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ABSTRACT

KADISON-SINGER PROBLEM FROM A BANACH

ALGEBRA PERSPECTIVE

In 1959, Kadison and Singer asked whether every pure state of the diagonal

subspace D(ℓ2) of B(ℓ2) has a unique pure state extension to B(ℓ2). This problem has

remained open until 2013; in 2013 it has been solved by a team of computer scientists.

In my Master thesis, which is largely based on a paper by Akemann, Tanbay and Ülger,

I have tried to learn this problem and the approach considered in this paper.

We identify D(ℓ2) with C(βN). For t in βN, δt is the Dirac measure at t considered

as a functional on C(βN). We denote by [δt] the set of the states of B(ℓ2) that extend

δt. Our main aim is to understand how large the set [δt] is. Using the fact that the

von Neumann algebra B(ℓ2) has the Pelczyński’s property (V ), it is proven that either

the set [δt] lies in a finite dimension subspace of B(ℓ2)
∗ or, in its weak-star topology,

it contains a homeomorphic copy of βN. We study this result under the so far directly

unproven knowledge that [δt] is a singleton.
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ÖZET

BANACH CEBİRİ BAKIŞ AÇISIYLA KADISON-SINGER

PROBLEMİ

1959 yılında, Kadison ve Singer, B(ℓ2)’nin altuzayı olan D(ℓ2) üzerindeki her

pure state’in tek bir şekilde B(ℓ2)’ye uzatılıp uzatılamayacağını sordular. 2013 yılına

kadar açık olan bu problem, bir grup bilgisayar bilimcisi tarafından çözüldü. Büyük bir

kısmı Akemann, Tanbay ve Ülger’e ait olan makaleye dayanan tezimde Kadison-Singer

problemini ve bu probleme nasıl yaklaşıldığını öğrenmeye çalıştım.

D(ℓ2) uzayını C(βN) olarak tanımlarsak, βN’ye ait her t elemanı için, δt’yi C(βN)

üzerinde bir fonksiyonel olarak görebiliriz. [δt] kümesini, δt state’lerin B(H) uzayına

uzatılmasıyla elde edilen küme olarak tanımlayalım. Amacımız [δt] kümesinin ne kadar

büyük olduğunu anlamaktır. Söz konusu makalede von Neumann cebiri olan B(ℓ2)’nin

Pelczyński özelliğine sahip olmasını kullanarak, [δt] kümesinin ya B(ℓ2)
∗ uzayının sonlu

boyutlu bir alt uzayı içinde olduğunu ya da zayıf-∗ topoloji içinde βN’nin bir homeo-

morfik kopyasını içerdiğini ispatlıyoruz. Bu sonucu, direkt bir ispatımız olmadığı halde

[δt] kümesinin tek elemanlı olduğunu bilerek inceliyoruz.
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2.6. On the Grothendieck and Pelczyński properties . . . . . . . . . . . . . 14

3. THE KADISON-SINGER PROBLEM . . . . . . . . . . . . . . . . . . . . . 17

4. A BANACH ALGEBRA APPROACH TO THE KADISON-SINGER PROB-

LEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1. The continuous extension property . . . . . . . . . . . . . . . . . . . . 20

4.2. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



viii

LIST OF SYMBOLS

A′ Set of commutators of a set A

A∗ First dual space of A

A∗∗ Second dual space of A

B(H) The operator algebra of the bounded linear operators on a

Hilbert space H

c0 The space of sequences converging zero

C(K) The space of continuous functions on a compact Hausdorff

space K

C0(Ω) The space of continuous functions vanishing at infinity on a

space Ω

M(K) The space of complex signed measures on a compact Hausdorff

space K

P (A) The set of pure states on A

S(A) The set of states on A

T ∗ The adjoint operator of T
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1. INTRODUCTION

In this dissertation, we are concerned with the uniqueness of extensions of pure

states from a maximal abelian self-adjoint algebra(masa) on a Hilbert space H to the

algebra of bounded linear operators on that Hilbert space.

Let H be a separable complex Hilbert space and B(H) be the C∗-algebra of

bounded linear operators on H. If A is a unital C∗-subalgebra of B(H), then the set of

states on A, S(A) is a convex and weak∗-compact subset of the dual A∗. Thus, S(A)

is the closed convex hull of its extreme points by the Krein-Milman theorem. These

extreme points are called pure states of A.

If we consider a measurable space (X,µ), the mapMf : L2(X,µ) → L2(X,µ) with

g 7→ fg for f ∈ L∞(X,µ) generates a masa in B(L2(X,µ)). If we take X := [0, 1] and

define µ as the Lebesque measure, then the masa is called the continuous masa. If we

take X := N and define µ as the counting measure, then the masa is called the discrete

masa. Any masa is unitarily equivalent to the continuous masa, the discrete masa,

a finite dimensional masa or it can be decomposed as a direct sum of the continuous

masa and the discrete masa(or a finite dimensional masa).

Kadison and Singer proved that there are pure states on the continuous masa that

do not extend uniquely to the full algebra. They conjectured that pure state extensions

of a pure state from the discrete masa to the full algebra are not unique either. The

problem has remained open for almost 54 years until it was solved in 2013 by a team of

computer scientists. Marcus, Spielman and Srivastava [1] proved that any pure state

on D(ℓ2) has a unique pure state extension on B(ℓ2) by using random polynomials.

There is yet no proof given in terms of Banach algebras or Operator algebras.

If K is a compact Hausdorff space, and C(K) the space of continuous functions

on K, then a pure state on C(K) is just a complex homomorphism. We know that
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the spaces D(ℓ2), C(βN) and ℓ∞ are isomorphic. Since every bounded homomorphism

on C(K) for a compact Hausdorff space K can be represented by a Dirac measure δt

for some t in K, we can reformulate the problem as follows: Given a pure state δt on

ℓ∞, can we extend δt to a pure state on B(H) in a unique way? In this thesis, which

is largely based on a paper by Akemann, Tanbay and Ülger [2], we present a partial

solution of this problem.

In the case where the set [δt] is weakly compact, we can deduce that the set

[δt] is finite-dimensional. Concerning the weak compactness of [δt], the following re-

sult is proved: “the set [δt] is weakly compact if and only if [δt] doesn’t include any

homeomorphic copy of βN”. This characterization implies that “either [δt] includes

a homeomorphic copy of βN or [δt] is contained in a finite dimensional subspace of

B(H)∗”. It is also shown that “there exists a unique pure state extension of δt if and

only if the ideal Nρ = {T ∈ B(H) : ρ(T ∗T ) = 0} has a positive increasing bounded

approximate unit consisting of diagonal operators, where ρ is an extension of δt”. As a

corollary of these main theorems, one obtains that in order to prove the uniqueness of

the pure state extension of δt, it would be enough to show that C(β∆) is a Grothendieck

space, where ∆ denotes the union of compact sets [δt] and that the set [δt] does not

contain a homeomorphic copy of βN.
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2. PRELIMINARIES

In this chapter, we have gathered the basic notions and results that we use in the

rest of the thesis. We assume the reader has some knowledge of C∗-algebras. All the

results needed can be found in [3], [4] and [5]. Throughout this chapter, we assume

that the set X is Hausdorff.

2.1. On weak and weak∗ topologies

If (Xi, τi)i∈I is a family of topological spaces and fi : X → Xi are functions for

each i ∈ I, the weak topology is the smallest topology on X such that all functions fi

are continuous for i ∈ I.

The following collection,

{⋂
i∈J

f−1
i (Oi) : Oi ∈ τi, J is a finite subset of I

}
of sets

are basis sets for the weak topology on X.

In the case of a non-zero normed linear space X, the weak topology σ(X,X∗) on

X is defined by the elements of X∗.

For any ϵ > 0 and f ∈ X∗, V (x0, f, ϵ) = {x ∈ X : |f(x) − f(x0)| < ϵ} is a

subbasic open set and for {fi}ni=1 ⊆ X∗, a basic open neighborhood of x0 is in the form

of U(x0, f1, .., fn, ϵ) = {x ∈ X : |fi(x) − fi(x0)| < ϵ, i ∈ {1, ..., n}}. The topological

space (X, σ(X,X∗)) is a Hausdorff topological space.

Theorem 2.1. Let {xλ}λ∈Λ be a net in a normed linear space X.

(i) For some x0 ∈ X, xλ → x0 in the weak topology iff f(xλ) → f(x0) for all f ∈ X∗.

(ii) xλ → x0 in the norm topology for some x0 ∈ X, then xλ → x0 in the weak

topology.
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Convergence for a Hilbert space H in the weak topology has the following equiv-

alent version; let {xλ} be a net in H. For some x0 ∈ H, xλ → x0 in the weak topology

iff ⟨xλ, x⟩ → ⟨x0, x⟩, ∀x ∈ H in the norm topology.

As a consequence of the Hahn-Banach theorem, we have the following result.

Proposition 2.2.

(i) Let X be a normed linear space and K be a convex subset of X, then K is closed

in the norm topology iff K is closed in the weak topology.

(ii) Let X be a finite dimensional normed linear space, then the norm topology and

weak topology coincide on X.

Next we define the weak∗-topology onX∗: LetX be a normed linear space. AsX∗

is also a normed space, we can construct the weak topology on X∗, that is σ(X∗, X∗∗).

However, there is a weaker one obtained by embeddingX intoX∗∗. The canonical

map J : X → X∗∗ given by J(x)(f) = f(x), ∀f ∈ X∗ , which is a linear isometry.

Hence, this topology σ(X∗, X) is smaller than the weak topology σ(X∗, X∗∗). This

new topology σ(X∗, X) is called weak∗-topology on X∗. For ϵ > 0 and any f ∈ X∗,

the set {g ∈ X∗ : |f(xi) − g(xi)| < ϵ, for i = {1, 2, ..., n} and {xi}ni=1 ⊆ X} is a basic

neighborhood of f . This topology is Hausdorff.

