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stimulating conversations on more or less everything interesting, that enriched my life

very broadly. The last few years would be tasteless for me without his company.

This work is dedicated to, or left as a little mark for my dear sister Duru and my

many brothers and sisters from the Math Village.



iv

ABSTRACT

ON THE HYPERSURFACES IN TORIC VARIETIES

Theory of toric varieties provides fruitful interactions between algebraic geom-

etry and combinatorics. It is remarkably fertile in terms of connections with many

areas of mathematics and has plentiful applications to other disciplines as well. We

introduce and study toric varieties and their hypersurfaces in the realm of algebraic

geometry with a focus on quasismooth hypersurfaces. This is because quasismooth hy-

persurfaces are general enough to contain many examples of elements in some special

families (e.g. regular hypersurfaces and Calabi-Yau hypersurfaces) that have a fre-

quent appearance in mirror symmetry, complex and differential geometry, and physics;

interesting enough to have special roles in some areas of research such as toric GIT

and moduli problems; and easy to characterize using combinatorial tools agreeably to

the spirit of toric geometry.
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ÖZET

TORİK VARYETELERDE HİPERYÜZEYLER ÜZERİNE

Torik varyeteler kuramı, cebirsel geometri ve kombinatorik arasında zengin bir

etkileşim yaratır. Bu teori, matematiğin birçok alanıyla derinden bağlantılıdır ve

başka disiplinler üzerine de bolca uygulaması vardır. Bu çalışmada, oldukça-düzgün

hiperyüzeyler odaklı olmak üzere torik varyeteleri ve onların hiperyüzeylerini cebirsel

geometrik bağlam içinde tanıtıyor ve çalışıyoruz. Bunun temel nedeni oldukça-düzgün

hiperyüzeylerin ayna simetrisi, karmaşık ve diferansiyel geometri, fizik alanlarında

sıklıkla karşımıza çıkan bazı özel hiperyüzey ailelerini içerecek kadar büyük; geometrik

değişmezler kuramı (GIT) ve moduli problemleri gibi bazı konularda özel bir role sahip

olacak kadar ilginç olmaları ve torik geometrinin genel ruhuna uygun bir şekilde kom-

binatorik kullanarak ayırt edilebiliyor olmalarıdır.
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1. INTRODUCTION

The aim of this dissertation is to introduce and study toric varieties from an

algebraic geometric point of view and to provide the necessary background for an

extensive reading on relatively more advanced topics and research papers about or

related to hypersurfaces in toric varieties and toric hypersurfaces.

Theory of toric varieties provides fruitful interactions between algebraic geometry

and combinatorics. It is remarkably fertile in terms of connections with many areas

of mathematics such as algebraic geometry, convex geometry, commutative algebra,

topology, differential and symplectic geometry. Besides, it has plentiful applications

to other diciplines such as physics, chemistry, biology (e.g. philogenetics), industrial

engineering (e.g. optimization) and so on. We start the second chapter by giving the

construction of toric varieties as torus embeddings, as spectra of semigroup algebras (for

affine toric varieties and affine patches), and using combinatorial objects such as fans

and polytopes. We show that the combinatorial data characterizes toric varieties and

give a dictionary demonstrating their correspondence. Then, we explicitly describe the

torus action and study its orbits. The third chapter is about divisors on toric varieties

and the groups of their classes. We define toric divisors and explain how to compute

the divisor class group and the Picard group with their help. We also introduce the

support functions associated to toric divisors. In chapter four, we give the presentation

of toric varieties as quotients of affine spaces and a toric ideal-variety correspondence

using the Cox ring. In chapter five, we study the line bundles and quasicoherent sheaves

on toric varieties. We give combinatorial conditions for a line bundle to be base point

free, ample, and very ample and the correspondence of quasicoherent sheaves on a

toric variety and graded modules over its Cox ring. Chapters 2 − 5 heavily depend on

the introductory texts [1], [2], [3], [4] on toric varieties. In particular, notations and

terminologies are mostly adopted from [1] as it is more up to date.

In the last two chapters, we especially focus on quasismooth hypersurfaces as they

are general enough to contain many examples of elements in some the special fami-
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lies (e.g. regular hypersurfaces and Calabi-Yau hypersurfaces) that have a frequent

appearance in algebraic, complex and differential geometry, and physics; interesting

enough to have special roles in some areas of research, and easy to characterize using

combinatorial tools agreeably to the spirit of toric geometry. Quasismooth hypersur-

faces in toric varieties have been widely used in some of the very sophisticated and

highly active areas of research in algebraic geometry; such as mirror symmetry and

minimal model program. Furthermore, they have a special role in the construction of

the moduli space of hypersurfaces in toric varieties. After developing some familiarity

with hypersurfaces and linear systems on toric varieties in chapter six, we show that

quasismoothness can be checked using the Newton polytope of the defining equation

of a given hypersurface. We make some brief comments about the moduli problem of

hypersurfaces in toric varieties as the last words.

Throughout this dissertation, we will be working with toric varieties over the

field of complex numbers C. Note that we omit the background material on algebraic

geometry and assume some familiarity with basic concepts, notions and results covered

in the first two chapters of Hartshorne’s book Algebraic Geometry. The reader may

consult more or less any other standard book on algebraic geometry besides [5] when it

is needed. On the other hand, we do not expect any prior knowledge on toric varieties

or their combinatorial counterparts.



3

2. TORIC VARIETIES

2.1. Construction of a Toric Variety

We rather give the definition in the full generality as the definition of, so called,

abstract toric varieties. In affine or projective cases, one can simply put the appropriate

adjective before the word variety to obtain the contextual definition.

Definition 1. A toric variety V is an irreducible variety containing an algebraic torus

T as a Zariski open subset such that the action of torus on itself by multiplication

extends to an algebraic action of the torus on V .

Examples include most of the families of varieties that are in everyday use, such

as tori (C∗)n, affine spaces Cn, projective spaces Pn and their products, weighted

projective spaces P(q0, . . . , qn), Hirzebruch surfaces Hr and so on.

On the other hand, there are many ways to describe a toric variety, all of which are

equivalent to the original definition given above. One can use lattice points, monomial

ideals, semigroup algebras, combinatorial objects such as cones, fans, and polytopes,

moment maps, and GIT-like quotients. We shall provide brief explanations to some of

these perspectives.

2.1.1. Lattice Points and Torus Embeddings

The name torus embedding for toric varieties, as it is called today, was popular

in some quarters in the 70s. An affine (resp. projective) toric variety is obtained as

the closure of the image of an algebraic torus T under an embedding to affine (resp.

projective) space. Such embeddings are given by finitely many characters of the torus

which are determined by finitely many integer tuples.

Definition 2. A character of an algebraic torus T is a morphism χ : T → C∗ that is

a group homomorphism.
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Note that for every a = (a1, . . . , an) ∈ Zn,

χa(t) = χa(t1, . . . , tn) = ta11 . . . tann

is a character where t ∈ T and all characters of T is of this form. Hence, the characters

of a torus constitute a free abelian group M ∼= Zn where n is the dimension of T .

Definition 3. A one-parameter subgroup is a morphism λ : C∗ → T that is a group

homomorphism.

Similarly, each b = (b1, . . . , bn) ∈ Zn gives a one-parameter subgroup

λb(t) = λb(t1, . . . , tn) = (tb1 , . . . , tbn)

for t ∈ C∗ and the one-parameter subgroups form a group N ∼= Zn.

Notice that the dot product on Zn gives a pairing from M ×N to Z. So, M and

N are dual lattices that determines the torus T . Let T be a torus with the lattice of

one-parameter subgroups N . Then,

N ⊗Z C∗ ∼= T

b⊗ t 7→ λb(t)

is a natural isomorphism. Accordingly, we will denote the torus as TN for the rest of

this dissertation.

Let TN be a torus with the character lattice M = Hom(N,Z). Let A =

{m1, . . . ,ms} be a finite subset of the character lattice and consider the map

ΦA : TN → Cs

t 7→ (χm1(t), . . . , χms(t)).

Clearly, the image ΦA(TN) is an algebraic torus and the Zariski closure of the image is

an affine toric variety which will be denoted by VA. In other words,

VA = V(I(ΦA(TN))). (2.1)

One may compose the map ΦA with a projection Π : Cs → Ps−1 to get the projective

toric variety, which we will denote by XA, defined as the Zariski closure of the image
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Π ◦ ΦA(TN) that is a subtorus of TPs−1 . So,

XA = V(I(Π ◦ ΦA(TN)) ⊆ Ps−1. (2.2)

Conversely, every affine and projective toric variety arises in this way.

Note that Zn is the character lattice of the torus (C∗)n of the affine space and

Ms−1 =
{

(a1, . . . , as) ∈ Zs|
s∑

i=1

ai = 0
}

is the character lattice of the torus TPs−1 = Ps−1\V(x0 . . . xs−1) of the projective space.

We may compute the character lattices of the tori in VA and XA by the following

proposition ([1] Propositions 1.1.8 and 2.1.6).

Proposition 2.1. Let TN be a torus with character lattice M and let us fix a finite set

A = {m1, . . . ,ms} ⊆ M of lattice points. Then,

(i) The character lattice of the torus ΦA(TN) in VA is the sublattice ZA ⊆ M gener-

ated by A ⊆ M and dimension of VA is equal to the rank of ZA.

(ii) The torus Π ◦ ΦA(TN) of the toric variety XA has the character lattice

Z′A =
{ s∑

i=1

aimi | ã = (a1, . . . , as) ∈ Ms−1

}
and the rank of the sublattice Z′A gives the dimension of XA.

To be convinced of the proposition above, consider the following diagram.

TN mi ∈ M

(C∗)s ΦA(TN) ei ∈ Zs ZA

TPs−1 Π ◦ ΦA(TN) Ms−1 Z′A

ΦA

Π

F

Φ̂A

The dimension of a toric variety is the dimension of the maximal torus contained in

it. The equality follows from the diagram since F is a contravariant functor taking a

torus to its character lattice.
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2.1.2. Semigroup Algebras

Semigroup algebras over C that has a finite generating set of lattice points appear

to be the coordinate rings of affine toric varieties. Hence, those semigroups, which are

called affine semigroups, give a way of characterizing affine toric varieties. Affine

semigroups may also be considered as a useful tool to describe the affine pieces of toric

varieties that are typically not affine.

Definition 4. An affine semigroup S is a finitely generated semigroup that can be

embedded in a lattice M .

Note that

C[S] =
{∑

m∈S

cmχ
m | cm ∈ C, cm = 0 for all but finitely many m

}
is an integral domain and finitely generated as a C algebra. Consequently, Specm(C[S])

is an affine variety containing a torus that has character lattice ZS. Moreover, if S

is the sublattice generated by A = {m1, . . . ,ms} ⊆ MR, then C[S] = C[χm1 , . . . , χms ]

and Specm(C[S]) = VA.

Now let XA be the toric variety defined as the Zariski closure of the torus Π ◦

ΦA(TN). Recalling that XA ⊆ Ps−1, we can find the affine pieces of the projective

toric variety XA as its intersections with the affine pieces of Ps−1. Let {x0, . . . , xs−1}

be a fixed homogeneous coordinate system for Ps−1. Take the affine open subset Ui =

Ps−1\V (xi) ∼= Cs−1 of Ps−1. Then, the affine component XA ∩ Ui is the affine toric

variety given in 2.1. Hence, we get the associated affine semigroup Si generated by the

set Ai = A−mi = {mj −mi| j ̸= i }.

Proposition 2.2 ([1] Proposition 2.1.8). Let XA ⊆ Ps−1 for A = {m1, . . . ,ms}. Then

the affine piece XA ∩ Ui is the affine toric variety

XA ∩ Ui = VAi
= Specm (C [Si]) .

