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ABSTRACT

THE QUESTION OF MODEL COMPANIONABILITY:
POSITIVE AND NEGATIVE ANSWERS

Model companion of a universal theory 7" is the axiomatization of the existentially
closed models of T. This thesis studies the concept of model companionability of
theories. We present examples of model companions of certain well known theories.
We then give examples of theories without model companions. The main focus of
this thesis is to elaborate a technique, which we call “the Compactness Argument”.
Compactness Argument is used to prove that the model companion of a theory does
not exist. We apply Compactness Argument to prove that the following theories do
not have model companions: the theory of groups, the theory of rings, two examples
of the theory of graphs, the theory of fields with two commuting automorphisms, and
the theory of dense linear orders with an automorphism. Several proofs are illustrated

by original diagrams to provide a better understanding to the reader.



OZET

MODEL ESI BULMA SORUNU:
POZITIF VE NEGATIF YANITLAR

Bir evrensel T" teorisinin model esi, T nin varliksal kapali modellerinin teorisinin
aksiyomlarindan olugur. Bu tezde teorilerin model eglenebilirligi kavrami incelenmistir.
Bazi iyi bilinen teorilerin model esi ornekleri sunulup ardindan model esi olmayan teo-
rilerden 6rnekler verilmistir. Bu tezin ana odak noktasi “Kompaktlik Argiimani” olarak
adlandirdigimiz bir teknigin tizerinde durmaktir. Kompaktlik Arglimani, bir teorinin
model esi olmadigini kanitlamak i¢in kullanilir. Kompakthik Argimanini kullanarak
model esi olmadigi kanitladigimiz teoriler sunlardir: gruplar teorisi, halkalar teorisi,
cizge teorisinden iki 6rnek, iki degismeli otomorfizmali cisimler teorisi ve otomorfizmali
yogun lineer siralama teorisi. Kanitlarin daha anlagilir olmasini saglamak i¢in kanitlar:

destekleyen orjinal diyagramlar insa edilmistir.
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1. INTRODUCTION

Model theory is a flourishing area of mathematics which studies interactions be-
tween theories: axioms describing certain mathematical structures; and their models:
the structures themselves; like groups, rings, fields or graphs. The techniques and
methods that are invented for studying the interactions between theories and models
may also become useful in answering questions arising from algebra. A famous exam-
ple of this is Ehud Hrushovski’s proof of Mordell-Lang conjecture using model theory.
Hrushovski has given the first proof valid in all characteristics of the “Mordell-Lang

conjecture for function fields” using model theoretic techniques.

One important theme which is studied in model theory is the attempt of listing
a set of axioms for the structures with desired properties. This kind of research opens
up a very fruitful path in model theory letting us understand the mathematical objects
using the tools invented. An existentially closed model is one where “anything that can
happen happens”. More precisely if there is an extension containing a certain clement
with the desired properties, the element already exists in our model. For example,
algebraically closed fields are existentially closed. If a polynomial has a root in an
extension of an algebraically closed field, it already is in there. A reoccurring question
in model theory is to investigate, if a set of axioms can be listed describing existentially

closed models of certain theories.

In this thesis, we show existence and nonexistence of model companions of certain
theories. We give several examples of theories where the model companion exists and
where they do not. The main emphasis of this thesis is on elaborating a technique for
showing nonexistence of model companions. We call this technique as “the Compact-
ness Argument”. We explicitly demonstrate the application of this technique in several
examples. Another novelty of this thesis can be seen as the use of visual material for
making the proofs more comprehensible. Several proofs that are presented in this the-
sis are accompanied by original diagrams which provide a better understanding to the

reader.



In Chapter 2, we first introduce the basic terms and study some key concepts of
model theory. Then, we define model completeness and model companions: we reveal
equivalent conditions of their definitions and we exhibit some properties in detail.

Lastly, we give examples of some well known theories.

The main part of the thesis is Chapter 3, where we give positive and negative
examples of model companions. We start by showing some positive examples. Then,
we introduce Compactness Argument and prove it to be able to apply it in negative
examples. Lastly, we give examples where the model companion does not exist by

using the Compactness Argument.

We list several open problems in conclusion.



2. MODEL THEORY

In this chapter, the aim is to introduce main concepts of model theory and to
give essential background information for further study. Main references that are used

to give basic well-known definitions and theorems are [1-6].

2.1. Basic Concepts

Model theory is the study of mathematical structures, their properties and their
relationships with each other in a formal manner. A mathematical structure is basically
a set endowed with additional operations and elements. For example, a group structure
is a set equipped with a binary function for the group operation and a graph is a set
equipped with a binary relation for edge relation. Also, there may exist some significant
elements that we want to talk about in these structures. For example in groups, identity
element of the operation is an important element for the structure, and in rings identity
elements of the both operations are important. Hence, by looking at these examples we
can generalize this concept as; a structure is a set endowed with functions, relations and
important elements which we call as constants. Before defining a structure explicitly,

we need to first define what a language is, this will help us to pursue this study formally.

Basically, a language (or a first order language) is a collection of relations, func-
tions and constant symbols. For example, to talk about a ring structure, we need a
language which contains two binary function symbols for operations and two constant
symbols representing identity elements of operations. Also, we add one more binary
function symbol to the language for practicality in ring theory and denote the language
of rings as L = {+,-,—,0,1}. Furthermore, if we want to talk about ordered rings,
we need a bigger language which contains again three binary function symbols, two
constant symbols and additionally it must contain a binary relation symbol for the or-
der relation. Here, one of the most important things is when we talk about languages,
it is basically just a set of symbols which only have syntactic meaning. These set of

symbols get their meaning when we associate a set with this language and interpret



these symbols according to it. More precisely, if f is a function symbol in a language L,
the only important thing about f is its arity; that is, the number of input the function
take. Indeed, if f is an n-ary function symbol, then in an L-structure, f can be inter-
preted as any m-ary function over the underlying set of the structure. Similarly, the
only important thing about relation symbol in a language is its arity and the constant
symbol is nothing more than a symbol. Therefore, is important to understand that
the language is about syntax, and symbols of language get meaning when they are

interpreted in a structure.

Now, we can give the formal definitions of language and structure.

Definition 2.1. A language L is a set of

e function symbols where each function symbol f has arity n;,
e relation symbols where each relation symbol R has arity ng,

e consant symbols.

Here, ny and npg are positive integers. We denote a language £ as

(f17f27“'7R17R27~"7017027"')

where each f; are function symbols, each R; are relation symbols and each ¢, are

constant symbols.

Example 2.1. (i.) A very first example is the most basic one, the empty language
consisting of no symbols; £ = ().

(ii.) The language of rings L = {+,-, —, 0, 1} consists of three binary function sym-
bols +, -, — and two constant symbols 0, 1. Here, actually two function symbols
would be enough, for two operations of ring structure but we also add the symbol
— for practicality, since when we check a subset of a ring is a subring, we use
“substraction”.

(iii.) The language of graphs L5 = {R} consists of one binary relation symbol R.

(iv.) The language of ordered abelian groups is £ = {+,0, <}. Indeed, the language of
abelian groups consists of a binary function symbol + and a constant symbol 0.

To obtain language of ordered abelian groups, we expand the language of abelian



[@x}

groups by adding a binary relation symbol < for the order relation.

When we want to study a mathematical structure or a theory, it is important to

choose an appropriate language. After choosing a suitable language and a set that we

wish to study, we interpret each symbol of the language L in terms of the chosen set

and we get an L-structure. So now for a chosen language £, we can define what an

L-structure is.

Definition 2.2. An L-structure A consists of the following data:

A nonempty set A, which is called as underlying set, or the universe of A.
A function fA: A" — A for each function symbol f € £ with arity n;.
A relation RA C A" for each relation symbol R € £ with arity np.

An element ¢ € A for each constant symbol ¢ € L.

We denote an L-structure A by writing the underlying set A of A and interpre-

tations of each symbol of the language L,

(A, LSRN R e ).

Remark 2.1. Through the text, we denote the structures by curly letters such as A,

B, ...

and their underlying sets by normal letters A, B, ...; respectively.

Example 2.2. (i.) Let £ = {x,e} be the language of groups. The additive group of

(ii.)

integers G = (Z, +, 0) is an L-structure where interpretation of function symbol *9
is the usual addition + and interpretation of constant symbol €9 is 0, the identity
element of +. The multiplicative group of rational numbers G’ = (Q*, -, 1) is also
an L-structure where %9 is the usual multiplication - and €9 is 1, the identity of
multiplication. GL,(R), the general linear group of order n over R, consisting of
nxXn invertible matrices is an £-structure where the function symbol is interpreted
as the ordinary matrix multiplication and the constant symbol is interpreted as
the identity matrix [,,.

Let Lg = {R} be a language consisting of one binary relation symbol. The set of

real numbers ordered with usual order relation is an Lg-structure (R, <), where



R is interpreted as <. A graph G over the set {1,2,3} consisting of

two edges between 1 — 2 and 2 — 3 is an Lg-structure L g
({1,2,3}, RY). Indeed, the underlying set is {1,2,3}

and the relation R is interpreted as

RY =1{(1,2),(2,1),(2,3),(3,2)}. 3

To investigate certain properties of structures, we make use of first order sentences
and a more general form, formulae in model theory. For example, consider the structure
(N, <) of natural numbers with usual order relation and the property “There exists a
least element”. By using symbols of the language £ = {<} and some other logical

symbols we can express this property formally as a string of symbols
daxVy (ac <yV33:y)

and examine the validity of this sentence in the structure (N, <) or in the other struc-
tures. The construction of such sentences in formal languages is similar to the notions
of usual languages. More precisely, the language £ can be thought as an alphabet that
contains letters to form sentences. To make a meaningful string of letters, we first con-
struct words from letters and then we construct sentences from words. Analogously, in
formal languages, we construct terms from symbols of the language and we construct

formulae from terms by regarding certain rules.

Basically, a formula of an L-structure is a string of symbols consisting of logical
symbols (=, V, A, 3, V, =), variables (v;, i = 0,1,2...), symbols of the language L
(function, relation and constant symbols) and punctuation marks; comma and paren-
theses. However, formulae are not arbitrary combination of these kind of symbols; of
course, there are rules which makes them understandable. Now, we start defining the
basic building blocks, that are terms and then we inductively define what an atomic

formula and formula is.

Definition 2.3. Terms of the language L are defined recursively as follows:

i) Constant symbols ¢ of the language L are terms.

ii) Variable symbols v; for i = 1,2,... are terms.



iii) Ift), ¢y, ..., 1y, are terms and f is an ng-ary function symbol, then f(t1,ta,.. . 1y, )

f

is also a term.

and no other strings of symbols are terms.

Example 2.3. Let Lr = {+,-,—,0,1} be the language of rings where +,- — are
binary function symbols and 0, 1 are constant symbols. +(1,v;), -(—(v1, 1), +(ve, v3))

and +(1,+(1,1)) are Lp terms.

Remark 2.2. In fact, we are familiar with the notation vz - (v; + vy) rather than
-(v3, +(v1,v9)) for binary functions such as 4+, —, - ; so whenever it is clear from the
context, we will use this notation for simplicity. According to this remark, the terms in

Example 2.3 can be written as (1+wv1), (1 —wvy) - (va+wv3) and 1+ (1+ 1), respectively.

Interpretation of terms: Let A be an L-structure, t = ¢(7) be a term containing
variables from o = (vy,vs,...,v,) and let @ = (ay, as,...,a,) € A™ be an
m-tuple. We interpret ¢ as a function 4 : A™ — A and define it recursively as
follows:

e If ¢ is a constant symbol ¢, then t4(a) = .
e If t is a variable symbol v;, then t4(a) = a;.
o If t is the term f(t1,to,...,t,,) Where ty,ts,...,t,, are terms and f is an

ng-ary function symbol, then t4(a) = fA(t{(a), t:'(a), ..., (a)).

) Yny

Example 2.4. Let £ = {f1, f2, 91,92, ¢1,c2} be a language consisting of two unary
function symbols f; and f,, two binary function symbol ¢g; and ¢y, and two constant

symbols ¢; and ¢y. Some examples of L-terms are

t1 = g2(g1(f1(v1), fa(v1)), va),
ty = f1(92(g2(g1(ca; c2), 1), v1)),
i3 = f2(92(91(01702);vl))~

Now, let A = (R,sin,exp,+,-,m, 1) be an L-structure such that interpretations of

symbols are fi* = sin, fi* = exp, gf' = +, g5' = -, ¢ = 7 and ¢3! = 1. Interpretations



of t1,t5 and t3 in the structure A are as

tf(ay, as) = (sin(ar) + e™) - as,
t3(ay) = sin(((1 +1) - 7) - ay) = sin(2ma,),

ar) = e,
By using L-terms as building blocks, we will define L-formulae.

Definition 2.4. Formulae of the language L are constructed recursively as follows:

i) If t; and ty are L-terms, then t; = 5 is a formula.
ii) If R is relation symbol and t; are terms of the language £, then R(ti,to,...,t,,)
is a formula.
iii) If ¢ is a formula, then —¢ is a formula.
iv) If ¢ and v are formulae, then ¢ A ¢ and ¢ V ¢ are formulae.

v) If ¢ is a formula, then Vv; ¢ and Jv; ¢ are formulae (for any variable ;).

and no other strings of symbols are formulae. Formulae of the form i) and ii) are called
as atomic formulas which are basic forms of a formula and like building blocks of longer

formulae.

Let Yv ¢ (resp. Jv ¢) be a formula, the subformula ¢ is called as the scope of the
quantifier Yo (resp. Jv). If a variable v; lies within the scope of a quantifier Vov; (resp.
Jv;) in a formula, it is called as a bound variable; otherwise it is called as free variable.

An L-formula with no free variables is called a sentence.

Remark 2.3. If a formula ¢ contains free variables from o = (vq, vo, ..., v,,) we denote

the formula as ¢(9) to indicate the free variables of it.
Example 2.5. Let £ = {+,-, —,0, 1, <} be the language of ordered rings. The follow-

ing are L-formulas:

e ¢1(v1) : 0 < vy is an atomic formula where v, is a free variable.

e ¢y dv1Vuy (v < vy V vy = ) is a sentence since all variables are bound.



o ¢3(vg) : Juy (vg +wvy) = 0 is a formula where v; is bound and vy is free.

Now, we will define what it means for a structure to satisfy an L-formula.

Definition 2.5. Let ¢(0) = ¢(v1, vg, ..., v, ) be a formula with free variables vy, v, ..., Uy,
let A be an L-structure and let a = (a,aq,...,a,) € A" be an n-tuple. We define

A | ¢(a) recursively as follows:

(i) If ¢ is t; = t, then A |= ¢(a) if t1'(a) = t3'(a).

(ii) If ¢ is R(ty,ta, ..., tny), then A | ¢(a) if (t{'(a), t3(a), .., .t (@) € RA.
(iii) If ¢ is =), then A = ¢(a) if A & ¥(a).

(iv) If ¢ is ¢ A, then A = ¢(a) if A = ¢(a) and A | ~(a).

(v) If ¢ is 9oV, then A = ¢(a) if A= (a) or A = ~(a).

(vi) If ¢ is v ), then A |= ¢(a,v) if there is b € A such that A = ¢(a, b).
(vii) If ¢ is Yo o), then A = ¢(a,v) if A |=1(a,b) for all b € A.

A E ¢(a) can be read as “¢(a) is true in A” or “A satisfies ¢(a)”.

Definition 2.6. Two formulas ¢(7) and () are said to be equivalent if

0 = va(o(0) < (D).
Remark 2.4. Note that Vv 1 and ¢V v can be omitted from the definition above since
they are equivalent to —3—) and —(—) A =), respectively. Also, we didn’t include
the symbols — and < from the beginning of the thesis, but we can also use these
logical symbols since (¢p — 7) is equivalent to (=) A7), and (¢ <> ) is equivalent to

(= AY) A (= A ).

Example 2.6. Let £ = {+,-,—,0,1, <} be the language of ordered rings and let
O1(v1) + 0 < v, o @ FiVug (V1 < Vo Vv = v9) and ¢3(vy) @ Jvy (v + v2) = 0 be
as in the Example 2.5. Consider an L-structure A = (Z,+,-,—,0,1,<). We see that
A= ¢1(a) if a>0and AW ¢i(a) if a <0; AW ¢ and A = ¢3(a) for all a € Z.

Remark 2.5. Sentences have truth values, in the structure they are either true or
false. However, formulas with free variables do not have truth values, they may be true

for specific elements of the structure and false for others.
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Further Definitions: Theories and Models

In model theory, we sometimes take a set of L-sentences, which is called as an L-
theory, and look at the L-structures, which are called as models, that are satisfied by the
theory. Conversely, we sometimes look at a collection of L-structures and investigate
the properties that they satisfy; that is, look at the L-sentences that are satisfied by
all of these structures and try to obtain a theory from them. Now, we define related

terms.

Definition 2.7. A set of L-sentences T is called as an L-theory. Let T be an L-theory
and A be an L-structure; A is said to be a model of T and denoted as A =T, if A = ¢

for all sentences ¢ € T'.

Example 2.7. Let £ = {R} be a language consisting of one binary relation symbol
and consider the following L-sentences.

¢1: Yo R(v,v) (R is irreflexive),

¢ : VOVw R(v, w) — R(w,v) (R is symmetric).
T = {¢1, $2} is an example of an L-theory, which is called as Theory of Graphs. Any
set together with an irreflexive, symmetric relation is a model of T'. For example, the
set S = {0, 1,2} together with the relation R; = {(0, 1), (1,0),(1,2),(2,1),(0,2),(2,0)}
is an L-structure that is a model of T. However, S together with the relation Ry =

{(0,1),(1,0),(1,2),(2,1),(2,2)} is an L-structure which is not a model of T

0 1 0 !

(S, Ry) is a model of T. (S, Ry) is a not a model of T.

Figure 2.1. Tllustrations of (S, Ry) and (S, Ry).

Any set of L-sentences is a theory by definition; however, some theories may have

no models. To illustrate, consider the theory

T ={o1:WVr[(x>y)V(r=y),o:VoIy (z>y)}
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We see that 1" has no models since there is no L-structure satisfying both ¢; and ¢,.

We give a special name for theories which have models:

Definition 2.8. An L-theory T is satisfiable if it has a model; that is, there is an

L-structure A such that A }=T.

Example 2.8. The theory of graphs which is stated in Example 2.7 is satisfiable. A

theory T containing both ¢ and —¢ where ¢ is any sentence is not satisfiable.

Definition 2.9. Let T be an L-theory and ¢ be an L-sentence. ¢ is a logical conse-
quence of T if whenever A |= T, we have A = ¢. We write T = ¢.

Definition 2.10. An L-theory T is called complete if for any L-sentence ¢, either
TEorT E .

Example 2.9. The theory of graphs which is stated in Example 2.7 is not com-
plete. To illustrate, consider two models A = (S, R4) and B = (S, R®) of the
theory where S = {0,1,2}, R* = {(0,1),(1,0),(1,2),(2,1),(0,2),(2,0)} and RF =
{(0,2),(2,0),(1,2),(2,1)}. Observe that there is a sentence ¢ : Vo Vw (v # w — R(v,w))
such that A |= ¢ and B = —¢. So neither T |= ¢ nor T' |= —¢ is true. Therefore, T is

not complete.

ii /\ AEYoVu (v#w — R(v,w)).
0 1 0 1 BEYyYw (v#w — R(v,w)).
A= (5, RY) B = (S, RP)

Figure 2.2. Example 2.9.

Remark 2.6. We gave an example of a theory which is not complete. The reason
why we don’t give an example of a complete theory at this stage is because it is not
possible to show that a theory is complete without using any other tools. Later, we
will introduce the notion of categoricity and develop a way to show that a theory is
complete by this notion and also show that the theory of dense linear orders without

endpoints (DLO) is complete.
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A way to construct a complete theory is collecting all sentences satisfied by a
certain structure. Such theories are called as theory of a model and explicitly defined

as follows:

Definition 2.11. For an L-structure A, the theory of A is the set of all sentences
satisfied by A and denoted as

Th(A) = {62 AF 6},

As it is stated above, we sometimes want to study the theory of a collection of

L-structures but it may not exist all the times.

Definition 2.12. A class C of L-structures is called aziomatizable (or elementary class)

if there is an L-theory T such that C ={A : A = T}.

Example 2.10. In Example 2.7, we explicitly write the axioms of the theory of graphs,
so the class of graphs is an elementary class. However, if we wish to axiomatize the
theory of finite graphs, we can’t succeed because the class of finite graphs is not ele-

mentary. (see Section 2.6 for details)

Until now, we worked with semantic notions such as models of theories, logical
consequence and validity of sentences. Now, we also give definitions of syntactic notions
such as proof and consistency. At the end, we see that syntactic and semantic notions

are directly related by Completeness Theorem.