Proposition 2.3. Let {fi}i∈I be a net in the dual of normed linear space X∗.

(i) fi → f in the weak∗-topology for some f ∈ X∗ iff fi(x) → f(x) in the norm

topology for all x ∈ X.

(ii) If fi → f in the weak topology for some f ∈ X∗, then fi → f in the weak∗-

topology.

If X is a finite dimensional normed linear space, then σ(X∗, X∗∗), σ(X∗, X) and

norm topologies are the same. By the Banach-Alaoglu theorem, we also know that if

X is a normed linear space, the closed unit ball of X∗ is weak∗-compact.
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The Goldstine theorem states that if X is a normed linear space, the closed unit

ball of X is weak∗-dense in the closed unit ball of X∗∗. Thereby, X is weak∗-dense in

X∗∗.

We can embed X into X∗∗ by the canonical map. X is said to be a reflexive space

if the canonical map from X to X∗∗ is onto.

Theorem 2.4. Let X be a normed linear space.

(i) X is reflexive iff the closed unit ball B = {x ∈ X : ||x|| ≤ 1} of X is weakly

compact.

(ii) Any closed subspace of a reflexive Banach space is reflexive.

(iii) If X is a finite dimensional space, then it is reflexive.

Theorem 2.5. Let X be a Banach space. Then X is reflexive iff X∗ is reflexive.

Any Hilbert space H is reflexive. The set c0 is not a reflexive space. So duals

ℓ1 and ℓ∞ are not reflexive spaces. If C(K) is reflexive for a compact and Hausdorff

space K, then K is finite.

Definition 2.6. Let X and Y be Banach spaces and T : X → Y be a bounded linear

operator. If T maps bounded subsets of X to relatively (weakly) compact subsets of Y ,

then T is called a (weakly) compact operator.

Theorem 2.7. (Eberlein-Smulian) A subset K of a Banach space is weakly compact

iff it is weakly sequentially compact.

Theorem 2.8. (Gantmacher) Let X and Y be Banach spaces and T : X → Y be a

bounded linear operator. Then T is weakly compact iff T ∗ is weakly compact.

Proposition 2.9.

(i) Let X, Y and Z be Banach spaces. If T1 : X → Y and T2 : Y → Z are bounded

linear and weakly compact operators, then their composition T2T1 is also weakly

compact.

(ii) If either X or Y is reflexive Banach space, then every bounded linear operator

T : X → Y is weakly compact.
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(iii) Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. If

T is a compact operator, then T is a weakly compact operator.

(iv) Let X and Y be Banach spaces and T : X → Y be a bounded linear operator. If

T is weakly compact, then T ∗∗ : X∗∗ → Y is a continuous operator when equipped

with σ(X∗∗, X∗) topology on X∗∗ and weak topology on Y .

2.2. On the Stone-Čech compactification

Let X be a topological space. We say that X has a compactification if there

exists a compact Hausdorff space Y and a continuous injective map J : X → Y such

that J(X) = Y .

Consider the set of continuous functions C(X, [0, 1]) for a completely regular topo-

logical space (X, τ). Then the space C(X, [0, 1]) separates points from a closed subset

of X. Define a map J : X →
∏

f∈C(X,[0,1])

[0, 1] by x 7→ (f(x))f∈C(X,[0,1]). By the Ty-

chonoff’s theorem,
∏

f∈C(X,[0,1])

[0, 1] is compact and Hausdorff. Then we have a injective

map J : X → (J(X)) ⊆
∏

f∈C(X,[0,1])

[0, 1]. In this case, (J(X)) is called the Stone-Čech

Compactification of X and denoted by βX. The Stone-Čech Compactification is the

largest compactification.

Theorem 2.10. Let X be a completely regular space, then every bounded linear oper-

ator T : X → R has a bounded linear extension T̃ : βX → R.

In the case X = N, with the discrete topology, we have βN, the Stone-Čech

Compactification of N.

The elements of the Stone-Čech Compactification of N are actually the ultrafilters

on N. βN is a compact Hausdorff space and C(βN) is isometrically isomorphic to ℓ∞.

Definition 2.11. Let (an)n∈N be a sequence in ℓ∞ and U be an ultrafilter in βN. We

say that U-lim an = a for some a ∈ ℓ∞ if for any neighborhood N of a, we have

{n : an ∈ N} ∈ U .
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Lemma 2.12.

(i) Let (an)n∈N be an element in ℓ∞ and Ui0 ∈ βN be a principal ultrafilter for some

i0 ∈ N, then we have that Ui0-lim an = ai0.

(ii) Let U be an ultrafilter in βN and I ∈ U be any element. If (an)n∈N ∈ ℓ∞, then

U-lim an ∈ {an : n ∈ I}.

2.3. On C∗ algebras

Definition 2.13. Let A be an algebra provided with an operation ∗ satisfying

(i) (a+ b)∗ = a∗ + b∗

(ii) (ab)∗ = b∗a∗

(iii) (λa)∗ = λa∗

(iv) (a∗)∗ = a

for all a, b ∈ A and λ ∈ C. Then A is called a ∗-algebra.

If a ∗-algebra A is complete and ||a∗|| = ||a|| for all a ∈ A, then A is called a

Banach ∗-algebra.

If A is a Banach ∗-algebra and ||a∗a|| = ||a||2 for all a ∈ A, then A is called a

C∗-algebra.

In any unital C∗-algebra A, the unit of A and all projections of A have norm 1.

Example 2.14.

(1) Let Ω be a locally compact Hausdorff space, then C0(Ω), Cb(Ω) and ℓ∞(Ω) are

abelian C∗-algebras.

(2) B(H) is a non-abelian unital C∗-algebra.

Definition 2.15. Let I be an ideal of an algebra A. I is said to be modular if there

exists an element a0 of A such that a− a0a ∈ I for all a ∈ A.
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Example: Let Ω be a compact Hausdorff space and w0 be a fixed element in Ω. Define

a set Y := {f ∈ C0(Ω) : f(w0) = 0}, then Y is modular in C0(Ω).

Definition 2.16. Let A be a unital algebra and a be an element of A. Inv(A) denotes

the set of invertible elements of A, then the set {λ ∈ C : λ.1 − a /∈ Inv(A)} is called

the spectrum of a and is denoted by σ(a) or σA(a).

For a unital Banach algebra A and any element a of A, σ(a) is a subset of the

closed disc centered at origin with radius ||a||.

Example 2.17.

(1) Let Ω be a locally compact Hausdorff space. Then for any f ∈ C0(Ω), we have

σ(f) = f(Ω).

(2) A = {(ai,j)i,j ∈ Mn×n(C) : (ai,j)i,j is an upper triangle matrix }. Then for any

matrix a = (ai,j)i,j of A, we have σ(a) = {a11, a22, ..., ann}.

We can see the spectrum as a generalization of eigenvalues.

Definition 2.18. Let A be an abelian Banach algebra. Any non-zero continuous ho-

momorphism τ : A→ C is called a character.

The set of all characters on A is denoted by Ω(A).

Theorem 2.19. Let A be an abelian Banach algebra and a be an element in A.

(i) If A is unital, σ(a) = {τ(a) : τ ∈ Ω(A)}.

(ii) If A is non-unital, σ(a) = {τ(a) : τ ∈ Ω(A)} ∪ {0}.

(iii) If A is unital, then for any τ ∈ Ω(A), ||τ || = 1.

A pure state on C(K) for a compact Hausdorff space K is a homomorphism from

C(K) into C. The next theorem says that every pure state on C(K) is a Dirac measure

at a point a ∈ K.
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Theorem 2.20. Let K be a compact Hausdorff space. Let δa be a Dirac delta func-

tion(point evaluation function) on C(K) for an element a ∈ K, then φ : K → Ω(C(K))

with a 7→ δa is a homeomorphism.

An element a of a C∗-algebra A is said to be positive if it is hermitian and

σ(a) ⊆ R+. Any positive element of A is in the form of a∗a for some a ∈ A and the set

of all positive elements of A is denoted by A+. Since all elements of A can be written

as a linear combination of two self-adjoint elements, every element of the closed unit

ball of A can be written as a linear combination of four unitary elements.

Definition 2.21. A net (uλ)λ∈Λ of a C∗-algebra A is said to be an approximate unit

if it consists of increasing positive elements of the closed unit ball of A and for each

a ∈ A, ||a− auλ|| → 0 and ||a− uλa|| → 0.

A net (uλ)λ∈Λ of a C∗-algebra A is said to be a right approximate unit if it

consists of increasing positive elements of the closed unit ball of A and for each a ∈ A,

||a− uλa|| → 0.

A net (uλ)λ∈Λ of a C∗-algebra A is said to be a left approximate unit if it consists of

increasing positive elements of the closed unit ball of A and for each a ∈ A, ||a−auλ|| →

0.

Theorem 2.22.

(i) If L is a closed left ideal of a C∗-algebra A, then L possesses a right approximate

unit (uλ)λ∈Λ.

(ii) Let A and B be two C∗-algebras and φ : A→ B be a ∗-homomorphism.

If φ is injective, then it is necessarily isometric.

Definition 2.23. Let A and B be two C∗-algebras and φ : A→ B be a linear map. φ

is said to be positive if φ(A+) ⊆ B+.

A positive linear map between C∗-algebras preserves self-adjoint elements. Every

∗-algebra homomorphism is a positive linear map.
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Example 2.24. Let A be a C∗-algebra and τ : A → C be a positive linear functional,

then φ : A× A→ C with (a, b) 7→ τ(b∗a) is a positive sesquilinear map.

Theorem 2.25. Let A be a C∗-algebra and τ : A→ C be a positive linear functional.

(i) τ is bounded.

(ii) |τ(b∗a)|2 ≤ τ(a∗a)τ(b∗b) for all a, b ∈ A.

(iii) τ(b∗a∗ab) ≤ ||a∗a||τ(b∗b) for all a, b ∈ A.