Note that Z′A = ZAi for every i ∈ [s] = {1, . . . , s} and consequently the torus of

the affine piece VAi
is the torus of XA.
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It also explains how the data of the pieces are put together to constitute the

whole. We may give an algebro-geometric description of the inclusions, although it can

be done through combinatorial tools as well. We have

XA ∩ Ui ⊇ XA ∩ Ui ∩ Uj ⊆ XA ∩ Uj (2.3)

when i ̸= j. Notice that Ui ∩ Uj contains all points of XA ∩ Ui where xj/xi ̸= 0. In

the coordinate ring Specm(C[Si]) of XA ∩ Ui, it corresponds to the points satisfying

χmj−mi ̸= 0. Thus,

XA ∩ Ui ∩ Uj = Specm(C[Si])χmj−mi = Specm(C[Si]χmj−mi ).

Let Sk be the affine semigroup corresponding to XA ∩Ui ∩Uj, the expression (2.3) can

be written as

Specm(C[Si]) ⊇ Specm(C[Si])χmj−mi = Specm(C[Si + Sj]) = Specm(C[Sk]),

Specm(C[Si + Sj]) = Specm(C[Sj])χmi−mj ⊆ Specm(C[Sj]).

Here, we use the fact Sk = Si + Sj known as the separation lemma.

2.1.3. Cones, Fans, Polytopes, and Co.

The most useful and, perhaps, the most fun thing about the theory of toric

varieties is its natural association with combinatorics. Here we are to explore it!

Definition 5. A convex polyhedral cone generated by a subset S ⊆ NR is the set

σ = Cone(S) =
{∑

s∈S

λss | λs ≥ 0
}
⊆ NR.

σ = Cone(S) is said to be rational if S is a finite set of lattice points.

More generally, we call an intersection of finitely many half-planes in NR a poly-

hedron and a polyhedron that is closed under addition a cone. Explicitly, for finitely

many vectors {m1, . . . ,ms} in the dual space MR of the vector space NR,

σ =
⋂
i∈[s]

H+
mi

=
⋂
i∈[s]

{n ∈ NR | ⟨n,m⟩ ≥ 0}

is a convex polyhedral cone in NR. Actually, this point of view leads us to talk about

sub-cones of a cone which are officially called faces.
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The dimension of a polyhedron is defined as the dimension of the smallest sub-

space in NR containing it. In particular, an n-dimensional cone σ has faces of dimension

zero to n. Faces of dimension and codimension one in σ have special roles; we call them

rays and facets, respectively.

Definition 6. The dual cone σ̂ of a convex polyhedral cone σ is

σ̂ = {m ∈ MR | ⟨m,u⟩ ≥ 0}.

We may obtain the dual cone σ̂ as an intersection of half-planes defined by the

rays of σ. Hence, taking the dual preserves rationality. Following lemma states an alge-

braic finiteness property which yields one direction of the connection between rational

polyhedral cones and affine toric varieties.

Lemma 2.3 (Gordan’s Lemma). Let σ ⊆ NR be a rational polyhedral cone. Then the

semigroup

Sσ = σ̂ ∩M

is finitely generated.

Proof. Let {u1, . . . , us} ⊆ NR be the set of ray generators of σ̂. Consider the zonotope

Z generated by the vectors {u⃗1, . . . , u⃗s}. Since Z is bounded, it contains finitely many

lattice points. It is easy to check that any point in Sσ can be written as a sum of those

lattice points. Thus, we get a finite set of generators for the semigroup Sσ.

The idea is to change the playground by considering the cones instead of their

affine semigroup skeletons so that we gain a new tool-set of combinatorics. Let us

introduce some special families of cones that translate to favourable properties in the

context of toric varieties.

Definition 7. Let σ ⊆ NR be a rational polyhedral cone. σ is said to be

• strongly convex if the dual cone σ̂ that we are working with is full dimensional,

or equivalently, if {0} is a face of σ.
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• smooth if its minimal generators form part of a Z -basis of N .

• simplicial if its minimal generators are linearly independent over R.

Theorem 2.4 ([1] Theorem 1.2.18). Let σ ⊆ NR be a rational polyhedral cone where

dim(MR) = n. Then,

Vσ = Specm(C[Sσ])

is an affine toric variety. Moreover, Vσ has dimension n if and only if σ is strongly

convex.

Proof. We may take a finite generating set A for the semigroup algebra C[Sσ]) by

Gordan’s Lemma. Then, Vσ is the affine toric variety VA with the character lattice

ZSσ.

Vσ has dimension n if and only if its torus is of dimension n which is equivalent

to the character lattice ZSσ = M is of rank n. Namely, σ̂ has dimension n because

ZSσ is the smallest sublattice containing σ̂. In other words, σ is strongly convex.

Moreover, smooth and simplicial cones correspond to smooth and simplicial affine

toric varieties, respectively. From now on, we will assume strict convexity for cones.

One can think of projective or abstract varieties as a collection of affine varieties

with some extra data of gluing. Accordingly, the main combinatorial structures that

we are dealing with are going to be collections of cones, named fans.

Definition 8. A fan Σ ⊆ NR is a finite collection of polyhedral cones in NR satisfying

the following conditions;

• Each face of a cone in Σ is in Σ.

• An intersection of two cones in Σ is a face of both of them.

A fan Σ is said to be smooth or simplicial if each cone contained in Σ is smooth or

simplicial, respectively.
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An important class of examples is the fans arising as the duals of bounded lattice

polyhedra; namely, normal fans of lattice polytopes.

Definition 9. Let M and N be dual lattices.

• A lattice polytope P of a finite set A ⊆ M is the set

P = Conv(A) =
{ ∑

a∈A

λaa | λa ≥ 0 ,
∑
a∈A

λa = 1
}
.

• The fan ΣP in NR that is dual to P is called the normal fan of P .

Note that the normal fan ΣP consists of the dual cones σ̂v ⊆ NR and their faces

where σv = Cone(P − v) for each vertex v of P . It is clear that the faces of ΣP covers

NR. Fans satisfying this condition are called complete.

We denote the toric variety defined by the torus embedding given by A in 2.2 by

XP where A = P ∩M . Let {vk}k∈I ⊆ A be the set of vertices of P . Since σvk are the

maximal cones in ΣP , the affine pieces XP ∩Uk = Specm(C[Sk]) given in 2.2 forms an

affine covering

XP =
⋃
k∈I

VP∩M−vk =
⋃
k∈I

(XP ∩ Uk) ⊆ Ps−1. (2.4)

Example 1. Let P be the 2-simplex in R2.

Figure 2.1. regular two-simplex P and its normal fan ΣP .

The normal fan ΣP consists of two dimensional cones σ0 = Cone(e1, e2),

σ1 = Cone(e2,−e1 − e2), and σ2 = Cone(e1,−e1 − e2) corresponding to the vertices
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{0}, {e1}, {e2}; one dimensional cones Γ0,1 = Cone(e2), Γ1,2 = Cone(−e1 − e2), and

Γ0,2 = Cone(e1) corresponding to the edges {E0,1}, {E1,2}, {E0,2}; and {0} correspond-

ing to P itself.

Let Σ ⊆ NR be a fan. By the theorem 2.4, each cone σ ∈ Σ gives an affine

toric variety Vσ. We take this collection of cones and glue them together along their

intersections, that is determined by the face relations in the fan Σ, to obtain the toric

variety XΣ. More explicitly, the affine pieces Vσ1 and Vσ2 corresponding to the cones

σ1, σ2 ∈ Σ are glued along their intersection, which is the piece Vτ corresponding to

the common face τ = σ1 ∩ σ2.

Example 2. We will give the explicit expressions of the affine pieces and the gluing

isomorphisms of the projective toric variety of the fan (of the 2-simplex) that was given

in example 1. Observe that

Vσ0 ≃ Specm(C[x, y]),

Vσ1 ≃ Specm(C[x−1, x−1y]),

Vσ2 ≃ Specm(C[xy−1, y−1])

are the maximal affine components in XΣ that corresponds to maximal cones in Σ. Vσi

and Vσj
patch together along VΓij and the gluing isomorphisms of affine varieties are

induced by the following isomorphisms

φ0,1 : C[x, y]x ≃ C[x−1, x−1y]x−1 ,

φ1,2 : C[x−1, x−1y]x−1 ≃ C[xy−1, y−1]y−1 ,

φ0,2 : C[x, y]y ≃ C[xy−1, y−1]y−1

of the coordinate rings. We may use homogeneous coordinates for (x0, x1, x2). In this

case, the coordinate change x 7→ x1/x0, y 7→ x2/x0 identifies the standard affine open

subsets Ui ⊆ P2 = XΣ.

Starting with a lattice polytope P , there are two ways to get a toric variety; via

the torus embedding defined by the lattice points P ∩M , or via the normal fan ΣP .

Both recipes give the same toric variety when the polytope is ‘crowded enough’. Here

is the sufficient conditions for this favourable situation.
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Definition 10. Let P be a lattice polytope of dimension n and let Sv denote the semi-

group generated by the set P ∩M − v.

• P is called normal if for every k, l ∈ N,

((kP ) ∩M) ⊕ ((lP ) ∩M) = (k + l)P ∩M.

• P is said to be very ample if Sv is saturated for every vertex v ∈ P . That is, for

every lattice point m ∈ M and natural number n ∈ N, km ∈ Sv implies m ∈ Sv.

Note that, any polytope P can be normalized by taking a multiple kP for k ≥

n− 1. Besides, every normal polytope is very ample. So, without loss of generality, we

may assume that P has enough lattice points to work with. The toric variety of the

lattice points of P , which is isomorphic to XΣP
(see [1] Proposition 3.1.6), is projective

by construction. Conversely, if there is an embedding to the projective space from a

toric variety XΣ, one can always recover the associated polytope.

Theorem 2.5. Let Σ ⊆ NR be a fan, the toric variety XΣ is projective if and only if

Σ is the normal fan of a lattice polytope P .

Proof. Let Σ = ΣP be a fan where P = Conv(A) for A = {m1, . . . ,ms}. Without loss

of generality, we may assume that P is very ample. In this case, XΣ ↪→→ XP ↪→ Ps−1

by 2.4. Note that this direction also follows from one of the major results (proposition

5.3) of the section 5.1, which provides a more satisfying explanation.

Now suppose that XΣ is projective. Then the torus TXΣ
is the image of a TN

embedding and has character lattice Z′A for some finite set A ⊆ M where M is the

dual lattice of N . Define P = Conv(A) and let lP be a very ample multiple with the

vertices {lv1, . . . , lvt}. The affine open VlP∩M = Vσk
where σ̂k = Cone(lP ∩M − lvk)

for k ∈ [t]. Observing that the set {v1, . . . , vt} of vertices of P is a subset of A,

σ̂k = Cone(P ∩M − vk) is in Σ. It follows that XP is isomorphic to XΣ and so Σ is

the normal fan of P .
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We may give the major result of this section ([6] Theorem 1.6 and [4] Theorems

1.4 and 1.5) that establishes the relation between fans and toric varieties.

Theorem 2.6. Let Σ ⊆ NR be a fan consisting of the strongly convex rational polyhe-

dral cones, the toric variety XΣ is a normal separated toric variety with the torus TN

and furthermore, all normal separated toric varieties may be seen as the toric variety

of a fan of strongly convex rational cones.

Proof. Let {σ1, . . . , σt} be maximal cones of the fan Σ. Since each σk is strongly convex,

the affine open Vσk
is an affine toric variety with the torus TN . Hence, XΣ contains

the torus TN as a Zariski open subset. The gluing isomorphisms reduce to identity

mapping on the intersections, so the torus actions on affine pieces are compatible and

give an algebraic action on XΣ since Vσk
’s constitute an open affine covering of XΣ.

