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ABSTRACT

THEORY OF NONCOMMUTATIVE MOTIVES

The theory of motives was originally conceived by Alexander Grothendieck as a
universal cohomology theory for algebraic varieties. In the decades since it was first
introduced, it has become a vast and profoundly sophisticated subject systematically
developed in many directions spanning algebraic and arithmetic geometry, homotopy
theory and higher category theory. The quest for a fully developed theory of motives
as envisioned by Grothendieck drove a great deal of fundamental research in the afore-
mentioned disciplines, while delivering fantastic and long-promised results and settling
classical questions as it reached maturity in the past decades. This quest is arguably
not complete, since the abelian category of mixed motives, originally established by
Grothendieck himself as the ultimate desideratum of a satisfactory theory of motives,
has proven elusive. However, ideas of motivic nature as a programmatic approach to
cohomology theories and invariants have proven extremely useful in a variety of other
contexts. Noncommutative algebraic geometry is precisely one of these contexts. Fol-
lowing ideas of Maxim Kontsevich, Goncalo Tabuada and Marco Robalo independently
developed theories of “noncommutative” motives which fully encompasses the classical
theory of motives and helps assemble so-called additive invariants such as Algebraic
K-Theory, Hochschild Homology and Topological Cyclic Homology into a motivic for-
malism in the very precise sense of the word. In this expository work, we will review
the fundamental concepts at work, which will inevitably involve a foray into the formal-
ism of enhanced and higher categories. We will then discuss Kontsevich’s notion of a
noncommutative space, sharpened and made precise over the years by Toén, Tabuada,
Robalo and others and introduce noncommutative motives as “universal additive in-
variants” of noncommutative spaces. We will conclude by offering a brief sketch of

Robalo’s construction of the noncommutative stable homotopy category.



OZET

NONKOMUTATIF MOTIFLER TEORISI

Nonkomiitatif Motifler Teorisi cebirsel geometride Alexander Grothendieck
tarafindan ortaya konulan motif fikrinin degismesiz cebirsel geometri alanina tasin-
masii konu etmektedir. Maxim Kontsevich tarafindan spekiilatif bir program olarak
90’larda ortaya atilan bu teori, ge¢tigimiz yirmi yil i¢cinde biiyiik 6lgiide tamamlanmisg ve
teknik arkaplani ve uygulamalar: bakimindan oldukca zengin bir disiplin halini almigtar.
Goncalo Tabuada ve Marco Robalo tarafindan bagimsiz olarak geligtirilen nonkomii-
tatif motifler teorisinin ana objesi zenginlegtirilmis kategori teorisi kullanilarak formal-
ize edilen dg-kategorilerdir. Dg-kategoriler Kontsevich’in fikirlerini takiben en 6nemli
ornekleri arasinda zenginlegtirilmis tiiretilmis kategoriler bulunan "nonkomttatif uzay"
kavramina temel olugturmusgtur. Cebirsel ve aritmetik geometride temel rol oynayan
kohomoloji teorilerinin bu objelere genigletilmesi miimkiindiir. Bu genigletilmelere lit-
eratiirde "toplamsal sabitler" adi verilmektedir. Toplamsal sabitler dg-kategorilerin
yiksek kategorisinden bir stabil simetrik monoidal yiiksek kategoriye fonktor olarak
formalize edilebilir. nonkomiitatif motifler kategorisi bu tiir fonktorlerin sahip olmasi
gereken temel Ozellikleri soyutlayarak elde edilen evrensel ozelliklere sahip bir fonktor
kategorisidir. Bu kategorinin ingaasinda dg-kategoriler teorisi diginda, model kategoriler
ve yiiksek stabil kategoriler teorisinin de kullanilmasi gerekmektedir. Bu tez ¢alismasi
bunun gibi temel kavramlara bir girig niteligindedir. Ana amag¢ homolojik, homo-
topik ve kategorisel cebirden bazi kavramlarin tanitilmasi ve sonug olarak Robalo'nun

degismez stabil homotopi kategorisinin tasviridir.
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1. INTRODUCTION

The main objective of this thesis is to offer an expository recapitulation of the the-
ory of noncommutative motives as developed in parallel and independently by Goncalo
Tabuada [1] and Marco Robalo [2] and whose roots go back to foundational work by
many others over the past decades, such as Kontsevich [3| and Toén [4]. The bulk of
the thesis is devoted to an exposition of the fundamental concepts and constructions at
work in the context of model categories, dg-categories and higher categories. We have
kept the exposition of algebraic geometry minimal and focused on the less accessible

categorical aspects of the theory.

As we shall not have the occasion to do so again in the bulk of the text, we take
this opportunity to explain concisely what is meant by the mysterious invocation of
"noncommutative algebraic geometry". To ward off any fundamental misunderstand-
ings at the outset, this phrase, as used throughout this text, does not refer to the
various generalization of SGA-style algebraic geometry to the context of noncommu-
tative rings, as has been attempted and carried out by various authors such as [5], [6],
among others. Instead, we refer to the categorical algebraic geometry which takes as
its starting point the study of the derived category of quasicoherent sheaves and its
subcategory, the triangulated category of perfect complexes of quasicoherent sheaves
on a scheme, as carried out by Bondal, Orlov, Kontsevich and others, for instance
see [3,7-9]. Advances in homotopy theory and higher categorical algebra made it pos-
sible to fully execute this vision and treat these derived categories as geometric objects
in their own right by way of so-called enhancements which took care of the foundational
difficulties which hobble the formalism of triangulated categories, a topic we explore in
great depth in our preliminary chapter. Succinctly put, our model of a noncommutative

scheme is that of Kontsevich [3]:

Definition 1.0.1. A noncommutative space is an dg-enhanced triangulated category

satisfying some finiteness conditions.



The main paradigm for this definition is precisely Per fqq(X), the dg-enhanced
category of perfect complexes of quasicoherent sheaves on a scheme X. But we have
gone too fast and skipped over what we mean by dg-enhanced. As we shall see in our
preliminary chapter, dg-categories are enriched categories whose Hom-spaces are chain
complexes of modules over some commutative ring R instead of merely being Hom-
sets. We shall see that most relevant constructions familiar from ordinary category
theory carry over to this context. But what makes dg-categories so useful is rather
the excellent formal properties enjoyed by the category DG — Clatg, the category of
dg-categories over some ring R. Further, we shall see that this category admits several
model structures which are relevant for algebra and geometry. Dg-enhancement refers
to the procedure of replacing triangulated categorical models of derived categories
with some associated dg-category by way of an almost canonical procedure which lets
us exploit the homotopy theory of dg-categories and carry out categorical operations
which are otherwise inaccessible. In later sections, we shall cover the same topics in the
context of oo-categories and compare stable oo-categories with dg-categories as higher
categorical models of abelian/triangulated categories. This brings us to the theory
of motives. We refer to [10] as the fundamental reference for the classical theory of

motives.

The theory of motives was envisioned by Alexander Grothendieck as the founda-
tion of cohomology theory in algebraic geometry. Motives are formidable objects: their
very definition had been the ultimate subject (and in some ways, still is) of several ex-
tremely difficult conjectures. By design, motives are cohomological avatars of algebraic

varieties over a field k which can be incarnated as specific cohomology theories:

e For char k = 0, with an embedding k¥ — C, we have H*(X (C), A)) where A — C
and H},(X(C)).

e For char £ > 0, we have (-adic étale cohomology H}(X,Q,) and crystalline
cohomology H}.. .(X/W (k)).

The first glimpse of the motivic picture is to be found in the following compar-

1son 1somorphisms between cohomology theories, which a priori have no reason to be



explicitly comparable.

e There is an isomorphism between Algebraic de Rham and Betti cohomology, given
by the period pairing: H’,(X) := H (%) = H/(X(C),Q) ® C.

e We have the Artin comparison theorem which gives an isomorphism between étale
and Betti cohomologies: H:,(X,Q,) = H(X(C),Q) » C.

e We have the Berthelot-Ogus comparison theorem which gives an isomorphism

between de Rham and crystalline cohomology: H)jp(X) = HE, (Xo) Qw (ko1 /p)) k-

These isomorphisms, some of which should also be familiar to algebraic topolo-
gists, suggest a deeper picture of cohomology than can be probed by individual theories
alone. Somehow they should all be considered together. This is precisely the purpose
of the theory of motives. To be more faithful from a historical perspective, it should
be mentioned that the theory of motives originated in Grothendieck’s programmatic
approach to Weil’s conjectures on Zeta functions attached to smooth projective vari-
eties over k = F». Having developed étale cohomology theory to provide a geometric
interpretation of the zeta function of the variety in terms of the Lefschetz fixed point
formula, Grothendieck was perplexed by the picture of the algebraic topology of alge-
braic varieties that emerged from the Weil conjectures interpreted in this light. For
instance, the base change of a smooth variety X over, say, [F,», to C appears to govern
the arithmetic properties of X. In some sense, there appears to be a single universal
cohomology theory. The theory of motives is the materialization of this intuition. From
the outset, Grothendieck established as the main objective of the theory of motives the
construction of a category whose Hom-spaces could be interpreted as a universal coho-
mology theory (so-called motivic cohomology) and which possessed realization maps

to particular cohomology theories. This turned out to be a formidable challenge.

We now jump ahead in our story. Voevodsky and collaborators achieved the
construction of the category of mixed motives, which is a story we mostly avoid in
this text. The fundamental sources for the theory of motives and the stable homotopy
category of schemes are [11,12]. What takes the center stage in this thesis is the so-

called stable homotopy category of schemes, which is the category of motivic spectra,



obtained, just like the stable homotopy category of topological spaces, by means of
the process of stabilization. We will discuss this topic in our last chapter. The stable
homotopy category of schemes enjoys a universal property and representability results
for algebraic K-theory and other cohomology theories can be formulated within it.
Both Tabuada’s and Robalo’s works reproduce aspects of Voevodsky’s construction.
Tabuada’s approach, which has drawn on a greatly eclectic range of tools and concepts
over the past decades, reproduces more classical aspects of the theory of motives,
such as a notion of a mixed noncommutative motive, a theory of noncommutative
motivic Galois groups, a noncommutative cycle theory, that is to say, analogues of
great standing questions in algebraic geometry, which are among the most notorious
problems in mathematics, such as the Hodge conjecture and the Standard Conjectures.
We refer to [13] and later works for an overview. In this text, we shall mostly leave
Tabuada’s approach untouched and follow Robalo in constructing the stable homotopy
category of noncommutative spaces. However, we shall need to build up a tremendous

inventory of categorical tools and concepts on our way to this construction.
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2. PRELIMINARY OVERVIEW OF HOMOLOGICAL,
HOMOTOPICAL AND CATEGORICAL ALGEBRA

2.1. Chain Complexes of Modules

In this section, we give a very cursory overview of some essential concepts from
the theory of abelian categories mainly for the purposes of establishing notation. While
we do not use specific references, Manin-Gelfand [14], Weibel |15] may be consulted as

fundamental references for the concepts in this section.

Throughout this text, R denotes a commutative ring with unity. As usual, denote
by Modp the category of modules over R and by Ch(R) := Ch(Mody) the category of
chain complexes of modules over R. Both Modg and Ch(R) have a symmetric monoidal
structure given by the tensor product of R-modules, where the tensor product of a chain
complex of modules is defined componentwise. Recall that a morphism between chain

complexes X; and Y; consists of maps f; as shown in the diagram
i
> X AR Xi > e

lfH»l ) lfi (2'1)
d
» Yy, —— Y] >

such that fid¥ = d} fi11. In other words, chain morphisms are maps of chain complexes

commuting with the differential.

Fix a chain complex (X,,d,). Then put Z, := ker(d,), B, = im(d,1), and
H,(X,) := Z,/B,. We refer to the latter group as the homology group of the chain
complex and this assignment gives rise to a functor, the functor of homology, H(—) :
Ch(Modgr) — Modg. We say a chain morphism f : X, — Y, is a quasi-isomorphism if

it induces an isomorphism H(X,) = H(Y,). For cochain complexes, all the definitions

apply verbatim with arrows reversed.



A chain homotopy between two morphisms of complexes f, and, g, : (X,,dX) —

(Y,,dY) is a chain map h, : (X,,dZ) — (Ya,dY) of degree one satisfying the equation
fo—Gn=hn_10dy +d),, 0 h,. (2.2)

It is easy to check that this gives rise to an equivalence relation on the morphisms in
Ch(Modpr) which we simply denote by ~. To unburden the notation, we will drop
the chain complex indices in what follows, except when additional emphasis is needed.
We say two chain complexes X and Y are homotopy equivalent if there exist chain
maps f: X = Y, g:Y — X such that f o g and g o f are nullhomotopic. We say a
chain complex X, is contractible if the identity map is nullhomotopic, that is, X, is

homotopy equivalent to the zero complex.

To motivate this definition of chain homotopy, consider topological spaces X,Y
and denote by Sing,(X), Sing.(Y') the singular chain complexes associated with them.
Now assume X and Y are homotopy equivalent, that there is a continuous map f :
X — Y with a continuous "homotopy" inverse g : ¥ — X, that is f o g ~ 1y and
go f ~ 1x. By the functoriality of the Sing construction, f and ¢ induce chain maps
f: Sing(X) — Sing(Y), g : Sing(Y) — Sing(X). Then it is a straightforward
exercise that Sing(X) and Sing(Y) are (chain) homotopy equivalent when X and Y
are homotopy equivalent. We shall later see in the section on homotopical algebra that

such analogies are no accident.

A chain complex (and later a dg-algebra) is said to be connective if all its negative
components vanish and coconnective if all its positive components vanish. We denote
connective (coconnective) chain complexes by Chso(R) (respectively, Ch<o(R)). We
denote the category of chain complexes which are bounded above by Ch™(R) and
the category of chain complexes bounded below by Ch~(R). We put Ch’(R) for the

category of chain complexes bounded both below and above.



2.2. Abelian Categories

Modp is a particular (in fact, paradigmatic) example of the fundamental notion
of an abelian category. The formalism of abelian categories emerged from the pro-
grammatic reconstruction of algebraic geometry by Grothendieck [16], which crucially
required the formalization of the intuitive idea that sheaf categories behave like mod-
ule categories and the homological calculus of Cartan, Eilenberg etc. makes sense in
a far more general setting than that of module theory over some commutative ring.
In a nutshell, abelian categories axiomatize this general setting in which one can do

homological algebra. We begin by defining additive categories.

Definition 2.2.1 (Additive Category). A category < is said to be additive if it has a
zero object, admits products and coproducts and the Hom-sets Hom,(X,Y') are abelian

groups with bilinear composition for any X,Y € Ob().

The fundamental examples of additive categories are categories of vector spaces,

modules, (abelian) sheaves on topological spaces.

Definition 2.2.2 (Exact Category). A category < is said to be exact if it admits

kernels and cokernels and coim(f) = im(f) for any morphism f.

An abelian category is a category that is additive and exact in the above sense.
There are various, more "functorial" and invariant, definitions of an abelian category,

however, this will suffice for our purposes. We collect the following facts without proof.

e When &/ is abelian, so is Ch(«/), where Ch(</) denotes chain complexes of
objects of 7.

e Given an abelian category &7, the category of @7-valued sheaves is abelian.

e A rich harvest of abelian categories: besides paradigmatic examples of module
and abelian sheaf categories, we have categories of local systems, perverse sheaves,
D-modules, representation categories as examples which are all related precisely

qua abelian categories.



We say an abelian category is semisimple if all short exact sequences in it split.
Recall that a short exact sequence 0 — A LB % 0 = 0is said to split if it is
isomorphic to 0 - A -+ A® C — C — 0. The most immediate counterexample is the
category Ab = 7Z-Mod; for instance consider the short exact sequence 0 — Z 27 -
7./]27 — 0, where 2 indicates the multiplication by 2 map. The issue of semisimplicity

segues smoothly into that of idempotent completeness.

Recall the useful motto that abelian categories should be seen as abstract forms
of Vecty., the category of vector spaces over some field k. The axioms of abelian cate-
gories abstractly recapitulate various properties enjoyed by the latter and indeed there
are other implicit properties enjoyed by abelian categories among general categories
which consolidate the analogy. However, there are some intermediate steps between
full abelianness (namely, the existence of all (co)kernels) and additivity which are seen
in the wild, so to speak. Here we have in mind the crucial theme of idempotent com-
pleteness, which is also referred to as pseudo-abelian or Karoubian, particularly in the
motivic literature, see for instance [16] for a discussion of idempotent completness in
the triangulated context. An idempotent endomorphism in an additive category gen-
eralizes the notion of an idempotent element, that is, an element e¢ such that ¢? = e.
Thus, an idempotent in an additive category &7 is an endomorphism f : X — X such
that f2 = fo f = f, where X € /. Here it is useful to think of the instructive
exercises in elementary linear algebra which exhibits the utility of such reflection maps
in probing the structure of vector spaces. We say an additive category is idempotent
complete if every idempotent admits a kernel or a cokernel (by definition, either one
implies the other). Now, the existence of such a kernel is equivalent to whether an
idempotent splits, that is, if it can be presented as a composition of maps e = foyg

where ¢ is a section of f, as shown in the diagram

e idy
e Y
X 7 Y 7 X I Y. (2.3)

Every category admits a so-called idempotent completion (also referred to as the
Karoubi envelope). The process of idempotent completion is a crucial part of "gen-

eralized linear algebra'- that is, the practice of linearizing or abelianizing nonlinear



objects. This issue is prominent especially in the theory of motives (e.g. when working
with the category of pure Chow motives where idempotents abound) where idempotent
completion offers an enlargement of the additive category of correspondences, allow-
ing direct sum decompositions of otherwise simple objects in keeping with geometric
intuition regarding them. Note that there is no comparably simple free abelianization
procedure: this is the whole point of the theory of "additive invariants of categories"

and ultimately that of noncommutative motives.

Next we introduce the first example of a fundamental construction that will reap-
pear in many guises throughout this work. We give an extremely informal definition

since we will delve into the construction at work more deeply later.

Definition 2.2.3 (Homotopy Category of an abelian category). The homotopy category
of an abelian category is the category whose objects are the objects of Ch(47) and whose
morphisms are Hom(X,Y)/ ~ for any X,Y € Ch(</), where, as above, ~ denotes
homotopy equivalence. Denote the homotopy category by Ho(<).

Before we comment on this construction, and on what sort of structure results
from it (hint: the abelian structure will not survive), we define what is perhaps the

most central object in this text in its various modifications and generalizations.

Definition 2.2.4 (Derived category of an abelian category). Consider Ho(</) as

above. Now define a new category D(</) with the same objects and with morphisms

HO??’LD(M/)(X, Y) = HomHO(J/)(X, Y)/ ~giso - (2.4)

That is, the derived category consists of chain complexes of objects of 7, with
morphisms that are considered up to chain homotopy and quasi-isomorphism. We will

say much more about this.

It turns out that the abelian category structure on a category 7 does not survive
the passage to the homotopy and derived categories. However, as first shown by Verdier

[17], these categories nonetheless carry a unique and explicit structure which permit
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the use of homological techniques in dealing with them. This is the topic of Section

2.4.

2.3. Simplicial Objects in Abelian Categories

The topic of simplicial objects in abelian categories offers a perfect segue-way from
homological to homotopical algebra. In point of conceptual scope, it is quite clear that
the latter subsumes the former completely, but from a practical standpoint, it is useful
to build precise dictionaries which mediate between the explicit and computational
character of homological algebra and the abstractions of homotopical algebra. The
Dold Kan correspondence- in its many forms-is the ideal starting point for such a
dictionary. We start with the classical correspondence which gives an equivalence
between connective chain complexes of abelian groups and simplicial abelian groups.
Later we will encounter far more general equivalences of the Dold-Kan type, under
which one of the main results underpinning the subject under scrutiny in this text, the
equivalence of dg-categories and stable co-categories, may also be subsumed. We will
not be able to discuss the dg-categorical and oco-categorical Dold-Kan correspondences
here, and will reserve them for the section on the comparison between different models
of "stable categories". In what follows, our main references are Section 2.5.6 of [18],

and section 8.4 of |15].

Let’s introduce simplicial objects in an abelian category. We will have much
occasion to study simplicial matters in great detail when we introduce higher categories
and hence our discussion here will be quite concise and formal. The reader may consult
[19] as a fundamental reference on simplicial sets and simplicial objects. A simplicial
set is a functor X : A? — Set, where A is the ordinal category with finite ordered
strings [n] := 0 < 1 < ... < n as objects and order-preserving maps [n] — [m] as
morphisms. More generally, a simplicial object in any abelian category <7 is a functor
AP — of. When o = Ab, we say G, is a simplicial abelian group. We denote the
category of simplicial abelian groups sAb. This is also an abelian category, and this
will remain true for all categories of simplicial objects in abelian categories, mirroring

the fact that categories of chain complexes of objects of abelian categories are also
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abelian.

We have the so-called standard n-simplex ! A", which is formally the simplicial
set represented by [n], that is, A" := Hom(—, [n]). For a general simplicial set X, we
call elements of the set Hom(A", X') the n-simplices of X. A general simplicial X set

can be written as a colimit over its sets of simplices: X = coliman_, x A™.

We have a set of special morphisms in A, the so-called co-simplicial maps, which
generate all the others. The coface maps are injective maps d* : [n — 1] — [n] which,
put informally, omit i, that is, i ¢ im(d;). The codegeneracy maps are surjective maps
st [n] — [n — 1] which repeat i, that is, such that s;(i) = s;(i + 1) = i. These maps
induce the face maps d; : [n] — [n — 1] and degeneracy maps s; : [n — 1] — [n] on

simplicial sets. They obey the simplicial identities

[\
ot

didj = j—ldi when 1 < 7,

[\
D

diSj = Sj—ldi when 1< j,

= deifl when 7> j,

\)
oo

=1id when i=7,7+1,

—~ —~ —~ —~ —~
N ~
~— ~— ~— ~— ~—

5isj = Sjs;i_1 Wwhen ¢ > j.

A simplex z,, € Hom(A", X) is said to be degenerate if it is in the image of the

degeneracy map ;.

A simplicial set X can be turned into a topological space we denote by | X| by the

geometric realization operation. Let A”.

Top D€ the topological simplex with the set of

points {z = {z;} € R%|z; < 1,Y x; = 1}. Then we have |A"| = A}, . For a general

simplicial set X, we have the formula that follows from the fact mentioned above:

| X[ := coliman_, x A%,,,. More abstractly, | X| is the quotient space | | X" x A%, / ~
neAn

where ~ is the equivalence relation: (6*(z),d) ~ (z,d.(d)) for some map 0 : [m| — [n]

1Ordinarily this is denoted by A[n] to avoid confusion with the topological n-simplex, but we will
not generally observe this distinction, except in the context of geometric realization where it must be
reflected in the notation.
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in A. Geometric realization and the familiar singular complez construction in topology
assemble into an adjunction sSet — Top which is profound significance for the theory

of higher categories.

Let us now introduce the Dold-Kan correspondence. We will construct a cate-
gorical equivalence N : sAb — Ch>(Z) which will formalize the intuitive equivalence

between simplicial objects and chain complexes.

Let G, be a simplicial abelian group. As mentioned above, we follow 2.5.6 in 18]
and section 8 in [15]. We will define two chain complexes (which turn out to be quasi-
isomorphic) to adequately describe the Dold-Kan maps. The Moore complex of G, is
the chain complex with components C(G,), := G, and equipped with the boundary
map 0 : C(Ge)n — C(Ge)p—1 where

0o =Y (=1)"dn(0). (2.10)

This defines a complex since the simplicial identities guarantee that

o= (=1)""dydmo = 0. (2.11)

We also define the normalized chain complex of a simplicial abelian group G,, which is
n—1

NG, := () ker(dy). (2.12)

This construction defines a functor N : sAb — Ch(Z). We now explore the relationship
between the Moore complex and the normalized chain complex. Note that in the
definition of the Moore complex we have not yet touched the degeneracy maps of
the simplicial abelian group. Removing the degeneracy maps from the definition of a
simplicial object leads to the concept of a semisimplicial object, and clearly the Moore
complex can be defined for any semisimplicial abelian group. In fact, to get our desired
equivalence, we will have to remove the part of our chain complex that come from the
degenerate simplices. Denote by D,, :== D(G,),, C C(G,), the subgroup generated by

elements in the image of degeneracy maps. First of all, we note that the differential 0
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in fact preserves D,,. Put 7 = s;(0) for some o € GG,,_; and some ¢. Then we have,

n

or = Z(—l)"dm’

k=0

[
M:

(—1)ndk5i0'

~ x>
= o

(]

(—1)ndk8¢0 + Z(—l)”dksio‘
k=i

P
N o

=Y (=1)"dpsio + (—1)'d;sio + Z(—l)”dksia.
k=i

B
o

Thus the image under the differential of a degenerate element remains degenerate.
Then we have a well-defined quotient chain complex M, := C,/D,, which we refer to
as the mormalized Moore complex of the simplicial group GG,. This construction also
defines a functor N : sAb — Ch>(Z). It turns out the normalized chain complex
and the normalized Moore complex are quasi-isomorphic and give rise to the same
functor. To obtain the desired equivalence, we need to construct an adjoint to this
functor, which will be called the Eilenberg-Maclane functor following 2.5.6.3 in [18].

We continue to follow the notation in [15] and Section 2.5 in [18].

Consider the n-simplex A™ and denote by A7 its normalized Moore chain complex

N.(A™).

Definition 2.3.1. The Eilenberg-Maclane space of a chain complex M, is the simplicial
set K«(Mo) whose n-th simplices are the Hom-sets Hom(A%, M,). This construction
gives rise to a functor K : Ch(Z)so — sAb.

Proposition 2.3.1. The Eilenberg-Maclane functor K s right adjoint to N. That s,

there is an isomorphism of abelian groups
Hom(N(G,), M,) = Hom(G, K(M,)). (2.13)

This adjunction gives rise to an equivalence of categories

K

N
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2.4. Spectra and the Stable Homotopy Category of Topological Spaces

The notion of a simplicial abelian group is only the first step in the rich dictionary
between group-like topological objects and more rigid algebraic structures. It may be
argued that the full topological analogue of an abelian group is furnished by the notion
of a spectrum, which we review very superficially below. Spectra are of vital importance
in our study, since our end-goal is, essentially, the construction of a stable homotopy
category, which is an abstract category of "spectra objects". Our higher additive
invariants, or cohomology theories, will land not in abelian groups or modules, but in
the category of spectra or another symmetric monoidal stable co-category. The reader
may consult |20] for a modern review of the classical theory of spectra, for which the

canonical reference remains [21].

Let us begin by defining a spectrum. By a space, we exclusively mean a pointed
CW-complex, whose category we denote by C'W,. Denote the homotopy category of
spaces by Ho(CW) and put [X,Y] := Ho(CW)(X,Y). We suppress the basepoints
in the notation but assume they are fixed and denoted by, for instance, ro, € X.
The smash product X A'Y, which gives rise to a monoidal structure on C'W, and its
homotopy category, is the quotient of the cartesian product X x Y by the wedge sum
of topological spaces X VY := X UY/(xo ~ o).

The n-spheres S", with S = {0, 1}, play a special role in homotopy theory (this
is for a variety of reasons which we shall not discuss). Namely, we define the suspension

operator on some X € C'W,,

YX =S"AX. (2.15)

This operator admits an adjoint, the so-called loop space functor, {2, which we shall

meet again soon.

Definition 2.4.1. A (sequential) spectrum E consists of the data of a sequence

{E;} of objects in CW, and structure maps ¢ : X E¥ — E*12 A function f : E — F

2We are giving an extremely naive discussion of spectra in this section.



between two spectra is a sequence of maps f*: E¥ — F* as shown in the commutative

diagram

EEk y Ek—H
i fkl lfkﬂ (2.16)

SRk —— P

With some minimal modifications, the notion of a function between spectra may
be promoted to a proper morphism, thereby giving us a category of spectra which
we denote by Sp. It is a symmetric monoidal category under the smash product A.
Using this structure, one can define so-called ring spectra and module spectra over ring
spectra and the theory that emerges is Waldhausen’s brave new algebra, one of the main
inspirations behind higher algebra which is a phantom presence throughout this text.
We will only tangentially discuss these, and then, in extreme generality. We denote the
homotopy category of spectra by Ho(Sp), where the notion of a homotopy equivalence
between spectra is defined in an obvious way. We denote by brackets [—, —] the Hom-
sets in Ho(Sp). We note that Ho(Sp) is one of the main examples of a triangulated
category, a concept we will address at great length in the next chapter. Let us survey

a few prominent examples of spectra.

- The sphere spectrum S is the spectrum {S° S, S?...} whose structure maps are
the identity, since by definition ¥'S" := S' A S® = Sl S is the unit for
the monoidal structure on Sp and in fact the initial ring spectrum and, more
strikingly put, is to brave new algebra what Z is to commutative algebra.

- More generally, the suspension spectrum X*°X of a topological space X is the
spectrum {X°X = X Y'X = ¥YX Yo XX, ..., XX, ...} with identity as struc-
ture maps.

- Variants of K-theory and, more generally, generalized cohomology theories are
represented by various spectra. Brown representability theorem establishes the
conditions under which contravariant functors on topological spaces are repre-

sentable by spectra, that is, given a cohomology theory F': Top® — Ab, we have
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an isomorphism of abelian groups F'(X) 2 [Y*°X | K| * where the spectrum K is
said to represent F'.

- Recall that for G an abelian group, we have the Eilenberg-Maclane spaces K (G, n)
which are CW-complexes characterized up to homotopy equivalence by the fact
that IT(K(G,n)) = G when k = n and II(K(G,n)) = 0 otherwise. Since
by the definition of loop spaces we have that IT,, 1(£2X) = II,,(X), we have an
isomorphism 2K (G,n) & K(G,n —1). These spaces assemble into a spectrum
{K(G,n)} with structure morphisms XK (G,n — 1) — K(G,n) coming from the
loop space-suspension adjunction. We denote this spectrum by HG. HZ, the

Eilenberg-Maclane spectrum of the integers will play a very important role later

OI1l.