Definition 2.13. A formal proof of ¢ from a set of formulas 1" is a finite sequence
of L-formulas ¢, ¢o, ..., ¢, such that ¢, = ¢ and each ¢; for i = 1,....,n; ¢; belongs
to 1" or obtained from previous indexed formulas by applying logical axioms or logical
rules (ex. modus ponens). We write T' F ¢ if there is a proof of ¢ from 7. We will
not elaborate on the axioms and logical rules here. A more detailed account of formal

proofs can be found in [3, p. 14].

Definition 2.14. A set of L-sentences T is called inconsistent if there exists an L-

formula ¢ such that T'F ¢ and T+ —¢. Otherwise, T' is called consistent.
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Completeness and Compactness Theorems

Completeness and Compactness Theorem can be viewed as main theorems of
first order logic. Completeness Theorem is first proved by Kurt Godel in 1930, and
states that whenever a sentence is logically followed by a theory, there is also a formal
proof of that sentence from the theory. In other words, it states that deductive rules
arc rich enough to guarantee that every valid argument is deducible by logical rules.
The converse of this statement is called as soundness of first order logic and it is
also true; that is, if some formula is deducible from a set of sentences, then it is
valid. Completeness theorem directly links the syntactic notion “derivability” and the

semantic notion “satisfiability”.

Theorem 2.1 (Completeness Theorem). Let T be an L-theory and ¢ be an L-sentence.
Then

TE ¢ if and only if T + ¢.

The proof of the Completeness Theorem can be found in [4, p. 61]. We have also

the following corollary that relates satisfiability and consistency:

Corollary 2.2. A theory T is satisfiable if and only if it is consistent.

Proof. Suppose T is not satisfiable. Then, since there is no model of T every model
of T is also a model of ¢ A =¢; that is, T = (¢ A =¢). By Completeness Theorem, we
have Tt (¢ A —=¢) which means that 7" is not consistent. Conversely, assume that 7'
is inconsistent; that is, 7' F (¢ A =¢). By soundness we have T' = (¢ A —¢) and since
a sentence ¢ is either true or false in a structure, (¢ A —¢) cannot be satisfied by a

structure. Therefore, T is not satisfiable. O

After we have the Completeness Theorem, Compactness Theorem is a direct
consequence of it; because it relates the notion of satisfiability with the notion of
formal proofs and as a result the features they have are also shared. To be more
precise, because of the fact that the proofs are finite, we also have every finite subset

of a satisfiable theory is satisfiable.
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Definition 2.15. An L-theory T is called finitely satisfiable if every finite subset of T’

is satisfiable.

Theorem 2.3 (Compactness Theorem). Let T' be an L-theory. T is satisfiable if and
only if T is finitely satisfiable.

Proof. 1f T is satisfiable, then 7' is finitely satisfiable since models of 1" are also models
of subsets of T'. For the converse, suppose 1" is not satisfiable. By Corollary 2.2,
T is inconsistent. So there is a proof ¥ of a contradiction (¢ A —¢) from 7. Since
proofs are finite, there is a finite subset A of T" which is used in the proof X. Thus,
A is inconsistent which implies that A is not satisfiable by Completeness Theorem.

Therefore, not every finite subset of T is satisfiable. O

An application of the Compactness Theorem: If an L-theory T has arbi-

trarily large finite models, than it has an infinite model.

Proof. Let T be an L-theory and consider the following theory
T'=TU{¢, :n=1,2,3,...}

where ¢, = dr3zs ... Jx, (/\1§i<j§n x; # Ty) each stating that there are at least n
elements. Clearly, models of 7" are infinite models of T'. Hence we need to show that
T’ is satisfiable and actually by compactness, it is enough to show that T is finitely
satisfiable. So let F' be a finite subset of 1”. Since finitely many ¢,’s are included in
F, take the maximum index m such that ¢,, € F and ¢; € F for ¢ > m. We have
F CTU{¢, :i=1,2,...,m} which is satisfiable since T has arbitrarily large finite
models. Thus, 7" is finitely satisfiable. O

2.2. Relations between L-Structures

In this section, we look at relations between L-structures and define related terms.
When we study algebraic structures such as groups, rings etc., to classify such struc-

tures we look at the maps between them, that preserve structural properties; that is, we



look at homomorphisms and isomorphisms between these algebraic structures. Since
we are working with arbitrary structures in model theory, we expand definitions of em-
beddings, isomorphisms to L-structures and define L-embeddings and L-isomorphisms
as maps preserving structural properties; that is, preserving interpretations of relation,
function and constant symbols. But first of all, we define the basic relation between

two algebraic structures that is called as elementary equivalence.

Definition 2.16. Let A and B be two L-structures. A and B are said to be elementarily

equivalent, denoted as A = B, if for any L-sentence ¢ we have
A = ¢ if and only if B = ¢.

Remark 2.7. A = B if and only if Th(A) = Th(B). This is just a restatement of
the definition because A = ¢ means that ¢ € Th(A). So A and B are elementarily
equivalent if for any L-sentences ¢, we have ¢ € Th(A) if and only if ¢ € Th(B); that
is, if Th(A) = Th(B).

Example 2.11. It is not easy to show that two structures are elementarily equivalent
without using other tools since, one needs to check all sentences, so we start by giving
some non-examples. Later on, we will see in Proposition 2.1 that models of complete
theories are elementarily equivalent and in Example 2.9 we see that the theory of dense
linear orders without endpoints (DLO) is complete, so by using these two we can say

that two models of this theory are elementariliy equivalent. As an example,

(Q,<) = (R, <).

Some non-examples:

i. Z # 7. 7Z: Integers and direct sum of two copies of integers are not elementarily
equivalent as additive groups in language £ = {+,0}. Being an “even” number
is definable in language of groups by the formula ¢(v) : Jw (w + w = v). Note
that for any two integers x and y either one of them is even or x + y is even. We

can express this property in first order as

qb . Vvazflwlflwgflwg(vl =w; +w Vg =wy+wy Vv + vy = ws + wg).
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However, ¢ does not hold in Z & Z. Consider two elements (0,1) and (1,0) of
7, @ 7. Clearly, neither of them is even and their sum is not even either. Since
Z ST ¢ and Z = ¢ we get the result.

i. (Q,+,-,0,1) £ (R,+,-,0,1): Rationals and reals are not elemetarily equivalent.
Indeed, consider the sentence Jv (v - v = 1 + 1) in language of fields. We have

(Q,+,-,0,1) £ Fv(v-v=1+1) whereas (R, +,-,0,1) FJFv(v-v=1+1).

Proposition 2.1. If A and B are models of a complete theory T, then A= B.

Proof. Let T be a complete theory and let A = 1. First, observe that 7" C Th(.A)
since A = T'. To show that 7" = Th(.A), assume for a contradiction there is a sentence
¢ € Th(A) and ¢ ¢ T. However, since T is complete we would have —¢ € T, which
is a contradiction since A =T and A | ¢. So for any two models A and B of T', we
have T' = Th(A) = Th(B). Therefore, we obtain A = B by Remark 2.7 since their

theories are the same. O

Maps between L-Structures

Definition 2.17. Let A and B be two L-structures. A map o : A — B from the
universes of A to universe of B is called as an L-embedding if the following three

condition are satisfied:

(i.) For all function symbol f € £ with arity n; and for all tuple

a = (ay,ay,...,an,) € A", we have o(fA(a)) = [B(o(ar),...,0(an,)).
A 7 BY
74 j &
A—508

Figure 2.3. Illustration of o(f4(a)) = fF(o(a1),...,0(an,)).



(i

(ii.)
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For all relation symbol R € £ with arity nz and for all tuple

a=(ay,a, .., a,,) € A" we have
a€ R (o(ay),...,0(a,,)) € RP.

For all constant symbol ¢ € £, we have o(c?) = c&.

In other words, an L-embedding o is an injective map that preserves interpre-

tations of all symbols in a language L. If o is also surjective, then it is called as an

L-isomorphism. We denote isomorphic structures as A = B. An isomorphism from A

to itself is called as an L-automorphism.

Remark 2.8. Elementary equivalence is a notion that generalizes concepts of being

isomorphic. Later, we will see that being isomorphic implies being elementarily equiv-

alent. (Theorem 2.4.)

Example 2.12. (i.) Let £ = ) be the empty language. According to this language

all maps are £-homomorphisms, all injections are £-embeddings and all bijections
are L-isomorphisms.
Let £ = {f,c} be a language consisting of one binary function symbol and one

constant symbol. Consider the structures
AZ(N7+’O)7 B=(ZJ+7O)7 C= (R7.71)7

where f is interpreted as ‘+’ (usual addition) in A4 and B and as *-" (usual mul-
tiplication) in C; and ¢ is interpreted as identity element, respectively. Let o) be
the map defined by oy(xz) = x. Clearly, o7 is an L-embedding from A to B, but
it is not an L-embedding from B to C and A to C since interpretation of constant
symbol is not preserved under these maps.

Now, consider the map oy defined by o9(z) = e*. It is an L-embedding from B

to C and A to C.

Definition 2.18. Let A and B be two L-structures such that A C B. A is called as

a substructure of B or B is called as an extension of A if the inclusion map t: A — B

defined by ¢(a) = a for all a € A is an L-embedding. We denote it as A C B.
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Example 2.13. Let £ = {x, e} be the language of groups. Consider the L-structures
A= (R,+,0), B=(Q,+,0) and C = (Q,+,1) where ‘+’ is usual addition and - is
usual multiplication. B is a substructure of A since QQ C R and the inclusion map is
an embedding, but C is not a substructure of A, although Q@ C R, the inclusion map

does not preserve interpretations of constant and function symbols.

Remark 2.9. If there is an L-embedding from an L-structure A into an L-structure
B, we can view A as a substructure of B since B contains an isomorphic copy of A as

a substructure.

Definition 2.19. A is called as an elementary substructure of B, denoted as A < B,

if for any £-formula ¢(v) and for any a € A", we have
A = ¢(a) if and only if B = ¢(a).

Example 2.14. (i.) Let £ = {+,-,—,0,1} be the language of rings. (R,+,-, —,0,1)
is a substructure of (C,+,-,—,0,1), but it is not an elementary substructure.
More precisely, let ¢(v) be the L-formula Jw (w - w = v).

Then, (C,+,-,—,0,1) = ¢(—=1) but (R, +,-, —,0,1) |~ ¢(—1).

(ii.) Let £ = {<} be the language of orders. (N*, <) is a substructure of (N, <) but
not elementary. Consider the formula ¢(v) : Vw (v < w). Clearly ¢(1) is true in
(N*, <); however, it is not true in (N, <). Hence, (N*, <) is not an elementary
substructure of (N, <). Observe that the structures are even isomorphic by the
map sending n to n + 1 (it is order preserving one to one and onto function);
however, the substructure relation is not elementary.

(ili.) Let £ = {x, e} be the language of groups. (2N, +,0) is a substructure of (N, +, 0)
but it is not an elementary substructure. Consider the formula

#(2) : Jv (v+ v = 2) which is true in (N, +,0, <) but not true in (2N, +, 0, <).

Recursive definition of formulas enables us to apply structural induction on the
length on formulas, which is a useful tool for proofs in mathematical logic. The follow-
ing proposition states that substructures are preserved under quantifier-free formulas

and the proof uses the method of induction.
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Proposition 2.2 ( [1, p.11]). Let A be a substructure of B, a € A™ and let $(v) be a
quantifier free formula. Then A |= ¢(a) if and only if B |= ¢(a).

Proof. The proof is based on induction on the length of formulas. So first we will show
that for any term ¢(9) and any a € A", we have t(a) = t#(a) by induction on length

of terms.

e If ¢ is a constant symbol, then clearly t4(a) = ¢* = & = t5(a) since A C B.
e If ¢ is the variable v;, then t4(a) = a; = t5(a).
e Now assume that ¢ is a function symbol f and ?;,1,,...t,, are terms such that

tA(a) = tP(a) for i = 1,2,...,ny, then

!

= Bt @), 1(@). ..t (@) since AC B

Now, we can do induction on formulas to prove the proposition. Let ¢(7) be a

formula,

o If ¢(v) is t; = ty, then

A ¢(v) & t1(a) = ty'(a) & 17 (@) = t5(a) & B | ¢(0).
o If $(7) is R(t1, ts, ..., tn,), then
AE ¢(0) = (11 (a), 15 (@), .. t;, (@) € R
& (t(a), t)'(@), ... ;. (a)) € R®  since AC B
& (t7(a), t5(a), ...t (@) € RE
& B ¢(0).
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So atomic formulas satisfies the proposition. Further, we check other longer

formulas:

e If the proposition is true for ¥ (v) and ¢(v) = = (v), then
AE 6(0) & At §(7) & B 0(7) & B F 6(7).
e If the proposition is true for ¢(7) and 0(v) and if ¢(v) = ¢(0) A 6(v), then

Al 6(0) & A= (@) and A = 0(5) & B = (@) and B = 0(5) < B = ¢(0).

We showed that proposition is true for all atomic formulas and if it is true for ¢
and @, then it is true for =) and 1 A 6. Since the set quantifier free formulas consists
of atomic formulas, negation and conjunction quantifier free formulas, the proposition

holds for all quantifier free formulas. O

Theorem 2.4. Let A and B be two L-structures and let ¢ : A — B be an L-

isomorphism. For any L-formula ¢(v) and for any tuple a € A", we have

AE¢(a) if and only if Bk ¢(o(a)).

In particular, if there is an isomorphism between A and B, then we have A = B.

Proof. The proof of Theorem 2.4 can be found in [1, p. 13]; it depends on induction

on the length of formulas similar to the proof of Proposition 2.2. O

Elementary embedding

Definition 2.20. Let A and B be two L-structures. A map o : A — B is called an

elementary embedding if for all L-formulas ¢(7) and for all tuple @ € A™, we have
A= ¢(a) if and only if B = ¢(o(a)).
Remark 2.10. Isomorphisms are elementary embeddings by Theorem 2.4.

Remark 2.11. Let A and B be two L-structures satisfying A C B. We have A < B

if the inclusion map is an elementary embedding.



21

An equivalent condition of being an elementary substructure that is stated and
proved by Tarski and Vaught is presented as the following theorem. To see that an
extension is elementary, it is enough to look at formulas starting with existential quan-
tifiers with parameters from the substructure that is satisfied above and check that if
they are also satisfied in the substructure. A similar statement is also presented as

Robinson’s Test 2.17 in Section 2.4.

Theorem 2.5 (Tarski-Vaught Test). Let A and B be two L-structures such that A C B.
A < B if and only if for any L-formula ¢(v,w) and for any a € A™; whenever there is
b € B such that B |= ¢(b,a), there is ¢ € A such that B |= ¢(c, a).

Proof. Left to right implication is clear by the definition of elementary substructure.
To prove the converse, suppose right handside holds and we will show that A < B. We
do induction on length of formulas. Previously, we showed in Proposition 2.2 that for
any quantifier free formula ¢(7) and for any a € A", we have B |= ¢(a) <> A = ¢(a) by
using induction on length of formulas. So we just need to prove the existential case to
complete the induction since universal formulas are negations of existential formulas.
Let ¢(a) be the existential formula Jv(v,a). Assume B |= Jvp(v,a). Then, it means
B = ¢(b,a) for some b € B. By assumption of the theorem, we have A = 9(c,a)
for some ¢ € A. Hence, A = Jve(v,a). Conversely, assume A = Jvi(v,a), then
A = (e, a) for some ¢ € A. By induction, B | ¢(c,a) where ¢ € A C B and hence
B |= 3vi(v,a). Therefore, we obtain B = ¢(a) <» A = ¢(a) for every L-formula ¢(7)
and for all @ € A by induction. Hence, A < B. O

Definition 2.21. Let £ be a language and let A be an L-structure. Expand the
language £ by adding new constant symbols for each element of A and call this new

language as L£4. We define the diagram of the L-structure A as

Diag(A) = {¢(ay,...,a,) : ¢ is atomic or negated atomic L-formula

and A = ¢(ay, ..., an) }.

Lemma 2.6 (Diagram Lemma). Let A be an L-structure and let B be L 4-structure
(which is naturally an L-structure as well) such that B |= Diag(A). Then, there exists
an L-embedding from A to B.
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Proof. Let ¢ : A — B be a function defined as ¢(a) = a®. We will show that ¢ is an
L-embedding of A into B:

e Let f be a function symbol. We want to show that ¢(f4(a)) = f2(¢(a)). If

fA@) = ag, then f(a) = ag € Diag(A). Thus, we have f5(a®) = a5 and
fE((@)) = fB(a") = ag = ¢ao) = ¢(f*(a)).

e Let R be a relation symbol. If RA(@), then R(a) € Diag(A) and hence
RS(@) = RE(4(a).

e Let ¢ be a constant symbol. If ¢ = a then ¢ = a € Diag(A). So we have
B =aB = ¢(a) = ¢(c*). Hence, ¢(c*) = cB.

e ¢ is one to one: If a; and ay are distinct members of A, then a; # ay € Diag(.A)

which implies ¢(a1) = af # a5 = ¢(ay). Hence, ¢ is one to one. O

Categoricity

A theory is named as categorical by Oswald Veblen if it has one model up to
isomorphism, in 1904 [7]. However, any theory with infinite models is not categorical
(see Theorem 2.7, since the theory has infinite models it has models of every infinite
cardinality x > |L£| ). Thus, a weaker version of it is defined as follows: a theory T’
is called k-categorical for some infinite cardinal x if it has one model of cardinality
up to isomorphism. Categoricity is a tool to show that a theory is complete. In 1954,
Los and Vaught independently showed that a satisfiable £-theory with no finite models
which is categorical for some infinite cardinal x > |£| is complete. We present this

statement as Vaught’s Test in Theorem 2.8.

Definition 2.22. Let x be an infinite cardinal and let T be an L-theory that has
models of size k. T is called k-categorical if any two models of T" of cardinality x are

isomorphic.

Example 2.15. The theory of dense linear orders without endpoints (DLO) in lan-
guage L = {<} is Ny-categorical. Let (A, <) and (B, <) be two countable models of
the theory and let {a; : i € N} and {b; : i € N} be enumerations of elements of these

structures, respectively. We construct an isomorphism between them by using an ar-
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gument called back and forth. We will construct partial L£-isomorphisms f; between
subsets A; of A and B; of B in such a way |JA; = A, |UB; = B and f = | f; wil
be the desired L-isomorphism. At odd stages we will guarantee that a, € A, and
at even steps we will guarantee that b, € By, for all n > 0 to ensure |JA4; = A and
|JB; = B. Since f; is an L-isomorphism between A; and B;, we should have for all
a,f € A;, a < B if and only if fi(a) < fi(6). We build these partial bijections by

following the steps below.

Step 0. Let Ag = By = () and also fy = (.

Step n. (n is odd, n=2m+1) In such odd steps, we will guarantee that a,, € A,.
If a,, € A,_1, there is nothing to do just let A, = A,_1, B, = B,_1 and f, = f._1.
If a,, ¢ A, 1, then we need to find b € B\ B, such that for all a; € A,, we have
a; < an, if and only if f,(a;) < b. Actually, we have three possibilities for the position

of a,, relative to elements of A,,_:

i. am < aforalla € A, (an, is less than all elements of A,,_1). In this case, choose
some b € B be such that b; < b for all b; € B,_;, such element exists since there
is no endpoint and B,,_; is finite.

ii. There is a;,a; € A,_; such that no element of A, lies between a; and a;, and
a; < am < aj (a, is in between elements of A,). So chose some b € B be
satisfying f,,—1(a;) < b < fn.—1(a;). Such element exists since B is dense.

ili. a < a,, for all a € A,y (a,, is greater than all elements of A, ;). In this case,
choose some b € B be such that b < b; for all b; € B,,_1, such element exists since

there is no endpoint and B,,_; is finite.

So in each case let A, = A, U{an}, B, = B, U{b} and expand f, | by letting
falam) =b.

Step n. (n is even, n=2m) In such even steps, we will guarantee that b,, € B,,.
Again if b,, € B,,_1, nothing to do just let A, = A, 1, B, = B, 1 and f, = f, 1. If
b &€ By_1, then we need to find a € A\ A,_; such that for all a; € A,_; we have
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a < a; if and only if b,, < fn,_1(a;). So we can let f,(a) = b,. By doing the same
argument as in odd stages, we see that such a € A exists. So let A, = A,_; U {a},

B, = B,_1 U{b,} and expand f,_1 by letting f,(a) = by,.

Hence, we obtained an L-isomorphism f = (J f; from A = |JA; to B = |J B;

since all f;’s are partial £-isomorphisms.

Example 2.16. The theory of dense linear orders without endpoints is not
N;-categorical. To illustrate, let A = (R, <) and B = ((—o0,0]U([0,1]NQ)U[1, 00), <)
be two models of the theory, both with cardinality N;. However, they are not isomor-
phic. Suppose, for a contradiction, there is an L-isomorphism f from A to B. So there
is a1, as € A, a; < ay such that f(a;) =0 and f(ay) = 1.

ag
@ R

a; uncountable

countable

0 1 (—o0,0]U ([0,1] NQ) U [1, 00)

Figure 2.4. Mapping A and B.