(iv) τ(a∗) = τ(a) and |τ(a)|2 ≤ ||τ ||.τ(a∗a) for all a ∈ A.

Corollary 2.26. Let A be a unital C∗-algebra and τ : A → C be a bounded linear

functional. Then τ is positive iff τ(1) = ||τ ||.

Definition 2.27. Let A be a C∗-algebra. If τ : A → C is a positive linear functional

and ||τ || = 1, then τ is called a state.

Theorem 2.28.

(i) Let A be a C∗-algebra and B be a C∗-subalgebra of A. If τ : B → C is a positive

linear functional, then there exists an extension τ ′ of τ such that τ ′ : A → C is

positive linear functional and ||τ || = ||τ ′||.

(ii) (Riesz-Kakutani theorem) Let X be a locally compact Hausdorff space and τ be

a positive linear functional on Cc(X), then there exists a unique complex Radon

measure µ on X such that for all f ∈ Cc(X), τ(f) =
∫
X

f(x)dµ(x) and ||µ|| = ||τ ||.

Definition 2.29. Let A be a C∗-algebra. The pair (H,φ) is called a representation of

A if H is a Hilbert space and φ : A→ B(H) is a ∗-homomorphism.

If φ is injective, then it is called a faithful representation.

Theorem 2.30. (Gelfand-Naimark-Segal) If A is a C∗-algebra, then there exits a rep-

resentation (H,φ) of A such that φ : A→ B(H) is injective.

This theorem gives a faithful representation for all C∗-algebras, that is, all C∗-

algebras are isometrically isomorphic to a C∗-subalgebra of B(H) for some Hilbert

space H.
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Definition 2.31. Let A be a C∗-algebra and x be an element of a convex subset K of

A. If for a, b ∈ K and t ∈ (0, 1), x = ta + (1− t)b implies x = a = b, then x is called

an extreme point of K.

Definition 2.32. Let B be a subset of a C∗-algebra A. The intersection of convex sets

of A containing B is called the convex hull of B in A. This set is denoted by conv(B).

Definition 2.33. Let A be a C∗-algebra. A state in S(A) is said to be a pure state if

it is an extreme point of S(A).

Definition 2.34. Let X be a linear space with a Hausdorff topology on it. X is called

a locally convex topological vector space if the following holds;

(i) X ×X → X with (x, y) 7→ x+ y is continuous.

(ii) F×X → X with (λ, x) 7→ λx is continuous.

(iii) There exists a base at the origin consisting of convex sets.

A closed subspace M of a topological vector space X is said to be a comple-

mented subspace if there exists another closed subspace N such that X =M +N and

M ∩ N = {0}. The notation of direct sum, X = M ⊕ N is sometimes used for the

complemented subspaces.

Theorem 2.35. (Krein-Milman) Let X be a locally convex topological vector space and

K be a non-empty compact convex subset of X. Then K is the closed convex hull of

its extreme points.

As the set of states on a C∗-algebra is weak∗-compact and convex, it has an

extreme point(a pure state).

2.4. On von Neumann algebras

Beside of the norm topology, there are two important topologies on B(H) for

some Hilbert space H, which are the strong operator topology(SOT) and the weak

operator topology(WOT).
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The strong operator topology on B(H) is defined by the following open sets; fix

an operator T ∈ B(H), then for ϵ > 0 and ξ1, ξ2, ..., ξn ∈ H,

U(T, ϵ, ξi) :=
{
S ∈ B(H) : ||(T − S)ξi|| < ϵ, for i = 1, 2, ..., n

}
is an open set.

The weak operator topology on B(H) is defined by the following open sets; fix

an operator T ∈ B(H), then for ϵ > 0 and ξ1, ξ2, ..., ξn, η1, η2, ..., ηn ∈ H,

V (T, ϵ, ξi, ηi) :=
{
S ∈ B(H) : |⟨(T − S)ξi, ηi⟩| < ϵ, for , i = 1, 2, ..., n

}
is an open

set.

Let {Tλ}λ∈Λ be a net in B(H) and T be an element in B(H). Then Tλ → T

in the SOT topology iff ||(Tλ − T )(ξ)|| → 0 for all ξ ∈ H and Tλ → T in the WOT

topology iff ||⟨(Tλ − T )(ξ), η⟩|| → 0 for all ξ, η ∈ H.

The convexity yields the same result here as in the weak topology and the norm

topology, that is, for any non-empty convex subset A of B(H), we have A
SOT

= A
WOT

.

This result gives rise to that the unit ball of B(H) is compact in the WOT topology.

For a subset X of B(H), the set
{
T ∈ B(H) : TS = ST,∀S ∈ X

}
is the first

commutator of X and denoted by X
′
.

Definition 2.36. Let M ⊆ B(H) be a self-adjonit unital subalgebra. M is called a von

Neumann algebra if it satisfies one of the following conditions;

(i) M =M ′′.

(ii) M is closed in the SOT topology.

(iii) M is closed in the WOT topology.

Example 2.37.

(1) B(H) is a von Neumannn algebra.

(2) Let (X,µ) be a measurable space. Then L∞(X,µ) is an abelian von Neumann

algebra.
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(3) If M is a ∗-closed subset of B(H), then M ′ is a von Neumann algebra.

(4) Let H be a finite dimensional Hilbert space. Then any unital ∗-subalgebra M of

B(H) is a von Neumann algebra.

(5) IfM is a finite dimensional unital ∗-subalgebra of B(H), then it is a von Neumann

algebra.

Definition 2.38. Let M ⊆ B(H) be a von Neumann algebra. A projection p in M is

said to be a minimal projection if p ̸= 0 and pMp = Cp.

2.5. On the Arens multiplication

Let A be a Banach algebra. It is clear that the second dual A∗∗ is a Banach space.

But, being an algebra is not obvious. To make the second dual space an algebra, we

need to clarify the multiplication on A∗∗.

The first Arens product on A∗∗ is defined as follows;

(i) For all a, b ∈ A and f ∈ A∗, we have fa ∈ A∗ and (fa)(b) = f(ab).

(ii) For all a ∈ A, f ∈ A∗ and F ∈ A∗∗, we have Ff ∈ A∗, Ff(a) = F (fa).

(iii) For all F,G ∈ A∗∗ and f ∈ A∗, we have FG(f) = F (Gf).

The second Arens product on A∗∗ is defined as follows;

(i) For all a, b ∈ A and f ∈ A∗, we have a ∗ f ∈ A∗ and (a ∗ f)(b) = f(ba).

(ii) For all a ∈ A, f ∈ A∗ and F ∈ A∗∗, we have f ∗F ∈ A∗ and (f ∗F )(a) = F (a∗f).

(iii) For all F,G ∈ A∗∗ and f ∈ A∗, we have (F ∗G)(f) = F (f ∗G).

Each of two Arens multiplications makes A∗∗ a Banach algebra. In general, the

first and the second Arens multiplications are not the same. If they are equal, it is

called Arens regular. All C∗-algebras are Arens regular.
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If the algebra A is Arens regular, then these multiplications on A∗∗ are weak∗ to

weak∗ continuous in each variable when the other is kept fixed. i.e. if in A∗∗, Fλ → F

in weak∗-topology, then FλG → FG and GFλ → GF for all G ∈ A∗∗ in the weak∗-

topology. If A is a C∗-algebra, then for a ∈ A( or in A∗∗), f ∈ A∗ and F ∈ A∗∗, we

have ⟨aF, f⟩ = ⟨a, Ff⟩, ⟨aF, f⟩ = ⟨F, fa⟩ and ⟨aFa, f⟩ = ⟨F, afa⟩.

2.6. On the Grothendieck and Pelczyński properties

Definition 2.39. Let A be a Banach space. A series
∞∑
n=1

an is said to be a weakly

unconditionally Cauchy series in A if the series
∞∑
n=1

|f(an)| converges for all f ∈ A∗.

Definition 2.40. Let X and Y be two Banach spaces and T : X → Y be a bounded

linear operator. T is said to be an unconditionally converging operator if T maps any

weakly unconditionally Cauchy series in X to an unconditionally series in Y .

Every weakly compact operator between Banach spaces is an unconditionally

converging operator.

Definition 2.41. Let X be a Banach space. We say that X has the Pelczyński’s

property(property V ) if every bounded linear operator T from X to any Banach space

which is unconditionally converging is also weakly compact [6].

Theorem 2.42. Let X be a Banach space. X has the property V iff for any Y ⊆ X∗

with lim
n

sup
f∈Y

|f(an)| = 0 for any weakly unconditionally Cauchy series
∞∑
n=1

an of X, Y

is relatively weakly compact.

Remark 2.43.

(i) Any quotient space of a Banach space X has the property V if X has the property

V .

(ii) Any closed complement subspace of a Banach space X has the property V if X

has the property V .
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Definition 2.44. Let X be a Banach space. X is said to have the property V ∗ if for

any K ⊆ X with lim
n

sup
x∈K

|fn(x)| = 0 for all weakly unconditionally Cauchy series
∑
n≥1

fn

of X∗, K is relatively weakly compact.

Theorem 2.45. Let X be a Banach space.

(i) If X has the property V ∗, then it is weakly sequentially complete.

(ii) If X has the property V , then X∗ is weakly sequentially complete.

(iii) X is reflexive iff X has both the property V and the property V ∗.

Example 2.46.

(1) If K is a compact Hausdorff space, then C(K) has the property V . So, for any

measurable space (X,µ), L∞(X,µ) has the property V .

(2) All C∗-algebras have the property V . So, the von Neumann algebras have the

property V [7].

Definition 2.47. Let X be a Banach space. X is said to be a Grothendieck space if

each weak∗ converging sequence of X∗ converges weakly.

Any quotient space of a Grothendieck space is a Grothendieck space. If a space

has the property V and it is a dual of some Banach space, then it has the Grothendieck

property [8].

Theorem 2.48. Let X be a Banach space. Then the following are equivalent;

(i) X has the Grothendieck property.

