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Oğuz Yılmaz

B.S., Mathematics, Boğaziçi University, 2020
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ABSTRACT

GLOBAL WELL-POSEDNESS OF NLS EQUATIONS

The thesis is a survey of the I-method. After introducing the method, we discuss

the implementation of this method to cubic, defocusing nonlinear Schrödinger equation

in the spatial dimension n = 2 and quintic, defocusing nonlinear Schrödinger equation

in the spatial dimension n = 1 with detailed calculations. We will find out on which

type of equations one can use the I-method. We then mention our joint work with

Engin Başakoğlu on the cubic defocusing fourth order nonlinear Schrödinger equation

in the spatial dimension n = 4. Lastly, we discuss advantage and disadvantage of

the method and share our idea of a study plan of the same equation in the spatial

dimensions n = 2, 3 as future work.
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ÖZET

DOĞRUSAL OLMAYAN SCHRÖDİNGER

DENKLEMLERİNDE GLOBAL İYİ KONULMUŞLUK

Bu tez I-metodu üzerine bir araştırmadır. Metodu tanıttıktan sonra, bu metodu

uzay boyutu 2 durumunda kübic doğrusal olmayan Schrödinge denklemine ve 1 uzay

boyutunda beşinci dereceden (quintic) doğrusal olmayan Schrödinger denklemine uygu-

lamasını detaylı hesaplamalarla tartışacağız. Buradan aslında hangi tip denklemlerde

I-metodunun kullanılabileceğini tespit edeceğiz. Sonrasında Engin Başakoğlu ile ortak

çalışmamız olan, 4 uzay boyutunda I-metodunun kübik dördüncü dereceden doğrusal

olmayan Schrödinger denklemine uygulanmasından bahsedeceğiz. Son olarak bu meto-

dun avantajı ve dezavantajını tartışıp metodu uygulayabileceğimiz gelecek çalışma

planımızı paylaşacağız.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

In this thesis, the main purpose is to present the I-method and its use on nonlinear

dispersive partial differential equations. A dispersive PDE is a type of differential

equation such that its solution has the velocity which depends on its frequency or

wavelength. To be more precise, consider the plane wave solution u to a linear dispersive

PDE in 1D

i∂tu+ Lu = 0

where L is a linear partial differential operator in the spatial variable, L = L(∂x). It is

of the form

u(t, x) = Aei(kx−wt)

where A, k, w are the amplitude, the wavelength or wave number, and the frequency

at the space-time point (t, x), respectively. In general, the frequency w is assumed to

be a function of k. The dispersion relation is given by

w + L(ik) = 0.

For example, let us take L(∂x) = (∂x)
2. Then the dispersion relation becomes

w = k2.

The planar waves are called dispersive when the second derivative of w(k) with re-

spect to the variable k is not zero. In the geometric point of view, the characteristic

hyperspace w + L(ik) = 0, where the nontrivial solutions of the equation persist, has

nonzero curvature when dispersion exists. For details, see the Xs,b-space discussion in

Appendix. In physical space, dispersive waves having different wavelengths, hence dif-

ferent frequencies, propagate with different velocities. Therefore, a mixed planar waves

of different wavelengths eventually scatter in space. KdV and Schrödinger equations

are two pivotal examples of dispersive type of partial differential equations.
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We will focus on well-posedness of quintic, defocusing NLS in 1D and cubic,

defocusing NLS in 2D when we implement the I-method.

Definition 1.1. An IVP is called well-posed if the data-to-solution map is at least

a continuous function. More precisely, an IVP is well-posed in a Banach space, for

example, Hs(Rn) if for any initial data taken from u0 ∈ Hs(Rn), there is a unique time

interval I starting from t = 0 such that the unique solution u belongs to C(I;Hs(Rn))

for (t, x) ∈ I × Rn.

The interval of existence, say [0, T ] for some T > 0, determines that the well-

posedness of the equation is either local or global. The local well-posedness theory

of a large class of NLS equations can be found in [1]. We restrict our attention to

the global well-posedness issue. To this end, the typical approach to show the global

well-posedness of an IVP is to use the symmetries or the conservation laws which

the solutions obey together with the local theory results. For example, consider the

nonlinear Schrödinger equations whose solutions obey the energy conservation and

the mass conservation laws. Together with the standard iteration argument, one can

conclude NLS equations are globally well-posed in the energy space, H1(Rn). Also,

with a suitable selection of nonlinear term, for example algebraic type of nonlinearity

as in cubic NLS, H1 global well-posedness implies the global well-posedness of NLS

equations in Hs for s ≥ 1, [2].

The main difficulty below the energy level, s < 1, regarding the global well-

posedness of NLS type of equations is the absence of conservation laws. There is no

conserved quantity for 0 < s < 1. The energy of a rougher initial data, which is

taken from Hs(Rn) for s < 1, is infinite in general. So, we cannot exploit the energy

conservation directly to establish global well-posedness results below the energy space.

However, if one can generate a quantity which is comparable to the Hs norm of the

solution for all fixed time and this quantity does not grow substantially in time, then

Hs norm is controlled by the same bound. This would imply the global well-posedness

of the equation on Hs0 where s0 ≥ s. The I-method is a tool to generate such an

almost conserved quantity. It was introduced in the papers [2, 3].
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This method can be considered as a refinement and modification of J. Bourgain’s

Fourier truncation approach [4]. In the next chapter, we will start with a brief de-

scription of the method. Then we will use it on defocusing, cubic NLS on 2D and

defocusing, quintic NLS on 1D. Lastly, we briefly discuss the use of the method on

fourth order defocusing cubic NLS. So, the main part of the document consists of the

implementation of the method because most of the derived results and estimates in-

cluding the I-method are heavily related to the equation we are studying on. In the

conclusion, we discuss the positive and negative sides of the method and our idea of

application of the method on a fourth order NLS as future plan.
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2. THE I-METHOD AND ITS APPLICATIONS

In this chapter, we first introduce the operator I and see how it can be used on

suitable equations to improve the global well-posedness results. The definition of the

operator is taken from [2]. Given s < 1 and a cut-off parameter N ≫ 1, the Fourier

multiplier operator IN is defined as

ÎNu(ξ) = mN(ξ)û(ξ) (2.1)

where the multiplier mN is smooth, radial, decreasing in |ξ| and given as

mN(ξ) =

1 |ξ| ≤ N,

|ξ|s−1N1−s |ξ| ≥ 2N

(2.2)

and smoothly interpolates in the region N < |ξ| < 2N . For brevity, we shall drop the

subscript N from the notation of the multiplier mN and the operator IN and write m

and I, respectively. The multiplier m satisfies the condition

|∇j
ξm| ≲ |ξ|−j for j ≥ 0, where ξ ∈ Rn \ {0}

implying that m is a Hörmander-Mikhlin multiplier (see [1] Theorem 2.8). Conse-

quently, the operator I is bounded from Lp(Rn) to Lp(Rn) for 1 < p < ∞. Roughly

speaking, I acts as an identity operator on the functions with low frequency while the

functions of high frequency are 1− s degree smoothened by the action of the operator

I.

2.1. On the Cubic Defocusing NLS in 2D

In this section, we consider the following IVPi∂tu+△u =|u|2u (t, x) ∈ R× R2,

u(0, x) =u0(x) ∈ Hs(R2)
(2.3)

where s < 1.
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The first result improving the global well-posedness result for the solutions to the

equation (2.3) below the energy space, s = 1, was established by J. Bourgain in [5]

which states that the rough solutions to the equation (2.3) are global in time when

s > 2
3
. In [4], he improved this result to s > 3

5
. J. Colliander, M. Keel, G. Staffilani,

H. Takaoka, and T. Tao extend the global well-posedness result to even rougher initial

data using the I-method. More precisely, in [2], it is stated that solutions to (2.3) are

globally well-posed for the data in Hs(R2) for s > 4
7
. In [6], the same authors improved

their result to s > 1
2
by adding a correction term to the almost conserved quantity

introduced in [2]. More recently, in 2016, B. Dodson showed in [7] that solutions to the

equation (2.3) persist globally in time in Hs(R2) for s ≥ 0. Thus, he reached the best

possible global result for (2.3) in spatial dimension 2. However, this section concerns

giving insight into the I-method. Therefore, we will mainly follow [2] to understand

the use of this approach.

The IVP (2.3) has some useful properties. Namely, a solution u obeys the mass

conservation

M(u(t)) =
(∫

R2

|u(t, x)|2dx
)1/2

= M(u0)

and the energy conservation

E(u(t)) =

∫
R2

1

2
|∇u(t, x)|2 + 1

4
|u(t, x)|4dx = E(u0).

for all existence time t. We observe from the energy functional that the energy is

always nonnegative. In this case, the IVP (2.3) becomes defocusing. The main result

in [2] is stated as follows

Theorem 2.1. The IVP (2.3) is globally well-posed for the initial data u0 ∈ Hs(R2)

when s > 4
7
.

By the standard density argument (see [8]), it is enough to take the initial data

u0 ∈ C∞
c (R2) while proving Theorem 2.1.
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Also, to establish the result, it is enough to show

∥u(t)∥Hs
x(R2) ≲∥u0∥Hs

x(R2)
⟨t⟩M (2.4)

for some M > 0 depending on the Hs-norm of the initial data. We have, for solution

u and the initial data u0,

E(Iu(t)) ≤
(
N1−s∥u(t)∥Ḣs

x(Rn)

)2
+ ∥u(t)∥4L4

x(Rn), (2.5)

∥u(t)∥2Hs
x(Rn) ≲ E(Iu(t)) + ∥u0∥2L2

x(Rn). (2.6)

To see (2.5), writing E(Iu(t)) explicitly and using Plancherel’s theorem

E(Iu(t)) =
1

2

∫
Rn

|ξ|2m2(ξ)|û(t, ξ)|2dξ + 1

4
∥Iu(t)∥4L4

t,x(Rn)

≤
∫
|ξ|≤N

|ξ|2|û(t, ξ)|2dξ +
∫
|ξ|>N

|ξ|2sN2−2s|û(t, ξ)|2dξ + ∥u(t)∥4L4
x(Rn)

≤
∫
|ξ|≤N

|ξ|2sN2−2s|û(t, ξ)|2dξ +
∫
|ξ|>N

|ξ|2sN2−2s|û(t, ξ)|2dξ + ∥u(t)∥4L4
x(Rn)

=
(
N1−s∥u(t)∥Ḣs

x(Rn)

)2
+ ∥u(t)∥4L4

x(Rn).

