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ABSTRACT

ADAPTIVE BOUNDARY CONTROL USING

BACKSTEPPING FOR 1D VARIABLE LENGTH

STRING-MASS SYSTEM UNDER DISTURBANCES

In this thesis, an adaptive boundary control using delayed control methodology

for a 1D wave equation is examined. The outlined problem is applied in the control

of an ideal string-mass system with constant or time-varying length. The dynamics of

the system, which constitutes the basis for the control problem, is first derived using

the extended Hamilton‘s Principle. The resulting wave PDE is then transformed into

two decoupled hyperbolic equations using the method of characteristics. The solution

of the characteristic equation allows one to project the input signal at one boundary

onto the dynamics describing the other boundary. Here, the input appears with an

explicit delay. If the domain is characterized by a moving boundary, i.e., the length

of the string is non-constant, the delay is time-varying. The problem then becomes

that of control of a linear ODE with an input delay. Afterward, the transport PDE

representation is used to re-express the delay in terms of a PDE‘s boundary value re-

sulting in an ODE-PDE cascade system. The backstepping transformation then gives

the control law and transforms the system into the target system characterized by fa-

vorable control properties. The only feedback required for the control is the boundary

measurements. Thereafter, Lyapunov‘s theory is used in the stability analysis. Any

unknown in-domain or boundary disturbances, as well as uncertain boundary parame-

ters, are handled using the adaptive control strategies. The dynamics of the string-mass

system and the performance of the derived controllers are illustrated using numerical

simulations. This is followed by a case study where the deployment and control of an

underwater sensor in the presence of the water waves are simulated.
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ÖZET

BOZUKLUKLAR ALTINDA 1B DEĞİŞKEN UZUNLUKLU

İP-KÜTLE SİSTEMİ İÇİN GERİ ADIMLAMALI

KULLANARAK UYARLANABİLİR SINIR KONTROLÜ

Bu tezde, 1B dalga denklemi için gecikmeli kontrol metodolojisini kullanan

uyarlanabilir bir sınır kontrolü incelenmiştir. Ana hatlarıyla verilen problem, sabit veya

zamanla değişen uzunlukta ideal bir dizi kütle sisteminin kontrolünde uygulanmıştır.

Kontrol probleminin temelini oluşturan sistemin dinamiği, ilk olarak genişletilmiş Hamil-

ton Prensibi kullanılarak türetilmiştir. Elde edilen dalga kısmi diferansiyel denklem

(KDD) daha sonra karakteristikler yöntemi kullanılarak iki ayrıştırılmış hiperbolik den-

kleme dönüştürülmüştür. Karakteristik denklemin çözümü, bir sınırdaki giriş sinyalinin

diğer sınırı tanımlayan dinamiklere yansıtılmasına izin verir. Burada girdi, belirgin bir

gecikmeyle görünür. Etki alanı hareketli bir sınırla karakterize edilirse, yani dizenin

uzunluğu sabit değilse, gecikme zamana göre değişir. O zaman sorun, giriş gecik-

meli doğrusal bir adi diferansiyel denklemin (ADD) kontrolü haline gelir. Daha sonra,

taşıma KDD temsili, gecikmeyi bir ADD-KDD kademeli sistemi ile sonuçlanan bir

KDD’nin sınır değeri cinsinden yeniden ifade etmek için kullanılır. Geri adımlamalı

dönüşüm daha sonra kontrol yasasını verir ve sistemi uygun kontrol özellikleri ile

karakterize edilen hedef sisteme dönüştürür. Kontrol için gerekli olan tek girdi sınır

ölçümleridir. Daha sonra kararlılık analizinde Lyapunov’un teorisi kullanılır. Bilin-

meyen herhangi bir etki alanı içi veya sınır bozucu etkinin yanı sıra belirsiz sınır

parametreleri, uyarlamalı kontrol stratejileri kullanılarak işlenir. Dizi-kütle sistem-

inin dinamikleri ve türetilmiş kontrolcülerin performansı, sayısal simülasyonlar kul-

lanılarak gösterilmektedir. Bunu, su dalgalarının varlığında bir sualtı sensörünün

konuşlandırılması ve kontrolünün simüle edildiği bir vaka çalışması takip eder.
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(
L(t̄), t̄

)
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1. INTRODUCTION
1

1.1. Boundary Control Problem

The boundary control problem refers to control of a distributed parameter system

through actuation at one of its boundaries. The partial differential equations (PDEs)

and delay differential equations (DDEs) are examples of the distributed parameter

systems, also known as infinite-dimensional systems. Here, the control of a mass at

the end of an ideal string is the subject of this thesis. The in-domain system or the

string is described by a hyperbolic PDE. The boundary condition (BC) is an ordinary

differential equation (ODE) describing the dynamics of a mass. Thus, one end of the

string is actuated, the input boundary, to stabilize the mass and the string itself, Figure

1.1. The backstepping method is used to derive the required control law. A general

overview of the method, as it pertains to boundary control of PDEs, can be found

in Krstic and Smyshlyaev (2008b). A more detailed review of the literature is given

below.

1.2. Delay Control and Backstepping

One of the more recent developments in boundary control of the PDEs is the

application of the backstepping method. First developed in Krstic et al. (1995), as an

extension of the feedback linearization for adaptive and robust control of the ODEs,

this technique is further expanded in Smyshlyaev and Krstic (2004) to include partial

differential equations. When applied to a distributed systems, the technique utilizes

the change of variables using Volterra transformation to bring the system to a new

form, the target system. Nonlinear and other undesired terms are brought up by the

transformation to the boundary where the application of the feedback control allows

one to cancel out the troublesome terms.

1This chapter is a modified version of Szczesiak and Basturk (2020) and Szczesiak and Basturk
(2021) and has been reproduced here with the permission of the copyright holder.
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Actuation

Mass

String

Figure 1.1. String-mass system.

The Lyapunov analysis is employed in proving the stability of the target system.

Invertibility of the transformation ensures that the stability can then be extended to

the states of the PDE. In Krstic and Smyshlyaev (2008a), backstepping for PDEs is

used to represent a design for the linear time-invariant (LTI) - ODE system with input

delay, ultimately recovering classical Smith predictor, Smith (1959).

The backstepping method has been successfully applied in the control of infinite-

dimensional systems as well as ordinary differential equations with delays by Krstic and

Smyshlyaev (2008a). Original work regarding stabilization of a wave PDE through

adaptive boundary control and backstepping transformation can be found in Krstic

(2009a). Here, a problem of an unstable wave equation with an unmatched para-

metric uncertainty is considered. In Smyshlyaev et al. (2010), authors examine wave

equation with in-domain anti-damping, an internal destabilizing term. Both papers

assume knowledge of the entire distributed state. In Bresch-Pietri and Krstic (2014b),

an adaptive output-feedback controller is designed to control a wave PDE with un-

certain, anti-damping parameter in the boundary dynamics. Furthermore, the design

requires measurements at the two boundaries only. This approach is further expanded

in Bresch-Pietri and Krstic (2014a), where the regulation problem for the stick-slip

instability in drill strings is examined. Whereas Bresch-Pietri and Krstic (2014a) re-

quires both boundary measurements, in Basturk (2017), an analogous problem is solved
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where only surface measurements are required. Similarly, in Roman et al. (2019), which

builds upon Smyshlyaev et al. (2010), only measurements at the controlled boundary

are needed. All Bresch-Pietri and Krstic (2014a), Basturk (2017), and Roman et al.

(2019) include uncertain and unstable boundary dynamics but have no in-domain dis-

turbances. In Zhang et al. (2016) and Guo et al. (2017), authors discuss wave equation

with time-dependent, harmonic disturbance in the uncontrolled boundary. In Guo

and Guo (2013), the disturbance is collocated with the control. The harmonic distur-

bances here are characterized by unknown amplitudes but are of known frequencies.

General time-dependent boundary disturbance, together with an unknown, internal,

and nonlinear uncertainty, is studied in Zhou and Guo (2018). The above papers are

characterized by known boundary measurements and known system parameters. In

Basturk and Ayberk (2018), authors discuss an inhomogeneous wave equation where

the unknown, in-domain disturbance is position-dependent but otherwise constant in

time. Moreover, an unknown and constant disturbance is present in the boundary dy-

namics. Finally, the analysis utilizing reformulation of the problem as a stabilization of

the LTI system that describes the boundary of the wave PDE and contains delayed in-

put is given in Yilmaz and Basturk (2020) and Szczesiak and Basturk (2020). Whereas

the first paper contains an unknown in-domain spatial disturbance, the second pa-

per discusses an in-domain harmonic time disturbance and an unknown parameter in

the dynamics of the BC. Again, only surface boundary measurements are required for

the controller. Please note that Szczesiak and Basturk (2020) constitutes the basis of

Chapter 3 of this document. Here, the problem is applied explicitly to a string-mass

system resulting in a slightly different boundary ODE characterized by two unknown

parameters.

Contrary to the aforementioned papers, the domain of a problem may no longer

be constant in time, resulting in a boundary system with a time-varying input delay.

When the delay is time-varying, the speed of propagation of the transport equation is no

longer constant. While the predictor feedback for the LTI system with a time-varying

input delay has been put forward in Nihtila (1991), the proof of the stability properties

of the proposed control law has been explicitly given in Krstic (2010). Stability analysis
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using a truncated predictor feedback, omitting infinite-dimensional distributed terms

in the predictor-based feedback, is given in Zhou et al. (2012) for a bounded time-

varying input delay and an open-loop system characterized by eigenvalues located on

the imaginary axis. The detailed stability analysis for both linear Cai et al. (2017)

and nonlinear systems with time-varying input delays can be found in Bekiaris-Liberis

and Krstic (2013). This particular methodology is readily applicable in the boundary

control of a wave equation on a domain with a moving boundary. In Izadi et al. (2015),

backstepping has been applied in the control of a one-dimensional (1D) heat equation on

a time-varying domain. Motivated by the control of stick-slip oscillations in oil-drilling,

Cai and Krstic (2016) apply backstepping to a non-linear system under wave actuator

dynamics with time and state-dependent moving boundaries. The boundary control of

non-linear ODE/wave PDE cascade system with spatially-varying propagation speed

is analyzed by Cai and Diagne (2020). In Diagne et al. (2016), the authors study

the control of transport PDE/nonlinear ODE cascade system with state-dependent

propagation speed.

1.3. Methods

The governing equations of motion describing the string-mass system are derived

using the extended Hamilton‘s Principle and then normalized. Thereafter, the bound-

ary actuation is utilized to stabilize a one-dimensional wave PDE with and without

in-domain and boundary disturbances. For a constant domain problem with distur-

bances, Chapter 3, the problem is first reformulated using Riemman variables. The

resulting two decoupled first order hyperbolic PDEs or transport PDEs are solved using

the Laplace transforms or the method of characteristics. As a result, the in-domain

disturbance of the wave PDE now appears in the bottom boundary ODE together with

the delayed input. In doing so, the thesis closely follow the methods of disturbance

cancellation for an LTI system with unknown parameters and input delay, found in

Basturk and Krstic (2015), and applies it to a problem of controlling a boundary of

wave PDE-ODE system describing the mass-string system.
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The unknown disturbance itself is parameterized following the technique found in

Nikiforov (2004). Here, the disturbance is modeled as an output of an exo-system after

which the observer is designed. The delay compensation follows Krstic and Smyshlyaev

(2008a) and Krstic (2009b) where the delay is expressed as a boundary output of a first

order hyperbolic PDE. The delay compensation is achieved using predictor feedback

based on the backstepping boundary control for the PDEs Krstic and Smyshlyaev

(2008b). By applying Volterra operator, the PDE-ODE cascade system is transformed

into a target system and the control law is derived. Next, the Lyapunov analysis

is applied. Normalized Lyapunov tuning and resulting update laws for the unknown

parameters are based on the approach found in Bresch-Pietri and Krstic (2009). Finally,

the boundedness of the original states of the wave PDE is proven.

Boundary problem with a non-constant domain is the subject of Chapter 4 and

Chapter 5. As before, the problem of Chapter 4 is first reformulated as the control of an

uncertain, input delayed LTI system. When the problem is transformed, the input at

the top boundary appears explicitly in the dynamics of the second boundary. This time,

the input into the boundary ODE system in characterized by a non-constant time delay.

