ξ1,ξ2

∫
τ1,τ2

f 2
1 (ξ1, τ1)f

2
2 (ξ2, τ2)f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

) 1
2

∥∥∥∥2
L2
ξ,τ
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=

∥∥∥∥(∫
ξ1,ξ2

∫
τ1,τ2

M2
)(∫

ξ1,ξ2

∫
τ1,τ2

f 2
1 (ξ1, τ1)f

2
2 (ξ2, τ2)f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

)∥∥∥∥
L1
ξ,τ

≤ sup
ξ,τ

(∫
ξ1,ξ2

∫
τ1,τ2

M2
)∥∥∥∥∫

ξ1,ξ2

∫
τ1,τ2

f 2
1 (ξ1, τ1)f

2
2 (ξ2, τ2)f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

∥∥∥∥
L1
ξ,τ

= sup
ξ,τ

(∫
ξ1,ξ2

∫
τ1,τ2

M2
)∥∥f 2

1 ∗ f 2
2 ∗ f 2

3

∥∥
L1
ξ,τ

≲ sup
ξ,τ

(∫
ξ1,ξ2

∫
τ1,τ2

M2
) 3∏

j=1

∥fj∥2L2 .

Therefore, it suffices to show that the supremum above is finite. Application of Lemma

A.0.5 in the τ1, τ2 integrals bounds the supremum by

sup
ξ,τ

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨τ − ξ4⟩2b⟨τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4⟩6b−2
dξ1dξ2.

Implementing the identity ⟨α−β⟩ ≲ ⟨τ −α⟩⟨τ −β⟩ and then using Lemma A.0.2, this

is bounded by

sup
ξ

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ4 − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4⟩6b−2
dξ1dξ2

≲ sup
ξ

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩1−
dξ1dξ2.

We divide the integration region into two pieces

R1 = {(ξ1, ξ2) : |ξ1 − ξ| ≪ 1 or |ξ1 − ξ2| ≪ 1}

R2 = {(ξ1, ξ2) : |ξ1 − ξ| ≳ 1 and |ξ1 − ξ2| ≳ 1}

to control the supremum. Clearly we have ξ21 + ξ22 + ξ2 ≳ 1 on R2, so the supremum

on this region is estimated by

∫
R2

⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ21 + ξ22 + ξ2⟩1−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2.

Since the sign of the Sobolev index s affects the way we follow in the proof, we begin

with considering the case s > 0 first.
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In this case, there are three separate cases to examine:

i) |ξ − ξ1 + ξ2| ≳ |ξ|

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ21 + ξ22 + ξ2⟩1−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2a−2+⟨ξ1⟩−2s⟨ξ2⟩−2s

⟨ξ1 − ξ⟩1−⟨ξ2 − ξ1⟩1−
dξ2dξ1

≲ ⟨ξ⟩2a−2+

∫
ϕmax(2s,1−)(ξ1)

⟨ξ1 − ξ⟩1−⟨ξ1⟩2s+min(2s,1−)
dξ1

where we have used the Lemma A.0.5 in the last line above. For s ≥ 1
2
, using the

Lemma A.0.5, this is bounded by

⟨ξ⟩2a−2+

∫
log(1 + ⟨ξ1⟩)

⟨ξ1 − ξ⟩1−⟨ξ1⟩2s+1−dξ1 ≲ ⟨ξ⟩2a−3+ ≲ 1

provided that a < 3
2
. As for 0 < s < 1

2
, the Lemma A.0.5 yields the bound

⟨ξ⟩2a−2+

∫
dξ1

⟨ξ1 − ξ⟩1−⟨ξ1⟩4s−
≲

⟨ξ⟩2a−2−4s+ for 0 < s ≤ 1
4

⟨ξ⟩2a−3+ for 1
4
< s < 1

2

which is finite as long as a < min{2s+ 1, 3
2
}.

ii) |ξ1| ≳ |ξ|

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ21 + ξ22 + ξ2⟩1−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2a−2+⟨ξ − ξ1 + ξ2⟩−2s⟨ξ2⟩−2s

⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ2dξ1.

From the substitutions x1 = ξ − ξ1 + ξ2 and x2 = ξ2 the integral above is replaced by∫
⟨ξ⟩2a−2+⟨x1⟩−2s⟨x2⟩−2s

⟨x1 − ξ⟩1−⟨x2 − x1⟩1−
dx2dx1

which is identical to the integral estimated in the previous case.

iii) |ξ2| ≳ |ξ|

∫
⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ21 + ξ22 + ξ2⟩1−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2a−2+⟨ξ − ξ1 + ξ2⟩−2s⟨ξ1⟩−2s

⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ2dξ1.
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In this case after making change of variables x1 = ξ1 and x2 = ξ − ξ1 + ξ2 in the

above integral and then applying the Lemma A.0.5 we have the bound

∫
⟨ξ⟩2a−2+⟨x1⟩−2s⟨x2⟩−2s

⟨x1 − ξ⟩1−⟨x2 − ξ⟩1−
dx1dx2 = ⟨ξ⟩2a−2+

(∫ dx

⟨x− ξ⟩1−⟨x⟩2s
)2

≲ ⟨ξ⟩2a−2−2min(2s,1−)+ϕ2
max(2s,1−)(ξ) ≲

⟨ξ⟩2a−2−4s+ for 0 < s < 1
2

⟨ξ⟩2a−4+ for s ≥ 1
2

which is bounded provided that a < min{2s + 1, 2}. Next we focus on the case −1
3
<

s ≤ 0. In this case, since ⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s ≲ ⟨ξ21 + ξ22 + ξ2⟩−3s

∫
R2

⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2s+2a

⟨ξ21 + ξ22 + ξ2⟩1+3s−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2s+2a

⟨ξ2 + ξ2⟩1+3s−⟨ξ1 − ξ⟩1−⟨ξ1 − ξ2⟩1−
dξ1dξ2.

Since 1
2
− b > 0 was taken sufficiently small, using Lemma A.0.5 twice this integral is

bounded by

⟨ξ⟩2s+2a

∫
dξ1

⟨ξ1 + ξ2⟩1+3s−⟨ξ1 − ξ⟩1−
≲ ⟨ξ⟩2a−4s−2+ ≲ 1

provided that a < 2s + 1. Next we move on estimating the supremum on the region

R1. In this region notice that

⟨ξ − ξ1 + ξ2⟩⟨ξ1⟩ ≈ ⟨ξ2⟩⟨ξ⟩.

Thus

∫
R1

⟨ξ⟩2s+2a⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩1−
dξ1dξ2

≲
∫

⟨ξ⟩2a⟨ξ2⟩−4s

⟨(ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩1−
dξ1dξ2.
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Note that on R1 the relation ξ
2
2+ξ

2 ≲ 1 implies that |ξ| ≲ 1, |ξj| ≲ 1 for j = 1, 2 in

which case the integral above turns out to be finite at once. So for a nontrivial situation

we assume that ξ22+ξ
2 ≳ 1. Then making the substitution x = (ξ22+ξ

2)(ξ1−ξ2)(ξ1−ξ)

in the ξ1 integral and using the relations

2ξ1 = ξ + ξ2 ± (ξ22 + ξ2)−
1
2

√
4x+ (ξ − ξ2)2(ξ22 + ξ2) and

dx

ξ22 + ξ2
= (2ξ1 − ξ2 − ξ)dξ1

along with the Lemma A.0.7, we have the bound

∫
⟨ξ⟩2a⟨ξ2⟩−4s

⟨ξ22 + ξ2⟩ 1
2 ⟨x⟩1−

√
|4x+ (ξ2 − ξ)2(ξ22 + ξ2)|

dxdξ2

≲
∫

⟨ξ⟩2a⟨ξ2⟩−4s

⟨ξ22 + ξ2⟩ 1
2 ⟨(ξ2 − ξ)2(ξ22 + ξ2)⟩ 1

2
−
dξ2.

We estimate the integral in the separate regions |ξ2| ≲ 1 and |ξ2| ≫ 1. In the former

region this is bounded by∫
|ξ2|≲1

⟨ξ⟩2a⟨ξ2⟩−4s

⟨ξ22 + ξ2⟩ 1
2 ⟨(ξ2 − ξ)2(ξ22 + ξ2)⟩ 1

2
−
dξ2 ≲ ⟨ξ⟩2a−3+ ≲ 1

provided that a < 3
2
. As regards to the latter region, using the relation

(ξ2 − ξ)2(ξ22 + ξ2) ≳ (ξ22 − ξ2)2

and then making the change of variable x = ξ22 entails the bound

∫
|ξ2|≫1

⟨ξ⟩2a⟨ξ2⟩−4s

⟨ξ22 + ξ2⟩ 1
2 ⟨(ξ2 − ξ)2(ξ22 + ξ2)⟩ 1

2
−
dξ2 ≲

∫
|ξ2|≫1

⟨ξ⟩2a

⟨ξ22⟩2s+
1
2 ⟨ξ22 − ξ2⟩1−

dξ2

≈
∫
|x|≫1

⟨ξ⟩2a

⟨x⟩2s+ 1
2 ⟨x− ξ2⟩1−|x| 12

dx

≲
∫

⟨ξ⟩2a

⟨x⟩2s+1⟨x− ξ2⟩1−
dx

≲

⟨ξ⟩2a−2−4s+ for− 1
2
< s < 0

⟨ξ⟩2a−2+ for s ≥ 0

which is finite provided that a < min{1, 2s+ 1}.
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We take 2s+2a−1
8

− b = 2s+2a−5
8

+ (1
2
− b) rather than 2s+2a−5

8
in the Proposition

4.4.7 so as to extract a positive power of T in the contraction argument below in the

local theory.

Proposition 4.4.7. For fixed −1
3
< s < 9

2
, 0 ≤ a < min{1, 2s+1, 9

2
−s}, and 1

2
−b > 0

sufficiently small, we have

for − 1

3
< s+ a ≤ 1

2
, ∥u1u2u3∥Xs+a,−b ≲

3∏
j=1

∥uj∥Xs,b ,

for
1

2
< s+ a <

9

2
, ∥u1u2u3∥

X
1
2+, 2s+2a−1

8 −b ≲
3∏

j=1

∥uj∥Xs,b .

Proof. When −1
3
< s + a ≤ 1

2
, given statement follows from Proposition 4.4.6. So we

only take account of the case 1
2
< s + a ≤ 9

2
here. In this case, using the fact that

a < 2s+ 1 we take s > −1
6
all along. Next let

I :=

∫
⟨τ − ξ4⟩ 2s+2a−8b−1

4 ⟨ξ⟩1+⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4⟩6b−2
dξ1dξ2.

Thus using the arguments of Proposition 4.4.6 we are required to show that

sup
ξ,τ

I <∞.

We will demonstrate this in the separate cases 1
2
< s+ a < 5

2
and 5

2
≤ s+ a < 9

2
.

Case 1) 1
2
< s+ a < 5

2

Note that taking 1
2
− b > 0 sufficiently small we infer that 1

2
(s+ a)− 2b− 1

4
< 0, also

s + a > 1
2
implies that 2b + 1

4
− 1

2
(s + a) < 6b − 2. Hence using these, the identity

⟨τ − a⟩⟨τ − b⟩ ≳ ⟨a− b⟩ and then Lemma A.0.2 we have

I ≲
∫

⟨ξ⟩1+⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ4 − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4⟩2b+
1
4
− 1

2
(s+a)

dξ1dξ2

≲
∫

⟨ξ⟩1+⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩2b+
1
4
− 1

2
(s+a)

dξ1dξ2

which is easily estimated, for s > 1
2
, by∫

⟨ξ⟩1+

⟨ξ1⟩2s⟨ξ2⟩2s⟨ξ − ξ1 + ξ2⟩2s
dξ1dξ2 ≲

∫
⟨ξ⟩1+

⟨ξ2⟩2s⟨ξ + ξ2⟩2s
dξ2 ≲ ⟨ξ⟩1−2s+ ≲ 1
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by using Lemma A.0.5 twice. It is left to treat the case −1
6
< s ≤ 1

2
. For this case,

we will analyze the integral on the sets R1 = {(ξ1, ξ2) : |ξ1 − ξ| ≪ 1 or |ξ1 − ξ2| ≪ 1}

and R2 = {(ξ1, ξ2) : |ξ1 − ξ| ≳ 1 and |ξ1 − ξ2| ≳ 1} as before. Recalling the identity

⟨ξ − ξ1 + ξ2⟩⟨ξ1⟩ ≈ ⟨ξ⟩⟨ξ2⟩ that holds on the set R1, we have the bound

∫
R1

⟨ξ⟩1+⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)⟩2b+
1
4
− 1

2
(s+a)

dξ1dξ2

≲
∫

⟨ξ⟩1−2s+⟨ξ2⟩−4s

⟨(ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2))⟩2b+
1
4
− 1

2
(s+a)

dξ1dξ2.

Making substitution x = (ξ2 + ξ22)(ξ1 − ξ)(ξ1 − ξ2) in the ξ1 integral and assuming

ξ2 + ξ22 ≳ 1 as in the Proposition 4.4.6, the integral above is bounded by

∫
⟨ξ⟩1−2s+⟨ξ2⟩−4s

⟨ξ2 + ξ22⟩
1
2 ⟨x⟩2b+ 1

4
− 1

2
(s+a)

√
|4x+ (ξ − ξ2)2(ξ2 + ξ22)|

dxdξ2

≲
∫

⟨ξ⟩1−2s+⟨ξ2⟩−4s

⟨ξ2 + ξ22⟩
1
2 ⟨(ξ − ξ2)2(ξ2 + ξ22)⟩2b−

1
4
− 1

2
(s+a)

dξ2

where we have used Lemma A.0.5 which is applicable due to the fact that 1
2
− b > 0 is

sufficiently small, and a < min{2s+ 1, 1}. So we estimate this by

∫
⟨ξ⟩1−2s+⟨ξ2⟩−4s

⟨ξ2 + ξ22⟩
1
2 ⟨(ξ − ξ2)2(ξ + ξ2)2⟩2b−

1
4
− 1

2
(s+a)

dξ2

≲
∫

⟨ξ⟩1−2s+⟨ξ22⟩−2s

⟨ξ2 + ξ22⟩
1
2 ⟨ξ22 − ξ2⟩4b− 1

2
−s−a

dξ2.

In the case |ξ2| ≲ 1, the integral is bounded by

⟨ξ⟩1+2a−8b+ ≲ 1

provided that a < 3
2
, whereas for the other case |ξ2| ≫ 1, we change variable x = ξ22 to

estimate the integral, using Lemma A.0.5, by∫
⟨ξ⟩1−2s+

⟨x⟩1+2s⟨x− ξ2⟩4b− 1
2
−s−a

dx ≲

⟨ξ⟩2+2a−8b+ for 0 ≤ s ≤ 1
2

⟨ξ⟩2−4s+2a−8b+ for− 1
6
< s < 0

which is bounded since a < min{2s+ 1, 1} and 1
2
− b > 0 is sufficiently small.
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Next we estimate the integral on the set R2 by

∫
⟨ξ⟩1+⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s

⟨ξ21 + ξ22 + ξ2⟩2b+ 1
4
− 1

2
(s+a)⟨ξ1 − ξ⟩2b+ 1

4
− 1

2
(s+a)⟨ξ1 − ξ2⟩2b+

1
4
− 1

2
(s+a)

dξ1dξ2.

We bound this in the separate cases −1
6
< s ≤ 0 and 0 < s ≤ 1

2
. In the former case,

using the identity

⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ − ξ1 + ξ2⟩−2s ≲ ⟨ξ21 + ξ22 + ξ2⟩−3s

we obtain the bound∫
⟨ξ⟩1+⟨ξ1 − ξ⟩2b+ 1

4
− 1

2
(s+a)⟨ξ1 − ξ2⟩2b+

1
4
− 1

2
(s+a)

⟨ξ1⟩2b+
1
4
+ 1

2
(5s−a)⟨ξ − ξ1 + ξ2⟩2b+

1
4
+ 1

2
(5s−a)

dξ1dξ2.

By a change of variable ξ2 → ξ1 + ξ2, ξ1 → ξ1 + ξ, it suffices to estimate

⟨ξ⟩1+
(∫ dξ1

⟨ξ1 + ξ⟩2b+ 1
4
+ 1

2
(5s−a)⟨ξ1⟩2b+

1
4
− 1

2
(s+a)

)2
.

Nothing that 2b + 1
4
− 1

2
(s + a) < 1 and 2b + 1

4
+ 1

2
(5s − a) < 1 and then applying

Lemma A.0.5 this is bounded by

⟨ξ⟩2−8b−4s+2a+,

which is finite for a < min{2s + 1, 1} and 1
2
− b > 0 sufficiently small. Now for the

latter case 0 < s ≤ 1
2
, after using the bound ⟨ξ1⟩−2s⟨ξ2⟩−2s⟨ξ− ξ1+ ξ2⟩−2s ≲ ⟨ξ⟩−2s and

applying the same change of variables as above, the integral is bounded by

∫
⟨ξ⟩1−2s+

⟨ξ1⟩2b+
1
4
− 1

2
(s+a)⟨ξ1 + ξ⟩2b+ 1

4
− 1

2
(s+a)⟨ξ2⟩2b+

1
4
− 1

2
(s+a)⟨ξ2 + ξ⟩2b+ 1

4
− 1

2
(s+a)

dξ1dξ2

≲ ⟨ξ⟩1−2s+
(∫ dξ1

⟨ξ1⟩2b+
1
4
− 1

2
(s+a)⟨ξ1 + ξ⟩2b+ 1

4
− 1

2
(s+a)

)2
≲ ⟨ξ⟩2−8b+2a+ ≲ 1

by using the Lemma A.0.5, a < min{2s + 1, 1} and the assumption that 1
2
− b > 0 is

sufficiently small.

Case 2) 5
2
≤ s+ a < 9

2

Note in this case 0 ≤ 1
2
(s + a) − 2b − 1

4
< 6b − 2. Making use of the proof of Lemma

A.0.2, we write

ξ4 − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4
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= (ξ − ξ1)(ξ1 − ξ2)
[5
2
(ξ + ξ2)

2 + ξ2 + ξ22 + 2(ξ1 −
1

2
ξ − 1

2
ξ2)

2
]

=: g(ξ, ξ1, ξ2).

Therefore, we have

⟨τ − ξ4⟩ = ⟨τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4 − g(ξ, ξ1, ξ2)⟩

≲ ⟨τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4⟩+ ⟨g(ξ, ξ1, ξ2)⟩

≲ ⟨τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4⟩+ ⟨ξ1⟩2⟨ξ2⟩2⟨ξ⟩2⟨ξ1 − ξ⟩⟨ξ1 − ξ2⟩.

From this identity we obtain

I ≲
∫

⟨ξ1 − ξ⟩ 1
2
(s+a)− 1

4
−2b⟨ξ1 − ξ2⟩

1
2
(s+a)− 1

4
−2b⟨ξ⟩ 1

2
+s+a−4b+

⟨ξ1⟩s−a+ 1
2
+4b⟨ξ2⟩s−a+ 1

2
+4b⟨ξ − ξ1 + ξ2⟩2s

dξ1dξ2.