For (2.6), by Plancherel’s theorem

∥u(t)∥2Hs
x(Rn) =

∫
|ξ|≤N

⟨ξ⟩2s|û(t, ξ)|2dξ +
∫
|ξ|>N

⟨ξ⟩2s|û(t, ξ)|2dξ

≲ ∥⟨ξ⟩2s−2∥2L∞
ξ (|ξ|≤N)

∫
|ξ|≤N

⟨ξ⟩2|û(t, ξ)|2dξ +
∫
|ξ|>N

⟨ξ⟩2s|û(t, ξ)|2dξ

≲s ∥u(t)∥2L2
x(Rn) +

∫
|ξ|≤N

|ξ|2|û(t, ξ)|2dξ +N2−2s

∫
|ξ|>N

|ξ|2s|û(t, ξ)|2dξ

≲ E(Iu(t)) + ∥u0∥2L2
x

where the mass conservation is applied in the last inequality. By (2.5), (2.6), we can

control the modified energy with the Hs-norm of the solution, and control the Hs-norm

of u with the modified energy together with the initial mass. Therefore, showing

E(Iu(t)) ≲ ⟨t⟩M (2.7)

with (2.6), for some cut-off parameter N dependent on t, suffices to establish (2.4).
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Then we somehow want to control the growth of the modified energy E(Iu(t)), which

is achieved by the following proposition.

Proposition 2.2. Given s > 4
7
, N ≫ 1, and initial data u0 ∈ C∞

c , with E(Iu0) ≤ 1,

there exists δ = δ(∥u0∥L2(R2)) > 0 such that the solution

u ∈ C([0, δ], Hs(R2))

of (2.3) satisfies

E(Iu(t))− E(Iu0) ≲ N− 3
2
+ (2.8)

for all t ∈ [0, δ].

So, we can control the growth of the modified energy with a negative power of

the large cut-off parameter N . This is why E(Iu(t)) is called an almost conserved

quantity. Note that Iu is not a solution to (2.3). It is a solution to the following IVPi∂tIu+△Iu =I(|u|2u),

Iu(0, x) =Iu0(x).
(2.9)

As stated, the main idea in Proposition 2.2 is to control the growth of almost conserved

quantity

E(Iu(t)) =

∫
R2

1

2
|∇Iu(t, x)|2 + 1

4
|Iu(t, x)|4dx

by means of −3
2
+ power of N where this power depends on the spatial dimension.

Time differentiation gives that

∂tE(Iu(t)) = ℜ
∫
R2

△Iu∂tIu+ IuIuIu∂tIu dx

= ℜ
∫
R2

∂tIu(IuIuIu− I(uuu))dx.
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Integrating this from 0 to δ and using the Plancherel formula yields

E(Iu(δ))− E(Iu(0))

= ℜ
∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
∂̂tIu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4) dt

≲

∣∣∣∣∣
∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
△̂Iu(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4) dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
̂I(|u|2u)(ξ1)Îu(ξ2)Îu(ξ3)Îu(ξ4) dt

∣∣∣∣∣
=: Term1 + Term2.

Thus, the aim is to show Term1 + Term2 ≲ N− 3
2
+. Before starting the proof of

Proposition 2.2, we need the local existence result for the modified equation (2.9).

Lemma 2.3 (Modified Local Existence). Given 4
7
< s < 1 and the initial data u0 for

the equation (2.3) with E(Iu0) ≤ 1, there is a constant δ = δ(∥u0∥L2(R2)) > 0 such that

the solution Iu to the modified IVP (2.9) has the following property on [0, δ],

∥Iu∥
X

1, 12+

δ

≲ 1. (2.10)

Proof. The standard iteration argument will be applied, see [8], to show the local

existence of (2.9). For this purpose, we use the following typical Xs,b estimates.

∥eit△u∥
X

1, 12+

δ

≲ ∥u∥H1
x
, (2.11)∥∥∥∫ t

0

ei(t−t′)△U(x, t′)dt′
∥∥∥
X1, 12+

≲ ∥U∥
X

1,− 1
2+

δ

, (2.12)

∥U∥X1,−b
δ

≲ δb−b′∥U∥X1,−b′ (2.13)

where 0 < b′ < b < 1
2
. For the proof of these type of estimates, see [9]. By Duhamel’s

principle, one can give the following representation for the solutions of (2.9) as

Iu(t, x) = eit△
2

Iu0(x)− i

∫ t

0

ei(t−t′)△2

I(|u|2u)(t′, x)dt′ (2.14)
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for t ∈ [0, δ]. Using (2.11)–(2.14) we have

∥Iu∥
X

1, 12+

δ

=
∥∥∥eit△Iu0 + i

∫ t

0

ei(t−t′)△I(|u|2u)(t′, ·)dt′
∥∥∥
X

1, 12+

δ

≲ ∥Iu0∥H1
x
+ ∥I(uuu)∥

X
1,− 1

2+

δ

≲ ∥Iu0∥H1
x
+ δ0+∥I(uuu)∥

X
1,− 1

2++

δ

.

The next task is to show

∥I(uuu)∥
X

1,− 1
2++

δ

≲ ∥Iu∥3
X

1, 12+

δ

. (2.15)

Also, note that

∥Iu0∥H1
x
≲ (E(Iu0))

1/2 + ∥u0∥L2
x
≲ 1 + ∥u0∥L2

x
. (2.16)

Combining (2.15) and (2.16), we have

∥Iu∥
X

1, 12+

δ

≲ 1 + ∥u0∥L2
t,x

+ δ0+∥Iu∥3
X

1, 12+

δ

. (2.17)

By applying the bootstrap or continuity argument, see [10] ch.1, we obtain the desired

result. The ∥u0∥L2
x
dependence of δ can be seen in (2.17). We also observe that δ must

be sufficiently small in order to employ the bootstrap argument. Therefore, establishing

(2.15) will complete the proof. Using the interpolation lemma in [11], it is enough to

show

∥uuu∥
X

s,− 1
2++

δ

≲ ∥u∥
X

s, 12+

δ

for 4
7
< s < 1. By the fractional Leibniz rule, it suffices to show

∥(⟨∇⟩su)uu∥
X

0,− 1
2++

δ

≲ ∥u∥3
X

s, 12+

δ

.

We consider the following integral to exploit the duality argument∣∣∣∣∣
∫ δ

0

∫
R4

(⟨∇⟩su)uufdxdt

∣∣∣∣∣. (2.18)

where f is taken from {f : ∥f∥
X0, 12−− = 1}. It is basically the Riesz representation

theorem for Xs,b spaces. Applying the Hölder’s inequality, we have

(2.18) ≤ ∥⟨∇⟩su∥L4
t,x
∥u∥L4

t,x
∥u∥L4+

t,x
∥f∥L4−

t,x
.



10

Applying L4
t,x-Strichartz estimate (A.14) to the first two factor, we get

∥⟨∇⟩su∥L4
t,x

≲ ∥u∥
X

s, 12+

δ

and

∥u∥L4
t,x

≲ ∥u∥
X

0, 12+

δ

≲ ∥u∥
X

s, 12+

δ

.

For the third factor, we start applying Sobolev embedding (A.11) and then L4+
t L4−

x -

Strichartz estimate to obtain

∥u∥L4+
t,x

≲ ∥⟨∇⟩0+u∥L4+
t L4−

x
≲ ∥u∥

X
0+, 12+

δ

≲ ∥u∥
X

s, 12+

δ

.

For the last factor, observe that

∥f∥L2
t,x

≲ ∥f∥X0,0
δ

and

∥f∥L4
t,x

≲ ∥f∥
X

0, 12+

δ

.

Interpolating the upper bounds of f keeping in mind that the universal small constants

from which arise X0, 1
2
+ and L4−

t,x norms are not the same but one of them can be

regarded as a function of the other one, we obtain

∥f∥L4−
t,x

≲ ∥f∥
X

0, 12−−
δ

.

Combining all the inequalities and supremum on the set where ∥f∥
X

0, 12−−
δ

= 1, we get

∥(⟨∇⟩su)uu∥
X

s,− 1
2++

δ

≲ ∥u∥3
X

s, 12+

δ

.

Proof of Proposition 2.2. By the above observation, we may restrict our attention to

showing that

Termi ≲ N− 3
2
+
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separately, i = 1, 2. For Term1, using the Littlewood-Paley decomposition, define

ûN1 = ̂PN1△Iu, ûN2 = P̂N2Iu, ûN3 = P̂N3Iu, ûN4 = P̂N4Iu

where PN is the Littlewood-Paley projection operator (A.3) and Ni = 2ki , ki ∈

{0, 1, 2, . . . } for i = 1, 2, 3, 4. For simplicity in terms of writing, we shall denote

mj = m(ξj) and mij = m(ξi + ξj). Term1 can be controlled via the decomposition

Term1 =

∣∣∣∣∣ ∑
N1,...,N4

∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m234

m2m3m4

)
ûN1(ξ1)ûN2(ξ2)ûN3(ξ3)ûN4(ξ4)dt

∣∣∣∣∣
≤

∑
N1,...,N4

∣∣∣∣∣
∫ δ

0

∫
∑4

i=1 ξi=0

(
1− m234

m2m3m4

)
ûN1(ξ1)ûN2(ξ2)ûN3(ξ3)ûN4(ξ4)dt

∣∣∣∣∣
where ⟨ξi⟩ ∼ Ni for i = 1, 2, 3, 4. The symmetry of the variables ξ2, ξ3, ξ4 in the

multiplier provides us to restrict our focus to the region N2 ≥ N3 ≥ N4. In this region,

we also have N1 ≲ N2 because ξ1234 = 0. Without the loss of generality, we may

assume that the Fourier transform of all Littlewood-Paley pieces of u are non-negative,

see [12]. To see this assumption, for simplicity let us take f, g ∈ L2(Rn) and set

f(x) = f1(x) + if2(x)

where f1, f2 are real-valued. We have

∥fi∥L2 ≤ ∥f∥L2

for i = 1, 2. Thus, we may initially assume that the dyadic pieces are real-valued.