2.5. Triangulated Categories

As hinted in the previous section, the homotopy and derived categories of an
abelian category are in fact still additive categories and they also inherit a sort of
weakened exact structure, the structure of a triangulated category. A helpful heuristic
for triangulated categories is that they are "homotopified" abelian categories. In par-
ticular, despite being additive, triangulated categories typically lack the properties that
guarantee the existence of kernels and cokernels of maps between objects, which means
it is impossible to speak of exact sequences of objects in triangulated categories. It
turns out we can still capture (although extrinsically) the exactness behavior of trian-
gulated categories provided we weaken our notion of kernels and cokernels and replace
exact sequences with a similarly weakened notion. The exact definition is somewhat
complicated and unwieldy, and we provide it below. The canonical references for this
section are Section 10.2 in [15] and section 4.1 in [14]. The reader is also advised
to consult Neeman’s book-length treatment [22] and the excellent and comprehensive

treatises by Kashiwara-Shapira [23], [24].

3The latter has a canonical group structure because the suspension of a topological space has
what’s called a homotopy co-group structure, hence homotopy classes of maps from the suspension
spectrum inherits an abelian group structure.
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Let T be an additive category. A shift functor # on T is an endofunctor
X:T—>T (2.17)

with an "inverse" X! such that Y o X' 2 [d and ¥t o ¥ 2 Id.

Given an additive category T equipped with a shift functor and objects X, Y, Z €

T, define a triangle to be a diagram
X—=>Y 7YX (2.18)

A morphism of triangles is given by a diagram

X > Y > 7 > X
fl “’l hl Z‘fl (2.19)
X' > Y’ s 7' rX

Definition 2.5.1. A triangulated category is an additive category equipped with a shift
functor X and a class of triangles called distinguished or exact triangles subject to (and

in fact, defined by) the following axioms.

- Tri.Ia Any triangle isomorphic to an exact triangle is exact.

- Tri.Ib For all X € T, the "trivial" triangle X LEN'S > 0 2X s

2

exact.

- Tri.Ic Any morphism f : X — Y can be completed to an exact triangle X —
Y =+7 =YX

CTvi I X Ly Lz Py s exact, so is the triangle

y 4,z hyx =2 vy

~

- Tri.IIl Given any two exact triangles, X > Y > Z » X and

/ ! !

X » Y A » X' withmaps f: X - X andg:Y =Y
such that we have a commutative diagram

X —Y

.fl lg

X —Y

there is a map h : Z — Z' rendering commutative the diagram

talso referred to as the suspension functor in the context of stable homotopy theory
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X > Y > Z > M X
fl gl hl Efl
’ Y > 7' > X
- Tri.IV (Octahedral Axiom) Consider the exact triangle
Xty sz — px
along with the exact triangle
y 47t X y XY
and the exact triangle
XY,z 1,y 45X
Then there exists a fourth exact triangle
Z » Y’ > X' y X7
such that we have a commutative diagram
x 1oy iz £X
R BN , YY
XY, Ly . ¥X
7 » Y’ > X' y X7

The diagram given in last axiom can be reorganized in a way that explains the

N
%/ w
~ //

Definition 2.5.2. An additive functor F is said to be exact (or triangulated) if it

respects the triangulated structure, i.e., if, in addition to being additive, it commutes

with the shift functor and preserves exact triangles.

Definition 2.5.3. A subcategory T C T is said to be triangulated if the inclusion is a

triangulated functor.
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Triangulated categories naturally form a 2-category with exact functors as mor-
phisms and natural transformations as 2-morphisms. However, we will not be working
with this 2-category at all since many technical problems that plague the very foun-
dations of the formalism of triangulated categories make it quite ill-behaved. Let us
mention one particular issue while deferring a discussion of its consequences to the end

of the chapter.

Consider the exact triangle Y 1X —2 Y » X DY —— X . Recall

that T'ri.111 guarantees the existence of a map h giving a morphism of triangles
SX sy » XY —— X
l l h l (2.20)
SX sy L XDY — X
By inspection, however, we can see that for any f € Homo(X,Y), we can put: h =

(i‘icx ic?y). Therefore we have a lot of freedom in choosing this h and it is far from

unique. This renders the mapping cone construction nonfunctorial at the triangulated

level. We shall see how to deal with this issue in the later sections.

Definition 2.5.4. An additive functor F : T — <7 from a triangulated category T to
an abelian category <f , is said to be cohomological if it sends exact triangles to exact
sequences. That is, an exact triangle A — B — C — XY A, is mapped by Hom to an

exact sequence. Hom(A, —), Hom(—, A) are cohomological functors.

Let us introduce the two main examples of triangulated categories.

Examples 2.5.1. (i) Let A be an abelian category and we have as before the homo-
topy and derived categories of A: Ho(A) := Ho(Ch(A)) and D(A) := D(Ch(A))
as in the first section. We will discuss the outlines of the triangulated structure on
these categories without proof. Put T = Ho(A). The suspension functor is noth-
ing but the shift functor on chain complexes, that is, (C[1],,, dy [1]) = X(C,,dS) =
(Cp_1,dS_|). The functor

0 O[] = (Coy. —dn_s) (2.21)

acts on chain maps in an obvious way.
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Given a morphism f : C'— D, define the mapping cone My
M(f)n:=Ch_1 & D, (2.22)
equipped with the differential
—d¢ ., 0

aM) = (2.23)
fnfl df

which can be readily confirmed to square to zero. The distinguished triangles are

those isomorphic to the so-called standard triangles

X Ly YW ey By, (2.24)

(11) The stable homotopy category of topological spaces, consisting of so-called spectra,
is triangulated. Note, however, that it is not the derived category of an abelian

category!

Before concluding this section, we’d like to advertise the following perspective on
triangulated categories which was hinted at in the introduction and which provides an
excellent bridge between classical theory and the formalisms discussed in the bulk of
this text: a triangulated category is a homotopified abelian category. That is, as long
as we consider sufficiently weakened or homotopy versions of constructions in abelian
categories such as kernels and cokernels, the structure of triangulated categories become

intelligible and conceptually more satisfying.

We will not review the concept of homotopy co/limits since we discuss related
constructions at length in the context of enriched and higher categories and we have
not yet introduced model categories at this stage. The classical reference is [25] and
practical introductions can be found in [26] and [27]. The main references in the context
of triangulated categories are the books and articles by Neeman and collaborators, for
instance, see [22] and [26]. We will focus on the mapping cone M introduced above
for chain complexes and present it as an example of a homotopy cofiber ® . We will

then construct the functor underlying this construction at the chain complex level and

5To be consistent with the notation in the section on abelian categories, one may also refer to a
homotopy cofiber as a homotopy cokernel, as we do at the end of the section. But since we wish to
describe the construction in a general homotopical context, we’ll stick to the topological nomenclature.
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discuss why it fails at the derived level. We loosely follow lecture notes by Mazel-

Gee [28] for notational consistency but the content is self-evidently universal.

Going back to Modg, recall that the cokernel of a morphism f : M — N of
R-modules is an R-module cofib(f) equipped with a map N — cofib(f) which is
universal among maps which give zero when composed with f. The situation is exactly
replicated for Ch(Modg). However, equipped with the notions of chain homotopy and
quasiequivalence, we can weaken or homotopify this construction as follows. Namely,
consider a chain morphism f : M, — N, ¢ . The homotopy cofiber hocofib(f). of
this morphism is a chain complex of R-modules equipped with a map N — hocofib(f)

which is universal among maps whose composite with f is nullhomotopic to zero.

As expressed by |28] in the spirit of our discussion of colimits in higher categories
in later sections, a homotopy cokernel is the homotopy colimit of the diagram of shape

* «—— o —— o  that is, hocofib(f) fits into the homotopy coherent diagram

M—1 N

l (2.25)

x —— hocofib(f).

The reader may consult [29] for the notion of a homotopy coherent diagram.

We have the following fact which illustrates the role of weakened or homotopified
constructions as akin to resolutions in homological algebra. This is a point that is

made very precise by the formalism of model categories.

Lemma 2.5.1. When f is injective, the canonical map h : hocofib(f) — coker(f) is

a quasi-isomorphism [28].

This is easy to see by using the fact that a chain map is a quasi-isomorphism if

and only if its homotopy cofiber is acyclic.

5We will omit bullets from now on.
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Now let’s return to the derived category of chain complexes of R-modules with its
triangulated structure discussed above. For a given morphism f : X — Y, hocofib(f)
is nothing but the mapping cone M; by construction.The standard triangles in the
triangulated structure on the derived category exhibit the fact that M; is a homotopy
pushout.

Going back to the abelian setting for a setting and putting A! := [0, 1] for the free
arrow category, the cokernel construction has an underlying functor coker : Fun([0 —
1], Modg) — Ch(Mody) or, although there is no explicit formula for expressions like
coker(fog) where f, g are morphisms in Ch(Modg). Moreoever, by simply substituting

the definitions, one sees that the coker(f o g) is involved in an exact sequence
0 —— coker(f) —— coker(go f) —— coker(g) —— 0. (2.26)

This suggests that there is an exact triangle at the derived level of which this exact

sequence is a shadow, and this is in fact the case as shown by the exact sequence
Mf E— Mgof e A[g (227)

All our problems originate with the fact that the object M., is not uniquely defined
(it is only unique with respect to non-unique choice), hence we do not have a strict
functor hocofib : Fun(A', D(R)) — D(R). We would have this problem with any
diagram category Fun(D,T) with T' triangulated. This is the origin of the theory
of derivators [30], [31]. which was incidentally the original framework for the the
first theory of noncommutative motives introduced by [1]. This is a point at which
all the defects of triangulated categories converge. For instance, even for D = A!,
Fun(D,T) is not naturally triangulated. The situation is even more hopeless for more
complicated shapes such as D = A x A! which describes commutative squares. Hence
it is impossible to carry out functorial constructions in the framework of triangulated
categories naively. The reader is advised to consult [31] for how the approach via

derivators addresses this problem directly.

Let us close this discussion by rephrasing the triangulated category axioms in the
light of this new perspective. It is not hard to verify that the following statements are

a homotopical reformulation of triangulated category axioms.
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(i) The homotopy kernel and cokernel of the identity morphism are zero.
(ii) Every morphism admits a homotopy co/kernel
(iii) Any morphism is the homotopy kernel of its homotopy cokernel and homotopy
cokernel of its homotopy kernel.

(iv) Homotopy kernels and cokernels are weakly functorial.

We proceed to offer a glimpse of what might be called "triangulated algebra", one
prominent branch of categorical algebra which generalizes ring and module-theoretic
concepts to the context of triangulated categories. Our aim is basically to define
the analogues of ideals (prime, maximal etc.) and quotients for triangulated cate-
gories. The reader may consult Balmer’s survey of tensor triangulated geometry |32]
and Krause’s expository text on localization in triangulated categories [33], while the

latter is our main reference for this section.

We say a triangulated subcategory S C T is thick if X &Y € S implies that X
and Y are in S. One motivating example which reinforces the analogy with algebra
is the following: let T, T" be triangulated categories and F : T — T  an exact functor
between them. The kernel of F' is the subcategory KerF with objects {X € T|FX =
0}. Evidently, an exact functor is in particular additive, so if X @Y € KerF, then
F(X®Y) =2 FX®FY =0, and hence X,Y € KerF. Now we define a certain
localization T/T" of T with respect to a full triangulated subcategory T which is
itself triangulated and behaves like a quotient. Denote by Mg the morphisms f in 7'
such that cone(f) € T'. Then we put T/T" := T[Mg"']. By the discussion in Section
4 of |33|, localizations of triangulated categories are triangulated and the canonical
quotient map F : T — T/T  is an exact functor. It is easy to check that the objects
in 7" are annihilated by F' and the universal property of the quotient comes from
that of localizations. In fact, if 7" is a thick subcategory T" = KerF and we can
establish analogues of isomorphism theorems such as T'/KerF = ImT, where ImT is
the essential image of the quotient functor. An immediate example is provided by the
derived category of an abelian category, which can be defined as the Verdier quotient
of the homotopy category Ho(A) by the subcategory of acyclic complexes. Thereby

it is easy to establish the triangulated structure and universal property of the derived
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category.

We close this section by discussing compactly generated triangulated categories
which are a very important stepping stone to regarding categories as "noncommutative
spaces" of some kind. The latter perspective revolves around the notion of categorical
cohomology theories and which functors qualify as such and whether they are repre-
sentable. Brown representability theorem we mentioned in the section on spectra comes
into play: compactly generated categories afford the correct setting for the study of
representability of functors out of triangulated categories and hence that of generalized
cohomology theories. The reader may consult [22| for reference on the main definitions,

which are standard in category theory.

Let T" be an additive category which admits arbitrary coproducts. A compact
object in T is an object X such that the functor Hom(X,—) preserves all coprod-
ucts, which is to say, for any collection Y;, we have an isomorphism Hom(X,@Y;) =
@ Hom(X,Y;). This definition in fact works in any category as long as we replace
"coproduct" generally with "filtered colimit" and assume the category admits all fil-
tered colimits. However, the reader should beware that "compact object" does not
readily translate to more familiar versions of compactness. For instance, a compact
object in Top, the category of topological spaces, is more than a compact topological
space. However, the inspiration for the name comes from the following equivalent char-
acterization of compact objects: they are precisely those objects for which any map

X — @Y; factors through some finite sub-coproduct.

Definition 2.5.5. A triangulated category T is said to be compactly generated if there
is a set of compact objects S such that for any X € S, Hom(X,Y) =0 implies Y =0
forallY €T.

Easy examples of compact objects are given by finitely generated modules in
module categories. In triangulated categories, we have an exact characterization of

compact objects, given by the following result in [34].



Proposition 2.5.1. (Theorem 3.4 of [34]) Compact objects in a compactly generated
triangulated category T with a generating set S are retracts of extensions of shifts of

objects in S.

Going back to the abelian context briefly, somewhat in the spirit of Morita the-
ory we will address later, the question of compact generators is best motivated by the
following example which is one of the main inspirations behind the notion of "noncom-
mutative algebraic geometry" as expounded, say, in Section 2 of Ginzburg’s lectures on
noncommutative geometry [35]. It is the most elementary example of a "reconstruction

theorem":

Proposition 2.5.2. Let &/ be an abelian category which admits a projective T and

compact object X. Then of = (End(X))*?-Mod.

Proof See Proposition. 2.3 in [35].

The relevance of theorems of this type for "noncommutative algebraic geometry"
can be explicated as follows. If for instance, the abelian category in question is the
category QCoh(X) of quasicoherent sheaves on a scheme X, which is not necessarily
affine, and it admits a projecive generator, then we can think of X as being affine in a
noncommutative sense. Noncommutative geometry in this sense was envisioned most
explicitly by Kontsevich in the text [3] where he offered the first speculative definition
of noncommutative motives associated with noncommutative spaces, as we mentioned

in the introduction.

However, such theorems are rarely interesting in the abelian setting. More inter-
esting is the question of derived affiness. Then naturally we are led to the question of
how to reproduce this theory in the triangulated setting. We will focus on the geomet-
ric setting, since this is what is of interest for the theory of noncommutative motives.
Then we let D(X) denote the derived category of quasicoherent sheaves on a scheme.

We have the following crucial result, 3.1.1 in |36].

TA projective object in an abelian category is an object X such that Hom(X, —) is exact. This
notion obviously generalizes that of projective modules.
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Proposition 2.5.3. (Proposition 3.1.1 in [36]) Let X be a quasicompact and quasisep-
arated scheme. Compact objects in D°(X) are perfect complexes of locally free sheaves

and the category admits a compact generator.

The following related result due to Keller [37] reproduces the abelian reconstruc-

tion theorem above in the derived setting.

Proposition 2.5.4. (Theorem 3.17 and Corollary 3.18 in [36]) Let X be a quasicom-
pact and quasiseparated scheme. Then D(X) is equivalent to the derived category of

dg-modules over some dg-algebra A.

This proposition establishes that quasicompact, quasiseparated schemes are de-
rived or noncommutative affine in the sense of Kontsevich and others. This is one of

the origins of the philosophy of noncommutative algebraic geometry.

The relevance of compactly generated triangulated categories for the study of co-
homology theories comes from Brown representability theorem, already discussed briefy

when we introduced spectra.

Theorem 2.5.1. (i) Given an exact functor F : S — T with T a compactly gener-
ated triangulated category and S a triangulated category. For I to admat an right
adjoint, it suffices for it to preserve coproducts [22].

(11) Let F': TP — Ab be a cohomological functor from a compactly generated trian-
gulated category to the category of abelian groups. Then F' is representable if and

only if F' preserves coproducts.

The statement of the second item can be found in Section 3 of [34].

Finally, let us define the concept of a semiorthogonal decomposition for triangu-
lated categories which generalizes the well-known exceptional collections in algebraic

geometry. Our reference for this section is [38].

Definition 2.5.6. Let T be a triangulated category. A semiorthogonal decomposition

of T is a set {E;} of full triangulated subcategories of T such that:
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1) Any two E;, and E;, are Hom-orthogonal when iy # iy, that is, if e € E;, and
1 2 1
f € E;, with iy # iy, Hom(e, f) = 0.
(1) {E;} span T in the sense that the smallest triangulated subcategory containing
E;}is T itself. We put'T =< E; >:=< E;,,...F; > to indicate a semiorthogonal
{ 1 n

decomposition.

The classical examples of a semiorthogonal decompositions are provided by ex-
ceptional collections in derived categories of schemes. Recall that an exceptional object
in the derived category of a scheme over some field k is an object £/ € D(X) such that
Hom(E,FE) = k and Hom(FE, E[n]) = 0 except when n = 0. An exceptional collec-
tion in a derived category is a collection {F;} of exceptional objects that are Hom-
orthogonal, that is, Hom(E;,, E;,[n]) = 0 for all n. Evidently, putting E; for the sub-
category generated by the exceptional object and E* for the subcategory of D which is
Hom-orthogonal to the subcategory spanned by < E; >, we have D(X) =< E;, B+ >,

a semiorthogonal decomposition of D(X).

The most famous example of an exceptional collection is provided by Beilinson’s
exceptional collection, consisting of the twisting sheaves < O, ..., O(—n) > which give a
semiorthogonal decomposition of the bounded derived category of the projective space
D*(P™). This decomposition turns out to be of vital importance in the foundations of
noncommutative motives, as we shall see in the final chapter. Suffice to say for now
that these twisting sheaves provide the noncommutative analogues of the Tate twists
and are responsible for making the image of the derived category of the projective line

automatically invertible in the homotopy category of noncommutative spaces.

2.6. Enriched Categories

We have already encountered a cardinal example of an enriched category in the
concept of an additive category, which is a category enriched in vector spaces over
some field. Along the same lines, we have the concept of an R-linear category, which
is a category enriched in modules over some commutative ring R. Thus, intuitively,

a category C' enriched over some other category V' is nothing but a category whose
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Hom-spaces live not only in Set but can be seen as objects of V. Thus ordinary small
categories may be described as Set-enriched, since in the absence of further structure,

their Hom’s form a set. More formally, a V-enriched category consists of the following:

Definition 2.6.1. Let (V,®) be a monoidal category. C'is said to be enriched over
(V,®) if given any x,y € Ob(C), we have an object Hom(x,y) € Ob(V') equipped with

a composition morphism
Hom(x,y) ® Hom(y, z) — Hom(x, 2) (2.28)

along with a morphism encoding the identity element and commutative diagrams en-

coding the associativity and unitality of the "composition” product.

We will encounter many enriched categories throughout this work. The ones of
immediate interest are additive, topological, differential graded, simplicial and spectral
categories. We have already met additive and abelian categories, and the bulk of this
thesis is devoted to a detailed study of differential graded (DG) categories. Let us

introduce simplicial and spectral categories.

Definition 2.6.2 (Topological categories). A topological category is a category en-
riched over the monoidal category of topological spaces Top™, with the monoidal struc-

ture coming from the Cartesian product.

Definition 2.6.3 (Simplicial Categories). A simplicial category is a category en-

riched over sSet®. We denote the category of simplicial categories by Cat .

Definition 2.6.4 (Spectral Categories). A spectral category is a category enriched
over (some appropriate version of ) the monoidal category of spectra Sp®. We denote

the category of spectral categories by Catg,.

There are also "linear" version of the enriched categories above, such as the
category of simplicial module-enriched categories C'atsys.q and the category of spectral

module-enriched categories C'at o -
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2.7. DG-categories

In this section, we introduce the elementary theory of dg-categories, which we will
gradually refine by way of homotopical algebra and category theory into the theory of
noncommutative spaces. Our references for the fundamental aspects of the theory of

dg-categories are the lecture notes by Toén [39] and Keller’s sweeping survey [34].

Fix a commutative ring R. Let V* W* be graded R-modules. We fix notation
for some fundamental constructions in graded algebra. We say a morphism of graded
modules f : V* — W* is of degree n if for all p € Z, f(VP?) C WP™™. The tensor
product of graded modules V* and W* is the graded module

(Veaw) = vPew" (2.29)
ptg=n
Now consider two graded morphisms f : V* — V' g : W — W3 with deg(f) =

p,deg(g) = q. The tensor product f® g : (Ve @ WP)* — (V2 ® W3)* is defined by the
Koszul sign rule: (f®g)(v@w) = (—=1)P1f(v)® f(w). Conventions for graded algebras
(i.e., graded modules equipped with a morphism A®* ® A* — A® and a unit 1 € A®) are

identical.

A differential graded module (V*,d®) is a graded module V* equipped with a
map, called the differential, d® : V* — V*® such that d"*! od™ = 0 for all n. The tensor
product of graded modules may be extended to that on differential graded modules by
putting (V,dy) ® (W,dw) := (V @ W,dy ® 1y + 1y ® dw). Note that the data of a
differential graded module is in fact equivalent to that of a chain complex of modules.
Similarly, a differential graded algebra is a graded algebra where now, in addition to
d* = 0, the differential has to satisfy the Leibniz rule: d(f og) =df o g+ (=1)"f ody,
where n = deg(f). From our point of view on categorical algebra, it is most practical
to regard dg-algebras as monoid objects in chain complexes. With these in mind, we

arrive at the definition of the most fundamental object in this work.

Definition 2.7.1. A differential graded category over a ring R, or an R-linear dg-
category, is a category enriched in dg-modules. More concretely, we may regard a

dg-category as a Ch(R)-enriched category, where Ch(R) denotes the category of chain
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complexes of R-modules.

Let us unpack the concept of enrichment in this concrete context. Let A be a
dg-category, denote by A(X,Y’) the hom dg-modules for any X, Y € Ob(A). Then we

have a morphism of dg-modules, "the composition law"

m:AX,)Y)® AY,Z) = A(X, Z). (2.30)

Further, for any object X € A, A(X, X) is a unital dg-algebra, that is we have
an element of degree zero 1x € A(X, X)g, or equivalently, an identity map 1x : R —
A(X, X). Unpacking the aforementioned conditions governing associativity and the

identity map gives us the following commutative diagrams.

Associativity of multiplication is encoded by the diagram
AX,Y) R AY, Z) 0 A(Z,U) —E 5 A(X,Y)® A(Y,U)
lm@z’d lm (2.31)
AX,Z)x A(Z,U) > A(X,U),

m

whereas the two-sided identity is encoded by the diagram

R AX,Y) —220 4 A(X, X) 2 AX,Y),

1%

AX)Y),
and the diagram

AY,X)® R —2% 5 A(Y, X) ® A(X, X)

m (2.33)

IR

A(Y, X).
As in ordinary category theory, we denote by A° the opposite dg-category of a
dg-category A, defined as the category with hom-complexes AP(X,Y) := A(Y, X).

Examples 2.7.1. e Any dg-algebra can be considered as a dg-category with one

object. Namely, consider a dg-category A with a single object, X. Then, we have
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a dg-algebra structure on A(X,X) induced by the composition law on the hom-
complexes of A. On the other hand, given any dg-algebra B, we may define a dg-
category with a single object X, with B:— A(X,X), where, in turn, the dg-algebra
structure on B gives rise to the composition law on A, see [39]. This construction
is actually quite useful and gives us an embedding of dg-algebras (and hence of
all associative algebras, considered as dg-algebras with trivial differential) into the
category of pointed dg-categories DG — Cat, := Fun(lq,, DG — Cat), that is dg-
categories equipped with a zero object. This embedding admits an adjoint which
sends a pointed dg-category to the endomorphism dg-algebra of its zero object.
For the details about and the importance of this construction, see [40].
The category of chain complexes or R-modules over a ring Chqyy(R). This example
may be freely generalized to complexes of objects in any abelian category. Also,
the category of dg-modules over any dg-algebra also naturally forms a dg-category.
We give an explicit description of Chqey(R) as a dg-enrichment of the ordinary
abelian category of chain complexes. Given A, B € Ch(R), we have the hom-
complex Hom(A, B) of morphisms between A and B (I omit the bullets and dots
when denoting complexes from now on). Concretely, the R-module of degree n
morphisms may be given as

Hom"(A, B) := [ [ Hom(A", B"*™"). (2.34)

i€Z

The differential of on the Hom-complex can be described explicitly as the map that
sends the map f = {f'} of degree k to the map {dg o f — (—=1)*f oda}. This

defines a differential since

dodof —dn(dno f — (~1)*f o ds) = (<1 (dpo f — (~1)*f o ds) o,
=(=Dfdpofods— (—1)"dpo fody

= 0.

Setting n=0, we obtain that
Hom"(A,B) = [ [ Hom(A', BY) (2.35)
1€Z
which is just the set of chain morphisms between A and B, since a degree zero
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morphism is precisely a morphism that "commutes” with or exchanges the differ-
entials.

Finally, graded composition of morphisms gives us the multiplication morphism

m Ohdg (R)

Hom™(A, B) x Hom™(A, B) — Hom" ™ (A, B). (2.36)

Thus, we have promoted Ch(R) to a dg-category Chgy(R) by way of self-
enrichment.

Triangulated categories of geometric origin can always be enhanced to a DG-
category. In this way, extremely important objects like the derived categories of
schemes can be considered as DG-categories. In fact, it is quite essential that
we do consider them as such! For instance, the foundations of the theory of
spherical functors which arise in the context of homological mirror symmetry and
the theory of Fourier-Mukai transforms, rely essentially on the existence of DG-
enrichments of derived categories. From this perspective, Fourier-Mukai theory
can be considered as a chapter of the Morita theory of dg-categories, as we shall
see.

Categories of matriz factorizations associated with a singularity f. These appear
to be the only examples of dg-categories not of algebraic or geometric origin and
are a fertile source of applications for the theory outlined in this text. We will not
define or touch on them in any greater detail.

We have the following dg-categories which are crucial for the description of the
homotopical cell structure of the category of dg-categories, particularly its struc-
ture as a cofibrantly generated category. We faithfully follow Tabuada’s disserta-
tion [41] which brought to a rigorous completion the Dwyer-Kan homotopy theory
of dg-categories. First of all, we introduce some chain complexes which are ana-
logues of the topological sphere and the disk. Fix an R-module M, we work inside
Ch(R). The sphere object in chain complexes S™(M) is a chain complex such
that S™(M),, = M and S™(M); = 0 otherwise. Further, the disk object D"(M)
in chain complexes is the chain complex concentrated in degrees n — 1 and n with

both components equal to M. We put S™ := S™(R) and D" := D"(R). Clearly we
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have an inclusion S*~1 — D™ which is just the identity on the n—1-th component.

We let S(n) be the dg-category diagramatically exhibited by the diagram
R

o
lsn_l (2.37)
2
&
where the annotations on the arrows indicate that the morphism dg-modules are
Homg(1,1) = Homgmy(2,2) = R and Homgqy(1,2) = S™ 1. Similarly, let

D(n) be the dg-category presented by the diagram

®

3

lm-l (2.38)

4.

&
We have a dg-analogue of sphere inclusion above: i(n) : S(n — 1) — D(n). On
objects, we have i(1) = 3, i(2) = 4. On morphisms i(n) is nothing but the chain
complex sphere inclusion S™~1 — D""! described above. Denote by I the set of
dg-functors i(n). We say a dg-category is a dg-cell if the map from the initial
dg-category is a transfinite compositions of pushouts of I. These constructions
will be relevant later when we discuss the homotopy theory of dg-categories.

e We have the initial dg-category () and the terminal dg-category *, which is the
dg-category with one object 1 and morphism the empty set Hom(1,1) = x We
also have the unit dg-category 1g,,° which is nothing but the ring R seen as a
dg-category with one object and with trivial differentials. 14y is a unit for the
monoidal structure on dg-categories.

e Denote by AL the dg-category with objects {1,2} and morphisms: A(1,1) =
A(1,2) = R and A(2,2) = A(2,1) = 0. We call this dg-category the 1-simplex
dg-category, in fact, it is the R-linearization of the standard 1-simplex A' and of
the ordinary category [1] := 1 — 2 which represents the latter . It will be important

in the description of morphisms in DG — Cat, like its simplicial counterpart Al.

8We will usually omit the base ring R or when it needs to be emphasized write 15 instead.
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Crudely speaking, the assignment R — DG — Catr admits some transparent
exceptional functorialities. For any ring morphism f : R — S, we have a forgetful
functor acting on the hom-spaces by componentwise restriction of scalars of the S-
modules, thus giving us a functor f* : DG — Cats — DG — Catg. As usual, this

restriction functor admits a left adjoint — ®z S and a right adjoint Hom(1g, —).

Let us introduce two functors, Z°, H° : DG — Catr — Cat which will serve as a

bridge between differential graded and ordinary categories.

We define the underlying category Z°(A) of a dg-category A as the category with

the same objects as A and with the morphisms only the degree zero morphisms

Z°(A(X,Y)) = ker(d: A°(X,Y) - AY(X,Y)). (2.39)

Evidently,the composition f o g of degree 0 morphisms f, g is itself of degree 0,
since d(f o g) =df o g+ f odg = 0. Hence we have a well-defined composition law on
Z°(A(X,Y)) and it is confirmed that this defines a category. It is seen immediately
that Z%(Chgy(R)) = Ch(R). More generally, Z°(Chyy(A)) = Ch(A) where A is a
Grothendieck abelian category. In the same vein, the homotopy category H°(A) of a

dg-category A is the category with morphisms
HO(A(X, Y)) = A(X, Y)/ ~ho— HomHO(Ch(R))(X, Y) (240)

where ~y, denotes chain homotopy.

By definition, H°(Chgy(R)) = Ho(Ch(R)), the usual homotopy category of the

abelian category of chain complexes of R-modules.