Substitutions ξ2 → ξ2 + ξ1 and ξ1 → ξ1 + ξ in the above integral lead to

⟨ξ⟩
1
2
+s+a−4b+

∫
⟨ξ1⟩

1
2
(s+a)− 1

4
−2b⟨ξ2⟩

1
2
(s+a)− 1

4
−2b

⟨ξ1 + ξ⟩s−a+ 1
2
+4b⟨ξ1 + ξ2 + ξ⟩s−a+ 1

2
+4b⟨ξ + ξ2⟩2s

dξ1dξ2

≲ ⟨ξ⟩
1
2
+s+a−4b+

∫
⟨ξ1⟩

1
2
(s+a)− 1

4
−2b⟨ξ2⟩

1
2
(s+a)− 1

4
−2b

⟨ξ1 + ξ⟩s−a+ 1
2
+4b⟨ξ1 + ξ2 + ξ⟩s−a+ 1

2
+4b⟨ξ + ξ2⟩s−a+ 1

2
+4b

dξ1dξ2

where we have used s+ a− 4b− 1
2
≥ 0 in the last line above. Since a < min{2s+1, 1},

we note that s > 3
2
. Now by symmetry we have two cases |ξ + ξ1 + ξ2| ≳ |ξ| and

|ξ + ξ1| ≳ |ξ| to consider. For the first one, using ⟨ξ1⟩ ≲ ⟨ξ1 + ξ⟩⟨ξ⟩ we have the bound

⟨ξ⟩2a−8b+
(∫

⟨ξ1⟩
1
2
(s+a)− 1

4
−2b⟨ξ1 + ξ⟩−s+a− 1

2
−4bdξ1

)2
≲ ⟨ξ⟩3a+s− 1

2
−12b+ ≲ 1

owing to the the restrictions on a, b and s. For the second one, the integral is bounded

by

⟨ξ⟩2a−8b+

∫
⟨ξ1⟩

1
2
(s+a)− 1

4
−2b⟨ξ2⟩

1
2
(s+a)− 1

4
−2b

⟨ξ2 + ξ⟩s−a+ 1
2
+4b⟨ξ1 + ξ2 + ξ⟩s−a+ 1

2
+4b

dξ1dξ2.

The inequalities ⟨ξ1⟩ ≲ ⟨ξ1+ξ2+ξ⟩⟨ξ2+ξ⟩ and ⟨ξ2⟩ ≲ ⟨ξ2+ξ⟩⟨ξ⟩ give rise to the bound

⟨ξ⟩
s
2
+ 5a

2
− 1

4
−10b+

∫
⟨ξ2 + ξ⟩2a−8b−1⟨ξ1 + ξ2 + ξ⟩−

s
2
+ 3a

2
− 3

4
−6bdξ1dξ2
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which can be easily verified to be finite by the restrictions on a, b and s.

4.5. Local Theory: The Proof of Theorem 4.1.2

In this section, we establish the local existence of solutions to (4.18). Firstly we

aim to show that Γ defined by

Γu(t) = η(t)W tge + η(t)

∫ t

0

W t−sF (u)ds+ η(t)W t
0(0, h1 − p1 − q1, h2 − p2 − q2) (4.18)

has a fixed point in the space Xs,b, and recall where ge ∈ Hs(R) is the extension of g

such that ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) and

F (u) = η(t/T )|u|2u, p1(t) = η(t)D0(W
tge), p2(t) = η(t)D0

(
∂x
(
W tge

))
,

q1(t) = η(t)D0

(∫ t

0

W t−t′F (u)dt′
)
, q2(t) = η(t)D0

(
∂x

[ ∫ t

0

W t−t′F (u)dt′
])
.

We also recall that s ∈ (−1
3
, 9
2
), s ̸= 1

2
, 3
2
and 1

2
− b > 0 is sufficiently small. We start

with showing that Γ is a bounded operator on Xs,b. To do so, we gather necessary

bounds we have so far. Using (4.11) we have∥∥η(t)W tge
∥∥
Xs,b ≲ ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) .

Next by (4.13), (4.12) followed by Proposition 4.4.6 we obtain

∥∥∥∥η ∫ t

0

W t−sF (u)ds

∥∥∥∥
Xs,b

≤
∥∥∥∥η ∫ t

0

W t−sF (u)ds

∥∥∥∥
Xs, 12+

≲ ∥F (u)∥
Xs,− 1

2+

≲ T
1
2
−b− ∥∥|u|2u∥∥

Xs,−b

≲ T
1
2
−b− ∥u∥3Xs,b .

By using Proposition 4.4.2 and Lemma 4.2.2, we have

∥η(t)W t
0(0, h1 − p1 − q1, h2 − p2 − q2)∥Xs,b

≲
∥∥χ(0,∞)(h1 − p1 − q1)

∥∥
H

2s+3
8

t (R)
+
∥∥χ(0,∞)(h2 − p2 − q2)

∥∥
H

2s+1
8

t (R)
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≲ ∥h1 − p1∥
H

2s+3
8

t (R+)
+ ∥h2 − p2∥

H
2s+1

8
t (R+)

+ ∥q1∥
H

2s+3
8

t (R+)
+ ∥q2∥

H
2s+1

8
t (R+)

≲ ∥h1∥
H

2s+3
8

t (R+)
+ ∥h2∥

H
2s+1

8
t (R+)

+ ∥p1∥
H

2s+3
8

t (R)
+ ∥p2∥

H
2s+1

8
t (R)

+ ∥q1∥
H

2s+3
8

t (R)
+ ∥q2∥

H
2s+1

8
t (R)

.

By the Kato smoothing estimate

∥p1∥
H

2s+3
8

t (R)
+ ∥p2∥

H
2s+1

8
t (R)

≲ ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) .

Moreover, to bound the qi norms, we use Proposition 4.4.5, (4.12) and Proposition

4.4.7 to get

∥q1∥
H

2s+3
8

t (R)
+ ∥q2∥

H
2s+1

8
t (R)

≲

∥F∥
Xs,− 1

2+ for− 1
3
< s ≤ 1

2

∥F∥
Xs,− 1

2+ + ∥F∥
X

1
2+, 2s−5

8 + for 1
2
< s < 9

2

≲ T
1
2
−b−

∥|u|2u∥Xs,−b for − 1
3
< s ≤ 1

2

∥|u|2u∥Xs,−b + ∥|u|2u∥
X

1
2+, 2s−1

8 −b for 1
2
< s < 9

2

≲ T
1
2
−b− ∥u∥3Xs,b .

Putting these estimates together for (4.18), we arrive at

∥Γu∥Xs,b ≲ ∥g∥Hs(R+) + ∥h1∥
H

2s+3
8

t (R+)
+ ∥h2∥

H
2s+1

8
t (R+)

+ T
1
2
−b− ∥u∥3Xs,b .

Having shown that Γ is bounded, our next objective is to reveal that Γ is indeed a

contraction. To achieve this, we implement the similar calculations for the difference

Γu− Γ ũ as follows:

∥Γu− Γ ũ∥Xs,b

≤
∥∥∥∥η ∫ t

0

W t−s[F (u)− F (ũ)]ds

∥∥∥∥
Xs,b

+
∥∥ηW t

0(0, q̃1 − q1, q̃2 − q2)
∥∥
Xs,b

≲

∥∥∥∥η ∫ t

0

W t−s[F (u)− F (ũ)]ds

∥∥∥∥
Xs, 12+

+

∥∥∥∥η ∫ t

0

W t−s[F (u)− F (ũ)]ds

∥∥∥∥
L∞
x H

2s+3
8

t
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+

∥∥∥∥η∂x(∫ t

0

W t−s[F (u)− F (ũ)]ds
)∥∥∥∥

L∞
x H

2s+1
8

t

≲ T
1
2
−b−( ∥∥|u|2u− |ũ|2ũ

∥∥
Xs,−b + χ( 1

2
, 9
2
)(s)

∥∥|u|2u− |ũ|2ũ
∥∥
X

1
2+, 2s−1

8 −b

)
≲ T

1
2
−b−( ∥u∥2Xs,b + ∥ũ∥2Xs,b

)
∥u− ũ∥Xs,b .

In the last line, we have used Proposition 4.4.7 along with the inequality

||f |αf − |g|αg| ≤ C(|f |α + |g|α)|f − g|

for some absolute constant C and α ≥ 0. Therefore, taking 0 < T < 1 sufficiently

small, Γ is a contraction on the ball

B =
{
u ∈ Xs,b : ∥u∥Xs,b ≤ C

(
∥g∥Hs(R+) + ∥h1∥

H
2s+3

8 (R+)
+ ∥h2∥

H
2s+1

8 (R+)

)}
with radius depending on the initial and boundary data. Hence by the Banach fixed

point theorem, this ensures the existence of a solution to (4.1) in Xs,b spaces. Next

we establish that the fixed point of Γ lies in C0
tH

s
x([0, T ] × R). Since the operator

W t = eit∆
2
is unitary on Hs(R) we have∥∥ηW tge

∥∥
C0

t H
s
x
≲ ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) .

By the embedding (4.10) and the contraction argument∥∥∥∥η ∫ t

0

W t−sF (u)ds

∥∥∥∥
C0

t H
s
x

≲

∥∥∥∥η ∫ t

0

W t−sF (u)ds

∥∥∥∥
Xs, 12+

≲ · · · ≲ T
1
2
−b− ∥u∥3Xs,b .

Next from Lemma 4.4.3 and the previous estimates in the contraction argument

∥∥ηW t
0(0, h1 − p1 − q1, h2 − p2 − q2)

∥∥
C0

t H
s
x

≲
∥∥χ(0,∞)(h1 − p1 − q1)

∥∥
H

2s+3
8

t (R)
+
∥∥χ(0,∞)(h2 − p2 − q2)

∥∥
H

2s+1
8

t (R)

≲ · · · ≲ ∥g∥Hs(R+) + ∥h1∥
H

2s+3
8

t (R+)
+ ∥h2∥

H
2s+1

8
t (R+)

+ T
1
2
−b− ∥u∥3Xs,b .

We also show that u = Γu belongs to the space C0
xH

2s+3
8

t ([0, T ]×R). We have already

obtained the following bounds in the contraction argument

∥∥ηW tge
∥∥
C0

xH
2s+3

8
t

≲ ∥ge∥Hs(R) ≲ ∥g∥Hs(R+) ,
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∥∥∥∥η ∫ t

0

W t−sF (u)ds

∥∥∥∥
C0

xH
2s+3

8
t

≲ T
1
2
−b− ∥u∥3Xs,b .

For the remaining term of Γ we exploit Lemma 4.4.4 and the contraction argument to

get

∥ηW t
0(0,h1 − p1 − q1, h2 − p2 − q2)∥

C0
xH

2s+3
8

t

≲ ∥g∥Hs(R+) + ∥h1∥
H

2s+3
8

t (R+)
+ ∥h2∥

H
2s+1

8
t (R+)

+ T
1
2
−b− ∥u∥3Xs,b .

As a result we have established that u = Γu lies in the Banach space of the definition

4.1.1. Therefore this finishes the proof of local existence of solutions to (4.1). The

uniqueness of these solutions will be treated in the subsequent Section 4.5.1 below.

The continuous dependence of these local solutions on the initial and boundary data

follows from the fixed point argument and the a priori estimates as well. To see this let

u and un be solutions of (4.1) with initial and boundary data g, h1, h2 and gn, hn1, hn2

respectively. Then from what we have already shown in the contraction argument, we

have

∥u− un∥Xs,b ≤ C0

(
∥g − gn∥Hs(R+) + ∥h1 − hn1∥

H
2s+3

8
t (R+)

+ ∥h2 − hn2∥
H

2s+1
8

t (R+)

)
+ C1T

1
2
−b− ∥u− un∥Xs,b

where C0 > 0 is a positive constant and C1 depends on the radius of the ball in the fixed

point argument and hence on the initial and boundary data. By means of contraction

argument, we may take existence time T < 1 so that C1T
1
2
−b− < 1. So by the inequality

∥u− un∥Xs,b ≤
C0(

1− C1T
1
2
−b−)( ∥g − gn∥Hs(R+) + ∥h1 − hn1∥

H
2s+3

8
t (R+)

+ ∥h2 − hn2∥
H

2s+1
8

t (R+)

)
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the continuous dependence inXs,b follows. In a similar manner, we prove the continuous

dependence in the spaces C0
tH

s
x and C0

xH
2s+3

8
t as well. In order to complete the proof

of the Theorem 4.1.2, it is left to establish the quantification of the dependence of

existence time T to the initial and boundary data. By a scaling argument, we easily

see that if u solves the equation (4.1) with data g, h1 and h2 on [0, λ−4], then uλ(x, t) =

λ−2u(λ−1x, λ−4t) solves the equation (4.1) with data gλ(x) = λ−2g(λ−1x), hλ1(t) =

λ−2h1(λ
−4t) and hλ2(t) = λ−3h1(λ

−4t) on [0, 1]. Therefore, for λ > 1,

∥∥hλ1∥∥H 2s+3
8 (R+)

≲ ∥h1∥
H

2s+3
8 (R+)

,∥∥hλ2∥∥H 2s+1
8 (R+)

≲ ∥h2∥
H

2s+1
8 (R+)

.

Furthermore, (for s ≥ 0)

∥∥gλ∥∥
Hs(R+)

≤
∥∥gλ∥∥

L2(R+)
+
∥∥gλ∥∥

Ḣs(R+)

≤ λ−
3
2 ∥g∥L2(R+) + λ−

3
2
−s ∥g∥Ḣs(R+)

≤ ∥g∥L2 + λ−
3
2
−s ∥g∥Hs(R+) .

Then for λ−
3
2
−s ∥g∥Hs(R+) ≈ 1, the solution is defined up to the local existence time

T ≈
(
C + ∥g∥Hs(R+)

)− 8
2s+3

where the constant C depends on ∥g∥L2 + ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

. Moreover,

in order to have local existence interval without implicit dependence on ∥g∥L2 (to be

used later in Section 4.6), we make use of the following bound∥∥gλ∥∥
Hs ≤

∥∥gλ∥∥
L2 +

∥∥gλ∥∥
Ḣs ≤ λ−

3
2 ∥g∥L2 + λ−

3
2
−s ∥g∥Ḣs ≤ λ−

3
2 ∥g∥Hs

that gives rise to the local existence time T ≈
(
C + ∥g∥Hs

)− 8
3 , in this case, with

constant C dependent to ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

.
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4.5.1. Uniqueness of Solutions

In this section, we exhibit that the solutions to the equation (4.1) constructed

above are unique. The uniqueness statement of the Theorem 4.1.2 for s > 1
2
follows

from an energy argument which we want to illustrate next, and then using the smooth-

ing theorem we will extend the uniqueness argument to the whole well-posedness range.

Hence first consider the smooth solutions u and v of (4.1) with sufficient decay. Then

using u(x, 0) = v(x, 0), u(0, t) = v(0, t) and ux(0, t) = vx(0, t), we compute

∂t∥u− v∥2L2(R+) = 2Re iµ

∫ ∞

0

(
|u|2u− |v|2v

)
(u− v)dx,

hence, for any t > 0, integrating this and then using Sobolev embedding Hs(R+) ⊂

L∞(R+), s > 1/2, we obtain

∥(u− v)(t)∥2L2
x(R+) ≤ 2

(
∥u∥2L∞

t∈[0,T ]
L∞
x (R+) + ∥v∥2L∞

t∈[0,T ]
L∞
x (R+)

) ∫ t

0

∥(u− v)(s)∥2L2
x(R+) ds

≲
(
∥u∥2L∞

t∈[0,T ]
Hs

x(R+) + ∥v∥2L∞
t∈[0,T ]

Hs
x(R+)

) ∫ t

0

∥(u− v)(s)∥2L2
x(R+) ds.

Since, by the local theory, the solutions u and v belong to C0
tH

s
x([0, T ] × R+), this

with the Gronwall’s inequality imply that u = v. The uniqueness of rougher solutions

follows from taking convolution of u− v with smooth approximate identities and then

carrying out a limiting argument as usual, see for instance [70]. Also since the norms

are taken on R+ in the energy estimate above, the restriction of solution to the right

half line is independent of the choice of extension of the initial data. Next we will

prove the uniqueness of the local solutions in the case s ∈ (−1
3
, 1
2
) by utilizing the

uniqueness obtained above for s > 1
2
and the smoothing estimate from Theorem 4.1.3.

Here we follow the arguments of [68]. We get started by considering data (g, h1, h2) in

Hs
x(R+)×H

2s+3
8

t (R+)×H
2s+1

8
t (R+) for s ∈ (0, 1

2
). Let ge and g̃e be two H

s(R) extensions

of g ∈ Hs(R+). Associated to these extensions let u and ũ be the fixed points of Γ

defined in (4.18). Next pick a sequence gk ∈ H
1
2
+(R+) converging to g in Hs(R+).
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Then, by Lemma 4.5.1 below, we may assume that gke and g̃e
k are H

1
2
+(R) ex-

tensions of gk that converge respectively to ge and g̃e in H
r(R) for r < s < 1

2
. Running

a contraction argument on the set B1 ∩B2 where

B1 =
{
u : ∥u∥

X
1
2+,b ≤ C

( ∥∥gk∥∥
H

1
2+(R+)

+ ∥h1∥H 1
2+(R+)

+ ∥h2∥H 1
4+(R+)

)}
B2 =

{
u : ∥u∥Xs,b ≤ C

(
∥g∥Hs(R+) + ∥h1∥

H
2s+3

8 (R+)
+ ∥h2∥

H
2s+1

8 (R+)

)}
we construct H

1
2
+(R) solutions uk and ũk to the equation (4.1) associated to the exten-

sions gke and g̃e
k respectively. At this juncture we make use of the smoothing estimate

of Theorem 4.1.3 to obtain local existence time

T = T
(
∥g∥Hs(R+) , ∥h1∥H 2s+3

8 (R+)
, ∥h2∥

H
2s+1

8 (R+)

)
for s < 1

2
. By the uniqueness of H

1
2
+ solutions obtained above, the restrictions of

solutions uk and ũk to R+ are the same. Since, by the fixed point argument, uk → u

and ũk → ũ in Hs−(R), we then have u|R+ = ũ|R+ . Iterating this argument the

uniqueness for s > −1
3
follows.

Lemma 4.5.1 (See [69]). Fix −1
2
< s < 1

2
and k > s. Let f ∈ Hs(R+) and g ∈

Hk(R+). Let f e be an Hs extension of f to R. Then there is an Hk extension ge of g

to R such that

∥f e − ge∥Hr(R) ≲ ∥f − g∥Hs(R+) for r < s.