Besides, XΣ is irreducible and normal since the affine component Vσk
is so. Ap-

plying separation lemma to the C-algebras, we can observe that the image of an in-

tersection Vσi∩σj
gives a Zariski closed subset of Vσi

× Vσj
under the induced diagonal

mapping. It follows that XΣ is separated.

The converse is an implication of Sumihiro’s theorem which states that if TN acts

on a normal separated variety X, that is not necessarily toric, each point p ∈ X has a

TN invariant affine open neighborhood. Since X is a separated toric variety, we have

a finite cover consisting of those neighborhoods that are affine toric varieties. The

collection of corresponding cones forms a fan as desired.

To be able to use the dictionary, we will be working with normal toric varieties

and type of fans that we introduced earlier. We can observe these theorems at work in

the following basic examples.

Example 3. Let Σ = {faces of σ} for a single polyhedral cone σ ⊆ NR, then XΣ is

the affine toric variety associated to σ. Conversely, one can consider an affine toric

variety Vσ as the variety of the fan consisting of the faces of σ.
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Example 4. We will classify the one dimensional normal toric varieties.

Figure 2.2. All possible cones in dimension one.

There are four possible fans:

Σ0 = {0}, then S0 = Z and XΣ0 = Specm(C[x, x−1]) ≃ C∗;

Σ1 = {0, σ1}, so S1 = Z+ and XΣ1 = Specm(C[x]) ≃ C;

Σ2 = {0, σ2}, so S2 = Z− and XΣ2 = Specm(C[x−1]) ≃ C.

As one can see, the first three fans give affine varieties since each of them consists of

the faces of a single cone. On the other hand, Σ3 = {0, σ1, σ2} is the normal fan of

1-simplex and XΣ3 ≃ P1 has the affine open subsets U1 = XΣ1 and U2 = XΣ2.

Example 5. We may generalize the example 2 to higher dimensional simplexes. Let

∆n ∈ Rn be the regular n-simplex, so its normal fan has the rays generated by

ui = ei for i ∈ [n] and u0 = −e1 − e2 − . . .− en

where any n− 1 of these rays generate a maximal cone. Similar to our prior example,

each of the maximal cones give the affine space Cn and these pieces intersects outside

of a codimension one affine space Cn−1. It follows that the corresponding toric variety

is the projective n space Pn.

Moreover, products of fans give the products of corresponding varieties. By this

way one can get products of projective spaces by considering the products of the fans

given above.

Example 6. Let Σ be the fan of the regular n-simplex as in the previous example and

let us define Σ ′ by only shrinking the ray generators;

u′
i = ui/qi

where q0, . . . , qn are relatively prime positive integers. What we did is equivalent to mul-

tiply the lengths of edges of the dual simplex or taking the quotient of the corresponding
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toric variety Pn/Zq0 ⊕ . . . ⊕ Zqn which can be identified with the weighted projective

space P(q0, . . . , qn).

2.2. Properties of Toric Varieties

We present a summary of the bridge between algebraic geometry and combi-

natorics established via toric varieties in the previous section. Following results first

appear in [7] and the first chapters of [6] and [4]. One can also check [1] Sections 1.3,

2.4, and 3.1 for the proofs.

Table 2.1. Toric dictionary.

Geometry Combinatorics

affine toric variety Vσ cone σ

Vσ: normal σ: strongly convex

Vσ: smooth σ: smooth

Vσ: simplicial σ: simplicial

toric variety XΣ fan Σ

XP : projective P : very ample

XP : projectively normal P : normal

XΣ: complete Σ: complete

XΣ: normal Σ: fan of strongly convex cones

XΣ: smooth Σ: smooth

XΣ: simplicial Σ: simplicial

The table shows that many of the properties of toric varieties can be read from

the associated combinatorial objects and vice versa. Clearly, smooth (i.e. nonsingular)

varieties are normal and projective. On the other side, it means the smooth fans come

from polytopes, that are also called smooth in the literature, and are very ample by

implication. Conversely, one can generate tons of polytopes that are very ample but

not smooth as normal projective toric varieties may be singular.



16

Example 7. Take any non-smooth fan ΣP such that its dual P ⊆ MR is a polytope.

We know that for some k ∈ Z+, the multiple kP must be very ample. Observe that

ΣkP = ΣP implies that kP is not smooth.

In the same vein, one could ask if every smooth polytope is normal, or if every

smooth XP is projectively normal. This is one of the most important questions con-

cerning toric varieties known as Oda’s conjecture, that is still open. Yet, we know that

not every projective toric variety is projectively normal. One can check [8] for examples

of very ample polytopes that are not normal.

2.3. Action!

Starting with the affine case, we will take a closer look in the fixed points and

orbits of the torus action, that is the very reason of the relation between geometry of

toric varieties and combinatorics of fans or polytopes.

2.3.1. Fixed Points

Let Vσ be an affine toric variety with the torus TN as in theorem 2.4. Every point

p ∈ Vσ corresponds to a semigroup homomorphism ϕp : Sσ → C. The action

TN × Vσ → Vσ

(t, p) 7→ ϕtϕp(m) = χm(t)ϕp(m)

is induced by the C-algebra homomorphism

C[Sσ] = C[Vσ] → C[TN × Vσ] = C[TN ] ⊗C C[Vσ] = C[M ] ⊗C C[Vσ]

taking χm 7→ χm ⊗ χm.

Note that the points of Vσ are in bijection with the maximal ideals of C[Sσ] and

the semigroup homomorphisms from Sσ to C. Moreover, for every t ∈ TN , a fixed point

p ∈ Vσ of the action satisfies

p = (φt · φp) (m) = χm(t)χm(p) = χm(t · p).
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From here, one can deduce that a fixed point corresponds to the maximal ideal

(χm : m ∈ Sσ\{0}) ⊴ C[Sσ]

and to the semigroup map

ϕ : Sσ → C (2.5)

m 7→

1 for m ∈ Sσ ∩ σ⊥

0 otherwise

that is a morphism when Sσ is pointed (i.e. when {0} is the only invertible element

in Sσ). Hence, a fixed point should be unique if it exits and it exists precisely when

σ ⊆ MR is full dimensional. We call such a point a distinguished point and denote it

by γσ.

Example 8. Take σ = Cone(e1, e2). Then, Sσ = ⟨e1, e2⟩ and

Vσ = Specm(C[Sσ]) = Specm(C[x, y]) ∼= C2.

In this case Sσ ∩ σ⊥ = {0} and the point corresponding to ϕ in (2.5) is

p = (ϕ(1, 0), ϕ(0, 1)) = (0, 0),

that is the distinguished point. Note that p is fixed under the torus action since σ is

of maximal dimension. From the reasoning here, one can see that the origin is only

candidate to be the fixed point in the affine case.

One can compute the distinguished points with a backwards process as the limit

point of 1-parameter subgroups.

Proposition 2.7 ([1] Proposition 3.2.2). Let σ ∈ NR be a strongly convex rational

polyhedral cone and u ∈ Relint(σ) = {u ∈ N | ⟨m,u⟩ > 0 for all m ∈ σ̂\σ⊥}. Then,

lim
t→0

λu(t) = γσ ∈ Vσ.

Proof. limt→0 λ
u(t) is the point given by

ϕ : Sσ → C

m 7→ lim
t→0

χm(λu(t)) = lim
t→0

t⟨m,u⟩.
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Clearly the inner product is positive for any m ∈ Sσ\σ⊥, so the limit is 0. On the

other hand, when m ∈ Sσ ∩ σ⊥, the inner product is 0 by definition which makes the

limit 1.

2.3.2. Torus Orbits

The key observation is that the orbit of a cone σ ∈ Σ can be seen as the orbit of

its distinguished point. So,

O(σ) = TN · γσ ⊆ XΣ

= {ϕ : Sσ → C | ϕ(m) ̸= 0 if and only if m ∈ σ⊥ ∩M}

= HomZ(σ⊥ ∩M,C∗).

Using the proposition 2.3.1, we will compute the distinguished points for the affine

pieces of P2 and find the orbits that contain them.

Figure 2.3. The fan of P2.

Example 9. Take XΣ = P2 with TN = {(1, s, t) : s, t ∈ C∗}. Consider λu : C∗ → TN

taking t 7→ (1, ta, tb). We compute the distinguished point corresponding to each cone

in Σ as follows.

• Relint (σ0) = {(a, b) : a, b ∈ Z+} ⇒ limt→0 λ
u(t) = (1, 0, 0).

• Relint (σ1) = {a < 0, a < b} ⇒
(
1, ta, tb

)
=

(
1, ta, tb−a · ta

)
∼ (t−a, 1, t1,a)

⇒ limt→0 λ
u(t) = (0, 1, 0).

• Relint (σ3) = {b < 0, b < a} ⇒
(
1, ta, tb

)
∼

(
t−b, ta−b, 1

)
⇒ limt→0 λ

u(t) = (0, 0, 1).
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• Relint (τ0,1) = {a = 0, 0 < b} ⇒ limt→0 λ
u(t) = (1, 1, 0).

• Relint (τ0,2) = {b = 0, 0 < a} ⇒ limt→0 λ
u(t) = (1, 0, 1).

• Relint (τ1,2) = {a = b < 0} ⇒
(
1, ta, tb

)
∼ (t−a, 1, 1)

⇒ limt→0 λ
u(t) = (0, 1, 1).

• Relint({0}) = {a = b = 0} → limt→0 λ
u(t) = (1, 1, 1).

We may list the orbits as follows.

• O0 = {(x0, x1, x2) | x1 = x2 = 0, x0 ̸= 0} contains γσ0.

• O1 = {(x0, x1, x2) | x0 = x2 = 0, x1 ̸= 0} contains γσ1.

• O2 = {(x0, x1, x2) | x0 = x1 = 0, x2 ̸= 0} contains γσ2.

• O0,1 = {(x0, x1, x2) | x2 = 0, x0, x1 ̸= 0} contains γτ0,1.

• O0,2 = {(x0, x1, x2) | x1 = 0, x0, x2 ̸= 0} contains γτ0,2.

• O1,2 = {(x0, x1, x2) | x0 = 0, x1, x2 ̸= 0} contains γτ1,2.

• O3 = {(x0, x1, x2) | x0, x1, x2 ̸= 0} contains γ{0}.

For the first three orbits we have Sσ ∩ σ⊥ = {0} and so χm(γσi
) = 0 for any m ̸= 0.

Hence, these orbits only contains the distinguished points. The second three orbits

correspond to rays are isomorphic to C∗ and finally the last orbit O3 = TN ·γ{0} = (C∗)2.

We may now give the main result of this section ([4] Porposition 1.6).

Theorem 2.8 (Orbit- Cone correspondence). Let Σ be a fan and XΣ be the associated

toric variety as usual. Then,

(i) There is a bijective correspondence between the cones in Σ and the orbits of the

torus action on XΣ.

(ii) dim(O(σ)) = dim(NR) − dim(σ)

(iii) The affine open subset associated to σ can be given as Vσ =
⋃

τ⪯σ O(τ).

iv) The affine toric variety obtained as the orbit closure of a cone τ ∈ Σ is

O(τ) =
⋃
τ⪯σ

O(σ).
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A proof can be found in ([1] theorem 3.2.6). We already confirmed the first two

bullets on P2. Let us go back to our last example to see the last two bullets at work.

Example 10. For the third bullet of the above theorem, let us look at σ0 again. Its

faces are {0}, τ0,1, τ0,2, and σ0. Thus,

Vσ0 = O{0} ∪ Oτ0,1 ∪ Oτ0,2 ∪ Oσ0 = {(x0, x1, x2) : x0 ̸= 0} .

Sending x 7→ x1/x0, y 7→ x2/x0, one could see that Vσ0 ≃ C2.