We say an object X of a dg-category A is contractible if the dg-algebras A(X, X)
are acylic, that is if H,A(X, X) = 0. In particular, if X is contractible, Hy(A(X, X)) =
0 and we have an element h € A(X, X); such that dh = 1x. We refer to this h as
the nullhomotopy or the contraction of X. In the case of chain complexes, such an h
is indeed nothing but the null-homotopy of the identity chain morphism, making the

chain complex contractible. Hence the terminology.



Consider dg-categories A, B. A dg-functor (or a morphism of dg-categories) F' :

A — B consists of

(i) A map F : Ob(A) — Ob(B),
(ii) Morphisms of dg-modules F(X,Y): A(X,Y) — B(FX,FY).

along with diagrams encoding the conditions regarding associativity of multiplication

and identity, which can be presented as follows.

For all XY, Z € A, the associativity is encoded by a commutative diagram

AX,)Y)® A(Y, Z) mA » A(X, Z)
F(X,Y)®F(Y,Z) F(X,2) (2.41)
B(F(X), F(Y)) © B(F(Y), F(2))) 5 » B(F(X), F(Y)).

For all X € A, identity for the multiplication is encoded by the diagram
R—% 5 A(X,X)
lF(X,X) (2.42)
B(F(X), F(X)).

There is an intuitive notion of a natural transformation of dg-functors, with a
slight sublety introduced by the graded nature of the objects at hand. Ultimately, we
should seek to obtain a complex of natural transformations between dg-functors which
can reflect this nature. Hence we first define a natural transformation n : F' — G of de-
gree n between dg-functors F, G to be a family of dg-functors nx € Hom"(F(X),G(X))
parametrized by all X € A giving a "graded commutative" diagram

F(X) 25 G(X)
F(¢)l lG(aﬁ) (2.43)

FY) —— G(Y).
That is, we have F'(¢) ny = (—1)"™! 5x G(¢), where m is the degree of the morphism
¢ : X — Y. These R-modules assemble into a complex which we denote by Hom(F, G),

where the confusion with other Hom-spaces should be ruled out by the context. As
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we shall see, this construction allows us to promote the category of dg-categories to
a self-enriched category by way of an internal hom-object which gives rise to a closed

monoidal structure.

The appropriate notion of equivalence in the dg-context is quasiequivalence.

Definition 2.7.2. A dg-functor F': A — B is said to be a quasiequivalence if:

- (Quasi-fully faithful) F(X,Y) is a quasi-isomorphism for all XY € A
- (Quasi-essentially surjective) The induced morphisms between homotopy cate-

gories HO(F) : HY(A) — H°(B) is essentially surjective.

Dg-categories assemble into a category DG-Cat, which has a natural closed sym-
metric monoidal structure. Given dg-categories A, B, define A ® B as the category

with objects those of A X B and morphisms

Ao B((X,Y), (X, Y)) = AX,X)2 B(Y,Y"). (2.44)

We denote by #2s.(—, —) the internal Hom of DG-Cat, whose construction we

omit. It is easy to verify pointwise that:
Hom(A® B,C) = Hom(A, #Hem(B,(C)). (2.45)

which gives the aforementioned closed monoidal structure. We denote by DG — Cat®

the resulting symmetric monoidal category.

We wil end this introductory section on dg-categories with discussion of module

theory over dg-categories, which will be essential in what follows.

Consider a dg-category A. A right (left) dg — module over A is a dg-functor
M : A% — Chgy(R) (resp.a dg-functor A — Chgy(R)). To see why we refer to these
chain complex valued presheaves on dg-categories as "modules", note that a functor
AP — Chgy(R) is equivalent to the data of a family of chain complexes My, where
X varies over A, equipped with an A-action: Mx ® A(X,Y) — My (once again, with

the right compatibilities with unit and associativity conditions). A morphism of dg-
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modules is simply a natural transformation of dg-functors: given dg-modules M, N,
Hom(M, N) is the set Z%( (M, N)). We denote by A — Mod (A%’ — Mod)) the
category of left (resp. right) dg-modules over some dg-category A. There is an obvious
dg-enrichment of the category A — Mod, as suggested by the notation above, which we
also denote by A — Mod. We have covariant and contravariant dg-Yoneda embeddings:
hy: A< A— Mod and h : A? — A — Mod which realizes any element X € A as
the dg-modules A(X, —) : A — Chgy(R) and A(—, X) it (co)represents. We have the
following familiar proposition whose proof mimics that for the ordinary Yoneda lemma

and is merely a transcription of the definitions involved:

Proposition 2.7.1. (dg-Yoneda lemma) The Yoneda embedding is fully faithful and

for any dg-module F', we have an isomorphism:
HOmA_MOd(hx, F) = F(X) (246)

realized by the map n+— nx(1x)

Proof See [42| for details.

One may generalize the notion of quasi-isomorphism to dg-modules by putting
H.(M)(X) := H,(M(X)), for M € A —dgMod and X € A and defining a quasi-
isomorphism to be a dg-module morphism inducing an isomorphism of dg-module ho-
mology functors componentwise (that is, such that H,(M (X)) = H,(N(X)) for all
X € A. We can generalize other constructions and operations on dg-categories to
dg-modules by considering them componentwise: i.e., a map M — N is said to be
an epimorphism if it induces surjections of complexes M(X) — N(X) for all X € A,

likewise for monomorphisms.

Any morphism of dg-categories f : A — B induces an adjunction of dg-functors

between module categories: fi: A — Mod = B — Mod : f*.

The homotopy category of dg-modules is defined as the homotopy category of the
dg-enhancement of A — Mod: Ho(A — Mod) := H°(A — Mod). Finally, the derived

category of a dg-category is the localization (see next chapter) of Ho(A — Mod) at
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quasi-isomorphisms. We denote the derived category of a dg-category by D(A). We
should emphasize that the derived category of a dg-category should not be confused-
thematically- with that of a ring or a scheme, although this construction does indeed
produce the dg-enhancement of the usual derived category when A is an ordinary k-
algebra (considered as a dg-algebra with trivial differential). The point of the derived
category for us is to provide foundations for Morita theory of dg-categories. We regard
this theory as foundational in the study of dg-categories qua noncommutative spaces for
several reasons. First of all, Morita theoretic considerations are essential for fine-tuning
the concept of finiteness in the non-commutative setting. Secondly, the generalized
cohomology theories, or additive invariants, that we shall consider are insensitive to
differences between Morita equivalent objects. Thirdly, the generalized representation
theory of dg-categories encompasses, at least formally, rich geometric content, such as
the theories of Fourier-Mukai transforms and derived equivalences where the funda-
mental questions can often be reduced to those of representability. These goals may
seem contradictory: on one hand, we wish to consider dg-categories up to their derived
module theory, hence not distinguish those dg-categories with equivalent derived cat-
egories. On the other hand, we wish to disambiguate derived equivalent dg-categories
so as to identify interesting links, find generators and so on. We shall see how this

tension plays out when we revisit Morita theory towards the end of this section.

Let us begin by making precise what we mean by Morita theory of dg-categories.
We say dg-categories T, T' are Morita equivalent if there is a quasi-equivalence of
derived categories D(1) =2 D(1"). The reason for the designation is as follows. Two
rings R and S are said to be Morita equivalent if there is an equivalence of categories
Modr = Modg, where Mod_ denotes the category of right modules. On the other
hand, two rings are said to be derived Morita equivalent if there is a triangulated
(i.e., unenhanced) equivalence of their derived categories D(R) = D(S). The main
theorem of ordinary Morita theory, the Filenberg-Watts theorem concerns the special

place played by the functor —® M, with M an R-S-bimodule (or equivalently, an RS-

module), among colimit preserving (i.e., cocontinuous) functors Modr — Modg.
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Theorem 2.7.1. ( [43,44]) Given any cocontinuous functor F' : Modr — Modg, there
1s an RP? ® S-module M such that FF = — & M.

It turns out Eilenberg-Watts theorem admits generalizations to many different
contexts such as model categories and dg-categories. By work of Hovey, an Eilenberg-
Watts type theorem holds for the (model categories of ) convenient topological spaces,
simplicial sets, chain complexes, spectra, module spectra and so on (which property
he refers to as homotopically self-contained, see [45]). However, the theorem fails com-
pletely in the derived setting, as illustrated by the work of Neeman, Keller and Chris-
tensen [46] on the failure of Brown representability in derived categories, obstructing
the development of derived Morita theory along these lines. Equally severe are the
problems with functoriality when we work in the category of triangulated categories,
whose formal structure leaves much to be desired. It turns out dg-enhancement of
derived categories fixes these issues. Hence, the notion of a derived Morita theory
of dg-categories suggests itself immediately. We will be able to revisit this issue af-
ter developing a better understanding of the homotopy theory of dg-categories and

particulary of the derived mapping spaces in DG — Clat.

It has been remarked many times up to this point that dg-categories should be
considered as enrichments or enhancements, at once, of abelian (e.g., categories of chain
complexes) and homotopy and derived categories. What happens to the triangulated
structure on the latter according to this scheme? Naturally, the formalism of dg-
categories has a way of not only reproducing this structure, but also fixing some of its
fatal flaws. We start with a tautological and contentless "definition", which is actually

a desideratum that will be realized.

Definition 2.7.3 (Mock definition: Pretriangulated dg-category). A dg-category A is
said to be pretriangulated if the homotopy category H°(A) is triangulated.

Let us begin by observing that this "tautological" criterion is fulfilled by a class of
dg-categories we have encountered: dg-categories of dg-modules, owing to the classical

fact that derived categories of modules are triangulated. There are various strategies
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to induce from this enhanced triangulated structure, at least formally, an analogue
of a triangulated structure on dg-categories.More precisely, by considering the dg-
Yoneda embedding A < A — Mod, we can investigate the conditions under which
one finds an induced "pretriangulated" structure on A. Kapranov and Bondal [47]
describe a formalism of triangles for dg-categories which accomplish this, using the
concept of twisted complexes. We will note be using this concept and we only note in
passing that they and their generalizations allow very explicit constructions which are

computationally quite useful.

Recall that for a given dg-category A, we have the dg-Yoneda embedding h*X :=
Hom(—,X) : A? — A — Mod for any X € A. In what follows, we freely confuse
objects with their representable functors, i.e., representable dg-modules. The shift of
an object X € A is the dg-module Hom(—, X)[n]. The mapping cone of a morphism
f: X =Y in A is the usual mapping cone of the morphism of chain complex valued
functors Cone(f) := Cone(Hom(—,X) — —Hom(—,Y")). Explicitly, this is the object
Hom(—,Y) @& Hom(—, X)[1] witn the differential

d _
Hom(-,Y) f (247)
0 _dHom(f,X)
Definition 2.7.4 (Pretriangulated dg-category). A dg-category is said to be pretrian-
gulated or stable ° if its Yoneda image is closed under the suspension operation and

mapping cones, see [41].

The triangulated envelope of a dg-category A is the closure of its Yoneda image
under cones and suspensions. We denote it by Tri(A) or A.;. Evidently, a dg-category
is stable or pretriangulated if A = Tri(A).

After developing the homotopy theory of dg-categories in later sections, we will
describe a model structure on dg-categories, the so-called Morita model structure,

which picks out pretriangulated or stable dg-categories as fibrant objects. This model

9Note that the nomenclature of stability is not standard and there are certainly very good reasons
for keeping the explicit reference to triangulated structure (the overabundance of things called "stable"
prominent among them).



41

structure will be quite essential in the construction of the category of noncommutative

spaces.
2.8. Model Categories and Homotopical Algebra

The localization procedure we briefly touched on in our review of homological
algebra and the construction of derived categories admits a far more elegant and com-
prehensive formalism, which encompasses similar procedures in other areas of mathe-
matics, such as homotopy theory. This is Quillen’s theory of model categories, which-in
essence- extends to different contexts familiar homotopy theoretic operations and ob-
jects such as localization, weak equivalences, fibrations and cofibrations, cones, cylin-
ders and so on beyond mere analogies, providing an invaluable computational tool.
This theory gives content to the slogan that homotopical algebra subsumes homologi-
cal algebra, and should be regarded as a "nonabelian" generalization of the latter. Our
reference for this entire section is [48]|, whom we follow very faithfully. We will often
not provide specific references, since the concepts discussed by Hovey are standard and

his book is the canonical reference.

A model structure on a category C' consists of the data of three subclasses of
morphisms (weak equivalences, fibrations, cofibrations) abstractly determined by the

following properties.

(i) Let f,g € Mor(C) be composable, i.e., we have a diagram

Y
gox lg (2.48)
Z

Then if any two of f, g and gf are weak equivalences, so is the third.

(ii) All three classes of morphisms are closed under retracts. Recall that we say a
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morphism f is a retract of a morphism ¢ if we have a commutative diagram
fzoflzid

/\1

X f1 r Y f2 ’
bk
Z g1 N T g2 N

\_/T

gaog1=id

X
lf (2.49)
Z.

(iii) Trivial cofibrations have left lifting property (l.L.p.) with respect to fibrations.
That is, assume that 7 is a cofibration that is also a weak equivalence and p is a

fibration. Then there is a lift A giving a commutative diagram

X —Y
zl h lp (2.50)
(iv) Cofibrations have 1.L.p. with respect to trivial fibrations, completely analogous to
the previous item.
(v) There exists two functorial factorizations of all morphisms f : X — Y in Mor(C):
- f =poi, where p is a fibration and i is a trivial cofibration

- f =qoj where q is a trivial fibration and j is a cofibration.

Definition 2.8.1. A model category is a category admitting all small limits and colimits

which is equipped with a particular model structure.

Note that, by definition, all model categories admit terminal and initial objects,
which we denote by * and () respectively. Thus for any object X € M there are unique
maps  — X and X — *. An object X € M is said to be cofibrant if ) — X is a

cofibration. Conversely, we say it is fibrant if the map X — % is a fibration.

We can apply the fifth model category axiom to the morphisms X — % and
() — X to obtain the so-called fibrant and cofibrant replacement functors, which we
denote by L(—) and Q(—) respectively. Thus we have factorizations: X — L(X) — *
and ) — Q(X) — X. Werefer to Q(X) and L(X) as cofibrant and fibrant replacements
respectively. The map Q(X) — X is a trivial fibration and X — L(X) a trivial as a

consequence of the factorization axioms.
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Finally, we put Ho(M) := M[W: this is the homotopy category of the model
category constructed as the localization of M at the weak equivalences. We will intro-
duce the concept of localization shortly, but informally this should be regarded as a
category obtained from M in a canonical way and determined uniquely by a universal
property in which all the weak equivalences become isomorphisms. It turns out there
is another category which is in fact equivalent to the homotopy category, which may

therefore be regarded as another model for it. We need some preliminary notions first.

The appropriate notion of a functor between two model categories M and M’ is
provided by that of a Quillen functor, or more precisely, a Quillen adjunction F': M &

M -U.

Definition 2.8.2. We say an adjunction F 41U is a Quillen adjunction if:

(1) F preserves cofibrations and trivial cofibrations.

(11) U preserves fibrations and trivial fibrations.

We denote the unit map for this adjunction by n : X — UF X and the counit
map by € : FUX — X. Also denote by ¢ the adjunction isomorphism M (FX,Y) &
M(X,UY).

A Quillen adjunction F' - U is said to be a Quillen equivalence if F' induces an
equivalence of homotopy categories Ho(M) = Ho(M') or equivalently if U induces
such an equivalence. We have an equivalent, more explicit, if also more complicated,
criterion for an adjunction being a Quillen equivalence: F' - U is an equivalence iff
for all cofibrant objects X € M and fibrant objects Y € M', f : FX — Y is a weak

equivalence if and only if ¢(f) : X — UY is a weak equivalence.

A Quillen bifunctor is intuitively a Quillen functor in two-variables. We follow
Hovey in axiomatizing this notion as follows. Given model categories M, N, L, a

Quillen functor is a bifunctor M x N — L if for any cofibration f : X — Y in M and
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a cofibration ¢g : Z — U, the induced map on the coproduct
fUg:YeZ2)U(XU)=YeU (2.51)

is also a cofibration and a weak equivalence whenever either f or g is a weak equivalence.

There is a very important class of model categories, in which one has a great
deal of control over cofibrations. To be able to define it, we need to plod through
some fundamental constructions involving slight set-theoretic technicalities. In this
subsection, we follow Sections 2.1.1-2.2.1.3 of [48] very faithfully. Note that this does
not contradict our stated goal of completely eschewing any set-theoretic diversions
throughout this text, hence the omission of expressions such as V-small etc. that
customarily decorate accounts of this subject. This does not mean such issues are not

at times quite vital.

Now consider an ordinal number A, which we regard, as we often do natural
numbers and posets, as a category. We will use it as an indexing category for transfinite
"sequences" in our categories, which may not really be diagrams in the usual sense of
the word in category theory. A A-sequence is then just a functor A — M, and we put
colim,,, X, for the "transfinite composition" of the string of morphisms indexed by A
up to v < A\. Now assume M is co-closed and @ a class of morphisms in M. Let A be
a k-filtered ordinal for some cardinal £ as in Definition 2.1.2 of [48]. Then we say an
object Y € M is small relative to a collection of morphisms D if for all A-sequences

Xo— Xy — X,... and s-filtered ordinals, we have isomorphisms

colimax(Home(Y, X,)) = Home (Y, colimX,). (2.52)

When D = Mor(C), we just say Y is small. It is useful to compare smallness to
compactness in triangulated categories. In addition, if x is a finite cardinal, we say Y

is finite with respect to D if it is small with respect to D in the above sense.

Let’s introduce some notation which formalizes the tangle of ubiquitous lifting
properties. Given a subset of morphisms S C Mor(C'), we denote by ri(S) C Mor(C)

the collection of morphisms with the right lifting property against morphisms in S and



by (I(S) those with the left lifting property against morphisms in S. We denote by
cell(S) the collection of morphisms obtained as transfinite pushouts of coproducts of

morphisms in S. We denote by rt(S) the set of retracts of the elements of cell(S).

The following theorem is of fundamental importance in the theory of model cat-
egories and higher categories since it gives a way to present morphisms in a category

in terms of small data:

Theorem 2.8.1. (2.1.14 in [48]) Let C be a category closed under small colimits and
I C Mor(C) a class of morphisms in C. Assume the domains of morphisms in I are

small with respect to cell(I). Then every morphism f € Mor(C) admits a functorial
factorization as f =y od with y(f) € cell(I) and 6(f) € rl(I).

When a class of morphisms I satisfies the conditions of the theorem above, we

say it admits the small object argument.

Definition 2.8.3. We say a model category is cofibrantly generated if there are sets

S, T C Mor(C) such that:

(1) 1t(S) is the set of cofibrations in C.
(i1) Tt(T) is the set of fibrations in C that are weak equivalences.

(111) S, T admit the small object argument.

Let’s proceed to develop the rudiments of abstract homotopy theory in the context
of model categories. This machinery allows us to carry out homotopical constructions
without reference to particular model structures and specific constructions. The reader

may consult Section 1.2 of [48] for details concerning the constructions below.

By definition model categories admit all product and coproducts. Hence for any
objects X,Y, we have the product X x Y and coproduct X LY. Denote by A the
diagonal map X — X x X and by V the co-diagonal map X LI X — X, which is of

course nothing but the map (idx,idx).
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The formalism of model categories allows us to define the notion of an abstract

homotopy between maps f,g:Y — X in M. We fix such maps f, g in what follows.

Definition 2.8.4 (Cylinder Object). Apply the fifth model category axiom to the co-

diagonal map V :Y — Y UY to obtain a factorization as in the diagram
v

YUY &= Y —— Y (2.53)

where i is a cofibration and d is a trivial fibration. We refer to the Y~ with the data of

this factorization as the functorial cylinder object for'Y, and denote it by Y x I.

Evidently, the cylinder object owes its name to the cylinder object over the circle,
S1 x I, in the category of topological spaces. More generally, a cylinder object over a
space X is the product space X x I. Its importance for homotopy theory of topological
spaces comes, fundamentally, from the fundamental role played by the "interval object"
(see next definition) I. More precisely, the cylinder object features in the definition of
the mapping cylinder of a map f : X — Y of topological spaces, as in the pushout
diagram

X —71 Ly

iol l (2.54)

X x I —— Cyl(f).

We note that Cyl(idy) = X x I. The mapping cylinder is of vital importance in
the homotopy theory of spaces since it is used to construct the "homotopy cofiber"
or mapping cone C; in Top. At the heart of this is the fact that X — Cyl(f) is
a cofibration and Cyl(f) is homotopy equivalent to Y. Thus, the mapping cylinder

allows us to replace every map in Top with a cofibration.

The cylinder object over some simplicial set X in the (model) category of simplicial

sets is, predictably, the simplicial set X x A[1].

The role of the unit interval in Ch(Modpg) is played by the "normalized chain

complex of the simplicial interval" I := R — R® R where the only nonzero differential
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dy equals (id, —id). Thus the cylinder object over a chain complex X is nothing but
I ® X. In fact, the notion of chain homotopy can be rephrased in terms of the interval

object.

Definition 2.8.5 (Path Object). Apply the fifth model category axiom to the diagonal

map A: X — X x X to obtain a factorization as shown in the diagram
A

X y X' y X x X (2.55)

k e=ej1+ea

where k is a trivial cofibration and e is a fibration. We refer to X' with the data of this

factorization as the functorial path object for X and denote it by X'.

Definition 2.8.6 (Homotopy). A left homotopy between morphisms f,g:Y — X is
a map Cyl(Y) — X such that Hiy, = f and Hiy = g. A right homotopy between
morphisms is a map H : Y — X! such that e;H = f and esH = g. We say f and g
are homotopic, or f ~ g, if there is both a left and right homotopy between them.

The reason we discussed this concept at such length is as follows. When Y is a
cofibrant object (or X is a fibrant object), left homotopy (resp. right homotopy) gives
rise to an equivalence relation on the set of morphisms Hom (Y, X) for any X. When
X is fibrant and Y is cofibrant at the same time, homotopy as defined above defines an
equivalence relation on Homy (Y, X). Now denote the subcategory of bifibrant objects
by C.;. Homotopy defines a category-wide equivalence relation when restricted to C.y

and C.y/ ~p, is well-defined. This leads to the following proposition.

Proposition 2.8.1. C.¢/ ~y, is a model for the homotopy category of the model cat-

~

egory M. That is, we have an equivalence Ho(M) = C.y/ ~po.

Let us proceed to discuss some examples of model structures.

Examples 2.8.1. - Any category admitting all small limits and colimits admits
the model structure where the weak equivalences are the isomorphisms and fibra-
tions/cofibrations all morphisms.

- Ch(A) for any Grothendieck abelian category admits several model structures.

Putting A = Ch(R) for the moment, we have very explicit characterization of
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these model structures. The injective model structure consists of the following:
the weak equivalences are the quasi-isomorphisms, cofibrations are componentwise
monomorphisms and fibrations are componentwise epimorphisms whose kernels
are injective modules. The projective structure, on the other hand, consists of the
following: the weak equivalences are the same as in the injective model structure,
the cofibrations are componentwise monomorphisms with projective kernel, and
the fibrations are componentwise epimorphisms. We will expand on these model
structures since they are the foundation of the homotopy theory of dg-categories as
well. Relatedly, we have similar model structures on globalized versions of these
categories, such as Ch(Coh(X)), Ch(QCoh(X)) and so on.

If M is any model category, then M is a model category in a natural way:
fibrations in the former become cofibrations in the latter etc. If M, N are model
categories then M X N s also a model category: fibrations in M x N are pairs
(f,g) where f,qg are fibrations in the model structure on M and N respectively.
Consider a small category D and a model category M which is also cofibrantly
generated (see below). Then there is a "pointwise" model structure on the category
of diagrams MP : for instance, f € Mor(MP) is a fibration if for alld € D, f(n)
are fibrations in M.

The homotopy theory of topological spaces occupies an especially canonical role
in abstract homotopy theory and most of the concepts in model category may
be best grasped by way of analogy with the original constructions and objects in
topological spaces. The classical or Quillen model structure on the category of
topological spaces Top consists of homotopy equivalences as weak equivalences,
Serre fibrations as fibrations, and the set of cofibrations generated by the set of
maps S™1 — D", that is, the inclusions of the (n-1)-sphere into the n-disk. In
fact, we will soon see that the model structure on chain complexes is roughly a
"singular” analogue of this.

The category of simplicial sets sSet admits the following model structure: the
weak equivalences are the simplicial maps inducing a homotopy equivalence on
geometric realizations, cofibrations are levelwise monomorphisms and the fibra-
tions are maps f : X — Y obeying the Kan lifting property. That is, given any

horn inclusion A} — X, there exists a lift h : A™ — X giving a commutative



49

diagram

A —— X

l /{z/" l (2.56)

AN —— Y.

The relationship between this model structure on sSet and Top goes beyond mere
analogy. In fact, there is a Quillen equivalence Topguinen = $Setquinen Tealized
by the the composite of Sing and | — | functors we touched on in the first section.
The fibrant objects in this model structure on sSet, that is, simplicial sets for
which there is a lift h for all n as in the diagram
A —— X
l /3/" l (2.57)
A" /—> *
are called Kan complezes or- as we shall later see- co-groupoids.
There is another model structure on sSet, the Joyal model structure, for which the
fibrant objects will be weak Kan complexes, our model of choice for oo-categories.

We will discuss this model structure later.

As promised, let us discuss the model structures on Ch(<7) in greater detail. Let
us fix & = Modp in what follows. We follow Section 2.3 of [48]. In the spirit of abstract
homotopy theory, we introduce the sphere and disk objects for chain complexes. Recall
that for some R-module M, the sphere object S™(M) is a chain complex such that
S™"(M), = M and S™(M); = 0 otherwise. Further, the disk object is a chain complex
D"(M) such that D"(M); = M when k = n—1,n. The sphere object evidently injects
into the disk i : S""1(M) — D"(M) for all n. Now put S"(R) =: S" and D"(R) =: D".
We denote the set of maps S""! — D" by I and the set of pointing maps 0 — D"
by J. We have the following proposition on the characterization of cofibrations in the

projective model structure.

Proposition 2.8.2. The maps in I are a generating set for cofibrations in the projective
model structure. The maps in J are a generating set of cofibrations that are also weak

equivalences.



In this model structure, every chain complex is transparently fibrant. Cofibrant
chain complexes are those that can be expressed as filtered unions, where the associated
graded objects of the filtration are projective modules. Hence cofibrant chain complexes

are flat, a fact that will be important later.

2.9. Localization and Function Complexes in Model Categories

In algebra, we may define the localization of a ring R at a multiplicative subset S
to be a ring R[S™!] equipped with a ring homomorphism p : R — R[S™!] which sends
all elements s € S to units in R[S™!] and has the universal property with respect to
such maps. More precisely, for any map ¢ : R — R which also maps all s € S to units
in some ring R, we have a unique ring homomorphism 7 : R[S7Y] — R’ such that
q = roq. In the same vein, given a category C and a class of morphisms W, we wish to
construct a new category C[W '] naturally equipped with a functor Ly, : C' — C[W™!]
which sends morphisms in W to isomorphisms in the new category. In the spirit of
ordinary localization, we would also want that C[W~!], or rather the functor L, has
the universal property in the appropriate sense. More precisely, the localization of a

category with respect to a subclass of morphisms W consists of the following.

Definition 2.9.1. The localization of a category C with respect to a subclass of mor-

phisms W consists of:

(i) A category C|W 1]

(ii) A functor Ly, : C — C[W ™1 such that Ly (w) is an isomorphism for allw € W,
and giwen any other category D and functor ' such that F : C' — D maps
morphisms in W to isomorphisms in D, there is a unique functor Gy, : C[W 1] —
D with an isomorphism of functors F' = Gy Ly . Further, consider an arbitary
category D and denote by Fun(C, D) the functor category. Then the induced
functor Ly, : Fun(C[W '], D) — Fun(C, D) is fully faithful.

Of course, this definition does nothing to explicate the actual shape of this new

category or offer a tractable description of it. As we already hinted at in our discussion



of homotopy and derived categories, there is a concrete way to describe the result of
categorical localization which is, however, not all attractive nor offers any particular

practical advantage. Hence we omit this description.

There is a more sophisticated version of localization due to Dwyer-Kan whose
output is a simplicial category and which is therefore better suited for packaging homo-
topical (read: higher, foreshadowing oo-categories) information. Certain fundamental
results in the homotopy theory of dg-categories rely crucially on the simplicial structure
on the mapping spaces of DG-Cat that results from Dwyer-Kan localization. We will
pass over this construction since oo-categorical methods will be introduced later and
the end result of simplicial localization is better described in that context. However,
certain crucial results in the theory of quasicategories also rely on methods related to
simplicial localization. Hence we will introduce the notation for the so-called hammock
localization procedure whose output is a simplicial category in this section. For the
immediate purposes of this section, we will use this tool to give a description of the
"function complex" which is the canonical model for derived mapping spaces in ho-
motopy theory. Our specific reference for this section is the key paper by Dwyer and

Kan [49].

Definition 2.9.2. Let (M, W) be a category with weak equivalences. We denote by
L*(M, W) the so-called hammock localization of M with respect to the weak equiva-
lences W whose output is a simplicial category. Consult Section 3.1 in [49] for the

explicit construction.

Definition 2.9.3. Let M be a model category and X,Y € M. A simplicial resolution
of Y [Dwyer-Kan2,4.3] is a an object Yy : AP — M with Y [0] weakly equivalent to'Y
such that:

(1) Yo is a fibrant object.
(11) All the face maps of Yo are trivial fibrations.

A cosimplicial resolution is exactly the dual of the simplicial resolution. A more

compact way of expressing this is that simplicial resolution is nothing but the Q-functor



(fibrant replacement) for the model structure on the diagram category AP — M.

Definition 2.9.4. With M and X,Y as before, denote X, and Y, fixed cosimplicial
and simplicial resolutions for X and Y respectively. Then we have the bisimplicial set
of maps (that is,a map A® x A? — M) M(X,,Y,). The homotopy function complex
M(X,Y) is the diagonal simplicial set Diag(M(X,,Ys)).

The existence of the simplicial mapping spaces M (X, Y’) shows that every model
category is tensored over the category of simplicial sets, that is, monoidally enriched

over the category of simplicial sets.