4.6. Proofs of Theorem 4.1.3 and Theorem 4.1.4

Proof of Theorem 4.1.3. By (4.18), for t ∈ [0, T ] we write the difference of nonlinear

and linear solutions as

u(t)−W t
0(0, h1 − p1, h2 − p2)(t) = η(t)

∫ t

0

W t−t′η(t′/T )|u|2udt′ − η(t)W t
0(0, q1, q2)(t)
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where

q1(t) = η(t)D0

(∫ t

0

W t−t′η(t′/T )|u|2udt′
)
,

q2(t) = η(t)D0

(
∂x

[ ∫ t

0

W t−t′η(t′/T )|u|2udt′
])
.

Therefore using the embedding Xs, 1
2
+ ⊂ C0

tH
s
x in (4.10), (4.13), Lemma 4.4.3 and then

Proposition 4.4.5, we have

∥u−W t
0(0, h1 − p1, h2 − p2)∥C0

t∈[0,T ]
Hs+a

x∈R+

≲

∥∥∥∥η ∫ t

0

W t−t′η(t′/T )|u|2udt′
∥∥∥∥
Xs+a, 12+

+
∥∥W t

0(0, q1, q2)
∥∥
C0

t H
s+a
x

≲
∥∥η|u|2u∥∥

Xs+a,− 1
2+ + ∥q1∥

H
2s+2a+3

8
t

+ ∥q2∥
H

2s+2a+1
8

t

≲
∥∥η|u|2u∥∥

Xs+a,− 1
2+ +

∥η|u|2u∥
Xs+a,− 1

2+ for− 1
3
< s+ a ≤ 1

2

∥η|u|2u∥
Xs+a,− 1

2+ + ∥η|u|2u∥
X

1
2+, 2s+2a−5

8
for 1

2
< s+ a < 9

2
.

By Propositions 4.4.6, Proposition 4.4.7 and Theorem 4.1.2 along with the local theory,

this is bounded by

∥u∥3Xs,b ≲
(
∥g∥Hs(R+) + ∥h1∥

H
2s+3

8 (R+)
+ ∥h2∥

H
2s+1

8 (R+)

)3
,

so the claim follows.

Proof of Theorem 4.1.4. Fix T > 0 and assume the growth bound ∥u∥Hs(R+) ≤ f(T )

for f depending on ∥g∥Hs(R+), ∥h1∥Hs1 (R+) and ∥h2∥Hs2 (R+), for some s1 ≥ 2s+3
8

, s2 ≥
2s+1
8

. Using the final claim of the proof of Theorem 4.1.2, we may pick the local

existence time based on f(T ): δ ≈ (C + f(T ))−
8
3 where C is a constant proportional

to ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

. Therefore for J ≈ T/δ

∥∥u(Jδ)−W Jδ
0 (g, h1, h2)

∥∥
Hs+a

x∈R+
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=

∥∥∥∥∥
J∑

k=1

W Jδ
kδ (u(kδ), h1, h2)−W Jδ

(k−1)δ(u((k − 1)δ), h1, h2)

∥∥∥∥∥
Hs+a

x∈R+

≤
J∑

k=1

∥∥W Jδ
kδ (u(kδ), h1, h2)−W Jδ

(k−1)δ(u((k − 1)δ), h1, h2)
∥∥
Hs+a

x∈R+

≤
J∑

k=1

∥∥W Jδ
kδ

(
[u(kδ)−W kδ

(k−1)δ(u((k − 1)δ), h1, h2)], 0, 0
)∥∥

Hs+a

x∈R+

≤
J∑

k=1

∥∥u(kδ)−W kδ
(k−1)δ(u((k − 1)δ), h1, h2)

∥∥
Hs+a

x∈R+
≲ Jf(T )3 ≲ ⟨T ⟩f(T )

17
3

where we have used Remark 4.2.3 in the second and third inequalities. Also the implicit

constants just depend on ∥h1∥
H

2s+3
8 (R+)

, ∥h2∥
H

2s+1
8 (R+)

. Then we have

∥u(T )∥Hs+a(R+) ≲ ⟨T ⟩f(T )
17
3 +

∥∥W T
0 (g, h1, h2)

∥∥
Hs+a(R+)

.

To bound this, first recall that

W T
0 (g, h1, h2) = W Tge +W T

0 (0, h1 − p1, h2 − p2)

where p1(t) = η(t/⟨T ⟩)D0(W
tge), p2(t) = η(t/⟨T ⟩)D0(∂x[W

tge]). Then by Lemma

4.2.2

∥W T
0 (g,h1, h2)∥Hs(R)

≲ ∥ge∥Hs(R) +
∥∥χ(0,∞)(h1 − p1)

∥∥
H

2s+3
8 (R)

+
∥∥χ(0,∞)(h2 − p2)

∥∥
H

2s+1
8 (R)

≲ ∥g∥Hs(R+) + ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

+ ∥p1∥
H

2s+3
8 (R)

+ ∥p2∥
H

2s+1
8 (R)

.

We estimate p1 and p2 by writing η(t/⟨T ⟩) =
∑⟨T ⟩

j=1 ηj(t) and then using Kato smoothing

inequality (Lemma 4.4.1) as follows

∥p1∥
H

2s+3
8 (R)

+ ∥p2∥
H

2s+1
8 (R)

≲ ⟨T ⟩ ∥ge∥Hs(R) ≲ ⟨T ⟩ ∥g∥Hs(R+) .

So then we have∥∥W T
0 (g, h1, h2)

∥∥
Hs(R+)

≲ ⟨T ⟩ ∥g∥Hs(R+) + ∥h1∥
H

2s+3
8 (R+)

+ ∥h2∥
H

2s+1
8 (R+)

which leads to the bound

∥u(T )∥Hs+a(R+) ≲ ⟨T ⟩
[
f(T )

17
3 + ∥g∥Hs+a(R+)

]
+ ∥h1∥

H
2s+2a+3

8 (R+)
+ ∥h2∥

H
2s+2a+1

8 (R+)
.
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When s = 2 and s1 = s2 = 1, Lemma A.0.1 implies that f(t) ≈ 1. As a result

this and above bound yield that ∥u(t)∥Hs(R+) ≲ ⟨T ⟩ for 2 < s < 5
2
.
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5. THE PERIODIC HIROTA-SATSUMA SYSTEM

5.1. Introduction

The Hirota-Satsuma system is a system of coupled KdV equations, introduced

by Hirota and Satsuma in 1981, [71]. In this chapter, we consider the Hirota-Satsuma

system with periodic boundary conditions


ut + auxxx + 3a(u2)x + β(v2)x = 0, x ∈ T

vt + vxxx + 3uvx = 0,

(u, v)|t=0 = (u0, v0) ∈ Ḣs(T)×Hs(T)

(5.1)

where a ∈ (1
4
, 1), β ∈ R and Ḣs(T) = {f ∈ Hs(T) :

∫ 2π

0
f(x) dx = 0}. The results of

this chapter have appeared in [72]. Here the choice of the parameter a is related to

the resonance equations coming from after applying the normal form transformation

to the system (5.1). The system (5.1) is a generalization of the KdV equation (when

v = 0) and describes the interplay of two long waves evolving with different dispersion

relations. Note that the mean zero condition on v cannot be applicable since the system

(5.1) does not preserve the mean value of v, and that the momentum conservation holds

for u only:

∫
u(x, t) dx =

∫
u0(x) dx.

The system (5.1) also satisfies the following conservation laws [71]:

E1(u, v) =

∫
u2 − 2β

3
v2 dx,

E2(u, v) =

∫
(1− a)u2x − 2βv2x − 2(1− a)u3 + 2βuv2 dx.

(5.2)
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As a consequence of these conserved energies, it turns out that the energy space

for the system is H1 ×H1. No other conserved quantities seem to exist for (5.1) that

holds for any a and β; nevertheless for a = −1
2
, the system is known to be completely

integrable, [71, 73]. Before discussing the literature of the coupled KdV type systems,

it makes sense to review more recent well-posedness results of the KdV equationut + uxxx + uux = 0

u(x, 0) = u0(x) ∈ Hs(K) for K = R or T.
(5.3)

Introducing the Fourier restriction spaces Bourgain extended the previous local well-

posedness results of the KdV equation to the L2 level on R and T, [2]. Later in [74],

Kenig, Ponce and Vega proved the local well-posedness in Hs(R) for s > −3
4
and in

Hs(T) for s > −1
2
. The local well-posedness in H− 3

4 (R) was established by Christ-

Colliander-Tao in [75]. In [76], Colliander-Keel-Staffilani-Takaoka-Tao obtained the

local and global well-posedness in H− 1
2 (T). The global well-posedness for R at the

endpoint s = −3
4
was proved by Guo [77]. By using the integrability properties of the

KdV equation, Kappeler and Topalov established the local and global well-posedness

in H−1(T), [78]. Later, in [79, 80], Molinet showed that the KdV equation is ill-posed

in Hs(K) for K = R,T, s < −1. Finally, the global well-posedness in H−1(R) has

recently been obtained by Killip and Visan [81], and the study of the well-posedness

of (5.3) has been brought to a satisfactory conclusion.

The well-posedness theory of the Hirota-Satsuma system began with the work of

He [82], with the assumptions 0 < a < 1 and β < 0 on the coefficients, He obtained

the existence and uniqueness of the global solutions in L∞([0, T ];H3(K)×H3(K)) for

K = T,R. In the real case, Feng [83] improved this result to the range s ≥ 1 by

considering slightly general coupled KdV-KdV system. In particular, it was shown

that for a ̸= 1 and β < 0, the system is locally well-posed in Hs(R)×Hs(R) for s ≥ 1.

Also with the additional assumption 0 < a < 1, the system was shown to be globally

well-posed in Hs(R) ×Hs(R) for s ≥ 1. Later, Alvarez and Carvajal [84] pushed the

local result down to s > 3
4
for the real case. They also showed that the system with

a ̸= 0 is ill-posed in Hs(R)×Hs′(R) for s ∈ [−1,−3/4) and s′ ∈ R.
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Recently, Yang and Zhang [85] have studied the well-posedness of the Cauchy

problem for a class of coupled KdV-KdV (cKdV) systems in Hs(R) × Hs(R), those

including Gear-Grimshaw system, Hirota-Satsuma system, the Majdo-Biello system

etc. In particular, regarding the Hirota-Satsuma system, they have given critical in-

dex s∗ ∈ {−3
4
, 0, 3

4
} depending on the numeric value of the coefficient a for which the

Hirota-Satsuma Cauchy problem is locally well-posed in Hs(R)×Hs(R) when s > s∗.

As regards to the periodic case, Angulo [86] showed that for a ̸= 0, 1 the Hirota-

Satsuma system is locally well-posed in Ḣs(T)× Ḣs(T) for s ≥ 1. With the additional

assumptions β < 0 and a < 1, Angulo further obtained the global well-posedness in the

same space within the same Sobolev index range that follows from the conservation of

the energy. Finally, in [87], Yang and Zhang have recently obtained the well-posedness

results of the cKdV systems on the periodic domain T as a follow up of their corre-

sponding work [85]. Here we shall merely summarize the well-posedness results of [87]

concerning the Cauchy problem (5.1). The results depend on the arithmetic properties

of the coefficients a and β. When a = 1 and β = 0, the system (5.1) is locally well-posed

in Ḣs(T)×Hs(T) for s ≥ 1
2
. In the case a ∈ (−∞, 1

4
)\{0}, as the resonace interactions

are relatively easier to control, the local well-posedness is established in Ḣs(T)×Hs(T)

for s ≥ −1
4
; whereas in the remaining regime, a ∈ [1

4
,∞) \ {1}, the resonances raise

special difficulties in which case one needs to know how well a given number can be

approximated by rational numbers (Diophantine approximation). The idea of con-

trolling resonances via the Diophantine approximation was initially implemented by

Oh [88] to the Majdo-Biello system on the torus to establish the well-posedness. Using

this approach, Yang and Zhang proved the local well-posedness in Ḣs(T)×Hs(T) for

s ≥ min{1, sa+} with the mean zero assumption on the initial data u0. Here sa is

defined by means of a number theoretic parameter based on the arithmetic properties

of a. On account of the conserved energies (5.2) for the system (5.1), when 1
4
≤ a < 1

and β < 0, the local well-posedness can be upgraded to global well-posedness for s ≥ 1.

Also when a ∈ (−∞, 1
4
) \ {0} and β < 0, the direct application of the conservation of

E1(u, v) and the corresponding local result yield the global well-posedness for s ≥ 0.
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In the first part of the chapter, we study the smoothing property of the Hirota-

Satsuma system, in other words, we prove that the difference between the nonlinear

evolution and the linear evolution lies in a more regular space than the inital data

under consideration. The proof is based on the method of normal forms through dif-

ferentiation by parts introduced by Babin-Ilyin-Titi [14] and the Bourgain’s Fourier

restricted norm method, [2]. The idea of using combination of these methods in prov-

ing nonlinear smoothing effect on a bounded domain was first used by Erdoğan and

Tzirakis for the KdV equation [16] and the Zakharov system [17]. The result for the

KdV equation is somewhat surprising since the KdV equation is known to have no

smoothing estimate on the real line. Recently, Compaan [15] studied the smoothing

properties of the Majdo-Biello system on the torus and proved the existence of global

attractors in the sense of arguments in [16,17]. Here we continue the program initiated

by these papers. In our proof, via the normal form reduction, the derivatives in the

nonlinearities can be eliminated, and in return for this, the orders of the nonlinearities

increase (from quadratic to cubic) and many resonant terms come into play based on

the arithmetic properties of the coupling parameter a. In order to control the new

trilinear nonlinearities we rely on the Xs,b estimates.

In the second part, we concentrate on the description of long time dynamics of

the forced and weakly damped system:
ut + auxxx + γ1u+ 3a(u2)x + β(v2)x = f

vt + vxxx + γ2v + 3uvx = g

(u, v)|t=0 = (u0, v0) ∈ Ḣ1(T)×H1(T)

(5.4)

where the damping coefficients γ1, γ2 are positive, β < 0, f, g are time independent,

and f ∈ H1 is mean zero, g ∈ H1. To simplify the calculations, we will take γ1 = γ2;

the general case follows from minor modifications in the computations. The smoothing

estimates obtained in the first part will play an essential role in demonstrating that the

system (5.4) possesses a global attractor, also the result here answers the regularity of

the attractor above the energy level.
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Using the method of [15,17,39], roughly, the idea is to write the solution in terms

of linear and nonlinear parts and then to implement the smoothing estimates to the

nonlinear part.

5.1.1. Notation

In order to simplify the calculations, the notation O(δ) is to be used in place of

a constant Cδ where C might be dependent on the coupling parameter a yet not on

the variables involved in the calculations. The Fourier sequence of a 2π periodic L2

function u is defined as

uk =
1

2π

∫ 2π

0

u(x)e−ikx dx, k ∈ Z.

By recalling the notation ⟨·⟩ =
√

1 + | · |2, we define the Sobolev norms of u ∈ Hs(T)

as follows

∥u∥Hs = ∥⟨k⟩sû(k)∥ℓ2k .

Note that for a mean zero function u ∈ Ḣs,

∥u∥Hs ≈ ∥|k|sû(k)∥ℓ2k .

The spaces Xs,b
a and Xs,b

1 associated to the system (5.1) are defined by the norms

∥u∥Xs,b
a

=
∥∥⟨k⟩s⟨τ − ak3⟩bû(k, τ)

∥∥
ℓ2kL

2
τ

∥v∥Xs,b
1

=
∥∥⟨k⟩s⟨τ − k3⟩bv̂(k, τ)

∥∥
ℓ2kL

2
τ
.

The restricted norms are also defined by

∥u∥Xs,b
a,δ

= inf
ũ=u on [−δ,δ]

∥ũ∥Xs,b
a

∥v∥Xs,b
1,δ

= inf
ṽ=v on [−δ,δ]

∥ṽ∥Xs,b
1
.
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5.2. Statement of Results

5.2.1. Preliminaries

In order to state well-posedness results and hence to study the smoothing prop-

erties of the system (5.1) on the torus, we require special parameters related to given

numbers, called “irrationality exponent”, which might be used to learn how close given

numbers can be approximated by rational numbers. Irrationality exponent of a real

number arises in the study of Diophantine approximation theory. In our discussion, we

utilize these quantities in controlling resonances.

Definition 5.2.1 (See [89]). A number r ∈ R is said to be approximable with power

µ, if the inequality

0 <
∣∣∣r − n

k

∣∣∣ < 1

|k|µ

holds for infinitely many (n, k) ∈ Z× Z∗, and

µ(r) = sup{µ ∈ R : r is approximable with powerµ} (5.5)

is called the irrationality exponent of r.

We now review some properties of the irrationality exponent. Irrationality expo-

nent maps the set of real numbers onto the set {1} ∪ [2,∞], see [90,91]. In particular,

for r ∈ Q, µ(r) = 1 whereas for irrational number r we have µ(r) ≥ 2. By the Thue-

Siegel-Roth theorem [92–94], for an irrational algebraic number r, µ(r) = 2, also by

the Khintchine theorem [95], for almost every r ∈ R, µ(r) = 2. The local theory for

the Cauchy problem (5.1) is based on the critical index sr for r ≥ 1
4
defined by

sr =

1 if µ(ρr) = 1 or µ(ρr) ≥ 3

µ(ρr)−1
2

if 2 ≤ µ(ρr) < 3

where ρr =
√
12r − 3. In connection with the well-posedness of the system (5.1), we

state some of the results of [87].
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Theorem 5.2.2 (See [87]). For a ∈ [1
4
,∞) \ {1} and s ≥ min{1, sa+}, the Hirota-

Satsuma system (5.1) is locally well-posed in Ḣs ×Hs. In particular, given any initial

data (u0, v0) ∈ Ḣs ×Hs there exists δ ≈ (∥u0∥Hs + ∥v0∥Hs)−
3
2 and a unique solution

(u, v) ∈ C([−δ, δ];Hs ×Hs)

satisfying ∥u∥
X

s,1/2
a,δ

+ ∥v∥
X

s,1/2
1,δ

≲ ∥u0∥Hs + ∥v0∥Hs .

Theorem 5.2.3 (See [87]). Let β < 0 and a ∈ [1
4
, 1). Then for s ≥ 1, the Hirota-

Satsuma initial value problem (5.1) is globally well-posed in Ḣs ×Hs.