But this leads a contradiction since the interval [a, as] is uncountable but it has
to map to the countable interval [0,1] N Q under the order preserving map, so they

cannot be isomorphic.

To prove Vaught’s Test, we need to first present the following theorem.

Theorem 2.7. Let T be an L-theory and let k be an infinite cardinal such that k > |L].
We have the following:

i. If T s finitely satisfiable, then T has a model of cardinality at most k.

1. If T has infinite models, then a model of T with cardinality k exists.

Proof. i. For the proof, see [1, p. 38, Theorem 2.1.11]. In the proof, a model is

constructed by adjoining new constant symbols to the language £ so that we can



label all elements of the language by a constant symbol. This method of con-
structing models is called as Henkin Construction which is a useful method that
is also used in the proof of Compactness Theorem (without using Completeness
Theorem).

ii. Let £L* = LU{¢ : i € I} be a new language obtained by adding x many
new constant symbols to £, where [ is an index set of cardinality x. Also, let
T*=TU{c;#c;:i,j€1I;i%# j}bean L*theory. Clearly, any model of T* is a
model of 7" of cardinality at least k. We need to show that T is finitely satisfiable
since by showing this we can conclude that it has a model of cardinality x by part
(¢.). Solet J be a finite subset of  andlet A CT'U{¢; #¢;:4,j€ J; i#j} CT*
be a finite subset of 7. An infinite model A of T is clearly a model of A since we
can interpret each constant symbol ¢; for all j € J with different elements of A.
Since T' does not contain new constant symbols there is no problem with doing
this and since A is infinite, there are enough elements.

Therefore, T™ is finitely satisfiable and we get the result. O

Theorem 2.8 (Vaught’s Test). Let T' be a satisfiable L-theory with no finite models.

If T is k-categorical for some infinite cardinal k > |L|, then T is complete .

Proof. Assume T is not complete. So there is a sentence ¢ such that 7' £ ¢ and
T = —¢. Observe that T'U {—¢} is satisfiable since T' = ¢ and T'U {¢} is satisfiable
since T j= —¢. Since T has no finite models, TU{¢} and T'U{—¢} have infinite models
and thus by Lemma 2.7, they have models of cardinality x for any infinite cardinal
k > |L|. Let k > |L£] be an infinite cardinal and let A =T U{¢} and B =T U {—¢}
such that |A| = |B] = k. We have A # B since A |= ¢ but B | =¢. Thus, A and
B are not isomorphic since they are even not elementariliy equivalent. Therefore, T is

not x-categorical for any infinite cardinal . O

Corollary 2.9. The theory of dense linear orders without endpoints (DLO) is complete

by Vaught’s Test since it is Ng-categorical and has no finite models.
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2.3. Definable Sets and Quantifier Elimination

Given a structure, we study certain subsets of the universe that are called as
definable sets in order to get information about the structure. More precisely, we study
such subsets consisting of elements satisfying a common property; that is, satisfying a
common first order formula. Definable sets can also be seen as definable relations of the
structure and the study of definable sets are important to understand the structure.

The formal definition is as follows.

Definition 2.23. Let A be an L-structure and let X be a subset of A"®. X is called

definable if there is an L-formula ¢(vy, ..., vy, w1, ..., wy,) and b € A™ such that
X={acA": Ak ¢(a,b)}.

We say X is defined by the formula ¢(, b).

b € A™ is called as parameters of the formula ¢(o,0). If the parameters come
from a subset B of A; that is, b € B™ where B C A, then X is called B-definable. If

no parameters are used in formula ¢(7), then it is called (-definable.

Example 2.17. i. Finite Sets are definable in any structure. Indeed, let A be an
L-structure and let X = {a1,as,...,a,} € A. The formula ¢(v) : \/I_, (v = a,)
defines X.

ii. Intervals are definable in a linear order. For example, £ = {<} and let (R, <) be
an L-structure where < is usual order relation defined on Real Numbers.

For «, B € R satisfying a < 3,
(a, ) ={a € R:a <aAa< [} defined by the formula ¢(v) : @ < v Av < f,
(—o0,a) = {a € R:a < a} defined by the formula ¢(v) : v < a ({a}-definable),
(B,00) = {a € R: 8 < a} defined by the formula ¢(v) : < v ({8}-definable).
iii. Let (R,+,-,—,0,1) be Real Number Field in the language £ of rings.

— Algebraic Curves p(z,y) = 0 are definable by ¢(v,w) : p(v,w) = 0 in
(Ra +7"_7O71)'
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— The set of nonnegative real numbers R=0 is definable by the formula ¢(v) :
Jw (v =w?) in (R, +,,—,0,1). No parameters are used in formula ¢(v) so
it is actually (-definable.

— Order Relation is definable in (R,+,:,—,0,1) by the formula ¢(vy,vs) :
Jw [(v2 = v1 + w?) Aw # 0]. We see that (R, +,-,—,0,1) | ¢(a,b) if and
only if @ < b. Again no parameters used, so it is ()-definable.

iv. Let F' be a field and F[z] be a polynomial ring. The Field F' is definable in the
polynomial ring (F[z],+,-, —,0,1). More precisely, F'\ {0} is exactly the set of
units of the ring F[z]; so F' is definable by the formula
o) :Jwv-w=w-v=1)Vo=0]

v. Let £ = {x,e} be language of groups and let G = (G, %9, ¢e9) be an L-structure.
Center of a group G,

X={geG: W (gx%v=0v+99)}

is definable by the formula ¢(v) : Vw (w*9v = v+9w) in the group structure. Also,

centralizer of an element g € G is definable by the formula ¢(v) : (g% v = v9 g).

Quantifier Elimination

Study of definable sets is hard with quantifiers. If we allow more quantifiers,
definable sets become more complicated. So we introduce a concept so called quantifier
elimination. A theory is said to have quantifier elimination if all formulas in the theory
are equivalent to quantifier free formulas. If a theory T eliminates quantifiers, then
definable sets of models of T are become less complicated. Quantifier elimination is
a useful property that lets us to understand the theory better. For example, if T" has
quantifier elimination, this gives a way to decide whether a sentence belongs to a theory

or not (decidability) and gives information about complete extensions of the theory [4].

There are well known examples, which are actually resulting from some algebraic
facts, where formulas with quantifiers are shown to be equivalent to quantifier free

formulas:
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e In (R,+,-,—,0,1,<), an equivalent condition for a quadric polynomial
(av?+bv+c = 0) to have a root is having nonnegative discriminant § = b* — 4ac.
So the formula ¢(a, b, ¢) : Fv (av? +bv +c = 0) is equivalent to the quantifier free
formula ¥ (a,b,c): [a# 0A (0 <b* —4ac)]V (b#0Vc=0)). Indeed, we have

(R,+,+,—,0,1,<) E ¢(a, b, c) if and only if (R, +,-,—,0,1, <) = ¢(a,b,c).

In the field of complex numbers (C, +, -, —,0, 1), however, a quadric polynomial
has a root in any case. So the formula ¢(a, b, ¢) : Jv (av?*+bv+c = 0) is equivalent
to the quantifier free formula v(a,b,c) : (a # 0V (b # 0V ¢ = 0)) in complex
numbers. That is,

(C,+,-,—,0,1) = ¢(a,b,c) if and only if (C,+,-,—,0,1) = ~v(a, b, ¢).

e A second well-known example uses a fact from linear algebra. We know that
a square n by n matrix s invertible if and only if its determinant is 0. So let

(F,+,-,—,0,1) be any field and consider the formula

d(a,b,c,d) : Jvy Jvg Jug Fug[(a-v1+b-v3=1)A(a-va+b-vy=0)
/\(C'Ul‘f'd'vg:0)/\(6'1}2+d'2}4:1)],
.o . U1 U2 . a .
which indicates that the inverse of the matrix exists. So
V3 Uy c d

¢(a,b,c,d) is equivalent to the quantifier free formula ¢)(a, b, ¢, d) : (a-d—c-b) # 0.

Hence, we have

(F,+,-,—,0,1) E ¢(a,b,¢,d) if and only if (F,+,-,—,0,1) E ¥(a,b,c,d).

The formal definition of Quantifier Elimination is as follows.

Definition 2.24. A theory T has quantifier elimination if for any L£-formula ¢(o) there

exists a quantifier free £-formula ) (7) such that

T = Vo (¢(0) > ¥(0)).
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In other words, every L-formula is equivalent to a quantifier free £-formula mod-

ulo 7.

It is not easy to directly show that a theory has quantifier elimination. But some
simple theories such as Dense Linear Orders without endpoints (DLO) can be directly
shown to have Quantifier Elimination [1, Theorem 3.1.3]. In this part of the text, we
want to show that the theory of algebraically closed fields (ACF) eliminates quantifiers.
To be able to prove it, we first need to give some tests that enable us to check a theory

has quantifier elimination.

Theorem 2.10. Let T be an L-theory where L is a language containing at least one
constant symbol ¢ and let ¢(v) be an L-formula. The following conditions are equiva-

lent:

i. ¢(0) is equivalent to a quantifier free L-formula () modulo T'; that is,
T Vo (6(0) © $(7).
it. For any L-structure A, B that are models of T and for any common substructure

D of A and B, we have A |= ¢(d) if and only if B = ¢(d) for all d € D™.

For any A, B =T and A 5

There is a quantifier free for any D such that .

¥ () such that DCAand DCB

A
Y

T =V (¢(v) <> ¢(v)) We have:
A Eo¢(d) & B E¢(d) forall de D"

Figure 2.5. Theorem 2.10.

Proof. (i. = ii.) Let ¢(v) be an L- formula and assume there is a quantifier free £-

formula ¢ (9) such that T = Vo (p(9) <> (9)). Let A, B =T and let D C A, B.
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We have A |= (¢(a) <> ¢(a)) for all a € A™ by assumption. Further, we have:

Al ¢(d) < A= (d)) for alld € D" since D C A
& D = 1(d) for all d € D™ by Proposition 2.2 since D C A and
W(D) is quantifier free
(quantifier free formulas are preserved under substructures)
& B Y(d) for all d € D" again by Proposition 2.2
& B ¢(d) for all d € D™ by Assumption (i.).

Hence we obtained the result.

(7. = i.) Now, let ¢ be a constant symbol in L, let ¢(7) be an L-formula and
assume (74.) is true. We want to show that there is a quantifier free L-formula (7)

such that 1" |= Vo (¢(9) <> 1(7)). Define the set
¥(9) = {o(0) : 0(v) is quantifier free and T |= Vo (p(v) — o(0))},

which consists of quantifier free consequences of ¢(v). Now, to get rid of the free
variables we introduce new constant symbols ¢y, ¢s, ..., ¢,. Replace © by ¢ = (¢1, ¢o, ...cy)

and obtain sentences in extended language.

Claim: TUX(2) E ¢(2).

Suppose the claim holds. Then, by Compactness Theorem there is a finite
subset {01(€),...,0,(¢)} of ¥ such that T'U {01(¢),...,0,(2)} E #(¢). So we have
TU{A_,0:(©)} E ¢(¢) and by Deduction Theorem [3, Theorem 1.3.2] we get
T = (AL, 0i(¢)) = ¢(¢). Equivalently, we obtain

=3

T E Vo ((/\ai(ﬁ)) — ¢(v)) and hence T' = Vo (( /\ 04(0)) <> ¢(0))

1

by definition of 3. Let ¢(7) = A[~, 0:(7), we see that ¥(7) is quantifier free since it is
conjunction of m-many quantifier free formulas. Therefore, we have shown that ¢(v)

is equivalent to a quantifier free formula (o) modulo T
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Now, it only remains to prove the claim to finish the proof. But before proving
it we first observe that if 7' = Vo ¢(?) then we have T |= Vo (¢(7) <> ¢ = ¢) and
if T Vo —=¢(v) then we have T' = Vo (=¢(0) <> ¢ = ¢), or equivalently we have
T &= Vo (¢(0) <> ¢ # ¢). So in both cases ¢(v) is equivalent to a quantifier free
formula modulo 7. Since T' = Vo ¢(v) means that T"U {—¢(9)} is not satisfiable
and T' = Vo —¢(0) means that T'U {¢(9)} is not satisfiable, we can assume that
T U{¢(v)} and T'U {—¢(v)} are satisfiable since we considered the cases where they

are not satisfiable above.

Proof of Claim. We want to show that T"U X(¢) = ¢(¢). Suppose, for a con-
tradiction, T'U X(¢) £ ¢(¢). It means that T'U X(¢) U —¢(¢) is satisfiable, so let
A = T UX(E) U~-¢(@) and consider a substructure D of A generated by the inter-

pretations of constant symbols cf',c3, ..., ¢

cey Ly e

To use the assumption and to get a
contradiction, we want to find an extension of D which is a model of T" satisfying ¢(¢).
Such extension exists if T'U Diag(D) U ¢(¢) is satisfiable and if there is a model of B
of T'U Diag(D) U ¢(¢), then we obtain A |= ¢(¢) by assumption (é.) since A, B = T,
D C A, B and B = ¢(¢), which is a contradiction since A = —¢(¢).

It remains to show that T"U Diag(D) U ¢(¢) is satisfiable. Assume for a con-
tradiction, T'U Diag(D) U ¢(¢) is not satisfiable. Then T'U Diag(D) | —¢(¢) and
by Compactness Theorem, there is a finite subset {7i,..., 7} € Diag(D) such that
T U{A_, 7(@)} = —6(2). Further, we obtain T = (/\5;:1%‘(5) — —¢(€)) by Deduc-
tion Theorem and also we obtain T’ |= (¢(¢) — \/ﬁ:1 —:(€)) by taking contraposi-
tive of the statement. However, since each «; is quantifier free \/ﬁ:1 —;(¢) € ¥; so
A = V', —(¢) and this implies D |= \/\_, =v(¢) by Proposition 2.2 since D C A,
This is a contradiction since each ; € Diag(D), we have D |= /\iz1 7 (€). O

Theorem 2.11. Let T be an L-theory. If for any quantifier free L-formula vy(w, ),
there exists a quantifier free L-formula 1(0) such that T = Vo [Fw ~v(w,v) < ()],

then T' has quantifier elimination.
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Proof. Let ¢(v) be any L-formula. We want to show that there is a quantifier free
L-formula (%) such that T = Vo(4(0) <> ¥(9)). We will do induction on the length

of formulas.

1. Let ¢(v) be an atomic formula. Then, it is already quantifier free; so the statement
holds for atomic formulas.

2. Let ¢(v) be =0(0), we have T |= Vo (0(v) <> (7)) for some quantifier free L£-
formula (7) by induction and equivalently, we have T' = Vo (—6(0) + —)(9)).
Thus, T' = Vo (¢(0) <> —)(0)) where —1)(7) is quantifier free.

3. Let ¢(0) be 0,(0) Aby(T). We have T' |= V0 (01(7) <> 11(0)) and T' |= Vo (02(0) <
15(7)) by induction where (%) and »(0) are quantifier free formulas. By com-
bining these, we obtain 1" = Vo (01(0) A 02(0) <> ¥1(0) A y(7)) and equivalently
T = Y0 (¢(0) < (11(0) ANo(D))) where 101 (0) A1ho(0)) is conjunction of quantifier
frees so it i quantifier free.

4. Let ¢(v) be Jw v(w,v). By induction, we have T | VoVw (y(w,?) <> o(w, D))
where 9o (w, ©) is quantifier free. We also have T' |= Vo (Jw v(w, 0) <> Jw ho(w, 0)).
Now, by using the assumption of the theorem since ¥y(w,?) is quantifier free
there is a quantifier free L-formula ¢(9) such that T' | Vo (Fw ¢o(w, T) <> ¥(0)).
Therefore, T = Vo (¢(v) <> 1(v)) where ¥ (v) is quantifier free.

By induction, we have shown that 7' has quantifier elimination. O

We combine Theorem 2.10 and Theorem 2.11 and obtain the following Corrolary.

Corollary 2.12. Let T be an L-theory and let A and B be models of T'. If for any
quantifier free L-formula ~v(w, ), for any common substructure D of A and B and for
any d € D"; whenever there is an a € A such that A = ~(a,d), there is b € B such

that B = (b, d); then T has quantifier elimination.

Proof. T eliminates quantifiers if for any quantifier free L-formula y(w, o), there is a
quantifier free £-formula ¢ (%) such that 7' }= Vo [Fw v(w, 0) <> 1(7)] by Theorem 2.11.

Also, for Jw v(w, v) such quantifier free L-formula (7) exists if for any A, B |= T and
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for any D C A, B, we have A = Jw y(w,d) if and only if B | Jw ~(w,d) for all
d € D" by Theorem 2.10. So we have the corrolary. O

Theorem 2.13. The theory of algebraically closed fields (ACF) has quantifier elimi-

nation.

Proof. We will use the previous corrolary; so let F; and F5 be two algebraically closed
fields and let D be a common substructure of them. Also, let «(w,?) be a quantifier
free formula and let @ € D™; we will show that if there is e € F} such that F; = (e, a),
then there is f € F, such that F» = ~(f,a) and by applying Corrolary 2.12 we will

obtain ACF eliminates quantifiers.

Since the language of fields is £ = {+, -, —, 0, 1}, a substructure D of algebraically
closed fields is at least an integral domain. Consider the field of fractions F of D and
also algebraic closure F of field of fractions of D. Clearly, F C F; and F C F, since

F1 and F; are algebraically closed fields.

We will show that for any quantifier

free formula v(w, v) and for any @ € (F)";

if there is e € Fy such that F| = v(e, a),
then there is f € F» such that Fy = v(f,a).

We proceed by writing the quantifier free formula ~v(w, 7) in Disjunctive Normal Form
(DNF); that is, disjunction of conjunctions of atomic and negated atomic formulas.
Every quantifier free formula can be written in this form [2, p. 42]. So we have

m 1

y(w,v) = \/ /\ ¢ij(w, D),

i=1j=1
where each ¢; ;j(w, v) are atomic or negation of atomic formulas. If 7y = (e, a), then
we have Fi E i, /\;:1 ¢ij(e,a) and it means that Fy |= /\17:1 ¢ij(e,a) for some
i €{1,2,....,m}. Now, observe that terms in language of fields are consist of addition

and multiplication of variables and constant symbols; so atomic and negation of atomic
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formulas in language of fields are just consist of polynomial equalities p(X) = 0 and
inequalities p(X) # 0 where p(X) € Z[X]. By means of integer coefficients, we actually

mean the terms £(1+1+...+1). If p(X,Y1,...,Y,) € Z[X, Y1, ..., Y,], then for a € (F)"
we have p(X,a) € F[X]. Thus, /\éz1 ¢ j(w,a) is equivalent to

A\pi@) =0~ N\ gi(w) # 0

where each p; and g; is in F[X]. If any of the p;’s are nonzero, then it means that e is
algebraic over F and hence e € F since it is algebraically closed. So we have e € F
since F' C I, and hence F, |= /\;:1 ¢ij(e,a). So assume all p;’s are 0. In this case, we

want to find an f € F, such that
Fo = N\ ai(f) #0.
j=1

Since all g;’s are polynomials, they only have finitely many roots so only finitely many
clement of F' does not satisfy /\§:1 ¢;(z) # 0. Moreover, since algebraically closed fields

are infinite, there is at least one element f of F satisfying /\]"’7:1 g;j(x) # 0. Hence, we

again get Fy = /\221 ¢ij(f,a). O

2.4. Model Completeness

The term model completeness is introduced by Abraham Robinson who was in-
fluenced by the fact that the maps between algebraic structures are rarely elementary
and the cases where they are elementary are important maps such as maps between
algebraically closed fields [7]. As Hodges states, Robinson thought that there should be
a systematic reason of existence of elementary embeddings and introduced the notions
of model completeness and model companions in model theory around 1950s. [2, p.
374] Through this historic motivation, we can call theories as model complete if all

embeddings between its models are elementary. The formal definition is as follows.

Definition 2.25. Let T be a consistent L-theory. T is called model complete if for any
two models A and B of T such that A C B, we have A < B. In other words, every

extension of a model of 7" is an elementary extension.



Remark 2.12. We stated that if all embeddings between models of a theory T are
elementary, then 7' is said to be model complete. This statement is equivalent to
Definition 2.25. Indeed, assume all embeddings between models of T" are elementary,
then for any two models of T satisfying A C B, we obtain A < B since the inclusion
map would be an elementary embedding. Conversely, assume Definition 2.25 and let
o : A — B be an embedding between models of 7. This means that B contains
an isomorphic copy of A as an elementary substructure. Hence, o is an elementary

embedding.

Neither model completeness nor completeness implies each other. To illustrate,

e The theory of algebraically closed fields (ACF) is an example of a model complete
theory which is it is not complete. (see Example 2.18 and Section 2.6.4)

e The theory of dense linear orders with endpoints is complete theory but it is not
model complete. (see Example 2.23)

e The theory of dense linear orders without endpoints (DLO) is both complete and
model complete. (see Example 2.22)

An equivalent condition of model completeness is stated in the following theorem.

Theorem 2.14. A theory T is model complete if and only if for any model A of T,
T'U Diag(A) is complete.