By the following result of Dwyer-Kan, the function complexes can be modeled by

the so-called hammock localization (or equivalently, the simplicial localization).

Proposition 2.9.1. (Proposition 4.4 in [49] The simplicial hom-set L (X,Y') has the

same homotopy type as M(X,Y).

Thus from the point of view of homotopy theory, the function complex is the
model of mapping spaces in model categories. We will see later that this perspec-
tive turns out to be extremely rewarding when applied to the model category of dg-

categories.

2.10. Monoidal Model Categories, Enriched Model Categories and
Ch(R)-model Categories

Next, we describe the notion of a monoidal model category. While the definition
is straightforward, there are some subtleties in the compatibility relations between the
monoidal structure and "homotopy theoretic" content of a model category. Explicitly,
we say there is a closed monoidal structure on a model category M if the monoidal
product bifunctor — ® — is a Quillen bifunctor. In the same vein, we say a model
category M is enriched over a monoidal model category C' if M is a C-enriched category

which is bitensored over C such that the co-tensoring functor M ® C' — M is a Quillen



bifunctor. ©

Definition 2.10.1. A Ch(R)-model category is a Ch(R)-enriched model category.

Evidently, Ch(R) with its self-enrichment supplies an immediate example of such
a model category. Let us add that the homotopy category of a Ch(R)-enriched model

category is automatically enriched in D(R).

The immediate rationale behind (originally) Hovey’s definition of model categorical enrichment
was to be able to induce a monoidal structure at the homotopy level, which can be easily seen by
employing the Cy model of the homotopy category presented above.



3. HOMOTOPY THEORY OF DG-CATEGORIES AND
NONCOMMUTATIVE SPACES

The contents of this chapter will bring us well over half-way to the theory of
noncommutative motives and in fact form the foundation of our subject. Indeed, our
subject may be concisely described as the motivic homotopy theory of noncommuta-
tive spaces. However, the latter- unlike their geometric counterparts already exhibit a
great deal of "exactness" phenomena intrinsically, while being completely deficient in
extremely rudimentary geometric characteristics: a good notion of a point, for instance
or a satisfying notion of "Zariski" or "étale" localeness. Robalo’s notion of a noncom-
mutative Nisnevich cover of a dg-category is also precisely novel in that it grafts the
exact structure of the category of noncommutative spaces onto the commutative the-
ory, but this cannot be considered a genuinely geometric notion at all, being somewhat
ad-hoc. Counterintuitively, all these things argue, not against, but in favor of the pro-
gram of noncommutative algebraic geometry. Our interest in noncommutative spaces,
and the origin of this analogy in the first place, is fundamentally cohomological or mo-
tivic. The main tasks for the construction of right category noncommutative spaces as
the target of cohomology theories is that they reflect the noncommutative spaces that
arise as derived categories and that they are the minimal class of objects which can
be distinguished by cohomology theories or "additive invariants". The motivic picture

automatically falls out of these choices, with minimal technical complications.

Without further ado, let us introduce the first model structure on DG — Cat
that we will be relying on for much of this thesis. Much of what follows stems from
Tabuada’s work on the homotopy theory of dg-categories and expositions based around

it. Our main reference is Tabuada’s dissertation [41].

We need to specify three classes of morphisms to define a model category struc-

ture. The Dwyer — Kan model structure on DG — Cat consists of the following:
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e The weak equivalences are the quasi-equivalences of dg-categories.  Thus
Ho(DG — Cat) := DG — Cat/ ~ygs, or more accurately Ho(DG — Cat) =
DG — Catlgiso™!].

e The fibrations are the morphisms f : A — B between dg-categories A and B
such that:

— The induced morphism on the hom-complexes A(X, X") = B(f(X), f(X")
is a fibration in the model structure on C'h(R), which is to say, it is surjective.

— Any isomorphism H°(f)(X) = b in H°(B) may be lifted to an isomorphism
in H°(A).

e The cofibrations are the maps with the right lifting property against the fibrations.

This model structure is cofibrantly generated, which is not completely surprising.
It can be immediately observed that every dg-category is fibrant in this model structure.
To see this, consider the complex A(X,Y’) for some dg-category A. Now, the unique
map A — * is just the one sending any object of A to *, and the morphisms complexes
A(X,Y) for all X|Y € A to the zero complex. This map is clearly surjective. As for
the second condition, the only morphism in * is the identity morphism of *, which
is naturally an isomorphism. Evidently, the identity isomorphism of the dg-category
A is the lift of this zero morphism. Hence, A is fibrant. The monoidal unit dg-
category lg, is also a cofibrant object as can be seen immediately from the definition.
Consequently, the simplex dg-category Al is also cofibrant since cofibrations are stable

under pushouts.

For a given C'h(R)-model category M, Toén and collaborators introduced the
notation Int(M) for the dg-subcategory of bifibrant objects in M, which they dubbed
the "internal dg-category" of M, see Section 3.2 in [39|. This construction provides a
way to produce dg-enhancements of homotopy categories. Recall that Ho(M) has a
model as the quotient of M.; by homotopy equivalence. Hence, given some Ch(R)-
model category M, Int(M) is in fact nothing but a dg-enhancement of the homotopy
category Ho(M) in that we have an equivalence of categories: H®(Int(M)) = Ho(M).



Given a dg-category A, there is an induced model structure on A — mod from
the previous section, which is essentially the pointwise model structure. That is, for
instance, a morphism f : F — G of dg-modules F' and G in A — Mod is a fibration
if f(X): F(X)— G(X) is a fibration for all X € A and so on. Then the homotopy
category Ho(A — Mod) associated with this model structure on A — Mod is the the
derived category D(A) we have already met in the previous sections. Therefore we
obtain a dg-enhancement of the derived category D(A) which is nothing but Int(A —
Mod). Same story holds for left dg-modules, and for reasons of convenience we will
switch to working with them. Thus, we put A=1 nt(A? — Mod) for the dg-category
of cofibrant dg-modules over A. Note that every object is already fibrant, so we do
not need to worry about restricting to another subcategory. For instance, 1dg is the
dg-category of cofibrant chain complexes of R-modules. We also note that T can be
expressed in terms of the derived inner Hom-object we introduced below and essentially

by definition we have that A 2 RHom(A%, 14,).

We can port the discussion of module theory into the homotopical context ver-
batim because the the dg-Yoneda embedding holds at the derived level, in that the

dg-Yoneda embedding in fact defines a functor

A= A (3.1)

This is because of the following very useful result.

Proposition 3.0.1. For any dg-category A and X € A the Yoneda dg-module b is

cofibrant in the model structure on A — Mod and hence defines an element of A.

Proof Using dg-Yoneda lemma, one may show that any morphism f : hy — G
has the lifting propery with respect to any trivial fibration p : F' — G in A? — Mod,
hence establishing cofibrancy (see Lemma 2.16 in [42] for details). O

Definition 3.0.1. A dg-module F' is said to be quasirepresentable (resp. quasicorepre-
sentable) if F = hy (resp. h™) for some dg-category A. In other words a quasirepre-

sentable dg-module is in the quasi-essential image of the Yoneda embedding.



Definition 3.0.2. (Definition 4.1 in [4]) Denote by — Q" — the derived tensor product
which endows Ho(DG — Cat) with a symmetric monoidal structure. This is nothing
but the Quillen left derived functor of the tensor product of dg-categories given by
cofibrant replacement: — &% — = Q(—) ® —. Given two dg-categories A and B,
we say a (A®" B?)-module is right quasirepresentable if i*(F) is a quasirepresentable
B —module, where i is the map 14 ®id : B? — AQYB. For a bimodule dg-category

T, we denote the subcategory of right quasirepresentable modules by T"".

The relevance of right quasirepresentable dg-bimodules comes from the the fol-
lowing characterization of the internal Hom-object:
Lemma 3.0.1. (6.1, [4]) Given dg-categories T and T', we have an isomorphism

RHom(T,S) = Int((T ®* S?) — Mod)™") (3.2)

Let M be a Ch(R)-model category such that,

(i) M is cofibrantly generated.
(ii) Every cofibrant object X in M is flat in the homotopical sense, that is, — ® X

respects weak equivalences.

This is evidently true when a dg-category T is locally cofibrant, that is, when
T (z,y) is cofibrant for all z,y € T since cofibrant chain complexes are flat. For any dg-
category T, denote the "M-valued" dg modules over T' by M7, a version of T—Mod with
a more general coefficient object. Then the following Proposition 1 in [39] characterizes

isomorphism classes in the homotopy category of a functor category.
Proposition 3.0.2. (Proposition 1 [39]) There is a bijection
(T, Int(M)] = (Ho(M"). (3.3)

where the subscript ~ on the right denotes isomorphism classes of objects.

In the vein of the construction of the derived mapping spaces in a general model

category, we now wish to obtain a better description of the mapping spaces in DG—Clat.



This description will likewise produce a simplicial set, which is precisely the content of
the simplicial enrichment of the category DG — Cat. In what follows, we follow Section

4 of |4].

Recall the notion of a (co)simplicial resolution in a model category that we dis-
cussed in the Section 2.9 on mapping complexes in general model categories. Let
I': DG —Cat — DG —Cat®” be the functor of cosimplicial resolution, which amounts

to the following data.

(i) We have a quasiequivalence I'"(T') — T for any n and T € DG — Clat.
(ii) I'"™(T) are cofibrant for all n and 7" in the model structure on the diagram category
DG — Cat?”.
(iii) The initial morphism I'°(T") — T is just cofibrant replacement of 7" in the original

model structure.

As in the discussion of simplicial enrichment of model categories in Section 5, we
have the simplicial mapping space for dg-categories 7" and 7" whose simplices are

) (3.4)

/

MapA(T, T ), := Hom(I™(T), T

We do not need to fibrantly replace T' since all dg-categories are fibrant in the
Dwyer-Kan model structure as we have seen. Toén proves a weak equivalence be-
tween the simplicial mapping space and the following simplicial sets which reflects the

algebraic and geometric aspects of dg-categories we have discussed above.

Definition 3.0.3. Consider the simplicial dg-category whose n-simplices are given by

dg-categories (I'(T') © S° )-Mod. Let A4 (I'™(T),S) be the following subcategory:

o Objects are quasirepresentable dg-modules F' such that F(x, —) for any x € I'"(T)
s a cofibrant S°P-module.

e Morphisms are equivalences in (I (T") © S )-Mod.



We put N( (I (T),S)) for the nerve of the category above, which gives rise to

tll

a bisimplicial set'’ . We then have the following fundamental theorem due to Toén [4].

Theorem 3.0.1. (Theorem 4.2 in [4]) In the model structure on sSet, the map
Mapa(T, S) — Diag(N (. (I™(T),5))) (3.5)
18 a weak equivalence, and so is the map

Diag(N(#(I"™(T), S)) — N(.4(I"(T),S)). (3.6)

The proof of the theorem is straightforward but extremely technical. We will
mention the following crucial results discussed in sections 4.1 and 4.2 of [4] which
characterize mapping spaces in DG — C'at and which are immediate consequences of

this theorem.

Proposition 3.0.3. Given dg-categories T and S, put QRep(S,T) for the subcategory
of quasirepresentable objects in the homotopy category of bimodules Ho((T &% S°P)) —
Mod. Then there is a bijection:

[S,T] = Qrep(S,T)~., (3.7)
and putting S = 1q44, we also have that:

[Lags T) = Ho(T)... (3.8)

The purely homological notion of pretriangulated or stable dg-category which we
introduced in the previous section has interacts fruitfully with the homotopy theory of
dg-categories. Recall that a dg-category T is said to be pretriangulated if its Yoneda
image is closed under cones and suspensions or, in other words, it is quasi-equivalent
to its pretriangulated envelope T},;. Recall also that a dg-module in the quasi-essential
image of the Yoneda embedding is called quasirepresentable. We have the closely related
notion of a triangulated dg-category due to Toén which characterizes the property
of being triangulated, a priori an exactness or stability property, as being in fact a

finiteness property. What interpolates between these is the concept of compactness.

See next section for the definition of the nerve functor.
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Let T be a dg-category and D(1°P) the derived dg-module category. A compact
object of this triangulated category is precisely (as before) an object X € T such
that Hom(X, —) preserves arbitrary direct sums. We denote by T, the subcategory
of compact objects of the dg-category T'. For instance T.=1 nt(T? — Mod).. is the
dg-category of compact dg-modules. The objects in the image of the dg-Yoneda em-
bedding we gave above are evidently compact, hence h 4 for some dg-category A can be
further seen as a map A — Ac. We then have the following definition/theorem which

establishes when the converse holds:

Definition 3.0.4. A dg-category T s said to be triangulated if and only if every com-
pact object is quasirepresentable. In other words, the homotopical Yoneda embedding

1S a quasi-equivalence of dg-categories. Passing to homotopy categories, we have that

Ho(T) = D(T*),.

We may now address why dg-categories are a satisfying candidate for "enriched
triangulated categories" from the point of view of addressing the inadequacies of the
unenriched theory. We have already seen that the homotopy theory of dg-categories
fixes some of the major flaws of triangulated categories, such as the lack of a good
structure on TrtCat or in the same vein the definition of meaningful mapping spaces
(that is, triangulated functor categories) between triangulated categories. The out-
standing issue is the nonfunctoriality of the mapping cone construction we mentioned
in the first chapter. We follow Toén’s account of how dg-categories resolve this issue,

as given in section 5.1 [39].

The following discussion mirrors the account we gave at the end of the first
chapter. First we formalize some self-evident points. The dg-category of objects in a
dg-category T is the functor dg-category Fun(lgy, T'). The hom-sets of its homotopy
category, the homotopy classes of maps [14y, 7 classifies the isomorphism classes of
objects in Ho(T'). Further, the dg-category of morphisms Mor(T) of a dg-category T'
is the functor dg-category Fun(AL,T), and the homotopy classes of maps [AL, T'] cor-
respond bijectively to isomorphism classes of maps in Ho(7T'). By the results discussed

above, [AL, T also corresponds to quasirepresentable dg-modules. Informally, our aim
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is to construct a functor Mor(1) — 1" which assigns a morphism in a dg-category
T its "cofiber". Now let T' be a (pre)triangulated dg-category as in [4]. Keeping the

previous notation, we have then isomorphisms RHom(ipe, T) >~ RHom(1,T) = T.

Consider the map Al — 1,, which sends 0 to 0 and 1 to R. There is an induced
map p: RHom(1,T) =T — Mor(T) which sends an object X € T' to the morphism
0 — X. The dg-mapping cone will be the adjoint to p, constructed in the following

proposition, which is Proposition 5.9 in [39].

Proposition 3.0.4. The map p admits a left adjoint cone : Mor(T) — T. That is,

we have quasi-equivalence of dg-modules:

Mor(T)(f,p(Y)) = T(cone(f), Y). (3.9)

Proof Above, we have obtained homotopically correct representatives of T,
Mor(T) and so on. Namely, as a model of T we always consider 7" := QRep(T) = T,
and in the same vein, Mor(T) := QRep(Mor(T° — Mod))) := Mor(T — Mod), as a
model of Mor(T'). Having thus taken care of issues regarding cofibrancy etc., we may
simply define cone : Mor(T) — T to be the map that sends f : X — Y in Mor(T) to
cone(f) defined by the diagram in T°’-Mod

X —Y

l l (3.10)

0 —— cone(f)
which is a pushout square. What remains to be verified is that cone(f) is an object of

T'. This follows from the general fact that (homotopy) colimits preserve compactness.

We take this opportunity to review another problem resolved by the introduction
of dg-categories, particularly, the use of dg-enhanced derived categories in geometry,
the problem of descent. With X denoting a scheme and D(X) its derived category
of quasicoherent sheaves, attempting to assemble the "derived category" assignment
X +— D(X) into some kind of higher functor from schemes to triangulated categories
Sch — Tri predictably leads to many technical difficulties. However, even if one took

care of the functoriality issues by way of some ad-hoc methods, this functor would
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not behave as one would expect. The problem is that naive gluing does not work in
triangulated derived categories, in other words the assignment X — D(X) does not
form a stack over the category of schemes Sch because of failure of locality, as discussed
in Section 2.2.4 of [39]. Consider the projective line P! over some ring R with standard
opens U; := SpecR[z*]. Of course, Pg' can be constructed by way of the diagram (a
localization square, if you will)
SpecR[x*] —— SpecR|x]
l l (3.11)
SpecR[x™'] ——— PL
which is a pushout square. Then by standard arguments of descent, the module cate-
gories also fit in a localization square, that is, a pullback diagram
QCoh(PR) —— Mod g1
l l (3.12)
Modpgjy) —— Modpy .1
in the appropriate 2-categorical sense. However, no such gluing is possible when we
pass to derived categories, as illustrated by the following famous example. Assume
R =k is a field. Consider the extension exact sequence in D(P}) of line bundles: 0 —
O(-2) — O(=1)%? — O — 0, which defines an element of Hompy 1y (0, O(=2)[1]).
Any such map must be the zero map over any one of U; since these are affine and there
are no higher Exts among line bundles over affine pieces. Hence this element of the
derived category cannot be built out of local information although the geometric object
underlying it is. Any attempt to fix this defect by forcing such descent properties is
doomed at the outset if one sticks to triangulated categories. We will see such a
procedure is the key to the definition of motives and noncommutative motives in the

context of oo-categories.

The theory of dg-enhancements fixes this problem. We will revisit this issue again
in the stable oo-setting but will merely state the following for now, as presented in the

section 5.3 of [39].
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Proposition 3.0.5. For a scheme X and open subschemes U and V such that X =
UUV, we have a diagram
Perfg(X) ——— Perfq,(U)
l l (3.13)
Perfa(V) —— Perfqe(U xx V)
which is a homotopy pushout square in DG — Catg.

The following discussion will serve to clarify and solidify the central themes of

noncommutative algebraic geometry.

Following Definition 2.4 in [40], a dg-category A is said to be,

(i) locally proper if A(x,vy) is a perfect complex 12 .
(i) compactly generated if Ho(A) is compactly generated as a triangulated category.
(iii) proper if it is locally proper and compactly generated.
(iv) smooth if A considered as a diagonal A% ® A module is perfect in the dg-module
category A@ A.

(v) saturated if it proper, smooth and pretriangulated.
(vi) of finite type if there is a dg-algebra B which is compact such that Ais quasiequiv-

alent to Perf(B) := Bop.

Since smooth, proper, compactly generated, and finite-type dg-categories will be
the main objects of interest for the rest of this text, we will spend some time developing
the background for these concepts and untangling the relationships between them. The

following lemma due to Toén and Vaquie is the first step.

Proposition 3.0.6. (Lemma 2.6 in [{0]) The dg-category A, is triangulated.

—

Proof Consider the dg-category A,. Above, we mentioned that we have an equiv-

—

alence A = RHom(A®, 14.), hence we have A, = RHom(A% 1,,). By Lemma 7.5

in [4], we have a quasiequivalence RHom(A%, 14,) = RHom(A%, 14,) but the latter is

12i e., a bounded complex of projective R-modules, also finitely presented if R is not Noetherian.
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just A. Thus we have a quasiequivalence A, = A. Then we have a quasiequivalence of

subcategories of compact objects, and A, is triangulated. O

Proposition 3.0.7. (Lemma 2.6 in [{0]) A is compactly generated, smooth or proper
if and only if A, is.

Proposition 3.0.8. (Lemma 2.6 in [40]) A is compactly generated if and only if there
is a quasi-equivalence A = B for B a dg-algebra. Such an A is proper if and only if

B is a perfect dg-algebra and smooth if and only if B is a perfect B ®“ B°P-module.

Proposition 3.0.9. (Corollary 2.12 in [40]) A compactly generated dg-category T is
of finite type if and only if the dg-algebra as in the previous proposition is a perfect

dg-algebra.

Proposition 3.0.10. (Corollary 2.13 in [40] A smooth and proper dg-category is of
finite type. Conversely, any dg-category of finite type is smooth.

These propositions should be seen as taxonomic underpinnings for the theory of
noncommutative algebraic geometry on the basis of dg-categories. The culmination of
the classical period- so to speak- in homotopy theory of dg-categories is the following
theorem due to Toén, which are a great deal subtler and deeper than they might at

first appear.

Theorem 3.0.2. There is a closed symmetric monoidal structure on Ho(DG — Cat).
That is, given dg-categories XY, 7, we have a derived internal hom-object RHom(Y, Z)
participating in the following derived tensor-hom adjunction expressed by the isomor-

phism

%ﬂm(X,RHOm(Y, Z)) g%ﬁm(X ®- Y, Z). (3.14)

Furthermore, the following theorem essentially brings the derived Morita theory

of dg-categories to a completion.

Theorem 3.0.3. (Corollary 7.6 in [4]) Put RHoma(X,Y) for the subcategory of the

derived internal hom dg-category consisting of additive (that is, direct sum preserving)



dg-functors. Then we have an isomorphism

RHom,(X,V) 2 X0 gL Y. (3.15)

The following theorem of Toén’s makes evident the geometric content of derived
Morita theory. Theorems of this form regarding derived categories have been proven
in a multitude of contexts. For instance, they form the cornerstone of the Tannakian

study of stable co-categories, see for instance |50, 51].

Theorem 3.0.4. (Theorem 8.9 in [4]) Let X,Y be smooth, proper R-schemes and put
Perfaq(X) and Perfu,(Y) for the associated dg-enhanced categories of perfect com-

plexes of quasicoherent sheaves. Then we have an isomorphism

Perfa(X xY) = RHom(Per fqe(X), Perfz,(Y)). (3.16)

We will later have one last dive into the foundations of the homotopy theory of
dg-categories once we have introduced oco-categories and construct the oo-category of

dg-categories.
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4. STABLE oco-CATEGORIES

4.1. oco-categories

We lack the space to give even a cursory treatment of the evolution of higher cate-
gories or expound upon what motivates their adoption as the fundamental formalism in
this thesis and will treat the theory of co-categories mostly as a black-box environment
which provides a very convenient context for unifying and generalizing concepts from
homological algebra, category theory, homotopical algebra and algebraic topology. As
hinted at above, most oo-categories we encounter arise from some model category as
a result of localization at weak equivalences. Hence oo-categories can be intuitively
seen as a way to get a better handle on such derived or "homotopified" structures than

what is possible through the mere homotopy 1-category.

While there are various models for oco-categories, throughout this thesis we will
rely almost exclusively on the formalism of quasi-categories developed by Joyal, Lurie
and others. In this model, oco-categories are simplicial sets whose sets of higher simplices
("sets of higher morphisms") obey a certain lifting condition which encode the laws
governing the composition of arrows and natural compatibilities among them. We
review the fundamental aspects of this theory below with the intention of showing that

much that is familiar in category theory can be almost verbatim ported into it.

Unless otherwise indicated, our reference for the elementary material in the first
section is Lurie’s fundamental treatise Higher Topos Theory [52|, supplemented by
[18,53]. To avoid burdensome citations, we do not give specific references in this

section as all the facts discussed are by now standard.

4.1.1. Simplicial Sets

We have already made the acquaintance of simplicial sets. We keep the notation

from previous sections. As before, we denote the category of simplicial sets, that is,
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the presheaf category Fun(A, Set) by sSet. By virtue of the central role played by
simplicial objects in homotopy theory and their combinatorial properties, sSet enjoys
many intimate connections with ordinary category theory and categorical algebra. The
nerve construction gives a functor N : Cat — sSet from the category of small categories
to simplicial sets, which, composed with the geometric realization functor |—| : sSet —
Top is nothing but the classifying space construction familiar from algebraic topology
and K-theory. For some C' € Cat, we denote by BC' its classifying space. Intuitively,
the homotopy type of this space encodes the behavior of composable morphisms and
reflects fundamental properties of the category like the existence of terminal or initial

objects (either of which makes the classifying space contractible by an easy argument).

Given a simplicial set X, define as before its sets of n-simplices X, :=
HomgSet(A[n], X), where A[n], the so-called standard n-simplex, is the simplicial set
corresponding to [n] under the Yoneda embedding, i.e., A[n] : [m] — Hom([m], [n]).
The "cosimplicial" maps mentioned above induce simplicial maps in sSet, which can

be explicitly exhibited in the following mock diagram of X,,
Xo & X,

T

Xo.... (4.1)

As alluded to in the section on model categories, we have the so-called Kan model
structure on sSet in which the fibrant objects are called Kan complexes or oo-groupoids.
This means that Kan complexes are the simplicial sets for which every lifting problem
of the following form admits a solution, as described in the diagram

A —— X

A",

(4.2)

The reason for this name is two-fold: first of all, nerves of ordinary groupoids are
precisely Kan complexes. Secondly, and relatedly, they offer an ideal oo-categorification
of the notion of a groupoid as a category in which every morphism is invertible, as we

shall see.
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The most intuitive way to motivate the presentation of co-categories by simplicial
sets is by way of the nerve construction, which we now proceed to describe, following
Section 1.1.2 of |52|. Let C' be a small category. We form a simplicial set out of C' as

follows. Define N(C') to be the simplicial set with simplices
N(C)p := Map(A™, N(C)) (4.3)

where N(C'), is the set of composable n-strings of morphisms in C which can be

presented by the diagram

(o LNy R LI AN} (4.4)

The face map d; : N(C),, = N(C),_; defined above sends the n-string above to
the string

AR A LN SN (4.5)

On the other hand, the degeneracy map s; : N(C),, = N(C),1 sends the n-string
to the string

Co L Loy Sy o (4.6)

Let’s spell out how this construction encodes the structure of a category. Clearly,
the set of O-composable morphisms is just the set of objects of C, thus, N(C)q = Ob(C).
Equally obvious is the fact that N(C); = Mor(C). The face maps dy, d; are nothing
but the source and target maps that appear in the formal definition of a category.
The degeneracy maps encode identity morphisms on objects. Higher simplices encode
composition of morphisms and rules governing it (associativity etc.). Hence, the data
of a category can be put together from that of a simplicial set by interpreting certain
simplicial operations category theoretically. We shall see below that simplicial sets that
arise in this way obey a certain lifting condition and this will form the underpinning

the quasi-categorical model of co-categories.
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Define the i-th horn A? of the n-simplex A™ to be the simplex obtained from A"

by deleting the i-th face. For instance, consider A2, which is the simplex

1
N n
with its boundary
1
0 > 2. (4.8)

1
/ AN (4.9)
01
0 2.
A3 is the simplex
1
R (4.10)
0 5 > 2.
A3 is the simplex
1
V (4.11)
0 = > 2.

The outer horns arc the horns Ay and A7, referred to as left and right horns respectively.

Horns for which ¢ # 0, n are referred to as inner horns.

We have remarked many times that a Kan complex is defined by a certain lifting

condition. We may now we complete the definition of the Kan complex by spelling this
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condition out.

Definition 4.1.1. Let X be a simplicial set. X is said to be a Kan complex if for any

diagram

j (4.12)
A

with 0 < @ < n, there exists a dotted arrow making the diagram commute. In other

words, every horn is fillable.

The following theorem is the foundation of the theory of co-groupoids and justifies

their alternative designation as "homotopy types" '3

. It suggests that oo-groupoids
are the same thing as spaces. First of all, we note that the category Kan complexes or
oo-groupoids themselves assemble into an oo-category (see below) we denote by Kan,
o0o-Grpd, or Spc. The reason for the latter designation is the following fortified version

of the classical adjunction equivalence between simplicial sets and topological spaces :

Theorem 4.1.1. There is a Quillen equivalence Topguitien — $S€tquitien, Which may
be seen as a shadow of an equivalence of oc-categories oo — Grpd = Top. In particular,

the singular complex and geometric realization functors are mutually inverse and give

an equivalence Ho(CW') = Ho(Kan).

Finally, we define weak Kan complexes or oo-categories. Let’s pause to note that
what we refer to as an oo-category in this text is more properly called an (oo, 1)-
category. While all the categories we deal with in this text such as DG — Cat or Cats!
in fact naturally have a (oo, 2)-categorical structure, we have avoided any discussion
of this aspect and will not introduce (oo, n)-categories for n > 1. In this notation an
oo-groupoid is an (0o, 0)-category. Here n denotes the dimension starting with which
all higher morphisms are invertible. In an oco-groupoid all n-morphisms are invertible.

In an oo-category, all n-morphisms are invertible except for n = 0 since not every

13Nomenclature that we largely avoid.
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"edge" (see below) is necessarily invertible. With higher n, one loses the automatic
invertibility of 2-morphisms, which are guaranteed by the weak Kan filling condition

for n = 1. Let us state this condition explicitly.

Definition 4.1.2. A simplicial set is said to be (weak) Kan complex or an oo-category

if for every diagram

[ (4.13
A

where 0 < ¢ < n, there exists a dotted arrow making the diagram commute. In other

words, every inner horn is fillable.

As mentioned before, there is a model structure on sSet, the Joyal model struc-
ture, in which the fibrant objects are precisely oo-categories. By way of a detour
through the theory of simplicial categories and constructions involving this model struc-
ture, one may show that oco-categories themselves assemble into an oo-category Clato,
where we again ignore the 2-categorical aspect. We omit the account of the theory of
oo-functors, which is conceptually quite natural but extremely inexplicit in contrast
to ordinary functors. Actual oco-functors are best handled via the theory of fibrations

which we deal with in the next section.

For a given oo-category C', it is standard practice to refer to elements of C'[0], the
vertices of the simplicial set as objects and to those of C[1], the edges of the simplicial
set (', as morphisms in the sense of ordinary category theory. This is justified by
the example provided by the nerve construction. Just as in the latter, given two
composable "morphisms" f: X — Y,g:Y — Z € C]1], there should be a way to
describe composition as a map C[1] x C[1] — C[1]. First of all, let’s decode what it
means for morphisms to be composable, mirroring the nerve construction. Recall that
the face maps dy, d; : C[1] — C|0] function as source and target maps and morphisms

f, g are composable if do(f) = di(g). A priori, two such morphisms describe a horn-
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shaped diagram in C, that is, a map A2 — C' as in the diagram
Y

% X (4.14)

X A

Now observe that the Kan lifting condition above guarantees the existence of a
map h : X — Z completing the horn diagram to a 2-simplex A% — C which is precisely

a composition of f and g:

/ X (4.15)

But if we end stop the story here and claim we have defined a category structure,
with composition laws for morphisms, we’d be forgetting all the higher data that go
into the definition of an co-category. First issue to address is that the horn-filler A is
not unique, but only unique up to homotopy. Let’s first define homotopies between

edges of a simplicial set.