(ii) Every bounded linear operator T from X to any separable Banach space is weakly

compact.

(iii) Every bounded linear operator T from X to c0 is weakly compact.

Example 2.49.

(1) If K is a Stonean space(i.e. compact Hausdorff totally disconnected space), then

C(K) is a Grothendieck space.

(2) Any reflexive space is a Grothendieck space. So, for a measurable space (X,µ)

and 1 < p <∞, Lp(X,µ) is a reflexive Grothendieck space.
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(3) ℓ∞ is a Grothendieck space.



17

3. THE KADISON-SINGER PROBLEM

Let B(H) be the algebra of bounded linear operators on a separable Hilbert space

H. In 1958, Kadison and Singer proved that there are pure states on the continuous

masa of B(H) whose extensions to B(H) are not unique. Then they hinted that the

same result holds for the discrete masa.

A separable Hilbert space is isomorphic to ℓ2 and the subalgebra of diagonal

operators D(ℓ2) in B(ℓ2) is isomorphic to ℓ∞. Any pure state on ℓ∞, as a linear

functional extends to B(ℓ2) with the same norm by the Hahn-Banach theorem. It

extends to a state as follows: let {en}n∈N be an orthonormal basis for ℓ2. Given a

pure state f on ℓ∞, define a map E : B(ℓ2) → ℓ∞ by T 7→ (⟨Ten, en⟩)n∈N. Then

f̃ := f ◦E : B(ℓ2) → C is a linear map as the composition of two linear maps is linear.

Since f is a state, then f̃(1) = f(E(1)) = f(1) = 1. If T ∈ B(ℓ2) is positive, then

⟨Ta, a⟩ ≥ 0 for all a ∈ ℓ2. So, f(E(T )) = f((⟨Ten, en⟩)n∈N) ≥ 0. This implies that f̃ is

a state extension of f . So, the set of state extensions of f is not empty.

It is also known that the set of state extensions of f is weak∗-compact and convex.

So, it has extreme points by the Krein-Milman theorem. Thus, a pure state has a unique

pure state extension to B(ℓ2) iff it has a unique state extension to B(ℓ2).

Kadison and Singer asked whether every pure state extension of f has a unique

extension to B(ℓ2)? In 2013, the Kadison-Singer problem was solved by Adam Marcus,

Daniel Spielman and Nikhil Srivastava. They approached this problem by using random

polynomials. There is yet no proof given from a Banach Algebras perspective.

In 1979, Anderson stated the Paving Conjecture and proved that it implies the

Kadison-Singer problem. Given a fixed orthonormal basis {en}n∈N, we give the Paving

Conjecture:
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Paving Conjecture: For every operator T in B(ℓ2) with zeros on its diagonal, there

exists a k−partition {A1, ..., Ak} of N(a paving) such that for all ϵ > 0 and i = 1, 2, ..., k

||PAi
TPAi

|| < ϵ.||T ||, where PAi
are the orthogonal projections in B(ℓ2(N)) onto the

closed linear span of {en : n ∈ Ai}.

The crucial point about this Conjecture is that k doesn’t depend on n. Let us

give a simple proof that the Paving Conjecture implies the Kadison-Singer problem:

Suppose the Paving Conjecture holds. Let f : ℓ∞ → C be a pure state and

E : B(ℓ2) → ℓ∞ be the conditional expectation as defined above. Let f ′ be any pure

state extension of f . Then for any T ∈ B(ℓ2),

f ′(T ) = f ′(T − E(T )) + f ′(E(T )) = f ′(T − E(T )) + f(E(T )).

T − E(T ) is zero diagonal and f(E(T )) is an extension of f . So, it is enough to

show that E(T ) = 0 implies f ′(T ) = 0. Let ϵ > 0 be given. Suppose E(T ) = 0. Let

PA1 , PA2 , ..., PAk
be a partition such that

k∑
i=1

PAi
= 1 and ||PAi

TPAi
|| ≤ ϵ.

If we apply f ′ to the sum
k∑

i=1

PAi
= 1, we obtain f ′(PAi0

) = 1 for some i0 in

{1, 2, ..., k} and f ′(PAi
) = 0 for i ̸= i0. |f ′(TPAi

)|2 ≤ f ′(T ∗T )f ′(P ∗
Ai
PAi

) = 0 for i ̸= i0

as f ′ is positive. Similarly, we have f ′(PAi
T ) = 0 for i ̸= i0. So, f ′(PAi

TPAj
) = 0 for

i ̸= i0 or j ̸= i0.

Hence, |f ′(T )| = |f ′(
k∑

i=1

PAi
T

k∑
i=1

PAi
)| = |f ′(PAi0

TPAi0
)| ≤ ||PAi0

TPAi0
|| ≤ ϵ.
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4. A BANACH ALGEBRA APPROACH TO THE

KADISON-SINGER PROBLEM

Let H be a separable Hilbert space with a fixed orthonormal basis {en}n≥1 and

B(H) be the von Neumann algebra of bounded linear operators on H. Let C(K) be

the set of continuous functions on K for some compact Hausdorff space K.

For a non-zero linear functional f on C(K), f is a pure state iff it is a homomor-

phism from C(K) to C [5]. Then pure states on C(βN) are the non-zero homomor-

phisms as βN is a compact Hausdorff space. Since D(ℓ2), C(βN) and ℓ∞ are isomorphic

and D(ℓ2) is a subalgebra of B(ℓ2), we can consider C(βN) and ℓ∞ as subalgebras of

B(ℓ2). Define the point evaluation function δt : C(βN) → C by f 7→ f(t) for t ∈ βN.

As a non-zero homomorphism on C(βN) can be represented by a Dirac measure δt(a

point evaluation function) for t ∈ βN [3], we convert the Kadison-Singer problem to

the following question: Can we extend a pure state δt from C(βN) to B(ℓ2) in a unique

way?

Throughout this chapter, [δt] ⊆ B(ℓ2)
∗ denotes the set of pure state extensions

of a Dirac measure δt to B(ℓ2) for t ∈ βN.

In the article [2], two main results are obtained about the uniqueness problem and

also a significant result about the weakly compact subsets of von Neumann algebras is

given:

(1) Let A be a von Neumann algebra and K be a weak∗-compact subset of A∗. Then

the following are equivalent;

(i) K is a weakly compact subset of A∗.

(ii) K doesn’t contain a homeomorphic copy of βN.
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As a consequence of this result, we have the following results

(2) ∀t ∈ βN, either [δt] includes a homeomorphic copy of βN or [δt] is contained in a

finite dimensional subspace of B(H)∗.

(3) Let ρ = δt + λ be a pure state extension of δt from C(βN) to B(H) for a t ∈ βN.

Then the following are equivalent;

(i) The maximal left ideal Nρ = {T ∈ B(H) : ρ(T ∗T ) = 0} has a right approx-

imate unit (Uλ)λ∈Λ consisting of positive bounded diagonal operators.

(ii) ρ is the unique pure state extension of δt.

4.1. The continuous extension property

Let X be a Banach space and K be a compact Hausdorff space. Suppose that

C(K) is contained in X as a closed subspace. For all t ∈ K, the Dirac measure

δt : C(K) → C is the point evaluation map at t with δt(f) = ⟨δt, f⟩ = f(t) for all

f ∈ C(K). The Hahn-Banach theorem guarantees the existence of extensions of δt

with the same norm. Suppose δt has a unique extension δt to X, then

(i) ||δt|| = 1.

(ii) ρ : K → X∗ with t 7→ δt is weak
∗ continuous.

Regardless of uniqueness, the set [δt] of all extensions of δt of norm 1 from C(K)

to X is weak∗-closed and convex subset of X∗. So, [δt] is weak
∗-compact by the Banach-

Alaoglu theorem.

Also observe that for t1 ̸= t2, we have [δt1 ]∩ [δt2 ] = ∅: otherwise, if f ∈ [δt1 ]∩ [δt2 ],

it is both an extension of δt1 and an extension of δt2 hence, necessarily f restricted to

C(K) is both δt1 and δt2 , thus δt1 = δt2(contradiction).

By the Axiom of Choice, let us select an element δt in each set [δt] and define a

function ρ : K → X∗ with t 7→ δt. The mapping ρ is called a selection mapping if ρ(t)

is a norm-preserving extension of the functional δt for each t ∈ K.
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If there exists a weak∗ continuous function ρ as defined above, then we shall say

that (K,X) is said to have the continuous extension property.

Remark 4.1.

(i) If the multi-valued function f : K → 2X
∗
with t 7→ [δt] is lower semi-continuous

in the weak∗-topology on X∗, then the pair (K,X) has the continuous extension

property [9].

(ii) If the weak∗-topology is the same as the norm topology on the unit ball of X∗(Kadec-

Klee property), then the pair (K,X) has the continuous extension property.

4.2. Main Results

Lemma 4.2. Let X be a Banach space and C(K) be a closed subspace of X for some

compact Hausdorff space K. Then the following are equivalent;

(i) (K,X) has the continuous extension property.

(ii) There exists a contractive projection P : X → C(K).

Proof. Suppose that (K,X) has the continuous extension property, hence we have a

mapping ρ : K → X∗ that is continuous from K into (X∗, w∗) such that for f ∈ C(K)

and t ∈ K, ⟨f, ρ(t)⟩ = ⟨f, δt⟩ = f(t).

Define a function φ : X → C(K) by φ(x)(t) = ⟨x, ρ(t)⟩ for x ∈ X and t ∈ K.

Let’s first show that φ(x) is continuous on K.

φ(x) ∈ C(K) if φ(x) : K → C with t→ ⟨x, ρ(t)⟩ is continuous. So, we must show

that for any net tλ → t in K, we have φ(x)(tλ) → φ(x)(t). By weak∗ continuity of ρ;

∣∣φ(x)(tλ)− φ(x)(t)
∣∣ = ∣∣⟨x, ρ(tλ)⟩ − ⟨x, ρ(t)⟩

∣∣ = ∣∣ρ(tλ)(x)− ρ(t)(x)
∣∣

< ϵ.
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Now, we will show that φ : X → C(K) with φ(x)(t) = ⟨x, ρ(t)⟩ is linear.