This time-varying, input delayed LTI system is then stabilized using the predictor

feedback design as in Bekiaris-Liberis and Krstic (2013). As before, Lyapunov analysis

is used to prove the stability. Similar approach in pursued in Chapter 5. However,

since the input delay is no longer linear, the dynamics of the bottom boundary is now

described not by an LTI but by a linear time-varying (LTV) system. Once more, the

technique outlined in the Bekiaris-Liberis and Krstic (2013) is followed. The derived

transformation and the control are novel as they pertain to a control of an LTV system

with input time-varying delay.

1.4. Contributions of the Thesis

The primary contributions of this thesis are in the application of the delay control

methods, backstepping in particular, to a problem of controlling a distributed param-

eter system with uncertain boundary dynamics and disturbances. Furthermore, the
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domain of the aforementioned system may not be constant due to a moving boundary.

The analysis is applied to a practical problem of controlling a mass at the end of an

ideal string under disturbances and with varying lengths.

Novelties, some of which are published or in the process of publication, are intro-

duced in this thesis. Chapter 3 is a modified version of Szczesiak and Basturk (2020),

and Chapter 4 is based on Szczesiak and Basturk (2021). Finally, and to the best

knowledge of the author, the transformation and the controller derived in Chapter 5

for the LTV system have not been seen in the literature previously.

The following is a summary of the contributions made within the scope of this thesis:

� The delay control method of backstepping is employed in the control of systems

with constant and time-varying delays, uncertain system parameters, and subject

to unknown disturbances. The problem is complex and presents a challenge in

the control field.

� Whereas most of the literature proves stability for the class of problems con-

sidered, the stability analysis for the boundary control employed in this thesis,

Chapter 3 and Chapter 5, guarantees the convergence of the state in addition to

establishing boundedness of the remaining variables.

� The stability and convergence are proven in the presence of delay with limited

measurements. Boundary measurements are the only feedback required. No plant

state observer is used in the analysis or in the control implementation.

� The backstepping transformation and the predictor-feedback law for the LTV

system with time-varying actuator delay are given. The exponential stability

using the derived target system is proven. This constitutes a contribution in the

field of control of LTV systems with input delays.

� The control and the stability analyses presented for a string with a non-constant

length apply to a wider class of problems described by hyperbolic PDEs and

characterized by a domain with a moving boundary.

� It is shown that there exists a particular state transformation, incorporating



7

the delayed boundary states, which allows mapping of the problem‘s boundary

condition into an LTI/LTV system characterized by an actuator delay.

� The performance of the derived controllers is tested on unstable systems. A

comparison is made against delay-uncompensated control laws, Chapter 4 and

Chapter 7.

� A simulated case study provides a practical application for the analysis presented

in the thesis. The delay-compensated controllers are used to stabilize an under-

water sensor under the influence of water wave disturbances.

1.5. Applications

The boundary control of a wave PDE has been employed as a model for many

practical applications. Herein, the problem under consideration can be used as a model

for the control of an underwater load suspended on a cable and exposed to harmonic

wave disturbances. Likewise, positioning of a load suspended from a crane or a drone,

and subjected to wind disturbances, is another practical application. Many papers

cover this area. Among some of them, an overhead crane with flexible cable is con-

sidered in D’Andréa-Novel and Coron (2000). In Böhm et al. (2014), control of a

hanging cable immersed in water is studied. In Sagert et al. (2013), Bresch-Pietri and

Krstic (2014b), and Basturk (2017), authors examine the stabilization of the stick-slip

phenomenon for drilling.

The boundary control of a wave PDE on a domain with a moving boundary has

long been studied as it pertains to the dynamics of a string with a variable-length or a

string in motion. First stated as the Spaghetti Problem in Carrier (1949), it has been

reviewed comprehensively in Miranker (1960), Cooper (1993), and Terumichi et al.

(1997). In Zhu et al. (2001), the control for a translating string with an arbitrarily

prescribed length, utilizing the control volume viewpoint and based on the rate of

change of energy, is derived. An axially moving string system for a crane is considered

in Kim and Hong (2009). The control of a crane system in a two-dimensional space with

output constraints is analyzed in He et al. (2017). A maritime application can be found
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in Pham and Hong (2019) where the vibration control of a marine riser is examined.

An axially moving belt system with high acceleration/deceleration is studied in Zhao

et al. (2016). The vibration control in three dimensions of a string with a time-varying

length and input quantization is given in Xing et al. (2020). Liu and coauthors utilize

a boundary control for a flexible aerial refueling hose in the presence of boundary

and distributed disturbances Liu et al. (2017). In Wang et al. (2018a), Wang et al.

(2018b), and Wang et al. (2019), the control of axial vibrations in a mining elevator

cable is analyzed. Finally, Chapter 7 takes a look at a more realistic form of harmonic

disturbances, as per linear wave theory, that may affect an underwater operation.

1.6. Organization of the Thesis

This work is organized as follows: Chapter 2 provides derivation of the equations

of motion. Afterwards, the next three chapters contain individual boundary control

problems. Chapter 3 assumes a string of constant length under harmonic time distur-

bances. An adaptive controller is derived and the stability analysis is given. Chapter 4

extend the problem to a string whose length changes linearly. It is an adaptive problem

with no disturbances. Finally, Chapter 5 considers the most general case where the

velocity, at which the length of the string changes, follows a time-varying trajectory.

Numerical analysis used in this work is reviewed in the chapter that follows. Chapter

7 provides a case study where an underwater sensor under the influence of the water

waves is controlled during the deployment. Lastly, the work ends with the Conclusions

chapter and various Appendices discussing finer details of the analysis.

1.7. Notation

Throughout this document the bar notation (̄·) is used to denote two separate

concepts. In Chapters 2 and 7, the bar notation denotes the dimensioned variables.

Once the equations of motion are non-dimensionalized at the end of Chapter 2, the

bar is dropped. Afterward, and throughout Chapters 3–6, the bar notation is used to

denote the maxima, the maximum value of a given variable.
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2. DERIVATION OF EQUATIONS OF MOTION

2.1. Introduction

Consider a mechanical system comprised of a cable and a suspended load. As the

load is raised or lowered, the length of the cable will change. Furthermore, the cable

and the load may be subject to damping forces and external disturbances due to water

or air, currents, or periodic waves. Such a physical system may arise during loading

and unloading of ships, construction crane operations, Figure 2.1, or underwater or

aerial transports and positioning, Figure 2.2. In general, it is a difficult and complex

problem. A mathematical model, only the essential features of which will be used in

its description, is desired. These features include the ‘wave” like nature of the string

on a domain with a moving boundary, dynamics of the load, and the effect of external

forces and disturbances. With that in mind, the following assumptions are made to

simplify the problem at hand:

Assumption 2.1. The cable is modelled as an ideal string and no other material

properties, besides its linear density, are used in the analysis.

Assumption 2.2. A one-dimensional problem is considered. Whereas the length of

the string may change along the axial direction, the transverse vibrations in only one

normal direction are analyzed.

Assumption 2.3. The load is considered as a point with a prescribed mass value.

Assumption 2.4. Velocity proportional viscous damping forces are considered along

the transverse direction only.

Assumption 2.5. Transverse velocity ȳt̄(0, t̄) at the top boundary, x = 0, is used to

actuate the string-mass system. The required control law ū(t̄) = ȳt̄(0, t̄) will be derived

in the following chapters but the nature of the velocity controller/physical apparatus

required at the boundary x = 0 is not considered. No assumptions are made concerning

the power of the actuator and the forces necessary to generate the required velocity

input.
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Figure 2.1. Construction

crane operations, Rübig

(2011).

Figure 2.2. Helicopter

transport and positioning,

Hasselmann (n.d.).

Assumption 2.6. The in-domain and the bottom boundary disturbances are con-

sidered both spatial and temporal in nature. The disturbances only act along the

transverse direction.

Assumption 2.7. The length of the string changes as per the prescribed velocity

profile.

The mathematical system will be defined in terms of the PDE associated with

the string and the ODE describing the boundary condition, i.e., the dynamics of the

mass. To that effect, the variational method, Goldstein et al. (2002), will be utilized

to obtain the equations of motion from the basic principles. The upcoming derivation

closely follows the one found in Zhu et al. (2001).

2.2. Equations of Motion

Consider a one dimensional ideal string of linear density ρ and length L(t̄), to-

gether with mass m suspended at one end of the string as in Figure 2.3. An inertial

reference frame anchored at (x̄, ȳ) = (0, 0) is assumed.
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m

x̄

ȳ

L(t̄)

g

m

x̄

ȳ

L(t̄)

g
Fτ (x̄, t̄)θ(x̄, t̄)

x̄

ȳ(x̄, t̄)

x̄+ dx̄

ȳ(x̄+ dx̄, t̄)

Figure 2.3. String diagram and string tension Fτ (x̄, t̄).

The string is fed at x̄ = 0 at a rate v̄(t̄) = L̇(t̄). Both the string and the mass

are subject to gravity, the damping forces, the in-domain, p̄(x̄, t̄), and the boundary,

P̄ (x̄, t̄)
∣∣
L(t̄)

, disturbance forces, Figure 2.4. The differential length of the string is

dL =
√
dx̄2 + dȳ2, (2.1)

dL = dx̄

√
1 +

(dȳ
dx̄

)2
. (2.2)

The above expression can be further simplified by assuming small vibrations or |θ(x̄, t̄)| ≪

1 =⇒ | dȳ
dx̄
| ≪ 1. This warrants application of binomial approximation, (1 + x)α ≈

1 + αx for |x| < 1 and |αx| ≪ 1, to write

dL = dx̄
(
1 +

1

2

(dȳ
dx̄

)2)
, (2.3)

and

δL = dL− dx̄ =
1

2

(dȳ
dx̄

)2
. (2.4)

Differential of potential energy of the string due to tension Fτ (x̄, t̄) is

dVe = FτδL. (2.5)

The potential energy can then be written as an integral over the domain x̄ ∈ [0, L(t̄)]

Ve =
1

2

∫ L(t̄)

0

Fτ (x̄, t̄)ȳ
2
x̄dx̄, (2.6)
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m

ȳt̄(0, t̄) = ū(t̄)

P̄ (x̄, t̄)
∣∣
L(t̄)

x̄

ȳ

p̄(x̄, t̄)

cρ

cm

Figure 2.4. Actuation and non-potent forces acting on the mass-string system.

where, assuming negligible effects of buoyancy, tension in the string due to its own

weight, weight of the mass m, and the acceleration ˙̄v(t̄), is

Fτ (x̄, t̄) =
(
m+ ρ

(
L(t̄)− x̄

))(
g − ˙̄v(t̄)

)
. (2.7)

The kinetic energy of the string and the mass is composed of axial and transverse

components as follows

Te =
1

2
mv̄(t̄)2 +

1

2
m
(Dȳ
Dt̄

(
x̄ = L(t̄), t̄

))2
+

1

2
ρL(t̄)v̄(t̄)2 +

1

2
ρ

∫ L(t̄)

0

(Dȳ
Dt̄

(x̄, t̄)
)2
dx̄,

(2.8)

where the Material or Total derivative given by

D

Dt̄
=

∂

∂t̄
+ v̄(t̄)

∂

∂x̄
(2.9)

is utilized. Work associated with non-potent forces fi acting on the system is

We =
∑
i

fT
i ri, (2.10)

or, in this particular case,

We = P̄ (x̄, t̄) ȳ
∣∣∣
x̄=L(t̄)

+

∫ L(t̄)

0

p̄(x̄, t̄)dx̄ ȳ

− cm
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
ȳ −

∫ L(t̄)

0

cρ
Dȳ

Dt̄
(x̄, t̄)dx̄ ȳ,

(2.11)
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where cρ and cm are coefficient associated with damping forces acting on the string

and on the mass m (Please see Figure 2.4). Furthermore, note that no work associated

with the control input is included here, see Assumption 2.5.