Definition 4.1.3. Consider parallel morphisms f,g : X — Y in C with the same

source and target. A homotopy between f and g is a map A?> — C, that is, a diagram

X

/ X (4.16)

Y Y s Y.

Lurie (see 1.3.3.7 in [18]) proves that this defines an equivalence relation on the
set of edges and, further, gives the following explicit form of the definition which makes

manifest the symmetry and the "homotopy map" between f and g.

Lemma 4.1.1. Morphisms f,g : X — Y with the same source and target are homo-

topic if and only if there is a map H : A x A — C such that we have a "commutative
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diagram"”

S
'~<

idy (4.17)

3

S
=~

Now we can properly state the manner in which the composition go f can be said

to be well-defined up to homotopy.

Lemma 4.1.2. Given morphisms f and g as above, any two candidates for the com-
position g o f (that is, horn fillers for the diagram above) are homotopic. Hence they

descend to a well-defined composition at the level of the homotopy category.

Note that we have mentioned the homotopy category above but will not be defin-

ing it. The reader may consult section 1.2.3 in [52].

This fundamental non-uniqueness is of course replicated at all levels. Hence when
we speak of the commutative diagram witnessing associativity of composition or some
such property, we are going to be invoking the Kan lifting condition to establish that
such a diagram must exist, since such conditions merely correspond to higher horns,
which can all be filled if the simplicial set is an oo-category. However, as we’ve seen
with the example of composition, such a diagram will never be unique, but only so up

to a yet higher homotopy. This is the fundamental characteristic of higher categories.

We now arrive at the task of defining mapping spaces in an oo-category C'. This
task is not as straightforward as it was in ordinary category theory (see the preliminary
discussion in 1.2.2 in [52]) for the simple reason that we are in fact secretly dealing
with what we called "derived mapping spaces" in the previous sections, where now the
homotopical and model theoretic baggage has been concealed under the quasicategor-
ical formalism. In fact there are several candidates for this object and it turns out

they are all isomorphic at the level of the homotopy category 4 . The first thing that

"We have not introduced the homotopy category of an co-category, see 1.2.3 in [52]
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comes to mind is to take advantage of the flexibility of the oco-categorical formalism

and use the arrow category Fun(A!, C) to define the mapping spaces as explained in

Definition 1.3.47 in |53]. As in ordinary category theory, we have the source and the

target maps s x t : Fun(A!,C) — C x C whose images can be identified with X and

Y respectively and we can define Maps(X,Y) by the pullback diagram
Mape(X,Y) —— Fun(A*, C)

| | (4.18)

A —— O xC.

By general arguments, Mapc(X,Y') turns out to be a Kan complex, hence it is
clearly a correct candidate for the derived mapping space object in an oo-category.

Indeed, we have a well-defined composition operation
Mape(X,Y) x Mape(Y, Z) — Mape(X, Z) (4.19)
coming from the pullback diagram induced by the functor

Mapc(X,Y) x Mape(X,Y) = Fun(A',C) x¢ Fun(A', 0) — Fun(A',C). (4.20)

Another candidate for the quasicategorical mapping spaces in an oo-category
is provided by the simplicial set of right (or left) morphisms HomZ(X,Y) which is

constructed as follows.

Definition 4.1.4. (Proposition 1.2.2.3 in [52]) Given an oo-category, the simplicial set
of right morphisms HomZ(X,Y) is the simplicial set with simplices (HomZ(X,Y)),
consisting of all maps f : A" — C such that f|A™ =Y and f|A%" = X with the

simplicial maps induced by those of C. In fact, this simplicial set is a Kan complex.

In what follows, we will simply put Homec(X,Y) for the Kan complex of
right morphisms between X and Y, with the understanding that Hom&(X,Y)
and HomkL(X,Y) represent the same object in the homotopy category. In fact,
more is true. It is explained in Proposition 1.2 of [54] that what we called

Mape(X,Y) and Hom"™(X,Y) are models of the model-categorical function com-

15See the next section for (co)limits in the oo-categorical context.



16 of the Joyal model category of simplicial sets over

plex lLMapa/A1SSetJoyal(A1, )
OA'. Hence, from the perspective of homotopic fidelity, these mapping spaces describe

the same object.
4.1.2. Limits and Colimits in oo-categories

Let C, D be ordinary categories. We adopt the notation of Section 1.2.8 in [52].
The join C'x D is the category with objects Ob(C'* D) = Ob(C')LUOb(D) and morphisms
(Hom(X.Y) X,YeC
Hom(X,Y) X, YeD

Mor(C x D) = (4.21)
* XelYeD

& XeDYecC.
This operation gives rise to a monoidal structure on Cat, which we denote by Cat”. Tt

admits a natural generalization to the higher context as follows.

Definition 4.1.5. For S, S € sSet, the join S % S is the simplicial set whose n-

simplices are

(S*S)=5.08, |J Six8; (4.22)

i+j=n—1

Denote by d, the face maps acting on sets of simplices S; and S,;. Explicitly,

these are

;

(djxvy)aj < l,l 7é 0

(xad'—l—ly)»i > l7k # 0
di(z.y)=4 (4.23)
r, =0

y,k=0.

16See Section 2.9 on function complexes in model categories.
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Likewise, we have the degeneracy maps (keeping the same notation)

(ijv y)?] S l
sj(x,y) = . (4.24)
(37, Sj—l—ly)a i > .
One can verify that this definition is the appropriate generalization of the ordinary

categorical join in that we have an equivalence

N(C xC') = N(C) % N(C"). (4.25)

It is instructive to play around with algebra of joins and look at examples in lower
dimensions for reasons that will become clear. For instance take C = C' = A°. Then
evidently A? x A® = A'. We may generalize this to joins of other simplices with the

point. For instance, A® ¥ Al is the simplicial set

0

/ ﬂ \ (4.26)

0 > 1.

Just as in the case of ordinary categories, the simplicial join operation in fact

restricts to a monoidal structure on co-categories.

Now we have the equipment to discuss limits and colimits in oco-categories.

Definition 4.1.6. (1.2.8.4 in [52]) The left (resp. right) cone of a simplicial set K is
the simplicial set K< := A% x K (respectively, K* := K x A°).

To define the notions of limits and colimits of K-diagrams K — S with K €
sSet, S € Caty, we need the notion of an over- and undercategories in the higher
context. Recall that for C' an ordinary category, the overcategory C,x is the category
whose objects are morphisms X — Z and whose morphisms are commutative triangles

X —Y
l / (4.27)
Z.

A prominent example in algebraic geometry comes from the relative scheme categories
over some base scheme S: Schg := Sch;s. The convention for overcategories is the

dual for the undercategories.
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We will define over- and undercategories in the higher context by universal prop-
erties, following section 1.2.9 in [52]. Given S, K € sSet and p: K — S, define S/, to

be the simplicial set whose n-simplices are
(Sip)n = Homy, (A" x K, S) (4.28)

where the subindex p indicates we are only considering maps f : Y * K — S which
equal p when restricted to K. This simplicial set, more or less tautologically, enjoys the
universal property that the simplicial set of maps Homge, (Y, S)p) is equal to that of

maps of simplicial sets A" x K — S which equal p when restricted to K.

Definition 4.1.7. With p, K as above and C an oco-category, we say C), is the the
(over)category of C over p. When p is a map A° — C with image an object X of C, we
denote the category of C over X by C)x. Dualizing in an evident fashion, we denote

the undercategory over p by Cy,,.

As an illuminating example, the undercategory for p = A2 — C'is the co-category

consisting of diagrams

|

(4.29)

N —— O

|

SRR

The notions of initial and final objects in an ordinary category are self-evident.
Since it is by construction impossible to impose conditions such as uniqueness at the
level of objects in oco-categories, the homotopically correct approach to the generaliza-

tion is given by way of Proposition 1.2.12.4 of [52].

Definition 4.1.8. An object X of an oo-category C' is said to be final (initial) if the
Hom oo-groupoids Hom(Y, X)) are contractible for X € C' (resp. Hom(X,Y)).

By the following proposition, which is Proposition 1.2.12.9 in [52], these objects

satisfy the right analogue of uniqueness in the homotopic context.
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Proposition 4.1.1. The subcategory spanned by final (or initial) objects is empty or

contractible.

We may now define the notion of a (co)limit:

Definition 4.1.9. A limit of a diagram p : K — C s a final object of C/,. A colimit
of a diagram is an initial object of Cp,,. By Remark 1.2.13. 5 in [52], one also refers
to the map p : K& — C' corresponding to the object of the overcategory (undercategory)

given by the (co)limit.

To explicate the last sentence, consider the following situation. Let p : A2 — C
be the diagram whose limit we are considering. Formally, this limit (a pushout) is a

"commutative diagram"

|

(4.30)

N —— O

l

S

The point of the remark is that we will refer to the "cone point" U (or rather
the join diagram U * A2) as the limit of the diagram p if this diagram is in fact a limit

diagram as an object of the overcategory.

(Co)limits inherit the desired universal property from their definition as initial

(final) objects, as in the case of ordinary categories.

The most important class of colimits are the filtered ones, which are colimits of
diagrams D — C where D is a filtered oo-category. We recall the notion of the filtered
category and filtered colimit in ordinary category theory, following the notation of

section 5.3.1 of [52].
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Definition 4.1.10. With k a reqular cardinal, category is said to be k-filtered if:

(1) For every collection {X;} of finite objects, there is an object equipped with maps
b Xi = X.

(i1) Given objects X,Y,Z and for any morphisms f,g: X — Y, there is a morphism
h:Y — Z such that ho f = hog.

A special case of a filtered category is a directed poset regarded as a category.
Recall that we can see a poset as a category with morphisms given by the partial order
relation < on the elements. A directed poset is a poset in which for any a,c € P there
is an object b such that a < b < ¢. The object X in the case of directed poset is just
upper bound of a given collection of elements computed as a directed limit. The second
condition can be interpreted as saying that any two parallel morphisms "eventually"

agree.

Definition 4.1.11. A filtered colimit is the colimit of a diagram F : I — D where I

18 a filtered category.

An illuminating fact about filtered colimits is the following slogan which holds

for limits and colimits in the category of sets:

Proposition 4.1.2. Filtered colimits commute with finite limits.

Now we define the notion of a filtered oo-category as given in section 5.3.3 of [52].
Recall that a simplicial set is said to be k-small for k a regular cardinal, if its number

of non-degenerate simplices is smaller than s and just small when it is w-small.

Definition 4.1.12. For a regular cardinal k, an oo-category C' is said to be k-filtered
if every map K — C with K k-small simplicial set, extends to a map k¥ — C. C is

said to be filtered if it is w-filtered.

There is a notion of compact objects and compact generation in the context of oo-

categories which directly parallel the same notion in the triangulated and dg-contexts,
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see section 5.3.4 in 52| for details.

Definition 4.1.13. Let C and D be oo-categories and k a reqular cardinal. A functor
F : C — D which preserves k-filtered colimits is said to be k-continuous. An object
X € C is said to be k-compact if the Yoneda functor jx is k-continuous. When k = w,

we just say C' is compact. Denote the subcategory of compact objects of C' by C¥.

We have the following definition of compactly generated oo-categories, which will

make sense once we unwind it after we introduce these concepts in the next section:

Definition 4.1.14. An oco-category is said to be compactly generated if it 1s presentable

and k-accessible.

4.2. Presentable oo-categories

The correct context for the study of adjunctions and the adjoint functor theorem
in the oo-categorical setting is the theory of presentable oo-categories. The formalism of
presentability allows us to study large oo-categories by way of a small amount of data,
analogous to how finitely generated, but not necessarily finite, groups, rings, modules
and so an are presented by a finite amount of data. We shall see that presentable oo-
categories assemble into an co-category which we denote by Pr”, where we consider left-

adjoint, or colimit preserving functors between presentable oco-categories as morphisms.

As alluded to above, the main motivation for presentable oco-categories is the
following theorem of Lurie generalizing the adjoint functor theorem for ordinary cate-

gories.

Theorem 4.2.1. (Theorem 5.5.2.9 in [52]) Let C, D be presentable oo-categories.
Then a functor F' . C — D admits a right adjoint if and only if it preserves small
colimits. Further, a functor F : C' — D admits a left adjoint if and only if it is

accessible and preserves small limits.

For a simplicial set S, denote by P(S) := Fun(S°, Spc) the category of presheaves
of spaces on S. We have the fully faithful Yoneda embedding: S — P(S) given by
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Proposition 5.1.3.1 of [52], which is (small) limit preserving. An object of P(S) is said
to be representable if it is in the essential image of the Yoneda embedding, that is, if
F is of the form Hom(—, X) for some X € S. As in ordinary category theory, it is
possible to see P(S) as the free co-completion of S and the free co-category generated
by S under colimits by way of the Yoneda embedding. In this vein, P(C') has the
following universal property. Let C' be an oo-category admitting small colimits. Then
we have an equivalence of oo-categories between the category of colimit preserving
functors Fun®(P(S),C) and the functor category Fun(S,C). That is, P(S) may be
characterized by the fact that every functor S — C uniquely (in the apppropriate

sense) extends to a colimit preserving functor P(S) — C.

Let us fix an oo-category C'. Now we focus on a particularly important sub-
category of P(C), the category of ind-objects of C. It is more convenient in the
oo-categorical context to define the category of ind-objects as a subcategory of P(C)
rather than directly in terms of ind-limits. In this section, we follow Section 5.3.5
in [52].

Definition 4.2.1. Let C' be an oco-category. Denote by Ind(C) the full subcategory of
P(C) spanned by presheaves which correspond to fibrations C — C with C a filtered

category. This category enjoys the following useful properties:

(1) There is a subfunctor of Yoneda embedding j : C — Ind(C') .
(11) Ind(C) admits all small filtered colimits.

Definition 4.2.2. A co-category C is said to be (k)-accessible, for k some small car-

dinal, if we have an equivalence:
C = Ind(Cy) (4.31)
where Cy is a (k)-small co-category. If, further, C admits all colimits, it is said to

presentable. We denote by Pr* the category of presentable oco-categories with colimit

preserving functors.

By a theorem of Simpson, an ordinary category C' is presentable iff there exists a

small category D such that C is an accessible localization of P(D). Thus we have the
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slogan that presentable categories are localizations of categories of presheaves. We’ll
introduce localizations in the context of oo-categories and see that exactly the same

thing holds for presentable oco-categories.

We will now introduce the concept of idempotent completeness in the context
of oco-categories. We have already met idempotents in ordinary categories and the
procedure of idempotent (or Cauchy) completion in our introductory section. These
concepts readily generalize to higher categories, as explained in Section 4.4.5 in [52].
Let E* be the (nerve of the) category consisting of elements {X, Y} with morphisms
an idempotent map e : X — X, a retraction r : X — Y, and the section s : ¥ — X

2

with relations which encode these properties: e* = e, e = sr, rs = idy. We will confuse

E* with its nerve. Let E be the (the nerve of the) subcategory spanned by X.

Definition 4.2.3. An idempotent morphism in an co-category C is a map £ — C. An
oo-category is said to be idempotent complete if every idempotent map E — C' extends

to a map ET — C.

We will meet examples of idempotent complete oc-categories later on. For now,

we note the following facts, as given by Corollary 4.4.5.16 in [52].

Proposition 4.2.1. A co-complete co-cateqory is idempotent complete. More specifi-

cally, an oo-category admitting k-filtered colimits is idempotent complete.

More strikingly, we have the following result which demonstrates the relevance of

idempotent completeness:

Proposition 4.2.2. (5.4.5.6 in [52]) A small co-category is accessible if and only if it

18 tdempotent complete.

Just like in the case of ordinary categories, there is a self-evident procedure of

idempotent completion which we will introduce here and will revisit in later sections.

Proposition 4.2.3. (Proposition 5.4.3.5 on [52]) Given a small co-category C, the
Yoneda embedding j : C' — Ind(C') is the idempotent completion of C'.
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It is self-explanatory to transcribe the notion of adjoint functors into the oo-
categorical context, and indeed the most common definition is a verbatim transcription
of the definition of an ordinary adjunction. A more satisfying definition may be given
in terms of coCartesian fibrations, which will be covered in the next section. Since this
definition is used in many of the sources we rely on throughout this work, let’s offer it

in passing:

Definition 4.2.4. Let C', D be oco-categories. Then an adjunction between C' and D
1s a correspondence between C' and D, that is, the data of a simplicial set E equipped

with a morphism f : E — A such that

e fis a bi-Cartesian fibration.

o We have equivalences of co-categories Ky = C and K1 = D.

We say functor F : C — D and L : D — C are adjoint if they are the functors classified
by the (op)fibrations given above.

Finally, we discuss localization of oco-categories which is exactly derived from the
theory of Bousfield localization of model categories. In Definition 5.2.7.2 of [52], Lurie

defines a localization functor in the co-categorical context by way of reverse engineering;:

Definition 4.2.5. A functor F': C' — D between oo-categories C' and D is said to be

a localization if it admits a fully faithful right adjoint.

To make a connection with the more familiar definition, consider the right adjoint
G : D — C which by definition identifies the essential image of G with a subcategory
of C'. Then the composition L := GF : C — C is the more familiar analogue of
the localization functor in ordinary categories which universally inverts some subset of

elements.
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4.3. Deeper Into oo-category Theory
4.3.1. Fibrations in oco-categories

In this section, we introduce special classes of maps between simplicial sets which
blend categorical and topological characteristics to give rise to what may be concisely
called "relative" oo-category theory. Fibrations are characterized by various lifting
properties (which are relative forms of the fundamental lifting property characterizing
Kan complexes among simplicial sets). The theory of fibrations allows us to work
with functors between oo-categories by way of slick universal arguments and bypasses
formidable difficulties involving higher coherences which are necessarily the part of the
data defining functors in the oo-context. The reader may consult [53] for details on

fibrations.

We denote by LHorn, I Horn and RHorn the left, inner and right horn inclusions.
As in the section on model categories, rl(M) (II(M)) denotes the class of maps with

the right lifting property (left lifting property) against the class of maps M.
Definition 4.3.1. A map f: X — Y of simplicial sets is said to be:
(1) A left fibration if f € ri(LHorn), that is, if for all0 <i<mn

(i) A inner fibration if f € ri(IHorn), that is, if for all0 < i <mn
(111) A right fibration if f € ri(RHorn), that is,if for all 0 <i <n

there exists a lift h giving a commutative diagram

A —— X

p
h - .
[ 2]

A" —— Y.

Definition 4.3.2. A map f : S — T of simplicial sets is said to be right, left, inner
anodyne if f has left lifting property against right, left, inner fibrations.



The reason for referring to the study of (left) fibrations as "relative" co-category

theory is the following observations.

Lemma 4.3.1. The unique map of simplicial sets X — x = A® is a left fibration if
and only if X is a Kan complex. More generally, the fiber f~'(y) := X x, Y of a left
fibration f . X — Y over any vertex y of Y is a Kan complex. Hence left fibrations

should be regarded as relative oo-categories.

The main example of a left (resp. right) fibrations we have already encountered
are the natural maps C; — C where C' is an oo-category and C'/z is the oo-category
over x which was defined via a universal property in the previous section (resp. the

map from C,).

Definition 4.3.3. A Kan fibration is a map f : X — Y of simplicial sets that is at

once a left and right fibration.

To proceed further, we need a few intermediate definitions. In what follows, we
follow [55]. A morphism f € Fun(A!,C) in an oo-category C' (or more generally,
an edge in a simplicial set) is said to be an isomorphism if the induced map in the
homotopy category is an isomorphism. This is equivalent to the following criterion

given in 2.1 of [55].

Lemma 4.3.2. A morphism f € Fun(A',C) is an isomorphism if and only if it
extends to a map Fun(J,C) where J is the nerve of the classifying category for iso-

morphisms, that is, the category N(0 — 1).

Definition 4.3.4. Categorical fibration are the fibrations for the Joyal model structure
on sSet. Namely, a map of simplicial sets f: X — Y is a categorical fibration if it is

an inner fibration that has the left lifting property against the map A° — J.

Definition 4.3.5. A trivial fibration is a map f: X =Y of simplicial sets which has
the right lifting property with respect to all boundary inclusions OA™ — A™.
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A trivial fibration is precisely that for the aforementioned Joyal model structure:
a categorical fibration which is a weak equivalence. The fibers of a trivial fibration are

contractible.
4.3.2. oo-categorical Grothendieck Construction

Our sole reference for this entire section is Section 2.4 in [52]. We do not provide
specific references here since we follow Lurie very faithfully and there are no other

elementary sources on this material, which was chiefly developed by Lurie.

Let’s begin by recalling the Grothendieck construction for 1-categories. The idea
is to make rigorous the intuitively obvious correspondence between categories over some
fixed category C' and "functors" F : C' — Cat given by the "fiber" of the fibration
D — C as D varies over Cat. Before considering "functors" F' : C — Cat, let us
first make the elementary observation that set-valued functors C' — Set also admit
an interpretation as such a "fibration". Of course regarding sets as discrete categories
gives us the embedding Set C Cat, hence this construction is an easy special case of

the Grothendieck construction. The desired fibration is constructed as follows.

Definition 4.3.6 (Category of Elements). Given F : C — Set, we denote by fc F the

category given as follows:

(1) Ob(fc F) consists of pairs (z, f) where x € Ob(C') and f € Fu.
(11) The morphisms (x, f) — (y,g) are given by morphisms v € Mor(x,y) such that
(Fu)x =y.

It is an easy exercise to see that the set-valued functor F can be recovered as the
fiber of the projection fc F — C. Our task is to give a simiar interpretation C'at-valued
functors on C. Then we will proceed to generalize this construction to co-categories,
that is, we will describe how we can encode the category of functors C — Caty as a

subcategory of the oo-category of oco-categories over C, Claty e
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The Grothendieck Construction is an abstract reformulation of the kind of rela-
tionship that we see between categories like Vect(X) or QCoh(X) and the underlying
category Top or Var, Sch etc. as a "fibration" at the level of categories,which should
not be confused with model categorical notion of abstract fibration. This is precisely
the origin of the notion of fibered categories and stacks, of which QCoh(—) is a promi-
nent example. Note that here we are working with the definition of a stack that includes

sheaves of categories, not just groupoids.

As promised, let us start with the notion of a cartesian fibration of ordinary
categories, which is the content of the "Grothendieck construction". First, we define

the concept of a (co)cartesian morphism.

Definition 4.3.7. Let F': C' — D be a functor between ordinary categories C' and D
and f : X =Y a morphism in C. We say f is F-cartesian if for every W € C, the

diagram

Home (W, X) > Home(W,Y)
l (4.32)
Homp(F(W),F(X)) ——— Homp(F(W),F(Y))

15 a pullback square. Dually, we say fis an F-cocartesian if for every object W € C,

the diagram

Home (Y, W) > Home (X, W)
l (4.33)
Homp(F(Y), F(W)) —————— Homp(F(X), F(W))

15 a pullback square.

It is quite evident what these properties entail for the compatibility between a
morphism and a functor. An F-cartesian morphism is "functorially" adapted for the

functor F.

Definition 4.3.8. Let F' : C' — D be a functor between ordinary categories C,D. F

is said to be a Cartesian fibration if for every object Y € C and every morphism
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f:X — F(Y') in D, there exists an object X' of C such that F(X') = X and an F-
cartesian morphism f in C such that F(f') = f. Dually, we say that F is a cocartesian

fibration if it satisfies the same property with the arrows reversed.

(co)Cartesian fibrations over some fixed category C can be self-evidently orga-
nized into a (2-)category Cart(C) with morphisms between Cartesian fibrations given
by by functors sending Cartesian morphisms on one side to Cartesian morphisms on
the other side. The following formulation foreshadows what we will soon describe in

the context of oo-categories.

Theorem 4.3.1. There is an equivalence of categories,

Fun(C, Cat) = Cart(C). (4.34)

Note that we can dualize to obtain an equivalence between coCart(C') and

Fun(C,Cat).

Now we must reformulate these concepts in the context of oco-categories. What
happens if we attempt to transplant, verbatim, the definitions above into the world
of oco-categories? Already we run into a problem in the definition of an F-cartesian
morphism for a given co-functor F': C'— D between oco-categories C,D. Let f: 2 —y
be an edge in C. Above we used "composition with f on the left" to construct a map
Home(z,x) — Homeg(z,y). For oo-categories, such a map is only homotopically well-
defined. Since we don’t wish to revisit the difficulties of working with hom-spaces
of oo-categories, we will instead proceed with a more direct and precise approach as

follows.

Definition 4.3.9. Let F': X — Y be a map between simplicial sets X,Y and f : x — y
an edge in X. fis said to be F-cartesian if for every n > 2, there exists a lift as shown

i the diagram

A —2 5 X

AN —— Y
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where the edge A"V in the horn A" is mapped to the edge fin X under o.

Dually, an edge is coCartesian if there exists a lift as shown in the diagram
Ap —"— X
l = lF (4.36)
AY sy

where the edge A®! in the horn A% is mapped to the edge f under o.

Now we can proceed to define (co)Cartesian fibrations for oo-categories. Let
F : X — Y be an inner fibration between simplicial sets X,Y. Recall that this means

F satisfies right lifting property with respect to all horn inclusions:

AT AT (4.37)
with 0 <7 < n.
Definition 4.3.10. F'is said to be a Cartesian fibration if for every edge f :x — y in

Y and every b € X with F(b) =y there exists an F-cartesian edge g : a — b in X such
that F(g) = f.

Dually, F is said to be a cocartesian fibration if for every edge f :x — y in Y
and every a € X with F(a) = x, there exists an F-cocartesian edge g : a — b in X such

that F(g) = f.

As before, the data of all cartesian fibrations can be organized into an oo-category

which we denote by Cart(C').

We have the following theorem which is absolutely crucial for many essential
constructions underlying our work in this thesis.
Theorem 4.3.2. (Straightening) Let Y be a simplicial set. We have an equivalence of

oo-cateqories

Fun(Y? Caty) = Cart(Y). (4.38)
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4.4. Symmetric Monoidal co-categories

Foundations of higher algebra contain a certain tautological aspect which may
cause some confusion unless care is exercised, which stems from what has been colloqui-
ally called the "macrocosm/microcosm" principle. On one hand, higher algebra studies
algebraic objects and operations in the context of a higher category, which seems in-
tuitive enough. On the other hand, to be able to discuss such things appropriately,
we need to define an algebraic structure on the ambient higher category itself, which
in turn requires studying it as an algebraic object in yet another ambient higher cat-
egory. This aspect is already visible in categorical algebra, which is at once the study
of algebra-like objects in symmetric monoidal categories and symmetric monoidal cat-
egories as monoid objects themselves in the category of small categories. In particular,
this section aims to complete the analogy between linear algebra and oo-categorical
homotopical /homological algebra. Particularly, we will delve into the delicate ques-
tion of how to isolate the right class of "finite" (finite dimensional, perfect, compact,

idempotent complete etc.) objects.

In the spirit of higher algebra, we would like to see symmetric monoidal oo-
categories as commutative algebra objects in Cat,,, where the latter is equipped
with the Cartesian symmetric monoidal structure. That is, we would like to put
SymMon., = CAlg(Caty). Evidently, this is somewhat tautological and we need
to make precise what we mean exactly by a symmetric monoidal structure on an oo-
category. To do this rigorously, we would need to embark on a rather long and technical
detour through the theory of oco-operads, of which symmetric monoidal co-categories
are a special case. For reasons of economy and space, we will not pursue this path
and omit the proper definition of symmetric monoidal oc-categories, hoping that our

intuitive sketches will be sufficiently illuminating.

Essentially, this perspective revolves around the "bar construction" of a monoidal
category C as a monoid object in Clat, which results in a simplicial object AP — Clat
with the simplicial structure maps encoding the monoidal structure on C. Now let

(C,®) be a symmetric monoidal category and M a monoid object in ' with the
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"multiplication law" pu : M @ M — M and unit map n : * — M. For the purposes
of this section one may simply take C' = Vect, the category of vector spaces over
some field k, in which case M is an ordinary monoid. The bar construction builds a
simplicial monoid (or equivalently by Dold-Kan correspondence, a chain complex) out
of M using the multiplication law. Namely, we put Bar(M), := M" for the n-simplex
of this simplicial object with face maps given by u : M & g;)@M - M® \/M :

n n-1
More precisely, p; is the map that eliminates the i-th factor in the product M ® ....

by applying the multiplication map and the degeneracy maps s; add an i-th fa,ctnor
by applying the unit map at the i-th position. We denote by Bar(M) the resulting
simplicial monoid. On the face of it, Bar(M) appears to contain more information
than the bare monoid with its binary multiplication operation. For ordinary monoids,
the data of a bar construction is an interesting repackaging of the "space" of n-ary
operations which all unproblematicaly collapse to the binary one. However, in the
homotopic context, this collapsing itself will involve a great deal of coherence data.
Note that the monoid itself (as encoded by the binary multiplication operation u) can
be recovered from the 2-simplex Bar(M ),. An operad is a device that axiomatizes the
combinatorics of composition of n-ary operations and concatenations of compositions,
which naturally have a tree-like structure (in fact operads can be modeled as "tree-
shaped" diagrams in certain target categories). Hence operads allow us to describe
"algebraic structures" in different contexts. Since we do not wish to define oo-operads
here, we follow a more streamlined approach. Replacing the ordinal category with the
Segal category and adding little more data to what was described above, we can obtain
a similar characterization of a symmetric monoidal category as a functor I'? — Clat.
But by the results of the preceding section, such functors can be precisely characterized
as Cartesian fibrations C' — I'°P. In fact, the definition of Cartesian fibrations naturally
takes care of how the symmetric monoidal structure can be naturally codified in this

formulation. By construction, these concepts generalize immediately to co-categories!