For the last bullet, observe that the closure of of Oi,j is the coordinate axis V (xk)

in P2. For instance,

O0,1 = V (x2) ≃ P1 contains (1, 0, 0) = γσ0 ,

O0,2 = V (x1) ≃ P1 also contains (1, 0, 0),

O{0} = P2 that contains (1, 0, 0).

On the other hand, τ1,2 is not a face of σ0 and indeed, O1,2 = V (x0) does not contain

(1, 0, 0).
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3. DIVISORS AND GROUPS OF DIVISORS

3.1. Weil Divisors and the Divisor Class Group

As a consequence of the orbit- cone correspondence, the orbit closure of a ray

ρ ∈ Σ is an irreducible subvariety of codimension one in XΣ, namely a prime divisor

of XΣ which we denote as Dρ. Let XΣ be a toric variety, {uρ}ρ∈Σ(1) be the set of ray

generators of the fan and m ∈ M . The divisor of the character χm can be written as

div(χm) =
∑

ρ∈Σ(1)

⟨m,uρ⟩Dρ.

Moreover, any Weil divisor that remains invariant under the TN action can be given

as a sum of those that are associated to rays of the fan. Hence,

DivTN
(XΣ) =

{ ∑
ρ∈Σ(1)

aρDρ : aρ ∈ Z
}
≃

⊕
ρ∈Σ(1)

ZDρ ≤ Div(XΣ).

Torus invariant divisors are precisely the class of divisors perfectly accordant with the

toric data of XΣ. For this reason, we will call them toric divisors to emphasise this

harmony. Toric divisors help us compute the divisor class group, which is a very hard

task in the general case.

Theorem 3.1 ([1] Theorem 4.1.3). We have the exact sequence

M
f−→ DivTN

(XΣ)
π−→ Cl(XΣ) → 0. (3.1)

m 7−→ div(χm) 7−→ [div(χm)]

Furthermore, if XΣ has no torus factor, then we can complete it to the exact sequence

0 → M ↪→ DivTN
(XΣ) ↠ Cl(XΣ) → 0. (3.2)

Proof. It is enough to show that the map π is surjective. Since Dρ are the irreducible

components of XΣ\TN , we have the exact sequence

DivTN
(XΣ)

p−→ Cl(XΣ)
r

−−↠ Cl(TN) → 0.

Note that C[TN ] = C[M ] is a unique factorization domain since M is a free abelian

group. In this case, every codimension one prime ideal in C[M ] is principal, which



22

implies that every prime divisor is principal. It follows that Cl(TN) is trivial and p = π

is surjective.

For the second part, suppose that div(χm) is the zero divisor for some m ∈ M .

Then, ⟨m,uρ⟩ for each ρ ∈ Σ(1). In this case m = 0 if and only if uρ span NR, that is

equivalent to XΣ having no torus factors.

Corollary 3.2. The divisor class group Cl(XΣ) is the cokernel of the map

A : Zrank(M) → Z|Σ(1)|,

that is induced by the map f in (3.1). In particular, Cl(XΣ) is a finitely generated

abelian group.

Example 11. Take XΣ = Pn, ray generators of Σ are ui = ei for i ∈ [n] and u0 =

−e1 − e2 − . . .− en. Accordingly, the exact sequence (3.1) becomes

0 → Zn → Zn+1 → Z → 0,

from which, we conclude that Cl(Pn) ∼= Z.

3.2. Cartier Divisors and the Picard Group

A Cartier divisor is a locally principal Weil divisor on a normal variety. Notice

that the divisor of a character is principal and hence is Cartier. Recall that the group

of Cartier divisors modulo principal divisors give the Picard group Pic(XΣ) since XΣ

is clearly integral as C(Sσ) are integral domains. So, using the natural inclusions of

Cartier divisors into the Weil divisors and the Picard group into the class group, we

obtain the Cartier version of the above exact sequence as in [2] Proposition 3.4.1, which

is useful for computing the Picard group in the toric case.

Theorem 3.3. The sequence

M
f−→ CDivTN

(XΣ)
π−→ Pic(XΣ) → 0 (3.3)

is exact and can be completed to the exact sequence

0 → M ↪→ CDivTN
(XΣ) ↠ Pic(XΣ) → 0

if and only if XΣ has no torus factors.



23

Picard group is a subgroup of the class group, so it is also a finitely generated

abelian group. Moreover, it follows from the orbit- cone correspondence that Pic(XΣ)

is torsion free if the fan Σ contains a cone of maximal dimension.

Next, we compare the two exact sequences. For instance, on a smooth variety,

the two sequences become the same as two classes of divisors coincide.

Proposition 3.4 ([1] Proposition 4.2.6). Every Weil divisor is Cartier on XΣ if and

only if XΣ is smooth.

Proof. Note that the second direction is true in the general case. Weil and Cartier

divisors coincide on any smooth variety. We will explain the first direction, that is

special to the toric case.

Assuming Cl(XΣ) = Pic(XΣ), we have Cl(Vσ) = Pic(Vσ) = 0 for any σ ∈ Σ.

Hence, the map

M ↠ CDivTN
∼= Zs

m 7→ div (χm) =
s∑

i=1

⟨m,uρi⟩Dρi 7→ (⟨m,uρ1⟩ , . . . , ⟨m,uρs⟩)

becomes surjective. It follows that uρ1 , . . . uρs can be extended to a basis of N , which

means that Vσ is smooth. We deduce that XΣ is smooth since Σ is a smooth fan.

We can give a combinatorial criteria to determine whether a given toric divisor

is Cartier, that is also a solution to [2] Exercise 3.3.5.

Theorem 3.5 ([1] Theorem 4.2.8). Let D =
∑

ρ∈Σ(1)

aρDρ be a toric divisor on XΣ.

Then, D is Cartier if and only if for each σ ∈ Σ, there is a point mσ ∈ M satisfying

⟨mσ, uρ⟩ = −aρ (3.4)

for all rays ρ ∈ σ(1).

Proof. Suppose that D Cartier. Recall that D is principal on the affine open Vσ for all

σ ∈ Σ, by definition. Then, D |Vσ is a toric Cartier divisor on Vσ. It follows from (3.3)
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and the orbit- cone correspondence that D |Vσ is given by a character mσ. Expanding

the sums, div(χmσ) |Vσ= D |Vσ implies ⟨mσ, uρ⟩ = −aρ.

Conversely, let mσ ∈ M be a point satisfying (3.4). Then,

D |Vσ= div(χ−mσ)|Vσ

for every σ ∈ Σ, which shows that D is principle on affine open sets associated to the

cones in the fan. Hence, D is a toric Cartier divisor with the data {(Vσ, χ
−mσ)}σ∈Σ

.
=

{mσ}σ∈Σ.

3.3. Support Functions

There is one other way of describing the toric Cartier divisors which is more

favourable in terms of computations.

Definition 11. Let Σ ∈ NR be a fan. A function

φ : sup(Σ) = |Σ| =
⋃
σ∈Σ

σ → R

is called a support function if it is linear on each cone σ ∈ Σ. A support function φ is

said to be integral (with respect to the lattice N) if it takes the lattice points to Z, i.e.

the lattice points in R. We denote the set of such support functions as SF(Σ).

Let D =
∑

ρ∈Σ(1) aρDρ be a Cartier divisor with data {mσ}σ∈Σmax
such that

⟨mσ, uρ⟩ = −aρ

for ρ ∈ σ(1). Then, this data can be encoded into the integral support function

φD : |Σ| −→ R

u 7−→ ⟨mσ, u⟩

where σ is the maximal cone containing u ∈ N . Clearly, we have φD (uρ) = −aρ for all

rays ρ ∈ σ(1). So, we can write the divisor D as

D = −
∑
ρ

φD (uρ)Dρ.
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Theorem 3.6 ([3], II.6.4). There is a one-to-one correspondence between the toric

Cartier divisors and integral support functions on XΣ.

Proof. Obviously, D 7→ φD gives an injective homomorphism

CDivTN
(XΣ) → SF(Σ).

We will show that it is also surjective. Let φ ∈ SF(Σ) and σ ∈ Σ be arbitrary. By

integrality, it gives a linear semigroup map φ|σ∩N : σ ∩ N → Z, that can trivially be

extended to a linear map φσ : Span(σ) ∩N → Z. One can see that

HomZ (Span(σ) ∩N,Z) ≃ M/(σ⊥ ∩M).

Hence, there exist mσ ∈ M satisfying φ|σ (u) = ⟨mσ, u⟩ for u ∈ σ which suggests the

Cartier divisor D = −
∑

ρ φD (uρ)Dρ as the preimage of φ.

Here is an instance to see how the support functions make life easier.

Proposition 3.7. Let XΣ = Vσ be an affine toric variety, then it has a trivial Picard

group.

Proof. Since Σ consists of σ and its faces, every piecewise linear function defined on

Σ is in fact linear. Hence, for any φD ∈ SF (Σ) and τ ∈ Σ, mτ = m ∈ M . That is to

say D = div(χm) and so CDivTN
∼= M . It follows from (3.3) that Pic(XΣ) = 0.

As an immediate corollary of this result and proposition 3.4, affine smooth toric

varieties have trivial class group.
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4. TORIC VARIETIES AS QUOTIENTS

4.1. Quotient Presentation

One can describe toric varieties as the class of algebraic varieties arising as cat-

egorical quotients of smooth quasiaffine varieties. Our main purpose is to present a

given toric variety as a quotient

XΣ = (Cr\Z)/G

where Z is an exceptional set and G is a group acting on Cr\Z. Note that we will be

working with the toric varieties without torus factors since it reproduces the general

case.

We give a short recipe to this end. We will choose the smallest affine space that

is large enough to guarantee that the quotient contains the given toric variety XΣ. The

group G will be a subgroup of the torus (C∗)r that is an invariant of XΣ. What is

remained is to cut out the bad points. To do that, we choose the exceptional set Z

as the set of points that are unstable under the action. Interested reader may see [9],

[10] (chapter 12), [11] and [12] (chapter II.10) for the details of this construction from

different perspectives.

Let XΣ be a toric variety without torus factor. Let us denote TN by its torus and

r =|Σ(1)| by the number of rays in the fan Σ. Applying HomZ( ,C∗) to (3.2), we get

the exact sequence of algebraic groups

1 → HomZ (Cl (XΣ) ,C∗) → (C∗)Σ(1) → TN → 1.

We set

G = G(Σ) = HomZ (Cl (XΣ) ,C∗) ≤ (C∗)Σ(1), (4.1)

that is going to be the group that we take the quotient by. Notice that G is an invariant

of XΣ as it has Cl(XΣ) as its character group. It follows that G is a product of a torus

and a finite abelian group and it is reductive in particular.
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Just as the group G, the affine space that we will work on also depends on the

rays of Σ. From the exact sequence given above, we observe that the affine space

CΣ(1), which is the closure of the torus (C∗)Σ(1), is suitable to work with. We call its

coordinate ring

R = C [xρ : ρ ∈ Σ(1)] (4.2)

the Cox ring of XΣ. We will now describe the exceptional set using the Cox ring.

Let us first define a monomial associated to a cone σ ∈ Σ as

xσ̂ =
∏

ρ/∈σ(1)

xρ. (4.3)

Then, we take the irrelevant ideal B(Σ) = (xσ̂ : σ ∈ Σmax) generated by these mono-

mials and the exceptional set as its vanishing locus

Z(Σ) = V(B(Σ)) ⊆ CΣ(1), (4.4)

that is the union of coordinate subspaces. Note that our quotient may be seen as a

GIT quotient when XΣ is projective. In this case, the set of semistable points under

the linearization of the action of G by a character associated to an ample divisor class

is exactly what is left after cutting out the irrelevant locus ([13], passim).