(i) Let x1, x2 ∈ X and t ∈ K be arbitrary elements.

φ(x1 + x2)(t) = ⟨x1 + x2, ρ(t)⟩ = ⟨x1, ρ(t)⟩+ ⟨x2, ρ(t)⟩ = φ(x1)(t) + φ(x2)(t)

=
(
φ(x1) + φ(x2)

)
(t).

(ii) For all x ∈ X, any scalar α and ∀t ∈ K

φ(αx)(t) = ⟨αx, ρ(t)⟩ = α⟨x, ρ(t)⟩ = αφ(x)(t) = (αφ(x))(t).

Secondly, we will show that φ
∣∣
C(K)

= id.

For f ∈ C(K) ⊆ X and t ∈ K, φ(f)(t) = ⟨f, ρ(t)⟩ = ⟨f, δt⟩ = f(t). Then

φ(f) = f which implies φ
∣∣
C(K)

= id.

Finally, we will show that ||φ|| ≤ 1.

||φ|| = sup
||x||=1

||φ(x)|| = sup
||x||=1,t∈K

|φ(x)(t)| = sup
||x||=1,t∈K

|⟨x, ρ(t)⟩| ≤ sup
t∈K,||x||=1

||x||.||ρ(t)||

= sup
t∈K

||δt|| = 1.

So, ||φ|| ≤ 1.

Combining the last two observations, we get ||φ|| = 1. Thus, φ is a contractive

projection.

For the reverse direction, suppose that P : X → C(K) is a contractive projection.

Since M(K) ≃ C(K)∗(by the Riesz representation theorem) and P ∗ : C(K)∗ → X∗,

we have that P ∗ : M(K) → X∗ is continuous in the weak∗-topology. Here, P ∗ is the

adjoint of P .

For f ∈ C(K) ⊆ X and t ∈ K, ⟨P ∗(δt), f⟩ = ⟨δt, P (f)⟩ = ⟨δt, f⟩ = f(t).
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||P ∗(δt)|| = sup
||x||=1,x∈X

|P ∗(δt)(x)| ≥ sup
||f ||=1,f∈C(K)

|P ∗(δt)(f)| = sup
||f ||=1,f∈C(K)

|f(t)| = 1.

Then 1 ≤
∣∣∣∣P ∗(δt)

∣∣∣∣ ≤ ||P ∗||.||δt|| = ||P ∗|| ≤ 1. So,
∣∣∣∣P ∗(δt)

∣∣∣∣ = 1.

Now observe that

δtλ → δt in weak∗-topology in M(K) iff δtλ(f) → δt(f) for all f ∈ C(K)

iff f(tλ) → f(t) for all f ∈ C(K)

iff tλ → t in K.

So, on the Gelfand spectrum {δt, t ∈ K} of C(K), the weak∗-topology induced

by σ(C(K)∗, C(K)) is the same as the original topology of K . Thus, ρ : K → X∗

with t 7→ P ∗(δt) is weak
∗ continuous.

Furthermore, for f ∈ C(K), ⟨ρ(t), f⟩ = ⟨P ∗(δt), f⟩ = ⟨δt, P (f)⟩ = ⟨δt, f⟩ = f(t).

So, ρ is a continuous extension mapping. Therefore, (K,X) has the continuous exten-

sion property.

Recall that a bounded projection P is said to be an M-projection if for each

x ∈ X, ||x|| = max
{
||P (x)||, ||x− P (x)||

}
.

If P : X → X is an M-projection, Q : X → Z is a contractive projection and

Ran(P ) = Ran(Q), then P and Q are identically equal.

Corollary 4.3. Let X be a Banach space and C(K) be a closed subspace of X for

some compact Hausdorff space K. If P : X → C(K) is an M-projection, then the only

continuous extension map is ρ : K → X∗ with t 7→ P ∗(δt).
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Proof. Let’s show the existence of the continuous extension mapping:

Since P is an M-projection, then we have the projection P : X → C(K) such

that ||x|| = max
{
||P (x)||, ||x− P (x)||

}
, ∀x ∈ X.

P is a contractive projection as ||P (x)|| ≤ ||x|| for all x ∈ X.

By the previous lemma, there exists a continuous extension property of (K,X)

as defined in the lemma, ρ : K → X∗ with ρ(t) = P ∗(δt).

Next, we will show the uniqueness: Assume that there is another continuous

extension ρ′ : K → X∗. By the previous lemma, there exists such a contractive

projection Q : X → C(K) for ρ′. Using the preceding observation about M-projection

yields P = Q.

Lemma 4.4. Let X and Y be Banach spaces. If an isomorphic copy of ℓ∞ doesn’t

lie in Y , then every bounded linear operator T from X∗ to Y is an unconditionally

converging operator. Moreover, if X∗ has the Pelczyński’s property and an isomorphic

copy of ℓ∞ doesn’t lie in Y , then every bounded linear operator T from X∗ to Y is a

weakly compact operator.

Proof. Suppose that an isomorphic copy of ℓ∞ doesn’t lie in Y and T : X∗ → Y is a

bounded linear operator.

For a contradiction, assume that T is not an unconditionally converging operator.

So, there exists a subspace M ⊆ X∗ such that M ≃ c0 and T
∣∣
M

: M → T (M) is an

isomorphism (Pelczyński) [6].

Let ι̇ : M → X∗ be a natural injection, indeed an isometry. Hence, the map

ι̇∗∗ : M∗∗ → X∗∗∗ is injective and linear. Let P : X∗∗∗ → X∗ be the restriction

projection.
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SinceM∗∗ ≃ ℓ∞ and an isomorphic copy of ℓ∞ doesn’t lie in Y , then the linear op-

erator T ◦P ◦ι̇∗∗ :M∗∗ → X∗∗∗ → X∗ → Y is weakly compact by Rosenthal(Proposition

1.2) [10].

For m ∈M , T ◦P ◦ ι̇∗∗(m) = T ◦P (m) = T (m). The first equality comes from the

fact that M can be embedded in M∗∗ and ι̇∗∗ : M∗∗ → X∗∗∗ is injection. The second

equality is because of that M ⊆ X∗.

So, T ◦ P ◦ ι̇∗∗ and T are the same on M . Thus, T
∣∣
M

: M → T (M) is weakly

compact. But, T
∣∣
M

:M → T (M) is an isomorphism and M ≃ c0 (contradiction).

Therefore, if Y doesn’t contain any isomorphic copy of ℓ∞ and T : X∗ → Y is a

bounded linear operator, then T is an unconditionally converging operator. Moreover,

if addition to the conditions given in the theorem, X∗ has property V , T is weakly

compact by the definition of the Pelczyński property.

H. Pfitzner showed that every von Neumann algebra A has the property (V ).

Consequently, every von Neumann algebra is a Grothendieck space. So, any weak∗

convergent sequence in A∗ is weakly convergent [7].

Theorem 4.5. Let A be a von Neumann algebra and K be a weak∗-compact subset of

A∗. Then the following are equivalent;

(i) K is a weakly compact subset of A∗.

(ii) K doesn’t include any homeomorphic copy of βN.

Proof. Suppose that K is a weakly compact space. Any weakly compact subset of a

Banach space is weakly sequentially compact. βN doesn’t have any infinite convergent

sequence. So, the homeomorphic copy of βN is not in K.

Conversely, suppose that K doesn’t have a homeomorphic copy of βN. So, there

is no isomorphic copy of ℓ∞ in C(K) [11].



26

Define ψ : A→ C(K), a 7→ ψ(a) with ψ(a)(t) = ⟨a, t⟩.

Clearly ψ is a bounded linear operator. Since C(K) doesn’t include any isomor-

phic copy of ℓ∞, by the previous lemma, ψ is an unconditionally converging operator.

Since A is a von Neumann algebra, it has the property V . Therefore, ψ is a

weakly compact operator. ψ∗ : C(K)∗ → A∗ is also weakly compact.

If we take δt Dirac measure(point evaluating map at t) for some t ∈ K, then we

have ⟨a, ψ∗(δt)⟩ = ⟨ψ(a), δt⟩ = ψ(a)(t) = ⟨a, t⟩ for all a ∈ A. Hence, ψ∗(δt) = t. So,

K ⊆ ψ∗(X), where X is a closed unit ball of Banach space M(K)(regular complex

Borel measures on K).

As ψ∗ is weakly compact, ψ∗(X) is relatively weakly compact. Now we have that

K ⊆ ψ∗(X) ⊆ A∗ where K is weak∗-compact and ψ∗(X) is weakly compact. Since

weak∗-topology is weaker than weak topology, K is weakly closed in ψ∗(X). Therefore,

K is weakly compact.

As a consequence of this theorem, if A is a von Neumann algebra, then any

weak∗-compact subset K of A∗ with card(K) < 2c is weakly compact(c stands for the

cardinality of R) because card(βN) = 2c.

Thus, if A is a von Neumann algebra and K is weak∗-compact subset of A∗ with

card(K) < 2c, then every net of K has a weakly convergent subnet. It is obvious that

the conclusion of the previous theorem is not only true for a von Neumann algebra,

but also true for any dual Banach space having the property V .

Corollary 4.6. Let A be a C∗-subalgebra of a von Neumann algebra B. A doesn’t

contain an isomorphic copy of ℓ∞, Then the following are equivalent;

(i) There exists a bounded projection P : B → A.

(ii) The dimension of A is finite.
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Proof. Suppose there exists a bounded projection P : B → A. Since A doesn’t include

any isomorphic copy of ℓ∞ and B is a von Neumann algebra, P is weakly compact.