5.2.2. Smoothing Estimates for the Hirota-Satsuma System

Applying normal form transformation to the system (5.1) leads to the resonance

equations (for k1 + k2 = k)

ak3 − k31 − k32 = −3k(k1 − r1k)(k1 − r2k)

k3 − ak31 − k32 = (1− a)k1(k1 − r̃1k)(k1 − r̃2k)

where

r1 =
1

2
+

√
12a− 3

6
, r2 =

1

2
−

√
12a− 3

6
and r̃1 = 1/r1, r̃2 = 1/r2. (5.6)

Note that r1, r2 are the roots of the equation 3x2 − 3x + (1 − a), which immediately

implies that r̃1, r̃2 are the roots of the equation (1− a)x2 − 3x+ 3. Therefore, rj and

r̃j are algebraic only when a ∈ Q. By (5.6), we notice that r1, r2 ∈ R if and only if

a ≥ 1
4
, and that r̃1, r̃2 ∈ R if and only if a ∈ [1

4
, 1)∪ (1,∞). In this chapter, we consider

the problem (5.1) for a ∈ (1
4
, 1), also the problem for interval (1,∞) can be handled

in a similar vein. As performing smoothing estimates, we will be dealing with many

expressions such as ak3 − k31 − k32 and k3 − ak31 − k32 that appear in the denominators.

Controlling such expressions in the case they get close to zero relies on the following

lemma.
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Lemma 5.2.4 (See [87]). If r ∈ R \Q with µ(r) <∞, then for any ϵ > 0, there exists

a constant K = K(r, ϵ) > 0 such that the inequality∣∣∣r − n

k

∣∣∣ ≥ K

|k|µ(r)+ϵ
(5.7)

holds for any (n, k) ∈ Z× Z∗.

Note that when rj, r̃j, as introduced in (5.6), are rational numbers, by the Propo-

sition 5.3.1 below, we will still be able to use the inequality (5.7) for these numbers with

µ(rj) = µ(r̃j) = 1. Next lemma collects some invariance properties of the irrationality

exponent, which is proved in [87].

Lemma 5.2.5. The irrationality exponent defined by (5.5) satisfies

(i) For any r ∈ R and q ∈ Q, µ(q + r) = µ(r),

(ii) For any r ∈ R and q ∈ Q \ {0}, µ(qr) = µ(r),

(iii) For any r ∈ R \ {0}, µ(1
r
) = µ(r).

Using the lemma above we may write

µ(r̃2) = µ(r̃1) = µ(r1) = µ(r2) = µ(
√
12a− 3) =: µ(ρa). (5.8)

With the notations introduced above we state our smoothing result as follows:

Theorem 5.2.6. Fix s > 1
2
and a ∈ (1

4
, 1). Consider the solution of (5.1) with initial

data (u(0, x), v(0, x)) = (u0(x), v0(x)) ∈ Ḣs(T)×Hs(T). Let

s1 − s < min{1, s− 1

2
, s+ 2− µ(ρa), 2s+ 1− µ(ρa)}.

Then, we have

u(x, t)− e−ta∂3
xu0 ∈ C0

tH
s1
x , (5.9)

v(x, t)− e−t∂3
xv0 ∈ C0

tH
s1
x . (5.10)

For almost every a, (5.9) and (5.10) hold with s1 − s < min{1, s− 1
2
}.
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When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z×Z with q

2
< p < q, fix s > 1, then the smoothing

statements (5.9) and (5.10) are valid for s1−s ≤ min{1−, s−1} instead. Assume that

we have a growth bound ∥u(t)∥Hs + ∥v(t)∥Hs ≲ ⟨t⟩β(s), for some β(s) > 0. Then∥∥∥u(t)− e−ta∂3
xu0

∥∥∥
Hs1

+
∥∥∥v(t)− e−t∂3

xv0

∥∥∥
Hs1

≤ C(a, s, s1, ∥u0∥Hs , ∥u0∥Hs)⟨t⟩1+
9
2
β(s).

Remark 5.2.7. In the case the coefficients r1 and r2 in (5.6) are rational numbers,

which is the case when a is a rational of the form 3p(p−q)+q2

q2
as stated in the above

theorem, we have to control some additional terms due to the resonances, in which

case smoothing is attained solely for s > 1. On the other side, if the coefficients r1, r2

are irrational algebraic numbers, which is the case when a is a rational number such

that a ̸= 3p(p−q)+q2

q2
with q

2
< p < q, then by (5.8), µ(ρa) = 2 in Theorem 5.2.6 yields the

best possible smoothing. Indeed, the best regularity gain given by the Theorem 5.2.6 is

reached for almost every a ∈ (1
4
, 1). As a consequence, with regards to smoothing, the

above discussion shows how the regularity level is unstable under a slight perturbation

of a within (1
4
, 1).

Using smoothing estimates one can obtain growth bounds for higher order Sobolev

norms in the lack of complete integrability. As a corollory of the smoothing theorem

above, we obtain the following result.

Corollary 5.2.8. For any s ≥ 1 and almost every a ∈ (1
4
, 1) for which µ(ρa) = 2, the

global solution of (5.1) with Ḣs ×Hs data satisfies the growth bound

∥u(t)∥Hs + ∥v(t)∥Hs ≤ C0(1 + |t|)C1

where C0 depends on a, s, ∥u0∥Hs , ∥v0∥Hs and C1 depends on s.

Proof. Due to the conserved energies, H1 norms of u and v are bounded for all times.

The idea is to use the result of Theorem 5.2.6 repeatedly to obtain the growth bound

for the Sobolev norms above the energy level. To use this, suppose that the claim of

the corollory holds for s ≥ 1.
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Hence for s1 ∈ (s, s+min{1, s− 1
2
}), Theorem 5.2.6 leads to∥∥∥u(t)− e−at∂3

xu0

∥∥∥
Hs1

+
∥∥∥v(t)− e−t∂3

xv0

∥∥∥
Hs1

≤ C(1 + |t|)1+
9
2
β(s),

from this and the fact that linear groups are unitary, we get

∥u(t)∥Hs1 + ∥v(t)∥Hs1 ≤ ∥u0∥Hs1 + ∥v0∥Hs1 + C0(1 + |t|)C1 .

Continuing iteratively in this way, we reach any index s1.

5.2.3. Existence of a Global Attractor for the Hirota-Satsuma System

The essential tool in establishing the existence of a global atractor for the dis-

sipative Hirota-Satsuma system (5.4) in this context will be the smoothing estimates

which are to be discussed later. The existence of global attractors makes sense only for

the globally well-posed problems, in this regard we note that the initial value problem

(5.4) is locally and globally well-posed in Ḣ1×H1. The local well-posedness follows by

using the estimates of [87] and the global well-posedness follows from the energy esti-

mate of Lemma 5.5.1 which also implies the existence of an absorbing ball. To set the

stage for the description of the problem, let U(t) be the semigroup operator mapping

data to solution in the phase space and recall the definitions 2.3.1–2.3.4. Therefore, by

Theorem 2.3.5, in the presence of an absorbing set, the proof of existence of a global

attractor reduces to proving asymptotic compactness of the evolution operator. In our

discussion, the proof of the asymptotic compactness of the flow depends very much on

the smoothing estimate for the forced and weakly damped system that we establish

later. Here we have the result:

Theorem 5.2.9. Consider the forced and weakly damped Hirota-Satsuma system (5.4)

on T× [0,∞) with (u0, v0) ∈ Ḣ1 ×H1. Then, for almost every a ∈ (1
4
, 1), the equation

has a global attractor in Ḣ1 ×H1. Moreover, for any α < 1
2
, the global attractor is a

subset of H1+α ×H1+α.
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5.3. Proof of Theorem 5.2.6

We start by writing (5.1) in an equivalent form through differentiation parts. Be-

low
∑∗ denotes the summation over all terms for which the corresponding denominator

is never zero. The requirement of the nonzero denominators for the sums not written

by this notation is provided by the mean zero assumption on u0.

Proposition 5.3.1. Let u0 ∈ Ḣs. The system (5.1) can be written as

∂t
(
e−iak3t[uk +B1(u, u)k +B2(v, v)k]

)
= e−iak3t

[
R1(u, v, v)k +R2(u, u, u)k

+R3(u, v, v)k + ρ1(u, u)k + ρ2(v, v)k
]

∂t
(
e−ik3t[vk +B3(u, v)k]

)
= e−ik3t

[
R4(u, u, v)k +

β
3a
R4(v, v, v)k

+R5(u, u, v)k + ρ3(u, v)k
]

where the terms are defined as follows

B1(f, g)k = −
∑

k1+k2=k

fk1gk2
k1k2

, B2(f, g)k = −βk
∗∑

k1+k2=k

fk1gk2
ak3 − k31 − k32

B3(f, g)k = −3
∗∑

k1+k2=k

k2fk1gk2
k3 − ak31 − k32

R1(f, g, h)k = −2iβ
∗∑

k1+k2+k3=k

k2fk1gk2hk3
(k1 + k2 − r1k)(k1 + k2 − r2k)

R2(f, g, h)k = 6ia
∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1 )̸=0

fk1gk2hk3
k1

R3(f, g, h)k = 2iβ
∑

k1+k2+k3=k

fk1gk2hk3
k1

R4(f, g, h)k = 9ia
∗∑

k1+k2+k3=k

k3(k1 + k2)fk1gk2hk3
k3 − a(k1 + k2)3 − k33

R5(f, g, h)k = 9i
∗∑

k1+k2+k3=k

k3(k2 + k3)fk1gk2hk3
k3 − ak31 − (k2 + k3)3

ρ1(f, g)k = −6ia

k
|fk|2gk, ρ2(f, g)k = −2iβkfr1kgr2k

ρ3(f, g)k = −3ik
[
(1− r̃1)fr̃1kg(1−r̃1)k + (1− r̃2)fr̃2kg(1−r̃2)k

]
.
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Proof. Writing (5.1) on the Fourier side we have
∂tuk − iak3uk + 3iak

∑
k1+k2=k

uk1uk2 + iβk
∑

k1+k2=k

vk1vk2 = 0

∂tvk − ik3vk + 3i
∑

k1+k2=k

k2uk1vk2 = 0.

Via the substitution fk(t) = e−iak3tuk(t) and gk(t) = e−ik3tvk(t), the above system

transforms to
∂tfk = −3iak

∑
k1+k2=k

e−iat(k3−k31−k32)fk1fk2 − iβk
∑

k1+k2=k

e−it(ak3−k31−k32)gk1gk2

∂tgk = −3i
∑

k1+k2=k

k2e
−it(k3−ak31−k32)fk1gk2 .

(5.11)

Implementing differentiation by parts to the first equation in (5.11) we get

∂tfk =
∑

k1+k2=k

∂t(e
−3ikk1k2tfk1fk2)

k1k2
−

∑
k1+k2=k

e−3iakk1k2t∂t(fk1fk2)

k1k2

+ βk
∗∑

k1+k2=k

∂t(e
−it(ak3−k31−k32)gk1gk2)

ak3 − k31 − k32
− βk

∗∑
k1+k2=k

e−it(ak3−k31−k32)∂t(gk1gk2)

ak3 − k31 − k32

− 2iβkgr1kgr2k.

Note here that ak3 − k31 − k32 = −3k(k1 − r1k)(k1 − r2k) where r1 and r2 are the roots

of the quadratic equation 3x2 − 3x + (1 − a). So the resonant term corresponding to

the second sum of the first equation in (5.11) come up when r1k ∈ Z, in which case we

would have r1, r2 ∈ Q. There is no contribution from k = 0 solution to the resonant

term owing to the mean zero assumption on u0. Following the arguments of [14], [16]

and using the first line of (5.11), we have

∑
k1+k2=k

e−3iakk1k2t∂t(fk1fk2)

k1k2

= −6ia
∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1 )̸=0

e−3ia(k1+k2)(k2+k3)(k3+k1)t

k1
fk1fk2fk3

− 2iβ
∑

k1+k2+k3=k

e−it(ak3−ak31−k32−k33)

k1
fk1gk2gk3 +

6ia

k
|fk|2fk.
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Likewise using the second line of (5.11), the fourth sum in ∂tfk can be written as

−2iβ
∗∑

k1+k2+k3=k

k2e
−it(ak3−ak31−k32−k33)

(k1 + k2 − r1k)(k1 + k2 − r2k)
fk1gk2gk3 .

As for the second equation in (5.11), again we use differentiation by parts to get

∂tgk = 3
∗∑

k1+k2=k

k2∂t(e
−it(k3−ak31−k32)fk1gk2)

k3 − ak31 − k32
− 3

∗∑
k1+k2=k

k2e
−it(k3−ak31−k32)

k3 − ak31 − k32
(∂tfk1gk2)

− 3ik
[
(1− r̃1)fr̃1kg(1−r̃1)k + (1− r̃2)fr̃2kg(1−r̃2)k

]
.

Note that in obtaining the resonant term we use the identity k3 − ak31 − k32 = (1 −

a)k1(k1 − r̃1k)(k1 − r̃2k) where r̃j = 1/rj, j = 1, 2. By the mean zero assumption on

u0, the only contribution comes just when r̃1k, r̃2k ∈ Z in which case we need to have

r̃1, r̃2 ∈ Q. Using (5.11), we rewrite the second sum above as follows

3
∗∑

k1+k2=k

e−it(k3−ak31−k32)k2
k3 − ak31 − k32

(∂tfk1gk2)

= −9ia
∗∑

k1+k2+k3=k

e−it(k3−ak31−ak32−k33)(k1 + k2)k3
k3 − a(k1 + k2)3 − k33

fk1fk2gk3

− 3iβ
∗∑

k1+k2+k3=k

e−it(k3−k31−k32−k33)(k1 + k2)k3
k3 − a(k1 + k2)3 − k33

gk1gk2gk3

− 9i
∗∑

k1+k2+k3=k

e−it(k3−ak31−ak32−k33)(k2 + k3)k3
k3 − ak31 − (k2 + k3)3

fk1fk2gk3 .

Bringing all the terms together and reinstating the u and v variables yield the assertion.
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We integrate the system in Proposition 5.3.1 from 0 to t to get

uk(t)− eiak
3tuk(0) = −B1(u, u)k(t)−B2(v, v)k(t) + eiak

3tB1(u, u)k(0)

+eiak
3tB2(v, v)k(0) +

∫ t

0

eiak
3(t−s)

[
R1(u, v, v)k(s)

+R2(u, u, u)k(s) +R3(u, v, v)k(s) + ρ1(u, u)k(s) + ρ2(v, v)k(s)
]
ds

vk(t)− eik
3tvk(0) = −B3(u, v)k(t) + eik

3tB3(u, v)k(0) +

∫ t

0

eik
3(t−s)

[
R4(u, u, v)k(s)

+ β
3a
R4(v, v, v)k(s) +R5(u, u, v)k(s) + ρ3(u, v)k(s)

]
ds

(5.12)

In the following we give the proofs of a priori estimates for ρj and Bj, j = 1, 2, 3.

Proposition 5.3.2. For s1 − s ≤ 2s+ 1, we have

∥ρ1(u, v)∥Hs1
x

≲ ∥u∥2Hs
x
∥v∥Hs

x
.

For s1 − s ≤ s− 1,

∥ρj(u, v)∥Hs1
x

≲ ∥u∥Hs
x
∥v∥Hs

x
, j = 2, 3.

Also for s1 − s ≤ 1,

∥B1(u, v)∥Hs1
x

≲ ∥u∥Hs
x
∥v∥Hs

x
.

Proof. The proofs of the first and third inequalities were given in [16]. As for the other

terms, for s1 − s ≤ s− 1, we have

∥ρ2(u, v)∥Hs1
x

≲
∥∥⟨k⟩s1−2s+1⟨r1k⟩sur1k⟨r2k⟩svr2k

∥∥
ℓ2k

≲ ∥⟨k⟩suk∥ℓ∞k ∥⟨k⟩svk∥ℓ2k ≲ ∥u∥Hs
x
∥v∥Hs

x
,

where the last inequality is due to ℓ2 ↪→ ℓ∞. ρ3 estimate follows by the same argument

as well.

Proposition 5.3.3. For s > 1
2
and s1 − s < min{1, s+ 2− µ(ρa)}, we have

∥B2(u, v)∥Hs1
x

≲ ∥u∥Hs
x
∥v∥Hs

x
.
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When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z × Z with q

2
< p < q, we replace the above

requirement by s1 − s ≤ 1.

Proof. It is enough solely to consider the case |k1| ≳ |k2| by the symmetry.

Case A. |k1 − r1k| ≥ 1
3
, |k1 − r2k| ≥ 1

3

In this region,

|ak3−k31−k32| = |3k(k1−r1k)(k1−r2k)| ≥ |k|max{|k1−r1k|, |k1−r2k} ≳ (r1−r2)|k|2.

Accordingly, since |k1| ≳ |k|, we have the estimate

∥B2(u, v)∥Hs1
x

≲

∥∥∥∥∥ ∑
k1+k2=k

⟨k⟩s1−1|uk1 ||vk2|

∥∥∥∥∥
l2k

≲

∥∥∥∥⟨k⟩s1−s−1
(
|uk|⟨k⟩s ∗ |vk|

⟨k⟩s

⟨k⟩s
)∥∥∥∥

l2k

.

Assuming that s1− s ≤ 1 and using Young’s and Hölder’s inequalities successively, the

last norm above is majorized by

∥⟨k⟩suk∥l2k
∥∥⟨k⟩svk⟨k⟩−s

∥∥
l1k
≲ ∥u∥Hs ∥⟨k⟩suk∥l2k

∥∥⟨k⟩−s
∥∥
l2k
≲ ∥u∥Hs ∥v∥Hs .

Case B. |k1 − r1k| < 1
3
or |k1 − r2k| < 1

3

We consider the case |k1 − r1k| < 1
3
only, the other one is similar. Then as r1 + r2 = 1,

k1 ≃ r1k and k2 ≃ r2k. This means that the sum under consideration consists of

a single term of order ≈ k. We next make use of the estimate due to irrationality

exponent of r1:

|k1 − r1k| = |k|
∣∣∣r1 − k1

k

∣∣∣ ≥ |k|K(r1, ϵ)

|k|µ(r1)+ϵ

for any ϵ > 0. This allows us to estimate the multiplier in the definition of B2(u, v) as

follows:

|ak3 − k31 − k32| = 3|k||k1 − r1k||k1 − r2k|

≥ 3K(r1, ϵ)|k|2−µ(r1)−ϵ
[
(r1 − r2)|k| − 1/3

]
≳ |k|3−µ(r1)−ϵ.
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Therefore, using Hölder’s inequality and the embedding ℓ2 ↪→ ℓ4, we obtain that

∥B2(u, v)∥Hs1
x

≲
∥∥⟨k⟩(s1+µ(r1)−2+ϵ)/2uk

∥∥
ℓ4k

∥∥⟨k⟩(s1+µ(r1)−2+ϵ)/2vk
∥∥
ℓ4k

≲
∥∥⟨k⟩(s1−2s+µ(r1)−2+ϵ)/2⟨k⟩suk

∥∥
ℓ2k

∥∥⟨k⟩(s1−2s+µ(r1)−2+ϵ)/2⟨k⟩svk
∥∥
ℓ2k

≲ ∥u∥Hs
x
∥v∥Hs

x

where the last inequality stems from the assumption that s1 − s < s+ 2− µ(r1).

Proposition 5.3.4. Assume that u ∈ Ḣs. For s > 1
2
and s1−s < min{1, s+2−µ(ρa)},

we have

∥B3(u, v)∥Hs1
x

≲ ∥u∥Hs
x
∥v∥Hs

x
.