Observe that the irrelevant ideal B(Σ) controls all the relations of cones in the

fan Σ except for the information about the rays. So, B(Σ) together with the set of rays

Σ(1) uniquely determines the fan and consequently associated toric variety. Moreover,

Σ(1) is controlled by the group G and the affine space CΣ(1). Therefore, the triple

(CΣ(1),HomZ (Cl (XΣ) ,C∗) ,V(B(Σ)) encodes the characteristics of the toric variety

XΣ.

There is the algebraic action (C∗)Σ(1) ↷ CΣ(1) of diagonal matrices. Then, the

subgroup G ≤ (C∗)Σ(1) acts on CΣ(1) by

g · t = (g ([Dρ]) tρ)

where g : Cl(XΣ) → C∗ and t = (tρ)ρ∈Σ(1) ∈ CΣ(1). Observe that the exceptional

set Z(Σ) consists of the orbits of the monomials xσ̂, so the G action restricts to

X̂Σ
.
= CΣ(1)\Z(Σ) since it is clearly G invariant in CΣ(1).
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Theorem 4.1 ([9] Theorem 2.1, [1] Theorem 5.1.11). Let XΣ be a toric variety without

torus factors and π : X̂Σ → XΣ. Then,

(i) π is constant on G orbits.

(ii) π is an almost geometric quotient for the action of G on X̂Σ. Thus

XΣ ≃ X̂Σ//G.

(iii) π is a geometric quotient if and only if XΣ is simplicial.

Proof. Let us define σ̃ = Cone(eρ | ρ ∈ σ(1)) ⊆ RΣ(1) for each core σ ∈ Σ

and Σ̃ = {σ̃ for σ ∈ Σ and their faces}. Observe that Σ̃ is a subfan of Σ̃0 =

{ faces of Cone(eρ | ρ ∈ Σ(1))}, that is the fan of CΣ(1). So the toric variety XΣ̃

can be obtained by removing the orbits of the cones Σ̃0\Σ̃ from CΣ(1). We deduce that

XΣ̃ = CΣ(1)\Z(Σ) = X̂Σ.

Now recall that

1 → G → (C∗)Σ(1) π→ TN → 1

is an exact sequence where π is induced by the lattice map π̄ : ZΣ(1) → N taking

eρ 7→ uρ. The map π naturally extends to π : X̂Σ → XΣ which is constant on G orbits

since G = Ker(π) in the above exact sequence.

Rest of the proof is rather too long and technical to sketch here. One can consult

with [9] and [1] for the details.

Example 12. Take XΣ = Pn. We have the ray generators ui = ei for i ∈ [n] and

u0 = −e1 − e2 − . . . − en. In this case, the number of rays is |Σ(1)| = n + 1. The

maximal cones of Σ are σi = Cone(u0, . . . , ui−1, ui+1, . . . , un) that are associated to the

monomials xi. Then B(Σ) = (x0, . . . , xn) and so

Z(Σ) = V(B(Σ)) = {0}.

Moreover, one can compute the class group Cl(P2) ∼= Z, which implies

G = HomZ(Cl(P2),C∗) ∼= C∗.
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Therefore, we may write the geometric quotient

P2 ∼= CΣ(1)\Z(Σ)/G ∼= C3\{0}/C∗.

Example 13. Take XΣ = Pn×Pm and let us write Σ = Σn×Σm. Let ρ1, . . . , ρn+1 and

ρ′1, . . . , ρ
′
m+1 denote the rays coming from Σn and Σm, respectively. One can observe

that B(Σ) = (x1, . . . , xn+1) ∩ (y1, . . . , ym+1), hence

Z(Σ) = V(x1, . . . , xn+1) ∪V(y1, . . . , ym+1) = {0} × Cn+1 ∪ Cn+1 × {0}.

Besides, Cl(Pn × Pm) = Z⊕ Z so G ∼= (C∗)2 and

|Σ(1)| = |Σn(1)| + |Σm(1)| = n + m + 2.

Therefore, we get the quotient presentation

Pn × Pm ∼= Cn+m+2\({0} × Cn+1 ∪ Cn+1 × {0})/(C∗)2

∼= Cn+1\{0}/C∗ × Cm+1\{0}/C∗.

Example 14. Take XΣ = P(q0, . . . , qn) weighted projective space where qi are positive

integers with gcd(q0, . . . , qn) = 1. Σ consists of the cones generated by the proper

subsets of {u0, . . . , un} where ui are primitive elements of

N = Zn+1/(q0, . . . , qn)Z.

Just as in the case of projective spaces, we have |Σ(1)| = n+1, Z(Σ) = {0}. Consider

the exact sequence

0 → M → Zn+1 ↠ Cl(XΣ) → 0

m 7→ (⟨m,ui⟩)i 7→
n∑

i=0

⟨m,ui⟩qi

taking m ∈ M to the trivial class in Cl(XΣ) since
〈
m,

n∑
i=0

uiqi
〉

= ⟨m, 0⟩ = 0. It follows

that Cl(XΣ) = Z and so G = C∗. Note that in this case, G acts on Cn+1 by

t · (a0, . . . , an) = (tq0a0, . . . , t
qnan).

Finally, since P(q0, . . . , qn) is simplicial, we have the geometric quotient

P(q0, . . . , qn) ∼= Cn+1\{0}/C∗.
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4.2. Cox Rings

The role of the Cox ring R, that was introduced in the previous section, of a toric

variety XΣ may be possibly underestimated at the first glance. Although, it is the key

object on the algebraic side for the generalization of the algebra-geometry dictionary

of affine and projective varieties to the toric case. Moreover, many aspects of the

geometric structure of a toric variety can be given by its Cox ring. In [1], the authors

call R the total coordinate ring instead, while the name Cox ring is rather special

to and vastly used in the context of Mori Dream spaces. In general, for a normal

variety X, Cox ring is defined as the graded ring over Cl(X) where the graded pieces

are the global sections Γ (OX(D)). When X is a toric variety, this ring is nothing

but R = C[xρ : ρ ∈ Σ(1)]. Furthermore toric varieties may be characterized as the

varieties, or Mori dream spaces, having polynomial rings as Cox rings [14].

As stated by Dolgachev (in [15] section 1.2);

“It is well known that a Z-grading of a commutative ring is equivalent to an
action of a one dimensional algebraic torus on its spectrum.”

Since Cl(XΣ) is the character group of G that appears in the quotient construction,

it generalizes to the case of toric varieties as the G-action on the Specm(R) = CΣ(1)

being equivalent to a Cl(XΣ)-grading on R. Hence,

R =
⊕

α∈Cl(XΣ)

Rα

such that Rα ·Rβ ⊆ Rα+β for any α, β ∈ Cl(XΣ).

As in the classical case of projective and weighted projective varieties, the degree

of polynomials in R is what remains invariant under the induced action of G on R. Let

us take a monomial

f =
∏

ρ∈Σ(1)

xaρ
ρ = xa ∈ R.

One can see that the orbit of f under the G action gives divisors of the same class.
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Accordingly, the degree of f is defined as the class[ ∑
ρ∈Σ(1)

aρDρ

]
∈ Cl(XΣ)

and a polynomial f ∈ Rα is called G-homogeneous of degree α.

Example 15. For an affine space Cn, one can notice that the Cox ring has the trivial

grading as the class group is trivial. It also means that every polynomial is trivially

homogeneous in the generalized sense in this context.

Example 16. Take XΣ = Pn, then R = C [x0, xn] and G = C∗. The grading is given

by the lattice map DivTN
(Pn) ∼= Zn+1 → Zn

∼= Cl(Pn) that takes (a0, . . . , an) 7→
∑

ai.

Example 17. For a weighted projective space Pn(q0, . . . , qn), everything is the same

with the previous example except for the lattice map taking (a0, . . . , an) 7→
∑

qiai which

gives the grading on the Cox ring R.

Example 18. Take Pn × Pm and R = C [x0, . . . xn, y0, . . . ym] as its Cox ring. R is

graded over Z2 where deg(xi) = (1, 0) and deg(yj) = (0, 1).

We may state a weak correspondence for subvarieties of a toric variety XΣ and

ideals of the Cox ring using the quotient map π, as in [1] Section 5.2, without the

information of an embedding to an affine, projective or weighted projective space. If π

is a geomeric quotient, in other words, if XΣ is simplicial, we have a toric ideal-variety

correspondence ([9] Proposition 2.4) that generalizes the affine and projective cases.

Theorem 4.2. Let XΣ be a toric variety, R be its Cox ring and π : X̂Σ → XΣ be the

almost geometric quotient as introduced. Then,

(i) I ⊴R is a G-homogeneous ideal if and only if

VI = π(V̂(I))
.
= π(V(I) ∩ X̂)

is a closed subvariety of XΣ.

(ii) There is a one-to-one correspondence between the closed subvarieties V ⊆ XΣ

and radical G-homogeneous ideals I ⊆ B(Σ) ⊆ R if XΣ is simplicial.
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Proof. When I ⊴R is G-homogeneous, V(I) ⊆ CΣ(1) is closed and invariant under the

G action. Clearly, V̂(I) is also closed in X̂Σ and G invariant, since Z(Σ) is so. Hence,

it maps to a closed algebraic set in XΣ under a good categorical quotient. Conversely,

take a closed subset Y of XΣ. Then,

IY = {f ∈ R : f is homogeneous and Y ⊆ V(f)}

can be easily seen to be a G-homogeneous ideal. IY can be written as the union of

ideals corresponding to the closed sets in XΣ containing Y . So, π(V(I)) = Y .

For the second part, suppose that π is a geometric quotient. Obviously, any ideal

I⊴R containing B(Σ) corresponds to an affine variety V(I) ⊆ Z(Σ) which maps to the

empty set in XΣ. Noting that the irrelevant ideal is radical, there is a one-to-one corre-

spondence between radical ideals I contained in B(Σ) and G invariant subvarieties of

CΣ(1) containing the irrelevant locus by the classical ideal- variety correspondence. The

latter corresponds to G invariant closed subsets of X̂Σ which is exactly the subvarieties

of XΣ since π is submersive.

One can also describe the homogeneous coordinates using the theorem above.

Note that the local coordinates for the affine patches associated to the cones in the

fan are compatible with the homogeneous coordinates given by the quotient by the

G-action. Let XΣ be a toric variety of dimension n and σ ∈ Σ be smooth. Then, we

have the commutative diagram

Cσ(1) X̂Σ

Uσ XΣ

ϕσ

π π

i

of toric varieties where i is given by the inclusion and

ϕσ : (aρ)ρ∈σ(1) 7−→ (bρ)ρ∈Σ(1) =

aρ for ρ ∈ σ(1)

1 otherwise

for every smooth σ ∈ Σmax. In this case, for a subvariety VI = π(V(I)) for I ⊴R, the

intersection VI ∩ Uσ is associated to the dehomogenization Ĩ ⊴C[xρ : ρ ∈ σ(1)] of I by

setting xρ = 1 for the rays not contained in σ.
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5. SHEAVES AND LINE BUNDLES

5.1. Toric Divisors and Line Bundles

The notions of line bundles and Cartier divisors coincide on a normal variety. We

stick with the language of divisors to be able to go back and forth between the geometric

and combinatorial sides. In [16] (section 4), authors focus on the line bundles linearized

with respect to the TN action as they note that every line bundle has a TN -linearization.

TN -linearized sheaves (resp. invertible sheaves, i.e. line bundles) correspond to the

toric divisors (resp. toric Cartier divisors) on a complete toric variety (see [4] section

2.2). We use support functions and polytopes associated to toric Cartier divisors as two

main tools to characterize the line bundles on a toric variety having desirable geometric

properties such as ampleness.

Proposition 5.1 ([1] Proposition 4.3.2). Let D be a toric Weil divisor on XΣ. Then,

the global sections of the sheaf OXΣ
(D) of OXΣ

-modules can be given as the direct sum

Γ (XΣ,OXΣ
(D)) =

⊕
m|= ⋆

C · χm (5.1)

over m ∈ M satisfying the condition ⋆
.
= div(χm) + D ≥ 0.