Let X be a closed unit ball of B. So, P (X) is weakly compact. As P is a surjective

bounded linear mapping, P (X)
◦
̸= ∅ by the Open mapping theorem. Hence, A is

reflexive [4].

Since A is reflexive, then A has both the property V and the property V ∗. Hence,

A is weakly sequentially complete by Theorem 2.45. Therefore, dim(A)< ∞ by [12]

(Proposition 2).

Conversely, we know that in any Banach space B, every finite dimensional sub-

space A of B is complemented in B. Hence, there exists a bounded projection from B

onto A.

Remark 4.7. We refer the reader to the paper of Archbold mentioned above to see the

pairs of C∗-algebras (A,B), where B is a C∗-algebra and A is a C∗-subalgebra of B

such that there exists a unique projection P : B → A with ||P || = 1 [13].

Anderson proved under the continuum hypothesis that there exists an infinite

compact subset K ⊆ βN such that δt can be extended uniquely to a pure state δt on

B(H) for all t ∈ K(Theorem 6) [14].

So, ρ : K → B(H)∗ with ρ(t) = δt is the continuous extension mapping. The

restriction mapping T : C(βN) → C(K) with T (f) = f
∣∣
K

is bounded linear and also

onto by the Tietze extension theorem. Since T is surjective, it is not weakly compact.

So, by Lemma 4.4, C(K) includes an isomorphic copy of ℓ∞. So, if we consider the

result of Anderson and the preceding theorem together, we conclude that even though

an isomorphic copy of ℓ∞ lies in C(K), there is a unique pure state extension of a pure

state from C(K) to B(H).

For the reverse direction, Akemann and Weaver showed that there exists a pure

state on B(H) such that its restriction to any masa is not pure.
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Lemma 4.8. Let B be a Banach space. If A is a complemented Banach subspace of

B∗, then A is complemented in A∗∗.

Proof. Since B∗∗∗ = B∗ ⊕ B⊥, we have a natural projection P : B∗∗∗ → B∗. Let

Q : B∗ → A be a bounded projection, then Q∗∗ : B∗∗∗ → A∗∗ is a natural projection.

Then the map Q ◦ P ◦Q∗∗ : B∗∗∗ −→ A∗∗ ↪→ B∗∗∗ −→ B∗ −→ A is a projection and

Q ◦ P ◦Q∗∗(a) = a for all a ∈ A.

Therefore, the restriction of Q ◦ P ◦Q∗∗ on A∗∗ is a projection onto A.

Theorem 4.9. Let X be a Banach space and K be an infinite compact Hausdorff space.

Suppose that C(K) lies in X∗ as a closed subspace.

If ρ : K → X∗∗ is a weak∗ continuous extension mapping, then C(K) is comple-

mented in C(K)∗∗.

Moreover, in this case, C(K) is a Grothendieck space and contains an isomorphic

copy of ℓ∞.

Proof. By Lemma 4.2, if (K,X∗) has the continuous extension property, then there

exists a contractive projection P : X∗ → C(K). So, C(K) is complemented in X∗.

By the preceding lemma, C(K) is complemented in its second dual. By the Krein-

Milman theorem, C(K)∗∗ has the Grothendieck property [15]. Thus, its complemented

subspace C(K) has the Grothendieck property as well [16].

Finally, we will show that an isomorphic copy of ℓ∞ lies in C(K). Assume for a

contradiction that C(K) doesn’t contain an isomorphic copy of ℓ∞. Then by Lemma

4.4, the bounded linear projection P : C(K)∗∗ → C(K) is weakly compact. By the

Open mapping theorem, C(K) is reflexive. This happens only when K is finite. There-

fore, C(K) contains an isomorphic copy of ℓ∞.
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Remark 4.10. R. Haydon showed that there exists a compact Hausdorff space K such

that C(K) is a Grothendieck space and doesn’t contain an isomorphic copy of ℓ∞ [11].

However, if an isomorphic copy of ℓ∞ lies in C(K), then a homeomorphic copy

of βN lies in the compact Hausdorff space K. The converse is not true in general [11].

Therefore, the main issue for a unique extension of pure states from C(K) ⊆ X

to X is not about K containing a homeomorphic copy βN but about an isomorphic copy

of ℓ∞ lying in C(K) or not.

The Kadison-Singer problem:

Let H be a separable Hilbert space and {en} be an orthonormal basis in H. Take a

bounded sequence λ = (λn)n∈N. Define a map Tλ : H → H by
∑
i≥0

xiei 7→
∑
i≥0

λixiei.

Let x =
∑
i≥0

xiei and y =
∑
i≥0

yiei be any two elements in H and c be a constant, then

Tλ(cx+ y) = Tλ(
∑

cxiei +
∑

yiei) = Tλ(
∑

(cxi + yi)ei) =
∑

λi(cxi + yi)ei

= c
∑

λixiei +
∑

λiyiei = cTλ(x) + Tλ(y).

||Tλ(x)||2 = ||
∑

λixiei||2 = ⟨
∑

λixiei,
∑

λixiei⟩ =
∑

|λixi|2 ≤ sup |λi|2.
∑

|xi|2

=
(
sup |λi|

)2
.||x||2 = ||λ||2∞.||x||2.

So, ||Tλ|| ≤ ||λ||.

Thus, Tλ is a bounded linear map on H. The corresponding map φ : ℓ∞ → B(H)

with λ→ Tλ is a ∗isometry because if λ and ν are arbitrary two elements in ℓ∞ and c

is a scalar, then for any x =
∑
i≥0

xiei ∈ H, we have the following

Tλ+ν(x) =
∑
i≥0

(λi + νi)xiei =
∑
i≥0

λixiei +
∑
i≥0

νixiei = Tλ(x) + Tν(x).
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Tcλ(x) =
∑
i≥0

cλixiei = c
∑
i≥0

λixiei = c.Tλ(x) = (c.Tλ)(x).

Tλν(x) =
∑
i≥0

λiνixiei = TλTν(x). So, φ is a homomorphism.

Let T ∗
λ be the Hilbert adjoint operator of Tλ, then for any x =

∑
i≥0

xiei and

y =
∑
i≥0

yiei in H,

⟨T ∗
λx, y⟩ = ⟨x, Tλy⟩ = ⟨

∑
i≥0

xiei,
∑
i≥0

λjyjej⟩ =
∑
i≥0

⟨xiei, λiyiei⟩ =
∑
i≥0

⟨λ∗ixiei, yiei⟩

= ⟨
∑
i≥0

λ∗ixiei,
∑
i≥0

yjej⟩ = ⟨Tλ∗x, y⟩.

So, T ∗
λ = Tλ∗ which implies that φ is ∗- homomorphism. φ(λ) = φ(ν) implies

that Tλ(x) = Tν(x) for all x ∈ H. If we choose x = 1.e1 + 0.e2 + ..., we get λ1 = ν1.

Applying this method respectively to each term, we will obtain λ = ν. Thus, we have

an injective ∗-homomorphism. Hence, φ is necessarily a ∗-isometry (see theorem 3.1.5

in Murphy [3]). We can consider ℓ∞ as a von Neumann subalgebra of B(H). Then

D : B(H) −→ ℓ∞ with T 7−→ (⟨T (en), en⟩)n≥1 is a contractive positive projection.

D(T ∗) = (⟨T ∗(en), en⟩)n≥1 = (⟨en, T (en)⟩)n≥1 = (⟨T (en), en⟩)n≥1 = (⟨T (en), en⟩)n≥1

= D(T ).

D(T ∗T ) = (⟨T ∗T (en), en⟩)n≥1 = (⟨T (en), T (en)⟩)n≥1 = (||Ten||2)n≥1, which is a

positive sequence.

||D(T )|| = ||(⟨T (en), en⟩)n≥1|| = sup
n

|⟨Ten, en⟩| ≤ sup
n

||Ten||.||en|| ≤ sup
n

||T ||.||en||.||en||

= ||T ||.

So, D is contractive.
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Since φ is an isometric ∗isomorphism between ℓ∞ and its image in B(H), we can

consider λ as an operator Tλ.

If we evaluate Tλ at each point ei, then Tλ(ei) = λiei.

D(Tλ) = (⟨Tλen, en⟩)n≥1 = (⟨λnen, en⟩)n≥1 = (λn⟨en, en⟩)n≥1 = (λn)n≥1 = λ.

Thus, D is a projection.

We identify ℓ∞ with abelian C∗-algebra C(βN), then for any t ∈ βN, D∗(δt) is

given by D∗(δt)(T ) = lim
t
⟨Ten, en⟩. So, we have

D∗ : ℓ∞∗ → B(H)∗ D∗(δt) : B(H) → C δt : ℓ
∞ → C.

δt 7→ D∗(δt) T 7→ lim
t
⟨Ten, en⟩

The limit is taken over ultrafilter t for the bounded sequence (⟨Ten, en⟩)n∈N. Since

D is positive and contractive for each t ∈ βN, D∗(δt) is a state (indeed, a pure state

by J. Anderson [14]), extension of δt to B(H).

So, ρ : βN → B(H)∗ with t 7→ D∗(δt) is a weak∗ continuous extension mapping.

As D is a projection, we have the decomposition B(H) = ℓ∞ ⊕ B◦(H), where B◦(H)

is the kernel of D. Hence, B(H)∗ = ℓ∞∗ ⊕ ℓ∞⊥, where ℓ∞⊥ is the annihilator of ℓ∞ in

B(H)∗. Now fix a t ∈ βN. Since B(H)∗ = ℓ∞∗ ⊕ ℓ∞⊥, every extension of δt to B(H) is

of the form ρ = δt + λ with λ ∈ ℓ∞⊥ and δt ∈ ℓ∞∗ so that λ vanishes on the diagonal

operators. For each t, [δt] is the set of all state extensions of δt to B(H), then [δt] is

weak∗-compact convex subset of B(H)∗.

To continue, we need some preliminary results.