In what follows, we do not distinguish between the Segal category of finite sets I’
and its nerve. As in the chapter on Cartesian fibrations, we denote by Cin] the "fiber"

of a (co)Cartesian fibration over [n] € I" and so on.
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Definition 4.4.1. (Definition 1.1.2 in [56]) A monoidal co-category is a coCartesian

fibration of simplicial sets p : C® — I' such that we have an equivalence of co-categories

C[%] — Cg?l Ko X C{gn—l.n} = (Cﬁ])n (439)

The fiber over [1], Cpy is referred to as the underlying oo-category of C® and
we denote it by C' unless we wish to emphasize the monoidal structure. The induced
functor Cjg) — C encodes the unit object we denote by 1. Unpacking the equivalence
condition for fibers over {1, 2} and {2, 3}, we obtain the monoidal product @ : C'xC —
C. Higher coherence conditions can be verified to reproduce analogues of Maclane’s

axioms for an ordinary monoidal category in the homotopic setting.

A functor between F' symmetric monoidal categories p : C® — ["and ¢ : D® — I

is said to be monoidal if (Definition 1.1.18 in [56]) the following conditions are satisfied.

(i) There is a commutative diagram

o® . D%

17

(ii) F takes p-coCartesian morphisms to g-coCartesian morphisms.

Monoidal oc-categories with monoidal functor can be assembled into an oo-
category we denote by Mons. As hinted at above, one can define the notion of an

algebra object in a monoidal co-category. The precise definition is the following.

Definition 4.4.2. (Definition 1.1.18 in [56]) An algebra object in a monoidal oo-

category is a lax monoidal section of p: C® — T.

As a very technical but straightforward sanity check, one can prove that monoidal
oo-categories are precisely monoid objects for the Cartesian monoidal structure on

Cats.
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One can further define symmetric monoidal oco-categories, which requires more
serious foundational work and a proper foray into theory of oo-operads. The construc-
tion may be found in section 2.0.0.7 of [57|. We denote the oc-category of symmetric
monoidal co-categories by SymMon,. In fact, we have SymMony = CAlg(Caty).
That is to say, symmetric monoidal oo-categories are commutative algebra objects
with respect to the Cartesian monoidal structure on Cat,,. The exact definition of

commutative algebra objects in monoidal oco-categories can be found in section 2.1.3

of [57].

The last topic we need to cover in the symmetric monoidal co-categories is the
calculus of dualizability, which will help us do a sort of categorified linear algebra with

symmetric monoidal oco-categories.

As one might guess, the origin of dualizability as a finiteness property goes back
to the well-known fact that one has an isomorphism of vector spaces V' = (V)P
and finite dimensional vector spaces admit a trace formalism which exploits the closed
symmetric monoidal structure on their category. Explicitly, this structure gives rise to
the trace map tr : End(V') — k as a certain composition of evaluation and coevaluation

maps, which we review below.

Let (C,®,1¢) be an ordinary symmetric monoidal category. We follow section
2.3.1 in [58]. We say an object is dualizable with dual V' if there exists maps evy :
Vo VP — 1c and coevy : VP ® V — 14 such that the diagram

vV idy ®coevy vV ® Vo ® V % V (440)

composes to idy and the diagram

coevy Qidy op idy op @evy
—>

Vor VPRV R Ve Vor (4.41)

composes to idyop.

A symmetric monoidal category in which every object is dualizable is often called
rigid. The category of finite dimensional vector spaces is a rigid symmetric monoidal

category.
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We may port this definition verbatim into the higher context. Namely, we say an
object X in a symmetric monoidal oo-category is dualizable as in Definition 2.1.13 [59]
if there is an object X such that we have an evaluation map evy : XP @ X — 1¢o
and a coevaluation map coevy : 1¢ = X ® X which form a diagram identical to the

one above subject to higher compatibility relations, which we omit.
4.5. Stable oco-categories

In this chapter, we introduce the final fundamental object of our study, stable
oo-categories. Our ultimate goal is to study the oo-category Catsl, the oo-category
of stable oco-categories (with exact functors) and Prl the oo-category of presentable
stable co-categories. Formal properties of this category can be probed via comparison
with the oo-category DG — Cat and various model structures on the latter can be
interpreted in terms of the former. Naturally, we start with the very definition of a
stable oo-category, which amounts to a creative reverse-engineering of the definitions

of an abelian category and triangulated category.

In what follows, we follow Lurie [52, 56, 57].

Definition 4.5.1. A zero object in an oo-category C' is an object that is both initial
and final: that is, an object 0 such that mapping co-groupoids (from now on, spaces)
Map(0, X) and Map(X,0) are both contractible for all X € C. The zero object is forced
to be "unique" in the appropriate homotopical sense: we have a contractible choice of

"zero objects”. If C' has a zero object, we say it is pointed.

We proceed to set up the concept that is a simultaneous generalization of "exact

sequences" and " exact triangles".

Definition 4.5.2. A triangle in a pointed co-category is a diagram D : A' x Al — C

X .y

l lg (4.42)

0—— 7

where f,g € Fun(A',C), with 0 a zero object of the pointed co-category. We say that



D is a (co)fiber sequence if it is a pullback (pushout) square. This is the notion that
simultaneously generalizes the notion of an exact sequence and exact triangle under the

right circumstances, as we shall see.

Following Lurie, we expand out the definition of the triangle. First note that
implicit in the definition is that we have a diagram witnessing the composition of the

morphisms f and g,

X

~

(4.43)

—
o

I
x

where h is a composite of f and g. We will explain the sense in which this composite

N

is unique.

That the composition is homotopically zero is witnessed by the diagram

X —0
x l (4.44)
VA

where the maps are the zero maps which always exist by the definition of the zero
object. We follow Lurie in adopting the suggestive triangulated categorical notation

and express a triangle as the diagram

Xty -5z (4.45)

for triangles in a pointed oo-category. Note that we have not as yet imposed any stricter
exactness properties on these objects. We proceed now to find appropriate notions of

(homotopy) "kernel" and "cokernel" in our context.

Consider a map f : X — Y. The fiber of f is presented by the fiber sequence
W — X

l lf (4.46)

0——Y.



96

Likewise the cofiber of a map f: X — Y is presented by the cofiber sequence

lf

Ty
l (4.47)
Z.

—

Appropriate versions of "uniqueness" for (co)fibers of maps may be established
for, see for instance Remark 1.1.1.7 in [57|. Namely, denote the subcategory of cofiber
sequences in an oo-category C' by Ex(C) C Fun(A' x A',C). Then the forgetful
functor 6 : Ez(C) — Fun(A', C') which maps a cofiber sequence as above to the mor-
phism f is a Kan fibration with contractible fibers. Hence a cokernel is oo-categorically

unique if it exists.

Finally, we reach the definition of our main object.

Definition 4.5.3. We say a pointed oo-category is stable if every morphism in C
admits a fiber and cofiber and they coincide. It is immediately obvious that this is a

direct transcription of the axioms of an abelian category.

Before we delve further into the lore of stable oco-categories, we go back to to
the foundations of oo-category theory to introduce a crucial technical lemma on the
uniqueness of Kan extensions due to Lurie which is used constantly in the formulations
of key concepts in stable oco-categories. Since it is a rather specialized topic which
admits an intuitive but technical generalization in the higher setting, we did not cover
Kan extensions in the previous section and we take the opportunity to review them
now. Assuming knowledge of the classical theory of Kan extensions, we forge ahead to

the oo-categorical one.

Definition 4.5.4. (Definition 4.5.2.1 in [52]) Let C be an oo-category and CV a full
subcategory as in Remark 1.2.11 in [52]. Given a diagram p : K — C with K a
simplicial set, we put C’?p = C)yxcC For X € C, the over-category C’?X is precisely
the full subcategory spanned by morphisms X — X, where X € C°.
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To define Kan extensions in the context of oo-categories, we need a relative notion

of a (co)limit:

Definition 4.5.5. (Definition 4.3.1.1 in [52]) Let f : C' — D be an inner fibration
between oo-categories. For a diagram p : K¥ — C, put p := p|K. P is said to be
an f-colimit if the induced map of overcategories Cyy — Cpy Xp, , Dyp is a trivial

fibration. When D = %, we recover the usual notion of a colimit.

Definition 4.5.6. (Definition 4.3.2.2 in [52]) Consider the diagram of co-categories

co ., p
[ 7) o
C —— .

We say F is a Kan extension of Fy if the induced diagram

% — D
| / l (4.49)
Py — %

/X

exhibits F(X) as a colimit of Fx for all X € C.

Lemma 4.5.1. ("Mysterious" Proposition 4.3.2.15 in [52]) Let C' and D be oo-
categories, C° be a full subcategory C and K C Fun(C, D) the functor subcategory
spanned by left Kan extensions of functors in Fun(C° D). Denote by K' the sub-
category of K consisting of functors F : C° — D such that the induced diagram

Cic xc C" = D admits a colimit. Then K — K' is a trivial fibration.

This statement should be considered as establishing the appropriate oo-
categorical analogue of uniqueness of Kan extensions. The appropriate version of
uniqueness is expressed here by the trivial fibration which implies that the fibers of the
map are contractible. Its content is best illustrated and demystified, by its crucial role

in the constructions that follow.

We first met the phenomenon of stability in our brief review of the category
of spectra and then again in more abstract forms in triangulated categories and dg-

categories. In these contexts, stability is defined by way of the loop space/suspension
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adjunction but the latter makes sense in any pointed category. Likewise, every pointed

oo-category admits loop space {2 and suspension X functors defined as follows.

Definition 4.5.7. Given an object X € C, the loop space object (2X is the fiber
fib(0 — X)), defined by the fiber sequence
X —— 0

l l (4.50)

0 — X
and the suspension object XX is the cofiber cofib(X — 0) defined by the cofiber se-

quence

0
l (4.51)

It is an equivalent characterization of stable oco-categories that these functors,

which always form an adjunct pair, are also mutually inverse.

To make the loop space and suspension constructions functorial, we need to de-
scribe the functor cofib : Fun(A',C) — C (or indeed the functor fib) which assigns
to a morphism its cofiber (fiber) as an object in C. This is done by a sort of reverse-
engineering, relying crucially on some deft arguments in combinatorics of simplices in
oo-categories and the machinery of Kan extensions in this context. As a result of this
construction, we will have solved the most prominent issue plaguing the foundations
of the theory of triangulated categories, the dreaded non-functoriality of the mapping
cone or homotopy cofiber construction that we addressed in the relevant section. The
reader is advised to read this section in tandem with the discussion at the end of that
section which formally describes the difficulty with functorial mapping cones in a non-
enriched context. The reader is advised at this stage to refer back to the discussion in
the section on DG-categories as well, where Toén’s proof of the functorality of the dg

cofiber is given.
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Let us construct the cofiber functor cofib : Fun(A', C') — C, following Remark
1.1.1.7 in [57]. From the outset we assume C' is stable, although it suffices for it to
be merely pointed for the purposes of this construction as we have done so far. The
construction involves a pushout, hence we will be interested in diagrams with shapes
AL AL = ALV Al and Al x Al These classify morphisms, pushouts and commutative

diagrams respectively.

Following Lurie, we need to apply the Kan extension lemma twice, since we
are trying to show that a morphism can be "completed" to a pushout square in C'
functorially. We now put ourselves in situation of Lemma 14.1 as in Remark 1.1.1.8
in [57]. Let C':= A2 = A' vV Al and C° := A'. Fix some oo-category D which admits
colimits. We begin by applying the lemma to the diagram categories Fun(C°, D) and
Fun(C,D). Let K and K be as in the statement of the lemma. Then K — K is
a trivial fibration. We have the following general fact about Kan extensions in the
pointed context. Right Kan extensions along inclusions that are sieves, that is, fully
faithful inclusions ¢ such that whenever there is a morphism X — i(Y"), X itself lies in
the image i, are extensions by zero explained by [31|. Thus without loss of generality,

we may deal with inclusions of the form as shown in the diagram

I — I—> * (4.52)
* 0

where the the first diagram is inserted into the horizontal segment of the second.

Then, once again, the lemma says that this inclusion is a trivial fibration. Now

we go one dimension higher, and consider shapes

— %

I (4.53)

. . . .
which, as we’ve seen so many times already, classify pushouts. The category K in

this instance are precisely the horn-shaped diagrams in C' which can be completed to
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pushout squares
* —— %
l l (4.54)
* ——> .
The latter, of course, gives us our category K and we have once again by the lemma that
K — K’ is a trivial fibration. We may restrict this trivial fibration to those pushout

squares whose lower left element is 0 as before, that is, an element of Fun(A2 0, C).

Composing everything, we obtain a trivial fibration

x —— % *
| =] (155
0 —— % *

where of course the representation is supposed to indicate a fibration of the functor

categories, not the shapes themselves.

By Corollary 1.4.5.5 of [18], every trivial fibration admits a section. Denote the
section of the trivial fibration above by s. Now denote by p : Fun(A? x0,C) — C the
functor which assigns to a pushout square the object in its lower right corner. The
cofiber functor cofib is then defined to be the composition p o s : Fun(A!,C) — C.
Lurie remarks in Remark 1.1.1.8 of [57] that cofib is in fact the left adjoint to the left
Kan extension functor C' — Fun(A!,C') which assigns X to the morphism 0 — X,
from which fact it follows that it preserves colimits by the adjoint functor theorem.
The reader should be immediately reminded that this is exactly analogous to Toén’s
functorial dg-cofiber construction we have covered in previous sections. Toén shows
in Proposition 9 in [39] that there is a map [Mor(T)] — Mor([T]) in the notation
of Chapter 3 for 1" a triangulated dg-category which is, however, not fully faithful in
general. Lurie establishes the identical result for the co-categorical cofiber construction.
Namely, there is a functor Ho(Fun(A', C')) — Fun(Ho(A'), Ho(C'))) which is not fully
faithful. The passage to the homotopy class precisely destroys the higher coherence data
which deals with the issue of weak functoriality, the weak dependence of the tringulated
mapping cone construction on the composite of morphisms, precisely by keeping the

ambiguity as part of the fundamental datum of a homotopy cofiber.
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The following proposition brings together almost everything we have studied so
far. It will establish the role of stable oo-categories as higher-categorical models of

abelian/triangulated categories.

Proposition 4.5.1. The homotopy category Ho(C') of a stable co-category C' is trian-
gulated.

Proof There is a variety of ways one can prove this statement. For instance, one
can exploit the connection between stable model categories and stable oco-categories
and proceed as Hovey does to describe explicitly the triangulated structure on the
homotopy category of a stable model category. We have not discussed stable model
categories and will not be following this path, which would be rather circuituous any-
how. Another alternative is to employ the formalism of stable derivators and show that
stable derivators give rise to stable co-categories and use the fact that the homotopy
category constructed from a stable derivator is triangulated. Evidently, all these are
rather indirect. Hence we will reproduce Lurie’s proof which constructs a triangulated

structure on the homotopy category directly. This will consist of several main steps.

(i) Showing Ho(C') is additive.
(ii) Showing the shift functors and triangles really correspond to their namesakes at
the homotopy level.

(iii) Verifying the triangulated category axioms

Let us show that Ho(C') is additive, that is the Hom-spaces of Ho(C') are abelian
groups and Ho(C) admits small sums. Let us consider the loop space and suspension
adjunction discussed previously, which holds for C' only pointed and not necessarily

stable. We have an equivalence of co-groupoids for all X and Y in C

Hom(X(X),Y)= QHom(X,Y). (4.56)

~J

Passing to connected components, we have a set bijection IToHom(X(X),Y) =
IIy2Hom(X,Y). By definition of the loop space object, this is in fact a bijection
g Home(X(X),Y) = II1Hom(X,Y), where the latter makes sense because we can
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"point" the hom oo-groupoid by the zero map. Thus, as in our discussion of spec-
tra, X(X) is a homotopy co-group object and in fact ¥'X(X) is an homotopy abelian
co-group object. Since every object in a stable oo-category is infinitely deloopable,
in particular for every object X, there exists some Z such that X = 207. But
then Hom(X,Y) = Hom(XXZ,Y), which means Hom(X,Y) carries a homotopy
abelian group structure. That is, Ho(A) is Ab-enriched. Thus if we show that Ho(C')
(or better C') admits finite coproducts, we will have additivity. We will refer to an
oo-category as additive if its homotopy category is enriched over abelian groups and
it admits finite coproducts. Recall that since XX = cofib(X — 0), we have iso-
morphism X 2 cofib(X"'X — 0). For any Y, we also have tautologically that
Y = cofib(0 — Y'). Now the canonical maps X — 0 and 0 — Y admit a coproduct as
elements of the functor category and it is nothing but the zero map X[—1] —— Y .
Combining this with the fact that the "cofib" functor described above is additive (i.e.,
preserves coproducts), we conclude that any X and Y admit a coproduct in €', which

is to say, C' is an additive oco-category.

Next, for the second part, we construct the diagrams in C' of which the exact

triangles of the triangulated homotopy category will be shadows. A diagram in Ho(C)

Xty y 2y z7 ", px (4.57)

~

is said to be an exact triangle if there exists a diagram in C

X sy ' ()

l l,, ~ l (4.58)

0 s 7 W

where both squares are pushout/pullback diagrams, and hence the larger rectangle

also determines a pushout/pullback diagram exhibiting W as the suspension X X. The
maps f.g are lifts of f, g and h is the composition in the homotopy category of h and
the equivalence XX = W. We need to verify that these objects faithfully reproduce
the properties framed by the triangulated category axioms. We follow the notation of

the first chapter and go through the axioms in that order.
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Let’s begin by verifying Tri.I. Denote by E C Fun(A! x A?, C) the subcategory
consisting of the expanded exact triangles

X > Y > 0
I 420
0 > Z > W.

Following Lurie, we fall back on the trick that we first introduced above in the
construction of the cofiber functor which requires the repeated invocation of the mys-
terious Lemma 4.3.2.15 in [52]. Consider the restriction map e : F — Fun(A', ()
which picks out the map f. Then by the lemma and our discussion of it, e is a triv-
ial fibration, and the whole diagram in £ giving our expanded exact triangle can be
determined uniquely by specifying such a morphism. Hence every morphism can be
extended to an exact triangle, which takes care of Tri.I (i). It is clear that any two
isomorphic exact triangles give rise to the same exact triangle, which takes care of Tri.I

(ii). Now we construct the diagram

X X, x s 0
NN o
0 > 0 > VX

which is easily seen to be a an exact triangle, which takes care of Tri.I (iii).

Now we verify the rotation axiom, Tri. II. Keeping the notation above, given an

exact triangle 7' € E, consider the amalgamated diagram

x 1y ' 0

L]

0 s 7 W (4.61)
|

0 ——V

and consider the horizontal and vertical rectangles as suspension squares with a map

between them induced by the maps in the middle as shown in the diagram

X —0 Y —— 0
| =] ] 4o
0O —— W 0—— V.

But a map between the suspension squares is a map between the suspensions W = Y X
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and V = Y'Y as in the diagram
W —/—= XX
l of (4.63)
~

Vv —= Y.

Now consider the further extended diagram

X > Y > 0
f
% >£ >$’ X (4.64)
[ A
0 >V > VY.

By Lemma 1.1.2.13 in [57], the rectangle in the middle above defines an exact triangle

Y s 7 s Y X s VY. (4.65)

It may be shown with an argument along similar lines that the converse of Tri.IT also

holds.

We now proceed to Tri.IIl. Recall that e : E — Fun(A',C) is a trivial fibration.

Consider the exact triangle

X s Y s 7 ID¢ (4.66)

and the exact triangle

’

x Ly y 7

/

» XX (4.67)

in the homotopy category induced by elements of E we denote by e; and e;. Putting

ourselves in the situation of Tri.III, we have mapst: X — X and s: Y — Y’

X 5y . 7 s X
lt l gtl (4.68)
X Ly s 7 y VX

Now consider the commutative diagram given by the first square. We can lift this
diagram to an object of Fun(A' x A, C). Commutative diagrams can be regarded
as morphisms in Fun(A!, C), and this diagram defines a morphism d : e(e;) — e(es).
Using once again that e is a trivial fibration, we conclude that d can be lifted to a

morphism of d : e; — e5. But a morphism of elements of E is nothing but a morphism



of exact triangles in the homotopy category

X 5y y 7 s XX
lt l lq Etl (4.69)
X Ly y 7' y VX'

But this is precisely the content of Tri.III, hence we are done.

The demonstration of Tri.IV is an amalgam of diagram chasing techniques and
repeated application of the Kan extension lemma in the same vein as the previous
demonstrations. Considering the sheer size of diagrams involved in the octahedral
axiom, the reader will hopefully forgive us for omitting the exposition of this routine
procedure. Thus we have established that the homotopy category of a stable oo-
category is triangulated and therefore stable oo-categories are a direct categorification

of abelian/triangulated categories.

Lurie proves the following proposition which establishes an equivalent and ex-

tremely useful criterion of stability for an oo-category C.

Proposition 4.5.2. (Proposition 1.1.3.4 in [57]) A pointed oco-category is stable iff the

following are satisfied.

(1) C admits all limits and colimits.

(it) A square A' x At — C,

|

(4.70)

N — >

l
S

s a pushout iff it is a pullback.

To define Catsl, we need the notion of an exact functor.

Definition 4.5.8. A functor F' : C' — D between stable oco-categories is said to be
exact if it preserves triangles and carries fiber sequences to fiber sequences. By the

very definitions of these objects, it can be shown that it suffices for F to be left or right
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exact in the ordinary sense (commuting with finite (co)limits) to satisfy this notion of

exactness.

We put Cats C Caty for the sub- oo-category of stable oo-categories with
exact functors. The co-category of presentable stable co-categories is denoted by Prk.
Presentability in the stable context admits a simpler description, as given by Corollary

1.4.4.2 in [57].

Proposition 4.5.3. A stable co-category is presentable iff it admits small coproducts,

is compactly generated ' and its homotopy category Ho(C') has small Hom-sets.

Further, the following proposition characterizes stable and presentable oo-

categories as left-exact localizations.

Proposition 4.5.4. An oco-category is stable and presentable if and only if there exists

a presentable and stable co-category D with an accessible left-exact localization functor

L:D—C.

Lurie proves many closure properties for stable oo-categories, see Section 1.1.3

of [57]. We may list some of them as follows.

(i) If C C C’ is a full subcategory of a stable co-category C which is closed under
cokernels and suspensions, it is also stable.
(ii) When C' is stable, so is Ind(C).
(iii) Given a collection {C,} of stable co-categories, [ [ C, is stable.
(iv) More generally, Catl adnits small limits and filtered colimits and the inclusion

Catst C Cate is limit/filtered colimit preserving.

4.5.1. Stabilization of an oo-category

There is a canonical way to construct a stable oo-category out of a pointed oo-

category due to Lurie which is a far reaching generalization of the stabilization proce-

17See the section on mapping spaces in stable co-categories.
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dure in stable homotopy theory which gives rise to the category of spectra. As before,

we follow Section 1.4 in [57] in what follows.

The stabilization of a pointed co-category C'is the oo-category of spectrum objects

in C, meaning the homotopy limit in Cat,,, of the diagram

L,0 250 > O, (4.71)

While we will not discuss Goodwillie calculus at all in this text | it is still appro-
priate to give an account of the theory of excisive functors, which are, crudely put,
approximate linearizations of an oo-category which converge to the full stabilization

given formally by the homotopy limit above.

Definition 4.5.9. Let C, D be a oo-categories and let C' admit pushouts and a final
object 1 and D admit pullbacks and o final object 1. An excisive functor F': C — D
18 a functor that sends pushout squares in C to pullback squares in D. A reduced
functor F': C'— D 1is a functor that preserves the final object 1p of D. The category
of excisive functors is denoted by Exc(C, D) and that of reduced functors Fun,(C, D).

Now, we use excisive functors to re-characterize spectrum objects more concretely:

Definition 4.5.10. A spectrum object of a finitely complete oco-category C' is an ex-
cisive functor from the category of finite pointed spaces Spcl™ to C. The category of
spectrum objects in C' is the functor category: Sp(C) := Exc(Spcl™, C).

We have the following proposition concerning Sp(C'), for which see 1.4.2.16 and
1.4.2.17 of [57].

Proposition 4.5.5. If C is finitely complete, Sp(C) is stable. Further Sp(C) is the

universal stabilization of a finitely complete co-category.

Theorem 4.5.1. (Lemma 1.4.2.19 in [57]) Let C be a finitely cocomplete oo-category,
and D be a finitely complete co-category. Let 2 : Sp(D) — D be the functor of

evaluating on the point x € Spcl™: informally, this functor is the "forgetful functor”
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which sends the sequence ... — C' — ... — C to its first entry. Then 2% induces the

the equivalence

Exc,(C,Sp(D)) = Exc,(C, D). (4.72)

Thus the category of spectrum objects in an oo-category is the universal target
of excisive functors into it, hence its "free stabilization". The canonical example- as

expected- is the oo-category of spectra Sp = Sp(Top).

4.5.2. Mapping Spaces in Cat? and Compact Objects

A very important issue regarding stable co-categories is that they are canonically
enriched over spectra. We will try to make this as precise as possible without delving
into the concept of enriched oo-categories. Intuitively, this statement implies that the
Hom-spaces of a stable oo-category can be regarded as an element of the symmetric
monoidal co-category of Sp (which we have mentioned above in the context of stabiliza-
tion but not yet described) in a canonical way and there is a certain compatibility with
this monoidal structure. Our first task is to discuss Sp in greater detail, in particular

as an algebra object in Prk.

There are several equivalent characterizations of Sp. We have already seen the
oo-categorical version of the classical one: Sp is the category of spectrum objects in the
category of topological spaces Top. That is, Sp is the free stabilization of Spc in the
sense. Another attractive characterization is that Sp is the stable oo-category freely
generated under colimits by the sphere spectrum S which is essentially a consequence
of the fact Spc is freely generated under colimits by the point * Further, Sp is in fact
the unit object of the monoidal product on C'at,, which we will introduce later. First

we need a description of the mapping spaces in stable oco-categories.

The enrichment of a stable oo-category over spectra is easy to describe explic-

itly. Fix a stable oo-category C' and consider the Yoneda embedding C' C P(C) =
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Fun(C°,S). Applying the stabilization construction to the oc-category of pointed
objects in P(C), we find by evaluating the limit objectwise that Sp(P(C).) =
Fun(C, Sp(S,)) = Fun(C°,Sp). Thus we obtain a functor Sp(C,) = C —
Fun(C°, Sp) which, following Definition 2.15 in [60], we dub the spectral Yoneda
embedding (note that this is not actually an embedding, since the functor is not fully
faithful). This embedding gives rise to the spectral Hom functor (the adjoint to the
Yoneda embedding) which can be described objectwise quite explicitly as the mapping

space

Mape,o(X,Y); = Home(X, 2'Y). (4.73)

We may now discuss the question of compact generation of stable oco-categories
which is a direct generalization of the theory in the triangulated setting. In fact, our
definitions will be wverbatim transcriptions of those in the latter. We have already

covered the following in our section on oo-categories:

Definition 4.5.11. An object X in a (stable) oo-category C' is said to be (w— )compact
if Hom(X, —) commutes with (w-)filtered colimits.

As before, we denote by C* the subcategory of compact objects in C'. Recall that
the ind-completion Ind(C') of an co-category C' is just the "free filtered co-completion"
of C' and we say C is compactly generated if the natural functor Ind(C*) — C' is an
equivalence of co-categories. Denoting by Cat?’"/ the oco-category of idempotent stable

oo-categories, we have the following lemma.

Lemma 4.5.2. (Lemma 2.20 in [60]) The inclusion CatPsl C Catsl exhibits the oo-
category of idempotent complete stable co-categories as the reflexive localization (see
previous section) of stable oo-categories. The left-adjoint localization functor L is noth-

g but the idempotent completion functor Idem covered in previous sections. Indeed,

explicitly Idem(C') = Ind(C)~.
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We may now specify the monoidal structure on Prk, Catte/ and Catst. The
monoidal structure on the first descends from Pr”. On the first, it may be defined (as

in Section 3.1 of |60]) as the tensor product

C ® D := (Ind(C) ® Ind(D))®. (4.74)
As for general stable co-categories C' and D, we can put

C ® D := Idem(C) ® Idem(D). (4.75)

where the monoidal structure on the right-hand side is the one we have defined on
CatPe/. 'We then have the following proposition establishing the closed symmetric

monoidal structure on C’atf}é.

Proposition 4.5.6. (Proposition 3.1 in [60]) Cat?"/ is a closed symmetric monoidal
oco-category with the monoidal structure identified above, with internal mapping object
given by the category Funk(—, =) of colimit and compact-object preserving functors

and the unit object the co-category of compact spectra Sp®“.

In analogy with Toén’s results on mapping spaces in dg-categories, this latter
internal mapping category can be described alternatively in terms of "module" cate-
gories. Namely, let C' and D be idempotent complete stable oo-categories. Then we

have an equivalence
Fun®(C, D) = ((C” ® D) — Mod) grep- (4.76)

where the subscript "qrep" indicates right quasirepresentable , to reinforce the analogy
with Toén’s results, bimodules, which are called right compact in Corrollary 3.3 in [60].
We do not spell out this condition explicitly except to say it is quite similar to the

former in the context of dg-categories.

4.6. DG-Cat as an oo-category and Noncommutative Spaces

We now complete our construction of DG —Clat as an oo-category. More precisely,
we will construct DG — Cat'®™ as the dg-analogue of the oco-category of idempotent
complete stable oco-categories. We follow [2]| to bring everything we have covered so far

together.
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Recall that dg-categories T, T" are said to be Morita equivalent if they are weakly
equivalent in the Morita model structure on DG-Cat, i.e., if we have a weak equivalence
T~T. Localizing with respect to these equivalences produces the oco-category DG —
Cat®™. More precisely, the following oo-categories are equivalent, as discussed in

Theorem 6.1.2 of [2].

(i) Catenery localized with respect to Morita equivalences of dg-categories
(ii) DG — Catidem
(iii) The subcategory of DG — Cat!®, the category of locally cofibrant dg-categories,
spanned by module categories of the form T over small dg-categories T' with

colimit and compact-object preserving functors between them.

Recall also that a dg-category T is said to be idempotent complete if the functor
T — (1), is a weak equivalence of dg-categories, where (T, is the subcategory of
compact objects. This condition implies that T is in fact uniquely determined by its
associated "Morita theory". Denoting the subcategory of idempotent dg-categories
DG — Cat'™_ we have the inclusion DG — Cat™ c Dg — Cat. The functor above,

~

T — (T')., can be considered as the "idempotent completion" functor.

~

Proposition 4.6.1. (Proposition 6.1.17 in [2]) The functor T +— (T'). is the left adjoint
to the inclusion DG — Cat'™ C Dg — Cat.