Define

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0},

and define the same decomposition for g. Then

∫
Rn

f(x)g(x)dx =

∫
Rn

f+g+ − f−g+ − f+g− + f−g−dx

≤
∫
Rn

|f+g+|+ |f−g+|+ |f+g−|+ |f−g−|dx

≤ ∥f+∥L2∥g+∥L2 + ∥f−∥L2∥g+∥L2 + ∥f+∥L2∥g−∥L2 + ∥f−∥L2∥g−∥L2
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≲ ∥f∥L2∥g∥L2 .

Thus, we see that taking the dyadic pieces non-negative does not cause the loss of the

generality. With this assumption, we can take the multiplier out of the integral with a

pointwise bound C(N1, N2, N3, N4) depending on the size of frequencies Nj in different

frequency interactions. By reverting back the Plancherel formula and Cauchy-Schwarz

inequality, it is sufficient to show the following estimate

C(N1, N2, N3, N4)

∣∣∣∣∣
∫ δ

0

∫
∑4

i=1 ξi=0

ûN1(ξ1)ûN2(ξ2)ûN3(ξ3)ûN4(ξ4)dt

∣∣∣∣∣
≲ N− 3

2
+N0−

2 ∥uN1∥X−1, 12+

4∏
j=2

∥uNj
∥
X1, 12+ (2.19)

All Lp and Xs,b norms in (2.19) are taken on the domain [0, δ]×R2 and we shall keep

this notation for the rest of this chapter. As in the previous term, Term2 can be

expressed by

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

∑
N4≥N5≥N6

(
1− m456

m4m5m6

)
PN123 Î(uuu)(ξ1 + ξ2 + ξ3)

× ÎuN4(ξ4)ÎuN5(ξ5)ÎuN6(ξ6)

∣∣∣∣∣ (2.20)

where PN123 is the Littlewood-Paley projection operator onto the dyadic shell N123 ∼

⟨ξ1 + ξ2 + ξ3⟩. So, we have

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

∑
N4≥N5≥N6

(
1− m456

m4m5m6

)
PN123 Î(uuu)(ξ123)

×ÎuN4(ξ4)ÎuN5(ξ5)ÎuN6(ξ6)

∣∣∣∣∣
≤

∑
N4≥N5≥N6

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m456

m4m5m6

)
PN123 Î(uuu)(ξ123)

×ÎuN4(ξ4)ÎuN5(ξ5)ÎuN6(ξ6)

∣∣∣∣∣.
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It is then sufficient to show for the dyadic pieces of (2.20) that

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m456

m4m5m6

)
PN123 Î(uuu)(ξ123)ÎuN4(ξ4)ÎuN5(ξ5)ÎuN6(ξ6)

∣∣∣∣∣
≲ N− 3

2
+N0−

4 ∥Iu∥3
X1, 12+

6∏
j=4

∥IuNj
∥
X1, 12+ . (2.21)

We may again assume N123 ≲ N4 and N4 ≳ N to omit the case where the multiplier in

(2.21) is zero. N0−
4 factor on the right side of (2.21) allows us to sum especially in the

dyadic number N123. Therefore, it saves us decomposing the terms of I(uuu). At this

point, we may again assume that the dyadic pieces have all non-negative spatial Fourier

transform. Therefore we can put the symbol out with a bound for each frequency

interaction case as

∣∣∣1− m456

m4m5m6

∣∣∣ ≲ m(N123)

m(N4)m(N5)m(N6)
(2.22)

and undo the Plancherel formula.

Now, we start showing (2.19). We need to consider two frequency interaction

cases. The case N ≫ N2 is excluded since otherwise the multiplier inside becomes

zero.

Case 1: N2 ≳ N ≫ N3 ≥ N4 and N1 ∼ N2. Take the multiplier out with the

bound

∣∣∣1− m234

m2m3m4

∣∣∣ ≲ N3

N2

.

Using Hölder’s inequality on uN1uN3 uN2uN4 , and applying (A.15), we obtain

Left side of (2.19) ≲
N3

N2

∥uN1uN3∥L2
t,x
∥uN2uN4∥L2

t,x
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≲
N3

N2

N
1/2
3

N
1/2
1

N
1/2
4

N
1/2
2

N1

N2N3N4

∥uN1∥X−1, 12+

4∏
j=2

∥uNj
∥
X1, 12+ .

Hence, it is enough to show

N
3
2
−N−2+

2 N
1/2
3

N
1/2
4

≲ 1.

Since N3, N4 ≳ 1 and N2 ≳ N we get the desired result.

Case 2: N2 ≥ N3 ≳ N . We use the following bound for the multiplier∣∣∣1− m234

m2m3m4

∣∣∣ ≲ m1

m2m3m4

.

There are two sub-cases coming from which one of N1, N3 is comparable to N2:

Case 2(a): N1 ∼ N2 ≥ N3 ≳ N . Applying Hölder’s inequality to uN1uN4 and

uN2uN3 , and using (A.15), we obtain

Left side of (2.19) ∼ m(N1)

m(N2)m(N3)m(N4)
∥uN1uN4∥L2

t,x
∥uN2uN3∥L2

t,x

≲
m(N1)

m(N2)m(N3)m(N4)

N
1/2
4

N
1/2
1

N
1/2
3

N
1/2
2

N1

N2N3N4

∥uN1∥X−1, 12+

×∥uN2∥X1, 12+∥uN3∥X1, 12+∥uN4∥X1, 12+ .

Therefore, it suffices to show

N
3
2
−N−1+

2

m(N3)N
1/2
3 m(N4)N

1/2
4

≲ 1. (2.23)

The function m(x)x1/2 is increasing for s > 1/2. Thus, m(N3)N
1/2
3 ≳ m(N)N = N

and m(N4)N
1/2
4 ≳ 1, that is,

Left side of (2.23) ≲ N1−N−1+
2 ≲ 1.

Case 2(b): N2 ∼ N3 ≳ N and N1 ≲ N2. Use Hölder’s inequality to uN1uN2 and
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uN3uN4 , and apply (A.15) to get

Left side of (2.19) ∼ m(N1)

m(N2)m(N3)m(N4)
∥uN1uN2∥L2

t,x
∥uN3uN4∥L2

t,x

≲
m(N1)

m(N2)m(N3)m(N4)

N
1/2
1

N
1/2
2

N
1/2
4

N
1/2
3

N1

N2N3N4

∥uN1∥X−1, 12+

×∥uN2∥X1, 12+∥uN3∥X1, 12+∥uN4∥X1, 12+ .

Thus, it is enough to establish

m(N1)N
3/2
1 N−3+

2 N
3
2
−

(m(N2))2m(N4)N
1/2
4

≲ 1. (2.24)

Recall that m(N1)N
1/2
1 ≲ m(N2)N

1/2
2 , m(N4)N

1/2
4 ≳ 1 and m(N2)N

1/2
2 ≳ N1/2. Then

it suffices to show

N1N
−2+
2 N1− ≲ N−1+

2 N1− ≲ 1

by N2 ≳ N . Gathering all the estimates and using the Littlewood-Paley inequality

(A.9) give the desired result for Term1. Thus, it is left to show that Term2 ≲ N− 3
2
+.

First, apply Hölder’s inequality to obtain

Left side of (2.21) ≲
m(N123)

m(N4)m(N5)m(N6)
∥PN123I(uuu)∥L2

t,x
∥IuN4∥L4

t,x

× ∥IuN5∥L4
t,x
∥IuN6∥L∞

t,x
. (2.25)

Also, the following inequalities will be needed to advance the next step

Lemma 2.4. Suppose the functions u, uN4 , uN5 , uN6 are as above and the spatial di-

mension n = 2. Then

∥PN123I(uuu)∥L2
t,x

≲
1

⟨N123⟩1
∥Iu∥3

X1, 12+
, (2.26)

∥IuNj
∥L4

t,x
≲

1

⟨Nj⟩1
∥IuNj

∥
X1, 12+ j = 4, 5, (2.27)
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∥IuN6∥L∞
t,x

≲ ∥IuN6∥X1, 12+ . (2.28)

Proof of Lemma 2.4. To show (2.26), it is enough to show

∥⟨∇⟩PN123I(uuu)∥L2
t,x

≲ ∥Iu∥3
X1, 12+

. (2.29)

The pseudo-differential operator ⟨∇⟩I is of positive order s > 4
7
. So, it obeys the

fractional Leibniz rule. Then it suffices to show the inequality on a typical term

∥PN123(⟨∇⟩Iu)uu)∥L2
t,x
.

We apply Hölder’s inequality keeping in mind the boundedness of PN123 : L2
t,x → L2

t,x

to obtain

∥PN123(⟨∇⟩Iu)uu∥L2
t,x

≲ ∥⟨∇⟩Iu∥L4
t,x
∥u∥L8

t,x
∥u∥L8

t,x
. (2.30)

Using the Strichartz estimate (A.14), we have

∥⟨∇⟩Iu∥L4
t,x

≲ ∥⟨∇⟩Iu∥
X0, 12+ = ∥Iu∥

X1, 12+ . (2.31)

For the second and the third factor, applying Sobolev embedding (A.11) and the

Strichartz estimate (A.14), we get

∥u∥L8
t,x

≲ ∥⟨∇⟩1/2u∥
L8
tL

8
3
x

≲ ∥⟨∇⟩1/2u∥
X0, 12+ ≲ ∥⟨∇⟩Iu∥

X0, 12+ = ∥Iu∥
X1, 12+ . (2.32)

(2.31) and (2.32) give the desired inequality (2.26). To show (2.27), we use the Bern-

stein inequality (A.6) and the Strichartz estimate

∥IuNj
∥L4

t,x
∼ 1

⟨Nj⟩
∥⟨∇⟩IuNj

∥L4
t,x

≲
1

⟨Nj⟩
∥Iu∥

X1, 12+ j = 4, 5.