Let A be a C∗-algebra and P (A) be the set of all pure states of A. Let’s show

that for τ ∈ P (A), Nτ = {a ∈ A : τ(a∗a) = 0} is a maximal modular left ideal.

If a and b are arbitrary elements in Nτ , then we have τ(a∗a) = 0 and τ(b∗b) = 0.



32

τ
(
(a+ b)∗(a+ b)

)
= τ(a∗a+ a∗b+ b∗a+ b∗b) = τ(a∗a) + τ(a∗b) + τ(b∗a) + τ(b∗b)

= τ(a∗b) + τ(b∗a).

Since τ is positive, |τ(a∗b)|2 ≤ τ(b∗b).τ(a∗a) = 0. So, τ(a∗b) = 0. Similarly, we

have τ(b∗a) = 0. Hence, a+ b ∈ Nτ .

For a ∈ Nτ and b ∈ A, τ
(
(ba)∗(ba)

)
= τ(a∗b∗ba) ≤ ||b∗b||.τ(a∗a) = 0, So ba ∈ Nτ .

Thus, Nτ is a left ideal.

A is a C∗-algebra, then it admits an approximate unit (uλ)λ∈Λ consisting of

increasing positive elements in the closed unit ball of A.

||τ
(
(a − uλa)

∗(a − uλa)
)
|| ≤ ||τ ||.||(a − uλa)

∗(a − uλa)|| → 0 for an appropriate

λ. Thus, Nτ is modular.

Now suppose that Nτ is not a maximal left ideal. So, there exists a proper left

ideal L containing Nτ properly. As the left ideal L is modular and proper, L is also

a proper left ideal. By Theorem 5.3.3 in Murphy [3], there exists a pure state τ ′ of A

such that L ⊆ Nτ ′ . So, we have Nτ ⊆ Nτ ′ , hence τ = τ ′. Thus, Nτ = L which implies

that Nτ is a maximal left ideal. As Nτ is also a left ideal and Nτ is maximal, Nτ = Nτ .

Hence, Nτ is closed.

We have Nτ + N∗
τ = Kerτ , where N∗

τ = {a∗ : a ∈ Nτ}(see Theorem 5.3.4

in Murphy [3]). Since Nτ is closed left ideal, it admits a right approximate identity

(vλ)λ∈Λ consisting of increasing positive elements in the closed unit ball of Nτ . So, the

left ideal N∗∗
τ (the second dual of Nτ , an ideal in von Neumann algebra A∗∗) has a right

unit eτ . Since eτ is positive and idempotent, it is a projection in A∗∗.
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Observe that (Kerτ)∗∗ = {m ∈ A∗∗ : ⟨m, τ⟩ = 0}. As (Nτ )
∗∗ is a subspace of

(Kerτ)∗∗, then ⟨eτ , τ⟩ = 0. Also, as eτ is self-adjoint and a right unit of N∗∗
τ , we have

neτ = n and eτn
∗ = n∗ for all n ∈ N∗∗

τ .

Lemma 4.11. Let τ be a pure state on a C∗-algebra A and 1 be a unit of the von

Neumann algebra A∗∗. Then there exists a minimal projection e ∈ A∗∗ with ⟨τ, e⟩ = 1.

Moreover, if there exists another pure state τ ′ with ⟨τ ′, e⟩ = 1, then τ = τ ′.

Proof. Let τ be a fixed pure state on A, then we have ⟨τ, 1− eτ ⟩ = 1 by our previous

discussion. We will show that e = 1− eτ is a minimal projection in A∗∗.

As Nτ is an embedded subspace of (Nτ )
∗∗, we have

eae = ea(1− eτ ) = ea− eaeτ = ea− ea = 0.

ea∗e = (1− eτ )a
∗e = a∗e− eτa

∗e = a∗e− a∗e = 0 for all a ∈ Nτ .

By using these two facts with Nτ +N∗
τ = Kerτ , we obtain eae = 0, ∀a ∈ Kerτ .

As the multiplication in A∗∗ is separately weak∗ continuous and Kerτ is weak∗-dense

in (kerτ)∗∗, we have eae = 0 for all a ∈ (Kerτ)∗∗. Since A∗∗ = (Kerτ)∗∗ ⊕C.e, then e

is a minimal projection in A∗∗.

Now, assume τ ′ is another pure state with ⟨τ ′, e⟩ = 1. Consider τ as an element

of A∗∗∗ and aeτ as an element of A∗∗ for all a ∈ A.

|⟨τ, aeτ ⟩|2 ≤ τ(e∗τeτ ).τ(a
∗a) = τ(eτ ).τ(a

∗a) = ⟨τ, eτ ⟩.τ(a∗a) = 0. So, ⟨τ, aeτ ⟩ = 0.

Hence, we have ⟨τ, ae⟩ = ⟨τ, a(1− eτ )⟩ = ⟨τ, a⟩. After a similar calculation, we obtain

⟨τ, ea⟩ = ⟨τ, a⟩.

Thus, ⟨τ, eae⟩ = ⟨τ, ea⟩ = ⟨τ, a⟩ for all a ∈ A. By hypothesis, we have ⟨τ ′, e⟩ = 1.

So, ⟨τ ′, eae⟩ = ⟨τ ′, a⟩. Since e is a minimal projection, for each a ∈ A, we can find

∃c ∈ C such that eae = c.e.

⟨τ, a⟩ = ⟨τ, eae⟩ = ⟨τ, ce⟩ = c.⟨τ, e⟩ = c = c⟨τ ′, e⟩ = ⟨τ ′, ce⟩ = ⟨τ ′, eae⟩ = ⟨τ ′, a⟩.
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Therefore, τ = τ ′.

Lemma 4.12. Let B be a unital C∗-algebra and A be a C∗-subalgebra of B sharing

the same unit. Let τ be a pure state on A and eτ be the right unit in A∗∗ as defined in

the preliminary result. Consider A∗∗ as a von Neumann subalgebra of B∗∗, then

(i) {f ∈ S(B) : f |A = τ} = {f ∈ S(B) : f(1− eτ ) = 1}.

(ii) span{f ∈ S(B) : f |A = τ} is a finite dimensional subspace of B∗ if and only if

(1− eτ )B
∗∗(1− eτ ) is a finite dimensional subspace of B∗∗.

(iii) The pure state τ has a unique extension to B if and only if (1 − eτ )B
∗∗(1 − eτ )

is a one-dimensional space(so that (1− eτ )B
∗∗(1− eτ ) includes a unique state).

Proof. Suppose that f(1 − eτ ) = ⟨f, e⟩ = 1 for f ∈ S(B), then f |A = τ by Lemma

4.11.

For the converse, suppose that f
∣∣
A
= τ for f ∈ S(B), then 1 = ⟨τ, e⟩ = ⟨f

∣∣
A
, e⟩.

Hence, fe = f(1− eτ ) = 1.

For the rest of lemma, first observe that e : B∗ → B∗ is a projection. Then

we have B∗ = Ker(e) ⊕ Ran(e) = eτB
∗eτ ⊕ eB∗e. Also, B∗∗ = eB∗∗e ⊕ eτB

∗∗eτ .

Since ⟨eb∗∗e, eτb∗eτ ⟩ = ⟨b∗∗, eeτb∗eτe⟩ = ⟨b∗∗, 0⟩ = 0 for any element eb∗∗e ∈ eB∗∗e and

eτb
∗eτ ∈ eτB

∗eτ , then the dual space of eB∗e is eB∗∗e.

Let ege be an element of eB∗e for g ∈ B∗. Since eae = 0 for all a ∈ Kerτ , we have

⟨ege, a⟩ = ⟨g, eae⟩ = 0. So, Kerτ ⊆ Ker(ege|A). Then we have that ege|A = λτ for

some λ ∈ C. So, eB∗e ⊆ {f ∈ B∗ : f |A = λτ for λ ∈ C} = span{f ∈ S(B) : f |A = τ}.

Define a map ψ : span{f ∈ S(B) : f |A = τ} → eB∗e by f 7→ efe. So, the map ψ is

linear. Since ||efe|| ≤ ||f ||, ψ is bounded. Let f be a nonzero element in Kerψ. Then

efe = 0 implies that ⟨efe, b⟩ = 0 for all b ∈ B. As B is weak∗-dense in B∗∗, it also holds

for all b∗∗ ∈ B∗∗. In particular, ⟨efe, e⟩ = 0. Hence, we have ⟨f, e⟩ = 0(contradiction

by i). So, f must be a zero functional. Hence, the map ψ is linear bijective. If one of

these spaces is finite dimensional, then the other has the same dimension.
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Theorem 4.13. ∀t ∈ βN, either [δt] is contained in a finite dimensional subspace of

B(H)∗ or a homeomorphic copy of βN lies in [δt].

Proof. Suppose that [δt] doesn’t lie in a finite dimensional subspace of B(H)∗. We

know that τ = δt is a pure state on C(βN). So, by Lemma 4.11, there exists a minimal

projection e ∈ C(βN)∗∗ with e = 1 − eτ such that ⟨τ, eτ ⟩ = 0. Since B(H) is a unital

C∗-algebra and C(βN) is a closed C∗-subalgebra of B(H) sharing the same unit, we

can consider C(βN)∗∗ as a von Neumann subalgebra of B(H)∗∗. As δt is a pure state,

{f ∈ S(B(H)) : f
∣∣
C(βN) = δt} = {f ∈ S(B(H)) : f(1 − eτ ) = 1} by Lemma 4.12. So,

[δt] ⊆ {f ∈ S(B(H)) : f
∣∣
C(βN) = δt}.

[δt] ⊆ span([δt]) and span([δt]) is an infinite dimensional subspace of B(H)∗,

then eB(H)∗e is infinite dimensional. Let’s say S := {f ∈ eB(H)∗e : f is a state}

and P := {f ∈ eB(H)∗e : f is a pure state}. Then span(S) is an infinite dimensional

subspace of eB(H)∗e.