Applying the extended Hamilton‘s Principle allows one to write action, a charac-

teristic of the dynamics associated with a physical system, as

S =

∫ t̄2

t̄1

(Te − Ve +We)dt̄. (2.12)

Since the path taken by a system is the one which minimizes action S, take variation

of action δS and set it equal to zero

δS =

∫ t̄2

t̄1

(δTe − δVe + δWe)dt̄ = 0. (2.13)

Starting with increment ∆, individual variations are evaluated as follows

∆Ve = Ve(ȳ +∆ȳ, ȳx̄ +∆ȳx̄, ˙̄y +∆ ˙̄y, t̄)− Ve(ȳ, ȳx̄, ˙̄y, t̄), (2.14)

or

∆Ve =Ve(ȳ, ȳx̄, ˙̄y, t̄) +
∂Ve
∂ȳ

(...)δȳ +
∂Ve
∂ȳx̄

(...)δȳx̄ +
∂Ve
∂ ˙̄y

(...)δ ˙̄y

+HOT − Ve(...),

(2.15)

where for clarity ˙̄y = Dȳ
Dt̄

and ȳt̄ = ∂ȳ
∂t̄
. The first variation of the potential energy

δVe, the liner part, is then represented by the first order derivative terms in the above

expression, or

δVe =
∂Ve
∂ȳ

(...)δȳ +
∂Ve
∂ȳx̄

(...)δȳx̄ +
∂Ve
∂ ˙̄y

(...)δ ˙̄y. (2.16)

Since the potential depends only on ȳx̄ as in (2.6),

δVe =
∂Ve
∂ȳx̄

(...)δȳx̄ =

∫ L(t̄)

0

Fτ (x̄, t̄)ȳx̄δȳx̄dx̄. (2.17)

Using the integration by parts gives

δVe = Fτ (x̄, t̄)ȳx̄δȳ
∣∣∣L(t̄)
0

−
∫ L(t̄)

0

(
Fτ (x̄, t̄)ȳx̄

)
x̄
δȳdx̄. (2.18)

Similarly, the kinetic energy variation δTe is the linear part of the increment ∆Te, or

δTe =
∂Te
∂ȳ

(...)δȳ +
∂Te
∂ȳx̄

(...)δȳx̄ +
∂Te
∂ ˙̄y

(...)δ ˙̄y. (2.19)
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Since the kinetic energy depends only on ˙̄y, please see (2.8), expression (2.19) becomes

δTe =
∂Te
∂ ˙̄y

(...)δ ˙̄y

=
∂

∂ ˙̄y

(
1

2
m
(Dȳ
Dt̄

(
x̄ = L(t̄), t̄

))2)
δ ˙̄y +

∂

∂ ˙̄y

(
1

2
ρ

∫ L(t̄)

0

(Dȳ
Dt̄

(x̄, t̄)
)2
dx̄

)
δ ˙̄y,

(2.20)

and

δTe = m
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δ ˙̄y + ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄δ ˙̄y. (2.21)

Finally, the variation of work, using equation (2.11), is

δWe = P̄ (x̄, t̄)δȳ
∣∣∣
x̄=L(t̄)

+

∫ L(t̄)

0

p̄(x̄, t̄)dx̄δȳ

− cm
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δȳ −

∫ L(t̄)

0

cρ
Dȳ

Dt̄
(x̄, t̄)dx̄δȳ.

(2.22)

Inserting (2.18), (2.21) and (2.22) into (2.13) gives∫ t̄2

t̄1

(
m
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δ ˙̄y︸ ︷︷ ︸

#1

+ ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄δ ˙̄y︸ ︷︷ ︸

#2

− Fτ (x̄, t̄)ȳx̄δȳ
∣∣∣
x̄=L(t̄)

+ Fτ (x̄, t̄)ȳx̄δȳ
∣∣∣
x̄=0

+

∫ L(t̄)

0

(
Fτ (x̄, t̄)ȳx̄

)
x̄
δȳdx̄

+ P̄ (x̄, t̄)δȳ
∣∣∣
x̄=L(t̄)

+

∫ L(t̄)

0

p̄(x̄, t̄)dx̄δȳ

− cm
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δȳ −

∫ L(t̄)

0

cρ
Dȳ

Dt̄
(x̄, t̄)dx̄δȳ

)
dt̄ = 0.

(2.23)

Using integration by parts evaluate the integral of the term labeled #1 as∫ t̄2

t̄1

m
Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δ ˙̄ydt̄ = m

Dȳ

Dt̄

(
x̄ = L(t̄), t̄

)
δȳ
∣∣∣t̄2
t̄1

−
∫ t̄2

t̄1

m
D2ȳ

Dt̄2
(
x̄ = L(t̄), t̄

)
δȳdt̄,

(2.24)

and since variation δȳ vanishes at initial and terminal points, t̄1 and t̄2, the first term

on the right hand side drops out resulting in∫ t̄2

t̄1

m
Dȳ

Dt̄

(
x̄ = L(t̄), t̄)δ ˙̄ydt̄ = −

∫ t̄2

t̄1

m
D2ȳ

Dt̄2
(
x̄ = L(t̄), t̄)δȳdt̄. (2.25)

Similarly, using integration by parts, evaluate the term labeled #2 as follows∫ t̄2

t̄1

ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄︸ ︷︷ ︸

u

δ ˙̄ydt̄︸︷︷︸
dv

= uv
∣∣∣t̄2
t̄1
−
∫ t̄2

t̄1

vdu. (2.26)
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Evaluating du using the Leibniz’s rule (A.10) gives

du =
d

dt̄

(∫ L(t̄)

0

ρ
Dȳ

Dt̄
(x̄, t̄)dx̄

)
dt̄ =

∫ L(t̄)

0

ρ
D2ȳ

Dt̄2
(x̄, t̄)dx̄

+ ρ
Dȳ

Dt̄
(x̄, t̄)

∣∣∣
x̄=L(t̄)

d

dt̄

(
L(t̄)

)
− ρ

Dȳ

Dt̄
(x̄, t̄)

∣∣∣
x̄=0

d

dt̄

(
0
)
.

(2.27)

Expression (2.26) then becomes∫ t̄2

t̄1

ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄δ ˙̄ydt̄ = ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄δȳ

∣∣∣t̄2
t̄1

−
∫ t̄2

t̄1

(∫ L(t̄)

0

ρ
D2ȳ

Dt̄2
(x̄, t̄)dx̄

+ ρ
Dȳ

Dt̄
(x̄, t̄)v̄(t̄)

∣∣∣
x̄=L(t̄)

)
δȳdt̄.

(2.28)

Again, since variation δȳ vanishes at t̄1 and t̄2, the first term drops out and one arrives

at ∫ t̄2

t̄1

ρ

∫ L(t̄)

0

Dȳ

Dt̄
(x̄, t̄)dx̄δ ˙̄ydt̄ = −

∫ t̄2

t̄1

∫ L(t̄)

0

ρ
D2ȳ

Dt̄2
(x̄, t̄)dx̄δȳdt̄

−
∫ t̄2

t̄1

ρ
Dȳ

Dt̄
(x̄, t̄)

∣∣∣
x̄=L(t̄)

v̄(t̄)δȳdt̄.

(2.29)

In light of (2.25) and (2.29), (2.23) becomes∫ t̄2

t̄1

∫ L(t̄)

0

(
− ρ

D2ȳ

Dt̄2
(x̄, t̄)− cρ

Dȳ

Dt̄
(x̄, t̄) +

(
Fτ (x̄, t̄)ȳx̄

)
x̄
+ p̄(x̄, t̄)

)
dx̄δȳdt̄

−
∫ t̄2

t̄1

(
m
D2ȳ

Dt̄2
+ ρ

Dȳ

Dt̄
v̄(t̄) + cm

Dȳ

Dt̄
+ Fτ (x̄, t̄)ȳx̄ − P̄ (x̄, t̄)

)
δȳ
∣∣∣
x̄=L(t̄)

dt̄

+

∫ t̄2

t̄1

(
Fτ (x̄, t̄)ȳx̄

)
δȳ
∣∣∣
x̄=0

dt̄ = 0.

(2.30)

The term under the last integral in the above equation is associated with the transverse

force acting at x̄ = 0. The expression is incomplete as the boundary input has not

been defined at this point, please see Assumption 2.5. Now, for δS = 0, individual

terms of (2.30) must vanish. By equating to zero inner expressions of the first and

second integrals of (2.30) gives the PDE, and the ODE associated with the boundary

condition at x̄ = L(t̄):

ρ
D2ȳ

Dt̄2
(x̄, t̄) + cρ

Dȳ

Dt̄
(x̄, t̄)−

(
Fτ (x̄, t̄)ȳx̄(x̄, t̄)

)
x̄
− p̄(x̄, t̄) = 0, (2.31)
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(
m
D2ȳ

Dt̄2
(x̄, t̄) + ρ

Dȳ

Dt̄
(x̄, t̄)v̄(t̄)

+ cm
Dȳ

Dt̄
(x̄, t̄) + Fτ (x̄, t̄)ȳx̄(x̄, t̄)− P̄ (x̄, t̄)

)
x̄=L(t̄)

= 0.

(2.32)

Using definition of the total derivative found in (2.9) to rewrite (2.31) and (2.32) as

ρ
(
ȳt̄t̄(x̄, t̄) + 2v̄(t̄)ȳx̄t̄(x̄, t̄) + ˙̄v(t̄)ȳx̄(x̄, t̄) + v̄(t̄)2ȳx̄x̄(x̄, t̄)

)
− p̄(x̄, t̄)

+ cρ

(
ȳt̄(x̄, t̄) + v̄(t̄)ȳx̄(x̄, t̄)

)
−
(
Fτx̄(x̄, t̄)ȳx̄(x̄, t̄) + Fτ (x̄, t̄)ȳx̄x̄(x̄, t̄)

)
= 0,

(2.33)

(
m
(
ȳt̄t̄(x̄, t̄) + 2v̄(t̄)ȳx̄t̄(x̄, t̄) + ˙̄v(t̄)ȳx̄(x̄, t̄) + v̄(t̄)2ȳx̄x̄(x̄, t̄)

)
+ ρ
(
ȳt̄(x̄, t̄) + v̄(t̄)ȳx̄(x̄, t̄)

)
v̄(t̄) + cm

(
ȳt̄(x̄, t̄) + v̄(t̄)ȳx̄(x̄, t̄)

)
+ Fτ (x̄, t̄)ȳx̄(x̄, t̄)− P̄ (x̄, t̄)

)
x̄=L(t̄)

= 0.

(2.34)

Please observe that the inertia part of (2.33) contains additional terms. These are

associated with the local Coriolis force (2v̄(t̄) term), tangential acceleration ( ˙̄v(t̄) term),

and centripetal force (v̄(t̄)2 term). Finally, introduce control parameters ϵa and ϵτ ,

definition of string tension form (2.7), and re-arrange equations (2.33) and (2.34):

ȳt̄t̄(x̄, t̄) + 2v̄(t̄)ȳx̄t̄(x̄, t̄) +
(
˙̄v(t̄) + ϵτ

(
g − ˙̄v(t̄)

)
+
cρv̄(t̄)

ρ

)
ȳx̄(x̄, t̄) +

cρ
ρ
ȳt̄(x̄, t̄)

+

(
v̄(t̄)2 −

(m
ρ

+ ϵτ
(
L(t̄)− x̄

))(
g − ϵa ˙̄v(t̄)

))
ȳx̄x̄(x̄, t̄)−

p̄(x̄, t̄)

ρ
= 0,

(2.35)

(
ȳt̄t̄(x̄, t̄) + 2v̄(t̄)ȳx̄t̄(x̄, t̄) + v̄(t̄)2ȳx̄x̄(x̄, t̄) +

(ρv̄(t̄)
m

+
cm
m

)
ȳt̄(x̄, t̄)

+
(
˙̄v(t̄) +

ρv̄(t̄)2

m
+
(
g − ϵa ˙̄v(t̄)

)
+
cmv̄(t̄)

m

)
ȳx̄(x̄, t̄)−

P̄ (x̄, t̄)

m

)
x̄=L(t̄)

= 0.

(2.36)

To complete the system, and per Assumption 2.5, the boundary condition at x = 0 is

ȳt̄(0, t̄) = ū(t̄). (2.37)

The binary, 0 or 1, epsilon parameters in (2.35)–(2.36) allow one to turn on or off

effects such as:

� Varying string tension due to the weight of the string: ϵτ ,

� Varying string tension due to the acceleration of the string and the mass: ϵa.
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Furthermore, by adjusting cρ and cm one can control amount of damping affecting the

string and the mass respectively. Finally, using Assumption 2.7 the length of the string

becomes

L(t̄) = L0 +

∫ t̄

0

v̄(t̄)dt̄, (2.38)

where L0 > 0 is the initial length of the string.