To show (2.28), we first utilize the Fourier inversion formula

|IuN6(x)| ≤
∫
⟨ξ⟩∼N6

|ÎuN6(ξ)|dξ.

By Cauchy-Schwarz inequality, we obtain

∫
⟨ξ⟩∼N6

|ÎuN6(ξ)|dξ ≤
(∫

⟨ξ⟩∼N6

⟨ξ⟩2|ÎuN6(ξ)|2dξ
)1/2(∫

⟨ξ⟩∼N6

⟨ξ⟩−2dξ
)1/2

≲∥IuN6∥H1
x
.
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Taking essential supremum in x, we conclude that

∥IuN6∥L∞
x
≲ ∥IuN6∥H1

x

which yields (2.28) when we also apply L∞
t L2

x-Strichartz estimate.

Combining (2.25) and Lemma 2.4, we have

Right side of (2.25) ≲
m(N123)

m(N4)m(N5)m(N6)⟨N123⟩⟨N4⟩⟨N5⟩
∥Iu∥3

X1, 12+

×
6∏

j=4

∥IuNj
∥
X1, 12+ . (2.33)

Thus, it suffices to show

m(N123)N
3
2
−N0+

4

m(N4)m(N5)m(N6)⟨N123⟩⟨N4⟩⟨N5⟩
≲ 1. (2.34)

There exist two frequency interaction cases arising N123 ∼ N5 or N5 ∼ N4.

Case 1: N4 ∼ N5 and N4 ≥ N5 ≥ N6 and N4 ≳ N . In this case, the left side of

(2.34) satisfies

Left side of (2.34) ∼ m(N123)N
3
2
−N0+

4

(m(N4))2m(N6)⟨N123⟩⟨N4⟩2
.

Note that m(y)⟨x⟩1/2 ≳ 1 for 0 ≤ y ≤ x and m(N123)⟨N123⟩−1 ≲ 1. Thus, it suffices to

show

N
3
2
−N0+

4

⟨N4⟩1/2N
≲ N

1
2
−N

− 1
2
+

4 ≲ 1.

This is achieved because N4 ≳ N .

Case 2: N123 ∼ N4 and N4 ≥ N5 ≥ N6 and N4 ≳ N . We observe

Left side of (2.34) ∼ N
3
2
−N0+

4

m(N5)m(N6)⟨N4⟩2⟨N5⟩
.
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Replacingm(N5)⟨N5⟩,m(N6)⟨N4⟩1/2 in the denominator with 1 sincem(y)⟨x⟩1/2 ≳

1 for 0 ≤ y ≤ x, it is sufficient to show

N
3
2
−N

− 3
2
+

4 ≲ 1

which can be seen via N4 ≳ N . So, we conclude that Term2 ≲ N− 3
2
+ which completes

the proof of Proposition 2.2.

Now, we prove Theorem 2.1 via Proposition 2.2. We apply the proposition to the

scaled solution

uλ(t, x) = λ−1u(
t

λ2
,
x

λ
). (2.35)

Using (2.5) for (2.35), we have

E(Iu0,λ) ≲
(
λ−2sN2−2s + λ−2

)(
1 + ∥u0∥Hs(R2)

)4
(2.36)

≲ C0λ
−2sN2−2s

(
1 + ∥u0∥Hs(R2)

)4
. (2.37)

Choose the scaling parameter λ = λ
(
N, ∥u0∥Hs(R2)

)
as

λ =
( 1

2C0

) 1
2s
N

1−s
s

(
1 + ∥u0∥Hs(R2)

) 2
s (2.38)

so that E(Iu0,λ) ≤ 1
2
and then apply the Proposition 2.2 to the scaled initial data

u0,λ iteratively, until the size of E(Iuλ(t)) reaches 1. More precisely, we reapply the

proposition at least C1N
3
2
− many times to have

E(Iuλ(C1N
3
2
−δ)) ∼ 1. (2.39)

For any time parameter T0 ≫ 1, we choose N ≫ 1 so that

T0 ∼
N

3
2
−

λ2
C1δ ∼ N

7s−4
s

−. (2.40)

Combining (2.38), (2.39) and (2.40), we conclude that

E(Iu(T0)) = λ2E(Iuλ(λ
2T0)) ≲δ,∥u0∥Hs(R4)

λ2 ∼ N
4−4s

s ∼ T
8−8s
7s−4

+

0 . (2.41)

Using (2.6) and (2.41), we get

∥u(T0)∥Hs(Rn) ≲ T
4−4s
7s−4

+

0 . (2.42)
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The desired polynomial bound (2.4) is obtained whenever s > 4
7
.

2.2. On the Quintic Defocusing NLS in 1D

The following IVP will be considered in this sectioni∂tu+ ∂2
xu =|u|4u (t, x) ∈ R× R,

u(0, x) =u0(x) ∈ Hs(R)
(2.43)

when s < 1. In [10], it is stated that the equation (2.43) is globally well-posed for

u0 ∈ Hs(R) when s > 3
4
. The approach in the article does not involve Xs,b space

estimates when using the I-method.

The first global existence result below the energy level, s < 1, for (2.43) was

established in [3] by using the I-method. Furthermore, [3] posits that (2.43) is globally

well-posed in Hs(R) when s > 2
3
. In [13], the same authors improved their result

to s > 1
2
. In [14], this was extended to s > 1

3
. B. Dodson improved the global

well-posedness result to s > 1
4
in [15], and achieved the best possible global existence

result in [16]. In this section, we will implement the almost conservation law approach

together with the Xs,b estimates to obtain the global well-posedness result for s > 1
2
.

The IVP (2.43) has some useful properties. Namely, a solution u obeys the mass

conservation

M(u(t)) =
(∫

R
|u(t, x)|2dx

)1/2
= M(u0)

and the energy conservation

E(u(t)) =

∫
R

1

2
|∇u(t, x)|2 + 1

6
|u(t, x)|6dx = E(u0).

for all existence time t. We observe from the energy functional that the energy is

always nonnegative. In this case, the IVP (2.43) is called defocusing.

Theorem 2.5. The IVP (2.43) is globally well-posed for the initial data u0 ∈ Hs
x(R)

when s > 1
2
.
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As in the previous equation (2.3), we may take the initial data u0 from C∞
c (R).

We again wish to establish a polynomial growth bound in time for the Hs
x-norm of the

solution

∥u(t)∥Hs
x(R) ≲∥u0∥Hs

x(R) ⟨t⟩
M (2.44)

for some M > 0. Similar to (2.5) and (2.6), we have

E(Iu(t)) ≤
(
N1−s∥u(t)∥Ḣs

x(Rn)

)2
+ ∥u(t)∥6L6

x(Rn), (2.45)

∥u(t)∥2Hs
x(Rn) ≲ E(Iu(t)) + ∥u0∥L2

x(Rn). (2.46)

One can easily show the above inequalities by applying the similar arguments imple-

mented to prove (2.5) and (2.6). Thus, controlling the modified energy with a polyno-

mial bound in time will suffice. The following proposition is the main result for this

purpose.

Proposition 2.6. Given 1
2
< s < 1, N ≫ 1, and initial data u0 ∈ C∞

c (R) with

E(Iu0) ≤ 1, there exists δ = δ(∥u0∥L2
x(R)) such that the solution

u(t, x) ∈ C([0, δ], Hs(R))

of (2.43) satisfies

E(Iu(t))− E(Iu(0)) ≲ N−1+ (2.47)

for all t ∈ [0, δ].

Let us prove Theorem 2.5 assuming Proposition 2.6. We apply the proposition

to the scaled solution

uλ(t, x)) = λ−1/2u(
t

λ2
,
x

λ
). (2.48)
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From (2.45), we have

E(Iuλ,0) ≤ (N2−2sλ−2 + λ−2)(1 + ∥u0∥Hs
x(R))

6

≲ N2−2sλ−2(1 + ∥u0∥Hs
x(R))

6.

For N ≫ 1, we choose the scaling parameter λ = λ(N, ∥u0∥Hs
x(R))

λ = 21/2N1−s(1 + ∥u0∥Hs
x(R))

3 (2.49)

so that E(Iuλ,0) ≤ 1
2
. We then apply Proposition 2.6 repeatedly until the size of the

modified energy E(Iu(t)) reaches 1, that is, at least C1N
1− times

E(Iuλ(C1N
1−δ)) ∼ 1. (2.50)

For any time parameter T0 ≫ 1, we choose N ≫ 1 so that

T0 ∼ C1
N1−

λ2
δ ∼ N2s−1−. (2.51)

Combining (2.49)–(2.51), we have

E(Iu(T0)) = λ2E(Iuλ(λ
2T0)) ≲δ,∥u0∥Hs

x(R) λ
2 ∼ N2−2s ∼ T

2−2s
2s−1

+

0 . (2.52)

Using (2.46) and (2.52), we conclude

∥u(T0)∥Hs(R) ≲ ⟨T0⟩
1−s
2s−1

+ (2.53)

which is the desired polynomial bound (2.44).

Now, it is left to prove Proposition 2.6. The following proposition concerns with

the local existence to the modified equationi∂tIu+ ∂2
xIu =I(|u|4u)

Iu(0, x) =Iu0(x).
(2.54)

Proposition 2.7. For 1
2
< s < 1 and a given initial data u0 with E(Iu0) ≤ 1, there

exists δ = δ(∥u0∥L2
x(R)) > 0 so that the solutions Iu to (2.54) satisfies

∥Iu∥
X

1, 12+

δ

≲ 1 (2.55)

on [0, δ].
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The proof of the proposition is similar to the proof of Proposition 2.3. See The-

orem 5.1 and Lemma 5.2 in [3] for the details.