Proof. For any f in the global sections of OXΣ
(D), we know that div(f) + D ≥ 0.

Restricting it to TN , we observe that f ∈ C[M ] since C[M ] is the coordinate ring of

the torus. Moreover, Γ (XΣ,OXΣ
(D)) ⊆ C[M ] is invariant under the TN -action on

C[M ] since D is toric. Therefore, the global sections is generated by the characters

χm ∈ Γ (XΣ,OXΣ
(D)) which are precisely the characters of m ∈ M satisfying ⋆.

Let us look at the condition ⋆ more closely. Let D =
∑

ρ∈Σ(1)

aρDρ be a toric divisor

and m ∈ M . If we write it explicitly, the condition ⋆ is equivalent to

⟨m,uρ⟩ ≥ −aρ for all ρ ∈ Σ(1).

Let PD be the set of points p ∈ MR satisfying above condition. Since there are finitely

many non-zero aρ, PD is obtained as an intersection of finitely many half-spaces and so
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is a polyhedron. If Σ is complete, PD is bounded (i.e. a polytope) for any toric divisor

D ([2] Proposition 3.4.2). Although, it may not be a polytope in the general case.

Let D,D′ be two toric divisors of the same class. So, D = D′ + div (χm) for some

m ∈ M . The map f 7→ fχm induces an isomorphism

Γ (XΣ,OXΣ
(D)) ≃ Γ (XΣ,OXΣ

(D′)) ,

which implies PD′ = PD+m on the combinatorial side. It follows that PD is an invariant

of the class [D] up to translation. The polyhedron PD is a useful tool to determine

whether a divisor (respectively, a divisor sheaf) has favourable properties.

Proposition 5.2 ([1] Proposition 6.1.1). Let XΣ be a toric variety with a full di-

mensional fan Σ and D =
∑

ρ∈Σ(1) aρDρ be a toric Cartier divisor with the data

{mσ}σ∈Σmax. Then, OXΣ
(D) is generated by the global sections (i.e. D is base point

free) if and only if mσ ∈ PD for all σ ∈ Σmax.

Proof. For any σ ∈ Σmax, the character χmσ gives a global section s with divisor of

zeros div0(s) = D+div (χmσ) since mσ ∈ PD. Noting that ⟨mσ, uρ⟩ = −aρ for ρ ∈ σ(1),

one can deduce s is non-vanishing on the affine piece Uσ as div0(s) does not contain it.

It proves the second direction since {Uσ}σ∈Σmax is a covering for XΣ.

Now, suppose that D is base point free and σ ∈ Σmax. Recall that

O(σ) = {γσ} =
⋂

ρ∈σ(1)

Dρ

by theorem 2.8. In this case, there is a global section s such that the support of

div0(s) does not contain γσ. By the previous proposition, s is given by χm for some

m ∈ PD ∩M . Hence,

div0(s) = D + div (χm) =
∑
ρ

(aρ + ⟨m,uρ⟩)Dρ.

Since γσ ∈ Dρ for any ray ρ ∈ σ(1), aρ + ⟨m,uρ⟩ = 0 for ρ ∈ σ(1). σ being full

dimensional implies that mσ = m ∈ PD.

Let us give an example to visualize it.
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Example 19. Let XΣ be the Hirzeburch surface H2. The corresponding fan Σ consists

of the maximal cones σ1 = Cone(e1, e2), σ2 = Cone(e1,−e2), σ3 = Cone(−e2, 2e2−e1),

and σ4 = Cone(2e2 − e1, e2) and their faces.

Figure 5.1. Fan of the Hirzeburch surface H2.

Lets take D = Dρ2,3 and E = Dρ2,3 + Dρ4,1 with the Cartier data {mi}i∈[4] and

{ni}i∈[4], respectively. We will compute the numbers mi and ni to check whether these

toric divisors have base points. By (3.4), we have

⟨m1, uρ4,1⟩, ⟨m1, uρ1,2⟩ = 0,

⟨m1, e2⟩, ⟨m1, e1⟩ = 0,

∴ m1 = (0, 0).

Similarly, the equations

⟨m2, e1⟩ = 0, ⟨m2,−e2⟩ = −1,

⟨m3,−e2⟩ = −1, ⟨m3, 2e2 − e1⟩ = 0,

⟨m4, 2e2 − e1⟩ = 0, ⟨m4, e2⟩ = 0

show that m2 = (0, 1), m3 = (2, 1), and m4 = (0, 0). If we repeat the process for

ni, we obtain n1 = (0,−1), n2 = (0, 1), n3 = (2, 1), and n4 = (−2,−1). Notice that

this computation also shows that both PD and PE are given by the same supporting

hyperplanes with a different ordering. So,

PD = PE = Conv((0, 0), (0, 1), (2, 1)).

We deduce that D is basepoint free while E is not as PD contains all mi and on the

other hand, n1, n4 /∈ PE.
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Moreover, when PD is a polytope, the points mσ lie on the supporting hyperplanes

of PD. So, for base point free divisors, the relation D 7→ PD is clearly one-to-one. On

the other hand, its inverse can be given using the correspondence of toric Cartier

divisors and integral support functions. The toric Cartier divisor associated to a given

polytope P ⊆ MR is defined as the divisor DφP
of the integral support function

φP (u) = min(⟨m,u⟩ | m ∈ P ).

Note that DPD
= D and PDP

= P by construction when PD is a polytope.

Proposition 5.3 ([1] Proposition 6.1.10). P ⊆ MR is a full dimensional polytope (resp.

very ample) if and only if DP is an ample (resp. very ample) base point free divisor

on XΣP
.

Proof. Let P ⊆ MR be a full dimensional polytope, then DP is well defined and is

base point free by the previous proposition. Lets choose k ∈ Z big enough so that

kP = Q is very ample. Clearly, DQ is also base point free, so the global sections

Γ (XΣQ
,OXΣQ

(DQ)) = W that is generated by χmi for mi ∈ {m1, . . . ,ms} = Q ∩ M

give the morphism ϕDQ
to Ps−1. Note that we may write

ϕDQ
(p) = (χm1)(p), . . . , χms)(p),

from which, we deduce that it factors as

XΣQ

α−→ XQ∩M ↪→ Ps−1.

DQ gives a closed embedding to the projective space Ps−1 if and only if the map α is

an isomorphism. Since the maximal cones σi in ΣQ are indexed by the vertices mi of

Q, we can state it as for each i ∈ I ⊆ [s] such that mi ∈ Q is a vertex,

α|σi
: Uσi

−→ XQ∩M ∩ Ui

is an isomorphism where Ui are the standard affine patches of Ps−1. Equivalently,

Smi
= ⟨Q ∩ M − mi⟩ → σ̂ ∩ M = Sσi

is a semigroup isomorphism for each i ∈ I,

which is the definition of Q being very ample. Recalling that Q is taken arbitrarily,

we conclude that Q is very ample if and only if DQ is very ample. It also implies that

P being a polytope is equivalent to DP being ample since Q = DQ = DkP = kDP is

shown to be very ample.
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We can give another description for the ample divisors by defining the class of

support functions associated to polytopes.

Definition 12. Let Σ be a fan with a full dimensional convex support and D be a

Cartier divisor on XΣ. The support function φD is said to be strictly convex if it is

convex and

φD(u) = ⟨mσ, u⟩ ⇐⇒ u ∈ σ

for every σ ∈ Σ(max).

Note that the condition given for strict convexity of φD is to say the points mσ

for the maximal cones σ ∈ Σ are distinct. From the reasoning in the proof of the

previous proposition, it is clear that such a condition makes it possible to gather the

existing data to form a closed projective embedding. Strictly convex support functions

characterize the class of ample line bundles on toric varieties.

Theorem 5.4 ([2] Proposition 3.4.3). D =
∑

ρ∈Σ(1)

aρDρ be a Cartier divisor with the

data {mσ}σ∈Σmax on a complete toric variety on XΣ and let φD be its support function.

Then, φD is strictly convex if and only if D is ample.

Proof. Suppose that D is ample. Then, kD is a very ample Cartier divisor for some

k ∈ Z with Cartier data {kmσ}. Since it is very ample, it is also base point free and

so is associated to the very ample polytope PkD = kPD satisfying Σ = ΣkPD
as we

have shown in proposition 5.3. In this case, the points kmσ coincide with the vertices

of kPD and so are distinct, which implies {mσ}σ∈Σmax are distinct. Besides, we have

φD = φkD/k = φkPD
/k showing that φD is convex by the definition of φP .

Now let φD be strictly convex. Let us call P = Conv(mσ|σ ∈ Σmax). By defini-

tion, φP = φD which implies DP = D. It follows from 5.3 that D is ample.

These two gradual notions that refer to projective morphisms coincide in the good

cases ([7] Corollary 1 in page 570), namely when there are no incompatibilities in the

local data.
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Theorem 5.5. Every ample divisor is very ample on a smooth complete toric variety

XΣ.

Proof. Suppose that D is an ample divisor on XΣ and let k be chosen so that kPD

is very ample. The reasoning in the last proof gives that Σ = ΣPD
= ΣkPD

. Since

Σ is a smooth fan, kPD is smooth, and so PD is also smooth when it is a lattice

polytope. Smooth polytopes are very ample, which, by the proposition 5.3, completes

the proof.

5.2. Quasicoherent Sheaves

We will concentrate on the relation of the Cox ring R with the geometric features

of XΣ. In particular, we will show that all quasicoherent sheaves on a toric variety

come from graded modules over its Cox ring. Let XΣ be a toric variety with the full

dimensional fan Σ ⊆ NR and let R be the associated Cox ring. For each σ ∈ Σ, we

have the map

C[Sσ] −→ Rxσ̂

χm 7−→
∏
ρ

x⟨m,uρ⟩
ρ

where Rxσ̂ is the localization of R at the monomial of σ. Notice that the monomials

x⟨m, ⟩ in the image have degree[∑
ρ

⟨m,uρ⟩Dρ

]
= [χm] = 0

and they are precisely the ones that remain invariant under the G-action. Therefore,

it induces an isomorphism

ϕσ : C [σ̂ ∩M ] −→ (Rxσ̂)G = (Rxσ̂)0.

So, the right hand side can be considered as the algebraic correspondent to the affine

pieces of XΣ. The intersections of the corresponding copies of affine pieces, i.e. the

constant parts of the R-modules Rxσ̂ , are compatible since they are given by the gluing

data of those pieces.
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Lemma 5.6 ([9] Lemma 2.3). Let τ be a face of σ and m ∈ M such that τ = σ ∩m⊥.

The following diagram

(Rxσ̂)0 ((Rxτ̂ )0)ϕσ(χm)

C[Sσ] C[Sτ ]χm

of isomorphisms commutes.

Proof. The condition τ = σ ∩ m⊥ is to say that the inner product ⟨m,uρ⟩ = 0 for

uρ ∈ τ(1) and is strictly positive for uρ ∈ σ(1)\τ(1). Recalling that taking the constant

part commutes with the localization, one can chase the diagram and immediately see

that it commutes.

In the same vein, we can define a sheaf FM corresponding to a given graded

R-module M .

Proposition 5.7 ([1] Propositions 5.3.3, 5.3.6). Let M be a graded R-module.

(i) There exists a quasicoherent sheaf FM such that

Γ (Uσ,FM) = (Mxσ̂)0

for any σ ∈ Σ.

(ii) FM is coherent if M is finitely generated as a graded R- module.

Proof. Since M is a graded R-module, Mxσ̂ is a graded Rxσ̂ module and (Mxσ̂)0 is an

(Rxσ̂)0 module. Hence, it induces a sheaf on

Specm((Rxσ̂)0) = Specm(C[Sσ]) = Uσ

that is compatible on the intersections by the previous lemma. So, the collection

{(Mxσ̂)0}σ∈Σ forms a sheaf that is clearly quasicoherent by construction.