In summary, the equation system (2.35)–(2.37) describes a mass suspended on a

one dimensional ideal string whose length changes with the prescribed velocity profile.

The string is actuated using transverse velocity input at the boundary x = 0. Both

the string and the mass are subject to gravity, damping, and external disturbances.

2.3. Dimensionless Analysis

The dimensionless analysis will be used to re-express the equations of motion

(2.35)–(2.37). This is done to better understand the behaviour of the dynamical system

and not just a particular case that might be obtained by assuming some representative

parameter values. The benefits of this approach will be most apparent when comparing

results for various control problems to be considered later, as well as when simulating

these problems numerically.

Begin by defining dimensionless variables: x = x̄
L0
, y = ȳ

L0
, l(t) = L(t̄)

L0
, and t = t̄

tc

with constant tc to be specified later. Spatial and temporal derivatives then become

dn

dx̄n = 1
(L0)n

dn

dxn and dn

dt̄n
= 1

(tc)n
dn

dtn
. Furthermore, v̄(t̄) = v(t)L0

tc
and ˙̄v(t̄) = 1

tc
d
dt
v̄(t̄) =

L0

t2c
v̇(t). Insert above definitions in (2.35)–(2.37) and divide all equations by a common

term L0

t2c
to obtain

ytt(x, t) + 2v(t)yxt(x, t) +
(
v̇(t) +

cρtcv(t)

ρ
+ ϵτ

(gt2c
L0

− v̇(t)
))
yx(x, t)

+

(
v(t)2 −

( m

L0ρ
+ ϵτ

(
l(t)− x

))(gt2c
L0

− ϵav̇(t)
))
yxx(x, t)

+
cρtc
ρ
yt(x, t)−

t2c
L0ρ

p̄(L0x, ttc) = 0,

(2.39)
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yt(0, t) =
tc
L0

ū(t̄), (2.40)

and (
ytt(x, t) + 2v(t)yxt(x, t) + v(t)2yxx(x, t)

+
(
v̇(t) +

L0ρv(t)
2

m
+
(gt2c
L0

− ϵav̇(t)
)
+
cmtcv(t)

m

)
yx(x, t)

+
(L0ρv(t)

m
+
cmtc
m

)
yt(x, t)−

t2c
L0m

P̄ (L0x, ttc)

)
x=l(t)

= 0.

(2.41)

Now, define tc = L0√
mg
ρ

, and set u(t) = 1√
mg
ρ

ū(t̄), p(x, t) = L0

mg
p̄(xL0, ttc), P (x, t) =

L0ρ
m2g

P̄ (xL0, ttc). Then, collecting likewise terms gives

ytt(x, t) =− 2v(t)yxt(x, t)

−
(
v(t)2 −

( m

L0ρ
+ ϵτ

(
l(t)− x

))(L0ρ

m
− ϵav̇(t)

))
yxx(x, t)

−
(
v̇(t) +

cρL0v(t)

ρ
√

mg
ρ

+ ϵτ
(L0ρ

m
− v̇(t)

))
yx(x, t)

− cρL0

ρ
√

mg
ρ

yt(x, t) + p(x, t),

(2.42)

yt(0, t) = u(t), (2.43)

(
ytt(x, t) =− v(t)2yxx(x, t)− 2v(t)ytx(x, t)

−
(
v̇(t) +

L0ρv(t)
2

m
+
cmL0v(t)

m
√

mg
ρ

+
(L0ρ

m
− ϵav̇(t)

))
yx(x, t)

−
(L0ρv(t)

m
+

cmL0

m
√

mg
ρ

)
yt(x, t) + P (x, t)

)
x=l(t)

,

(2.44)

where l(t) is the normalized length of the string given by

l(t) = 1 +

∫ t

0

v(t)dt. (2.45)

Equations (2.42) and (2.44) are the non-dimensionalized equations of motion. As a

quick check let‘s assume a particular case. Set the non-dimensional velocity v(t),

epsilon parameters, and the disturbance p(x, t) to zero in equation (2.42). The PDE

then becomes ytt = yxx, a simple wave equation with the wave speed of one. While

the system (2.42)–(2.44) appears complicated, it can be thought of as a modified wave
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equation. When the v(t) ̸= 0, the string extends or retracts at the given speed. The

length of the string starts at the normalized value of one and then increases or decreases

as per (2.45). Accordingly, the system (2.42)–(2.44) is characterized by a moving

boundary. In the following chapters, this system of equations will provide the basis for

the analysis of various boundary control problems.
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3. ADAPTIVE BOUNDARY CONTROL FOR A

STRING-MASS SYSTEM OF CONSTANT LENGTH AND

WITH DISTURBANCES
2

3.1. Introduction

This chapter considers the first boundary control problem. The equations of

motion derived previously will be used as a model for the control of a string of constant

length under time-dependent disturbances. Furthermore, additional assumption will

be stated do better define the control problem as well as the nature of the required

boundary input.

3.2. Problem Statement

Consider (2.42)–(2.44). The following physical assumptions are made about the

system:

Assumption 3.1. The velocity of the string is zero, v(t) = 0. The string then is of

constant length l(t) = 1 as per expression (2.45).

Assumption 3.2. There are not any in-domain damping forces affecting the string,

cρ = 0.

Assumption 3.3. Tension in the string is constant and due only to the weight of the

mass, Fτ (x, t) = mg. This implies: ϵτ = 0 and ϵa = 0.

Assumption 3.4. The string itself is under the influence of temporal disturbances

only, which take the form of

p(t) =
n∑

i=1

gi sin(ωit+ ϕi). (3.1)

2This chapter is a modified version of Szczesiak and Basturk (2020) and has been reproduced here
with the permission of the copyright holder.
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Assumption 3.5. The mass is under the influence of temporal disturbances only,

which take the form of

P (t) =
n∑

i=1

hi sin(ωit+ φi). (3.2)

Assumptions 3.4 and 3.5 can be seen as a simple model for harmonic disturbances,

such as waves or wind gusts, that might affect the string and the suspended load. Under

Assumptions 3.1–3.5 system (2.42)–(2.44) reduces to

ytt(x, t) = yxx(x, t) +
n∑

i=1

gi sin(ωit+ ϕi), (3.3)

yt(0, t) = u(t), (3.4)

ytt(1, t) = −byx(1, t) + (a+ b)yt(1, t) +
n∑

i=1

hi sin(ωit+ φi), (3.5)

where

a = −
(L0ρ

m
+

cmL0

m
√

mg
ρ

)
, (3.6)

b =
L0ρ

m
, (3.7)

and for x ∈ [0, 1]. Parameters gi ∈ R, hi ∈ R, wi ∈ R, ϕi ∈ R, φi ∈ R are amplitudes,

frequencies, and phases of the disturbances respectively. In addition, following control

assumptions are stated

Assumption 3.6. Symbol n stands for a known number of distinct but otherwise

unknown disturbance frequencies. All frequencies are assumed to have known bounds

such that each ωi ∈ [ωi, ω̄i], where from now on the underbar and the overbar symbols

will indicate minimum and maximum bounds respectively.

Assumption 3.7. Unknown disturbance amplitudes gi and hi are assumed to have

known bounds, |gi| ≤ gmax and |hi| ≤ hmax.

Assumption 3.8. Parameters a and b are assumed to be unknown but have known

bounds a ∈ [a, ā] and b ∈ [b, b̄]. Moreover, parameter b ̸= 0 is of a known sign.

Assumption 3.9. Boundary states, yt(0, t), yx(0, t), and yt(1, t), are assumed to be

measured. Their present values as well as their histories are available for feedback.
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The aim of this chapter is to design boundary control input u(t) at boundary

x = 0, see (3.4), such that:

lim
t→∞

yt(1, t) = 0 (3.8)

i.e., the velocity of the bottom boundary, or the mass, converges to zero despite presence

of unmeasured disturbances and an uncertain boundary dynamics.

In the next section, the problem is reformulated using a set of Riemann variables.

This enables one to express bottom boundary condition (3.5) as an LTI system with

delayed input.

3.3. Reformulation of the Problem

The outlined problem is reformulated as a stabilization of an LTI system de-

scribing dynamics at the bottom boundary, x = 1. This is accomplished by following

Basturk (2017) and defining two Riemann variables

ξ(x, t) = yt(x, t) + yx(x, t), (3.9)

η(x, t) = yt(x, t)− yx(x, t), (3.10)

which transform second order wave PDE (3.3) into two first order equations:

ξt(x, t) = ξx(x, t) +
n∑

i=1

gi sin(ωit+ ϕi), (3.11)

ηt(x, t) = −ηx(x, t) +
n∑

i=1

gi sin(ωit+ ϕi). (3.12)

Using the Laplace transform method solve equations (3.11) and (3.12), and re-express

both ξ(x, t) and η(x, t) as

ξ(x, t) = ξ(1, t+ x− 1) + νξ1(x, t), (3.13)

η(x, t) = η(0, t− x) + νη0(x, t), (3.14)

where

νξ1(x, t) =
n∑

i=1

αc
i

(
cos(ωi(t+ x− 1))− cos(ωit)

)
− αs

i

(
sin(ωi(t+ x− 1))− sin(ωit)

)
,

(3.15)
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η(x, t) ξ(
x,
t)

x = 0

x = 1

t

x

t = 0 t = 1 t = 2

Figure 3.1. Signal flow for Riemann variables ξ(x, t) and η(x, t).

and

νη0(x, t) =
n∑

i=1

αc
i

(
cos(ωi(t− x))− cos(ωit)

)
− αs

i

(
sin(ωi(t− x))− sin(ωit)

)
,

(3.16)

with αc
i = gi cos(ϕi)

ωi
and αs

i = gi sin(ϕi)
ωi

. The signal flow for equations (3.13)–(3.14) is

portrayed in Figure 3.1. Evaluating (3.14) at x = 1 and with the help of definition

(3.10) gives

yx(1, t) = yt(1, t)− yt(0, t− 1) + yx(0, t− 1)− νη0(1, t). (3.17)

The boundary condition (3.5) can then be re-expressed, using (3.17), as follows

ytt(1, t) = ayt(1, t) + b
(
u(t− 1)− yx(0, t− 1)

)
+ ν(t), (3.18)

where

ν(t) =
n∑

i=1

di sin(ωit+Ψi), (3.19)

for

di =

√
h2i +

(2Loρ
m
gi sin(

ωi

2
)

ωi

)2 − 4Loρ
m
gihi cos(ϕi − φi +

ωi

2
) sin(ωi

2
)

ωi

, (3.20)

Ψi = arctan
(
−

Loρ
m
gi
(
cos(ϕi + ωi)− cos(ϕi)

)
− hiωi sin(φi)

Loρ
m
gi
(
sin(ϕi + ωi)− sin(ϕi)

)
+ hiωi cos(φi)

)
. (3.21)
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The disturbance ν(t) is the combination of νη0(1,t) and P (t). Since both dis-

turbances are defined by the same frequencies, these can be expressed as a series of

just sine terms with amplitudes di and phases Ψi as in (3.19). Please note that the

original BC now takes the form of a LTI system (3.18) characterized by two uncertain

parameters a and b, a delayed input u(t−1), and an unknown disturbance ν(t). States

yt(1, t) and yx(0, t) are both measured and available for feedback. In the next section,

observer for the unknown disturbance will be developed and parametrized.

3.4. Disturbance Parametrization and Estimation

Since the disturbance in (3.19) is not known, it needs to be parametrized and

phrased in a form suitable for further observer design. Following Nikiforov (2004), the

disturbance is then expressed as an output of an unknown LTI exo-system

ẇ(t) = Sw(t), (3.22)

ν(t) = hTw(t), (3.23)

where h ∈ R2n, S ∈ R2n×2n, and w(t) ∈ R2n. By definition, (hT ,S) is an observable

pair. Now, let G ∈ R2n×2n be a Hurwitz matrix and (G, l) be a controllable pair chosen

by the designer. Since eigenvalues of matrix S lie on the imaginary axis, spectra of G

and S are disjoint. The solution of Sylvester equation

MS−GM = lhT , (3.24)

matrix M ∈ R2n×2n, is then unique and invertable, please see Nikiforov (2004). Us-

ing change of coordinates z(t) = Mw(t), together with (3.22)–(3.24), the exo-system

becomes

ż(t) = Gz(t) + lν(t), (3.25)

ν(t) = θT
s z(t), (3.26)

where θT
s = hTM−1.