Proof of Proposition 2.6. As in the proof of Proposition 2.2, we estimate the increment

of the modified energy as

E(Iu(δ))− E(Iu(0)) =ℜ
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m23456

m2m3m4m5m6

)
∂̂2
xIu(ξ1)Îu(ξ2)Îu(ξ3)

× Îu(ξ4)Îu(ξ5)Îu(ξ6)

−ℜ
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m23456

m2m3m4m5m6

) ̂I(|u|4u)(ξ1)Îu(ξ2)

× Îu(ξ3)Îu(ξ4)Îu(ξ5)Îu(ξ6)

≲

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m23456

m2m3m4m5m6

)
∂̂2
xIu(ξ1)Îu(ξ2)Îu(ξ3)

× Îu(ξ4)Îu(ξ5)Îu(ξ6)

∣∣∣∣∣
+

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m23456

m2m3m4m5m6

) ̂I(|u|4u)(ξ1)Îu(ξ2)

× Îu(ξ3)Îu(ξ4)Îu(ξ5)Îu(ξ6)

∣∣∣∣∣ =: Term1 + Term2.

It is then sufficient to show that Term1 + Term2 ≲ N−1+. We start with Term1.

Using Littlewood-Paley decomposition, define

ûN1 = ̂PN1∂
2
xIu, ûNj

= P̂Nj
Iu, j = 2, 3, 4, 5, 6.

where Ni = 2ki are dyadic numbers, ki ∈ {0, 1, 2, . . . } and |ξi| ∼ Ni, i = 1, 2, 3, 4, 5, 6.

Then we have

Term1 ≤
∑

N1,...,N6

∣∣∣∣∣
∫ δ

0

∫
∑6

i=1 ξi=0

(
1− m23456

m2m3m4m5m6

)
ûN1(ξ1)ûN2(ξ2)ûN3(ξ3)

× ûN4(ξ4)ûN5(ξ5)ûN6(ξ6)

∣∣∣∣∣ (2.56)
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Therefore, it is enough to show for an arbitrary dyadic piece of the right side of (2.56)

Right side of (2.56) ≲ N−1+N0−
2 ∥uN1∥

X
−1, 12+

δ

6∏
j=2

∥uNj
∥
X

1, 12+

δ

(2.57)

in the different frequency interaction cases. We may again assume that the spatial

Fourier transform of the dyadic pieces are non-negative. By symmetry in the variables

ξ2, ξ3, ξ4, ξ5, ξ6, we restrict our attention to N2 ≥ N3 ≥ N4 ≥ N5 ≥ N6. Then we

also have N1 ≲ N2. By reverting back the Plancherel formula after the multiplier is

taken out of the integral with a pointwise bound, we need to take care of the following

frequency interaction cases:

Case 1: N1 ∼ N2 ≳ N ≫ N3. In this case, we take the multiplier out using the

following bound

∣∣∣1− m23456

m2m3m4m5m6

∣∣∣ ≲ N3

N2

.

Then using the Hölder’s inequality and L6
t,x-Strichartz estimate (A.14), it is enough to

show

N3

N2

N1

N2N3N4N5N6

≲ N−1+N0−
2 . (2.58)

This is obvious since N,N2 ≫ 1 and their exponents are negative. Case 2: N2 ∼

N3 ≳ N ≫ N4 and N1 ≲ N2. In this case, the bound for multiplier is the following∣∣∣1− m23456

m2m3m4m5m6

∣∣∣ ∼ ∣∣∣1− m23456

m2m3

∣∣∣ ≲ m1

m2m3

≲ N−1+N−1
1 N2−

2 .

Then using the Hölder’s inequality and the Strichartz estimate (A.14), we have

Right side of (2.56) ≲ N−1+N−1
1 N2−

2 ∥uN1∥L8
tL

4
x
∥uN2∥L8

tL
4
x
∥uN3∥L4

tL
∞
x

6∏
j=4

∥uNj
∥L6

t,x

≲ N−1+N−1
1 N2−

2

N1

N2N3N4N5N6

∥uN1∥
X

−1, 12+

δ

6∏
j=2

∥uNj
∥
X

1, 12+

δ

.
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Thus, it suffices to show

1

N4N5N6

≲ 1.

This is true since N4, N5, N6 ≳ 1.

Case 3: N1 ∼ N2 ≥ N3 ≳ N ≫ N4. In this case, we will implement the approach

in [12] used to prove Proposition 4.11. We can not establish (2.57). Fortunately, it will

suffice to show for the whole sum

Right side of (2.56) ≲ N−1+∥∂2
xIu∥

X
−1, 12+

δ

∥Iu∥5
X

1, 12+

δ

since we will be able to handle N1 ∼ N2 sum by Schur’s test. Take the multiplier out

of the integral with the bound∣∣∣1− m23456

m2m3m4m5m6

∣∣∣ ∼ 1

m3

≲ N1−
3 N−1+,

and using the Hölder’s inequality and the Strichartz inequality, we bound the right side

of (2.56) by

∑
N1∼N2

∑
N3≥···≥N6

N1−
3 N−1+∥uN1∥L8

tL
4
x
∥uN2∥L8

tL
4
x
∥uN3∥L4

tL
∞
x

6∏
j=4

∥uNj
∥L6

t,x

≲
∑

N1∼N2

∑
N3≥···≥N6

N1−
3 N−1+ N1

N2N3N4N5N6

∥uN1∥
X

−1, 12+

δ

6∏
j=2

∥uNj
∥
X

1, 12+

δ

.

Using the last expression above, we have

N−1+
( ∑

N1∼N2

∥uN1∥
X

−1, 12+

δ

∥uN2∥
X

1, 12+

δ

) ∑
N3≥···≥N6

N0−
3 (N4N5N6)

−1

6∏
j=3

∥uNj
∥
X

1, 12+

δ

(2.59)

We apply the Schur’s test for the first sum by following Exercise 9 of ch.1 in [17]. Set

K(N1, N2) = ∥uN1∥
X

−1, 12+

δ

χ{N1,N2:N1∼N2}
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where N1, N2 are dyadic numbers. We have by (A.9)∑
N1

∥uN1∥
X

−1, 12+

δ

K(N1, N2) ≲
∑
N1

∥uN1∥2
X

−1, 12+

δ

for any fixed N2. Also,∑
N2

∥uN1∥
X

−1, 12+

δ

K(N1, N2) ≲ ∥uN1∥
X

−1, 12+

δ

for any fixed N1. Thus, the operator

T :=
∑
N1

K(N1, N2)

acting on the square-summable sequences on the dyadic numbers is bounded and has

the property

∥T∥ ≲
(∑

N1

∥uN1∥2
X

−1, 12+

δ

)1/2
.

Therefore, if we set v(N2) = ∥uN2∥
X

1, 12+

δ

for N2 dyadic, we observe

∑
N1∼N2

∥uN1∥
X

−1, 12+

δ

∥uN2∥
X

1, 12+

δ

=
∑
N2

T (v)(N2)

≤
∑
N2

|T (v)(N2)|

≲
(∑

N2

|T (v)(N2)|2
)1/2

=∥T (v)∥l2

≲
(∑

N1

∥uN1∥2
X

−1, 12+

δ

)1/2(∑
N2

∥uN2∥2
X

1, 12+

δ

)1/2
∼∥∂2

xIu∥
X

−1, 12+

δ

∥Iu∥
X

1, 12+

δ

.

For the second sum, Cauchy-Schwarz inequality and the Littlewood-Paley inequality

(A.9) are used to get

(2.59) ≲ N−1+∥∂2
xIu∥

X
−1, 12+

δ

∥Iu∥5
X

1, 12+

δ

which is what we wish to achieve. Hence, Term1 ≲ N−1+.
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It remains to show Term2 ≲ N−1+. As in the proof of Proposition 2.2, using the

Littlewood-Paley decomposition, we can bound Term2 as

Term2 ≲
∑

N12345

∑
N6≥···≥N10

∣∣∣∣∣
∫ δ

0

∫
∑10

i=1 ξi=0

(
1− m678910

m6m7m8m9m10

)
PN12345(

̂I(|u|4u))(ξ12345)

(2.60)

× Îu(ξ6)Îu(ξ7)Îu(ξ8)Îu(ξ9)Îu(ξ10)

∣∣∣∣∣
where PN12345 is the Littlewood-Paley projection operator onto the dyadic shell N12345 ∼

⟨ξ12345⟩ and by symmetry, the latter sum can be taken over N6 ≥ N7 ≥ N8 ≥ N9 ≥ N10.

We also have N12345 ≲ N6. So, it suffices to show for any dyadic piece

Right side of (2.60) ≲ N−1+N0−
6 ∥Iu∥5

X
1, 12+

δ

10∏
j=6

∥IuNj
∥
X

1, 12+

δ

. (2.61)

Assuming the spatial Fourier transform of dyadic pieces are non-negative, taking the

multiplier out of the integral with the bound

m12345

m6m7m8m9m10

,

undoing Plancherel formula and applying the Hölder’s inequality, we get

Right side of (2.60) ≲
m12345

m6m7m8m9m10

∥PN12345I(|u|4u)∥L2
t,x
∥IuN6∥L6

t,x
∥IuN7∥L6

t,x

× ∥IuN8∥L6
t,x
∥IuN9∥L∞

t,x
∥IuN10∥L∞

t,x
. (2.62)

We need following estimates given in the lemma below

Lemma 2.8. Let u, uN6 , . . . , uN10 be defined as above. Then we have

∥PN12345I(|u|4u)∥L2
t,x

≲
1

⟨N12345⟩
∥Iu∥5

X
1, 12+

δ

(2.63)

∥IuNj
∥L6

t,x
≲

1

⟨Nj⟩
∥IuNj

∥
X

1, 12+

δ

, j = 6, 7, 8, (2.64)

∥IuNk
∥L∞

t,x
≲

1

⟨Nk⟩1/2
∥IuNk

∥
X

1, 12+

δ

, k = 9, 10. (2.65)
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Proof of Lemma 2.8. The proof of this lemma is similar to the analogous result estab-

lished for the proof of Proposition 2.2. Thus, we shall prove only the first estimate in

order to give at least a partial proof. For the positively ordered pseudo-differential op-

erator ⟨∇⟩I, we apply fractional Leibniz rule. On a typical term, we have by Hölder’s

inequality.