Let us say some words on the third item in the list above, since it is a useful model
for the "Morita category" of dg-categories. Let’s denote by DG — Clat® the category
of dg-categories of the form 7' with morphisms which are continuous (i.e., commute
with infinite sums) at the level of the homotopy category. Denote by DG — Cat®
the subcategory of DG — Cat® with the same objects but compact-object preserving

functors. One can fine-tune the results in [4] to obtain an equivalence DG — Catie™ =~

DG — Catee.

Finally, we construct the oo-category of noncommutative spaces. Recall from the

section on dg-categories that we say a dg-category is of finite type if it is equivalent to
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the dg-category of perfect dg-modules over a compact dg-algebra. We put DG — Cat/*
for the category of dg-categories of finite type. By definition, T' € DG —Cat/* is of the
form Perf(A) with A compact, hence T is compactly generated. By the results in [4],
DG — Cat®™ is the ind-completion of the DG — Cat/*, and the latter is nothing but
the subcategory of compact objects in the former. We put Ne(R) := DG — Cat!+”.
This latter oo-category will be the main target of additive invariants and the central

object around which the theory of noncommutative motives will be built.

4.7. Equivalence of DG-Categories and Stable oo-categories

One of the most central results invoked both explicitly and implicitly throughout
this text concerns the equivalence of dg-categories and stable oo-categories. There are
different accounts of this equivalence in existence, and the most rigorous and complete
ones are those that have been given by Cohn [61] and Faonte [62]. Whereas the former
depends on the theory of spectral categories and enriched Dold-Kan correspondence,
the latter requires a foray into the theory of A..-categories which would take us too far
afield. Therefore we will instead sketch Cohn’s proof of the following theorem (keeping

his notation almost verbatim), which makes precise the aforementioned equivalence.

Theorem 4.7.1. (Corollary 5.7 in [61]) There is an equivalence of oo-categories

DG — C’atﬁlem = MOdHR_Mod((Pri/t(@)). (477)

As before, DG — Catide™ is the oo-category obtained by way of the Morita model
structure on DG — Catp and HR — Mod is the oo-category of H R-modules, where we
regard H R as an object of Prl.. The notion of R-linearity is encoded by the structure
of a module over HR — Mod on the right hand side, where as usual an H R-module
is just a spectrum X with an action X A HR — X with the right compatibilities
and unit relations, and HR — Mod is the symmetric monoidal oo-category of such
module spectra. To prove this equivalence, Cohn goes through several intermediate
equivalences, which we will state in the following sections. The rest of the section is

devoted to unwinding this theorem by introducing the objects at work.
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4.7.1. Spectral Categories

Recall that a spectral category is a category enriched over spectra. To make the

analogy with dg-categories explicit, we unwind this, following [63] and [60].

Definition 4.7.1. A spectral category A consists of the following:

(1) Given any X,Y € A, a spectrum A(X,Y)
(ii) Given any X,Y,Z € A, a composition morphism A(Y,Z) N A(X,Y) — A(X, Z)
in the category of spectra

(111) Given any X € A, a unit map S — A(X, X) of spectra.

We denote the (ordinary) category of spectral categories by Cats. Given a spec-
tral category S, an S-module is as usual a functor S — Sp and these form a spectral
category S-Mod. In exact parallel with the model structures on dg-categories we have
already discussed, there are closely related but distinct model structures on C'atg which
capture distinct aspects of the homotopy theory of spectral categories . We will not
delve into the details, see [63] for a discussion. We adopt the latter’s terminology and
refer to the relevant model structures at work as Dwyer-Kan and Morita model struc-
tures. We record as a crucial fact that the associated oo-categories are presentable

(since these model categories are combinatorial, see the section on model categories).

We regard the topic discussed in this section as a form of stable or enriched
Dold-Kan correspondence. Indeed, the following precise formulation of the latter by

Tabuada in |63] figures prominently in Cohn’s proof.

Theorem 4.7.2. We have a Quillen equivalence (with respect to the Morita model

structure)

DG — C’atR = C’atHR_Mod. (478)
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As before, we need to impose some finiteness conditions on our objects to extract
our desired result. Later in this section, we will offer some comments on how one might

about generalizing these ideas to a "higher" context.

Definition 4.7.2. A spectral R-module is said to be perfect if it belongs to the small-
est stable subcategory generated by R under finite homotopy colimits and retracts of

homotopy colimits.

Definition 4.7.3. A spectral R-module T is said to be cell if it can be presented as
the union of a sequence of R-modules T; with T; = hocofib(/\ R[n] — T;) where n is
arbitrary. We denote by R— Cell and Per f(R)*! the categories of cell R-modules and
perfect cell R-modules respectively. In fact,by Proposition 3.14 in [61] the latter category
can be characterized as those module spectra generated by R under finite colimits and

tensors with finite spectra.

Following Cohn verbatim, we have the following theorem which gives an economic
way to package some finiteness data in terms already familiar to us from the discussion

in the dg-context.

Theorem 4.7.3. Denote by Modp,, jgpyeu(Cats) the category of module categories
over Per f(R)* which consists of spectral categories S with an action by Per f(R)*4:
S A Perf(R)*" — S. The reader should take care not to confuse the monoidal product
on spectra and on Cats which we do not notationally distinguish. Define the sub-
category of C’atj;éiMod which consists of R-module spectra closed under finite colim-
its and tensors with finite spectra. Define the subcategory M odperf(R)ceu(C’atf;'C') C
Modpe, j(ryeu(Cats) which consists of module categories over Per f(R)“! closed under

colimits and tensors with finite spectra. Then we have an equivalence

CCLtéi]\[Od = MOdperf(R)cell(CCLtgc'). (479)

We will not distinguish between the model categories with the induced model
structures discussed above and their associated co-categories in what follows. All these

associated oc-categories are presentable and therefore afford an adequate setting for



the study of adjoint functors (such as those that appear in the Barr-Beck-Lurie theo-
rem). However, we need to discuss a subtle issue that arises from the incompatibility
between the symmetric monoidal structure and the model structure which mirrors the
identical difficulty in the dg-context: for instance, cofibrant objects need not be ho-
motopically flat (see section on the homotopy theory of DG-Cat). The monoidal and
model structures cannot be reconciled without addressing this incompatibility. The
solution is completely identical to that of Toén in [4] which we have already discussed
at length. We call a spectral category S locally cofibrant if S(X,Y") is cofibrant for all
X,Y € S. We denote by Cat the subcategory of locally cofibrant spectral categories.

Then we have:

Proposition 4.7.1. A locally cofibrant spectral category S is homotopically flat, i.e.,
SN preserves cofibrant objects. We therefore put C’atf;lat = Catl®.

Now we have finally isolated the correct subcategory of spectral categories which
allows us to formulate the following crucial intermediate result. The reader may consult

[61,64].

Theorem 4.7.4. There is an equivalence of symmetric monoidal oo-categories,
Catl"® = Cawer! . (4.80)
More generally, we have an equivalence of oo-categories,

CatR_MOd = ]\/J’odpe,,f(R)(C'atggrf). (481)

Now putting R = HR and using the enriched Dold-Kan equivalence alluded to

above, we obtain the equivalence

C’atHR_MOd = DG — CCLtR = ]\lodperf(HR)(Catgg’"f). (482)

To obtain te final form of the equivalence we had stated in the introduction, we
use the Ind-functor as discussed in the section on idempotent complete co-categories

where CatPe™/ was introduced. The functor Ind : Cat?e/ induces an equivalence

MOdperf(HR)(C(Itggrf) = MOdHRfMod(PTéyc)- (483)
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This equivalence allows us to state Cohn’s final result which combines everything dis-

cussed in this section, which is the isomorphism
DG — CCLtR = MOdHR—Mod(PrsLt,C) (484)

Therefore dg-categories over some fixed ring R are models of R-linear presentable stable
oo-categories with functors preserving compact objects. This result is the foundation

of everything that follows.
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5. FROM ADDITIVE INVARIANTS TO
NONCOMMUTATIVE MOTIVES

This section is arguably the core of this thesis. It implicitly builds on the founda-
tional work treated so far, however, the full relationship will remain somewhat obscure
until the next chapter since this relationship is provided precisely by the theory of

noncommutative motives.

For reasons of economy, we work only co-categorically and confine our exposition
to "cohomology theories" or additive invariants of stable oo-categories or dg-categories.
For instance, we will not give an account of Hochschild homology of algebras or alge-
braic K-theory of rings or even ring spectra, but only discuss constructions of these

theories for stable oco-categories or dg-categories '®

We start by reviewing the formalism of universal additive and localizing invariants
of stable co-categories as formulated by Blumberg, Gepner and Tabuada, since we have
not done so in the main body of the text although we have introduced all the main
ingredients at work. We work within Cat!™  the oco-category of stable idempotent
oo-categories. First, we need to make precise the notion of an exact sequence of dg-

categories or stable co-categories.

5.1. Exact Sequences in DG — Cat and Cat®

To sum up, all the structures introduced up to this point as enriched or higher-
categorical generalizations of abelian and homotopified abelian structures (such as pre-
triangulated dg-categories and stable oo-categories) serve a very clear purpose: they
encode "exactness properties" on underlying categories. That is, they give us a way

to speak of and work with exact sequences of objects at increasing levels of abstract-

8This "or" should be understood both as expressing an ambiguity and distinction: while the
theories defined here ultimately agree for stable oo-categories and dg-categories, as can be shown by
a few pages worth of routine diagram chasing, it still makes sense to discuss them separately.
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ness. We have touched on how these enriched and higher-categorical models themselves
assemble into categories with very good properties which allow the nearly care-free ap-
plication of "universal" constructions (limits, colimits. functor categories....). Such
universal constructions are absolutely crucial for the development of the theory of non-
commutative motives, hence our adoption of the language of higher categories. How-
ever, these categories do not straightforwardly inherit the exactness properties of their
objects. For instance, oc-category Cat is not itself a stable co-category (example!).
Hence some care is called for when we speak of exact sequences of "dg-categories" and
stable oo-categories, which is a notion that we must nonetheless invoke in our account
since they are crucial for any reasonable theory of noncommutative motives. While we
do not provide an account of these, let us also hint at more recent developments around
this subject which allow one to conceive of oo-category Cats! as the fundamental ex-
ample of a stable (oo, 2)-category, a notion that axiomatizes the exactness properties
of oo-categories like Catsl of which we will catch glimpses below. On this basis, it is

also possible to offer a speculative definition of a dg-2-category.

There are many equivalent, or at most subtly different, definitions of an exact
sequence of dg-categories and stable oo-categories in the literature. For the moment,

we adopt those offered by Robalo in Sections 6.4.1 and 2.1.24 in [2].

Let us start with exact sequences of dg-categories. We work within DG — Cat'@e™

as usual. A sequence of idempotent dg-categories
A—B—=C (5.1)

is said to be an ezact sequence if the map A — B is fully faithful and we have a diagram

A—— B

l l (5.2)

* —— C

which is a pushout square.

By the discussion in Section 6.4.1 |2|, we can calculate the pushout C' within
DG — Cat as the idempotent completion of the Verdier-Drinfeld quotient: E/\AC. In

addition, every exact sequence in DG — Cat'®™ can be regarded as an exact sequence
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in DG — Cat® by the equivalence we discussed in the last chapter, that is the pushout

diagram

Ny ——

*(—:B>

|

represents the same exact sequence in DG — Cat®. Thus compact-object preserving

functors become an intrinsic part of the definition of an exact sequence of dg-categories.

An exact sequence of dg-categories,
A—> B

l lp (5.4)

x —— C

is said to split if the maps ¢ and p admit homotopy sections j : B — Aandr: C — B,
that is, we have joi = id4 and por = idq. If this pushout square were also a pullback
(say if DG — Cat®™ were itself a stable co-category), then this splitting would exhibit
B as a direct sum A @& C', recovering the familiar notion of a split exact sequence in
abelian categories that we saw in the first section. Split exact sequences are of central
importance for us. By definition, an additive invariant is a functor that preserves split
exact sequences. Indeed there are additive invariants which do not preserve general

exact sequences, see [60] for a brief discussion.

In keeping with our policy of addressing identical constructions separately for
dg-categories and stable oo-categories (despite their by now abundantly advertised
equivalence), let us now introduce exact sequences or localization sequences of stable

oo-categories which mirror the construction on the dg-side.

We will work in the oo-category of presentable stable oo-categories Pri. We
have already covered the Verdier quotient of triangulated categories in the preliminary

chapter, the notion for co-categories is an immediate generalization.
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Keller devised a construction in [34], which was later refined by Drinfeld in [65], of
the Verdier quotient in the dg-context, whose details we will not delve into. Suffice to
say that given a triangulated dg-category A and a triangulated dg-subcategory B A/ B
is the dg-category such that H°(A/B) = H°(A)/H°(B) where the latter is the Verdier
quotient of dg-categories. The dg-quotient construction provides a way to construct a
dg-enrichment of derived categories since, for instance, we may define the dg-derived
category of an abelian category as the dg-quotient of Chg,(A) by the dg-subcategory

of acylic complexes.

We follow Section 5.4 of [60] in generalizing the notion of a Verdier quotient to
stable oo-categories. The flexibility of the oo-categorical formalism allows a slicker

definition than had been possible in the triangulated and dg-context.

Definition 5.1.1. Given a fully faithful, colimit preserving functor F' : C' — D between
presentable stable co-categories, the Verdier quotient is the cofiber cofib(F') as an object

of Prk.

Note that this cofiber in PrL should not be confused with the cofiber within a
stable co-category which we spent so much time discussing. However, the notion of a
cofiber makes sense in any pointed oo-category, which is precisely what we are using

here.

Finally, we say a sequence of presentable stable oo-categories
A—=B—C (5.5)

is an exact sequence if the displayed morphisms compose to zero, the morphism A — B
is fully faithful and we have an equivalence between the Verdier quotient of stable oo-
categories B/A and C. To express this condition in a more familiar form, we say a

diagram

A—B—C (5.6)

is an exact sequence of stable co-categories if we have the following.
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- The morphisms compose to zero.

- The map X — Y is fully faithful and we have a diagram

|

(5.7)

Q—W

* —

|

which is a pushout diagram.

This is of course precisely the diagram expressing C' as the cofiber of the map
f A — B, which we merely repackaged above as a "Verdier quotient" of stable co-
categories. Thus an exact sequence in Prft or any other pointed co-category, is just a

cofiber sequence.

It will become necessary to speak of exact sequences of small '° stable oo-
categories, and as might be expected, this is done by passing to their ind-completions.
A sequence A — B — (' of small stable oo-categories which admit x-colimits with
r-small colimit preserving functors is said to be exact if, as in Definition 5.12 of [60],

there is an exact sequence

Ind.(A) — Ind,(B) — Ind,(C). (5.8)

A split exact sequence of stable oco-categories is slightly subtler to define. We
again place ourselves in the oo-category of small stable co-categories which admit k-

colimits with k-small colimit preserving functors. An exact sequence

AL BT C (5.9)

is said to split if p and r admit adjoints ¢ and s such that pog = sor = Id.

Now we are finally able to define the notions of additive and localizing invariants.

We follow sections 6 and 6 of [60].

Definition 5.1.2. A functor F : Catst — D , where D € Prist. is said to be a

(D-valued) additive invariant of stable oo-categories if it inverts Morita equivalences

9Presentable oo-categories are never small.
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(that is to say, descends to a functor on Cat'®™ ) preserves filtered co-limits (which,
by a theorem of Simpson and Lurie is essentially equivalent to additivity in the usual
sense) and sends split exact sequences of stable co-categories to split cofiber sequences

n D.

If, in addition, F sends all exact sequences of stable oc-categories to cofiber se-

quences, rather than just the split ones, it is said to be a localizing invariant.

The reader is welcome to substitute Sp, the oo-category of spectra (the unit
object for the monoidal structure on Catsl) for D. When we only consider additive
(resp.localizing) invariants valued in spectra, we shall omit "D-valued" and say "addi-

tive (resp. localizing) invariant".

Examples of localizing invariants include nonconnective K-theory and Topological
Hochschild Homology. Crucially, connective K-theory is additive but not localizing, as

discussed in [60].

Now we can finally state the central result of Tabuada (with Gepner and Blum-

berg).

Theorem 5.1.1. (Theorem 1.1 of [60]) There exist stable co-categories Myqq, Mioe with

functors

Uadd : C’atig — Madch (510)

Uloe : Cat™ — My, (5.11)

which are universal additive and localizing invariants in the sense that given any D €

Catst

5, we have equivalences

FUTIPTL,st (]\/fadda D) = FunAdd(C'atfj;, D)) (512)

where Funggg is the category of additive invariants.
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This theorem is the final version of the approach to the theory of noncommutative
motives developed by Tabuada, Cisinski and their collaborators. For a comparison
of this theory and Robalo’s approach by way of the noncommutative stable homotopy

category, the reader may consult Section 8 of [2].

5.2. Algebraic K-Theory

Algebraic K-theory provides the fundamental paradigm of "additivization" and
occupies a special place among additive invariants in the sense discussed above in that
it is the universal such, i.e., every additive invariant admits a map from it, which
can be seen as a factorization of the motivic realization map. In the commutative
world, the spectrum representing algebraic K-theory is a unit object in the category of
motivic spectra, and it is in this sense the "universal additive invariant". We will see
that the "noncommutative" generalization of algebraic K-theory inherits these features.
Moreoever, we can exploit this universal property to obtain new information about the

commutative world, see the work of [66].

There is fierce competition among candidates for the true algebraic K-theory. In
fact, all the relevant flavors and models of algebraic K-theory available can be reconciled
when interpreted in the right context and appropriately restricted. We distinguish two
main branches of algebraic K-theory: the exact K-theory, and the monoidal one. The
former is represented by Waldhausen K-theory and the latter by Segal K-theory. We
are interested in the algebraic K-theory of dg-categories and stable oo-categories, hence
the accounts we present belong to the former branch, however it is certainly possible
to extend Segal-type K-theory to general algebra objects in symmetric monoidal oo-

categories.

Essentially, K-theory is a machine for extracting some simplified linear or additive
information out of an "additive" category which has some kind of exact structure,
which is our shorthand for the notion of exact sequences that is appropriate in a
given context. We have already met abelian categories (bona fide exact sequences),

triangulated categories (exact triangles), dg-categories or stable co-categories (cofiber
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sequences) which have various kinds of such exact structures. In the context of ordinary
categories, the notion of exactness is axiomatized by the intermediate notion (due to
Quillen) of an exact category, which we will not present here since it is beside the
point. The notion of a Waldhausen category subsumes exact categories in that every
exact category can be given a Waldhausen structure. Waldhausen oo-categories a
la Barwick is an oo-categorical generalization of this same idea, where cofibrations
become ingressive morphisms and the subcategory of weak equivalences is abstracted

by a relative or pair category structure.

We now proceed to define Waldhausen structures on categories, which may be
seen as an analogue of weakened homotopical structures (e.g., model categories, relative
categories etc.) that is better adapted for dealing with towers of "quotient objects" in a
category, where quotients are defined by reference to a class of maps called cofibrations.
We will revisit the ordinary definition of the Grothendieck group Ky at the end of this
exposition to see, at least conceptually, how Waldhausen categories are related to more

familiar constructions in K-theory. Our references for this section are [67] and [68].

5.2.1. Waldhausen Categories

We start with two intermediate structures which can be immediately observed to

be components of the structure of a model category.

A category with weak equivalences is a pair (C, W) where C is a category and W

is a class of morphisms in C' called weak equivalences such that,

(i) Every isomorphism in C' is in W.
(ii) Morphisms in W satisfy the two-out-of-three property as in the model category

axioms.

A category with cofibrations is a pair (C, Cof) where C is a category and Cof is

a class of morphisms called cofibrations in C' such that,



(i) Every isomorphism in C'is in cof.
(ii) C is a pointed category and every object is cofibrant. 2°
(iii) Given any cofibration X ~ Y, and any morphism X — Z, we have the pushout

diagram

Y
l (5.13)

Ux Z

N — =

_
— Y

where now Z »— Y Uy Z is also in Cof.

These properties combine to equip a "category with cofibrations" with a lot of
structure. For instance, given any two objects X, Y, the pushout of the cofibration
0 — X along 0 — Y is just the coproduct of X and Y, hence C has coproducts.
We can also define cokernels or quotient objects in C' for any cofibration X — Y:
this is just the cofiber Y/X given as the pushout of X — Y along the canonical map
X — 0. Thus we refer to pushouts along cofibrations in a Waldhausen category briefly

as cokernels or quotients.

Definition 5.2.1. A Waldhausen category is a category with cofibrations and weak
equivalences which obey the so-called gluing axiom. In the construction of Waldhausen

categories, we will often use spans of morphisms

X
(5.14)
A4 / \ Y

which play an tmportant role in the generalizations of the Waldhausen S-construction.
The gluing azxiom essentially says that spans may be glued along weak equivalences.
That is, given a diagram

~“— Y

Yy =5 Y
/ ~ \ / (5.15)
X E— X
AN S

7 =57

20This should be understood in the sense of model categories.
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we have a weak equivalence of pushouts Y Ux Z — Y’ (Y Z'.

It is possible to work dually with the notion of a category with fibrations and
nothing essential will be affected as long as one is consistent. Naturally, equipping a
category C' with a Waldhausen structure does not induce a Waldhausen structure on
C (thinking of cofibrations as abstract monomorphisms, this is self-evident). Thus
we have the notion of a bi-Waldhausen category where C' and C'? have Waldhausen

structures that are compatible in some sense.

We can define the zeroth K-theory (or Grothendieck group) of a Waldhausen

category as follows.

Definition 5.2.2. The Grothendieck group Ko(C) of a Waldhausen category C is the

abelian group generated by symbols [X| with X € C subject to the conditions:

(i) When X andY are weakly equivalent, [X| = [Y]
(11) When we have a cofibration sequence X —Y — Y/X, [X]+[Y/X] =[Y].

The reader will immediately recognize that the construction involved here is just
the familiar Grothendieck construction, except we have a far more abstract notion of
an exact sequence than in the context of abelian categories (such as the category of
vector bundles) given by cofibration sequences. Ko(C') respects the additive structure
of C' in that we clearly have [X Ly Y] = [X] + [Y] since we have cofibration sequence
X — X UpY — Y and more generally [X Uy Y] = [X]+[Y] - [Z].

This discrete construction, which treats objects as points and extracts a group
structure from the crude datum of cofibration sequences, can be refined to a homotopy
theoretic one in which one obtains a K-theory space whose homotopy groups recover
the linear/discrete K-theory. To avoid repeating ourselves, we will explore this from
an intuitive angle in the context of oco-categories later in this section, and will now
only reproduce Waldhausen’s original description of the S-construction for ordinary

Waldhausen categories without further embelishment.
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The S-construction revolves around filtered objects (i.e., sequences of cofibrations)
in Waldhausen categories and a lot of extremely slick bookkeeping to account for all the
quotient objects in an economic manner. For a category C', denote by Ar(C) its category

21 which is the functor category Fun([0 — 1],C) where the morphisms

of arrows
are commutative squares. The structures defined above are inherited pointwise by
Ar(C), for instance, a commutative square involving two morphisms is said to be a
cofibration if the morphisms are. Waldhausen defines a subcategory F;C of Ar(C)
which consists of those morphisms in €' which are cofibrations. Now, Fj is also a
category with cofibrations (this is not immediately obvious). Denote by F,"(C) the
category of cofibration sequences X — Y — Y/X. This category is just F;(C) with
the datum of a quotient object Y/ X for every cofibration X — Y and is therefore also
a category with cofibrations. Now we generalize these constructions to n-sequences of
cofibrations Xy — X; — .... — X,;, denoting the respective categories by F,(C) and
FF(C). In the latter category, we denote by X;; the fixed quotient object X;/X; for
every 0 < i < 7 <n. These are also categories with cofibrations for every n, therefore

the constructions can be iterated to create new categories with cofibrations F, F,,(C).

Now we reformulate these ideas slightly to obtain Waldhausen’s S-construction.

Let C' be a Waldhausen category, [n] the ordinal category and Ar[n] the arrow
category of the ordinal category, consisting of ordered pairs (i,j) with morphisms
(i,7) < (i',5") whenever i < j and i < j. The constructions given in the previous
paragraph give rise to functors X : Ar[n] — C such that X(4,j) — X(i, k) is a
cofibration when ¢« < j < k£ and we have a cofibration sequence X;; — X;; — Xj.
We put S,(C) for the subcategory of Fun(Ar[n],C) consisting of such functors X.
By construction S,,(C') assemble into a simplicial category A” — Cat- the simplicial
Waldhausen S-construction of C. Every S,(C) is a Waldhausen category when C' is,

giving rise to the simplicial Waldhausen category associated with C'.

It is instructive to look at a few of these diagram categories in lower degrees.
Evidently, So(C) = *. Next, for n = 1, S;(C) is the category of diagrams in C' of shape
0 — Xo1 — 0, and it is therefore equivalent to C'. Going further, for n = 2, Sy(C) is

21T his notation is used only in this section in the 1-categorical context
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the category of diagrams

0 —— Xo1 —— Xo2

I

0 — X, (5.16)

|

0

where it should be noted that this diagrammatic presentation is redundant: we only
need the first row to obtain the others as cofibers of the diagonal maps. More generally

for any n, S,,(C) is the category of diagrams

X0,0 > Xoa > Xo2 > > Xon
I
X1 — X2 > > Xin (5.17)
| |
>Xn’n

where we continue to indicate all the intermediate quotients to emphasize all the data

packaged into these categories.

Now we construct the higher algebraic K-theory of a Waldhausen category. Let
Se(C) : A? — Cat be the simplicial Waldhausen category we already met above. We
denote by wS,(C') the simplicial subcategory of weak equivalences and by |wS,(C)|
its geometric realization. One might be tempted to immediately define K-groups as
homotopy groups of this space, however we need to introduce a "shift" to get the right

homotopy type. We then define.

Definition 5.2.3. The Waldhausen K-theory space Ky q4(C) of a Waldhausen category
(C,cof,w) is the topological space 2|wSe(C)|. The higher algebraic K-theory groups

are the homotopy groups of this loop space.

The above construction can be iterated to give rise to a K-theory spectrum.

Definition 5.2.4. The Waldhausen K-theory spectrum K(C) of (C,cof,w) is the §2-
spectrum whose n-th space is £2....02|wS....S(C)|, where wS....S(C') is the subcategory of
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weak equivalences of the space obtained by the iteration of the So-construction outlined

above.

We conclude our review of Waldhausen K-theory by stating the Waldhausen ad-
ditivity theorem, which is the first example of an additivity theorem in this general
setting. It is the origin of the notion of "additive invariants" and hence should in fact
be seen as a vast generalization of the additivity Euler-type invariants, to which it can
be easily shown to descend by way of decategorification. Let E(C') be the category of
cofibration sequences in C, that is objects of the form X — Y — Z, with the obvious
morphisms. Note that F(C) is naturally a Waldhausen category and by Theorems
1.3.2 and 1.4.2 in [68] we have the following result:

Theorem 5.2.1. Waldhausen K-theory respects cofibration sequences in the sense that

we have a homotopy equivalence

WS E(C) Z wSe(C) x wSe(C). (5.18)

5.2.2. K-theory of Stable oo-categories

There are two state-of-the-art models of algebraic K-theory for a stable oo-
category, one due to Blumberg-Gepner-Tabuada [60] and the other due to Clark Bar-
wick [69] . Blumberg-Gepner-Tabuada K-theory (denoted by Kpqr) is specifically
designed as a functor Cats, — Sp whereas Barwick’s construction is more general,
giving rise to a functor from so-called Waldhausen oco-categories to Sp. Now every sta-
ble oc-category can be seen as a Waldhausen oo-category, and for this reason, among
others, Barwick’s completely independent construction appears to us to be more fun-
damental. One might go further and say that Barwick’s theory has a strong claim
to being an independent theory for noncommutative motives as well. We will not be
able to delve into his theory at all, since it relies on a finely constructed but extremely
formidable machinery that is as inaccessible as it is entirely self-sufficient- therefore
it cannot be distilled or summarized without mutilation. Below, we give an account
of Blumberg-Gepner-Tabuada’s theory and state some of its fundamental properties

which generalize those of ordinary Waldhausen K-theory.
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The algebraic K-theory of stable oc-categories due to Blumberg-Gepner-Tabuada
(building on the work of Schlichting, Toén and others) is a more faithful generalization
of Waldhausen K-theory to the higher setting. An exact comparison may be made
between these approaches, for which the discussion in 7.1.4 and 7.1.5 in [2] may be

consulted. In this section, we follow [60].

Let C' be a pointed oo-category which admits finite colimits. Recall the category
Ar[n] we introduced above. As has been the custom so far, we will confuse it with
its nerve in the higher context. Let Gap([n],C) be the subcategory of Fun(Ar|n|,C')
spanned by functors F' such that for all ¢ < j < j, F(i,i) are zero objects and the

diagrams

F(i,j) —— F(i k)

l l (5.19)

F(5,j) — F(j, k)
are pushout squares in C.

In analogy with the S-construction, when C' is a stable oo-category, so is
Gap([n], C). Proceeding with the analogy, we put S,(C) := Gap([n],C) for the S-
theory of the oo-category C, which assemble into a simplicial co-category S, : AP —
Caty,. As we saw in the construction of Waldhausen K-theory and also Barwick’s
construction, we may pass to the "subcategory of weak equivalences" or the "under-
lying space" of this simplicial co-category at each level, obtaining a simplicial Kan
complex or oo-groupoid (S¢(C'))~. Then by exact analogy with ordinary Waldhausen
K-theory, £2|(S.(C))~| is the K-theory space of the category C and we put K(C') for
the (2-spectrum consisting of the spaces |(S....5(C))~|.

The precise notion of additivity that is relevant for us and which we discussed
at the beginning of this chapter can be obtained as a consequence of Waldhausen’s
additivity theorem and its higher analogue. Namely, the following is proven in 7.10

in [60]:
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Proposition 5.2.1. The K-theory functor as defined above is an additive invariant,
1.e., it inverts Morita equivalences, preserves filtered colimits and sends split exact

sequences of stable co-categories to cofiber sequences of spectra.