It is desired to express ν(t) in terms of delayed vector z(t− 1) as to incorporate

disturbance estimation and its rejection in the formalism of the subsequent backstep-
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ping transformation. This is done with the help of the following lemma.

Lemma 3.10. Disturbance ν(t) in equation (3.26) can be re-expressed in terms of

delayed vector, z(t− 1), as follows

ν(t) = θT
a z(t− 1), (3.27)

where θT
a = hTeSM−1.

Proof of Lemma 3.10. Using explicit solution of the equation (3.22), expression

(3.23) is rewritten as

ν(t′) = hTeSt
′
w(0). (3.28)

Then,

ν(t′ + 1) = hTeSM−1MW(t′), (3.29)

where identity M−1M has been inserted into the expression. Using definition of z(t′),

and evaluating (3.29) at t′ = t− 1, gives (3.27).

State z(t) found in expression (3.26) cannot be used since the disturbance ν(t) is

not measured. An observer is designed to estimate state z(t). This is done with the

help of the following lemma.

Lemma 3.11. The unknown disturbance ν(t) can be cast into the form

ν(t) = θT
a τ (t− 1) + βT

a ρa(t− 1) + βT
b ρb(t− 1) + βT

δ δ(t), (3.30)

where βT
a = aθT

a , β
T
b = bθT

a , and βT
δ = θT

a e
−G for θT

a = hTeSM−1. Furthermore, the

observer filters are given as

τ (t) = ρ(t) + lyt(1, t), (3.31)

ρ̇(t) = Gτ (t), (3.32)

ρ̇a(t) = Gρa(t)− lyt(1, t), (3.33)

ρ̇b(t) = Gρb(t)− lU(t− 1), (3.34)

where

U(t) = u(t)− yx(0, t), (3.35)
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and yt(1, t) act as the filter inputs. Finally, the estimation error, δ ∈ R2n, obeys the

following dynamics

δ̇(t) = Gδ(t). (3.36)

Proof of Lemma 3.11. Define the estimation error as

δ(t) = z(t)− τ (t)− aρa(t)− bρb(t). (3.37)

The dynamics (3.36) is obtained by taking the time derivative of δ(t) in the above

expression and by considering (3.18), (3.25), and (3.31)–(3.34). By evaluating (3.37)

for z(t− 1) and inserting it into (3.27) one concludes (3.30).

Finally, using (3.30) and (3.35) the LTI system (3.18), and thus boundary condi-

tion (3.5), becomes

ytt(1, t) = ayt(1, t) + bU(t− 1)

+ θT
a τ (t− 1) + βT

a ρa(t− 1) + βT
b ρb(t− 1) + βT

δ δ(t).
(3.38)

Consider (3.4), (3.10), and (3.35). It can then be written η(0, t) = U(t). Signal η

carries signal U down the string toward the bottom boundary where it acts as an

delayed input in (3.38). Please also see Figure 3.1.

The unknown disturbance ν(t) has been parametrized and expressed as a product

of an unknown but constant parameter vectors, θa, βa, and βb, with know, time delayed

regressors, τ (t−1), ρa(t−1), and ρb(t−1), plus an exponentially decaying error term.

Remark 3.12. The implementation of the update laws, to be considered later, re-

quires evaluation of bounds on parameter vector θa. This is done as follows. The

parametric solution of the Sylvester equation (3.24) gives matrix M = M(ω1, ..., ω2n).

Vector θT
a =

(
θ1(ω1, ..., ωn), ..., θ2n(ω1, ..., ωn)

)
is obtained by evaluating expression

θT
a = hTeSM−1. Separate bounds on each element θj, designated [θj θ̄j] for j = 1, ..., 2n,

are then determined by finding its extrema considering known frequency bounds,

ωi ∈ [ωi, ω̄i] for i = 1, ..., n, as per Assumption 3.6. Furthermore, bounds on the

unknown signal z(t) can be shown using its definition, z(t) = Mw(t), as follows

|z(t)|2 < z̄T z̄ = max{wTw} max
λ|ω∈[ω,ω̄]

{MTM}. (3.39)
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Here, λ stands for eigenvalue and expression max{wTw} can be bounded using known

bounds on parameters gi, hi, and ωi, for i = 1, ..., n, as per Assumption 3.6 and As-

sumption 3.7.

Next, the LTI system (3.38) will be transformed into a target system, a system

with beneficial control properties.

3.5. Backstepping Transformation

The aim of this section is to transform the LTI system into the target system,

a system to be used in the stability analysis. This is done by performing a form of

Volterra transformation, or the backstepping transformation. In doing so, approach

found in Krstic and Smyshlyaev (2008a) is adopted. Before proceeding however, one

needs to prepare the LTI system (3.38) by re-expressing all delayed variables. Transport

PDE representation in line with reference Krstic (2009b) is used. For that purpose,

a first order hyperbolic PDE together with a separate boundary condition is used for

each of the delayed variables

Γz(z, t) = Γt(z, t), (3.40)

Γ(1, t) = U(t), (3.41)

γτ
z (z, t) = γτ

t (z, t), (3.42)

γτ (1, t) = τ (t), (3.43)

γρa
z (z, t) = γρa

t (z, t), (3.44)

γρa(1, t) = ρa(t), (3.45)

γρb
z (z, t) = γρb

t (z, t), (3.46)

γρb(1, t) = ρb(t), (3.47)

with explicit solutions given as

Γ(z, t) = U(t+ z − 1), (3.48)

γτ (z, t) = τ (t+ z − 1), (3.49)
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γρa(z, t) = ρa(t+ z − 1), (3.50)

γρb(z, t) = ρb(t+ z − 1), (3.51)

and for z ∈ [0, 1]. Please note the difference between scalar domain variable z and

vector z which is the unknown regressor for the parametrized disturbance as found in

(3.27). Using (3.48)–(3.51), the LTI system (3.38) is then written as

ytt(1, t) = ayt(1, t) + bΓ(0, t)

+ θT
a γ

τ (0, t) + βT
a γ

ρa(0, t) + βT
b γ

ρb(0, t) + βT
δ δ(t).

(3.52)

Now, define the backstepping transformation as

W (z, t) = b̂Γ(z, t) + θ̂T
a γ

τ (z, t) + β̂T
a γ

ρa(z, t) + β̂T
b γ

ρb(z, t)− (k − â)eâzyt(1, t)

−(k − â)

∫ z

0

eâ(z−ζ)
(
b̂Γ(ζ, t) + θ̂T

a γ
τ (ζ, t)

+ β̂T
a γ

ρa(ζ, t) + β̂T
b γ

ρb(ζ, t)
)
dζ,

(3.53)

where k ∈ R is the control gain, and where parameter estimation variables, designated

by the hat notation â = a − ã, b̂ = b − b̃, θ̂T
a = θT

a − θ̃T
a , β̂T

a = βT
a − β̃T

a , and

β̂T
b = βT

b − β̃T
b , are used. Tilde parameters designate error between estimate and the

true value. Time dependence of all tilde and hat parameters is assumed without stating

it explicitly.

Lower-triangularity of the Volterra operator, see Krstic (2009b), ensures existence

of the transformation from W (z, t) to Γ(z, t)

Γ(z, t) =
1

b̂

(
W (z, t)− θ̂T

a γ
τ (z, t)− β̂T

a γ
ρa(z, t)− β̂T

b γ
ρb(z, t)

+ (k − â)ekzyt(1, t) + (k − â)

∫ z

0

ek(z−ζ)W (ζ, t)dζ
)
.

(3.54)

Remark 3.13. It may not be clear to the reader how the transformation (3.54) is

obtained. For the detailed procedure please see Appendix B.

Evaluate (3.54) at z = 0 and re-express (3.52) as

ytt(1, t) = kyt(1, t) + ãyt(1, t) + θ̃T
a γ

τ (0, t) + β̃T
a γ

ρa(0, t) + β̃T
b γ

ρb(0, t)

+
b̃

b̂

(
W (0, t) + (k − â)yt(1, t)

− θ̂T
a γ

τ (0, t)− β̂T
a γ

ρa(0, t)− β̂T
b γ

ρb(0, t)
)
+W (0, t) + βT

δ δ(t).

(3.55)



29

Expression (3.55), together with PDE governing dynamics ofW (z, t) and the boundary

condition W (1, t) given as

Wt(z, t) = Wz(z, t) + ãga(z, t) + b̃gb(z, t) + ˙̂apa(z, t) +
˙̂
bpb(z, t)

+ θ̃T
a gθ(z, t) + β̃T

a ga(z, t) + β̃T
b gb(z, t) + βT

δ gδ(z, t)

+
˙̂
θT
a pθ(z, t) +

˙̂
βT
a pa(z, t) +

˙̂
βT
b pb(z, t),

(3.56)

W (1, t) = 0, (3.57)

where

ga(z, t) =− (k − â)eâzyt(1, t), (3.58)

gb(z, t) =− (k − â)

b̂
eâz
(
W (0, t) + (k − â)yt(1, t)

− θ̂T
a γ

τ (0, t)− β̂T
a γ

ρa(0, t)− β̂T
b γ

ρb(0, t)
)
,

(3.59)

pa(z, t) =
(
1− (k − â)

)
eâzyt(1, t) +

∫ z

0

eâ(z−ζ)
(
1− (k − â)(z − ζ)

)
·
(
W (ζ, t) + (k − â)ekζyt(1, t) + (k − â)

∫ ζ

0

ek(ζ−σ)W (σ, t)dσ
)
dζ,

(3.60)

pb(z, t) =
1

b̂

(
W (z, t)− θ̂T

a γ
τ (z, t)− β̂T

a γ
ρa(z, t)− β̂T

b γ
ρb(z, t)

+ (k − â)ekzyt(1, t) + (k − â)

∫ z

0

ek(z−ζ)W (ζ, t)dζ
)

− (k − â)

b̂

∫ z

0

eâ(z−ζ)
(
W (ζ, t)− θ̂T

a γ
τ (ζ, t)− β̂T

a γ
ρa(ζ, t)

− β̂T
b γ

ρb(ζ, t) + (k − â)ekζyt(1, t)

+ (k − â)

∫ ζ

0

ek(ζ−σ)W (σ, t)dσ
)
dζ,

(3.61)

gθ(z, t) =− (k − â)eâzγτ (0, t), (3.62)

ga(z, t) =− (k − â)eâzγρa(0, t), (3.63)

gb(z, t) =− (k − â)eâzγρb(0, t), (3.64)

gδ(z, t) =− (k − â)eâzδ(t), (3.65)

pθ(z, t) = γτ (z, t)− (k − â)

∫ z

0

eâ(z−ζ)γτ (ζ, t)dζ, (3.66)

pa(z, t) = γρa(z, t)− (k − â)

∫ z

0

eâ(z−ζ)γρa(ζ, t)dζ, (3.67)

pb(z, t) = γρb(z, t)− (k − â)

∫ z

0

eâ(z−ζ)γρb(ζ, t)dζ, (3.68)
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constitute the target system. This system is characterized by beneficial stability prop-

erties, which will become apparent in the later sections. Before proving the stability

of the target system, the main results, including the control law, the update laws, and

the stability theorem, are presented next.

3.6. Main Results and Stability Theorem

By evaluating the backstepping transformation (3.53) at z = 1, and in light of

expressions (3.40)-(3.51), the intermediate input (3.35), and the boundary dynamics

(3.57), the controller becomes

u(t) = yx(0, t) +
1

b̂

(
− θ̂T

a τ (t)− β̂T
a ρa(t)− β̂T

b ρb(t) + (k − â)eâyt(1, t)

+ (k − â)

∫ t

t−1

eâ(t−ζ)
(
b̂
(
u(ζ)− yx(0, ζ)

)
+ θ̂T

a τ (ζ)

+ β̂T
a ρa(ζ) + β̂T

b ρb(ζ)
)
dζ

)
.