Since span(S) is infinite dimensional (Proposition 3.11.9 [17]), span(P ) is an

infinite dimensional subspace of eB(H)∗e by the Krein-Milman theorem. Since each

pure state in span(P ) is supported by a minimal projection of eB(H)∗∗e, the set of

minimal projections spans an infinite dimensional subspace. For two distinct minimal

projections eτi and eτj , we have a projection eτieτj such that eτieτj ≤ eτi . This happens

only when eτieτj = 0 as eτi is a minimal projection. So there exists a sequence of

orthogonal minimal projections {eτn}n∈N and each eτn supports a pure state τn of

eB(H)∗e. So, we have a sequence of orthogonal pure states {τn}n∈N in eB(H)∗e in

terms of orthogonality of minimal projections. The orthogonal pure states {τn} in

eB(H)∗e is homeomorphic to N so that [δt] contains a homeomorphic copy of βN.

Remark 4.14. If [δt] is contained in a finite dimensional subspace of B(H)∗, it is a

compact set in the norm topology, hence it is norm separable. This theorem gives rise

to an important question as stated below.
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Question: How to prove that [δt] doesn’t contain a homeomorphic copy of βN?

Let t be an ultrafilter of βN and ρ = δt + λ be a pure state extension of δt. We

have already proved that Nρ = {T ∈ B(H) : ρ(T ∗T ) = 0} is a closed maximal left

ideal. This ideal is not always a weak∗-closed subspace of B(H). It may not even

have a right unit. Since it is a closed left ideal in B(H), it admits a right approximate

unit consisting of positive bounded linear operators in the closed unit ball. Moreover,

this approximate unit consists of diagonal operators if t ∈ N. Thus, it is an upcoming

question to ask that when the approximate unit of Nρ consists of diagonal operators?

Theorem 4.15. Let ρ = δt + λ be a pure state extension of δt from C(βN) to B(H)

for any t ∈ βN, where λ vanishes on the diagonal operators. Then the following are

equivalent;

(i) The maximal left ideal Nρ = {T ∈ B(H) : ρ(T ∗T ) = 0} has a right approximate

unit (Ui)i∈I consisting of positive bounded diagonal operators.

(ii) ρ is a unique pure state extension of δt.

Proof. Suppose that δt has a unique pure state extension ρ from ℓ∞ to B(H). So,

by Lemma 4.12, eB(H)∗∗e is one dimensional for a minimal projection e of ℓ∞∗∗ with

⟨δt, e⟩ = 1. Since Nρ is a closed left ideal, it admits a right approximate unit (Ui)i∈I

consisting of increasing positive elements in the closed unit ball of Nρ.

Since B(H)∗∗ = ℓ∞∗∗ ⊕ ℓ∞∗⊥, where ℓ∞∗⊥ is the set of annihilator of ℓ∞∗ in

B(H)∗∗ and eℓ∞∗∗e = Ce, then eB(H)∗∗e = Ce. As Ui is a right approximate identity

for Nρ, there exists a right unit eρ for (Nρ)
∗∗(second dual of Nρ). Hence, we have that

eeρe = c.e for some c ∈ C. So eρ ∈ ℓ∞∗∗. Thus, the corresponding approximate unit

(Ui)i∈I consists of diagonal operators.

For the reverse direction, suppose that the right approximate unit (Ui)i∈I of Nρ is

diagonal. AsNρ+N
∗
ρ = Kerρ(N∗

ρ is the set of involution elements ofNρ), Nρ ⊆ Ker(ρ).
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Since Ui are diagonal in Kerρ, we have ρ(Ui) = 0 and λ(Ui) = 0 for each i ∈ I. Hence,

δt(Ui) = 0 for all i ∈ I.

Let T be any element in Kerρ. Then T = T1+T2 for some T1 ∈ Nρ and T2 ∈ N∗
ρ .

As T = T1 + T2 = lim
i
(T1Ui) + lim

i
(UiT2), we have

δt(T ) = δt(lim
i
(T1Ui) + lim

i
(UiT2)) = lim δt(T1)δt(Ui) + lim δt(Ui)δt(T2) = 0.

Thus, Kerρ = Kerδt. Let ρ1 and ρ2 be two pure state extensions of δt from ℓ∞ to

B(H). Since Kerρ1 = Kerδt and Kerρ2 = Kerδt, then ρ1 = λρ2 for some λ ∈ C. As

ρ1 and ρ2 are pure states, ρ1(1) = ρ2(1) = 1. So λ = 1 which shows that the extension

of δt is unique.

Let us consider the set E := {t : t ∈ βN, [δt] is weakly compact}. Given the

results of MSS [1], we know that this set is all of βN. But, we don’t have a direct

proof. We want to look at the topological properties of E in βN. By using Theorem

4.5 and Theorem 4.13, we have that the weak compactness of [δt] implies the norm

compactness. E is non-empty and it is bigger than the set of integers under the

Continuum hypothesis since integers are in E. Let’s define ∆ :=
⋃
t∈E

[δt] and put a

metric d on this set inherited from the norm topology on B(H)∗.

Lemma 4.16. The metric space (∆, d) defined as above is a complete locally compact

space. Furthermore, the set ∆
′
=

⋃
t∈D

[δt] is clopen in ∆ for any subset D ⊆ E.

Proof. Let t and s be two different elements in E. Then we can find an operator

T ∈ ℓ∞ with ||T || = 1 such that ⟨δt, T ⟩ = 1 and ⟨δs, T ⟩ = −1 by the Urysohn lemma.

So, we have ||ρ − ρ′|| ≥ |⟨δt + λ − δs − λ′, T ⟩| = 2 for any extensions ρ and ρ′ of δt

and δs respectively. Thus, d([δt], [δs]) = 2 for the closed sets [δt] and [δs]. Let x be any

element in
⋃
[δt]. Then there exists a net {(xi)}i∈I ⊆

⋃
[δt] such that for any ϵ > 0,

||xi − x|| < ϵ for large i. Choose ϵ = 1/2, then for large i, all xi are necessarily in the
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same set [δt] for some t ∈ E. After reindexing the net, we will have a net(say the same

net xi) in [δt]. As xi → x and [δt] is a closed set, x ∈ [δt]. Therefore, the set ∆ is a

norm closed subspace of B(H)∗. Therefore, (∆, d) is complete. By the same argument,

we can obtain that ∆′ =
⋃
t∈D

[δt] is closed in B(H)∗ for any nonempty subset D of E. As

∆ \∆′ is also closed in ∆ for a subset D′ ⊆ E, ∆′ is clopen in ∆. Thus, for t ∈ E, the

set [δt] is both closed and open in ∆. As a consequence, every pure state extension of

δt in ∆ has a compact neighborhood. Therefore (∆, d) is a locally compact space.

Since ∆ is locally compact, we can take its Stone-Čech compactification β(∆).

Suppose [δt] doesn’t contain any homeomorphic copy of βN for some t ∈ βN, then the

set [δt] is a compact open subset of ∆ by Lemma 4.13 and Lemma 4.16. Hence, it is

also a compact subset of β(∆). Now consider the function χ[δt]
: β∆ ⊆ B(H)∗ → R.

For any converging net fλ → f in β∆, we have |χ[δt]
(fλ)−χ[δt]

(f)| → 0 as the set [δt]

is both open and closed. So, χ[δt]
∈ C(β∆). Thus, we can define a bounded projection

P : C(β∆) → C([δt]) by g 7→ g.χ[δt]
. Then C([δt]) is a complemented ideal of the

C∗-algebra C(β∆). Since [δt] is compact and metric, C([δt]) is separable(see Riesz’s

theorem section 12.3, page 251 [4]). If C(β∆) has the Grothendieck property, then P is

weakly compact(Grothendieck, 1953, Theorem 2.48). Hence, the space C([δt]) is finite

dimensional. So, [δt] is finite. Since [δt] is convex, this set must be a set of a single

point.

Hence, if C(β∆) has the Grothendieck property and [δt] doesn’t contain any

homeomorphic copy of βN, then [δt] is a set of one-single point. Therefore, we still

have the following questions.

(1) How can we show that C(β∆) is a Grothendieck space?

(2) How can we show that E is a closed subset of βN?
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5. CONCLUSION

Let H be a separable infinite dimensional Hilbert space. The C∗-algebra C(βN)

sits in B(H) as a complemented weak-star subalgebra. For each t in βN, the Dirac

measure δt is a pure state of the algebra C(βN) and a priory has many state extensions

to B(H). We denote by [δt] the set of these state extensions. The set [δt] is a weak-star

compact convex subset of B(H)∗. The authors of the paper [1], by a method com-

pletely different from the one used here, solved the famous Kadision-Singer problem

by showing that the set [δt] contains only one element so that δt has a unique pure

state extension to B(H). Our aim in this thesis was to analyze this problem and to

obtain this same result by functional analytic methods. In this endeavor, we were

only partially successful. Our main result says that either the set [δt] lies in a finite

dimensional subspace of B(H)∗ or it is very large and contains a homeomorphic copy

of βN. Since B(H)∗ = ℓ∞∗⊕ ℓ∞⊥, every element of the set [δt] is of the form ρ = δt+λ

for some λ ∈ ℓ∞⊥. Taking this into account, we showed that the set [δt] contains only

one point iff the left ideal Nρ = {T ∈ B(H) : ρ(T ∗T ) = 0} has a bounded approximate

identity consisting of positive diagonal operators.

Although our investigation of the Kadison-Singer problem was not quite successful

in solving the Kadison-Singer problem, our approach has raised several interesting

questions for the further investigations and showed that the geometric properties of

Banach spaces, such as Grothendieck property and (V ) property, can be effectively

used in the investigations of the problems raised.



40

REFERENCES

1. Marcus, A. W., D. A. Spielman and N. Srivastava, “Interlacing Families II: Mixed

Characteristic Polynomials and The Kadison—Singer Problem”, Annals of Math-

ematics , pp. 327–350, 2015.
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