When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z× Z with q

2
< p < q, we replace the above requirement

by s1 − s ≤ 1.

Proof. Since there is no symmetry in this case, we consider the two cases:

Case A. |k1| ≥ |k|

In this region, |k1| ≳ |k2|, so it suffices to show that∥∥∥∥∥
∗∑

k1+k2=k

⟨k⟩s1uk1vk2
(k1 − r̃1k)(k1 − r̃2k)

∥∥∥∥∥
ℓ2k

≲ ∥u∥Hs
x
∥v∥Hs

x
.

Case A.1. |k1 − r̃1k| ≥ δ, |k1 − r̃2k| ≥ δ

Notice that

|(k1 − r̃1k)(k1 − r̃2k)| ≥ δmax{|k1 − r̃1k|, |k1 − r̃2k|} ≥ δ(r̃2 − r̃1)|k| ≳ |k|

which yields the estimate:

LHS of (5.13) ≲

∥∥∥∥∥ ∑
k1+k2=k

⟨k⟩s1−1|uk1||vk2 |

∥∥∥∥∥
l2k

but this has already been handled in the proof of the previous proposition, thus the

estimate in (5.13) holds when s1 − s ≤ 1.
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Case A.2. |k1 − r̃1k| < δ or |k1 − r̃2k| < δ

We consider the first case |k1 − r̃1k| < δ. Second case is analogous. In this case, we

have k1 ≃ r̃1k and k2 = k − k1 ≃ (1 − r̃1)k, and hence |k| ≈ |k1| ≈ |k2|. As a result,

the values of k1 and k2 in the sum are dependent on k. Therefore, the bound

|(k1 − r̃1k)(k1 − r̃2k)| ≳ |k|1−µ(r̃1)+ϵ|k1 − r̃2k| ≳ |k|2−µ(r̃1)−ϵ

implies that

LHS of (5.13) ≲
∥∥⟨k⟩s1−2+µ(r̃1)+ϵuk1vk2

∥∥
ℓ2k

≲
∥∥⟨k⟩(s1−2+µ(r̃1)+ϵ)/2uk

∥∥
ℓ4k

∥∥⟨k⟩(s1−2+µ(r̃1)+ϵ)/2vk
∥∥
ℓ4k
≲ ∥u∥Hs

x
∥v∥Hs

x

provided that s1 − s < s+ 2− µ(r̃1).

Case B. |k1| < |k|

In this region |k2| ≲ |k|. Thus

∥B3(u, v)∥Hs1
x

≲

∥∥∥∥∥
∗∑

k1+k2=k

⟨k⟩s1+1uk1vk2
k3 − ak31 − k32

∥∥∥∥∥
l2k

. (5.13)

By the mean zero presumption on u, k1 ̸= 0, thus we may write k1 = ηk for some

|k|−1 ≤ |η| < 1. It follows that

|k3 − ak31 − k32| = |ηk3||(1− a)η2 + 3− 3η| ≥ |k|2|(1− a)η2 + 3− 3η| ≳ |k|2.

Then the right side of (5.13) is bounded by

∥∥∥∥∥ ∑
k1+k2=k

⟨k⟩s1−1|uk1||vk2|

∥∥∥∥∥
l2k

≲ ∥u∥Hs
x
∥v∥Hs

x

as long as s1 − s ≤ 1.

Writing the equations in (5.12) in the space side and then using the estimates in

Propositions 5.3.2–5.3.4, we arrive at

∥∥∥u(t)− e−at∂3
xu0

∥∥∥
Hs1

≲ ∥u0∥2Hs+∥v0∥2Hs+∥u∥2Hs+∥v∥2Hs+

∫ t

0

∥u(r)∥2Hs+∥v(r)∥2Hs dr
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+

∥∥∥∥∫ t

0

e−a(t−r)∂3
x
[
R1(u, v, v)(r) +R2(u, u, u)(r) +R3(u, v, v)(r)

]
dr

∥∥∥∥
Hs1

(5.14)

and

∥∥∥v(t)− e−t∂3
xv0

∥∥∥
Hs1

≲ ∥u0∥Hs ∥v0∥Hs + ∥u∥Hs ∥v∥Hs +

∫ t

0

∥u(r)∥Hs ∥v(r)∥Hs dr

+

∥∥∥∥∫ t

0

e−(t−r)∂3
x
[
R4(u, u, v)(r) +

β

3a
R4(v, v, v)(r) +R5(u, u, v)(r)

]
dr

∥∥∥∥
Hs1

(5.15)

Let δ be the local existence time coming from the local existence theory for the Hirota-

Satsuma system. Let ψδ(t) = ψ(t/δ) where ψ is a compactly supported function

supported on [−2, 2] and ψ = 1 on [−1, 1]. For t ∈ [−δ, δ], to estimate the Hs1 norms

of the integral parts in (5.14), (5.15), we need the following standard lemma, see [10].

Lemma 5.3.5. For 1
2
< b ≤ 1, and α ̸= 0∥∥∥∥ψδ(t)

∫ t

0

e−α∂3
x(t−r)F (r) dr

∥∥∥∥
Xs,b

α

≲ ∥F∥Xs,b−1
α,δ

.

Therefore by the Lemma 5.3.5 and the embedding Xs1,b
α,δ ↪→ L∞

t∈[−δ,δ]H
s1
x for b > 1

2
,

α ̸= 0, we have

∥∥∥∥∫ t

0

e−a(t−r)∂3
x
[
R1(u, v, v)(r) +R2(u, u, u)(r) +R3(u, v, v)(r)

]
dr

∥∥∥∥
L∞
t∈[−δ,δ]

H
s1
x

≲

∥∥∥∥ψδ(t)

∫ t

0

e−a(t−r)∂3
x
[
R1(u, v, v)(r) +R2(u, u, u)(r) +R3(u, v, v)(r)

]
dr

∥∥∥∥
X

s1,b
a

≲ ∥R1(u, v, v)∥Xs1,b−1
a,δ

+ ∥R2(u, u, u)∥Xs1,b−1
a,δ

+ ∥R3(u, v, v)∥Xs1,b−1
a,δ

(5.16)

and similarly

∥∥∥∥∫ t

0

e−(t−r)∂3
x
[
R4(u, u, v)(r) +

β

3a
R4(v, v, v)(r) +R5(u, u, v)(r)

]
dr

∥∥∥∥
L∞
t∈[−δ,δ]

H
s1
x

≲ ∥R4(u, u, v)∥Xs1,b−1
1,δ

+ ∥R4(v, v, v)∥Xs1,b−1
1,δ

+ ∥R5(u, u, v)∥Xs1,b−1
1,δ

. (5.17)
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The following estimates for Rj, j = 1, 2, 3, 4, 5 are necessary so as to close the

argument. Their proofs will be given later on.

Proposition 5.3.6. Assume that u ∈ Ḣs. For s > 1
2
, b− 1

2
> 0 sufficiently small and

s1 − s < min{1, s− 1
2
, s+ 2− µ(ρa), 2s+ 1− µ(ρa)}, we have

∥R1(u, v, w)∥Xs1,b−1
a

≲ ∥u∥
X

s,1/2
a

∥v∥
X

s,1/2
1

∥w∥
X

s,1/2
1

. (5.18)

When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z× Z with q

2
< p < q, we replace the above requirement

by s1 − s ≤ min{1, s− 1
2
}.

Proposition 5.3.7. Assume that u ∈ Ḣs. For s > 1
2
, b− 1

2
> 0 sufficiently small and

s1 − s ≤ 1−, we have

∥R2(u, v, w)∥Xs1,b−1
a

≲ ∥u∥
X

s,1/2
a

∥v∥
X

s,1/2
a

∥w∥
X

s,1/2
a

.

Proposition 5.3.8. Assume that u ∈ Ḣs. For s > 1
2
, b− 1

2
> 0 sufficiently small and

s1 − s ≤ 1, we have

∥R3(u, v, w)∥Xs1,b−1
a

≲ ∥u∥
X

s,1/2
a

∥v∥
X

s,1/2
1

∥w∥
X

s,1/2
1

.

Proposition 5.3.9. Assume that u ∈ Ḣs. For s > 1
2
, b− 1

2
> 0 sufficiently small and

s1 − s < min{1, s+ 2− µ(ρa), 2s+ 1− µ(ρa)}, we have

∥R4(u, u, v)∥Xs1,b−1
1

≲ ∥u∥2
X

s,1/2
a

∥v∥
X

s,1/2
1

.

When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z× Z with q

2
< p < q, we replace the above requirement

by s1 − s ≤ 1.

Proposition 5.3.10. For s > 1
2
, b− 1

2
> 0 sufficiently small and s1 − s < min{1, s+

5
2
− µ(ρa), 2s+ 1− µ(ρa)}, we have

∥R4(u, v, w)∥Xs1,b−1
1

≲ ∥u∥
X

s,1/2
1

∥v∥
X

s,1/2
1

∥w∥
X

s,1/2
1

.

When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z× Z with q

2
< p < q, we replace the above requirement

by s1 − s ≤ 1.

Proposition 5.3.11. Assume that u ∈ Ḣs. For s > 1
2
, b − 1

2
> 0 sufficiently small

and s1 − s < min{1, s− 1
2
, s+ 5

2
− µ(ρa), 2s+ 1− µ(ρa)}, we have

∥R5(u, u, v)∥Xs1,b−1
1

≲ ∥u∥2
X

s,1/2
a

∥v∥
X

s,1/2
1

.
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When a = 3p(p−q)+q2

q2
, (p, q) ∈ Z × Z with q

2
< p < q, we replace the above

requirement by s1 − s ≤ min{1−, s− 1
2
}.

Using (5.16) and (5.17) together with the Propositions 5.3.6–5.3.11 in (5.14) and

(5.15), we have

∥∥∥u(t)− e−at∂3
xu0

∥∥∥
Hs1

+
∥∥∥v(t)− e−t∂3

xv0

∥∥∥
Hs1

≲
(
∥u0∥Hs + ∥v0∥Hs

)2
+
(
∥u(t)∥Hs +∥v(t)∥Hs

)2
+

∫ t

0

(
∥u(r)∥Hs +∥v(r)∥Hs

)2
dr+

(
∥u∥

X
s,1/2
a,δ

+∥v∥
X

s,1/2
1,δ

)3
.

Next we shall obtain the polynomial growth bound stated in the theorem. To do so fix

t large. Let T (r) = ⟨r⟩β(s). For r ≤ t, we have that

∥u(r)∥Hs + ∥v(r)∥Hs ≲ T (t).

Therefore, for δ ≈ T (t)−
3
2 and any j ≤ t/δ ≈ tT (t)

3
2 ,∥∥∥u(jδ)− e−δa∂3

xu((j − 1)δ)
∥∥∥
Hs1

+
∥∥∥v(jδ)− e−δ∂3

xv((j − 1)δ)
∥∥∥
Hs1

≲ T (t)3

where we have used the local theory bound

∥u∥
X

s,1/2
a,[(j−1)δ,jδ]

+ ∥v∥
X

s,1/2
1,[(j−1)δ,jδ]

≲ ∥u((j − 1)δ)∥Hs ≲ T (t).

Letting J = t/δ ≈ tT (t)
3
2 yields that

∥∥∥u(Jδ)− e−Jδa∂3
xu0

∥∥∥
Hs1

≤
J∑

j=1

∥∥∥e−(J−j)δa∂3
xu(jδ)− e−(J−j+1)δa∂3

xu((j − 1)δ)
∥∥∥
Hs1

=
J∑

j=1

∥∥∥u(jδ)− e−δa∂3
xu((j − 1)δ)

∥∥∥
Hs1

≲ JT (t)3 ≈ tT (t)9/2.

The similar estimate gives the same bound for v completing the demonstration of the

growth bound. The continuity in Hs1 ×Hs1 follows from the continuity of u and v in

Hs, the embedding Xs,b
a , Xs,b

1 ↪→ C0
tH

s
x, and the estimates stated above, see [16].
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5.4. Proofs of Smoothing Estimates

5.4.1. Proof of Proposition 5.3.6

We start by defining the functions:

f1(k, τ) = ⟨k⟩s⟨τ − ak3⟩
1
2 |ûk(τ)|,

f2(k, τ) = ⟨k⟩s⟨τ − k3⟩
1
2 |v̂k(τ)|,

f3(k, τ) = ⟨k⟩s⟨τ − k3⟩
1
2 |ŵk(τ)|.

Therefore using these functions, the convolution structure suggest to prove that∥∥∥∥∥∥∥
∫

∑
τj=τ

∗∑
∑

kj=k

Mf1(k1, τ1)f2(k2, τ2)f3(k3, τ3)

∥∥∥∥∥∥∥
2

ℓ2kL
2
τ

≲
3∏

j=1

∥fj∥2ℓ2kL2
τ
, (5.19)

where

M =
|k2|⟨k⟩s1⟨k1⟩−s⟨k2⟩−s⟨k3⟩−s

|k1 + k2 − r1k||k1 + k2 − r2k|⟨τ − ak3⟩1−b⟨τ1 − ak31⟩1/2⟨τ2 − k32⟩1/2⟨τ3 − k33⟩1/2
.

By the Cauchy-Schwarz inequality in τ1, τ2, k1, k2 variables, and the application of

Young’s inequality, the norm in the left hand side of (5.19) is estimated by

sup
k,τ

( ∫
∑

τj=τ

∗∑
∑

kj=k

M2
)∥∥f 2

1 ∗ f 2
2 ∗ f 2

3

∥∥
ℓ1kL

1
τ
≲ sup

k,τ

( ∫
∑

τj=τ

∗∑
∑

kj=k

M2
) 3∏

j=1

∥fj∥2ℓ2kL2
τ
.

Accordingly it suffices to demonstrate that the supremum above is finite. The imple-

mentation of the Lemma A.0.6 in the τ1 and τ2 integrals remove the τ dependence in

the supremum and yields a bound

sup
k
⟨k⟩2s1

∗∑
k1,k2

|k2|2⟨k1⟩−2s⟨k2⟩−2s⟨k − k1 − k2⟩−2s

(k1 + k2 − r1k)2(k1 + k2 − r2k)2⟨ak3 − ak31 − k32 − (k − k1 − k2)3⟩2−2b
.

By a change of variable k2 7→ n− k1, it suffices to estimate

sup
k
⟨k⟩2s1

∗∑
k1,n

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s|n− k1|2

(n− r1k)2(n− r2k)2⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
. (5.20)

Case A. k1 = k
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In this case, the supremum in (5.20) is replaced by

sup
k
⟨k⟩2s1−2s

∗∑
n

⟨n− k⟩−4s|n− k|2

(n− r1k)2(n− r2k)2
.

Case A.1. |n− r1k| ≥ δ|k|, |n− r2k| ≥ δ|k|

Note that |n| ≤
[
rj+δ

δ

]
|n− rjk|, j = 1, 2. Therefore, in this region |n− k| ≲ |n− rjk|,

j = 1, 2. Then the supremum is bounded by

sup
k
⟨k⟩2s1−2s−2

∗∑
n

⟨n− k⟩−4s ≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1,

for s1 − s ≤ 1.

Case A.2. δ ≤ |n− r1k| < δ|k| or δ ≤ |n− r2k| < δ|k|

Assume that δ ≤ |n− r1k| < δ|k|, the other case is similar. Notice that since |n− k| <

(1− r1)|k|+ δ|k|, we have |n− k| ≲ |k|. Also the estimate |n− r2k| ≳ |k| follows from

|n− r2k| ≥ (r1 − r2)|k| − |n− r1k| ≥ (r1 − r2)|k| − δ. As a result, for small but fixed

δ > 0, using the Lemma A.0.6, the supremum is majorized by

sup
k
⟨k⟩2s1−2s

∗∑
n

⟨n− k⟩−4s

⟨n− r1k⟩2
≲ sup

k
⟨k⟩2s1−2s⟨(1− r1)k⟩−2 ≲ ⟨k⟩2s1−2s−2 ≲ 1

provided that s1 − s ≤ 1.

Case A.3. |n− r1k| < δ or |n− r2k| < δ

Suppose that |n − r1k| < δ, the other case can be dealt in the same way. We note

that |n − k| ≳ |k|, |n − r2k| ≳ |k| and |n − r1k| ≳ |k|1−µ(r1)−ϵ. These estimates

imply that the supremum above is bounded by supk⟨k⟩2s1−6s−2+2µ(r1)+2ϵ ≲ 1 whenever

s1 − s < 2s+ 1− µ(r1).

Case B. k1 ̸= k

In this case we consider the following cases to show that the supremum (5.20) is finite.

Case B.1. |n− r1k| < δ or |n− r2k| < δ

Assume the first case |n− r1k| < δ, the other case follows from a similar treatment. In

this region, |n− k| ≳ |k|, |n− r2k| ≳ |k|. Via these estimates, the resulting bound for

(5.20) is as follows

sup
k
⟨k⟩2s1−2s−4+2µ(r1)+2ϵ

∑
n≃r1k
k1

⟨k1⟩−2s⟨n− k1⟩−2s(n− k1)
2

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
. (5.21)
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Case B.1.1. |k1| < δ|k|

In this region, (r1 − δ)|k| − δ < |n− r1k| < (r1 + δ)|k|+ δ. As u is mean zero, k1 ̸= 0,

hence we may write k1 = η1k for some |k|−1 ≤ |η1| < δ. Also n = r1k + η2 for some

|η2| < δ. Using these we obtain

|ak3 − ak31 − (n− k1)
3 − (k − n)3|

=
∣∣∣(k1 − k)

(
η1k

2
(
(1− a)(1 + η1)− 3r1

)
+ 3η2(2r1 − 1− η1)k + 3η22

)∣∣∣
≥ |k1 − k|

(
|k|
(
3r1 − (1− a)(1 + δ)− 3δ(2r1 − 1 + δ)

)
− 3δ2

)
≳ |k||k1 − k|.

Therefore,

(5.21) ≲ sup
k
⟨k⟩2s1−4s−4+2b+2µ(r1)+2ϵ

∑
k1

⟨k1⟩−2s⟨k1 − k⟩2b−2 ≲ sup
k
⟨k⟩2s1−4s−6+4b+2µ(r1)+2ϵ

which is finite so long as s1 − s < s+ 2− µ(r1).