Proof. (=) First, assume 7" is model complete. We want to show that 7" U Diag(.A)
is complete. So let A and B be two models of 7' U Diag(.A). Since B is a model of
T satisfying B = Diag(A), there is an L-embedding o from A into B by Diagram
Lemma 2.6. Moreover, since A and B are models of a model complete theory T, the
L-embedding o from A into B is an elementary embedding. Hence, A = B. Since
arbitrary two models of T'U Diag(.A) are elementarily equivalent, it is complete by the
Proposition 2.1.
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(<) Now, suppose 1" is not model complete. It means that there are models A
and B of T where A is a substructure of ; but, A is not an elementary substructure of
B. That is, there is an L£-sentence ¢(a) such that B |= ¢(a) but A [~ ¢(a). However,
this implies that the £ 4-theory TU Diag(.A) is not complete since A, B = T'U Diag(A),

B = ¢(a) but A [~ ¢(a). O

As it is stated previously, quantifier elimination is a nice property that theories
may have. In the following theorem, we show that if a theory has quantifier elimination,
then it is model complete. So proving quantifier elimination for the theory 7" is one of

the ways to show that a theory is model complete.

Theorem 2.15. If a theory T eliminates quantifiers, then it is model complete.

Proof. Assume T has quantifier elimination, and let A and B be two models of T" such
that A C B. We want to show that A < B. So let ¢(7) be an L-formula and a € A™.
Since T has quantifier elimination, there exists a quantifier free L-formula (v) such
that T |= Vo(¢(v) <> ¢ (?)). So we obtain A, B = (¢(a) <> 1(a)) since A and B are
models of T"and a € A™ C B™. Moreover, since quantifier free formulas are preserved

under substructures by Proposition 2.2, we get
A= ¢(a) < A= 1(a) since A = (8(a) <> ¥(a))
& B = (@) by Proposition 2.2 since (%) is quantifier free and A C B
& B = ¢(a) since B |= (¢(a) < ¢(a)).

Hence A < B. O

Example 2.18. The previous theorem shows that the theory of algebraically closed

fields is model complete since it has quantifier elimination (Theorem 2.13).

Remark 2.13. Converse of the Theorem 2.13 is not true. For example, the theory
ACFA, the model companion of the theory of fields with an automorphism, is model
complete but it does not eliminate quantifiers. (Model companion of a theory will be

discussed later in detail.)
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Model completeness can be a tool to show that a theory is complete. At the
beginning of this section, we saw that model completeness does not imply completeness,

but with an additional condition, it actually does.

Definition 2.26. Let 7" be an L-theory and let P be a model of T'. P is called a prime

model of T" if it can be embedded into every model of 7.
Remark 2.14. A prime model of a theory T is unique up to isomorphism, if it exists.

Example 2.19. Let T be the theory of fields of characteristic 0, the rational number
field Q is a prime model of T'. Similarly, if T"is the theory of fields of characteristic p,

then [, is a prime model of T'.

Theorem 2.16. If a theory T is model complete and has a prime model, then it is

complete.

Proof. Let P be a prime model of T" and let A and B be two models of T. So there
is an embedding from P to A and P to B by definition of prime model. Since T’
is model complete, we observe that these embeddings are elementary. Therefore, we
obtain P = A = B. Since arbitrary two models of T is elementarily equivalent, T is

complete by the Proposition 2.1. O

Example 2.20. We have shown that the theory of algebraically closed fields is model
complete since it eliminates quantifiers in previous example. Consider the theory of
algebraically closed fields with characteristic p, where p is any prime number and denote
it as ACF,. Since ACF is model complete and any model of ACF,, is also a model of
ACF, ACF, is also model complete. Also, since ACF, has a prime model, we apply

the previous theorem and obtain ACF, is complete.

We proceed by defining what does it mean for a model to be existentially closed.
After that, we will see that it is directly related with model completeness. But first of

all, we need to give related definitions.

Definition 2.27.  i. An L-formula ¢(v) is called existential formula if it is of the

form Jw (v, @) where (0, W) is quantifier free.
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ii. An L-formula ¢(v) is called universal formula ¢(v) if it is of the form Vw (v, @)
where (7, @) is quantifier free.

iii. An L-formula ¢(?) is called V3-formula if it is of the form Vo Jw ¢)(0, w) where
(v, w) is quantifier free.

An L-theory is called as V3-theory if it can be axiomatized by V3-sentences.

Definition 2.28. Let 1" be an L-theory. A model A of T' is called existentially closed
model of T if for any extension B of A C B such that B = T and for any quantifier

free £ 4-formula ¢(7), we have
AEJoe(v) ifand only if B E Jo¢(0).

Example 2.21. Consider two models of the theory of fields Q and Q[\/ﬁ], and let
¢ : v (v-v = 2) be an existential Lg-sentence. Clearly, Q C Q[v/2] and Q[v/2] |= ¢,
but Q ¥~ ¢. So Q is not an existentially closed model of the theory of fields. This also
shows that the theory of fields is not model complete due to the fact that there are two

models where the substructure relation is not elementary.

In the following theorem, which we named as Robinson’s Test, we show that if a
theory is model complete, then all models of the theory are existentially closed. Also,

some other equivalent conditions of model completeness are stated.

Theorem 2.17 (Robinson’s Test). Let 1" be an L-theory. The following condions are

equivalent:

(i) T is model complete.
(1i) Every model of T is existentially closed.
(111) For every existential formula ¢(v), there is a universal formula 1)(0) such that
T |=Vo(o(0) < ¢()).
(iv) For every formula ¢(v), there is a universal formula 1(v) such that

T Vo(6(5) ¢ 0(7)).
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Proof. (i) = (ui) is clear by definition.
(1) = (iii) Assume that every model of T is existentially closed. Let ¢(%) be an

existential formula and consider the set
() = {o(?) : 0(D) is universal and T = Vo (p(v) — o (D))}

Expand the language £ by adding new constant symbols ¢y, ¢s, ..., ¢, and replace free
variables ¥ with ¢ = (¢q,...,¢,) to get rid of free variables and obtain sentences in

extended language.
Claim: T'U X(¢) = ¢(2).

Assume we have the claim. By Compactness Theorem, there are finitely many sen-
tences 01(¢), 02(¢), ..., 0,(¢) € ¥ such that T'U{o1(¢) Ao2(E)A...AN0,(¢)} = ¢(¢) and by
Deduction Theorem [3, Theorem 1.3.2] we obtain 7' = (01(€) Ao (E)A... A0y, (¢)) — ¢(C).
Hence, we get T' = (01(¢) Ao2(E)A... A0, (€)) <> ¢(¢) by combining previous result with
definition of 3. Equivalently, we obtain 1" |= Vo ((01(0) A 09(0) A ... A 0, (D)) <> ¢(D)).
The desired universal formula 1 (7) is obtained from (oy(9) A 02(7) A ... A 0,(7) by
moving their quantifiers to the front. We have T' = Vo(¢(0) > ¢ (v)) where ¥(?) is

universal.

Proof of Claim. We want to show TUX(¢) = ¢(¢). We can assume that 7'U X(¢)
is consistent because otherwise the claim is automatically true.
Let A be a model of T'U X(¢) such that ¢! = a; for i = 1,...,n. We want to show
that A = ¢(a). Since ¢(a) can be viewed as an existential £,-formula and A is
existentially closed by assumption, it is enough o show that ¢(a) is satisfied by some
extension of A that is a model of T. To show that such extension exist, we will
show that T'U{¢(a)} U Diag(A) is satisfiable. By Compactness, it is enough to show
that T"U {¢(a)} U Diag(A) is finitely satisfiable, so let {6(a),02(a),...,0,(a)} be a
finite subset of Diag(A) and let 0(a) = 6,(a) A 62(a) A ... A 0,(a). We can assume
that T"U ¢(¢) is consistent, otherwise we would have T' = Vo —¢(?) which implies
that X(¢) is inconsistent. So it is enough to show that 7" U {¢(a)} is consistent with
f(a); that is, TU {¢(a)} = —0(a). Assume, for a contradiction, T"U {¢(a)} = —6(a).
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Replace each element of A appearing in the formula (@) by variables v; except a; for
i =1,...,n (Since a; are interpretations of constant symbols ¢;). So the assumption is
equivalent to T'U {¢(a)} = —(30 0(v,a)). By Deduction Theorem [3, Theorem 1.3.2],
we obtain T |= ¢(a) — Vo —6(a,v) which implies that Vo —6(a,v) € X(a). However,
since A =T U X(a), we get A = Vo —0(a,v); and also since 0;(a) € Diag(.A), we have
A |= 30 0(v,a), which is a contradiction. Hence, T'U {¢(a)} U Diag(.A) is satisfiable.

Since T'U{¢(a)} U Diag(.A) is satisfiable, it has a model B which is an extension
of A (by Diagram Lemma 2.6) such that B =T and B = ¢(a). Hence, A = ¢(a) since

A is existentially closed in B.

(741) = (iv) Proof depends on induction on length of formulas.

1. If ¢(7) is an atomic formula, it is clearly equivalent to a universal formula
() : Yo ¢(v) (actually, we can consider quantifier free formulas as universal
formulas since we can basically add universal quantifiers to the beginning with
new variables, where those variables do not appear in the formula); that is, we
have T' = Vo (¢(0) <> 1(0)).

2. Let ¢(7) be =0(v). By induction, we have T = Vo (6(7) <> ~(9)) for some
universal formula (7). Equivalently, we have T' = Vo (—0(7) +» —(7)) where
—y(7) is an existential formula. By part (iii), we know that every existential
formula is equivalent to a universal formula modulo T, so there exists a universal
formula () such that T' |= Vo (—y(9) <> (). Therefore, we have
T = Vo (¢(0) <> ¢(0)) where ¢(?) is universal.

3. If ¢(0) is 01(0) A 02(0), then by induction we have T = Vo (6,(0) <> ¢1(0)) and
T = Vo (02(0) <> 12(0)) where ¢1(0) and (0) are universal formulas; hence,
T = V0 (01(0) N0(D) > 11 (T) Abe(D)). By moving quantifiers of 1 () A1o(?) to
the front, we obtain a universal formula ¢ (7) such that T' = Vo (¢(0) <> 1(7)).

4. If ¢(v) is YV 6(v,w), then by induction we have T = VoV (0(0, @) <> (7, w))

,W))

1

where (7, @) is a universal formula. Hence, T' = Vo (Vwl (v, w) < Vy(
e

?(0)
where V@~ (0,w)) is universal. (In this step of induction, we can either check the
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formulas with existential quantifiers or universal quantifiers since 3w (7, @) =
—V(—y(v,w)) and Vo (v, w) = =Jw(—y(v,w)). By showing for one of them,
we also have the other since we have already do the induction for negations of

formulas.)

(iv) = (i) Let A, B |= T such that A C B. Also, let ¢(7) be an L-formula and
a € A", we want to show that A = ¢(a) if and only if B |= ¢(a). So first assume
B E ¢(a). Since B is a model of T and since T | Vo (¢(0) <> 9(0)) for some
universal formula ¢ (#) by assumption (statement (iv)), we have B |= ¢(a). Because
of the fact that (a) is universal, there is a quantifier free formula 6(a, ) such that
Y(a) = Vo 0(a,v). So we have B |= 6(a,b) for all b € B™. Also, since A C B we
have B |= 6(a,b) for all b € A™ and since quantifier free formulas are preserved under
substructures by Proposition 2.2, we obtain A = 6(a, b) for all b € A™ and this implies
that A |= Vo 6(a, v); that is, A = ¢(a). Hence, A = ¢(a) since A = Vo (¢(7) > 1(D)).
Therefore, we have B = ¢(a) implies A = ¢(a).

If we assume that B = ¢(a) the argument is very similar. It is equivalent to
B = —¢(a), so we can easily show that this implies A = —¢(@) same as previous part.
So we have A = ¢(a) if and only if B = ¢(a) for all @ € A". Hence, T is model
complete. O

Remark 2.15. Statement (iv) is also equivalent to the following statement:

(iv*) : For every formula ¢(0), there is an ezistential formula ¥ (0) such that

T V5 (6(5) ¢ $(7)).

To observe this, assume a formula ¢(?) is equivalent to a universal formula.
Since every universal formula V@~ (w,?) can be written as —3w —y(w,7) and since
every (existential) formula is equivalent to a universal formula by statement (iv), by
negating this universal formula we obtain an equivalent existential formula. Conversely,
assume a formula ¢(7) is equivalent to a existential formula. Since every existential
formula Jw~(w, v) can be written as =Vw —y(w, v) and since every (universal) formula

is equivalent to a existential formula by statement (iv*), by negating this existential
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formula we obtain a universal formula. Thus, (iv) < (iv*).

Remark 2.16. In the proof of Theorem 2.17 and Theorem 2.10, we expand the lan-
guage by adding new constant symbols, then get rid of the free variables and obtain
sentences in extended language. It is an important technique since Deduction Theo-

rem [3, Theorem 1.3.2] is only applicable to the cases where there is no free variable.

Example 2.22. The theory of dense linear orders without endpoints (DLO) is model
complete. We can show this by using condition (ii) in Theorem 2.17. Let A = (A, <)
and B = (B, <) be two models of the theory such that A C B. We want to show that
A is existentially closed in B. So let ¢(a) : 30 ¢(v,a) be an existential £ 4-sentence.
Since the language consists only of an order relation, the existential sentence ¢(a) can
only describe the positions of elements with respect to ay, ..., a,. So we will show that
if such elements exists in B at these positions (or we may say if the positions that
are described by the formula is meaningful), we can also find some elements in A lies

exactly in the same position with respect to the elements aq, ..., a,.

Assume, without loss of generality, that a; satisfies a1 < ay < ... < a,. Consider
the position b; with respect to a;’s. First case is to consider is b; = a; for some 1,
but then a; itself is the element in that position in A; so this is the trivial case. If b;
is different from all a;’s, then either of the three statement holds: it may be smaller
than all a;, or it may be bigger than all a;, or it lies in some interval [a;, a;11] for some
i=1,2,...,n— 1.
or or

by by by
0 . oo . . i B

ay az a; 41 Up—1 Gn

[ ]

Figure 2.6. All possible places of by relative to a;’s.

In any case, we can find an element ¢; in A having the same position with b; with
respect to the elements a; since A is a dense linear order with no endpoints. Similarly,
by doing this for all b;, 7 = 1,2,...,m; we get

A= (¢, a) if and only if B = (b, a).

Hence, A |= ¢(a) if and only if B = ¢(a) for all a € A". We showed that an arbitrary
model of DLO is existentially closed. Hence DLO is model complete.
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Example 2.23. The theory of dense linear orders with endpoints is not model com-
plete. Consider two models A = ([0,1],<) and B = ([0,2],<) of the theory which
satisfies A C B. The existential £-sentence Jo(1 < v) is satisfied in B, but it is not
satisfied in A. Hence, A is not existentially closed which shows that the theory is not

model complete.

2.5. Model Companion

In this section, we will define model companion of a theory and discuss properties

of theories with model companions, whenever they exist.

Definition 2.29. Let 7" be an L-theory. An L-theory 1™ is called model companion

of T if the following three conditions are satisfied:

e 7™ is model complete.
e Every model of T" can be embedded into a model of T™.

e Every model of 7™ can be embedded into a model of T

A theory is called companionable if it has a model companion. Moreover, if a
theory is companionable, model companion of the theory is unique up to equivalence
of theories; i.e., if T* and T™* are model companions of 1T', then models of T* and T™*

are the same. (Theorem 2.22)

Example 2.24. i. The model companion of the theory of fields is the theory of
algebraically closed fields (ACF).
ii. The model companion of the theory of linear orders is the theory of dense linear

orders without endpoints (DLO).

We know that DLO and ACF are model complete theories as they are verified
before in the text. Also, other conditions in definition can be checked easily. The
purpose of this thesis is to study the concept of model companionability in detail. In
this section, we will investigate the properties and we will present more examples in

Chapter 3.
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Definition 2.30. An L-theory T™ is called the model completion of an L-theory T if

we have the following:

e 1™ is the model companion of T

e For every model A of T', T* U Diag(.A) is complete.

According to definition above, a model companion 7™ of 1" is called model com-
pletion if for any two extensions of A that are models of T are elementarily equivalent

as L 4-structures.

To give an equivalent condition for being a model completion of a theory, we first

define the following property.

Definition 2.31. Let 7" be an L-theory. T is said to have amalgamation property if
A, B and C are models of T and f: A — B, g : A — C are L-embeddings, then there
exists a model A’ of T" with embeddings " : B — A’, ¢’ : C — A’ such that the diagram

commutes.

Figure 2.7. Amalgamation property.

Example 2.25. The theory of fields has amalgamation property. More precisely, if two
fields F; and F5 have a common subfield F', then we can look at their tensor product
over F' since they have the same characteristics and the field of fractions of the tensor
product F} ®p Fy is a field that contains both F} and F,. Therefore, the theory of

fields has amalgamation property.

Note that having a common subfield is crucial to extend two fields to a common
field. For example, we may have two fields with different characteristics and in this

case we cannot extend them to a common field.



Theorem 2.18. Let T be the model companion of a theory T'. The following are

equivalent.

e T is the model completion of T.

e 1" has amalgamation property.

Proof. (=) Assume T* is the model completion of T'. Let A, B, C be models of T" with
embeddings f: A — B and g: A — C. Then, embed B and C into the models B' and
C' of T*, respectively. Observe that B’ and C’ are also models of the complete theory
T* U Diag(A). We claim that an extension 4’ of B" and C’ satisfying B’ C A" and
B' C (' exists; that is, we claim that 7* U Diag(A) U Diag(B) U Diag(C) is satisfiable.
Suppose the claim holds, then we can embed A’ into a model D of T" and this completes
the proof since we obtain embeddings f' : B — D and ¢’ : C — D that shows 1" has

amalgamation property.

T T 1™ T T
B _embed
B_——%B, ,
/ TN
0T
A A —>7D
-
g -
=T g
C embed C,

Figure 2.8. Ilustration of the first part of the proof of Theorem 2.18.

It remains to show that 7™ U Diag(.A) U Diag(B) U Diag(C) is satisfiable.
Assume for a contradiction, it is not satisfiable. Then by Compactness Theorem there
are finite subsets {61,...,6,} C Diag(A) and {~1,...,v%m} C Diag(B) such that
T*U Diag(A)U{A;_, 0:} U{A\j=, 7;} is not satisfiable. Expand the language by adding
new constant symbols for the elements that are used in 6; and ~; and denote them as
6;(¢) and ~;(¢) in new language. We see that T* U Diag(A) U{A_, 6;(¢)} is satisfiable
since B |= T*UDiag(A) and 6; € Diag(B) implies B = A}, 0;(¢). Now, observe that if
T*U Diag(A) U{3v (A2, 0:(9))} E J0 (AJZ, 7;(9)), then by interpreting the constant
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symbols as witnesses of these existential sentences, we see that

T*UDiag(A)U{ AL, 0:}U{ AL, 75} is satisfiable which contradicts with the assumption
that it is not satisfiable. So we should have

T* U Diag(A) U{3o (AiZ, 0:(9))} = 30 (AL, 7;(0)); that is,

T* U Diag(A) U {F0 (AL, 0:(9))} E Vo (V)L —v;(7)). However, since B are C are
models of the complete theory T'U Diag(.A), we have B = 30 (A, 6;(v)) implies C =
3o (A, 0:(0)) and hence we obtain C k= Vo —;(?) for some j, which is a contradiction

since v; € Diag(C). Hence, 1™ U Diag(A) U Diag(B) U Diag(C) is satisfiable.

(<) Assume T has amalgamation property and let 7% be model companion of 7.
Also, let A be a model of T" and let B’ and B” be models of the £ 4-theory T*UDiag(A).
We will prove that 7'U Diag(.A) is complete by showing B’ = B”.

1. Since B',B" |= Diag(.A), there are embeddings f : A — B and g : A — B” by
Diagram Lemma 2.6.

2. We can embed the models B’ and B” of T into models A’ and A” of T', respectively
since T™ is the model companion of T
Thus, there are embeddings from A |= T into models A’ and A" of T'.

3. By amalgamation property of T, there is a model A" of T such that A’ and A"
embeds into A"'; that is, there are embeddings f': A" — A" and ¢ : A" — A".

4. As a last step, we embed the model A" of T into a model B” of the model

companion 1™ of T'.

A n 1
A —>B

Figure 2.9. Ilustration of the second part of the proof of Theorem 2.18.
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Since T* is model complete and B' C B” and B” C B"”, we have B’ < B” and
B” < B". Also, since A is contained in both B’ and B”; for all a € A" and for all

L-formula ¢(v) we have

B' | ¢(a) & B” | ¢(a) < B" = ¢(a).

Hence, B’ = B" as L -structures. Since two arbitrary models of 7% U Diag(A) are
elementarily equivalent, the theory T*U Diag(.A) is complete by Proposition 2.1. Thus,
T™ is the model completion of 7T'. O

Corollary 2.19. ACF is the model completion of the theory of fields.