For the second part, we may take G-homogeneous generators of M of degrees

α1, . . . , αr. For any σ ∈ Σ clearly Mxσ̂ is finitely generated over Rxσ̂ with generators



40

mi of the same degrees. Now, we multiply each mi with the generators of (Rxσ̂)−αi
and

obtain a generator set of (Mxσ̂)0 over (Rxσ̂)0. Hence, FM is coherent.

Example 20. For an α ∈ Cl(XΣ), the shift R(α) gives a coherent sheaf on XΣ that

is denoted by OXΣ
(α).

In fact, any divisor in the same class gives the same sheaf.

Proposition 5.8 ([1] Proposition 5.3.7). There is a natural isomorphism Rα ≃

Γ (XΣ,OXΣ
(α)) and for any Weil divisor D =

∑
ρ aρDρ with the class α,

OXΣ
(D) = OXΣ

(α).

Proof. The local sections of Γ (XΣ,OXΣ
(α)) are defined as

Γ (Uσ,OXΣ
(α)) = (R(α)xσ̂)0 = (Rxσ̂)α .

Hence, we have the exact sequence

0 −→ Γ (XΣ,OXΣ
(α)) −→

∏
σ

(Rxσ̂)α ⇒
∏
σ,τ

(Sxσ̂∩τ )
α

from which we may conclude that the global sections of OXΣ
(α) has a basis consisting

of Laurent monomials
∏

ρ x
aρ
ρ of degree α such that aρ ≥ 0 for all ρ ∈ Σ(1). Notice

that these are exactly the monomials in R of degree α. The first isomorphism follows

immediately.

Let us take a divisor D =
∑

ρ∈Σ(1)

aρDρ ∈ Cl(XΣ) with [D] = α. It is enough to

show that

Γ (Uσ,OXΣ
(D)) = Γ (Uσ,OXΣ

(α)),

which implies that D gives the same sheaf as α since (Rxσ̂)α is compatible with the

inclusions given by the face poset of Σ. By (5.1), the left hand side is the direct sum

of C · χm over m ∈ M satisfying ⟨m,uρ⟩ ≥ −aρ for each ρ ∈ σ(1). Since the monomial

x⟨m,D⟩ has degree [D] = α, we may write

x⟨m,D⟩ =
∏
ρ

x⟨m,uρ⟩+aρ
ρ ∈ (Rxσ̂)α.
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So, it gives the map

Γ (Uσ,OXΣ
(D)) −→ (Rxσ̂)α

χm 7−→ x⟨m,D⟩.

Observe that ⟨m,D⟩ = ⟨m′, D⟩ implies m = m′ when XΣ has no torus factors.

Thus, above map is injective. Moreover, for any monomial xb =
∏

ρ x
bρ
ρ of degree α,

we know that[∑
ρ

bρDρ

]
= α = [D] = [div(χm) + D] =

[∑
ρ

(⟨m,uρ⟩ + aρ)Dρ

]

which guarantees that there exists an m ∈ M satisfying bρ = ⟨m,uρ⟩ + aρ ≥ 0 for all

ρ. Therefore, our map is also surjective and so is an isomorphism.

Example 21. Take XΣ = Pn. Recall that the toric prime divisors Dρi = Oρi are in

the class 1 ∈ Z = Cl(Pn). So,

OPn(k) ≃ . . . ≃ OPn(kDi)

with Γ (Pn,OPn(k)) = Rk, namely the Z-homogeneous polynomials of degree k.

Therefore, every graded R module gives a quasicoherent sheaf on XΣ. The con-

verse is also true. For any quasicoherent sheaf F on XΣ, there is a graded R-module

M such that F = FM . Moreover, M can be chosen to be finitely generated over

R if F is coherent. However, this is a many-to-one functor. In other words, many

non-isomorphic graded modules may give rise to the same sheaf on XΣ.

Example 22. Every finitely generated graded module M over R = C [x0, . . . , xn] sat-

isfying ⟨x0, . . . , xn⟩l M = 0 for ℓ ≫ 0 gives the trivial sheaf on Pn ([5], exercise II.5.9).
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6. HYPERSURFACES AND LINEAR SYSTEMS

A hypersurface Y in X is an algebraic subset locally of dimension dim(X) − 1.

I may be regarded as an effective Weil divisor
∑

i∈I aiDi where the coefficients ai are

non-negative and Di are prime divisors of X. If the ground variety X is a projective

space, the hypersurface Y is obtained as the zero locus of a single non-constant G-

homogeneous polynomial ([5], chapter II.7). It naturally generalizes to the case of

toric varieties. In [17] (proposition 2.5.8), it was shown for simplicial toric varieties

using the ideal sheaves. We will rather give a more general proof for any (normal)

toric variety using the construction in [18] and due to the correspondences of ideals/

subvarieties, and quasicoherent sheaves/ graded modules.

Let XΣ be a toric variety given by π : X̂Σ → XΣ and Y ⊆ XΣ be a hypersurface

of degree α ∈ Cl(XΣ). Let Xreg
Σ be the smooth locus of XΣ. Note that its complement

has codimension at least two in XΣ by normality. The hypersurface Y becomes a

Cartier divisor when it is restricted to the smooth locus. Let {fi, Ui}i be the Cartier

data of Y reg .
= Y ∩Xreg

Σ . Note that the pull-back π∗(Y reg) is a Cartier divisor on X̂Σ

with the data {fi ◦ π, π−1(Ui)}.

Definition 13. The closure of π∗(Y reg) in X̂Σ is called the pull-back π∗(Y ) of Y .

Defining what corresponds to Y in X̂Σ in this way saves us from the problems

caused by the singularities of XΣ that may possibly be worse than quotient singularities.

Proposition 6.1. Let XΣ be a toric variety without a torus factor, R be its Cox ring

and π : Cr\Z(Σ) ↠ XΣ be the quotient map given by the G action.

(i) Any G-homogeneous polynomial f ∈ Rα inherits a hypersurface in XΣ of class

α.

(ii) For any hypersurface Y ⊆ Xσ of class α there is a G-homogeneous polynomial

fY ∈ Rα such that V(fY ) = Y ⊆ XΣ.
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Proof. For a given G-homogeneous polynomial f ∈ Rα, we know that V(f) = π(V̂(f))

is closed in XΣ by theorem 4.2. Note that V(f) is an affine hypersurface and hence,

V̂(f) = V(f) ∩ X̂Σ must be of dimension r − 1 since the irrelevant locus Z(Σ) has

codimension at least two. Since π is an almost geometric quotient, Y = V(f) = π(V̂(f))

is also of codimension one in XΣ and so is a hypersurface. Besides, the ideal generated

by f is a graded R module, so it corresponds to the sheaf F(f) = OXΣ
(α) since

f ∈ Rα ≃ Γ (XΣ,OXΣ
(α)) by proposition 5.8. Therefore, [Y ] = α.

Now let Y be a hypersurface in XΣ of class α. In this case, the closure π∗(Y ) of

the pull-back in Cr is a closed G-invariant subset of codimension one, so is given by a

single G-homogeneous polynomial f ∈ R. In this case, we have

V̂(f) = V(f) ∩ X̂Σ = π∗(Y ).

Then, obviously,

π|π−1(Xreg
Σ )

(
V̂(f)

)
= π|π−1(Xreg

Σ
)(π∗(Y )) = Y reg

which implies V(f) = π(π∗(Y )) = Y . Hence, f ∈ Rα.

When f ∈ Rα is a global section of a toric Weil divisor D, the hypersurface Y =

V(f) is apparently the zero section of f with respect to the homogeneous coordinates.

6.1. Linear Systems

Similar to the hypersurfaces, the pull-back of a linear system S is defined as

π∗(S)
.
= {π∗(Y ) : Y ∈ S}

and is clearly a linear system on X̂Σ since the preimage of the singular locus of XΣ has

codimension at least two in X̂Σ. We denote the collection of polynomials corresponding

to the elements of π∗(S) by MS as it is an R0-module. From the classical point of view

(e.g. [5], section II.7), MS is the subspace is given as

{s ∈ Γ (XΣ,OXΣ
(α))|div0(s) ∈ S} ∪ {0}

where S ⊆ |α|.
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Definition 14. A linear system S ⊆ |α| on a toric variety XΣ is said to be monomial

if MS is generated by a set of monomials in Rα.

Working with the linear systems whose algebraic data can be expressed by mono-

mials brings Newton polyhedra into play. The Newton polytope of S is defined as

∆S = Conv
{
a = (aρ)ρ∈Σ(1) : xa =

∏
ρ∈Σ(1)

xaρ
ρ ∈ B

}
where B is a monomial generating set of minimal degree for MS . Since MS ⊆ Rα, that

is generated by all the monomials of degree α as an R0 module, we may deduce that

∆S is contained in the polyhedron Pα consisting of the points a = (aρ)ρ where aρ ≥ 0

and xa ∈ Rα.

Let us denote the base loci of S and π∗(S) by BS B∗
S , respectively. When MS is

generated by monomials {xa : a ∈ B}, B∗
S = V(MS) is given as a union of vanishings

of xρ for aρ ̸= 0, which, in particular can be indexed by σ ∈ Σ. So,

B∗
S =

⋃
σ∈J

Aσ
.
=

⋃
σ∈S

{
x ∈ X̂Σ : xρ = 0, ρ ∈ σ(1)

}
, (6.1)

for some subset S ⊆ Σ. In fact, the piece Aσ ⊆ B∗
S precisely when the polynomial fY

corresponding to a general element Y ∈ S can be written as

fY =
∑

ρ∈σ(1)

xρfρ. (6.2)

The Newton polytope ∆S determines the base locus B∗
S of a monomial system.

Proposition 6.2 ([18] Lemma 1.1). Let S be a monomial linear system on a complete

toric variety XΣ. Then,

B∗
S = V(xa) = V

( ∏
ρ∈Σ(1)

xaρ
ρ

)
where a is a vertex of the Newton polytope ∆S ⊂ R|Σ(1)| of S.

Proof. Let B be a monomial generating set of minimal degree for MS and let us denote

by I the set of vertices of ∆S . It is enough to show that V(xb) ⊆
⋃

a∈I V(xa) for any

xb ∈ B. Observing that exponent b of any xb ∈ B can be written as
∑

i∈[k] ciai = b

where ai ∈ I are vertices for i ∈ [k] and ci ∈ (0, 1] ∩ Q are coefficients satisfying
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∑
i∈[k] ci = 1. The desired inclusion follows since the each factor of xai for i ∈ [k] also

appear in xb.

It follows from above that the monomials having the vertices of the Newton

polytope ∆S as exponents constitute a basis for MS .

Example 23. Lets consider the case XΣ = Pn. Recall that X̂Σ = Cn+1\{0} and the

class group is isomorphic to Z. For a hypersurface Y ⊆ Pn of class d, fY has degree d

and OPn(Y ) = OPn(d).

Let |Y | = Sd = |d| be the complete linear system of hypersurfaces of degree d.

Clearly, the homogeneous space MSd
is generated by the monomials xa =

∏
i∈[n+1] x

ai
i

where ai ≥ 0 and
∑

i∈[n+1] ai = d. So,

∆Sd
= Conv({vi}i∈[n+1]|(vi)i = d and (vi)j = 0 for i ̸= j)

and we may compute the base locus as

B∗
Sd

=
⋃

i∈[n+1]

V(xvi) = {a = (ai)i∈[n+1] ∈ Cn+1\{0}|ai = 0 for some i ∈ [n + 1]}.

As one may notice, it becomes messier when the variables xρ have different

weights. Working on weighted projective spaces, one first needs to solve a partition

problem determined by the given information of the dimension of the space, degree of

the linear system, and the weights of the variables.