(3.69)

The update laws for the unknown parameters are

˙̂a(t) = kaProjΠa
{τc(t)yt(1, t)}, (3.70)

˙̂
b(t) = kbProjΠa

{τc(t)
(
u(t− 1)− yx(0, t− 1)

)
}, (3.71)

˙̂
θa(t) = kθProjΠθ

{τc(t)τ (t− 1)}, (3.72)

˙̂
βa(t) = kβaProjΠβa

{τc(t)ρa(t− 1)}, (3.73)

˙̂
βb(t) = kβb

ProjΠβb
{τc(t)ρb(t− 1)}, (3.74)

where ka, kb, kθ, kβa , and kβb
are all positive definite update gains, and

τc(t) =
1

N(t)

(pyt(1, t)
cw

− (k − â)

∫ 1

0

(1 + z)eâzW (z, t)dz
)
, (3.75)

where

N(t) = 1 + pyt(1, t)
2 + ρ(t)TPGρ(t) + ρa(t)

TPGρa(t)

+ cw

∫ 1

0

(1 + z)W (z, t)2dx+ cτ

∫ 1

0

(1 + z)|τ (t+ z − 1)|2dz

+ cξ

∫ 1

0

exR(x, t)2dx+ ca

∫ 1

0

(1 + z)|ρa(t+ z − 1)|2dz,

(3.76)
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R(x, t) = 2yt(1, t+ x− 1)− k − â(t+ x− 2)

b̂(t+ x− 2)

·
(
eâ(t+x−2)yt(1, t+ x− 2) +

∫ t+x−2

t+x−3

eâ(t+x−2)(t+x−2−ζ)

·
(
θ̂T
a (t+ x− 2)τ (ζ) + β̂T

a (t+ x− 2)ρa(ζ)

+ β̂T
b (t+ x− 2)ρb(ζ)

+ b̂(t+ x− 2)
(
u(ζ)− yx(0, ζ)

))
dζ

)
−
( θ̂T

a (t+ x− 1)

b̂(t+ x− 1)
− θ̂T

a (t+ x− 2)

b̂(t+ x− 2)

)
τ (t+ x− 2)

−
( β̂T

a (t+ x− 1)

b̂(t+ x− 1)
− β̂T

a (t+ x− 2)

b̂(t+ x− 2)

)
ρa(t+ x− 2)

−
( β̂T

b (t+ x− 1)

b̂(t+ x− 1)
− β̂T

b (t+ x− 2)

b̂(t+ x− 2)

)
ρb(t+ x− 2),

(3.77)

for positive definite scalars ca, cw, cτ , and cξ. Here, as an exception to the rule,

the parameter estimation variables are explicitly evaluated at a particular time. For

example, â(t+ x− 2) stands for â evaluated at time (t+ x− 2). Furthermore, positive

scalar p and positive definite matrix PG are the solutions to the Lyapunov equations

2pk = − q, (3.78)

GTPG +PGG = −QG, (3.79)

where scalar q > 0, and positive definite matrix QG, or rather minimum eigenvalues,

minλ{QG}, are to be determined from the stability analysis. The generic projection

operator used in the update laws is

ProjΠκ
{fκτc(t)} =


0 if κ̂ = κ̄ and fκτc(t) > 0

0 if κ̂ = κ and fκτc(t) < 0

fκτc(t) if else

(3.80)

for fκ = yt(1, t), u(t− 1)− yx(0, t− 1), τ (t− 1),ρa(t− 1),ρb(t− 1), and where κ̂ stands

for estimate of a, b,θa,βa or βb with κ̄ and κ representing maxima and minima bounds

as per

Πa = {a ∈ R|ā > a > a}, (3.81)

Πb = {b ∈ R|b̄ > b > b, b̄ and b ̸= 0, sign(b̄) = sign(b)}, (3.82)
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Πθa = {θa = [θa1 ...θa2n ]
T ∈ R2n|θ̄ai > θai > θai , i = 1...2n}, (3.83)

Πβa = {βa = [βa1 ...βa2n ]
T ∈ R2n|β̄ai > βai > β

ai
, i = 1...2n}, (3.84)

Πβb
= {βb = [βb1 ...βb2n ]

T ∈ R2n|β̄bi > βbi > β
bi
, i = 1...2n}. (3.85)

The projection operator ensures that the parameter estimates remain within the bounds

(3.81)–(3.85) obtained with the help of Assumption 3.6 and Assumption 3.8. Parameter

vector θa is bounded using procedure outlined in Section 3.4, Remark 3.12. Bounds on

βa and βb come from definitions, βa = aθa and βb = bθa.

Remark 3.14. It may not be clear to the reader what is the origin and purpose of

variable R(x, t). For more detailed overview please see Appendix C.

Now, the main stability theorem is stated.

Theorem 3.15. Consider closed-loop system comprised of (3.3)–(3.5), control law

(3.69), update laws (3.70)–(3.74), and observer filters (3.31)–(3.34) under Assumptions

3.6–3.9. There exists constant k̄ > 0 such that for any update gain ki ∈ (0, k̄] there

exists positive constants Λ and Λ̄ such that the following inequality holds

Υ(t) ≤ Λ
(
eΛ̄Υ(0) − 1

)
, ∀t > 0, (3.86)

where

Υ(t) = yt(1, t)
2 + τ (t)Tτ (t) + ρa(t)

Tρa(t) + ã(t)2 + b̃(t)2

+ θ̃a(t)
T θ̃a(t) + β̃a(t)

T β̃a(t) + β̃b(t)
T β̃b(t) + δ(t)Tδ(t)

+

∫ 1

0

((
β̂b(t)

Tρb(t+ x− 1) + b̂
(
u(0, t+ x− 1)− yx(0, t+ x− 1)

))2
+ |τ (t+ x− 1)|2 + |ρa(t+ x− 1)|2 +R(x, t)2

)
dx.

(3.87)

I.e., the equilibrium of the closed-loop system is stable in the sense of the norm Υ(t)
1
2 .

Furthermore,

lim
t→∞

yt(1, t) = 0, (3.88)

lim
t→∞

(
b̂(t)
(
u(t)− yx(0, t)

)
+ β̂b(t)

Tρb(t)
)
= 0. (3.89)

Remark 3.16. Observe that the closed loop system and Theorem 3.15 call for prior

states, states evaluated at t < 0. In general, these states are not available. Once these
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states become accessible the system achieves closed loop stability as per Theorem 3.15.

3.7. Stability Proof

Before proof of Theorem 3.15 is given, an important inequality required for the

proof is first established. The following lemma provides the necessary result.

Lemma 3.17. There exists a suitably large constant M̄ > 0 such that the following

inequality holds

2cw

∫ 1

0

(1 + z)W (z, t)
(
˙̂apa(z, t) +

˙̂
bpb(z, t)

+
˙̂
θT
a pθ(z, t) +

˙̂
βT
a pa(z, t) +

˙̂
βT
b pb(z, t)

)
dz

≤ 5cwk̄M̄
(
yt(1, t)

2 + γτ (0, t)Tγτ (0, t) + ||γτ (t)||2 + δ(t)Tδ(t)

+ γρa(0, t)Tγρa(0, t) + ||γρa(t)||2 + ||W (t)||2 +W (0, t)2
)
,

(3.90)

where k̄ = max{ka, kb, kθ, kβa , kβb
}.

Proof of Lemma 3.17. It can be shown, thru lengthy but straightforward calcula-

tions, and with the help of Young‘s and Cauchy-Schwarz Inequalities, together with

(3.37) and (3.39), that the inequality (3.90) does indeed hold.

Proof of Theorem 3.15. Consider the following Lyapunov-Krasovski functional

V (t) = ln
(
N(t)

)
+
cw
ka
ã2 +

cw
kb
b̃2

+
cw
kθ

θ̃T
a θ̃a +

cw
kβa

β̃T
a β̃a +

cw
kβb

β̃T
b β̃b + cδδ

TPGδ
(3.91)

with N(t) defined in (3.76) as per normalized Lyapunow tuning in Bresch-Pietri and

Krstic (2009), and for positive constant cδ. Using Young’s and Cauchy-Schwarz’ In-

equalities, together with results of Lemma 3.17, the time derivative of (3.91) is then

V̇ (t) ≤ 1

N(t)

(
− Lxyt(1, t)

2 − Lρρ(t)
Tρ(t)− Lρaρa(t)

Tρa(t)− Lw||W (t)||2

− Lw0W (0, t)2 − Lτ

(
||γτ (t)||2 + γτ (0, t)Tγτ (0, t)

)
− Lγa

(
||γρa(t)||2 + γρa(0, t)Tγρa(0, t)

)
− Lδδ(t)

Tδ(t)− Lr

(
||R(t)||2 +R(0, t)2

))
,

(3.92)
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where

Lx = q − p2

ϵ4
− ϵ1p

2 − ϵ3 − ϵa − 2cτ
(
1 + lT l

)
− 5cwk̄M̄ − 4ecξ

(
4 +

a2k
b21

)
,

(3.93)

Lρ = min
λ

{QG} −
1

ϵ3
max

λ

{
PGGl(Gl)TPG

}
− 2cτ

(
1 + max

λ
{llT}

)
,

(3.94)

Lρa = min
λ

{QG} −
1

ϵa
max

λ
{PGll

TPG} − 2ca (3.95)

Lw = cw − cwϵδ
ϵ2

− 5cwk̄M̄ , (3.96)

Lw0 = cw − 1

ϵ1
− 5cwk̄M̄ − 2ecξ

b21
, (3.97)

Lτ = cτ − 5cwk̄M̄ , (3.98)

Lγa = ca − 5cwk̄M̄ , (3.99)

Lδ = cδ min
λ

{QG} − 5cwk̄M̄ − (ϵ4 + cwϵ2)max
λ

{βδβ
T
δ }, (3.100)

Lr = cξ, (3.101)

where ϵ1, ϵ2, ϵ3, ϵ4 and ϵa, are positive and adjustable, term weight parameters, and

ϵδ = maxâ∈[a,ā]
{
(k − â)2

∫ 1

0
(1 + x)2e2âxdx

}
. Furthermore, where b1 = min{|b|, |b̄|} and

ak = max{|k − a|, |k − ā|}. By selecting

k̄ ≤ M

5cwM̄
, (3.102)

where

M = min

{
q − p2

ϵ4
− ϵ1p

2 − ϵ3 − ϵa − 2cτ
(
1 + lT l

)
− 4ecξ

(
4 +

a2k
b21

)
,

cw − 1

ϵ1
− 2ecξ

b21
, cw − cwϵδ

ϵ2
, cτ , ca,

cδ min
λ

{QG} − (ϵ4 + cwϵ2)max
λ

{βδβ
T
δ }
}
,

(3.103)

and for M > 0, it can be shown that

V (t) ≤ V (0), ∀t > 0. (3.104)

I.e., the equilibrium of the target system is stable and that all signals of (3.91) are

uniformly bounded.
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Before the main proof is completed, a set of signal inequalities is first derived.

Using definition (3.91), and the fact that (ex − 1) ≥ x for x ≥ 0, results in

ã2 + b̃2 + θ̃T
a θ̃a + β̃T

a β̃a + β̃T
b β̃b + δ(t)Tδ(t) ≤

( k̄
cw

+
1

cδ minλ{PG}

)
·
(
eV (t) − 1

)
.

(3.105)

Starting form (3.91), and using ex ≥ 1 for x ≥ 0, gives

eV (t) − 1

p
≥ yt(1, t)

2, (3.106)

eV (t) − 1

minλ{PG}
≥ ρ(t)Tρ(t), (3.107)

eV (t) − 1

minλ{PG}
≥ ρa(t)

Tρa(t), (3.108)

eV (t) − 1

cw
≥ ||W (t)||2, (3.109)

eV (t) − 1

cτ
≥ ||γτ (t)||2, (3.110)

eV (t) − 1

ca
≥ ||γρa(t)||2, (3.111)

eV (t) − 1

cξ
≥ ||R(t)||2. (3.112)

The definition of a norm can be found in Appendix A, expressions (A.1) and (A.2).