5.3. Hochschild Homology

As the second main example of an additive invariant, we will discuss Hochschild

(co)homology of dg-categories and stable co-categories.

The operative slogan in this subsection is that Hochschild (co)homology of a
stable oo-category is the "derived trace map in symmetric monoidal oo-category". We
adopt this seemingly outlandish perspective in this thesis, because it makes certain
fundamental properties and structures associated with Hochshild (co)homology almost
trivial to state. We will start by introducing the dg-analogue of the same construction,

which is more accessible. We follow [4,39]. The following construction is presented in

5.2.2 of [39].

Definition 5.3.1. Let T be a dg-category and End(T) := RHompgiror)—proa(T,T)
the endomorphism dg-category associated with T', where we consider the derived Hom

in the category of T ®" T°P-modules. Then Hochschild cohomology complex of T is the
derived endomorphism dg-module of T in Ho(DG — Cat)

HH(T) := RHom(T,T)(id,id). (5.20)

The Hochschild cohomology groups of T are just the cohomology groups of this chain

complex

HH*(T) := H'(RHom(T,T)(id, id)). (5.21)

Let’s offer a few words to illuminate this definition. Recall that Hochschild
cohomology for associative algebras can be defined explicitly at chain level by way
of the Bar resolution [70] and also by the "Morita" flavored approach which is the

conceptual underpinning of the former. For instance, let’s assume we have defined
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the Hochschild cohomology HH*(A) for an associative algebra A by applying the
Dold-Kan correspondence to the simplicial algebra given by the standard resolution
A+ A A+ A AR A+ ... and thereby obtaining the Hochscild (co)chain com-
plex. Now if we consider A as an A ® A°’-module, the above computation can be
seen to amount to the fundamental fact that in the bimodule category A ® A°’-Mod,
HH*(A) = H*RHom agaor(A, A). But we are just working with modules here, so the
latter derived hom is just the Ext functor, and hence we have HH*(A) = Ext*(A, A).
One has a similar characterization of Hochschild homology in terms of the Tor func-
tor. The definition above can be likewise justified in terms of the bar resolution for
dg-categories, and the results discussed in the previous sections make sure all the con-

structions involved are well-behaved.

One advantage of this definition in the context of dg-categories is that the Morita
theory of dg-categories as developed by Toén in [4] and which we discussed at some

length makes the Morita invariance of Hochschild homology manifest as argued in 5.2.2

of [39].

Lemma 5.3.1. We have an isomorphism: HH(T) = HH(T,).

As in our treatment of algebraic K-theory, we now introduce Hochschild
(co)homology for stable oo-categories. The formalism we adopt comes from the style of
higher category theory and geometry inspired by the works which offer higher categori-
fications of fundamental concepts in linear algebra, see for instance [71] . We follow [59]
in offering a clear cut formulation particularly of Hochschild homology as a localizing

and hence motivic invariant in the sense we discussed at the beginning of this section.

As an aside, let us try to port the definition above for dg-categories and begin with
a false start, which should be considered as a stimulating provocation for work in the
future. Following Definition 1.4 in [72], we offer the following definition of Hochschild

homology for dualizable objects.

Definition 5.3.2. For A dualizable in Prt

st’

we have the Hochschild homology

HH(A) = A ®A®A07’ A (522)



133

One immediately notes that this functor has the wrong categorical dimension,
and lands in some stable oo-category as a coefficient object. We may therefore refer
to it as categorified Hochschild homology. As such, the proper home for discussing it
would be a theory of 2-motives. This will be the topic of future work , however for the

moment see [73] for extremely interesting advances in this direction.

Let us now proceed with the proper definition of a ordinary Hochschild homology
for stable oo-categories. As we have hinted at in the section on symmetric monoidal cat-
egories, the calculus of dualizability in the context of symmetric monoidal co-categories
constitutes a comprehensive categorification of fundamental linear algebraic notions
such as dimension and trace, as argued in |72]. Recall that for (X, X, evx, coevy)
a dualizable object in some (C,®,1g) € Syme = CAlg(Caty), we define the trace
of an endofunctor as in Definition 2.8.1 of [59]: define ¢ : X — X to be the functor
Tr(¢) :=€o(p®id)on:1lg - X R XP - XP® X — lg. Thus trace gives a map
End(X) — End(1¢). Then we define the dimension of such a dualizable object X as
the trace dim(X) := Tr(idx) = e on. These evidently generalize the notions of trace

and dimension in the ordinary symmetric monoidal category Vecty.

For instance, let C' = Prft’R, the oo-category of R-linear presentable stable oo-
categories with the closed monoidal structure we’ve already discussed. As above, the
trace is an endomorphism of the unit object, which is nothing but the stable oco-
enrichment of the triangulated derived category D(R), whose dg-incarnation we have
already met as 1dg. We denote this oo-category also by D(R). From now on assume
that R = k is a field, and put D(k) for the derived category of k. We then have the
following definition, which is 2.8.7 in [59]:

Definition 5.3.3. The Hochschild homology functor HH : Cat¥ , — D(k) is the

chain-complex valued functor which is the composition

HH :=dimo Ind : Caty, , — D(k) (5.23)

This definition may be extended to presentable stable co-categories as in 2.8.7

in [59].



134

The motivic nature of Hochschild homology is underscored by the following re-
sult, already completely known and indeed obvious to early workers in the field, but
which is proven by Chen for this cutting-edge formulation of Hochschild homology in

Proposition 2.9.9 and Corollary 2.9.10 in [59]:

Proposition 5.3.1. Hochschild Homology is a localizing invariant.

Let us close this section by discussing a theorem due to Tabuada |74]| which
offers an interesting perspective concerning the categorification of the famous HKR
isomorphism, for which see Theorem 9.13 in [35]. In Theorem 1.2 of [74], Tabuada shows
that every mixed commutative motivic realization H extends to the noncommutative
world, which extension is denoted by H™¢. Now assume X smooth scheme of finite type
over a field of characteristic 0 which admits a filtration x — Xy — X; — Xs....X,, —
X such that X; — X, ; are all smooth affine schemes of finite type. Now denote
by Dx the ring of differential operators on X. Dy-Mod is the famous category of D-
modules which features prominently in Geometric Langlands correspondence and is one
of the central characters in Riemann-Hilbert correspondence. We put Perfyr(X) :=
Perfa4(Dx) for the subcategory of the dg-enhanced derived category of D-modules
on X consisting of perfect complexes, where the notation is supposed to indicate that
is the noncommutative de Rham space associated with a scheme. Then the following
theorem says that X and the noncommutative de Rham space are not motivically

distinguishable.

Theorem 5.3.1. (Theorem 3.4 in [74] For every mized realization H,. extending a

Y

giwen mized realization H, we have an isomorphism Hy.(Per fq,(X)) = H(X).

The interest of this theorem from the standpoint of Hoschschild homology as
an additive invariant of noncommutative spaces stems from Remark 3.8 in [74] where
Tabuada points out that Hochschild homology in fact does not satisfy it. Namely,
that it distinguishes between X itself considered as a noncommutative space by way
of the Per fqq functor and its de Rham noncommutative space, in that it is not gener-

ally true that HH (Per fqr(X)) = HH(X) := HH(Per fqe(X)). Hence categorification



somewhat complicates the H K R story, according to which we should expect a corre-
spondence between the de Rham and classical aspects of a space. Let’s emphasize,
however, that this is a philosophical point and we are not saying that HKR. isomor-
phism does not naively generalize to this context! By construction, we certainly have
an isomorphism HH(Per fr(X)) = Hyzr(X). This is not a genuine categorification
but merely a translation of the definitions into the higher context. To understand
what’s going on, we should deal with higher invariants, which we will briefly discuss at

the end.

It is of great theoretical interest to generalize results of this kind to explore the
structure of genuine noncommutative spaces like Perfyr(X). It appears quite likely
that such results could play an important role in the categorification of Riemann-Hilbert

type correspondences.

5.4. The Stable Homotopy Category of Noncommutative Spaces

In this final section, we will finally construct the stable homotopy category of non-
commutative spaces and justify the claim that it is the noncommutative analogue of
Voevodsky’s stable homotopy category of schemes and therefore is the proper candidate
for the category of noncommutative motives. For reasons of space, we have completely
omitted an account of Voevodsky’s category SH (S) and Robalo’s co-categorical recon-
struction of it which makes manifest its universal property (see Chapter 4 and 5 of [2]).
However, Robalo’s procedure for obtaining the noncommutative homotopy category ex-
actly mimics steps in the construction of the homotopy category of schemes. Crudely
put, the latter arises as the results of a series of localizations of the category of simplicial
presheaves on a certain site consisting of smooth schemes equipped with the Nisnevich
topology [11,12]. The resulting category consists of A'-homotopy invariant simplicial
presheaves satisfying a certain excision property with respect to so-called elementary
Nisnevich squares, which are commonly referred to as motivic spaces. Experience from
representability results from topology and K-theory leads one to consider, further, the
stable version of this category. This stabilization is carried out with respect to the

pointed projective line (P!, 00) & S A G,,,, where the equivalence is the Al-homotopy
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equivalence and A product is the monoidal product on motivic spaces. Let us unpack
this statement 22 .

First of all, algebraic geometry offers two distinct candidates as an analogue of the
topological 1-sphere, that is, the circle S! which- as we saw in our preliminary chapter-
plays a distinguished role in homotopy theory. By definition, the suspension of a
pointed space X is the smash product S' A X. Returning to the motivic world, that is,
the world of simplicial presheaves on the category of schemes, the first analogue of the
topological circle is the simplicial circle which is the homotopy quotient S' := A!//A°
obtained by gluing the endpoints of the interval category A'. The second analogue is
the multiplicative group scheme G,, = A' — {0}. It is therefore natural to consider
the smash product S* A G,,, as the proper motivic analogue of the topological circle.
We claim this wedge product is A'-homotopy equivalent to the motivic space (P!, 0o),
which is the motivic space represented by the projective line pointed at oo. To sece
this, consider the pushout square which presents G,, as the intersection of the affine
patches which cover P!, expressed in the diagram

G,, —— Al
l l (5.24)

Al —— P!
where we have omitted the base-points and the base-point preserving maps. Since we
are in an Al-invariant context, we can collapse the copies of A! to the point, giving us

a homotopy pushout square

G,, ——

:

Thus this diagram is the homotopy pushout of the diagram * < (G,, — *, which is

1 o
]P)l

—

nothing but the suspension XG,, := S' A G,,, of G,,. Hence P! = St A G,,,.

22We adopt the convention of not distinguishing between the scheme and the motivic space it
represents
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Thus to obtain the stable homotopy category of Nisnevich sheaves, one must
stabilize with respect to this so-called mized circle, along both suspension coordinates,
as explained in section 2.3 of [11|. The resulting category of bispectra, equipped with
an induced monoidal structure we keep referring to as the smash product, is called the

stable homotopy category of schemes.

Going back to our task of generalizing these constructions to the noncommutative
world, it turns out the process of forcing A'-invariance and stabilization can be achieved
almost unproblematically, modulo some subtleties in the behavior of the monoidal
structure under localization and stabilization which the bulk of Robalo’s work addresses
at great length and with great inventiveness, see Chapter 4 of [2]. The generalization
of the Nisnevich property to the noncommutative world turns out to be much more
counterintuitive, due to the non-geometric nature of dg-categories and lack of a good
notion of "cover" or "topology" in DG —Cat. We will see below how Robalo tackled this
issue by generalizing the notion of elementary Nisnevich squares to the noncommutative

setting. Before discussing this, we review Nisnevich topology in the classical setting.
5.4.1. Nisnevich Squares and Brown-Gersten Property

The Nisnevich topology on the category of smooth schemes consists of the covers
p: U; — X with p an étale morphism such that given any point x : Spec(k) — X, we
have a lift Z; for some ¢ with an induced isomorphism of residue fields k(z) = k(Z;).
The local rings in this topology are henselizations Oé’(’x of the Zariski local rings Ox .,
see 3.1 in [12|. The Nisnevich topology sits between Zariski and étale topologies, being
finer than the former and coarser than the latter. Elementary distinguished squares
for the Nisnevich topology are commutative diagrams

UXXV—>V

| lp (5.26)
U——— X
of smooth schemes such that p : V — X is an étale morphism, the 7 is an open

embedding and we have an isomorphism of reduced schemes p~(X — U)"*? = (X —

U)r°d The pair {U,V} form a Nisnevich cover of X and they generate the Nisnevich
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topology on the category of smooth schemes by Proposition 3.1.4 of [12]. In fact this

proposition is of vital importance in that it establishes the Brown-Gersten property.

Proposition 5.4.1. A (simplicial) presheaf satisfies Nisnevich descent (i.e., is a Nis-
nevich sheaf) iff it "preserves" squares of this form, i.e., sends them to (homotopy)

pullback diagrams in the category of spectra.

To be more precise, the Brown-Gersten property is used with reference to the
similar characterization of Zariski sheaves in terms of Zariski excision squares but has

come to refer to Nisnevich squares as well.

We have not covered model structures on simplicial presheaves on Grothendieck
sites, or described the procedure of sheaffification as a model categorical localiza-
tion and cofibrant replacement. The reader may consult [75-77| for a comprehen-
sive treatment of this topic. At this stage of the construction of commutative mo-
tives, one localizes with respect to Nisnevich local equivalences and finally along maps
F(X x A') — F(X), which forces A'-homotopy invariance. Thereby one obtains the
category of motivic spaces. To proceed with this construction, we need an analogue of

Nisnevich squares for dg-categories.

5.4.2. Noncommutative Analogue of Nisnevich Squares

To define the analogue of Nisnevich excision squares in the noncommutative set-
ting, The first challenge is to develop a notion of open immersion of noncommutative
spaces. Our hope is that the functor Per fq, which interpolates between the commu-
tative and noncommutative worlds is well-behaved enough make such a generalization
a merely formal task. Localization theorems of Thomason and Keller for derived cat-

egories (rather perfect complexes) give us exactly what we want in this case. After

st

finding a satisfactory notion of an "exact sequence" in the category CatZ,

we can
easily define "elementary squares" of dg-categories by directly applying Perfs,. But
we have already seen that Verdier cofiber sequences and their various equivalent refor-

mulations give a a perfectly adequate notion of exact sequences of stable co-categories
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or dg-categories. In this chapter, such an "exact sequence" is assumed to be split, a

distinction to be explicated later.

Recall from our crash review of Nisnevich topology that the latter is generated
by Cartesian squares of the form, called elementary distinguished squares, given by

diagrams

UXXV—>V

l lp (5.27)
X

v ——

with ¢ an open immersion, p is an étale morphism and we have p~}(X —U) = (X —U)"*.

We will denote a Nisnevich square like the one above by sq(X, U, V).

Consider the "induced" diagram of stable oc-categories, which is a (homotopy)
pushout diagram as discussed in the model categorical setting in the section on the
homotopy theory of dg-categories and in the co-categorical setting

Perfi,(U xx V) —— Perfa,(V)

l l (5.28)

Per f4q(U) ———— Per fq,(X).

We may reverse-engineer the noncommutative analogue of the notion of a Nis-
nevich square from this example: we want a noncommutative Nisnevich square to be

an abstraction of the features enjoyed by this diagram.
5.4.3. Noncommutative Nisnevich Topology

In the previous section we saw that Nisnevich-locality admitted a very practical
characterization in terms of the elementary squares which generate the Nisnevich topol-
ogy: namely that a presheaf F' satisfies Nisnevich descent iff it preserves elementary
Nisnevich squares. Thus we obtain a characterization of the category of Nisnevich-

local objects in Fun(Sch, Sp) as a reflective localization of a presentable category,
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which makes it accessible to the machinery developed by Lurie and summarized in
the previous sections. We would like to reproduce this practical characterization for
noncommutative motives, which should be "sheaffifications" of Al-invariant additive
invariants of dg-categories valued in spectra. The motivation for this condition may
seem to be lacking in that there is no reason to expect a precise dictionary between
geometry of schemes and "noncommutative" geometry of dg-categories. The first ob-
servation is that elementary Nisnevich squares induce- by the theorem of Thomason-
"exact" squares of derived categories, which suggest that the analogy is worth pursu-
ing, see the discussion in 6.4.4 by [2|. Thus derived categories satisfy "descent" in the
oo-categorical context and it becomes necessary to recover this feature somehow for

invariants valued on them.

The first challenge is to come up with an analogue of open immersion in the
noncommutative context. Following Robalo as in 6.4.5 [2], we proceed to define the

notion of an open immersion of noncommutative spaces as follows.

Definition 5.4.1. A morphism f: X — Y of noncommutative spaces is said to be an
open immersion if there exists an idempotent complete dg-category Ky _x along with
a fully faithful embedding Ky x < Ty such that f°P (that is, [ as a morphism of
dg-categories of finite type) takes part in the following exact sequence of dg-categories

exhibited by the diagram

Ky _x —— Ty

l l (5.29)

x* — T'x.

We are now ready to define the notion of a noncommutative Nisnevich square,

following 6.4.7 in [2].

Definition 5.4.2. A commutative diagram of noncommutative spaces

X —Y

l l (5.30)

U——YV
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18 said to be a Nisnevich square if the following hold.

(i) X =Y and U — V are open immersions of nc-spaces.
(11) The induced morphism of dg-categories Ty, — Ty preserves the compact generator
of Kyv_y and induces an equivalence Ky _x = Ky _y.

(111) The diagram is a pushout square.

As explained in 6.4.10 of |2] Every open immersion of noncommutative spaces

f U — X leads to a Nisnevich square

U— X
l l (5.31)
* — /.

This follows by simply transcribing the definitions. Denoting as before the asso-
ciated dg-categories of finite type by T'x etc, we have that Kx_y is the dg-category of
finite type representing the "closed complement" Z and the map Ky_y — * induces
an open immersion * — Z the above is just the recollement square for the inclusion of

an open subset /closed complement, in particular, a pushout square.

We have the following sanity checks which ensure that this definition is in fact
viable. The first thing to check is that noncommutative Nisnevich squares are actually
generalizations of ordinary ones. Robalo proves in Proposition 6.4.16 in [2| that apply-
ing the functor Per fq, to a Nisnevich square sq(X, U, V) produces a pushout diagram
of noncommutative spaces which is a noncommutative Nisnevich square. This was
indeed to be expected since the definition of the latter is a direct reverse-engineering
of the former. But even more interestingly, the converse statement also holds, as dis-
cussed in Remark 6.4.17 in |2|. That is, if any pullback diagram that is not a priori
necessarily a Nisnevich square induces a noncommutative Nisnevich square by way of
the Perf4, functor, then it must in fact be a Nisnevich square itself. Therefore there

is a very tight link between ordinary and noncommutative Nisnevish squares.
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Recall that we have already covered the notion of a semiorthogonal decomposi-
tion for triangulated categories, and noted how split exact sequences of dg-categories
provide a translation of this concept into DG — Cat. Any semiorthogonal decom-
position of dg-categories provides an example of a noncommutative Nisnevich cover
as explained in 6.4.12 in [2]. Thus for instance Beilinson’s exceptional collection
on Ho(Perfy,(Ph)) =< 0,0(—1)...,0(—n) > gives rise to a Nisnevich cover of
Per fa,(P) as given in the Example 6.4.12 of [2]. This will be quite important in

the final construction of the stable homotopy category.

5.5. The Noncommutative Stable Motivic Homotopy Category Over a

Base Scheme

In this section, we put everything together and define Robalo’s noncommutative
stable homotopy category, which will be the universal recipient of additive invariants
of noncommutative spaces. We do not have the resources or the space to go through a
demonstration of this result but offer some comments on what makes the intermediate
steps work. The following are the main stages of the construction as explained in 6.4.2

of |2].

- Nisnevich-locality Start with the bare category Fun(Nc(R), Sp) and take the
subcategory consisting of the functors preserving Nisnevich squares (i.e., sending
Nisnevich squares to fiber sequences in Sp). Let us denote this by subcategory
by Pshyis(Nc(R)), this is a monoidal accessible reflective localization of the
presentable category Fun(Nc(R), Sp) with respect to all morphisms: (U)X jw)
J(V) = j§(X), where j(U) etc. denotes the Yoneda embedding and the U, V, X
run over all noncommutative spaces fitting in an ne-Nisnevich square (generalized
semi-orthogonal decomposition) given by a diagram

W ——V

l l (5.32)

U—— X.

- Homotopy invariance Force the analogue of Al-invariance. For this, we consider

the "noncommutative affine line" Per f(A!). This dg-category is smooth since Al
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is smooth, hence of finite type. We need to localize Shy;s(Nc¢(R)) further along
the map Perf(A') — Perf(Spec(R)) induced by the map A' — Spec(R). More

precisely, for X € N¢(R) we wil localize along the maps
J(X) x j(Per f(AY) = j(X) x j(Per f(Spec(R?)) (5.33)

which gives a monoidal accessible reflexive localization of a presentable oo-
category. Thus the localization itself is presentable.

- Stability Stabilize with respect to (the noncommutative space associated with)
P!, that is the dg-category Perf(P!). That is, we monoidally invert the functor
— A Perf(P').

The universality of the resulting category, the stable homotopy category of non-
commutative spaces, will be almost tautological because all the constructions detailed
above satisfy the relevant universal properties. The embedding of the commutative
theory into the noncommutative one is summarized in 6.4.39 and 6.4.45 of [2] by the

crucial diagram

Perf(%
Aff > ncS®
Fun(Affy, Sp)® === B + Fun(Dg'*, Sp)®
Funis(Aff7, 8p)® =----=2--=> Funs(Dy"", 5p)° (5.34)

A ®

v o P
FunNis,Al (Afffg)a Sp)® —eemtieeny FunN’is,Perfdg(Al)(Dgfta Sp)®

2 v

SH® P » SHE,.

Let us make some peripheral comments before giving more details. On the left-hand
side, we have the oo-categorical version of the construction of Voevodsky’s stable ho-
motopy category of schemes, on which we offered a few comments in the preceding
sections. The connection between the commutative and noncommutative worlds is
provided by the perfect derwed category functor Per fs, which we have implicitly used
a few times already. Its proper construction as an oo-functor from affine schemes to

DG — Cat'®™ and indeed DG — Cat/* or ncS(R) is quite delicate and relies on the
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cotangent complex formalism developed by Robalo in sections 3.11.2 and 6.3.3 of [2].
This functor is monoidal and induces monoidal functors on the localized functor cat-
egories as we approach the stable homotopy category. The final functor P gives an
"embedding" of the commutative world into the noncommutative one. Philosophically,
this embedding is not surprising considering the complete correspondence, say, between
classical Nisnevich squares and the noncommutative ones induced by them and the fact
that the noncommutative procedure is the mirror of the commutative one. However,
there are various new "derived" phenomena which make themselves felt only at the
noncommutative level. The new "categorical" Nisnevich covers provided by orthogo-
nal decompositions are the most prominent example of such new derived phenomena.

The following puzzling theorem explicates this issue:

Theorem 5.5.1. (Proposition 6.4.19 in [2]) The homotopy category H,.(R) of non-
commutative spaces over a base ring R, which consists of A'-invariant noncommutative
Nisnevich sheaves of spectra on DG — Cat is already stable and the Yoneda image of

Py in H,.(R) is already invertible in it.

Let us unwind the content of this theorem. We folllow the proof of Proposition
6.4.19 in |2|. First of all, denote by ¢ the composition of the functor P with the pointing
map H(R) — H,(R) and point P! at oo as before. The claim is that (P!, c0) is an
invertible object and in fact the unit for the monoidal structure on H,.(R). (P}, o0) as a
motivic space is the homotopy cofiber of the A'-localized pointing map Spec(R) — PkL.
Putting 17§ for the functor of localization with respect to Perf(A') and %5, for the
functor of noncommutative Nisnevich sheaffification and applying the ¢ functor defined

above first of all gives us an isomorphism
Y(P', 00)) 2 1155 (Per fay((cofib : Spec(R) — P})) (5.35)

where the cofiber is now taken in the category I}, Fun(ncS(R),Sp). This collapses
further since the spectral Yoneda embedding commutes with colimits and we have an

isomorphism

Y(P', 00)) 2= I35 (cofib: j((Per fag(Spec(R) — PE))) (5.36)



which is to say, an isomorphism
PP 00)) 2 135 (cofib: j((Perfay(R)) — Perfa,(PR))). (5.37)

However, the latter cofiber is just Perfy,(R) itself, as we have a noncommutative
Nisnevich cover given by the exceptional collection Ho(Per f4,(PL)) = D'(P}) =<
0,0(—1) >, that is a diagram
Perfi,(R) —— Per f4,(PF)
l l (5.38)
* ——— Perfu,(R)
which is a pushout square after sheaffification. Hence the cofiber above as computed af-
ter noncommutative Nisnevich sheaffification is nothing but Per fq,(R). But Per fi,(R)
is precisely the unit for H,.(R), hence the statement follows. It also immediately fol-
lows that the Al-localized homotopy category of functors on noncommutative spaces
which preserve noncommutative Nisnevich squares, which we have denoted by H,.(S),

should in fact be denoted SH,,.(S) since it is equivalent to its P!-stabilization.

As a result, we have achieved the construction of the noncommutative stable
homotopy category. In our concluding chapter, we will briefly discuss why this category

is a candidate for the category of motives in the noncommutative context.
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6. CONCLUSION

The construction of the noncommutative stable homotopy category described in
the last chapter brings the foundations of the theory of noncommutative motives to a
close. In conclusion, we would like to discuss some further aspects and avenues which

we have not touched on so far.

The first topic that merit discussion is the question of the representability of Alge-
braic K-theory for stable co-categories and the various applications of the independent
representability theorems to Robalo [2]|, on one hand, and Tabuada, Cisinski |78, 79],
Blumberg and Gepner [60,64|, on the other. While we have not given an account of
nonconnective algebraic K-theory, which goes back to Bass for algebraic K-theory of
rings and Thomason-Trobaugh [80] for the Waldhausen K-theory of the category of per-
fect complexes on a scheme, the representability theorems for K-theory, which establish
its nature as a universal additive invariant, concern precisely this variant. The content
of these theorems may be summarized as saying that, in all its various formulations,
nonconnective K-theory of dg-categories or stable oco-categories is the unit noncommu-
tative motive with respect to the monoidal structure on the latter and it constitutes
the noncommutative analogue of motivic cohomology in the sense of the following the-
orem due to Robalo. For convenience, we adopt an exotic notation for noncommutative
spaces. For instance, if 17" is a dg-category of finite type, we denote by Spec(1") the
associated noncommutative space. We also let K denote the nonconnective K-theory

of dg-categories as described in Chapter 7 of [2].

Theorem 6.0.1. (Theorem 7.0.33 in [2]) We have an isomorphism

Mapsn,, (Spec(T'), Spec(S)) = Z%KS(T@) SP). (6.1)

In the same vein, it is of great interest to explore higher analogues of K-theoretic
and motivic constructions which take advantage of the exact structure on Cat? and

DG — Cat. This exact structure, while not equivalent to full stability was certainly



147

instrumental in setting up the theory of noncommutative motives. One motivation for
axiomatizing this exact structure is what might be broadly called categorified cohomol-
ogy. Since Grothendieck’s vast generalization of the Riemann-Roch theorem by way of
the formalism of derived categories, which is the origin of the six-operations formalism
as we discuss below, it has been a commonplace notion that the assignment X — D(X)
of a scheme to its derived category can be interpreted as a sort of categorified coho-

st

infty or

mology theory. The latter can be formalized naively as a functor Sch;s — Cat
DG — Cat which satisfies certain localization and gluing conditions, and Kiinneth-type
theorems which can be demonstrated by way of the higher analogues of the Tannakian
formalism. Indeed, we caught a glimpse of something along these lines at the end
of the third chapter. A systematic theory of categorified cohomology would have to
concern itself with sheaves, not of spectra, but of stable co-categories, giving rise to
what one might call parametrized noncommutative algebraic geometry. Going along
with the analogy, one can construct higher analogues of QCoh(X) and K-theory for
these categorical sheaves. Secondary K-theory, K(?(X) was introduced by Toén in [39]
and further developed by [81], however, this construction is somewhat ad-hoc. It turns
out enormous amount of classical cohomological machinery can be made to work for
categorified sheaves, whose study is a burgeoning field at the moment. For the study
of Chern classes and Grothendieck-Riemann-Roch formalism from the perspective of
noncommutative motives, see [82,83]. For a systematic development of the notion
of a stable (00, 2)-category, of whicht the category of sheaves of stable oo-categories

would be the first obvious example besides Catf! and higher noncommutative motives,

see [73].

Finally, let us discuss a more foundational and technical topic which is nonetheless
of great importance for a complete theory of noncommutative motives. This topic
is the so-called six functors formalism, which concerns the exceptional functoriality
enjoyed by assignments of the form S — D(S) and S — SH(S), which can be slickly
formalized as functors out of certain correspondence categories associated to a scheme
S into the oc-category of symmetric monoidal stable oo-categories, see [84]. This
question was settled decisively by Ayoub [85] for the stable homotopy category of

schemes and described in the oco-categorical setting in [86] and [84]. Robalo addressed
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the construction of a six-functors formalism for the assignment S — SH,.(S) in [2],
although the problem is not fully solved. The reader may consult Chapter 3 of [2]| for

the state of the art results in this direction.

Both flavors of the theory of noncommutative motives provide an embedding of
the commutative world into the noncommutative one. In the case of Robalo’s for-
malism, this embedding is simply induced by the Per fy, functor as illustrated by the
diagram in the last section. This is a fact with profound ramifications and has already
generated some fascinating results in different directions. Tabuada’s extensive program
of developing noncommutative analogues of great open questions concerning algebraic
cycles and motives, such as the Standard Conjectures, the Hodge and Tate conjec-
tures, and the Period Conjecture, should be mentioned in this connection, see [87].
In a different but equally fascinating direction, recent works by Robalo, Blanc, Toén
and Vezzosi [66] building on the work of Toén and Vezzosi [88,89] reformulate and
prove cases of the Bloch conductor conjecture by exploiting the commutative motivic
realization functor of noncommutative spaces, obtained as a left adjoint to the functor
SH(S) — SHu.(S) induced by Perfy, : Aff/f;' — DG — Cat/*. This extremely
interesting idea promises to be of systematic interest. Also see works by Pippi [90,91]

for investigations along the same lines.
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