∥(⟨∇⟩Iu)uuuu∥L2
t,x

≤ ∥⟨∇⟩Iu∥L4
tL

∞
x
∥u∥4L16

t L8
x
.

We apply the Strichartz estimate for the first factor to get

∥⟨∇⟩Iu∥L4
tL

∞
x
≲ ∥⟨∇⟩Iu∥

X
0, 12+

δ

= ∥Iu∥
X

1, 12+

δ

.

For the other factors, we first apply the Sobolev embedding (A.11) and the Strichartz

estimate to obtain

∥u∥4L16
t L8

x
≲ ∥⟨∇⟩1/4u∥4

L16
t L

8
3
x

≲ ∥⟨∇⟩1/4u∥
X

0, 12+

δ

≲ ∥Iu∥
X

1, 12+

δ

which completes the proof of the first estimate.

By Lemma 2.8

Right side of (2.62) ≲
m12345

m6m7m8m9m10

1

⟨N12345⟩⟨N6⟩⟨N7⟩⟨N8⟩⟨N9⟩1/2⟨N10⟩1/2

× ∥Iu∥5
X

1, 12+

δ

10∏
j=6

∥IuNj
∥
X

1, 12+

δ

.

Thus, it suffices to show

m12345

m6m7m8m9m10

N1−N0+
6

⟨N12345⟩⟨N6⟩⟨N7⟩⟨N8⟩⟨N9⟩1/2⟨N10⟩1/2
≲ 1. (2.66)

There are two frequency interaction cases:

Case 1: N12345 ∼ N6 and N6 ≥ N7 ≥ N8 ≥ N9 ≥ N10 and N6 ≳ N . In this case

Left side of (2.66) ≲ N1−N−2+
6

since m(x)x1/2 is increasing. The above bound can be controlled by 1.
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Case 2: N12345 ≲ N6 and N6 ∼ N7 ≥ N8 ≥ N9 ≥ N10 and N6 ≳ N . In this case

Left side of (2.66) ∼ m12345N
1−N0+

6

m2
6m8m9m10N2

6N12345N8N9N10

.

Using the fact that m(y)x1/2 is increasing for 0 ≤ y ≤ x and m12345N
−1
12345 ≲ 1, we can

replace mjNj with 1 for j = 8, 9, 10, and m2
6N6 with N

Left side of (2.66) ≲
N1−N0+

6

N6N
= N0−N−1+

6 ≲ 1.

In both cases, summing all the dyadic pieces as in Case 3 for Term1 and the Littlewood-

Paley inequality (A.9) complete the proof.

2.3. On a Fourth Order Schrödinger Equation

In this section, we shall briefly introduce a joint work with my colleague Engin

Başakoğlu which concerns the global well-posedness of the cubic defocusing fourth

order NLS in spatial dimension n = 4i∂tu−△2u =|u|2u, (t, x) ∈ R× R4,

u(0, x) =u0(x) ∈ Hs(R4).
(2.67)

Fourth order type of NLS equations are first introduced in [18, 19] .The local well-

posedness results of (2.67) can be found in [20]. In [21, 22], the authors established

the global well-posedness and scattering results in the energy space H2(Rn) when

1 ≤ n ≤ 8. There are several works improving the global well-posedness results

below the energy space, see [23–25]. The authors used the I-method to obtain global

results for rougher initial data. Lastly, in [26], when the spatial dimension n = 4,

it is established that the IVP (2.67) is globally well-posed in H(R4) for s > 60
53
. The

approach in [26] was inspired by [2] which is similar to our attempt. We have discovered

this article while we were making literature review. In any case, it is worthwhile to

briefly share our work in this document.

A solution u to the IVP (2.67) enjoys two useful conservation laws, namely, the

mass and the energy. The mass of u is given by

M(u(t)) =

∫
R4

|u(t, x)|2dx
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and the energy of u is given as

E(u(t)) =

∫
R4

|△u(t, x)|2 + 1

2
|u(t, x)|4dx.

As we can see from the energy functional, the energy space is H2(R4). In this context,

the operator I is then defined as

Îu(ξ) = m(ξ)û(ξ)

where

m(ξ) =

 1 |ξ| ≤ N,

|ξ|s−2N2−s |ξ| > 2N

and smoothly interpolates on the region N < |ξ| ≤ 2N . With this definition and the

different nature of the equation (2.67), some modifications are needed to implement

the I-method. For example, we need to establish the analogous of (2.5) and (2.6) type

of inequalities. First, we have established these type of estimates:

E(Iu(t)) ≤
(
N2−s∥u(t)∥Ḣs

x(R
n)

)2
+ ∥u(t)∥4L4

x(Rn), (2.68)

∥u(t)∥2Hs
x(Rn) ≲ E(Iu(t)) + ∥u0∥2L2

x(Rn). (2.69)

After, we use the I-method on the equation (2.67). Our main result is as follows:

Claim. The IVP (2.67) is globally well-posed for u0 ∈ Hs(R4) when s > 8
7
.

The strategy here is again to generate an almost conserved quantity which is

comparable to the Hs norm of the solution, and to control the Hs norm of the solution

with a polynomial bound in time. The growth of the almost conserved quantity E(Iu)

can be controlled with a nicer bound:

E(Iu(t))− E(Iu(0)) ≲ N−3+ (2.70)

for all t ∈ [0, δ] where δ > 0 comes from the local analysis of the modified equation.

(2.70) can be viewed as the analogue of Proposition 2.2.
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We use (2.70) for the scaled solution

uλ(t, x) := λ−2u(
t

λ4
,
x

λ
).

Initially, we have

E(Iu0,λ) ≲
(
λ−2sN4−2s + λ−4

)(
1 + ∥u0∥Hs(R4)

)4
(2.71)

≲C0λ
−2sN4−2s

(
1 + ∥u0∥Hs(R4)

)4
. (2.72)

By taking λ large enough, more precisely, taking

λ =
( 1

2C0

) 1
2s
N

4−2s
2s

(
1 + ∥u0∥Hs(R4)

) 4
2s

we have E(Iu0,λ) ≤ 1
2
. Then we apply (2.70) to u0,λ at least N3− many times to get

the size of E(Iuλ(t)) reached 1. Then we determine the value of the cut-off parameter

N in terms of any large time parameter T0 as

T0 ∼
N3−

λ4
C1δ ∼ N

7s−8
s

−.

By combining the above estimates, we get

E(Iu(T0)) = λ4E(Iuλ(λ
4T0)) ≲δ,∥u0∥Hs(R4)

λ4 ∼ N
8−4s

s ∼ T
8−4s
7s−8

+

0

which helps us to achieve the desired polynomial bound

∥u(T0)∥Hs(Rn) ≲ T
8−4s
7s−8

+

0 .

whenever s > 8
7
.
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3. CONCLUSION

In this chapter, we start discussing the advantage and disadvantage of the I-

method. First, in [6], it is mentioned that even though one can show L2 global well-

posedness and H1 global well-posedness, the global result between these spaces cannot

be obtained via this information. The I-method however generates an almost conserved

quantity and hence can be implemented to establish global results inHs(Rn), 0 < s < 1.

On the other hand, the disadvantage of the method is that one can not obtain the

optimal result in terms of global well-posedness for equations of type (2.3) and (2.43).

We can observe this from looking at the growth of energy increment (2.8) and the IVP

(2.3) as an illustration. Roughly, for small time intervals, the quantity E(Iu) grows

at most N− 3
2
+. The exponent of polynomial bound for the Hs norm of a solution u

is determined by the exponent of the cut-off parameter N via the scaling argument.

The smaller the exponent of N as the bound for the growth of E(Iu) the better global

result we may obtain. In fact, if the exponent of N goes to −∞, then the quantity

E(Iu) would be a conserved quantity which is impossible to reach, see [6].

For a future plan, we are planning to obtain global results for (2.67) in the spatial

dimensions n = 2, 3. The challenge in these dimensions is that we can not implement

bilinear Strichartz estimate (A.15) for comparable frequencies. Therefore, our intention

is to combine the I-method with Morawetz type estimates, see [22, 23].
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APPENDIX A: FUNCTION SPACES, NOTATIONS,

HARMONIC AND FOURIER ANALYSIS TOOLS

The nonlinear Schrödinger type equations, i.e., dispersive evolution equations

can be analyzed via comparison and interaction between the low and high-frequency

components of the solutions. There are valuable tools to make this type of analysis

rigorous in terms of a mathematical point of view. We need to introduce notations,

function spaces, and results as preliminaries for the tools: the Fourier transform and

Littlewood-Paley theory. We shall briefly review these topics in the appendix. We will

mostly follow [10]. The space of p-Lebesgue integrable functions is defined as

Lp(Rn) = {f |f : Rn → C, ∥f∥Lp(Rn) < ∞}

where 0 < p < ∞ and

∥f∥Lp(Rn) =

(∫
Rn

|f(x)|pdx
)1/p

.

For p = ∞, we have

∥f∥L∞(Rn) = ess sup
x∈Rn

|f(x)| = inf{a ∈ R : m({x : |f(x)| > a}) = 0}

where m is the Lebesgue measure on Rn. One can replace the range of the Lp-functions

with a Banach space X, and these spaces consist of the functions f : Rn → X with the

property

∥f∥Lp(Rn;X) =

(∫
Rn

∥f(x)∥pXdx
)1/p

< ∞.