Proof. The theory of fields has amalgamation property by Example 2.25, so the model
companion ACF of the theory of fields is the model completion of the theory of fields
by Theorem 2.18. ]

Inductive Theories

Definition 2.32. Let (I, <) be an ordered set. A set of L-structures (A; : i € I) is
called:

i. a chain if for any ¢ < j, we have A; C A;.

ii. an elementary chain if for any i < j, we have A; < A;.

Let (A; : i € I) be a chain. We construct an L-structure A = |J,, A; satisfying
Ai € U;e; Ai as follows:

1. The universe of A is (J;; 4i.
2. Let ¢ be a constant symbol in £. Observe that ¢4 = ¢4 for all i < j since

A = ¢Ai for some i € I.

A; € Aj. So we can define A as ¢
3. Let f be a function symbol in £, we define fA as Uier fiAi. This definition
is well defined because for a € A", there exists 4; containing a and we have

fAi(a) = fAi(a) for all j > i since A; C A;.
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4. Let R be a relation symbol in £ and let @ € A”. We define R4 as |J,, RA.
Proposition 2.3. Let (A; : 1 € I) be an elementary chain of L-structures, then for all

i€, A=, A is elementary extension of A;.

Proof. Let ¢(0) be an L-formula. We will show that for all a € A?,

As b= 0(a) if and only if A 6(a).  (+)

The proof is by induction on length of formulas. We know by Proposition 2.2 that if
¢(v) is quantifier free, then the statement (%) holds since A; C A. So if ¢(9) is an
atomic formula we clearly have the statement, and the cases where ¢ (%) is in the form
—p(0) and 1 (0) A ¢(0) are also shown in Proposition 2.2. So it only remains to show
that we have the statement (x) is true for ¢(v) : Jw ¥ (w,v). If A = ¢(a), then there
exists b € A such that A |= ¢(b, a) and there exist a structure A; for some j > 4, such
that b € A;. We have A; = ¢(b,a) by induction hypothesis and hence A; = ¢(a).
Since the chain is elementary, we have A; C A; which implies that A, = ¢(a). If
A W= ¢(a), then for any b € A, AW~ (b,a). So by induction hypothesis, A; ¥~ ¢(b, a)
for any j > ¢ and for any b € A;. Hence, A; K ¢(a). O

Definition 2.33. An L-theory T is called inductive if it is closed under unions of
chains of models. That is, for any chain (A; : i € I) such that A; =T for all i € I, we
have | J;c, Ai = T.

Example 2.26. (i) The theory of fields is inductive since union of any towers of
fields is again a field. Also, the theory of groups, the theory of rings are inductive
theories.

(ii) The theory of dense linear orders with endpoints is not inductive. Consider the
chain of models (A; : ¢ > 1) where A; = ([—i,4],<). We see that J;~, A; is
not a model of the theory of dense linear orders with endpoints since it has no

endpoints.

Theorem 2.20. If T is a model complete theory, then it is inductive.

Proof. Let T be a model complete theory, let (I, <) be some ordered set and consider

a chain (A; : 4 € I) of models of 7. Since T" is model complete, (A; : i € I) is an
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elementary chain, so by Proposition 2.3 we have A; < J,c; A for all i € I. Since all
A; =T, we have J,.; Ai = T. Hence T is inductive. O

Remark 2.17. The converse of the above theorem is not true. To illustrate, the theory

of fields is inductive but it is not model complete.

The following theorem states that if a theory is inductive, then its axioms consist
of V3-sentences; that is; sentences in the form V3w (0, @) where ¢ (0, @) is quantifier

free. The converse of this statements is also true.

Theorem 2.21. T is inductive if and only if it is a V3-theory.

Proof. (<) Let T be a V3-theory and let (A; : i € I) be a chain of models of 7. We

will show that J,.; A; = T. So take a sentence ¢ € T, we know that ¢ is of the form

iel
Vo 3w (0, w) for some quantifier free formula (v, w). Let @ € (J,.; A, then there
exists ¢ € I such that a € A?. Since A; = Vo Jw (0, w) we have A; = 3g¢(a, 7).

We proceed as,

A; = Joy(a, w) = A; = ¢(a,b) for some b e AT
= U A; = (@, b) by Proposition 2.2 since A; C U A; and (0, )

1€l 1€l

1S quantifier free.

= | JAi | 3w (a, o).

il
= U‘Ai = Vodw (v, w) since a € U A; was arbitrarily chosen.
icl icl
Hence, (J,.; Ai |= ¢ for all ¢ € T'. Therefore, T" is inductive.

(=) Suppose 7" is an inductive theory and let
Y ={¢: ¢ is VI-sentence and T = ¢}.

We will show that the models of 7" and ¥ are exactly the same. Clearly, T' = ¥ by
definition. To show that ¥ |= T, let A = ¥. We will build the following chain of

L-structures



A=AOCB0CA1CB1CAQQBQQ...

where each B; =T and (A; : i € N) is an elementary chain, and prove that A = 7.

1. First of all, we will show that there exists B =T such that for any
IV-sentence 1, A |= 1) implies B |= 1. So let A = {4 : ¢ is IV-sentence and A |= 1)}.

Claim 1: T U A is satisfiable.

Assume for a contradiction, 7" U A is not satisfiable. So by Compactness Theorem
there is a finite subset {41, ...,0,} C A such that TU{dy,...,d,} is not satisfiable. Add
new constant symbols to the language for the elements that are used in each d; and
denote these sentences as 9;(¢) in the new language. Notice that if 7= 30 A", 0,(9),
then by interpreting constant symbols as witnesses to existential sentence we obtain
TU{0y,...,0,} is satisfiable which contradicts with the assumption that T"U{dy, ..., 0, }
is not satisfiable. So we have 1" j= 35 A, ;(0); that is, we have T' = Vo /%, =0;(D)
which implies that Vo \/]", =6;(7) € X. Alsosince A |= X, we have A = Vo /[, =6;(D).
However, this is a contradiction due to the fact that A = 3o A", 6;(0) by definition
of A.

2. Now, we will show that there exists By such that A C By and B = B,.

Claim 2: Th(B) U Diag(.A) is satisfiable.

Suppose for a contradiction, Th(B)U Diag(.A) is not satisfiable. Then by Compactness
Theorem there is a finite subset {0, ..., 0,,} C Diag(A) such that Th(B) U{A\", 6;} is
not satisfiable. Replace the elements that are used in #; by new constant symbols and
denote sentences in expanded language as 6;(¢). Observe that if Th(B) = 3o A~ 0;(9).
then we obtain Th(B) U {A\;%, 6;} is satisfiable which contradicts with the assumption
that Th(B) U {A;", 6;} is not satisfiable. So we have Th(B) [~ 3o A, 6;(7); that
is, Th(B) &= Vo \/i-, —0;(v). Note that we have A k= 1 implies B |= ¢ for all 3v-
sentences v, so B = —)p implies A |= —) where =) is a V3-sentence. But then we



obtain A = Vo \/[*, —6;(7), which is a contradiction since 6; € Diag(A).

3. Lastly, we show that there exist A; such that By C A; and A < A;. Clearly
a model of Diag(By) is an extension of A since A C By. Due to the fact that the
extension should also be an elementary extension of A, it should satisfy all existential

L 4-sentences satisfied by A. So let Th3(A) denote the existential £4-sentences satis-
fied by A.

Claim 3: Th-(A) U Diag(By) is satisfiable.

Suppose the claim is false. Then by Compactness Theorem there is a finite subset
{e1,...,ex} C Tha(A) such that { A\, ¢;} U Diag(By) is not satisfiable. Like in previous
parts, we replace the elements that are used in each ¢; by new constant symbols and

denote them as €;(¢) in new language. We have

k k
Diag(Bo) = 30 /\ €i(0) = Diag(Bo) = Vo \/ =ei(0)
i=1 i=1
k k
= By E Vo \/ —¢;(0) = B E Vo \/ —€;(0) since B = By
i=1 i=1
k
= AEVo \/ —¢;(0) by definition of A
i=1

since —e¢;’s are universal sentences.

It is a contradiction since A = 30 A €;(7). Hence there is A; such that A = Ay C
By C A and A=A < A,

By iterating these stages, we obtain the desired chain. Notice that 7" is inductive
and each B; = T, so we have o, B, = U2, Ai = T and also since (A; : i € N) is
an elementary chain, we have A = |J;°, A; = T that is, we have A |= T. Therefore,
Y = T. Due to the fact that ¥ consists of ¥3-sentences and since models of ¥ are
exactly the same as models of T, this shows that T is can be axiomatized by Vd-

sentences. O



Theorem 2.22. If T is companionable, model companion T of T is unique up to

equivalance of theories.

Proof. Let T and T** be two model companions of the theory T and let Ay be a model
of T*. We will show that A is also a model of T**. Since T™* is a model companion,
we can embed Ay into a model A of T, and since 77 is also a model companion, we
can embed Aj into a model A; of T**. Thus, we can embed a model Ay of 7% into
some model A; of T**. Similarly, we can embed a model A; of T** into a model A, of

T™* and by proceeding this way, we obtain the chain

Moreover, since T and T™* are model complete theories, we also have two ele-

mentary chains,

T* T**
Ao Ao i A <o Al s A A
We have Ay < LJAQZ =U Al We have A; < UA21+1 :U A
i=0 i=0 i—0 =0
by Proposition 2.3. by Proposition 2.3.

We obtain Ay = [J;2, Ai = A and hence Ay = T**. We showed that a model of
T™ is also a model of T**. Therefore, models of 7™ and T™* are exactly the same; that

is, the theories are equivalent T = T™**. O

Theorem 2.23. Let 1" be an inductive theory. Every model of T can be extended to

an existentially closed model of T

Proof. Let A be a model of T and let {¢; : i < k} be an enumeration of all existential

L 4-formulas. We will construct an extension A' of A such that whenever ¢; is satisfied



by an extension of A! that models 7', then it is also satisfied by .A'. We build the chain
A=A C A CAC..CAC..

recursively as follows:

i. Let A= A,.
ii. n'* step: Let A, be constructed. If there is an extension of A, that models 7" and
¢n, then let A, .1 be this model. If there is no such model, then let A, = A,.
iii. At limit ordinals A, let Ay = |J,_, Ai. Since T' is inductive, we have Ay = T.
iv. Lastly, let A' = A,..

i<

Clearly, if there is an existential £ 4-sentence satisfied by an extension of A' that models
T, it is equal to ¢; for some i < k; so A; 41 | ¢;. Since ¢; is an existential sentence, we
can write it as 39 0;(9) where 6;(9) is quantifier free. So A; = 6;(a) for some a € A?

and we have A! |= 0;(a) by Proposition 2.2 since A;;; C A'. Hence A, = ¢;.

Likewise, we can construct an extension A% of A! by applying the same technique
that is presented above and A2 has the property that whenever an existential £ :-
sentence is satisfied by extension of A? that is a model of T', it is also satisfied by A2

By iterating this process we obtain the chain
A=ACcA CcACAC...

Take the union of this chain and let A.. = [J;2, A" Let us show that A, is existentially
closed. Let 1(a) existential sentence with parameters from A.., that satisfied by an
extension of A.. modeling T. Then there exists j such that @ € (A7)" and since v)(a)
is an existential £~ sentence, we have A7t = 1(a). Also since A7*! C A and 1(a)
is an existential sentence, we have A = ¢(a) (this is proved in previous half of the

proof). Hence, A.. is the desired existentially closed extension of A. O

Theorem 2.24. Let T be an inductive theory.

i. If the model companion T™ of T exists, then models of T* are exactly the existen-

tially closed models of T .



1. T 1s companionable if and only if the class of existentially closed models is ele-

mentary.

Proof. i. Assume that T™ is the model companion of an inductive theory T'. First, we
assume A = T and we will to show that A is an existentially closed model of 7. We
will first show that A = T'. Start by embedding A into a model B of T and then embed
B into a model A’ of T*. Obviously, we can do this since T* is model companion of 7T'.
Also, observe that A < A’ since T* is model complete.

T T

A

v e
eeligigfgé Yr Ibbed
A embed B
_

Figure 2.10. First diagram demonstrating the proof of Theorem 2.24.

Now the claim is; every existential sentence with parameters from A satisfied by
B is also satisfied by A. So let ¢(0) be an existential formula and let @ € A™. Assume
B = ¢(a). Then since we can view B as a substructure of A’; that is, B C A’, we
directly have A" }= ¢(a). Moreover, since A < A’, we have A = ¢(a). Hence, we
showed that

B = ¢(a) implies A = ¢(a).

By using this fact, we will show that A = T. Since T is an inductive theory, T is
V3-theory by Theorem 2.21. So let ¢» € T such that ¢ = Vo3w6(v,w). We have
B |= V93w §(v,w) since B = T and it means that B }= 3w (b, w) for all b € B". Also,
since A C B, we have B |= Jwf(a,w) for all @ € A™. Now, we have an existential
sentence with parameters from A that is satisfied in B; by the above fact, we obtain
A = Jwé(a, w) for all @ € A™ which is equivalent to A = Vo3dw (v, ).

Therefore, A =1T.

It remains to show that A is an existentially closed model of T, so let B’ be an
extension of A such that B’ = T and let 306(0,a) be an existential sentence with
parameters from 4 such that B' = 350(7,a). We want to show that A = J06(7,a).

First of all, we can embed B’ to a model A” of T*. Observe that A" is an elementary
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extension of A since A C B’ C A” and A = T*. Now, we obtain A" }= 35 6(7, a) since
B’ }=306(v,a) and A C B'. Therefore, A = 396(7,a) since A < A”. We showed that
A is existentially closed model of T'.

i T

A'<—ambed B 355 (7, a)

@ \G Textend
A——> AL 3 6(v,3)

®

Figure 2.11. Second diagram demonstrating the proof of Theorem 2.24.

For the converse, assume A is an existentially closed model of 7. We want to
show that A | T*. Firstly, observe that 7% is an inductive theory by Corrolary 2.20
since it is model complete. So it has VJ-axiomatization by Theorem 2.21. Now, embed
A into a model B of T* and then embed B into a model C of T'. Let Vo3w ¢(v,w) be
an axiom of T™.

T T
C

3
\06
/ Y
embed

B <& A existentially closed

Figure 2.12. Third diagram demonstrating the proof of Theorem 2.24.

Since B |= T*, we have B |= Vo3w ¢(o, @) which is equivalent to B |= 3@ ¢ (b, 0)
for all b € B™. Also, since B is embedded into C, the existential sentence 3w ¢(b, w)
is also satisfied in C; that is, C = 3w ¢(b,w) for all b € B™ Further, since A is
existentially closed model of C and A C C, we have A = 3w ¢(a, w) for all a € A™.
Thus, A = V03w ¢(v, @w). Therefore, A |= T*.

1. Right to left implication is proved in part i.. Indeed, if a theory T" has model
companion 7™, we know that the models of T are exactly the existentially closed

models of T'. Therefore, T% is an axiomatization for the class of existentially closed



models of 7.

To prove the converse, assume that the class of existentially closed models of T is
elementary and call its theory as T". Clearly, we can embed a model of 7" to a model of
T by just sending it to itself since every mod of 1" is also a model of T". Conversely, we
can extend a model of T' to an existentially closed model of T" by Theorem 2.23 since
T is inductive. So we can embed a model of T" into a model of T”. Lastly, we see that
T’ is model complete since it consists of existentially closed models of T, we clearly see
that any such model remains existentially closed in 7”. Therefore, T is companionable

since 1" is the model companion of 7. O

Remark 2.18. If there is an inductive theory T, the procedure of finding the model
companion of 7" is trying to find an axiomatization of the class of existentially closed
models of T'. Likewise, to show that 7" has no model companion, we may show that

the class of existentially closed models of 1" does not form an elementary class.

2.6. Examples of Theories and Their Properties
2.6.1. Theory of Equivalence Relations
Let £ = {E'} be a language consisting of a binary relation symbol. An equivalence

relation E has three properties: it is reflexive, symmetric and transitive. So the axioms

of the theory of equivalence relations are

Ey Vv E(v,v) (reflexive),
By : VoVw(E(v, w) — E(w,v)) (symmetric),
E3 : Yo Vuo Vo3 ((E(v1, v2) A E(vs, v3)) = E(vy,v3)) (transitive).

The theory of equivalence relations with infinitely many classes: This
theory consists of the axioms of the theory of equivalence relations F, Fy and FEj3 that

are stated above, and additionally we need to add the set of axioms {¢, : n > 2} where



each v, is defined as
Yy, : JuiTvg ... v, ( /\ ﬁE(Ui,Uj)>.
1<i<j<n
Note that each 1), says that there are at least n equivalence classes. Hence, E;, E5
and Ej together with the set of axioms {1, : n > 2} constitutes the axioms of theory

of equivalence relations with infinitely many classes.

The theory of equivalence relations with infinitely many infinite classes:
The infinite set of axioms {¢,, : n > 2} together with the axioms of the theory of equiv-
alence relations with infinitely many classes are the axioms of the theory of equivalence
relations with infinitely many infinite classes where each ¢, is defined as
n
O : YoIu 3o,y ... Ju, ( /\ v #Fv; A /\E(v,v,)).

1<i<j<n i=1
Notice that each ¢, saying that there are at least n elements in an equivalence class.
Hence the axioms of this theory are Fy, Fy and F3 together with the set of axioms
{bn :m =2} U{t), : n > 2}. Let ER* denote the theory of equivalence relations with

infinitely many infinite classes.
Properties:

1. ER* is Ng-categorical. (This can be shown by back and forth argument.) Hence,
it is complete by Vaught’s Test 2.8 since it has no finite models.

2. ER* has quantifier elimination.

3. ER* is model complete since it eliminates quantifiers by Theorem 2.15.

4. ER* is the model companion of the theory of equivalence relations. (see Propo-

sition 3.2)
2.6.2. Theory of Dense Linear Orders

Let £ = {<} be a language consisting only of a binary relation symbol. Consider

the axioms



Ly : Vv (v <w) (irreflexive),
Ly : Yoy Yoo Vo [(v1 < v9) A (vg < v3) = v1 < 03] (transitive),
Ls:YoVw (v<wVov=wVw<wv) (trichotomy),
D : VoV, (v; < vg — Jw(vy < wAw < vg)) (denseness).

The theory of linear orders consists of the axioms { Ly, Lo, L3} and the theory of dense
linear orders consists of the axioms {Lj, Ly, L3, D}. For example, the structure (Z, <)
of integers with usual order relation is a model of the theory of linear orders, but it
is not a model of the theory of dense linear orders since it does not satisfy denseness
property; whereas the structure (Q, <) of rational numbers with usual order relation
is model of both of the theories. We can extend the theory of dense linear orders and

obtain the theory of dense linear orders with endpoints by adding the axioms

Y1 JwVo (wy < vVo=wy), Yo JwVo (v <wyVo=w,). (endpoints exists)

Instead of the axioms ~; and 5, we can also add the following axiom to the
theory of dense linear orders which states that there is no endpoint, and obtain the

theory of dense linear orders without endpoints, which we denote as DLO.

0 : Vo 3w, Jwy (wy < v Av < ws). (no endpoints)

Let us list some properties of DLO.

Properties:

1. DLO is Ng-categorical (see Example 2.15). So it is complete by Vaught Test
(Theorem 2.8) since it also has no finite models.

2. DLO is model complete. (see Example 2.22)

3. The theory of dense linear orders with endpoints is not model complete. (see
Example 2.23)

4. DLO eliminates quantifiers. [1, Theorem 3.1.3]

5. DLO is the model companion of the theory of linear orders. (see Proposition 3.4)



2.6.3. Theory of Groups

Let £, = {-, e} be the language of groups consisting of a binary relation symbol

[43 7 7

and a constant symbol “ e 7. A group structure has three properties; associativity
of the operation, existence of identity element and inverses. So the axioms of the theory

of groups are

G1 Yo Yoo Vg [ug - (vg - v3) = (v1 - 1) - v3] (associativity),
Go:Yv (v-e=e-v=0) (identity element),
Gs:Yodw (v-w=w-v=e) (inverses).

The theory consisting only of the axiom G is the theory of semigroups, {Gi, G2}
is the theory of monoids and {Gi,Gs, G3} is the theory of groups. In addition to the

axioms G1, G, and Gz, if we also add the axiom
A YoVw (v-w=w-v),

we obtain the theory of abelian groups.

Let us also extend the theory of abelian groups.

The theory of torsion free divisible abelian groups: We can extend the

theory of abelian groups by the infinite set of axioms {—¢, : n > 2} where each ¢,

defined as

Gp:F(vte—=(v-v-..-v)=e).

ntimes

A group satisfying all —¢,’s is a group which does not contain any element of finite
order. So the axioms of abelian groups and {—¢, : n > 2} constitute the axioms of the
theory of torsion free abelian groups. Moreover, we can extend the theory of torsion
free abelian groups by adjoining the infinite set {4, : n > 2} of axioms, where each 1,

is defined as

p YoIw [(w-w-...-w) =],

ntimes

and obtain the theory of torsion free divisible abelian groups.