Example 24. Take XΣ = P(1, 1, 2) and consider the complete linear system S3 of

hypersurfaces of degree three.

Figure 6.1. The Newton polytope ∆S3 .
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In this case, MS3 ⊆ R3 has a generating set consisting of all the monomials of

degree three, that is {x3, y3, xy2, x2y, xz, yz}. The Newton polytope

∆S3 = Conv((3, 0, 0), (0, 3, 0), (1, 0, 1), (0, 1, 1)).

Accordingly, one can see that B∗
S3

= V(x3, y3, xz, yz) = V(x) ∪V(y) in C3\{0}.

6.2. Quasismooth Hypersurfaces

Quasismoothness was introduced by Danilov [19] as a regularity notion for hyper-

surfaces. Quasismooth hypersurfaces in toric varieties have been widely used in some

of very sophisticated and highly active areas of research in algebraic geometry; such as

mirror symmetry and minimal model program.

Definition 15. Let XΣ be a toric variety given by the almost geometric quotient

π : X̂Σ → XΣ. A hypersurface Y ⊂ XΣ is said to be quasismooth if π∗(Y ) is smooth

in X̂Σ.

If a hypersurface Y is given by the G-homogeneous polynomial f ∈ R, it is

equivalent to V(f) being smooth outside of the exceptional set Z(Σ) in CΣ(1). Such

a hypersurface may not have singularities except for the ones that are induced by

the quotient map. Hence, quasismoothness is equivalent for a hypersurface Y to be

simplicial or smooth when the ambient variety XΣ is simplicial or smooth, respectively.

It was shown in [17] (Proposition 2.6.9) that quasismoothness also implies normality.

Although the author works with the simplicial toric varieties, it naturally generalizes

to the case of any normal toric variety.

Proposition 6.3. A quasismooth hypersurface Y ⊆ XΣ is normal.

Proof. Since Y is quasismooth, π∗(Y ) is smooth and so is normal in X̂Σ. Then,

π|π∗(Y )(π
∗(Y )) = Y is normal by the universal property of good categorical quotients

(see [20] section 0.2 or [10] proposition 3.1).
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Following result implies that it is not a very special case for hypersurfaces in toric

varieties.

Proposition 6.4 ([18] Proposition 2.2). Let S be a linear system of a complete toric

variety XΣ. The subset Sqs of quasismooth hypersurfaces is Zariski open in S.

Proof. Consider the subset

S =

{
(x, Y ) ∈ X̂ × S : fY (x) =

∂fY
∂xj

(x) = 0, j = [r]

}
of X̂ ×S where r = |Σ(1)| and fY ∈ R is the defining (G-homogeneous) polynomial of

Y ∈ S and the projection map p : S → S. The fiber p−1(Y ) of a hypersurface Y ∈ S

is empty if Y is quasismooth. Note that p factors through p̄ defined on (π × id)(S),

that is complete. Hence the image π̄((π × id)(S)) = S\Sqs is Zariski closed in S (by

[5] exercise II.4.4), which implies Sqs is open as desired.

Noting that non-empty open sets are dense in Zariski topology, it immediately

follows from the proposition that Sqs is either empty or is dense in S. In other words,

the general element of S ⊆ |Y | containing Y is quasismooth when Y is quasismooth.

In this case, we call S a generally quasismooth linear system. Note that a generally

quasismooth linear system S can also be characterized as a system whose pull back

π∗(S) is generally smooth.

As we refer in the proof of previous proposition, the condition for quasismooth-

ness may be given as a Jacobian criterion. Accordingly, a hypersurface Y ⊂ XΣ is

quasismooth if and only if the partial derivatives {∂fY
∂xρ

}ρ∈Σ(1) have no common roots.

In [16], it was shown that quasismoothness equivalent for a hypersurface to be a sub-

orbifold in the simplicial case ([16] Proposition 3.5). In the light of this result and [15],

a characterization of the quasismooth linear systems was given in [21] (Theorem 8.1).

Theorem 6.5. Let XΣ = P (q0, . . . , qn) be a weighted projective space, d ∈ Cl(XΣ) be

a class and I = {i0, . . . , ik−1} ⊆ [n] be an arbitrary non-empty index set. The class d

is generally quasismooth precisely in the following cases.
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(i) There is a variable xρ of weight d.

(ii) There is a monomial xm̄
I = xm0

i0
· · ·xmk−1

ik−1 ∈ Rd of degree d.

(iii) There are monomials

xm̄t
I xet = x

m0,t

i0
· · ·xmk−1,t

ik−1 xet ∈ Rd

of degree d for t ∈ [k] and {et} are k distinct elements.

We will present a combinatorial way to determine whether a hypersurface, or its

linear system is quasismooth, following the Artebani et. al. [14] that was based on the

constructions and results in the classical paper of Khovanskii [22].

Definition 16. A finite collection {Pi}i∈[k] of polytopes in Rn is called dependent if

there exists a non-emty subcollection J ⊆ [k] such that the polytopes in {Pj}j∈J can be

translated to lie on a lower dimensional subspace.

Using this notion, we can describe the solutions of a given finite system of equa-

tions of Laurent polynomials that are general in their support. That is, each member

of {pi}i∈[k] ⊆ C
[
x±
1 , . . . , x

±
r

]
is being general in the collection of Laurent polynomials

with the same Newton polytope. The result follows from [22] (sections 2.1 and 2.2).

Lemma 6.6. Let {pi}i∈[k] ⊆ C
[
x±
1 , . . . , x

±
r

]
be Laurent polynomials that are general

in their support. Then the the system {pi = 0}i∈[k] of equations have no solutions if

and only if the collection of Newton polytopes ∆pi is dependent. The solutions form an

analytic manifold of dimension (r − k) in (C∗)r when the system is compatible.

Now let XΣ be a complete toric variety, Y ⊆ XΣ be a hypersurface of degree

α ∈ Cl(XΣ) associated to the polynomial fY ∈ Rα, and S be a linear system having Y

as a general element. We associate the polytope ∆σ
S(ρ) to the couple (S, σ) for every

σ ∈ Σ, that is the Newton polytope of fY |Aσ .

Although, the expression (6.2) of fY may not be unique, it follows from the

proposition 6.2 that the Newton polytope has the same vertices. So, ∆σ
S(ρ) are clearly
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well-defined. Recalling (6.2), when we take the restriction of fY to Aσ, the factors of

fρ indexed by the rays of σ disappears. Therefore,

∆σ
S(ρ) + eρ = Conv

(
b ∈ ∆fY ∩ Z|Σ(1)| : bρ = 1 and mτ = 0 for τ ∈ σ(1)\{ρ}

)
.

Note that, for each σ ∈ Σ, the non-empty subcollection of the polytopes ∆σ
S(ρ) give a

collection of faces of the σ-face of ∆fY given by
∑

ρ∈σ(1) bρ = 1. Hence, the following

theorem indicates that the Newton polytope ∆S determines whether S is generally

quasismooth.

Theorem 6.7 ([18] Theorem 3.6). A linear system S is generally quasismooth if and

only if the collection of polytopes {∆σ
S(ρ)}ρ∈σ(1) are dependent for all σ ∈ Σ satisfying

Aσ ⊆ B∗
S .

Proof. Let S be a linear system on a toric variety XΣ with a general element Y ∈ S.

Suppose that V̂(fY ) ⊆ π∗(S) is singular in X̂Σ and let C be an irreducible component

of V̂(fY )
sing

= X̂Σ\V̂(fY )
reg

. Let Aσ be the intersection of pieces of B∗
S containing C.

Let us write fY =
∑

ρ∈σ(1) xρfρ. Since Aσ is the smallest piece containing C, fY has

a singular point on the torus isomorphic to (C∗)|Σ(1)\σ(1)| which we will denote by Tσ.

Observing that fρ are generic in their support as fY is general, we get

Tσ ∩ C ⊆ Tσ ∩ V̂(fY )
sing

∩ Aσ = Tσ ∩
( ⋂
ρ∈σ(1)

V(fρ) ∩ Aσ

)
which implies that ∆σ

S(ρ) are independent by lemma 6.6.

Similarly, for any piece Aσ ⊆ B∗
S , the polytopes ∆σ

S(ρ) are independent, which

means that {fρ}ρ∈σ(1) has a common root in the torus Tσ. We may conclude that V̂(fY )

is not smooth as fY has singular points on the torus and hence the general element Y

of S is not quasismooth.

Moreover, we know that ∆σ
S(ρ) ⊆ Pα, that spans a linear subspace of dimension

dim(π (Aσ)). This fact together with the theorem above has an immediate corollary.

Corollary 6.8. Let Aσ ⊆ B∗(S) for some σ ∈ Σ. If the number of non-empty polytopes

∆σ
S(ρ) is greater than dim(π (Aσ)), the linear system S is generally quasismooth.
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7. CONCLUSION

We conclude this dissertation by a discussion on the moduli problem of hyper-

surfaces in toric varieties and its history as it was the beginning of the history of this

dissertation.

7.1. The Moduli Problem

It is known that the study of moduli of hypersurfaces in toric varieties may

require non-reductive tools as toric varieties may have non-reductive automorphism

groups. Let XΣ be a complete simplicial toric variety (i.e. toric orbifold), α be an

ample divisor class, and let Mα denote the generic coarse moduli space of quasismooth

hypersurfaces in XΣ with the divisor class α. Batyrev and Cox [16] (section 13) have

stated that, using the quotient presentation of XΣ, Mα can be given as a categorical

quotient of a suitable open subset U , consisting of quasismooth hypersurfaces, of the

parameter space Sα of hypersurfaces of degree α by an algebraic group H when H

is reductive. Note that the group H is defined as the centralizer of G (as in 4.1)

in Aut(X̂Σ) and depends on the automorphism group of XΣ fixing the class α, so is

possibly non-reductive. At the time when [16] was published, it was not possible to

describe the moduli space more explicitly.

Geometric invariant theory (GIT) is the theory of quotients in the category of

varieties that provides very powerful tools for constructing and studying moduli spaces

(see [20]). Traditionally, if we have a reductive group G acting on a complex projective

variety X = Proj(R), then the set of closed G-orbits is X//G = Proj(RG) and the GIT

quotient π : Xss → X//G is a good categorical quotient. That is to say, π satisfies what

one would expect from such a quotient in the reductive case. On the other hand the

famous example of Nagata shows that the ring of invariants may not even be finitely

generated if the group G is not reductive. Hence, GIT fails to provide the context

to study non-reductive quotients and moduli spaces of unstable objects such as the

hypersurfaces of toric varieties.
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Moreover, generalizing Mumford’s GIT, non-reductive geometric invariant theory

(NRGIT) is being developed by Kirwan et. al. for the last two decades. It was shown

that many of the results in the classical theory can be generalized to the case of G

being a non-reductive complex group with graded unipotent radical [23]. With the

new tool-set of NRGIT, the description of the moduli of hypersurfaces in simplicial

toric varieties is given by Dominic Bunnett in his PhD thesis [17]. Bunnett shows

that quasismooth elements in the complete linear system Sα in degree α are semistable

under the action of Aut(XΣ) using the A-discriminants defined by Gelfand, Kapranov,

Zelevinski.

On the other side of the coin, we have symplectic tools. When G is reductive, the

GIT quotient V//G is isomorphic to the symplectic quotient µ−1(0)/K by the Kempf-

Ness theorem where µ is the moment map on V , that is a smooth projective variety,

and K ≤ G is a maximal compact subgroup. Hence, the notion of quotients in two

different worlds is somehow equivalent under favorable circumstances. It is natural to

ask whether this equivalence hold in the generalized setting. It would be interesting to

investigate the potential applications of the recent works of Kirwan et. al. to moduli

problems concerning toric varieties.
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