In addition, we can define mixed, mostly spacetime, Lebesgue spaces Lp
tL

q
x(R × Rn)

consisting of the functions f : R× Rn → C together with the mixed norm

∥f∥Lp
tL

q
x(R×Rn) =

(∫
R
∥f(t, ·)∥p

Lq
x(Rn)

dt

)1/p

=

(∫
R

(∫
Rn

|f(t, x)|qdx
)p/q

dt

)1/p

.
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Similarly, if I ⊂ R is a time interval, k ≥ 0 and X is a Banach space, the space

Ck
t (I;X) is the space of k-times continuously differentiable functions f : I → X with

the norm

∥f∥Ck
t (I;X) =

k∑
j=0

∥∂j
t f∥L∞

t (I;X).

We shall also use Sobolev spaces Hs, Ḣs,W s,p, Ẇ s,p which carry the information for

the derivatives of Lp functions, and weighted Sobolev spaces Xs,b which carry the

dispersive characteristic associated to the equation. Before introducing that function

spaces, we need the following preliminary notions. A function f : Rn → C is called

rapidly decreasing if

∥⟨x⟩Nf(x)∥L∞
x (Rn) < ∞

for all N ≥ 0. f is called Schwartz class if it is also smooth and all of its derivatives

∂α
x f are rapidly decreasing for all multi-index α = (α1, . . . , αn), αi ∈ {0, 1, 2, . . . } for

i = 1, . . . , n and the operator ∂α
x is given as

∂α
x = ∂α1

x1
. . . ∂αn

xn
.

One can observe that f is Schwartz if and only if ∂α
x f(x) ≲f,α,N ⟨x⟩−N for all multi-

index α and all N . The space of Schwartz class functions is denoted by S(Rn). The

topological dual space of S(Rn) consists of continuous linear functionals on the Schwartz

space. Elements of the dual space are said to be tempered distributions. Hence, the

dual space is called the space of tempered distributions and denoted by S ′(Rn). Now,

we define the Fourier transform. It is convenient to define it on the Schwartz class

S(Rn). The Fourier transform of a Schwartz function f at the point ξ ∈ Rn is given as

f̂(ξ) =

∫
Rn

f(x)e−ix·ξdx.

It is a well-known fact that the Fourier transform f 7→ f̂ is a linear automorphism on

S(Rn) in its topology. The inverse transform is given as

f(x) =

∫
Rn

f̂(ξ)eix·ξdξ.
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The Fourier transform can be extended as a linear isometric isomorphism on L2(Rn)

together with the well-known Plancherel identity∫
Rn

|f(x)|2dx =

∫
Rn

|f̂(ξ)|2dξ

as well as the closely related Parseval identity∫
Rn

f(x)g(x)dx =

∫
Rn

f̂(ξ)ĝ(ξ)dξ.

The Fourier transform has many fruitful symmetries. Some of which are the followings:

(i) The Fourier transform of f(x− x0), x0 ∈ Rn, at ξ equals e−ix0·ξf̂(ξ).

(ii) The Fourier transform of eix·ξ0f(x) at ξ equals f̂(ξ − ξ0).

(iii) The Fourier transform of f(x) at ξ equals f̂(−ξ).

(iv) Let λ ∈ R \ {0}. Then the Fourier transform of f(x/λ) at ξ equals |λ|df̂(λξ).

(v) The convolution operation ∗ is defined as

(f ∗ g)(x) =
∫
Rn

f(x− y)g(y)dy =

∫
Rn

f(y)g(x− y)dy.

The Fourier transform of (f ∗ g)(x) at ξ equals f̂(ξ)ĝ(ξ).

(vi) The Fourier transform of f(x)g(x) at ξ equals (f̂ ∗ ĝ)(ξ).

(vii) Let P : Rn → C be a polynomial. Then we can identify P (∇) as

P (∇) =
∑

|α|≤M

aα∂
α
x

where the sum is taken over multi-index α with |α| = α1 + · · · + αn ≤ M and

aα ∈ C for all α. Then the Fourier transform of

P (∇)f(x) =
∑

|α|≤M

aα∂
α
x f(x)

at ξ is equal to

∑
|α|≤M

aα(iξ)
αf̂(ξ) = P (iξ)f̂(ξ).

The last property is critical when studying on a partial differential equation. More

precisely, a linear partial differential operator with constant coefficients is of the form

P (∇) =
∑

|α|≤M

aα∂
α
x
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for multi-index α and M > 0. Then by property (vii), we have

P̂ (∇)f(ξ) =
∑

|α|≤M

aα(iξ)
αf̂(ξ) = P (iξ)f̂(ξ).

One can observe that differential operators enhance amplitude of functions with high

frequencies while decreasing amplitude of functions of low frequencies. Also, if the

operator P (∇) is skew-adjoint, i.e. iP (∇) is a self-adjoint operator, then we have

P (∇) = ih(∇/i)

for some real valued polynomial h : Rn → R. In this case,

P̂ (∇)f(ξ) = ̂ih(∇/i)f(ξ) = i
∑

|α|≤M

ξαf̂(ξ) = ih(ξ)f̂(ξ).

With this in mind, and the fact that the Fourier transform can be extended to tempered

distributions, we can define Fourier multipliers. Let m : Rn → C be a locally integrable

function of at most polynomial growth, that is,

sup
xRn

|m(x)| ≲ ⟨x⟩N

for some N > 0. Then we can define the associated multiplier m(∇/i) : S(Rn) →

S ′(Rn) via the Fourier transform as the formula

̂m(∇/i)f(ξ) = m(ξ)f̂(ξ)

or equivalently in the physical space by

m(∇/i)f(x) =

∫
Rn

m(ξ)f̂(ξ)eix·ξdξ.

We then have

• m(∇/i)∗ = m(∇/i);

• m1(∇/i) +m2(∇/i) = (m1 +m2)(∇/i);

• m1(∇/i)m2(∇/i) = (m1m2)(∇/i).

In particular, all Fourier multipliers commute with each other. The function m(ξ) is

called the symbol of the multiplier operator m(∇/i). For example, we can define frac-

tional differentiation and integration operators |∇|s, ⟨∇⟩s associated with the symbols

|ξ|s and ⟨ξ⟩s, respectively, for s ∈ R.
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Now we are ready to introduce Sobolev spaces. The Sobolev spaces W s,p(Rn) and

the homogeneous Sobolev spaces Ẇ s,p(Rn), s ∈ R and 1 < p < ∞, are defined as the

closure of the Schwartz class functions under the topology induced by the norms

∥f∥W s,p(Rn) = ∥⟨∇⟩sf∥Lp(Rn)

and

∥f∥Ẇ s,p(Rn) = ∥|∇|sf∥Lp(Rn)

respectively. When p = 2 we write Hs and Ḣs for W s,2 and Ẇ s,2, respectively. By

Plancherel’s identity, we have

∥f∥Hs
x(Rn) = ∥⟨ξ⟩sf̂∥L2

ξ(Rn).

There is an important class of Fourier multiplier operators known as the Littlewood-

Paley multipliers. Suppose φ is a real-valued, smooth, radially symmetric, compactly

supported bump function such that its support is adapted to the ball {ξ ∈ Rn : |ξ| ≤ 2}

and φ ≡ 1 on {ξ ∈ Rn : |ξ| ≤ 1} and smoothly decays to zero in the region {ξ ∈ Rn :

1 < |ξ| ≤ 2}. Define a dyadic number N = 2j for j ∈ Z. For each dyadic number N ,

the Littlewood-Paley multipliers are defined as

P̂≤Nf(ξ) = φ(ξ/N)f̂(ξ) (A.1)

P̂>Nf(ξ) = (1− φ(ξ/N))f̂(ξ) (A.2)

P̂Nf(ξ) = (φ(ξ/N)− φ(2ξ/N))f̂(ξ). (A.3)

Thus, the operators P≤N , P>N , PN are smoothed versions of the characteristic functions

that project functions to the regions |ξ| ≤ N , |ξ| > N and |ξ| ∼ N respectively. One

can observe that

P≤Nf =
∑
M≤N

PMf ; P>Nf =
∑
M>N

PMf ; f =
∑
M

PMf

for all Schwartz class function f . The sums above are taken over the dyadic numbers.

Such a decomposition is called the dyadic decomposition. Littlewood-Paley projections

are immensely helpful in the quantitatively detailed analysis of PDE.
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They separate the rough, i.e., high-frequency, oscillating, low regularity com-

ponents of a solution from the smooth, that is, low-frequency, slowly varying, high

regularity components, see [10]. We see that Littlewood-Paley projections behave as

an approximation to the identity in the physical domain and a smooth partition of

unity in the Fourier domain. By definition, Littlewood-Paley operators are convolu-

tion operators in the physical space:

P≤Nf(x) =

∫
Rn

φ̂(y)f(x+ y/N)dy.