60

Let DAG denote the theory of torsion free divisible abelian groups. Let us list

some properties of DAG.

Properties:

. DAG is k-categorical for any x > W,. (See [1, Proposition 2.2.4]) Hence, it is

complete by Vaught’s Test 2.8.
DAG has quantifier elimination. (see [1, Theorem 3.1.9].)

. DAG has is model complete. (see [8].)

2.6.4. Theory of Algebraically Closed Fields

Let £, = {+, -, —, 0, 1} be the language of rings where +, — and - are binary

function symbols and 0, 1 are constant symbols. Consider the axioms

R;:
Ry:
Rs:
Ry:
R5:
Rg:
Ry
Rg:

Vo Yoo Yus (g + (v2 + v3) = (v1 + v2) + vs] (+ is associative),
Vo (v+0=0+v="10) (identity of +),
Vodw (v+w=w+v=0) (additive inverses),
VoVw (v+w =w+0). (commutativity of +),
Vo, Yog Yoy [vg - (vg - v3) = (v - 1) - v3) (- is associative),
Yoy Yoo Vos vy - (vg + v3) = (v1 - v2) + (v - v3) (distributive properties),
Yoy Yoa Vg (v + v9) - vz = (v1 - v3) + (Vg - v3) (distributive properties),
Vo Yoo Vos [(v1 — vg) = v3) < (v1 = vy + v3)],

which forms the theory of rings. Note that the last axiom is needed just because we

add the symbol ‘=’ to the language for further use in ring theory. We know that a field

is a commutative ring with unity where every element has inverses with respect to the

operation “ -7, so we add the axioms
VoVw (v-w=w-v) (commutativity of ),
Vo [v#0—3Jwv-w=w- -v=1)] (multiplicative inverses),

Vo (v-1=1-v=wv). (unity)
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to the theory of rings consisting of the axioms R; for i € {1,2, ..., 8} to obtain the theory
of fields. Furthermore, we will extend the theory of fields to the theory of algebraically
closed fields, which is denoted as ACF, by adding the set of axioms {¢, : n € N*}

where each ¢, is defined as
Gn Vg ... Vw1 0 (0" + wp_ 10" 4 - wiv + wy = 0).

Note that each ¢, express existence of roots of all polynomials of degree n > 1. Let us

list some properties of the theory of algebraically closed fields.
Properties:

1. ACF is not complete: For a fixed prime p consider the L, -sentence

Yy=Fw+v+..+uv=1),
N

ptimes

which is true in algebraically closed fields of characteristic p but not true in other
models of the theory of fields which have different characteristics. Therefore,
ACF is not complete.

2. Let ACF, =ACF U{¢),}, the theory of algebraically closed fields of characteristic
p. ACF, is complete.

3. ACF eliminates quantifiers. (see Theorem 2.13)

4. ACF is model complete. (see Example 2.18)

5. ACF is the model companion of theory of fields. (see Proposition 2.18)
Moreover, since the theory of fields has amalgamation property, ACF is the model

completion of the theory of fields.
2.7. Theory of Graphs

Let £ = {R} be a language consisting of a binary relation symbol. An L-structure
is called as a directed graph (or digraph) if it is irreflexive and it is called as a graph if

it is also symmetric. Look at the axioms

g1 : Yv = R(v,v) (irreflexive),
g2 : Vovw (R(v,w) — R(w,v)) (symmetric).
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The theory of digraphs is Tyigrapns = {g1} and the theory of graphs is Tyrepns = {91, 92}

We can also consider the theory of infinite graphs by adjoining new axioms.

The theory of infinite graphs: The axioms of the class of all infinite graphs
consist of axioms of graphs and additionally, we need to say that the structure is
infinite. For each n > 1, consider the sentence

¢p 2 dvidvg ... du, < /\ v; # Vj )
1<i<j<n
Observe that each ¢, states that there are at least n elements, so the models satisfying
all ¢;’s are exactly infinite models of the theory of graphs. Therefore, the axioms
{¢n : n > 1} together with axioms of all graphs constitutes the axioms of the theory

of infinite graphs.

We may also try to find an axiomatization for the class of finite graphs. How-
ever, unlike the class of infinite graphs, it is not axiomatizable. We show it by using
Compactness Theorem. Assume that the theory of finite graphs exists and call it as
Tfip. Consider 7" = T U{ ¢, : n > 1} where each ¢, states that there are at least n

elements, as above. Observe that an arbitrary finite subset
A:TfmU{gb, m272 1}

of T" is satisfiable since models of T, are finite graphs and we can find a graph
consisting of m-many elements. 7" is finitely satisfiable, so by Compactness Theorem
T" is satisfiable. But this shows that 7', has infinite models, contradicting the fact
that it is the theory of finite graphs.

The theory of random graph (RG): The theory of random graph consists of
the graph axioms {g1, g2} together with the axiom g : Jv;Jvs(vy # vo) and also the

set of axioms {t, : n > 1} where 1, is defined as

n

U 2 Y1, v Yy, . w0, [/\ /\(vi # w;) — Iz (/\ R(z,v;) A /\ —R(z,w;)].

j=1i=1 i=1 j=1
So RG= {g1, 92} U{¢, : n > 0}. A model G of RG have the property that, for any two

disjoint subsets A and B of GG, an element z € GG exists where there is an edge between
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z and all elements of A and there is no edge between z and any element of B.

there is an edge

......... there is no edge

Figure 2.13. Random graph.

Let us list some properties of the theory of random graphs.

Properties:

1. RG is Ny-categorical (see [1, Theorem 2.4.2]). Hence, RG is complete by Vaught’s
Test 2.8 since RG does not have finite models.

2. RG is eliminates quantifiers.

3. RG is is model complete.

4. RG is is the model companion of theory of graphs. (see Proposition 3.3)
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3. MODEL COMPANIONABILITY

In this chapter, we study model companions of theories and give examples of

theories where the model companions exist and where they do not.

Table 3.1. Theories and model companions.

Theory

Model Companion

Theory of sets

Exists [Theory of infinite sets] (Proposition 3.1)

Theory of equivalence relations

Exists [Theory of equivalence relations with in-
finitely many infinite classes| (Proposition 3.2)

Theory of linear orders

Exists [Theory of dense linear orders without
endpoints] (Proposition 3.4)

Theory of graphs

Exists [Theory of random graph| (Proposition
3.3)

Theory of cycle free graphs

NO model companion (Theorem 3.6)

Theory of digraphs with unique
successor and predecessor satisfy-
ing a certain symmetric relation

NO model companion (Theorem 3.5)

Theory of groups

NO model companion (Theorem 3.3)

Theory of abelian groups

Exists [Theory of divisible Abelian groups hav-
ing infinitely many elements of order p, for every

prime p]

Theory of commutative rings

NO model companion (Theorem 3.4)

Theory of commutative
without nilpotent elements

rings

Exists [9]

Theory of fields

Exists [Theory of algebraically closed fields]
(Proposition 3.5)

Theory of fields with an automor-
phism

Exists [Theory of algebraically closed fields with
a “generic” automorphism (ACFA)| [10]

Theory of fields with two commut-
ing automorphisms

NO model companion (Theorem 3.8)

Theory of dense linear orders
without endpoint with an auto-
morphism

NO model companion (Theorem 3.9)




3.1. Model Companions of certain theories

Our aim in this section is to we give examples of theories that have model com-
panions. First example that is given is the most basic one; the theory of sets in empty
language £ = () consisting of no axioms. Let Ty, denote the theory of sets. Clearly,
any set is a model of Ti.;s. Moreover, Ty, is inductive theory since it is closed under
unions of chains. So we consider the theory of existentially closed models of Tk to
find the model companion by Theorem 2.24 and in the following proposition we show
that the theory of existentially closed models of Ty is exactly the theory of infinite

sets.

Proposition 3.1. The model companion of the theory of sets is the theory of infinite

sets.

Proof. We will show that the theory of infinite sets is exactly the theory of existentially
closed models of Ty Let A be an existentially closed model of Ty.s and let ¢(a) be
an existential £ -sentence. First of all, observe that atomic formulas and negations
of atomic formulas in the empty language £ can only be in terms of equalities or
inequalities of variables. So existential £ 4-sentences where existential quantifier only

quantify a single variable are basically one of the following two forms.
Y Jw (w = a).
tp(a) : Jw (/\ w# a;).
i=1

Existential formulas can of course be longer and more complex, but it is enough to
consider the ones above because they are ultimately conjunctions and disjunctions of
these types formulas. Note that 1 states the existence of a single element and 1, (a)
indicates the existence of a new element different from the n-tuple a = (aq, ..., a,).
Clearly 1 is satisfied in any nonempty structure, so we focus on the existential £4-
sentences 1, (a). Assume A is a finite structure with cardinality m. Clearly, we can
extend it to a set by adding a single element where v,,,(a) is satisfied, but A = ¢, (a);
so a finite model is not existentially closed. If A is infinite, there is no problem since

(@) for some fixed n states that there is an element in A different from ay, ..., a, and
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clearly we have such an element since A is infinite. Actually, the L-sentences 1, (?)
forces a structure to be infinite. Hence, A must be an infinite set and this shows that
the theory of existentially closed models of Ty, is exactly the theory of infinite sets.
Therefore, by Theorem 2.24 the theory of infinite sets is the model companion of the
theory of sets. O

Secondly, we consider the theory of equivalence relations whose axioms are already
presented in Section 2.6. Let E be a binary relation symbol and let £ = {E} be the
language of the theory of equivalence relations. Recall that in a model of the theory of
equivalence relations, E is interpreted as a reflexive, symmetric and transitive relation.
Let us denote the theory of equivalence relations as 7,,. Since 7., consists of
V3-sentences, it is an inductive theory by Theorem 2.21. So we are interested in the
existentially closed models of T, to find the model companion. We will show that
EQ*, the theory of equivalence relations with infinitely many infinite classes, is the

theory of existentially closed models of T,.

Proposition 3.2. The model companion of the theory of equivalence relations is the

theory of equivalence relations with infinitely many infinite classes.

Proof. First of all, note that 1, is an inductive theory, so to find the model companion
we will try to find the theory of existentially closed models of T¢, and by using Theorem
2.24 we will be able conclude that it is the model companion of 7.,. Let 4 be an
existentially closed model of T, and let ¢(a) be an existential £4-formula. Note
that the atomic formulas and negations of atomic formulas in language £ = {E} are
equalities and inequalities of variables as in empty language, and moreover we have
relations of two variables E(vy,vy) and their negations —FE(vq, v2). We know that E
is a reflexive, symmetric and transitive relation, and it partitions A into equivalence

classes.

We analyse the basic forms of existential £, sentences. Observe that the basic

forms of existential £, sentences can be obtained by using atomic formulas of the
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A

Figure 3.1. Partition of A by the equivalence relation E.

language of equivalence relations so they are one of the following three forms.

(@) : Jv (/\v £ a;).

dp(a): Jo </n\v # a; N Z\lE(v,ai))

= (/n\v #a; A /"\—|E(U76Li)>.

Note that an existential L£-sentence can only say something about the number of
the elements in an existentially closed model (¢,(a,)), number of the elements in
an equivalence class (d,(a,)) and number of the classes (7, (a,)). This shows that if a
model A of T;, has finite elements in some of its equivalence classes, let us say it contains
m elements in some of its equivalence classes; then take the elements aq,as, ..., an,
in this equivalence class and consider the formula d,,(a). By adding an element to
this equivalence class, we can build an extension of A where §,,(a) is satisfied; but
A £ d(a). So A is not existentially closed in this case. Similar argument shows that
if there are finite number of equivalence classes in some model A of T¢,, then it cannot
be existentially closed. Thus, an existentially closed model of 7., should at least be an
equivalence relation with infinitely many infinite classes. Since we indicated all basic
forms of existential sentences in language £ = { E'} above, we see that the equivalence
relations with infinitely many infinite classes are clearly existentially closed. Hence,
the theory of equivalence relations with infinitely many infinite classes is the theory of
existentially closed models of T¢,. Therefore, the theory of equivalence relations with

infinitely many infinite classes is the model companion of the theory of equivalence
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relations by Theorem 2.24. O

The third positive example is the model companion of the theory of graphs. Let
L = {R} be the language of graphs consisting of a binary relation symbol which is
interpreted as an irreflexive, symmetric relation in a model of the theory of graphs.
Note that the language is the same as in previous example so the atomic an negations
of atomic formulas are the same. Let 7}, denote the theory of graphs. As always, we
observe that T}, is an inductive theory, since it consists of V3-sentences (the axioms are
presented in Section 2.6). So we will look at the theory of existentially closed models

of T, it will exactly be the model companion of T}, by Theorem 2.24.

Proposition 3.3. The model companion of the theory of graphs is the theory of random
graph.

Proof. T,, the theory of graphs, is an inductive theory, so we will look at the existen-
tially closed models of T, to find the model companion. So let 4 be an existentially
closed model of T}, and let ¢(a) be an existential £4-sentence. Likewise the Propo-
sition 3.2, the language consists only of a binary relation symbol, so the basic forms
of the existential £ 4-sentences are similar. But since the relation is irreflexive in this
theory, we don’t need to indicate that related elements are different. So the existential

L 4-sentences can be basically of the following three forms.

n

(@) : Jo (/\v + a;),

i=1

5,(@) : v ( /n\R(v,ai)) (@) : Jw ( ;\ﬂR(w,ai))

i=1

Note that for any chosen n-tuple a € A", §,(a) states that there is an element
which is connected with all (aq, ..., a,,) and 7, (@) states that there is an element which

is not connected with any (as, ..., a,).

We clearly see the that the models of the theory of random graph are existentially

closed models of the theory of graphs since it satisfies all existential sentences stated
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ay Clé az  ay 7 dn—l &y
Figure 3.2. Illustrations of v(a) and d(a).

above. Moreover, take a model containing two sets B = {by, ..., b, } and C' = {cy, ..., ¢}
such that there is no element which is related to all elements of B but not related to
any eclement of C. We can always extend such a model by adding an element and

relating it to by, ..., b,,. So the existential sentence

Jv ( /j\1 R(v,b;) A /:l\1 ﬂR(v,ci))

is satisfied in some extension. We see that if such an element does not exist in a model,
it cannot be existentially closed. Hence, the theory of random graph is exactly the
theory of existentially closed models of Tj. Therefore, the theory of random graph is

the model companion of the theory of graphs by Theorem 2.24. O

Let £ = {<} be the language of orders consisting of a binary relation symbol
and let T}, be the theory of linear orders. The axioms of the theory of linear orders
and DLO are presented in Section 2.6. We previously showed that DLO, the theory of
dense linear orders without endpoints, is model complete in Example 2.22. So actually
it is a good candidate for being model companion of the theory of linear orders. In
the following proposition, we show that DLO is the model companion of the theory of

linear orders.

Proposition 3.4. The model companion of the theory of linear orders is the theory of

dense linear orders without endpoints.

Proof. Tj,, the theory of linear orders, is an inductive theory by Theorem 2.21 since it
consists of Vd-sentences, so we are interested in the existentially closed models of T}, to
find the model companion. We showed in Example 2.22 that DLO is model complete,
so the models of DLO are existentially closed models of Tj, by Robinson’s Test 2.17. If
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we show that a model which is not dense or has endpoints is not existentially closed,
then we can conclude that DLO is exactly the theory of existentially closed models
of T,, and this will complete the proof. Let A be a model of T¢, and consider the

existential £ 4-sentences

o1(ar) : o (v < aq), Pa(ag) : v (ag < v),

¢3(ar,az) : v (@ < v AV < ay).

There is no need to consider the formula Jv (v = a;) because it is automatically satisfied
in any model A containing a;, so we omit the equality cases.

A% A% Vv
a9

Py ¢ -

Figure 3.3. Possible positions of v relative to a; and as.

If there is a; which is smaller than all elements or there is a, which is bigger than
all elements of A, then it cannot be existentially closed since we can add elements and
build an extension where ¢(a;) and ¢(as) is satisfied. So an existentially closed model
of T}, has no endpoints. Now, assume that it is not dense, so it means that there are
two elements a; and ay such that a; < as and there is no element between them. But
again in this case, we can add an element between them and build some extension
where ¢3(ay,as) is satisfied. So we see that an existentially closed model should be
dense. Hence, the theory of dense linear orders without endpoints is exactly the theory
of existentially closed models of Tj,. Therefore, DLO is the model companion of the

theory of linear orders. O

Let T be theory of fields in language £ = {+,-, —,0, 1}. Axioms of the theory is
listed in Section 2.6. We previously showed the the theory of algebraically closed fields
is model complete by using the quantifier elimination of ACF and using the Theorems
2.13 and 2.15. So ACF is a candidate of model companion of the theory of fields. In

the following proposition, we check this by definition of model companion.

Proposition 3.5. The model companion of the theory of fields is the theory of alge-
braically closed fields.
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Proof. First of all, we know that theory of algebraically closed fields is model complete
since it eliminates quantifiers by Theorem 2.13 and 2.15. So it can be model companion

of theory of fields. We need to check two more things:

i. Since all algebraically closed fields are also models of theory of fields, we can
embed a model of the theory of algebraically closed fields into a model of theory
of fields by just embedding it into itself.

ii. Any field F has an algebraic closure F' [11, p. 544]; so we can embed a model F
of the theory fields into a model F' of the theory of algebraically closed fields by

just embedding it into its algebraic closure.

Hence, the theory of algebraicaly closed fields is the model companion of the theory of
fields. Il

Note that the theory of fields is an inductive theory since its models are closed
under unions of chains, so ACF is exactly the theory of existentially closed models of the
theory of fields by Theorem 2.24. Hence, algebraic closure is equivalent to existential

closure for the models of the theory of fields.

3.2. Compactness Argument

Nonexistence of model companion of a theory is not always easy to show. While
we were investigating theories without model companions and proofs of non-compan-
ionability, we came across [12, p. 239] with a technique which we call as Compactness
Argument, which is common in all nonexistence proofs. We believe it is important
to understand the technique in detail for proving nonexistence of model companions

which does not exist in literature.

Definition 3.1. Let T' be an L-theory and ¢(9) be an existential L-formula. An
L-formula () is called a ¢-obstacle it T'U{¢(0)} U {(9)} is “inconsistent”; that is,
if there is no model A of T" with a tuple @ € A™ which satisfies ¢(a) and (a).
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Example 3.1. Let R = (R, +,-,—,0,1, <) be the ordered ring of real numbers and
let T'= Th(R) be the theory of R as an ordered ring. Note that ¢(v) : 3z (v = 2?) is
an existential formula stating that v is a square. We know that in R, the only squares

are non-negative real numbers, so ¥(v) : v < 0 is a ¢-obstacle.

The idea of the Compactness Argument we present below is as follows: We start
by assuming that the model companion T of an inductive theory T exist. Since T is
inductive, models of T™ are existentially closed models of T' by Theorem 2.24. We find
a set of L-formulas X(7) and an existential L-formula ¢(7) in a way that whenever
Y(a) is satisfied by an existentially closed model A of 1" for some @ € A™ (or we can
say, by a model A of T™), ¢(a) is also satisfied by A. That is, 7% U X(7) models
¢(0). So by Compactness Theorem, there exists a finite subset ¥q(7) of £(7) such that
T*UXy(9) models ¢(7). Thus if we show that for any finite subset Xo(?) of (%), there
is a model of 7™ U ¥y () which satisfy a ¢-obstacle ¥(v), we get a contradiction since
T U ¢(v) Up(v) is not satisfiable. Then, we can conclude that the model companion

T* does not exist. Now, we state this argument as the following theorem.

Theorem 3.1 (Compactness Argument [12, p. 239]). Let T be an inductive L-
theory. If there is an existential L-formula ¢(T) and a set of L-formulas X(T) such

that:

(i) For any existentially closed model A of T and for all a € A™, we have
A | X(a) implies A = ¢(a).

(ii) For any finite subset ¥o(v) of ¥(v), there is an ezistentially closed model B of T
and a ¢-obstacle (v) such that B = Xo(b) and B = (b) for some b € B".

Then, T has no model companion.

Proof. Assume, for a contradiction, 7" has a model companion 7. Since T is inductive,
T* is exactly the theory of existentially closed models of T'. Let A = T, we have
A |= 3 (a) implies A = ¢(a) for all @ € A™ by part (7). So we have T* UX(0) | ¢(0).
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By Compactness Theorem, there is a finite subset ¥y(0) of ¥(7) such that
T USo(®) b 0l0). (+)

Now, there is a model B of T* and a ¢-obstacle ¢(?) such that B = Xy(b) and B |= v(b)
for some b € B"™ by part (ii). Also, since B | 3y(b) and B = T*, we also have
B | ¢(b) by (). However, we obtain B |= ¢(b) A (b), this contradicts with the fact
that TU{¢(9)} U{®(9)} is not satisfiable. Therefore, T has no model companion. [

3.3. Negative Examples

In this section, we give examples of theories which have no model companion.