Case B.1.2. |n− k1| < δ|k|

Firstly note that (r1 − δ)|k| − δ < |k1| < (r1 + δ)|k|+ δ. We need to bound:

sup
k
⟨k⟩2s1−4s−2+2µ(r1)+2ϵ

∑
k1

n≃r1k

⟨n− k1⟩−2s

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
. (5.22)

In the case kk1 < 0, we write n− k1 = η1k and n = r1k+ η2 for some |η1| < δ, |η2| < δ

to get

|ak3 − ak31−(n− k1)
3 − (k − n)3|

= |(r31 − η31)k
3 − ak31 + 3η2(1− r1)

2k2 − 3η22(1− r1)k + η32|

≥ |(r31 − η31)k
3 − ak31| − 3δ(1− r1)

2k2 − 3δ2(1− r1)|k| − δ3

≥ (r31 − δ3)|k|3 − 3δ(1− r1)
2k2 − 3δ2(1− r1)|k| − δ3

≳ |k|3

by taking sufficiently small δ.
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This yields that the supremum is bounded when s1 − s < s+ 5
2
− µ(r1):

(5.22) ≲ sup
k
⟨k⟩2s1−4s−8+6b+2µ(r1)+2ϵ

∑
k1

n≃r1k

⟨n− k1⟩−2s

≲ sup
k
⟨k⟩2s1−4s−8+6b+2µ(r1)+2ϵ ≲ 1.

Next we consider the case in which kk1 > 0. Observing that (n, k, k1) 7→ (−n,−k,−k1)

is a symmetry for (5.22), we may assume that k, k1 > 0. By this assumption and the

inequality |n − r1k| < δ, we must have n > 0 as well, otherwise we would have

|n−k1| ≥ |n| ≃ r1|k|. For this case we just write n = r1k+η for some |η| < δ to obtain

|ak3 − ak31−(n− k1)
3 − (k − n)3|

= |k1 − k||(1− a)(k2 + kk1 + k21) + 3(r1k + η)2 − (r1k + η)(k1 + k)|

= |k1 − k||(1− a)k21 + (−3r1 + 1− a)kk1 +O(δ)(k + k1) +O(δ2)|

≳ |k − k1|k2

where the last inequality is always valid for k1 satisfying (r1−δ)k−δ < k1 < (r1+δ)k+δ

with sufficiently small δ. Since |k − k1| ≳ 1,

(5.22) ≲ sup
k
⟨k⟩2s1−4s−2+2µ(r1)+2ϵ

∑
k1

n≃r1k

⟨n− k1⟩−2s

⟨(k − k1)k2⟩2−2b

≲ sup
k
⟨k⟩2s1−4s−6+4b+2µ(r1)+2ϵ ≲

∑
k1

⟨k1 − r1k⟩−2s

⟨k1 − k⟩2−2b
≲ sup

k
⟨k⟩2s1−4s−8+6b+2µ(r1)+2ϵ

is finite provided that s1 − s < s+ 5
2
− µ(r1).

Case B.1.3. |n− k1| ≥ δ|k|, |k1| ≥ δ|k|

Note that |n− k1| ≤
(

2−r1
δ

+ 1
)
|k1|+ δ. Since s > 1/2, we have

(5.21) ≲ sup
k
⟨k⟩2s1−2s−4+2µ(r1)+2ϵ

∑
n≃r1k
k1

⟨k1⟩−2s+1⟨n− k1⟩−2s+1

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
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≲ sup
k
⟨k⟩2s1−6s−2+2µ(r1)+2ϵ

∑
n≃r1k
k1

⟨ak3 − ak31 − (n− k1)
3 − (k − n)3⟩2b−2

≲ sup
k
⟨k⟩2s1−6s−2+2µ(r1)+2ϵ ≲ 1

whenever s1 − s < 2s+ 1− µ(r1).

Case B.2. δ ≤ |n− r1k| < δ|k| or δ ≤ |n− r2k| < δ|k|

Assume that δ ≤ |n− r1k| < δ|k|, the other case can be treated in a similar fashion. In

this region we note that |n− r2k| > (r1 − r2 − δ)|k| which implies |n− r2k| ≳ |k|. The

other required estimates are (r1 − δ)|k| < |n| < (r1 + δ)|k|, |n− k| ≳ |k|. Accordingly

we need to bound:

(5.20) ≲ sup
k
⟨k⟩2s1−2s−2

∑
k1

|k|/4≤|n|≤2|k|

⟨k1⟩−2s⟨n− k1⟩−2s(n− k1)
2

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
.

Case B.2.1. |k1| < δ|k|

Notice in this case that |n− k1| ≲ |k|. Hence the supremum above is bounded by

sup
k
⟨k⟩2s1−2s

∑
k1

|n|≥|k|/4

⟨k1⟩−2s⟨n− k1⟩−2s ≲ sup
k
⟨k⟩2s1−2s

∑
|n|≥|k|/4

⟨n⟩−2s

≲ sup
k
⟨k⟩2s1−4s+1 ≲ 1

provided that s1 − s ≤ s− 1/2.

Case B.2.2. |n− k1| < δ|k|

The computation for this case is the same as that in the previous case.

Case B.2.3. |k1| ≥ δ|k|, |n− k1| ≥ δ|k|

Here |n− k1| ≲ |k1| which leads to the bound

sup
k
⟨k⟩2s1−2s−2

∑
k1

|n|≤2|k|

⟨k1⟩−2s+1⟨n− k1⟩−2s+1

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−6s

∑
k1

|n|≤2|k|

⟨ak3 − ak31 − (n− k1)
3 − (k − n)3⟩2b−2 ≲ sup

k
⟨k⟩2s1−6s+1 ≲ 1
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for s1 − s ≤ 2s− 1
2
.

Case B.3. |n− r1k| ≥ δ|k|, |n− r2k| ≥ δ|k|

In this case, we make use of the inequality |n − k1| ≤
(

r1+δ
δ

)
|n − r1k| + |k1| so as to

have |n− k1|2 ≲ ⟨n− k1⟩
(
|k1|+ |n− r1k|

)
.

Case B.3.1. |k1| ≥ δ|k|, |n− k1| ≥ δ|k|

In this region, using the inequality above, the supremum (5.20) can be bounded by

sup
k
⟨k⟩2s1−4s−2

∑
k1,n

⟨n− k⟩−2s

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−4s−2

∑
n

⟨n− k⟩−2s

≲ sup
k
⟨k⟩2s1−4s−2 ≲ 1

as long as s1 − s ≤ s+ 1.

Case B.3.2. |k1| < δ|k|

In this case, the inequality |n− k1| <
(

r1+2δ
δ

)
|n− r1k| gives rise to the bound

(5.20) ≲ sup
k
⟨k⟩2s1−2

∑
k1,n

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

≲ sup
k
⟨k⟩2s1−2

∑
n

⟨n⟩−2s⟨n− k⟩−2s ≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1

for s1 − s ≤ 1.

Case B.3.3. |n− k1| < δ|k|

The computation in the preceding case works for this case as well.
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5.4.2. Proof of Proposition 5.3.7

Following the argument in the proof of Proposition 5.3.6, we need to show that

the supremum

sup
k
⟨k⟩2s1

∑
k1 ̸=0
k2

(k1+k2)(k−k1)(k−k2 )̸=0

⟨k1⟩−2s⟨k2⟩−2s⟨k − k1 − k2⟩−2s

|k1|2⟨(k − k1)(k − k2)(k1 + k2)⟩2−2b

is finite. By the change of variable k2 7→ n− k1, it suffices to show that

sup
k
⟨k⟩2s1

∑
k1,n

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s

⟨n⟩2−2b⟨k1 − k⟩2−2b⟨n− k − k1⟩2−2b
. (5.23)

is finite.

Case A. |k1| ≳ |k|

In this region,

(5.23) ≲ sup
k
⟨k⟩2s1−2

∑
k1,n

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

⟨k⟩2−2b
≲ sup

k
⟨k⟩2s1−2s−4+2b

which is finite provided that s1 − s ≤ 2− b.

Case B. |k1| ≪ |k|

In this case, the spremum is finite for s1 − s ≤ 2− 2b:

(5.23) ≲ sup
k
⟨k⟩2s1−2+2b

∑
k1,n

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s

⟨n⟩2−2b⟨n− k − k1⟩2−2b

≲ sup
k
⟨k⟩2s1−2+2b

∑
k1,n

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s

⟨k + k1⟩2−2b

≲ sup
k
⟨k⟩2s1−2s−4+4b ≲ 1.

5.4.3. Proof of Proposition 5.3.8

Proceeding as in the proof of Proposition 5.3.6, it suffices to show that the supre-

mum

sup
k
⟨k⟩2s1

∑
k1 ̸=0
k2

⟨k1⟩−2s−2⟨k2⟩−2s⟨k − k1 − k2⟩−2s

⟨ak3 − ak31 − k32 − (k − k1 − k2)3⟩2−2b
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is finite, or equivalently, by the change of variable k2 7→ n− k1, we shall show that the

supremum

sup
k
⟨k⟩2s1

∑
k1 ̸=0
n

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s

⟨ak3 − ak31 − (n− k1)3 − (k − n)3⟩2−2b
(5.24)

is finite.

Case A. k1 = k

In this case, we have

(5.24) ≲ sup
k
⟨k⟩2s1−2s−2

∑
n

⟨n− k⟩−4s ≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1

for s1 − s ≤ 1.

Case B. k1 ̸= k

Case B.1. |k1| > δ|k|

In this case, (5.24) is finite provide that s1 − s ≤ 1:

sup
k
⟨k⟩2s1−2

∑
k1 ̸=0
n

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s ≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1.

Case B.2. |k1| ≤ δ|k|

Case B.2.1. |n− k1| ≤ δ|k|

In this case, we have |n− k| ≥ |k1 − k| − |k1 − n| ≥ (1− 2δ)|k|. By writing k1 = η1k,

n− k1 = η2k for some |k|−1 ≤ |η1| ≤ δ and 0 ≤ |η2| ≤ δ, we obtain

|ak3 − ak31 − (n− k1)
3 − (k − n)3| =

∣∣∣k3((1− η1 − η2)
3 − a+ aη31 + η32

)∣∣∣
= |k3[1− a+O(δ)]| ≳ |k|3.

Using the bound above we get

(5.24) ≲ sup
k
⟨k⟩2s1−2s

∑
k1 ̸=0
|n|≲|k|

⟨k1⟩−2s−2⟨k1 − n⟩−2s

⟨k3⟩2−2b

≲ sup
k
⟨k⟩2s1−2s−6+6b

∑
k1,n

⟨k1⟩−2s−2⟨k1 − n⟩−2s ≲ sup
k
⟨k⟩2s1−2s−6+6b ≲ 1
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as long as s1 − s ≤ 3− 3b.

Case B.2.2. |n− k| ≤ δ|k|

In this case, we have |n − k1| ≳ |k|. Writing k1 = η1k, n − k = η2k for some |k|−1 ≤

|η1| ≤ δ and 0 ≤ |η2| ≤ δ, we get

|ak3 − ak31 − (n− k1)
3 − (k − n)3| =

∣∣∣k3((1− η1 + η2)
3 − a+ aη31 − η32

)∣∣∣
= |k3[1− a+O(δ)]| ≳ |k|3.

Proceeding as in the previous case the supremum (5.24) can be shown to be finite in

this region if s1 − s ≤ 3− 3b.

5.4.4. Proof of Proposition 5.3.9

Using the arguments of the proof of Proposition 5.3.6 we are left with a supremum

sup
k
⟨k⟩2s1

∗∑
k1,k2 ̸=0

⟨k1⟩−2s⟨k2⟩−2s⟨k − k1 − k2⟩−2s(
k3 − a(k1 + k2)3 − (k − k1 − k2)3

)2
× |k − k1 − k2|2|k1 + k2|2

⟨k3 − (k − k1 − k2)3 − ak31 − ak32⟩2−2b
.

By a change of variable k2 7→ n− k1, the supremum above takes the form

sup
k
⟨k⟩2s1

∗∑
n ̸=0
k1 ̸=0

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s|n− k|2

(n− r̃1k)2(n− r̃2k)2⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
. (5.25)

Note here that the condition n ̸= 0 results from the factor n2 appearing in the denom-

inator of the prior sum that is reduced to the one in (5.25).

Case A. |n− r̃1k| < δ or |n− r̃2k| < δ

Assume the first case |n− r̃1k| < δ. Handling the other one is similar. Note that

|n− r̃2k| ≥ (r̃2 − r̃1)|k| − |n− r̃1k| > (r̃2 − r̃1)|k| − δ,

(r̃1 − 1)|k| − δ < |n− k| < (r̃1 − 1)|k|+ δ
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and |n− r̃1k| ≥ |k| K(r̃1,ϵ)

|k|µ(r̃1)+ϵ ≳ |k|1−µ(r̃1)−ϵ. These estimates imply that

(5.25) ≲ sup
k
⟨k⟩2s1−2s−2+2µ(r̃1)+2ϵ

∗∑
n≃r̃1k
k1 ̸=0

⟨k1⟩−2s⟨n− k1⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

Case A.1. |k1| ≥ δ|k|, |n− k1| ≥ δ|k|

The supremum above in this case is bounded by

sup
k
⟨k⟩2s1−6s−2+2µ(r̃1)+2ϵ

∗∑
n≃r̃1k
k1 ̸=0

⟨k3 − ak31 − a(n− k1)
3 − (k − n)3⟩2b−2.

Write n = r̃1k + η for some |η| < δ to get

|k3 − ak31−a(n− k1)
3 − (k − n)3|

= |(r̃1k + η)[3ak21 − 3ar̃1k1k +O(δ)(k1 + k) +O(δ2)]|

≳ |3ak21 − 3ar̃1k1k +O(δ)(k1 + k) +O(δ2)|.

Use this estimate along with the second claim of Lemma A.0.6 for the sum in k1 to

conclude that the supremum is finite whenever s1 − s < 2s+ 1− µ(r̃1).

Case A.2. |k1| < δ|k|

Here |n− k1| ≳ |k| since |n− k1| > (r̃1 − δ)|k| − δ. As above we write n = r̃1k + η for

some |η| < δ to obtain

|k3 − ak31−a(n− k1)
3 − (k − n)3|

= |(r̃1k + η)[3ak1(r̃1k − k1) +O(δ)(k1 + k) +O(δ2)]| ≳ |k1||k|2.

It follows that the supremum is bounded by

sup
k
⟨k⟩2s1−4s−2+2µ(r̃1)+2ϵ

∑
k1 ̸=0

⟨k1⟩−2s−1

⟨k⟩4−4b
≲ sup

k
⟨k⟩2s1−4s−6+4b+2µ(r̃1)+2ϵ

that is finite only if s1 − s < s+ 2− µ(r̃1).



117

Case A.3. |n− k1| < δ|k|

Clearly |k1| ≳ |k|. Moreover, first writing n = r̃1k + η for some |η| < δ, and then

reinstating the variable n we get

|k3 − ak31 − a(n− k1)
3 − (k − n)3| = |n||3ak1(n− k1) +O(δ)k +O(δ2)| ≳ |k|2|n− k1|.

Therefore, by the mean zero assumption on u, n− k1 ̸= 0, we have

sup
k
⟨k⟩2s1−4s−2+2µ(r̃1)+2ϵ

∑
n≃r̃1k
|k1|≳|k|

⟨k1 − n⟩−2s−1

⟨k⟩4−4b
≲ sup

k
⟨k⟩2s1−4s−6+4b+2µ(r̃1)+2ϵ ≲ 1

provided that s1 − s < s+ 2− µ(r̃1).

Case B. δ ≤ |n− r̃1k| < δ|k| or δ ≤ |n− r̃2k| < δ|k|

Suppose that δ ≤ |n− r̃1k| < δ|k|, the other case is analogous. Notice in this case that

|n− r̃2k| ≳ |k| since |n− r̃2k| ≥ (r̃2− r̃1)|k| − |n− r̃1k| > (r̃2− r̃1− δ)|k|. Furthermore,

(r̃1 − 1− δ)|k| < |n− k| < (r̃1 − 1 + δ)|k|. So we have

(5.25) ≲ sup
k
⟨k⟩2s1−2s

∑
n ̸=0
k1 ̸=0

⟨k1⟩−2s⟨n− k1⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
.

Case B.1. |k1| ≥ δ|k|, |n− k1| ≥ δ|k|

In this region, using Lemma A.0.6 the supremum is bounded by

sup
k
⟨k⟩2s1−4s

∑
n̸=0

|k1|≳|k|

⟨k1⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−4s

∑
|k1|≳|k|

⟨k1⟩−2s

≲ sup
k
⟨k⟩2s1−6s+1 ≲ 1,

when s1 − s ≤ 2s− 1
2
.

Case B.2. |k1| < δ|k|

Notice that |n− k1| ≳ |k| because |n− k1| > (r̃1 − 2δ)|k|. We write n = (r̃1 + η)k for

some |η| < δ to attain

|k3 − ak31 − a(n− k1)
3 − (k − n)3| = |(r̃1 + η)k[3ak1((r̃1 + η)k − k1) +O(δ)k2]|
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≥ 3a(r̃1 − 2δ)2|k1||k|2 ≳ |k|2|k1|.

Thus the supremum is finite when s1 − s < s+ 1
2
:

sup
k
⟨k⟩2s1−4s

∑
|n|≲|k|
k1 ̸=0

⟨k1⟩−2s

⟨k2k1⟩2−2b
≲ sup

k
⟨k⟩2s1−4s−3+4b

∑
|k1|≲|k|

⟨k1⟩−2s−2+2b ≲ sup
k
⟨k⟩2s1−4s−3+4b.

Case B.3. |n− k1| < δ|k|

In this case |k1| ≳ |k| due to |k1| > (r̃1 − 2δ)|k|. Accordingly, as in the previous case,

first writing n = (r̃1+η)k for some |η| < δ and then reinstating the variable n, we have

|k3 − ak31 − a(n− k1)
3 − (k − n)3| =

∣∣(r̃1 + η)k
(
3ak1((r̃1 + η)k − k1) +O(δ)k2

)∣∣
≳ |k|2|n− k1|.

This, recalling the mean zero assumption on u, gives rise to the bound for the supremum

sup
k
⟨k⟩2s1−4s

∑
|n|≲|k|
|k1|≳|k|

⟨n− k1⟩−2s−1

⟨k2⟩2−2b
≲ sup

k
⟨k⟩2s1−4s−3+4b ≲ 1

on the condition that s1 − s < s+ 1
2
.