The upper bound on the norm ||W (t)||2, for sufficiently large and positive constants

r1, r2, r3, and r4, can be obtained using transformation (3.53)

||W (t)||2 ≤ r1yt(1, t)
2 + r2||γτ (t)||2 + r3||γρa(t)||2

+r4||β̂T
b γ

ρb(z, t) + b̂
(
yt(0, t+ z − 1)− yx(0, t+ z − 1)

)
||2.

(3.113)

Using transformation (3.54), together with expressions (3.106) and (3.109)–(3.111),

and for sufficiently large and positive constants r5, r6, r7, and r8, gives bounded norm

as follows

||β̂T
b γ

ρb(z, t) + b̂
(
yt(0, t+ z − 1)− yx(0, t+ z − 1)

)
||2

≤
( r5
cw

+
r6
cτ

+
r7
ca

+
r8
p

)(
eV (t) − 1

)
.

(3.114)

The above inequalities (3.113) and (3.114) are expressed using transformation Γ(x, t)

as found in equation (3.48), using definition of the intermediate input (3.35), and the

actual input (3.4).
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Starting from (3.91) once more and using ln(1+x) ≤ x for x ≥ −1, together with

(3.113), it can shown that for a sufficiently large and positive constants s1, s2, s3, s4, s5,

and s6, the following inequality holds

V (t) ≤ s1yt(1, t)
2 + s2τ (t)

Tτ (t) + s3ρa(t)
Tρa(t)

+ s4||γτ (t)||2 + s5||γρa(t)||2 + ecξ||R(t)||2 + cδ max
λ

{PG}δ(t)Tδ(t)

+ s6||β̂T
b γ

ρb(z, t) + b̂
(
yt(0, t+ z − 1)− yx(0, t+ z − 1)

)
||2

+
cw
ka
ã2 +

cw
kb
b̃2 +

cw
kθ

θ̃T
a θ̃a +

cw
kβa

β̃T
a β̃a +

cw
kβb

β̃T
b β̃b.

(3.115)

Finally, using error equation (3.37), and for positive constants f1, f2 and f3, bound on

norm ||γρb(t)||2 becomes

||γρb(t)||2 ≤ f1
(
z̄T z̄+ ||γτ (t)||2

)
+ f2||γρa(t)||2 + f3δ(t)

Tδ(t). (3.116)

Having established the above inequalities, it is now possible to conclude the proof of

Theorem 3.15 by proving inequality (3.86) and the convergence of the state. Using

definition (3.87), inserting expressions (3.105)–(3.108), (3.110)–(3.112), and (3.114),

results in the following

Υ(t) ≤ Λ
(
eV (t) − 1

)
, (3.117)

where

Λ =
cδ
(
2 + maxλ{llT}

)
+ 1

cδ minλ{PG}
+
r5 + k̄

cw
+
r6 + 1

cτ
+
r7 + 1

ca
+
r8 + 2 + lT l

p
+

1

cξ
. (3.118)

In light of (3.87) and (3.115) one can state

V (t) ≤ Λ̄Υ(t), (3.119)

where

Λ̄ = max
{
s1, s2, s3, s4, s5, ecξ, cδ max

λ
{PG}, s6,

cw
ka
,
cw
kb
,
cw
kθ
,
cw
kβa

,
cw
kβb

}
. (3.120)

For t = 0, the expression (3.119) becomes

V (0) ≤ Λ̄Υ(0). (3.121)

Now, using (3.104)

V (t) ≤ Λ̄Υ(0). (3.122)
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Inserting (3.122) into (3.117) gives (3.86).

From the Lyapunov analysis |yt(1, t)|, |ρ(t)|, |ρa(t)|, ||W (t)||, ||γτ (t)||, ||γρa(t)||,

|â(t)|, |b̂(t)|, |θ̂a(t)|, |β̂a(t)|, |β̂b(t)|, |δ(t)| and ||R(t)|| are all uniformly bounded. Bound-

edness of |ρ(t)| and |yt(0, t)| implies boundedness of |τ (t)| using (3.31). Furthermore,

using (3.37) and boundedness of |z(t)|, one concludes boundedness of |ρb(t)|. Bounded-

ness of ||β̂T
b γ

ρb(t)+ b̂Γ(t)|| and ||γρb(t)|| comes from inequalities (3.114) and (3.116) re-

spectively. Using inverse transformation (3.54), and having already established bound-

edness of all other variables, one states boundedness of the norm ||Γ(t)||. Bounded

||Γ(t)|| implies bounded control |u(t)| and |yt(0, t)|. Finally, bounded |ytt(1, t)| is ob-

tained from equation (3.55).

Convergence of the state, limt→∞ yt(1, t) = 0, is proven using the Barbalat‘s

lemma, Farkas and Wegner (2016), and square integrability of |yt(1, t)| obtained from

the Lyapunov analysis.

Consider square integrability of the Lyapunov variables, see (3.92). Square in-

tegrability of b̂
(
u(t) − yx(0, t)

)
+ β̂T

b ρb(t) can be obtained from (3.54) and (3.48).

Now, take d
dt

(
b̂
(
u(t) − yx(0, t)

)
+ β̂T

b ρb(t)
)2

or d
dt

(
b̂Γ(1, t) + β̂T

b ρb(t)
)2
. Use (3.54)

once more, and evaluate resulting expression forWt(x, t) with the help of (3.56)-(3.68).

Having already shown boundedness of all other variables, the uniform boundedness of

d
dt

(
b̂
(
u(t) − yx(0, t)

)
+ β̂T

b ρb(t)
)2

is proven. Using the Barbalat‘s lemma once again

gives (3.89).

The above stability is extended to the original states, yt(x, t) and yx(x, t). First,

define auxiliary variable

T (x, t) = νη0(1, t+ x− 1)− νξ1(x, t)

− 1

b̂(t+ x− 1)

(
θ̂T
a (t+ x− 1)γτ (0, t+ x− 1)

+ β̂T
a (t+ x− 1)γρa(0, t+ x− 1)

+ β̂T
b (t+ x− 1)γρb(0, t+ x− 1)

)
.

(3.123)
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Add the Riemann variable η(x, t) on both sides of expression (C.5), and use (3.123),

to state

R(x, t) + η(x, t) = ξ(x, t) + η(x, t) + T (x, t). (3.124)

Using (3.10), (3.14), (3.48), (3.35), (3.4), and the fact that the relation between domain

variable x and z is

x = 1− z, (3.125)

gives

η(x, t) = Γ(z, t) + νη0(x, t). (3.126)

Now, adding (3.9) and (3.10) together allows re-expression of the sum of ξ(x, t) and

η(x, t) in terms of yt(x, t) on the right side of (3.124). On the left hand side of (3.124)

use (3.126). Re-arrange the resulting equation to get

R(x, t) + Γ(z, t) = 2yt(x, t) + T (x, t)− νη0(x, t). (3.127)

After squaring and integrating both sides, use definition of a norm to obtain the fol-

lowing inequality

||2yt(x, t) + T (x, t)− νη0(x, t)||2 ≤ 2||Γ(t)||2 + 2||R(t)||2. (3.128)

Similarly, subtract η(x, t) on both sides of (C.5), use definition (3.123), and re-express

the difference between ξ(x, t) and η(x, t) in terms of yx(x, t)

R(x, t)− Γ(z, t) = 2yt(x, t) + T (x, t) + νη0(x, t). (3.129)

After squaring and integrating both sides, use definition of a norm to obtain the fol-

lowing inequality

||2yx(x, t) + T (x, t) + νη0(x, t)||2 ≤ 2||Γ(t)||2 + 2||R(t)||2. (3.130)

The boundedness of the original states, yx(x, t) and yt(x, t), is established using in-

equalities (3.128)–(3.130), and known boundedness of ||R(t)|| and ||Γ(t)|| obtained

previously from the Lyapunov analysis.
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3.8. Numerical Results

Closed loop system comprised of (3.3)–(3.5), control law (3.69), update laws

(3.70)–(3.74), and observer filters (3.31)–(3.34) is simulated using explicit finite-difference

method (FDM) in Matlab (R2020b). The simulation is performed with ∆t = 0.005

and ∆x = 0.1. By setting L0 = 50, ρ = 0.1, m = 50, g = 9.81, and cm = −14 in

(3.6)–(3.7) an ODE system describing bottom boundary with a = 0.1 and b = 0.1

is obtained. Bounds on unknown parameters are assumed to be a ∈ [−0.1, 0.1] and

b ∈ [0.05, 0.2], with estimates initiated at â(0) = −0.1 and b̂(0) = 0.15. Unknown

disturbances, in-domain p(t) and boundary P (t), are

p(t) = 0.15 sin(0.3t+ π) + 0.1 sin(1.7t+ 1), (3.131)

P (t) = 0.1 sin(0.3t+ 1.5) + 0.07 sin(1.7t). (3.132)

Bounds on the unknown angular frequencies are set as follows: ω1 ∈ [0.2, 0.5] and

ω2 ∈ [1.5, 2]. Initial conditions are set to y(x, 0) = 0.5x3 − 0.75x2 and yt(x, 0) =

2 sin(1.5πx). All Update gains, ka, kb, kθ, kβa , and kβb
, are set to 3.4× 10−25, together

with cw = 0.55, cτ = 0.1, ca = 0.1, cξ = 10−7, cδ = 108 q = 15.5, QG = I4x4 and

control gain k = −8. Controllable pair (G, l) is as follows: l = [0, 0, 0, 1]T and G =

[0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1;−3,−9.5,−11,−5.5] with eigenvalues of −1,−1,−2,−1.5.

Limits on the unknown parameter vector θa are calculated as per Remark 3.12:

θ1 ∈ [−3.9941, 2.1241], θ2 ∈ [9.3363, 12.0548], θ3 ∈ [−9.2825,−0.4432], and θ4 ∈

[3.6252, 10.3801]. Figure 3.2 gives extrema of θ1(ω1, ω2) for ω1 ∈ [ω1, ω̄1] and ω2 ∈

[ω2, ω̄2] as well as the true value located at ω1 = 0.3 and ω2 = 1.7. Figure 3.3 shows

disturbance ν(t) vs. disturbance estimation defined as ν̂ = ν(t) − βT
δ δ(t), please see

expression (3.30). Figure 3.4 and Figure 3.5 illustrate the bottom boundary velocity

yt(1, t) and the control input u(t), respectively for: a) proposed boundary controller

(3.69), b) free boundary condition u(t) = yx(0, t). The free boundary condition gives

the response of the string to the initial conditions, with the top of the string free to

move along the lateral direction. Lastly, Figure 3.6 gives the total string displacement

y(x, t) for the proposed controller.
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3.9. Discussion

Adaptive boundary control using the delay control method has been success-

fully applied to a physical system comprised of a mass suspended from an ideal, one-

dimensional string of constant length. Disturbance cancellation has been incorporated

into the control problem. Unknown but bounded harmonic disturbances affecting the

domain as well as the boundary have been parametrized and then canceled out in the

controller through the construction of an observer. In theory, the estimation error and

the state are guaranteed to converge, but in practice, it may not be possible in a timely

manner. Convergence is slow due to low gain values. This can clearly be seen from

Figure 3.3 where once the state approaches zero, at t ≈ 40 in Figure 3.4, the distur-

bance estimation diminishes considerably and the system oscillates to the tune of the

estimation error. By that time, however, the amplitude of the oscillations experienced

by the bottom mass is reduced greatly. In the following chapter, the control problem

will be expanded to include a domain with a moving boundary, i.e., a string whose

length is no longer constant in time.

Figure 3.2. θ1(ω1, ω2) ∈ [θ1, θ̄1].
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Figure 3.3. Disturbance Estimation ν̂ = ν(t)− βT
δ δ(t) vs. Disturbance ν(t).
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Figure 3.4. Boundary velocity yt(1, t) for: a) Proposed Boundary Controller (3.69), b)

Free Boundary Condition u(t) = yx(0, t).
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Figure 3.5. Control input u(t) for: a) Proposed Boundary Controller (3.69), b) Free

Boundary Condition u(t) = yx(0, t).

Figure 3.6. Total string displacement y(x, t).
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4. ADAPTIVE BOUNDARY CONTROL FOR A

STRING-MASS SYSTEM WITH TIME-VARYING

LENGTH HAVING CONSTANT VELOCITY
3

4.1. Introduction

This chapter considers the second boundary control problem. The equations of

motion derived in Chapter 2 will be used once again to model an ideal string-mass

system with a a non-constant length. The length of the string, or the boundary of the

wave PDE, will be assumed to evolve under a constant velocity profile.