The theories that are shown to have no model companion are as follows:

i. Theory of groups.
ii. Theory of rings.
iii. The theory of digraphs with a unique successor and predecessor, satisfying a
certain symmetric relation.
iv. Theory of cycle free graphs.
v. Theory of fields with two commuting automorphisms.

vi. Theory of dense linear orders with an automorphism.
3.3.1. The Theory of Groups
The first negative example that will be presented is the theory of groups has no

model companion. Let £ = {-, e} be the language of groups. Recall that the theory of

groups consists of the three axioms

Vo VuoYus [0y - (vg - v3) = (v - va) - vs] (associtivity),
Yo(v-e=e-v=¢) (identity element),
Vodw(v-w=w-v=e) (inverses).

This is obviously an inductive theory since it is axiomatized by V3-sentences. Note that

universal sentences can also be counted as V3-sentences, where existential quantifier
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does not quantify any variable.

The proof uses an intricate group construction known as HNN-extension which
was first introduced by G. Higman, B. Neumann, and H. Neumann. They build an
extension H of a group GG with two isomorphic subgroups A and B where A and B are

conjugate in the extended group H.

Theorem 3.2 (HNN-extension). Let G be a group with subgroups A and B, and let
o : A — B be an isomorphism between the subgroups. There exists an extension H of

group G with an element t € H such that t~at = o(a) for all a € A.

The group H introduced in the above theorem is called as HNN-extension of G
relative to the isomorphism o. (We refer to [13] for more detail.) If we consider two
subgroups generated by a single element, we obtain a corollary of the theorem which
we state as Property (A) that will be helpful to prove that theory of groups is not

companionable:

Property (A) [13, p.249, Corollary]: Two elements of a group G have the

same order if and only if they are conjugate in some group extension H of G.

Theorem 3.3 (Eklof and Sabbagh [14, p. 291]). The theory of groups has no model

cOmpanion.

Proof. Let T be the theory of groups and observe that the theory of groups is an
inductive theory. To apply Compactness Argument, take the set ¥(vy, v9) of L-formulas
as {v] # e, v} # e :n € N*} consisting of formulas each stating that v; and v are not
of order n, and the existential £-formula ¢(vy,v2) as Jw (vy - w = w - v9) which states
that v; and vy are conjugate. Any elements satisfying (v, v9) would be both infinite

order.

We first show that A | X(a1,as) implies A = ¢(a1,ay) for any existentially
closed model A of T and for all (ay,as) € A% Let A be an existentially closed model



of T and let (ay,as) € A? such that A |= X(ay, as). This means that orders of a; and
ay are infinite, so they are conjugate in some extension A" of A by Property (A) since
their orders are the same. That is, we obtain A" | ¢(a1,as). Moreover, since A is

existentially closed, we also have A = ¢(aq, az).

Now, take an arbitrary finite subset Yo(vi,ve) = {vt # e, v #£e:1<i<m—1}
of (v, vy) and an existentially closed model B of T' with elements by and by satisfying
B = Xo(b1,b2). Actually, we can choose by and by such that the order of b; is equal to
m and order of by greater than m. Observe that we can always find such elements in
an existentially closed group since an existentially closed group B contains elements of
all orders. More precisely, the existential formula v, = v (AZ] v' # e Av" = e) is
satisfied in some extension of B; for example, in the group B x Z/nZ and hence 7, is

also satisfied in B.

We have two elements b; and b, whose orders are different. We will show they
cannot be conjugate. Assume for a contradiction, b; and by are conjugate and let m and
[ (m < 1) be their orders, respectively. Then, there exists ¢ € B such that ¢~'byc = by
and we obtain (¢71bic)™ = ¢ "¢ = ¢ tc = e = b, which is a contradiction since the
order of by is greater than m. So ¥(vy,vy) = (V" = e AVY* # €) is a ¢-obstacle. We
obtained B | ¥(b1, b2) and B = ¢(by, by) where 1p(v1,v9) is a ¢-obstacle. Therefore,

the theory of groups has no model companion. O

Although the theory of groups has no model companion, the theory of abelian
groups has a model companion, namely the theory of divisible abelian groups having
infinitely many elements of order p, for all primes p [14, p. 256, Theorem 2.4]. Since
the elements of abelian groups are only conjugate to themselves, the above argument

does not cause an obstacle.
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3.3.2. The Theory of Rings

The second negative example is the theory of commutative rings has no model
companion. Let L = {+,-,—,0,1} be the language of rings. Axioms of the theory of
commutative rings is presented in Section 2.6. Note that it is an inductive theory since
the axioms are Vd-sentences; or we can say it is inductive since models of the theory
are closed under unions of chains. We will state and prove the following property which

will be useful while proving the theory of commutative rings is not companionable.

Property (B) [15, Lemma 2.1]: Let R be a commutative ring and let r € R.

The following statements are equivalent:

i. r is not nilpotent; that is, ™ % 0 for any n € N*,
ii. There is a commutative ring extension R’ of R and a nonzero idempotent element

a (i.e., a®> = a) of R’ such that r divides a in R’

Proof of Property (B). (ii = i) Let r € R and assume there is an extension R’ of R
and a € R’ such that a®> = a, a # 0 and r.k = a for some k& € R'. Observe that o™ = a
for all n € N* since a = a®. Then, we have (r.k)" = r".k" = a" = a # 0 for any

n € N*. Thus, ™ # 0 for any n € N*; that is, r is not nilpotent.

(i = ii) Assume r € R is an element of R which is not nilpotent and let R’ =

R[z]/(r*z? — rz). Consider the map
o:R— R = R[z]/{r*z* — ra)
a— a+ (r’z? —ra).

Clearly, o is one to one; so we have R C R'. Moreover, r divides an idempotent in R’

which is rz. Tt remains to show that rz is nonzero; that is, rz & (r?z? — rz). Assume

for a contradiction, rz = (r?z* — rz)p(x) for some p(x) = X ¢;x° € R[z]. So we have
r = —rcy, r’c; = reiyy for i =0,1,2,...,n — 1 and 7°c, = 0. By using these equations,
we obtain 12 = —r2cy = —rcy, 1* = —r?c; = —rcy and by continuing this way we get

r™ = —r?c, = 0 which implies that r is nilpotent, a contradiction. O
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Theorem 3.4 (G. Cherlin [15]). The theory of commutative rings has no model com-

panion.

Proof. Let T be the theory of commutative rings and observe that 1" is inductive; that
is, models of T" are closed under unions of chains. Take ¥(v) = {v™ # 0 : n € N*}
consisting of infinitely many L-formulas so that they all together stating that » is not
nilpotent and let ¢(v) = Fw;Fw, [(w? = wy) A(w; # 0)A(v-ws = wy)] be an existential
L-formula which express that there is a non zero idempotent element that is divisible
by v. We will apply the Compactness Argument to show that model companion does

not exist.

Let A be an existentially closed model of T" with an element a € A such that
A = 3(a). We will show that A = ¢(a). We know that A = ¥(a) means that a is
not nilpotent, so by Property (B) there is an extension A" of A such that a divides
a nonzero idempotent in A’; that is, A" = ¢(a). Since A is existentially closed, we

obtain A = ¢(a) as well.

Now, take an arbitrary finite subset ¥o(v) = {v' # 0 : 1 < i < m} of X(v).
Let B be an existentially closed model of T" with an element b € B such that b = 0.
Note that we can always find such an element since an existentially closed ring B
contains nilpotent elements of all exponents. More precisely, the existential sentence
Yo+ Jv (V™ = 0) is always satisfied in some extension of B; as an example consider

B x 7Z./2"7 satisfying ~,,. Due to the fact that B is existentially closed, we also obtain
B = .

So far we have B = ¥(b), it only remains to show that there is a ¢-obstacle ¥ (v)
such that B = v(b). We know by Property (B) (i—ii) that if an element is nilpotent
then there is no extension where it divides a nonzero idempotent, so ¢ (v) : v = 0 is
the desired ¢-obstacle. Thus, we have B = (X(b) A ¢ (b)) where ¥(v) is a ¢-obstacle.

Therefore, the theory of commutative rings has no model companion. O
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Lipshitz and Saracino figured out that only obstacle to the model companionabil-
ity of the theory of rings is the existence of nilpotent elements and they showed that

the theory of rings without nilpotent elements has a model companion [9].

3.3.3. Two Examples from Graph Theory

We have two negative examples from graph theory whose proofs use Compact-
ness Argument [16]. Let £ = {R} be a language consisting of one relation symbol.
Recall from Section 2.7 that a digraph is an L-structure where the edge relation R
is interpreted as an irreflexive relation and a graph is an L-structure where the edge
relation R is interpreted as both an irreflexive and symmetric relation. Also the uni-
verses of graph and digraph structures are the set of vertices of the graphs. We first
introduce basic terminology from graph theory and after this we will continue with
examples of theories extending the theory of graphs and digraphs which have no model

companion. [12, p. 240, Example 3.8].

Definition 3.2. i Let P, be a graph consisting of the set {1,2,...,n} of n vertices
and edges {(i,i + 1) :i=1,2,...,n — 1} = R™ where n is a positive integer. A
graph is called as an n-path if it is isomorphic to P, and the length of an n-path

is equal to n — 1.

3-path

Figure 3.4. Examples of n-paths.

ii. Let G be a graph and a,b € G. The smallest distance between a and b, denoted
as dg(a,b), is the length of smallest path between a and b.

ii. A graph G with the set of vertices G = {g1, 92, ..., gn} Where g;’s are distinct, is
called a cycle if {(g;, git1) :i=1,2,...n — 1} U{(g1,9.)} € RC.

A special type of cycle is the graph C, that consists of the set of n-vertices
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edg(a,b) =3 edg(a,d) =1 edg(b,c) =3
.dg(a7 C) —= 4 .dg(b, d) = 4

Figure 3.5. Hlustration of finding dg.

{1,2,...,n} and edges {(i,i+1):i=1,2,....,.n — 1} U{(1,n)} = R

4
5 1 3
A 5 3
3
2
1
1 f ) 2
cycle Cs Cs

Figure 3.6. Examples of cycles.

iii. A graph is called cycle free if it does not contain any cycle as a subgraph.

The theory of digraphs with a unique successor and predecessor,
satisfying a certain symmetric relation: We will write the axioms of a theory
extending the theory of digraphs. First of all we introduce the following notations to

simplify the axioms:

D(v,w) = R(v,w) N =R(w,v), S(v,w) = R(v,w) A R(w,v).
V—Sw V<—>w

D denotes the directed (antisymmetric) relation and S denotes the symmetric relation
between two vertices. Let T, denote the theory of digraphs with a unique successor

and predecessor. The axioms of the theory Ty, is as follows:

dy : Yo =~ R(v,v). (irreflexive)
dy : Yo3w D(v, w) and VoVw, Ywy [D(v,wy) A D(v, wy) — wy = wy).
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7
% 0 -
v u w (unique successor)

Every element has a successor and it is unique.

ds : Yo3w D(w,v) and VoV, Ywy [D(wy,v) A D(ws, v) — wy = ws).

V> w .
w (unique predecessor)

Every element has a predecessor and it is unique.

dy : VoVw(D(v,w) — Vz(S(v, 2) > S(z,w))).

v w
\ B / (symmetric relation)

If two things are related by D, anything which is S related to one is S related to other.

We have the theory Ty, = {dy, da, ds,ds}. Observe that the relation D generates orbits
in a model of Ty,, which we call as D-paths, since it is actually a one to one and onto
function by the axioms d, and d3. Notice that D-paths can only be in the form of a
cycle or an infinite line due to the fact that every element has a unique successor and
predecessor.

ap—> 1

/

D — paths: ... ay s as ay a2

) <— ag

Figure 3.7. D-paths.

Additionally, the axiom d4 states that if there is an element belonging to some
D-path, namely D, having a symmetric relation with an element z, then all elements

in the path D; have a symmetric relation with z.

Moreover, we know that z also belongs to some D-path, namely D,. Observe

that every element in the path Dy also have a symmetric relation with all elements of
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ay as as Qy D,

Figure 3.8. Axiom d,.

the path D;. The axiom d, allows us to say that two elements are not in the same

D-path in first order which is a key property that will be used in the proof.

T4y is clearly a satisfiable theory; for example, it is modeled by the L-structure
G = (Z,R9) where RY = {(c,c+ 1) : ¢ € Z}. Also, note that Ty, is axiomatized by
Vd-sentences, so it is an inductive theory. Hence, the models of the model companion

13, (if it exists) are exactly existentially closed models of Ty, by Theorem 2.24.

Theorem 3.5. The theory Ty, of digraphs with unique successor and predecessor con-

sisting of the axioms {d,dy, ds,ds} has no model companion.

Proof. Let Ty, = {dy,ds,ds,ds} be the theory of digraphs with unique successor and
predecessor. We know that Ty, is an inductive theory. We define an L-formula
D"(vy,vq) expressing that there exists a directed n-path from vy to vy for each n

as,

D™(vy,v5) 1 Fwy Fwy...Fw,_o(D(v1,wi) A (A D(wi, wi1)) A D(w,,vy)) for n > 3,
D3(vy,vy) : Fwy (D (vy, wi) A D(wy,v3)),
Dz(Uh’UQ) : D(Ul,'vg).

U1 Wo Wy 4\ Wy —3 Vg
\
/ \ /
w w X N,
& 3 Wp—2

Figure 3.9. D"(vy, vy).

Let X(vy,v2) = {(=D"(v1,v2) A =D™(v1,v5)) : n > 1} be a set of L-formulas
which states that v; and vy are not connected by a directed n-path. Also let ¢(vq,v9) :

32(S(z,v1) A =S(z,v2)) be an L-formula stating that there is an element having sym-
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metric relation with v; and not having the symmetric relation with v,. Note that in
a model, if two elements satisfy ¢(vy,vs), then they cannot be in the same D-path by
axiom dy. We will show that for any existentially closed model A of Ty,, A = ¥(aq, as)
implies A = ¢(ay, aqg) for any a, aq € A.

Let A be an existentially closed model of Ty, and let A = X(a;,as) for some
aj,ay € A. Consider an extension A’ of A whose universe is A U Z (without loss of

generality, assume A NZ = ()) and interpretation of the relation R is extended as

RY = R*U{(c,c+1):ce}

U{(c,d’),(d,c) : a’ and ay are connected by a D-path;c € Z}.

Note that A" |= Ty, since we just added a D-path and symmetric relations compatible
with the axiom d,;. Additionally, we see that A" |= ¢(ay,as) since any element ¢ € Z
is a witness of the existential sentence ¢(aq,as) : Iz (S(z,a1) A =S(z,as)). Due to the

fact that A is existentially closed, we have A | ¢(ay,as) as well.

Al 7

c+1 — ...

NN
/ \%/ \

] O

7‘ D-path containing a; \

A

Figure 3.10. Extending A to A’

Now, let So(vy,v9) = {=R'(vy,v9) : 1 < i < m} be a finite subset of 3(vy, vy).
We see that 9 (v1,v9) : D™(vy,v3) is a ¢-obstacle since if two elements are on the same
D-path, then they should have the same symmetric relations. So if we find an existen-
tially closed model B of T" with elements b; and by, satisfying B |= Xo(by, by) A(by, be),
then we are done. Consider a model G = (Z, R9) of Ty, where RY = {(c,c+1) : c € Z}.
Since Ty, is inductive, we can extend G to an existentially closed model B of Ty, by

Theorem 2.23 and we see that the elements 1 and m belonging to B O Z cannot be
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connected by a directed n-path for n < m because if there would be such a path, this
contradicts with the fact that there are unique successors and predecessors for each
clement. So B |= £o(1,m) and we also have B }= (1, m). Therefore, Ty, the theory of

directed graphs with a unique successor and predecessor has no model companion. [

The theory of cycle free graphs: Recall that a graph is called cycle free if it

does not contain any cycle as a subgraph. So the theory of cycle free graphs contains:

1) The axioms of the theory of graphs that are

g1 : Yo—R(v,v) (irreflezive),
g2 : VoVw(R(v, w) = R(w,v)) (symmetric).

2) An infinite set of axioms {¢, : n > 1} where each states that there is no cycle

consisting of n-vertices and defined as

n—1

On 2 Yo1Y0o.. Yo, | /\ v #vj — —|(/\ R(vi,vip1) A R(v1,vp)].

1<i<j<n i=1
Let Ttrq denote the theory of cycle free graphs. Note that the theory of cycle free
graphs consists of universal sentences. Thus, the theory of cycle free graphs is a an
inductive theory. So the models of T (if it exists) are exactly existentially closed

models of T, by Theorem 2.24.

Theorem 3.6 ( [16, p. 86, Proposition 7]). The theory of cycle free graphs has no

model companion.

Proof. Let Ti.;4 be the theory of cycle free graphs and note that it is an inductive theory.
Let R™(vy,vs) : JwyFwy...Jw, _o(R(vi,w) A (A2 R(ws, wip1)) A R(wp_g,v5)) denote
an L-formula which indicates that there exists a path between v; and vy consisting of

n-vertices for n > 3. (n-path)

Let X(v1,v9) = {=R"(v1,v2) : n > 3} be a set of L-formulas stating that there is
no n-path between v; and vy for any n > 3. So if two elements satisfy X(vy,vs), then

there could only exist a 2-path or a 3-path between these elements.
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V1 Wy Wy Wp—_3 Uy

W1 w3 Wp—2

Figure 3.11. R"™(vy, v9).

Let ¢(vy,vg) @ F2(R(v1, 2) A R(z,v2)) V R(v1,v2) be an L-formula stating that there
is either a 3-path or 2-path between v; and v,. We will show that in an existentially
closed model A of T, if two vertices a; and ay are not connected by an n-path for
n > 3, then they are connected either by a 3-path or by a 2-path. That is, we will
show that for any existentially closed model A and for any a1,as € A, A |= 3(a1,a9)

implies A = ¢(ay, as).

Let A be an existentially closed model of T, such that A = ¥(aq, a2) for some
ai,as € A. We will show that A = ¢(aq, az). Assume for a contradiction A F ¢(ay, as);
that is, a; and as are not connected neither by a 3-path nor by a 2-path. We also know
that a; and asy also not connected by an n-path for n > 3 since A = ¥(ay, ag). Thus,
a and b are not connected.

Construct an extension A’ of A by adding a new vertex ¢ and two edges connecting
(a1, c) and (a9, c). Note that since a; and ay are not connected, no cycles are formed

while extending A to A’; thus, A’ is a model of T.p,.

A’ A’
A A ¢ A
PAN A is existentially
o o / \ closed >
> —_— ,
ay a2 aq as ¢
aq a9

Figure 3.12. Extending A to A’ by adding a vertex and two edges.

We see that the existential £, sentence 3z(R(aq, z) A R(asq, 2)) is satisfied by an
extension of A that is a model of 7, so we have A = 3z(R(a1,2) A R(as, 2)) since
A is existentially closed. Hence, there is a 3-path between a; and a, contradicting
to the assumption that a; and as are not connected. Therefore, we obtain that for
any existentially closed model A of T,s,. A |= (a1, a2) implies A = ¢(ay, az) for any

ai,as € A.



Now, let Yg(vy,v9) = {=R'(v1,v9) : 3 < i < m} be a finite subset of X(vy,vs)
and let P, be an m-path with endpoints p; and p,,. Clearly, P, = Tz, since it
does not contain any cycle. Moreover, we can extend P,, to an existentially closed
model P of Tis, by Theorem 2.23 since Tip, is an inductive theory. Observe that
we have P = Yo(p1,pm); because if not, then there exist a second path between
p1 and p,, of length less than m and a cycle is formed, which contradicts with the
fact that P |= T.s,. So far, we found an existentialy closed model P of Ti.p, with
elements p; and p,, satisfying P = Xo(p1,pm). Also, we see that P = 1(p1, pm)
where 1(vy, v9) 1 R™(vy1,v9) is a ¢-obstacle since there cannot exist two different paths
between two elements v; and vy since we cannot have cycles in the graph. Therefore,

the theory of cycle free graphs has no model companion. O

Takeuchi, Tanaka and Tsuboi stated a more general version of the Theorem 3.6
as a corrolary of the Compactness Argument [12]. First, let us introduce and recall

some definitions and then we will state the extended version of the previous theorem.

i. A graph is called connected if there is a path from any point to any other point.

ii. A graph is called 2-edge connected if it remains connected even if one edge is
removed.

iii. Let K denote a class of finite 2-edge connected graphs and let Tk denote the
theory of K-free graphs; that is, the graphs which does not contain any member
of K as a subgraph. Note that the class of K-free graphs is elementary that can be
axiomatized by the axioms of graphs union the infinite set of axioms {—v, : n > 3}
where each 7, expressing the existance of two different n-paths from one point
to another. Note that since each 7, is an existential sentence sentence, negations
are universal sentences. Hence Ty consists of universal sentences which implies

that Tk is an inductive theory.

As an example, consider K = {C,, : n > 3} as a class of finite 2-edge connected
graphs and observe that Tk denotes the theory of cycle free graphs in this specific

case. The following theorem generalizes the result that the theory of cycle free graphs
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has no model companion to K-free graphs where K is any set of finite 2-edge connected

graphs.