Case C. |n− r̃1k| ≥ δ|k|, |n− r̃2k| ≥ δ|k|

We note that |n| ≤
[
r̃j+δ

δ

]
|n− r̃jk|, j = 1, 2. In this region, this implies that |n− k| ≲

|n− r̃1k|. Hence the supremum is finite if s1 − s ≤ 1:

(5.25) ≲ sup
k
⟨k⟩2s1−2

∑
n ̸=0
k1 ̸=0

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−2

∑
n ̸=0
k1 ̸=0

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

≲ sup
k
⟨k⟩2s1−2

∑
n

⟨n⟩−2s⟨n− k⟩−2s

≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1.
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5.4.5. Proof of Proposition 5.3.10

We are to handle the supremum

sup
k
⟨k⟩2s1

∗∑
k1,k2

⟨k1⟩−2s⟨k2⟩−2s⟨k − k1 − k2⟩−2s

(k1 + k2)2(k1 + k2 − r̃1k)2(k1 + k2 − r̃2k)2

× |k − k1 − k2|2|k1 + k2|2

⟨(k − k1)(k − k2)(k1 + k2)⟩2−2b

which is equivalent, by a change of variable k2 7→ n− k1, to

sup
k
⟨k⟩2s1

∗∑
n̸=0
k1

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s|n− k|2

(n− r̃1k)2(n− r̃2k)2⟨n(k − k1)(k + k1 − n)⟩2−2b
. (5.26)

In the case n(k − k1)(k + k1 − n) = 0, that is either k1 = k or k1 = n− k, (5.26) boils

down to

sup
k
⟨k⟩2s1−2s

∗∑
n̸=0

⟨n− k⟩−4s|n− k|2

(n− r̃1k)2(n− r̃2k)2

which essentially can be treated as that in the Case A. of the proof of Proposition

5.3.6. Hence the supremum is finite if s1 − s ≤ 1 and s1 − s < 2s+ 1− µ(r̃j). Next we

move to the complementary case:

Case A. n(k − k1)(k + k1 − n) ̸= 0

In this case,

(5.26) ≲ sup
k
⟨k⟩2s1

∗∑
n̸=0
k1

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s|n− k|2

(n− r̃1k)2(n− r̃2k)2⟨n⟩2−2b⟨n− k − k1⟩2−2b⟨k1 − k⟩2−2b
.

Case A.1. |n− r̃1k| ≥ δ|k|, |n− r̃2k| ≥ δ|k|

In this region, |n| ≤
(

r̃j+δ

δ

)
|n− r̃jk|, j = 1, 2. Thus, |n− k| ≲ |n− r̃1k|, by which the

supremum above is estimated by

sup
k
⟨k⟩2s1−2

∑
n ̸=0
k1

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

⟨n⟩2−2b⟨n− k − k1⟩2−2b⟨k1 − k⟩2−2b
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≲ sup
k
⟨k⟩2s1−2

∑
n̸=0
k1

⟨k1⟩−2s⟨n− k1⟩−2s⟨n− k⟩−2s

≲ sup
k
⟨k⟩2s1−2s−2 ≲ 1

for s1 − s ≤ 1.

Case A.2. δ ≤ |n− r̃1k| < δ|k| or δ ≤ |n− r̃2k| < δ|k|

Assume the case δ ≤ |n − r̃1k| < δ|k|, the other one is treated similarly. In this case,

the estimates

|n− r̃2k| ≥ (r̃2 − r̃1)|k| − |n− r̃1k| > (r̃2 − r̃1 − δ)|k|,

(r̃1 − δ)|k| < |n| < (r̃1 + δ)|k|, and (r̃1 − 1 − δ)|k| < |n − k| < (r̃1 − 1 + δ)|k| lead to

the bound

sup
k
⟨k⟩2s1−2s−2+2b

∑
n̸=0
k1

⟨k1⟩−2s⟨n− k1⟩−2s

⟨k1 − k⟩2−2b⟨k1 + k − n⟩2−2b

≲ sup
k
⟨k⟩2s1−2s−4+4b

∑
k1

⟨k1⟩−2s

⟨k1 − k⟩2−2b

≲ sup
k
⟨k⟩2s1−2s−6+6b ≲ 1

provided that s1 − s ≤ 3− 3b.

Case A.3. |n− r̃1k| < δ or |n− r̃2k| < δ

Assume that |n− r̃1k| < δ, the treatment of the other case is similar. Note that

(r̃1 − 1)|k| − δ < |n− k| < (r̃1 − 1)|k|+ δ, (5.27)

|n− r̃2k| ≥ (r̃2 − r̃1)|k| − |n− r̃1k| > (r̃2 − r̃1)|k| − δ. (5.28)

Therefore the supremum is majorized by

sup
k
⟨k⟩2s1−2s−4+2b+2µ(r̃1)+2ϵ

∑
n≃r̃1k
k1

⟨k1⟩−2s⟨n− k1⟩−2s

⟨k − k1⟩2−2b⟨n− k − k1⟩2−2b
. (5.29)
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There is merely a single term for the sum in n, that is the one with n ≃ r̃1k.

So only the estimate regarding the sum in k1 matters here. If |k1| ≪ |k| then all

the other factors in the sum in (5.27) are of order ≳ |k|; likewise if |n − k1| ≪ |k|

then the remaining factors are again of order ≳ |k|. Thus in these cases, the sum in

(5.27) ≲ ⟨k⟩−4−2s+4b entailing (5.27) ≲ ⟨k⟩2s1−4s−8+6b+2µ(r̃1)+2ϵ which is finite as long as

2s1−4s−8+6b+2µ(r̃1)+2ϵ ≤ 0 or equivalently s1−s < s+5/2−µ(r̃1). If |k1−k| ≪ |k|

then the factors with exponent −2s in the numerator are of order ≳ |k|; likewise if

|n − k − k1| ≪ |k| then the factors in the numerator are of order ≳ |k|. In the either

case, the sum in (5.27) ≲ ⟨k⟩−4s−3+4b giving rise to (5.27) ≲ ⟨k⟩2s1−6s−7+6b+2µ(r̃1)+2ϵ ≲ 1

provided that s1 − s < 2s+ 2− µ(r̃1).

5.4.6. Proof of Proposition 5.3.11

In order to handle R5, we need to divide the sum into pieces where k1 + k2 ̸= 0

and k1 + k2 = 0.

R5(u, u, v)k = −9kvk

∗∑
k1 ̸=0

(k − k1)|uk1|2

k3 − ak31 − (k − k1)3
+ 9i

∗∑
k1+k2+k3=k
k1+k2 ̸=0
k1 ̸=0

k3(k2 + k3)uk1uk2vk3
k3 − ak31 − (k2 + k3)3

= −9kvk

∗∑
k1>0

(
k + k1

k3 + ak31 − (k + k1)3
+

k − k1
k3 − ak31 − (k − k1)3

)
|uk1|2

+ 9i
∗∑

k1+k2+k3=k
k1+k2 ̸=0
k1 ̸=0

k3(k2 + k3)uk1uk2vk3
k3 − ak31 − (k2 + k3)3

= 18kvk

∗∑
k1>0

k21|uk1|2

(1− a)(k1 − r̃1k)(k1 + r̃1k)(k1 − r̃2k)(k1 + r̃2k)

+ 9i
∗∑

k1+k2+k3=k
k1+k2 ̸=0
k1 ̸=0

k3(k2 + k3)uk1uk2vk3
k3 − ak31 − (k2 + k3)3

=: S1 + S2.
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For the first sum, using Cauchy-Schwarz and Young inequalities and the Lemma

A.0.6 yields that,

∥S1∥Xs1,b−1
1

≲ sup
k
⟨k⟩2s1+2−2s

∗∑
k1>0

⟨k1⟩4−4s

(k1 − r̃1k)2(k1 + r̃1k)2(k1 − r̃2k)2(k1 + r̃2k)2

× ∥u∥2
X

s,1/2
a

∥v∥
X

s,1/2
1

.

Thus it is required to show that the supremum above is finite. Since k1 > 0 and

r̃1, r̃2 > 0, to take advantage of the multipliers in the denominator of the sum in the

supremum, we consider the cases in which k < 0 and k > 0. We just examine the k < 0

case as the other case can be treated similarly. Thus, by the sign considerations, both

|k1 − r̃1k| and |k1 − r̃2k| are of order ≳ |k|, k1 by which the supremum is replaced by

the bound

sup
k
⟨k⟩2s1−2s

∗∑
k1>0

⟨k1⟩2−4s

(k1 + r̃1k)2(k1 + r̃2k)2
. (5.30)

First we observe that the case |k1 + r̃1k|, |k1 + r̃2k| ≤ δ|k| cannot arise concurrently,

because choosing δ < r̃2−r̃1
2

entails that

(r̃2 − r̃1)|k| ≤ |k1 + r̃1k|+ |k1 + r̃2k| ≤ 2δ|k| < (r̃2 − r̃1)|k|.

We consider the following cases:

Case A. |k1 + r̃1k|, |k1 + r̃2k| ≥ δ|k|

In this case, |k1 + r̃jk| ≥
(

δ
δ+r̃j

)
k1, j = 1, 2, that implies

(5.30) ≲ sup
k
⟨k⟩2s1−2s−2

∑
k1>0

⟨k1⟩−4s

which is finite provided that s1 − s ≤ 1.

Case B. |k1 + r̃1k| ≥ δ|k|, δ ≤ |k1 + r̃2k| < δ|k| (or with the roles of r̃1 and r̃2 are

switched)

Note that (r̃2 − δ)|k| < k1 < (r̃2 + δ)|k|. Then the supremum is bounded by

sup
k
⟨k⟩2s1−2s−1

∑
k1≥|k|

⟨k1⟩−4s+1
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≲ sup
k
⟨k⟩2s1−6s+1 ≲ 1

for s1 − s ≤ 2s− 1
2
.

Case C. |k1 + r̃1k| ≥ δ|k|, |k1 + r̃2k| < δ (or with the roles of r̃1 and r̃2 are switched)

Using the bound |k1 + r̃2k| ≳ |k|1−µ(r̃2)−ϵ and k1 ≃ −r̃2k,

(5.30) ≲ sup
k
⟨k⟩2s1−6s−2+2µ(r̃2)+2ϵ ≲ 1

as long as s1 − s < 2s+ 1− µ(r̃2). As for the X
s1,b−1
1 norm of the sum S2, proceeding

as before, we need to show that

sup
k
⟨k⟩2s1

∑
k1 ̸=0,k2
k1+k2 ̸=0

⟨k1⟩−2s⟨k2⟩−2s⟨k − k1 − k2⟩−2s|k − k1 − k2|2|k − k1|2[
k3 − ak31 − (k2 + k3)3

]2⟨k3 − ak31 − ak32 − (k − k1 − k2)3⟩2−2b
≲ 1.

This, by the change of variable k2 7→ n− k1, is equivalent to estimate

sup
k
⟨k⟩2s1

∑
k1 ̸=0
n ̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s|n− k|2|k − k1|2

(k1 − r̃1k)2(k1 − r̃2k)2⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
. (5.31)

Case A. |k1 − r̃1k| < δ or |k1 − r̃2k| < δ

The treatment of the both cases are similar, so assume that |k1 − r̃1k| < δ. We have

the following estimates

|k1 − k| ≤ (r̃1 − 1)|k|+ |k1 − r̃1k| < (r̃1 − 1)|k|+ δ,

|k1 − r̃2k| ≥ (r̃2 − r̃1)|k| − |k1 − r̃1k| > (r̃2 − r̃1)|k| − δ.

Case A.1. |n− k1| ≥ δ|k|, |n− k| ≥ δ|k|

Using the inequality |n − k| ≤ |n − k1| + |k1 − k|, the relation −2s + 1 < 0 and the

above estimates,

(5.31) ≲ sup
k
⟨k⟩2s1

∑
k1≃r̃1k
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s+1⟨n− k⟩−2s+1

(k1 − r̃1k)2⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

+ sup
k
⟨k⟩2s1+1

∑
k1≃r̃1k
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s+1

(k1 − r̃1k)2⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−6s−2+2µ(r̃1)+2ϵ

∑
k1≃r̃1k
n̸=0

1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
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which is finite provided that s1 − s < 2s+ 1− µ(r̃1).

Case A.2. |n− k| < δ|k|

Here |n − k1| ≥ (r̃1 − 1)|k| − |k − n| − |k1 − r̃1k| > (r̃1 − 1 − δ)|k| − δ. In this region

for |η1|, |η2| < δ, we may write n− k = η1k and k1 − r̃1k = η2. So we have

|k3−ak31 −a(n−k1)
3− (k−n)3| = |k3−a(r̃1k+η2)

3−a
(
(1+η1− r̃1)k−η2

)3
+η31k

3|

= |
(
1− a+ 3ar̃1 − 3ar̃21 +O(δ)

)
k3 +O(δ)k2 +O(δ2)k +O(δ3)| ≳ |k|3,

the last inequality follows since r̃1 is the root of the quadratic (1−a)x2−3x+3. Using

these bounds

(5.31) ≲ sup
k
⟨k⟩2s1−4s−2+2µ(r̃1)+2ϵ

∑
n̸=0

⟨n− k⟩−2s

⟨k3⟩2−2b
≲ sup

k
⟨k⟩2s1−4s−8+6b+2µ(r̃1)+2ϵ ≲ 1

for s1 − s < s+ 4− 3b− µ(r̃1).

Case A.3. |n− k1| < δ|k|

In this region, (r̃1 − 1 − δ)|k| − δ < |n − k| < (r̃1 − 1 + δ)|k| + δ. So we may write

n − k = η1k for some η1 with |k|−1 ≤ |η1| ≤ ϵ and k1 − r̃1k = η2 for some η2 with

|η2| < δ < ϵ. Therefore,

|k3−ak31 −a(n−k1)
3− (k−n)3| = |k3−a(r̃1k+η2)

3−a
(
(1+η1− r̃1)k−η2

)3
+η31k

3|

= |
(
1− a+ 3ar̃1 − 3ar̃21 +O(ϵ)

)
k3 +O(δ)k2 +O(δ2)k +O(δ3)| ≳ |k|3,

it follows, as in the previous case, that the supremum is bounded for s1 − s < s+ 4−

3b− µ(r̃1):

(5.31) ≲ sup
k
⟨k⟩2s1−4s−2+2µ(r̃1)+2ϵ

∑
n̸=0

⟨n− k1⟩−2s

⟨k3⟩2−2b
≲ sup

k
⟨k⟩2s1−4s−8+6b+2µ(r̃1)+2ϵ ≲ 1.

Case B. δ ≤ |k1 − r̃1k| < δ|k| or δ ≤ |k1 − r̃2k| < δ|k|

We assume the first case δ ≤ |k1 − r̃1k| < δ|k|; the second one can be treated in

a similar fashion. In this region, we have the estimates: |k1 − k| < (r̃1 − 1 + δ)|k|,

|k1 − r̃2k| ≥ (r̃2 − r̃1)|k| − |k1 − r̃1k| > (r̃2 − r̃1 − δ)|k|.
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Also |k1 − r̃1k| < δ|k| implies |k1| > |k|. Thus,

(5.31) ≲ sup
k
⟨k⟩2s1

∑
|k1|>|k|
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s|n− k|2

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
. (5.32)

Case B.1. |n− k1| ≥ δ|k|, |n− k| ≥ δ|k|

In this case,

(5.32) ≲ sup
k
⟨k⟩2s1

∑
|k1|>|k|
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s+1⟨n− k⟩−2s+1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

+ sup
k
⟨k⟩2s1

∑
|k1|>|k|
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s+1|k1 − k|
⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−4s

∑
|k1|>|k|
n ̸=0

⟨k1⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−4s

∑
|k1|>|k|

⟨k1⟩−2s ≲ sup
k
⟨k⟩2s1−6s+1 ≲ 1

for s1 − s ≤ 2s− 1
2
.

Case B.2. |n− k| < δ|k|

The required estimate specific to this region is

|n− k1| ≥ (r̃1 − 1)|k| − |k1 − r̃1k| − |n− k| > (r̃1 − 1− 2δ)|k|.

Also the restriction |n − k| < δ|k| entailing |n| ≲ |k| is essential for the summability

in the n-variable. Let ηj be some constants satisfying |ηj| < δ, j = 1, 2, for which

n− k = η1k and k1 − r̃1k = η2k. Then

|k3 − ak31−a(n− k1)
3 − (k − n)3|

= |k3 − a(r̃1 + η2)
3k3 − a(1 + η1 − r̃1 − η2)

3k3 − η31k
3|

= |
(
1− a+ 3ar̃1(1− r̃1) +O(δ)

)
k3| ≳ |k|3.
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Using the above estimates

(5.32) ≲ sup
k
⟨k⟩2s1−2s−6+6b

∑
|k1|>|k|
|n|≲|k|

⟨k1⟩−2s ≲ sup
k
⟨k⟩2s1−2s−5+6b

∑
|k1|>|k|

⟨k1⟩−2s

≲ sup
k
⟨k⟩2s1−4s−4+6b ≲ 1,

as long as s1 − s ≤ s+ 2− 3b.

Case B.3. |n− k1| < δ|k|

Here |n − k| ≈ |k|, since (r̃1 − 1 − 2δ)|k| < |n − k| < (r̃1 − 1 + 2δ)|k|. Hence for

s1 − s ≤ s− 1
2
, we have

(5.32) ≲ sup
k
⟨k⟩2s1−2s

∑
|k1|>|k|
n ̸=0

⟨k1⟩−2s

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

≲ sup
k
⟨k⟩2s1−2s

∑
|k1|>|k|

⟨k1⟩−2s ≲ sup
k
⟨k⟩2s1−4s+1 ≲ 1.

Case C. |k1 − r̃1k| ≥ δ|k|, |k1 − r̃2k| ≥ δ|k|

We note that |k1 − k| ≲ |k1 − r̃1k|, because |k1 − k| ≤ |k1 − r̃1k| + (r̃1 − 1)|k| ≤(
r̃1−1+δ

δ

)
|k1 − r̃1k|. We need to bound

(5.31) ≲ sup
k
⟨k⟩2s1−2

∑
k1 ̸=0
n ̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s+1⟨n− k⟩−2s+1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

+ sup
k
⟨k⟩2s1−2

∑
k1 ̸=0
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s+1|k − k1|
⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

=: I1 + I2.

Case C.1. |k1| ≥ δ|k|

In this case, since −2s+ 1 < 0,

I1 ≲ sup
k
⟨k⟩2s1−2

∑
k1 ̸=0
n̸=0

⟨k1⟩−2s−2⟨k1 − k⟩−2s+1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b
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≲ sup
k
⟨k⟩2s1−4

∑
k1 ̸=0

⟨k1⟩−2s⟨k1 − k⟩−2s+1 ≲ sup
k
⟨k⟩2s1−2s−3 ≲ 1

whenever s1 − s ≤ 3
2
. In the same way, the boundedness of I2 can be shown provided

that s1 − s ≤ 1.

Case C.2. |k1| < δ|k|

In this case, |k − k1| ≲ |k| implies the bound

I1 + I2 ≲ sup
k
⟨k⟩2s1−2

∑
k1 ̸=0
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s+1⟨n− k⟩−2s+1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

+ sup
k
⟨k⟩2s1−1

∑
k1 ̸=0
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s+1

⟨k3 − ak31 − a(n− k1)3 − (k − n)3⟩2−2b

=: J1 + J2.

Case C.2.1. |n− k1| ≤ δ|k|

Note here that |n− k| ≥ |k| − |k1| − |n− k1| ≥ (1− 2δ)|k|. Moreover, since u is mean

zero, we have, for some ηj ̸= 0 satisfying |k|−1 ≤ |ηj| < δ, j = 1, 2, that k1 = η1k and

n − k1 = η2k. Hence the restriction (η1 + η2)k = n ̸= 0 provides us with a parameter

η := η1 + η2 satisfying |k|−1 ≤ |η| < 2δ, and yielding the following bound

|k3 − ak31 − a(n− k1)
3 − (k − n)3| = |

(
1− a(η31 + η32)− (1− η)3

)
k3|

= |k|3|η||3(1− η) + η2(1− a) + 3aη1η2| ≳ |k|2.