Since φ̂ is a Schwartz function, we can consider P≤N as an averaging operator that

spreads a sort of period of f by a spatial scale controlled by 1/N and localizes the

frequency of f in a ball of radius controlled by N , which is consistent with the uncer-

tainty principle. From the convolution definition, one can verify that Littlewood-Paley

operators are continuous, hence bounded, on every Lebesgue space Lp(Rn), 1 ≤ p ≤ ∞

and also on Sobolev spaces W s,p(Rn), Ẇ s,p(Rn) for s ∈ R and 1 < p < ∞. Moreover,

we have the following useful estimates known as Bernstein inequalities. Let s ≥ 0 and

1 ≤ p ≤ q ≤ ∞:

∥P≥Nf∥Lp(Rn) ≲p,s,n N−s∥|∇|sP≥Nf∥Lp(Rn) (A.4)

∥P≤N |∇|sf∥Lp(Rn) ≲p,s,n N s∥P≤Nf∥Lp(Rn) (A.5)

∥PN |∇|±sf∥Lp(Rn) ∼p,s,n N±s∥PNf∥Lp(Rn) (A.6)

∥P≤Nf∥Lq(Rn) ≲p,q,n N
d
p
− d

q ∥P≤Nf∥Lp(Rn) (A.7)

∥PNf∥Lq(Rn) ≲p,q,n N
d
p
− d

q ∥PNf∥Lp(Rn). (A.8)

Bernstein inequalities tell us that when the frequency is localized, we can change low

integrability to high integrability with a cost of some powers of N . If we closely look

at the inequalities, the cost in terms of powers of N might be, in fact, a gain when the

frequency N is low. There is another very powerful and extremely useful estimate:

∥f∥Lp(Rn) ∼p,n ∥(
∑
N

|PNf |2)1/2∥Lp(Rn). (A.9)

The estimate (A.9) is known as the Littlewood-Paley inequality. It essentially tells us

that the dyadic components PNf of f are mutually almost orthogonal.
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Turning back to the Sobolev spaces, we have helpful embeddings. We can con-

tinuously embed homogeneous Sobolev spaces into Lp spaces:

Ẇ s,p(Rn) ↪→ Lq(Rn)

whenever the condition

1

q
=

1

p
− s

n

holds for 1 < p < q < ∞, and s > 0. In this case, we have for u ∈ Ẇ s,p(Rn),

∥u∥Lq(Rn) ≲p,q,n ∥u∥Ẇ s,p(Rn). (A.10)

This result also implies the inhomogeneous Sobolev embedding:

W s,p(Rn) ↪→ Lq(Rn)

whenever 1 < p < q < ∞, s > 0, and 1
q
≥ 1

p
− s

n
. In this case, we have

∥u∥Lq(Rn) ≲p,q,s,n ∥u∥W s,p(Rn). (A.11)

It is also beneficial to mention nonlinear operations, for example, multiplication oper-

ation (f, g) 7→ fg because they arise frequently in nonlinear PDEs. There is a very

handy principle known as the fractional Leibniz rule. We state this principle as in [10].

Let f, g be functions on Rn, and let Dα be some sort of differential of pseudo-differential

operator of positive order α > 0 (roughly speaking, it acts like a differentiation opera-

tor).

• (High-low interactions) If f has significantly higher frequency than g(e.g. if f =

PNF and g = P<N/8G for some F,G), or is rougher than g(e.g. f = ∇u and

g = u for some u) then fg will have comparable frequency to f , and we expect

Dα(fg) ∼ (Dαf)g. In a similar spirit, we expect PN(fg) ∼ (PNf)g.

• (Low-High interactions) If g has significantly higher frequency or is rougher

than f , then we expect fg to have comparable frequency to g. We also expect

Dα(fg) ∼ f(Dαg), and PN(fg) ∼ f(PNg).

• (Full Leibniz rule) If there are no frequency assumptions on f and g, we expect

Dα(fg) ∼ (Dαf)g + f(Dαg).
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Its nature is explained in [10] as ”The fractional Leibniz rule states that if we differ-

entiate the product of functions, it is not needed to apply the whole product rule for

differentiation. It is sufficient to take the derivative of the function with the highest

frequency. The same is true for taking the Littlewood-Paley projection of products on

the level of the function with the highest frequency. Moreover, a more general principle

states that when distributing the derivatives, the dominant terms are, in general, the

terms in which all the derivatives fall on a single factor. If the factors have unequal

degrees of smoothness, the dominant term will be the one in which all the derivatives

fall on the roughest (or the highest frequency) factor.”

In the remaining part of the appendix, the weighted Sobolev spaces will be in-

troduced. Consider a linear dispersive equation with constant coefficients

∂tu− Lu = 0

where L = ih(∇/i) for some real-valued polynomial on Rn. To understand some

characteristics of this equation, we implement the space-time Fourier transform given

as

ũ(τ, ξ) =

∫
R

∫
Rn

u(t, x)e−itτe−ix·ξdξdτ.

If we take the space-time Fourier transform of the both sides of the equation, we see

that

(−iτ + ih(ξ))ũ(τ, ξ) = 0. (A.12)

Then there are two cases to consider:

(i) ũ ≡ 0. In this case, if one applies the inverse Fourier transform, the conclusion

will be u ≡ 0. So, this case is out of our interest.
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(ii) τ = h(ξ). In this case, the implication is that the space-time Fourier transform

of the solution is supported in the hyperspace

{(τ, ξ) ∈ R× Rn : τ = h(ξ)}.

Now, if one localizes the solution u in time by multiplying u with a smooth cut-off

function η having support {t = O(1)}, the space-time Fourier transform η̃u will be

concentrated in the region {(τ, ξ) : τ = h(ξ) + O(1)}. In other words, the localized

version of the solution remains close to the aforementioned hyperspace. If we also add

a nonlinear perturbation term in the above equation

∂tu− Lu = N(u),

the distortion effect of the perturbation will not be harmful when we localize the

solution in time first. So, for suitable nonlinear terms N(u), the localized solution ηu

to the perturbed equation will still be close to the characteristic space. The reason for

this is a dispersive smoothing effect for the operator ∂t − L away from the hyperspace

τ = h(ξ) which can be considered analogous to the more well-known elliptic regularity.

The weighted Sobolev spaces Xs,b, also known as Fourier restricted spaces, Bourgain

spaces, or dispersive Sobolev spaces, carry the information of L2-functions additionally

in terms of their spatial and dispersive regularity. The following definition of Xs,b

spaces is taken from [10].

Definition A.1. Let h : Rn → R be a continuous function, and s, b ∈ R. The

Xs,b
τ=h(ξ)(R× Rn), abbreviated Xs,b(R× Rn) or simply Xs,b, is defined to be the closure

of the Schwartz functions St,x(R× Rn) under the norm

∥u∥Xs,b
τ=h(ξ)

(R×Rn) = ∥⟨ξ⟩s⟨τ − h(ξ)⟩bũ(τ, ξ)∥L2
τ,ξ(R×Rn). (A.13)

The Xs,b
τ=h(ξ) spaces are well-adapted to the solutions, u(t) = etLu(0), of the linear

dispersive equation ∂t = Lu, where L = ih(D) = ih(∇/i) by the following lemma:
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Lemma A.2 (Free solutions lie in Xs,b). Let f ∈ Hs
x(Rn) for some s ∈ R and let

L = ih(∇/i) for some polynomial h : Rn → R. Then for any Schwartz time cut-off

η ∈ St(R), we have

∥η(t)etLf∥Xs,b
τ=h(ξ)

(R×Rn) ≲η,b ∥f∥Hs
x(Rn).

For further properties of Xs,b spaces, we recommend [10] to the reader. We shall

only state the results that we use in this document. Now, when b > 1/2, we observe

thatXs,b functions are very close to the free solutions to a dispersive equation ∂tu = Lu.

Lemma A.3. Let L = iP (∇/i) for some polynomial P : Rn → R, s ∈ R, b > 1/2 and

let Y be a space-time Banach space of functions on R× Rn with the property that

∥eitτ0etLf∥Y ≲ ∥f∥Hs
x(Rn)

for all f ∈ Hs
x(Rn) and τ0 ∈ R. Then we have the embedding

∥u∥Y ≲b ∥u∥Xs,b
τ=h(ξ)

(R×Rn).

Applying this to Y = C0
t H

s
x, we obtain

Corollary A.4. Let b > 1/2, s ∈ R, and h : Rn → R be continuous. Then for any

u ∈ Xs,b
τ=h(ξ)(R× Rn), we have

∥u∥C0
t H

s
x(R×Rn) = ∥u∥L∞

t Hs
x(R×Rn) ≲b ∥u∥Xs,b

τ=h(ξ)
(R×Rn).
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Moreover, for a Schrödinger admissible pair (p, q), i.e., (p, q) ∈ [2,∞] × [2,∞],

and (p, q) ̸= (2,∞) when the spatial dimension is 2 and 2
p
= n(1

2
− 1

q
), we have the

inequality

∥u∥Lp
tL

q
x(R×Rn) ≲p,q,b ∥u∥X0,b

τ=|ξ|2
(R×Rn). (A.14)

Xs,b spaces are suitable to analyzing nonlinear dispersive equations when one localises

in time.

Lemma A.5. Let η ∈ St(R) be a Schwartz function in time. Then we have

∥η(t)u∥Xs,b
τ=h(ξ)

(R×Rn) ≲η,b ∥u∥Xs,b
τ=h(ξ)

(R×Rn)

for any s, b ∈ R, any h : Rn → R, and any u ∈ St,x(R × Rn). Furthermore, if

−1/2 < b′ ≤ b < 1/2, then for any 0 < T < 1, we have

∥η(t/T )u∥
Xs,b′

τ=h(ξ)
(R×Rn)

≲η,b,b′ T
b−b′∥u∥Xs,b

τ=h(ξ)
(R×Rn).

Proposition A.6 (Xs,b energy estimate). Let h : Rn → R be a polynomial, let L =

ih(∇/i), and let u ∈ C∞
t,locSx(R×Rn) be a smooth solution to the equation ∂tu = Lu+F .

Then for any s ∈ R, b > 1/2, and any compactly supported smooth cut-off η(t), we

have

∥η(t)u∥Xs,b
τ=h(ξ)

(R×Rn) ≲η,b ∥u(0)∥Hs
x(Rn) + ∥F∥Xs,b−1

τ=h(ξ)
(R×Rn).

Lastly, we have an estimate for nonlinear terms:

Lemma A.7 (Bilinear Strichartz estimate). Let u1, u2 ∈ X0, 1
2
+(R×Rn), be supported

on spatial frequencies |ξ| ∼ N1, N2, respectively. If N1 ≪ N2 when n = 1 or N1 ≤ N2

when n ≥ 2, we have

∥u1u2∥L2
t,x(R×Rn) ≲

N
(n−1)/2
1

N
1/2
2

∥u1∥X0, 12+(R×Rn)
∥u2∥X0, 12+(R×Rn)

. (A.15)