Theorem 3.7 ( [12, p. 239, Corrolary 3.7]). Let Tk be the theory of K-free graphs
where K denotes a set of finite 2-edge connected graphs. Assume that for any n € N*
there is a model G, of T with elements a,, and b, such that for any G O G,,, we have

dg(an,by) > n. Then the model companion of Tk does not ezist.

The proof is exactly similar to the proof of Theorem 3.6. Actually, the properties
of cycle free graphs that causes to have no model companion is generalized in this

theorem to more various types of graphs.

3.3.4. The Theory of Fields with Two Commuting Automorphisms

In Section 3.1, we showed that the theory of fields has a model companion and
the model companion is the theory of algebraically closed fields. Chatzidakis and
Hrushovski showed that the theory of fields together with an automorphism also has
a model companion which is called as ACFA, the theory of algebraically closed fields
with a “generic” automorphism [10]. However, the theory of fields with two commuting
automorphisms has no model companion. Let L be language of rings together with two
unary function symbols; that is, £ = L,y U {0, 7} = {+,-,—,0,1,0,7}. The theory
of fields with two commuting automorphisms consists of axioms of the theory of fields,

that are already presented in Section 2.6, and additionally the following axioms.

1. Axioms stating ¢ and 7 are one to one :

Vo Yoy [(o(v1) = o(ve)) = vy = va], Yo Vouy [(T(v1) = 7(v2)) — v1 = vl
2. Axioms stating o and 7 are onto :

Voidvy o(vy) = v1, Yo 3ug 7(vg) = 1.
3. Axioms stating o and 7 are compatible with + and - :

VoiVog a(vy - v9) = a(v1) - o(va), YuiVug a(vy + v9) = a(v1) 4+ o(vs).

Vo Yoy 7(vy - v2) = 7(v1) - 7(v2), Yo Yoy 7(v) + v2) = 7(v1) + 7(v2).
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4. Axiom stating o and 7 are commuting :

vo [(7(0(v)) = o(7(v))).

The theory of fields with two commuting automorphisms consists of V3-sentences,
so it is an inductive theory by Theorem 2.21. We shortly denote a model of the theory
as (F,o,7) where F' denotes a field structure and o and 7 denotes two commuting

automorphisms on F'.

Property (C) [17, Lemma 3.1]: Let (A, 0,7) be an existentially closed model
of the theory of fields with two commuting automorphisms. For any integer n > 1,

there is ¢ € A such that the following are satisfied:

2. 0%(c) + " () + ... +0(c) +c#0, for any k < n,

3.0"c)+ 0" )+ ...+ olc)+c=0.

Proof of Property (C). Let T be the theory of fields with two commuting automor-
phisms and let (A, o, 7) be an existentially closed model of T'. Let tg, t1, ..., t,,_1 be tran-
scendental and algebraically independent elements over A. Let ¢, = —(to+t1+...+t,_1)
and observe that tq,to, ..., t, are also transcendental and algebraically independent over
A. We define an extension of (A, o, 7) by extending A to A" = Altg, t1, ..., t,_1] and also
extending o and 7 to A’ by defining o(t;) = 7(t;) = t;41 for 0 < i <n — 1. Clearly, o
and 7 are two commuting automorphisms on A’ so (A’,0,7) = T. Moreover, t, € A’

satisfies:
1. O'(to) = T(to),
2. 0" (to) + 0" (to) + ... +o(ty) +to #0, for any k < n,
3. O'n(tg) + Un_l(to) + ...+ U(to) + t() = 0.

Due to the fact that there is an element ¢, in an extension (A’, o, 7) of (A, o, 7) satisfying

1,2 and 3, we can also find such an element ¢ € A by existential closedness of (A4, o, 7).

0
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Theorem 3.8 (Hrushovski [17, p. 5]). The theory of fields with two commuting auto-

morphisms has no model companion.

Proof. Let T be the theory of fields with two commuting automorphisms. Note that T’
is an inductive theory since it consists of V3-sentences. We will apply the Compactness

Argument to show that the model companion 7™ of T" does not exist. Let
Y() = {[(c(w) = 7(v)) A (6™(v) + " (v) + ... + o(v) + v # 0)] : n € N*}
be an infinite set of L-formulas and let

P(v): Az (2 =1 Ao(2) = 7(2) = 2%) = 3w Fwy[(o(wy) = 7(wy) = wy + v)

A(ws = wi) A (T(w2) = zo(ws))]

be an L-formula. Note that ¢(v) states that if the primitive 3" root of unity ¢ belongs
to a model and if o and 7 are not acting trivially on (; that is, if we have o(¢) = 7(¢) =
(?; then there exists an element a; in the model such that o(a;) = 7(a1) = a; +v and
image of the third root of a; under ¢ and 7 differ by (. We will show that for any
existentially closed model A = (A, 0,7) of T, if there is a € A such that A = ¥(a),
then we have A = ¢(a).

Let A = (A,0,7) be an existentially closed model of T and let a be an element
of A such that A |= ¥(a). Note that we can find such an element a in an existentially
closed model A of T' by Property (C). We will focus on the existentially closed models
where we have o(¢) = 7(¢) = (?. First of all, we show that such an existentially closed
model exists, otherwise it is meaningless to show that ¥ implies ¢. Let (P, 0g, 79) be a
prime field with two commuting automorphisms such that ¢ € P. (So p(x) = z*+x+1
should be irreducible over P. Since the discriminant of p(z) is —3, it is irreducible when
—3 is not a square modulo p. Hence, the characteristic of the prime field must be 0 or
2 (mod 3) by quadric reciprocity, see [18, Example 2.4]). We can extend (P, og,79) to
(F,o}, 7)) by adjoining ¢ to P and extending two automorphisms by sending ¢ to (2.
Further, since (F, oy, 7)) is a model of the inductive theory 7', we can also extend it
to an existentially closed model by Theorem 2.23. Hence, we can take an existentially

closed model A = (A,0,7) of T with an element a € A such that A = ¥(a) and
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(P, 00, 0) P prime field, ( ¢ P — char(P) is 2 (mod 3) or 0

Figure 3.13. Building an e.c. model such that o(¢) = 7(¢) = ¢*

Now, we will construct an extension of A where there are witnesses of the following

existential sentence: (we shortly denote the primitive third root of unity by ()
Fw, Fws[(o(wr) = 7(w1) = wy +a) A (wh = wy) A (T(ws) = Co(ws)).

Let t be a transcendental element over A. We can define an extension (A(t),o,7) of
A by extending A to A(t) and also expanding o and 7 on A(t) as o(t) = 7(t) =t + a.
Consider 7"(t) = 0" (t) =t +a+o(a)+...+0"(a). Observe o'(t) # o’(t) for any i # j.
More precisely, if o'(t) = o7 (t) for i > j, then we have
o'(a)+..+ola)+a+t=0c'(a)+..+0o(a) +a+t,
o'(a) + ...+ a7 (a) + 0 (a) = 0,
oI o a) 4+ ...+ d*(a) +o(a) +a) =0 — "7 a) + ... + 0*(a) + o(a) +a = 0.
We get a contradiction. So o'(t) # o?(t) for any i # j. We look at the polynomials
pi(X) = X3—0'(t). Observe that p;’s are irreducible over A(t) since ¢ is transcendental
over A and ¢ € A(t). Let b; be a root of the polynomial p;. We extend A(t) by adding
b;’s for each ¢ and also extend o and 7 as follows:

o(b;) = by, for any i. 7(b;) = Cbiy1, if i is even,

7(bi) = Czbi+1, if 7 is odd.

/—>b1—> bQN />04L>b5\ /—>b7—> 68\
\><bl—><bg —/Ak) C%by -—>Cb /\\><1)7-—>(bg

Figure 3.14. Applying o and 7 to b;’s.
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Let A’ be the described extension and let us check that o and 7 commute on A’.

agT
If i is even, o7(b;) = 0(Cbit1) = Cbiso /N
To(bi) = T(bis1) = Cbito bi (*bite
if 7 is even
agT
Ifiis Odd, O'T(bi) =0 (<2bi+1) = Cbi—i-Q
To(bi) = T(bit1) = Cbito bi Cbita
if 7 is odd

So A" is a model of T" where the existential sentence ¢(a) is satisfied. Since A is

existentially closed model of T', we also obtain A = ¢(a).

Now, let
Yo(v) = {(o(v) = 7(v)) A (0" (v) + " Hu) + ... + o(v) +v #0) i < n}

be a finite subset of ¥(v). Let B be an existentially closed model of 7" with an element
¢ € B such that ¢ + o(c) +02(c) + ... + o¥(c) # 0 for any k < m — 1, and ¢ + o(c) +
o%(c) + ... + ™ Y(c) = 0 where m is an odd integer greater than n. Notice that we
can always find such an element in an existentially closed model of T' by Property(C).
So we have B |= ¥o(c). If we also find a ¢-obstacle ¢(v) such that B = 1(c), this will

complete the proof.

We will show that
Y): (v+ o)+ W)+ ..+ 0™ Hw) = 0) A (a(Q) =7(0) = ¢?)

is a ¢-obstacle if we take m to be an odd integer. Assume that in some model of T" we
have o(¢) = 7(¢) = ¢? and there are ¢, a; and ay such that o(a;) = 7(ay) = a1 + ¢,
a3 = ay, 7(ay) = (o(az) and ¢ + o(c) + 0(¢) + ... + c™ '(¢) = 0. Then, we have
o™(ay) = ay +c+o(c) + () + ... + ™ (c) implying 6™ (a;) = a;. Observe that we
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also have 0™ (ay) = (%ay for some i = {0,1,2}. We will calculate ™7 (ay) in two ways:

o™ 7(as) = a™(Co(az)) = a™(¢)o™(0(az)) = a™(C)o (0™ (a2)) = 0™ (()o((Mar)
= o"(¢)o(¢Y)o(az),
o1 (as) = T0™(az) = 7(C'az) = 7(¢")7(az) = o(¢)¢o(az).

This calculations shows that ¢ ({) = ¢, but this is a contradiction since m is odd and
o(¢) = 2. Hence, ¥(v) is a ¢-obstacle. Also, we clearly have B |= ¢(c). Therefore, T

has no model companion. O

We showed that the theory of fields with two commuting automorphisms has no
model companion; it is also interesting to investigate when an arbitrary theory 7" with

two commuting automorphisms has no model companion [17].

3.3.5. The Theory of Dense Linear Orders without Endpoints with an

Automorphisms

Let < be a binary relation symbol and let £;0 = {<} be the language of orders.
We extend the language of orders by adding a unary function symbol o and obtain
the language £ = {<,0}. Also, we extend the theory of dense linear orders without
endpoints, whose axioms were already listed in Section 2.6, by adding the following

axioms stating that o is an L-automorphism.

1. Axioms stating ¢ is one to one and onto :
Vo Yoy [(0(v1) = 0(v2)) = vy = v  and Yoy 3ug o(ve) = vy.
2. Axiom stating o preserves the order relation :

Vo Vos (v1 < v — o(v1) < o(vy)).

By expanding DLO by the above axioms, we obtained the theory of dense linear
orders without endpoints with an automorphism which we denote as DLO,. Like
always, we observe that it is an inductive theory by Theorem 2.21 due to the fact

that it consists of V3-sentences. In the following theorem, we show that DLO, is not
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companionable.

Theorem 3.9. The theory of dense linear orders without endpoints (DLO) with an

automorphism has no model companion.

Proof. Let DLO,, be the theory of dense linear orders without endpoints with an auto-
morphism. We observe that DLO, is an inductive theory, so if the model companion
exists, then it is exactly the theory of existentially closed models of DLO, by Theorem
2.24. We will apply Compactness argument to show that DLO,, is noncompanionable.
Let X(v1,v9) = {(v1 < o(v1) Ao™(v1) < v9) : n € N*} be an infinite set of £-formulas
stating that v; increases when we recursively apply o and v, is bigger than all of these el-
ements. In other words, we can view 0™ (v;) as an increasing sequence and v as an upper
bound for this sequence. Actually, the sequence 0™(v;) should have a limit point since
it is increasing and bounded above by some element and v, can be taken as an element
beyond the limit point. Also, let ¢(vq,v2) : 32 [(v1 < 0(2))A(0(2) = 2)A(z < v2)] be an
L-formula which states that there is an element between v, and vy whose image remains
the same under o. In short, we may denote ¢ as ¢(vi,vq) : 3z [v; < 0(2) = 2 < vql.

We will first show that for any existentially closed model A of DLO,,, we have

A = X(a1,ay) implies A |= ¢(aq, az) for any a1, as € A.

Figure 3.15. X(vy,vq) and ¢(vq,vg).

Let A be an existentially closed model with two elements a; and as such that
A = ¥(ay,as) (we can assume that A is a model containing such elements). Define
the sets X = {z : x > 0™(ay) for alln € N*} and Y = A\ X. Clearly, X and Y are

nonempty sets, since a; € X and ay € Y. Moreover, all elements of X are smaller
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than all elements of ¥ and X has no greatest element. So X and Y actually form a

Dedekind Cut.

XU}f:A, X Y
X <Y,

X has no greatest element.

Figure 3.16. X and Y form a Dedekind Cut.

Let us show that X and Y are closed under o. If x € X, then there is m € N*
such that x < 0™(a;). By applying o to both sides we get o(x) < 0™ *(ay); hence,
o(xr) € X. If y € Y, then it means that ¢"(a;) < y for all n and by applying o to
both sides we also obtain 0"*!(a;) < o(y) for all n. So we have o(y) € Y. Hence X
and Y are closed under o. If Y has a least element ¢ corresponding the cut of X and
Y, we have ¢ < y for all y € Y and moreover, o(c) < o(y) for all y € Y. Since o is
an automorphism and Y is closed under o, we have o(c) < y for all y € Y. Hence, we
must have o(c) = ¢. So if Y has a least element, ¢ is automatically satisfied. Assume
now Y does not contain a least element. Then, we can add an element ¢ to the cut
of X and Y and obtain a model A" of DLO, by extending ¢ as o(c) = ¢. Since A is
existentially closed there is also an element in ¢’ € A witnessing the existential sentence
¢(ay,az); that is, there is ¢ € A such that a; < o(’) = ¢ < ay. Therefore, if we have

A = X(ay, ay) for some existentially closed model A containing a; and as, then we also

have A = ¢(ay, as).

Now, let 3g(v1,v9) = {(v1 < o(v1) Ao™(v1) < v2) : 1 < n < m} be a finite subset
of X(v1,vg). We will find a ¢-obstacle ¢)(vy,vy) and an existentially closed model B
with elements by and by such that B |= (b1, by) A (b1, be). First of all, we will show
that ¥ (vy,vq) : 0™(v1) = v is a ¢-obstacle. Assume for a contradiction, ¢(cq,cy) and
(e, c2) are satisfied by a model of DLO, containing ¢; and cy. That is, we have

0™ (c1) = co and there is an element z such that
o <o(z)=2<co.
But then by applying ¢ to the inequality, we obtain

co=0"(c;) < o™ 2)=0"(2) = ...=0(2) = 2 < e
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This is a contradiction. Hence, ¢ (vy, v2) is a ¢-obstacle. Let B be an existentially closed
model of DLO, with an element b, satisfying b; < o(b;) (note that we can always find
such a model of DLO, and we can extend it to an existentially closed model). Also,
let by = 0™(by). We clearly have B |= (b1, by) and also B = 1(by, bg) where t(vy, v7)

is a ¢-obstacle. Therefore, DLO, has no model companion. (I

Now, let us illustrate what happens in the proof on an explicit model. Consider
the model (Q, <) of DLO and also let ¢ be an automorphism of (Q, <) defined as
o(r) = 5. Observe that the only element that remains the same under o is 0. If we
take any element a; < 0, it satisfies a; < o(a;) < 0 and for any element ay such that

0 < as, we have 0 < o(a) < as.

g 0 | 0 i— Q
-1 -1 _L _ 109 6 _6 6 6
2 4 78 40 20 10 -3
NI \L SONON o
a o g g T
g
c(0)=0

Figure 3.17. Applying o(z) = £ to —1 and —2 recursively.

We can extend (Q, <,0) to an existentially closed model A of DLO, and note
that we also have a < o(a) for a < 0 and o(a) < a for 0 < a in A. Actually, we see
that the automorphism o cuts the lincar order into two pieces and 0 is the element
corresponding the cut. So if A = 3(aq, as), then we have a; < 0 < ay and this implies
A | é(ay, as) since o(0) = 0. However, if we take a finite subset Xy of X, then it
means that we can choose ay as 0™ (a;) < ay < 0. In this situation we cannot find an

element between a; and a, whose image remains fixed under o.

Kikyo and Shelah generalize the argument that is presented in Theorem 3.9 to
prove that whenever there is a theory 1" with strict order propery, then T together

with an automorphism has no model companion [19].



Laskowski and Pal showed that if we restrict our attention to automorphisms
o which has the property Vv (v < o(v)), that is called as increasing automorphism,
then DLO with an increasing automorphism has model companion. Also, the same is
true for decreasing automorphisms. So we see that the obstruction presented in the
proof of Theorem 3.9 can be eliminated by putting assumptions on the automorphism.
Moreover, they gave a characterisation of all complete and model complete extensions

of DLO with an automorphism [20].

SUMMARY:

As a summary, we list below how the formulas ¥(7), ¢(7) and ¢-obstacle ()

mentioned in the Compactness Argument are chosen for the nonexistance proofs.

1. The theory of groups:
Y(vi,v) = {v] #e,vf #e:ne N}
(v, v9) : Fw (v - w = w - vy),

¢-obstacle: (v, vy) : (V" = e A vl # e).

2. The theory of rings:
Y(v) ={v" #0:n e N},
B(0) : FuZws [(w? = wi) A (wn £ 0) A (v ws = w))],
¢-obstacle: ¥(v) : (v™ = 0).

3. The theory of digraphs with a unique successor and predecessor:
Y (vy,v9) = {—=D"(v1,v2) A D" (v, v2)n € N*},
d(v1,v9) @ Fw(S(w,v1) A =S(w, vs)),
¢-obstacle: ¥(vq,vy) : D™ (v, vy),

where D™(vy,v5) : Fw; Fwg... 3w, (D(vr, wi) A (N]=, D(wi, wit1)) A D(w,, vs)).
(%1 Wy Wy . Wn—3 V2

\/\/\\ /4 \ /4\/

\ // \\k //

w1 W3 Wy

Figure 3.18. D™(vy, v9).
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4. The theory of cycle free graphs:

X(v1,v2) = {=R"(vy,v9) : n > 3},
d(v1,v9) : z(R(vy, 2) A R(z,v2)) V R(vy, v9),
¢-obstacle: R™(vy,vq),

where R™(vy,v) : 3w Jwy... 3wy, o R(vr, 1) A (A=) R(wi, wig1)) A R(w,_g,v2))

for n > 3.

Figure 3.19. R™(vy,v9).

5. The theory of fields with two commuting automorphisms:
Y(v) ={[(c(v) =7(v)) A (c"(v) + 6" (v) + ... + o(v) + v #£ 0)] : n € N*},
p(v) : 3z (22 =1 Ao(2) = 7(2) = 2%) = Fw Fws[(o(w1) = 7(wy) = wy + v)

A (w3 = wy) A (T(wz) = zo(wy))],

¢-obstacle: (v) : (v + o (v) + d*(v) + ... + o™ Hv) = 0) A (0(¢) = 7(¢) = ¢?).

6. The theory of dense linear orders without endpoints with an automorphisms:
Y(v1,v2) = {(v1 < o(v1) ANo™(v1) < vg) 1 n € N*},

d(v1,09) 1 Fz [(v1 < 0(2)) A(0(2) = 2) A (2 < va)],

¢-obstacle: ¥ (vy,vq) : 0™(v1) = va.



97

4. CONCLUSION

In this thesis, we studied existence and nonexistence of model companions. While
studying model companions, we came upon to many areas for future research. We list

possible ways of pursuing this research below.

We showed that the theory of fields with two commuting automorphisms has no
model companion. It is interesting to generalize this result to arbitrary theories. This

question was also asked by Kikyo [17].

Question 1 Let T be an arbitrary theory (not necessarily, the theory of fields). As-
sume T, is the theory T" with two commuting automorphisms. When does T,

have a model companion?

We have examples where 7" has model companion but 7}, has no model companion;
for example, if T' is the theory of fields with an automorphism, then 7" has model
companion but 7, has no model companion. We can also investigate the converse of

this statement:

Question 2 Is there any example where T has no model companion but T, has a

model companion?

Question 2 is stated in [12] and there is also one more question in this article that we
also want to state. Remember given a theory T', T™ denotes its model companion and

T, denotes the theory with an automorphism.

Question 3 When do we have (7},)* = ((17),)*?
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We also list the other questions now.

Question 4 Can we find a structural property that allow us to prove certain theories
do not have model companions? For example, if a theory T has strict order

property, then 7}, has no model companion.

Question 5 Can we get information about model companions of theories of fields by

interpreting graphs on fields?
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