Exploiting the above estimates we arrive at

J1 ≲ sup
k
⟨k⟩2s1−2s−5+4b

∑
k1 ̸=0
|n|≲|k|

⟨k1⟩−2s−2 ≲ sup
k
⟨k⟩2s1−2s−4+4b ≲ 1

and

J2 ≲ sup
k
⟨k⟩2s1−5+4b

∑
k1 ̸=0
n̸=0

⟨k1⟩−2s−2⟨n− k1⟩−2s⟨n− k⟩−2s+1
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≲ sup
k
⟨k⟩2s1−5+4b

∑
k1 ̸=0

⟨k1⟩−2s−2⟨k1 − k⟩−2s+1 ≲ sup
k
⟨k⟩2s1−2s−4+4b ≲ 1

provided that s1 − s ≤ 2− 2b.

Case C.2.2. |n− k| ≤ δ|k|

In this region, |n − k1| ≥ |k| − |k1| − |n − k| > (1 − 2δ)|k|. Then, we write k1 = η1k

for some η1 with |k|−1 ≤ |η1| < δ, and n− k = η2k for some η2 with 0 ≤ |η2| ≤ δ. Via

these

|k3 − ak31 − a(n− k1)
3 − (k − n)3| = |

(
1 + η32 − a(η31 + (1− η1 + η2)

3)
)
k3|

= |k|3|1− a+O(δ)| ≳ |k|3.

As above we get

J1 + J2 ≲ sup
k
⟨k⟩2s1−2s−6+6b ≲ 1

whenever s1 − s ≤ 3− 3b.

5.5. Existence of Global Attractor

This section is devoted to the proof of Theorem 5.2.9. We consider the system
ut + auxxx + γu+ 3a(u2)x + β(v2)x = f

vt + vxxx + γv + 3uvx = g

(u, v)|t=0 = (u0, v0) ∈ Ḣ1(T)×H1(T).

(5.33)

Recall that β < 0. Firstly we show the existence of an absorbing set corresponding to

the system (5.33). To achieve this we use conserved energies (5.2) to obtain:

Lemma 5.5.1. Let (u, v) be a solution of the system (5.33) with data (u0, v0), we have

the a priori estimate:

∥u(t)∥H1 + ∥v(t)∥H1 ≤ C = C(a, β, γ, ∥u0∥H1 , ∥v0∥H1 , ∥f∥H1 , ∥g∥H1),

for t > 0.
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Proof. We start by noting that the constants in the following calculations are denoted

by C, C0, and C1 whose value may change, their dependence are to be highlighted

though. To obtain the L2 bounds for u and v, we use E1(t) := E1(u, v)(t) = ∥u∥2L2 −
2β
3
∥v∥2L2 . Thus

∂tE1(t) + 2γE1(t) = 2

∫
uf − 2β

3
vg dx

≤ 2 ∥u∥L2 ∥f∥L2 −
4β

3
∥v∥L2 ∥g∥L2

≤ 2(
√
2 ∥f∥L2 +

√
−β ∥g∥L2)

√
E1(t).

Setting E1(t) = e−2γtF1(t) and using the above inequality we obtain

∂t
√
F1(t) ≤ eγt(

√
2 ∥f∥L2 +

√
−β ∥g∥L2).

Integrating this inequality from 0 to t and then utilizing the resulting inequality in the

norms of u and v, we arrive at

∥u(t)∥L2 +

√
−2β

3
∥v(t)∥L2

≤
√
2e−γt

√
∥u0∥2L2 −

2β

3
∥v0∥2L2 +

1− e−γt

γ
(2 ∥f∥L2 +

√
−2β ∥g∥L2).

Regarding the bounds for the spatial derivatives of u and v, we consider E2(t) :=

E2(u, v)(t) = (1− a)
(
∥ux∥2L2 − 2

∫
u3dx

)
− 2β

(
∥vx∥2L2 −

∫
uv2dx

)
. Note that

(1− a) ∥ux∥2L2 − 2β ∥vx∥2L2 = E2(t) + 2(1− a)

∫
u3 dx− 2β

∫
uv2 dx

≤ E2(t) + C ∥u∥H1

(
∥u∥2L2 + ∥v∥2L2

)
≤ E2(t) + C + C ∥ux∥L2

where the constants depend on the bounds on ∥u∥L2 , ∥v∥L2 in the final inequality. By

this inequality, we have

√
1− a ∥ux∥L2 −

C

2
√
1− a

≤

√(√
1− a ∥ux∥L2 −

C

2
√
1− a

)2
− 2β ∥vx∥2L2
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≤
√
E2(t) + C + C2/4(1− a) ≲

√
|E2(t)|+ C

and

√
−2b ∥vx∥L2 ≤

√(√
1− a ∥ux∥L2 −

C

2
√
1− a

)2
− 2β ∥vx∥2L2 ≲

√
|E2(t)|+ C.

Thus ∥ux(t)∥L2 + ∥vx(t)∥L2 ≲
√

|E2(t)| + C. To end up the argument it suffices to

show that E2 is bounded. Using this bound and the embedding H1 ↪→ L∞ we obtain

∂tE2(t)+2γE2(t) = 2(1−a)
∫
fxux−3fu2+γu3 dx−2β

∫
2gxvx−fv2−2guv+γuv2 dx

≤ C0(∥ux∥L2 + ∥vx∥L2) + C1 ≤ C0

√
|E2(t)|+ C1

where the constants C0, C1 depend on the norms ∥f∥H1 , ∥g∥H1 , the constants a, β, γ

and the bounds on ∥u∥L2 , ∥v∥L2 . Setting E2(t) = e−2γtF2(t), we get that

∂tF2(t) ≤ eγt
(
C0

√
|F2(t)|+ C1e

γt
)
,

from which we have that

E2(t) ≤ e−2δtE2(0) + C1
1− e−2γt

2γ
+ C0

∫ t

0

e−2γ(t−t′)
√
|E2(t′)| dt′

≤ |E2(0)|+ C1 + C0

∥∥∥√|E2|
∥∥∥
L∞([0,t])

for t > 0. This shows that E2 is bounded from above because if it were the case that

t might be the first time at which E2 assumes its largest value, say C, over [0, t] with

E2(t) = C ≫ |E2(0)| + C1 + C0 =: C̃, then by the above inequality we would have

C ≤ C̃(1 +
√
C), but this is impossible for sufficiently large C ≫ 1. Also the Sobolev

embedding and the bounds on ∥u∥L2 , ∥v∥L2 suggest that E2 is bounded below.

As a consequence of the Lemma 5.5.1, the existence of an absorbing ball B0 ⊂

H1×H1 follows. As for the verification of the asymptotic compactness of the flow, the

second task is to obtain smoothing estimate as done in the non-dissipative case.
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Theorem 5.5.2. Consider the solution of (5.33) with initial data (u0, v0) ∈ Ḣ1 ×H1.

Then for any α < min{1
2
, 3− µ(ρa)}, we have

∥∥∥∥u(t)− e−(a∂3
x+γ)tu0 −

∫ t

0

e−(a∂3
x+γ)(t−r)ρ2(v, v)(r) dr

∥∥∥∥
H1+α

+

∥∥∥∥v(t)− e−(∂3
x+γ)tv0 −

∫ t

0

e−(∂3
x+γ)(t−r)ρ3(u, v)(r) dr

∥∥∥∥
H1+α

≤ C(α, γ, ∥u0∥H1 , ∥v0∥H1 , ∥f∥H1 , ∥g∥H1)

where ρ2 and ρ3 are as in Proposition 5.3.1.

Proof. We write the system (5.33) by the Fourier transform as follows
∂tuk − (iak3 − γ)uk + 3iak

∑
k1+k2=k

uk1uk2 + iβk
∑

k1+k2=k

vk1vk2 = fk

∂tvk − (ik3 − γ)vk + 3i
∑

k1+k2=k

k2uk1vk2 = gk.

(5.34)

Using the change of variables yk = e−iak3t+γtuk, zk = e−ik3t+γtvk, and dk = e−iak3t+γtfk,

hk = e−ik3t+γtgk, the above system transforms to
∂tyk = −3iak

∑
k1+k2=k

e−iat(k3−k31−k32)yk1yk2 − iβk
∑

k1+k2=k

e−it(ak3−k31−k32)zk1zk2 + dk

∂tzk = −3i
∑

k1+k2=k

k2e
−it(k3−ak31−k32)yk1zk2 + hk.

After differentiation by parts as in Proposition 5.3.1, the system (5.34) can be written

in the form

∂t

[
e−iak3t+γtuk

]
+ e−γt∂t

[
e−iak3t+2γt(B1(u, u)k +B2(v, v)k)

]
= e−iak3t+γt

[
R1(u, v, v)k +R2(u, u, u)k +R3(u, v, v)k

+2B1(u, f)k + 2B2(g, v)k + ρ1(u, u)k + ρ2(v, v)k + fk
]

∂t

[
e−ik3t+γtvk

]
+ e−γt∂t

[
e−ik3t+2γtB3(u, v)k

]
= e−ik3t+γt

[
R4(u, u, v)k +

β
3a
R4(v, v, v)k +R5(u, u, v)k

+B3(f, v)k +B3(u, g)k + ρ3(u, v)k + gk
]

where Bj, Rj, and ρj are as in Proposition 5.3.1.
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Integrating these equations from 0 to t leads to the equations

uk(t)− eiak
3t−γtuk(0) = −B1(u, u)k −B2(v, v)k + eiak

3t−γt
[
B1(u0, u0)k +B2(v0, v0)k

]
+

∫ t

0

e(iak
3−γ)(t−s)

[
− γB1(u, u)k − γB2(v, v)k + ρ1(u, u)k + ρ2(v, v)k + fk + 2B1(u, f)k

+2B2(g, v)k+R1(u, v, v)k+R2(u, u, u)k+R3(u, v, v)k
]
ds

and

vk(t)− eik
3t−γtvk(0) = −B3(u, v)k + eik

3t−γtB3(u0, v0)k +

∫ t

0

e(ik
3−γ)(t−s)

[
− γB3(u, v)k

+ρ3(u, v)k+gk+R4(u, u, v)k+
β

3a
R4(v, v, v)k+R5(u, u, v)k+B3(f, v)k+B3(u, g)

]
ds.

Note that∥∥∥∥∫ t

0

e(−a∂3
x−γ)(t−s)f(x)ds

∥∥∥∥
H1+α

=

∥∥∥∥⟨k⟩1+αfk
iak3 − γ

(1− e(iak
3−γ)t)

∥∥∥∥
ℓ2k

≲ ∥f∥Hα−2 ,

analogous estimate holds for e(−∂3
x−γ)(t−s)g as well. These bounds, the estimates utilized

in obtaining main smoothing result, and the growth bound of Lemma 5.5.1 yield, for

t < δ, that

∥∥∥∥u(t)− e−(a∂3
x+γ)tu0 −

∫ t

0

e−(a∂3
x+γ)(t−r)ρ2(v, v)(r) dr

∥∥∥∥
H1+α

+

∥∥∥∥v(t)− e−(∂3
x+γ)tv0 −

∫ t

0

e−(∂3
x+γ)(t−r)ρ3(u, v)(r) dr

∥∥∥∥
H1+α

≲ ∥f∥Hα−2 + ∥g∥Hα−2 +
(
∥f∥H1 + ∥g∥H1 + ∥u0∥H1 + ∥v0∥H1

)2
+
(
∥u∥

X
1,1/2
a,δ

+ ∥v∥
X

1,1/2
1,δ

)3
≤ C

(
α, γ, ∥f∥H1 , ∥g∥H1 , ∥u0∥H1 , ∥v0∥H1

)
where we use the local theory bounds for X

1,1/2
a,δ , X

1,1/2
1,δ norms for the local existence

time δ in the final inequality. By virtue of dissipation, this bound also holds for

arbitrarily large times making use of the local bound above, for the full discussion, see

Section 6 in [17].
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Proof of Theorem 5.2.9. For the existence of a global attractor, we check the asymp-

totic compactness of the flow. It suffices to show that for any sequence (u0,r, v0,r) in

an absorbing set B0 and for any sequence of times tr → ∞, the sequence Utr(u0,r, v0,r)

possesses a convergent subsequence in Ḣ1×H1. Next we use Theorem 5.5.2, for almost

every a ∈ (1
4
, 1) such that α < 1

2
and ρ2 = ρ3 = 0, to write

Utr(u0,r, v0,r) = (e−(a∂3
x+γ)tru0,r, e

−(∂3
x+γ)trv0,r) +Ntr(u0,r, v0,r)

where the nonlinear part Ntr(u0,r, v0,r) is contained within a ball in H1+α × H1+α.

Therefore by Rellich’s theorem the sequence {Ntr(u0,r, v0,r) : r ∈ N} has a convergent

subsequence in H1×H1. This implies the existence of a convergent subsequence of the

sequence {Utr(u0,r, v0,r) : r ∈ N}, since∥∥∥(e−(a∂3
x+γ)tru0,r, e

−(∂3
x+γ)trv0,r)

∥∥∥
H1×H1

≲ e−γtr ∥(u0,r, v0,r)∥H1×H1 ≲ e−γtr → 0

as tr → ∞ uniformly. Therefore Ut is asymptotically compact. To prove the com-

pactness of the attractor A in the space H1+α ×H1+α for any α ∈ (0, 1
2
), we need to

show, by using Rellich’s theorem, that the attractor is bounded in H1+α+ϵ × H1+α+ϵ

for some ϵ > 0 satisfying α + ϵ < 1
2
. In this regard, it suffices to find some closed ball

Bα+ϵ ⊂ H1+α+ϵ ×H1+α+ϵ such that A ⊂ Bα+ϵ where

A =
⋂
τ≥0

⋃
t≥τ

UtB0 =:
⋂
τ≥0

Vτ .

As above, using Theorem 5.5.2, we can express each element of Vτ as a sum of linear

evolution which decays to zero exponentially and the nonlinear evolution contained by

some ball Bα+ϵ in H
1+α+ϵ ×H1+α+ϵ. This implies that the set Vτ is contained in a δτ

neighbourhood Nτ of Bα+ϵ in H1+α+ϵ × H1+α+ϵ. Here δτ → 0 as τ → ∞ due to the

exponential decay of linear evolutions. Therefore,

A =
⋂
τ≥0

Vτ ⊂
⋂
τ≥0

Nτ = Bα+ϵ.
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6. CONCLUSION

In this thesis, we were concerned with the smoothing properties of several dis-

persive equations on certain domains. In the first part of the thesis, we addressed the

Davey–Stewartson system on R2 and established the smoothing properties, also proved

the existence of a global attractor for this system. In the second part, we considered the

biharmonic NLS equation on the half line and studied local and global well-posedness

and regularity properties of this equation. In the final part, our aim was to establish

the smoothing estimates of the Hirota–Satsuma system on the torus. After obtaining

the estimates for the nondissipative system, we established the analogous estimates for

the dissipative HS system, also with the use of these estimates, we proved the existence

of global attractor in the energy space. Our plan for a future project involves proving

smoothing effect for the Schrödinger–KdV system with periodic boundary conditions

and the Kuramoto–Sivashinsky equation on the half-line.
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APPENDIX A: USEFUL ESTIMATES

In this section, we start by reserving some useful inequalities to be used in the

text when necessary. Firstly we start with a lemma which is a consequence of the proof

of Theorem 1.3 in [42].

Lemma A.0.1. When µ = 1 (defocusing nonlinearity), the solutions of the equation

(4.1) satisfy the following a priori estimate

∥u∥H2(R+) ≤ C(∥g∥H2 , ∥h1∥H1 , ∥h2∥H1).

Next lemma is used in the proofs of Proposition 4.4.6 and Proposition 4.4.7.

Lemma A.0.2. For m,n, k ∈ R, we have

|m4 − n4 + k4 − (m− n+ k)4| ≳ |m− n||n− k|(m2 + n2 + k2).

Proof. Let g(m,n, k) := m4 − n4 + k4 − (m− n+ k)4. Then

g(m,n, k)

= (m− n)
[
(m2 + n2)(m+ n)− (m− n)3 − 4(m− n)2k − 6(m− n)k2 − 4k3

]
= (m− n)(n− k)

[
4m2 + 2n2 + 4k2 − 2mn− 2nk

]
= (m− n)(n− k)

[5
2
(m+ n)2 +m2 + k2 + 2(n− 1

2
m− 1

2
k)2
]

which gives the desired estimate.

Lemma A.0.3 (See [96]). For −1
2
≤ s ≤ 1

2
, we have

∥fg∥Hs ≲ ∥f∥
H

1
2+ ∥g∥Hs .
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We state the Gagliardo–Nirenberg inequality [97]:

Theorem A.0.4. Assume that g ∈ Lq(Rn) and Dmg ∈ Lr(Rn). Fix 1 ≤ q, r ≤ ∞ and

m ∈ N. Then, we have

∥∥Djg
∥∥
Lp ≲ ∥Dmg∥αLr ∥g∥1−α

Lq

where 1
p
= j

n
+
(

1
r
− m

n

)
α + 1−α

q
and j

m
≤ α ≤ 1. When j = 0, rm < n and q = ∞,

assume additional assumption that either g ∈ Ls for some s > 0 or g vanishes at

infinity. Also if m − j − n
r
is a non-negative integer for 1 < r < ∞, then we need

α < 1.

The following lemmas are used frequently in our discussions. For proofs of the

first two, see [17] and for the last one we refer [62].

Lemma A.0.5. If β ≥ γ ≥ 0 and β + γ > 1 then∫
R

dx

⟨x− a1⟩β⟨x− a2⟩γ
≲ ⟨a1 − a2⟩−γφβ(a1 − a2)

where

φβ(a) =
∑

|n|≤|a|

1

⟨n⟩β
∼


1 β > 1

log(1 + ⟨a⟩) β = 1

⟨a⟩1−β β < 1.

Lemma A.0.6. (i) If β ≥ γ ≥ 0 and γ + β > 1,∑
n

1

⟨n− k1⟩β⟨n− k2⟩γ
≲ ⟨k1 − k2⟩−γφβ(k1 − k2)

where φβ is defined as in Lemma A.0.5.

(ii) If β > 1
2
and γ > 1

3
, then we have∑

n

1

⟨n2 + an+ b⟩β
≲ 1, and

∑
n

1

⟨n3 + an2 + bn+ c⟩γ
≲ 1

where the implicit constants are independent of a, b and c.
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Lemma A.0.7. For fixed ρ ∈ (1
2
, 1), we have∫

1

⟨x⟩ρ
√

|x− a|
dx ≲

1

⟨a⟩ρ− 1
2

.