4.2. Problem Statement

Consider (2.42)–(2.44). The following physical assumptions are made about the

system:

Assumption 4.1. The velocity governing the length of the string is assumed to be

constant, v(t) = v.

Assumption 4.2. There are not any in-domain damping forces affecting the string,

cρ = 0.

Assumption 4.3. Tension in the string is constant and due only to the weight of the

mass, Fτ (x, t) = mg. This implies: ϵτ = 0 and ϵa = 0.

Assumption 4.4. The string as well at the mass are not affected by any disturbances,

p(x, t) = P
(
l(t), t

)
= 0.

Under Assumptions 4.1–4.4 system (2.42)–(2.44) reduces to

ytt(x, t) = (1− v2)yxx(x, t)− 2vytx(x, t), (4.1)

3This chapter is a modified version of Szczesiak and Basturk (2021) and has been reproduced here
with the permission of the copyright holder.
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yt(0, t) = u(t), (4.2)

ytt
(
l(t), t

)
= − v2yxx

(
l(t), t

)
− 2vyxt

(
l(t), t

)
+
a(1− v) + b

1− v
yt
(
l(t), t

)
+ (av − b)yx

(
l(t), t

)
,

(4.3)

for

a = −
ρL0

(
mg(1 + v) + cm

√
mg
ρ

)
gm2

, (4.4)

b =
L0ρ(1− v)

m
, (4.5)

where t ∈ [0,∞), x ∈ [0, l(t)], and where

l(t) = 1 +

∫ t

0

vdt (4.6)

is the normalized string length. Symbol v ∈ R stands for the velocity or the rate at

which the boundary of the domain x is changing, and a ∈ R and b ∈ R are constant

parameters defined in (4.4)–(4.5).

As in the previous chapter, the delay control methods will be employed in the

analysis. Since the velocity of the string is constant, the length will continue to change

as t → ∞. To prevent this unrealistic case and to bound the subsequent delay, an

additional constraint is placed on the velocity:

Assumption 4.5. Assume the following velocity profile

v =

vc 0 ≤ t < T

0 t ≥ T,

(4.7)

such that the velocity vc ̸= 0 and |vc| < 1 is known and constant. Time T > 0 is

assumed to be known, constant, and finite. Furthermore, if velocity vc < 0, then

condition T |vc| < 1 is required.

Under Assumption 4.5, the length of the string (4.6) becomes

lc(t) =

1 + vct 0 ≤ t < T

1 + vcT t ≥ T,

(4.8)
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lc(t)

g v
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yt(0, t) = u(t)

cm

Figure 4.1. String diagram.

resulting in x ∈ [0, lc(t)]. Condition |vc| < 1 ensures the string remains under tension.

In general, |vc| ≪ 1. Condition T |vc| < 1 guarantees that the length of the string

lc(t) > 0, ∀t ≥ 0. Please see Figure 4.1.

In addition, the following control assumptions are made for the system (4.1)–

(4.3):

Assumption 4.6. Parameters a and b are assumed to be unknown but have known

bounds a ∈ [a, ā] and b belongs to a set Ψb such that

Ψb =
{
b ∈ R|b̄ ≥ b ≥ b, b̄ and b ̸= 0, sign(b̄) = sign(b)

}
, (4.9)

where underbar and overbar symbols indicate the minimum and the maximum bounds,

respectively. Under the above definition, the parameter b ̸= 0 is of a known sign as per

Assumption 4.5 and definition (4.5).

The unknown parameters a and b represent limited knowledge of the damping

coefficient cm and/or the other physical properties of the system. Please see (4.4)–(4.5).

Assumption 4.7. Boundary states, yt(0, t), yx(0, t), and yt
(
lc(t), t

)
are assumed to be

measured. Their present values as well as their histories are available for feedback.
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The aim of this chapter is to design boundary control input u(t) at boundary

x = 0, see (4.2), such that yt
(
lc(t), t

)
is Lyapunov stable and bounded on the interval

[0, T ). I.e., it is desired to stabilize the transverse velocity, yt
(
lc(t), t

)
, of the mass at

x = lc(t) by actuating the transverse velocity, yt(0, t), of the string at the boundary

x = 0. Furthermore, the closed-loop stability of the system (4.1)–(4.3), despite presence

of an uncertain boundary dynamics, needs to be proven.

The subsequent analysis is applicable on t ∈ [0, T ). The interval [T,∞), which is

not considered thereafter, corresponds to a problem where the length of the string is

constant. The study of a wave PDE on a constant domain is a well-researched problem.

In particular, the analysis found in Chapter 3 can be readily applied for t ∈ [T,∞).

4.3. Reformulation of the Problem

The outlined problem is first reformulated as a stabilization of an LTI system

describing dynamics at the bottom boundary, x = lc(t). This is accomplished by

following Cai and Krstic (2016) and Basturk (2017) and defining two Riemann variables

as

ξ(x, t) = yt(x, t) + (1 + v)yx(x, t), (4.10)

η(x, t) = yt(x, t)− (1− v)yx(x, t), (4.11)

which transform PDE (4.1) into a 2× 2 hyperbolic system

ξt(x, t) = (1− v)ξx(x, t), (4.12)

ηt(x, t) = −(1 + v)ηx(x, t). (4.13)

Solving PDEs (4.12) and (4.13) gives

ξ(x, t) = ξ

(
lc

(
t−
(
lc(t)− x

))
, t−

(
lc(t)− x

))
, (4.14)

η(x, t) = η
(
0, t− x

1 + v

)
. (4.15)

Solutions (4.14)–(4.15) provide a link between the in-domain states and the boundary

states of the PDE system (4.1)–(4.3) as per definitions (4.10)–(4.11). Taking the spatial
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derivative of equation (4.15) results in

ηx(x, t) = ηt

(
0, t− x

1 + v

)(
− 1

1 + v

)
. (4.16)

Now, re-express yx
(
lc(t), t

)
, ytx

(
lc(t), t

)
, and yxx

(
lc(t), t

)
in the BC (4.3) in terms of

the states at the boundary x = 0. Begin by inserting η(x, t) from (4.11) into (4.15).

Then, evaluate the result at x = lc(t). Solving for yx
(
lc(t), t

)
gives the first expression

yx
(
lc(t), t

)
=

1

1− v

(
yt
(
lc(t), t

)
− yt

(
0, ϕ(t)

))
+ yx

(
0, ϕ(t)

)
, (4.17)

where

ϕ(t) = t− g(t) (4.18)

is the delay function, and where

g(t) =
lc(t)

1 + v
(4.19)

is the time-varying delay. Physically, the delay g(t) is the time required for the signal

originating at the top of the string, x = 0, to reach the bottom at x = lc(t).

Continuing, use (4.13) in (4.16). Evaluate both sides of the obtained expression

by substituting in the spatial derivative of the Riemann variable (4.11). Evaluate at

x = lc(t), use definitions (4.18)–(4.19), and solve for ytx
(
lc(t), t

)
:

ytx
(
lc(t), t

)
= ytx

(
0, ϕ(t)

)
− (1− v)

(
yxx
(
0, ϕ(t)

)
− yxx

(
lc(t), t

))
. (4.20)

Evaluate PDE (4.1) at x = lc(t) and solve for:

yxx
(
lc(t), t

)
=

1

1− v2

(
ytt
(
lc(t), t

)
+ 2vytx

(
lc(t), t

))
. (4.21)

Substitute (4.21) into (4.20) and collect like wise terms to obtain the second expression

ytx
(
l(t), t

)
=

1

1− v

(
ytt
(
l(t), t

)
+ (1 + v)ytx

(
0, ϕ(t)

)
− (1− v2)yxx

(
0, ϕ(t)

))
.

(4.22)

Substitute (4.22) into (4.21) to obtain the third

yxx
(
lc(t), t

)
=

1

(1− v)2

(
ytt
(
lc(t), t

)
+ 2vytx

(
0, ϕ(t)

)
− 2v(1− v)yxx

(
0, ϕ(t)

))
.

(4.23)
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The boundary condition (4.3) can now be re-expressed as an LTI system. First,

insert (4.17), (4.22), and (4.23) into BC (4.3). Multiply the resulting expression by(
1

1−v

)
and move all second-order derivative terms to the left side to obtain the following

1

1− v
ytt
(
lc(t), t

)
+

2v

1− v
ytx
(
0, ϕ(t)

)
− 2vyxx

(
0, ϕ(t)

)
= a
(
yt
(
lc(t), t

)
− vyt

(
0, ϕ(t)

)
− v(v − 1)yx

(
0, ϕ(t)

))
+ b
(
yt
(
0, ϕ(t)

)
+ (v − 1)yx

(
0, ϕ(t)

))
.

(4.24)

Now, define state X(t) ∈ R as

X(t) = yt
(
lc(t), t

)
− vyt

(
0, ϕ(t)

)
− v(v − 1)yx

(
0, ϕ(t)

)
. (4.25)

Taking the time derivative of X(t) gives

Ẋ(t) = ytt
(
lc(t), t

)
+ vytx

(
lc(t), t

)
−
( v

1 + v

)(
ytt
(
0, ϕ(t)

)
+ (v − 1)ytx

(
0, ϕ(t)

))
,

(4.26)

where material derivative: D
Dt

(
yt
(
lc(t), t

))
= ∂yt(x,t)

∂t
|x=lc(t) + l̇c(t)

∂yt(x,t)
∂x

|x=lc(t), together

with expressions (4.7)-(4.8), is used. Using (4.22), and ytt
(
0, ϕ(t)

)
from (4.1), in equa-

tion (4.26), it can be shown that the left hand side of (4.24) is in fact Ẋ(t). Further-

more, using definition of the state (4.25) and input (4.2) on the right hand side of

(4.24) enables one to re-express (4.24), and thus BC equation (4.3), as

Ẋ(t) = aX(t) + bU
(
ϕ(t)

)
, (4.27)

where intermediate control input U(t) is

U(t) = u(t) + (v − 1)yx(0, t). (4.28)

Effects of U(t) at x = 0 show up explicitly in the boundary dynamics at x = lc(t) as

a delayed input U
(
ϕ(t)

)
. The boundary condition (4.3) is then cast into a form of an

LTI system with a non-constant input delay (4.27).

Remark 4.8. Please note that under Assumption 4.5, the delay g(t) given in (4.19)

satisfies g(t) > 0 and g(t) < ∞. The first condition guarantees that the LTI system

(4.27) is causal, while the second one ensures that all input signals eventually reach

the system. Furthermore, ġ(t) < 1 indicates that the direction of the input signal

may never change, and the condition ġ(t) > −∞ guarantees that the delay may only
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disappear gradually.

4.4. Backstepping Transformation

The purpose of this section is to transform an input-delayed system (4.27) into

the target system, a PDE-ODE cascade characterized by desirable stability properties.

This is realized by performing a backstepping transformation following approach found

in Krstic and Smyshlyaev (2008a). First however, the transport PDE representation,

as per Bekiaris-Liberis and Krstic (2013), is employed to re-express the input. The

delayed input is modelled as a first order hyperbolic PDE with a variable propagation

speed.

Begin by defining the state of the transport equation as

Π(z, t) = η

(
0, ϕ
(
t+ z

(
ϕ−1(t)− t

)))
, (4.29)

for z ∈ [0, 1], and where

ϕ−1(t) = t+ lc(t) (4.30)

is the inverse of the delay function ϕ(t) such that ϕ−1
(
ϕ(t)

)
= t. Using expressions

(4.30), (4.18)–(4.19), (4.11), (4.28), and Assumption 4.5, the definition (4.29) can be

rewritten as

Π(z, t) = U
(t+ zlc(t)− 1

1 + v

)
. (4.31)

Using expression (4.31) the LTI system (4.27) can now be written without explicit

delay as

Ẋ(t) = aX(t) + bΠ(0, t), (4.32)

Πt(z, t) = π(z, t)Πz(z, t), (4.33)

Π(1, t) = U(t), (4.34)

where

π(z, t) =
1 + z

(
d
dt

(
ϕ−1(t)

)
− 1
)

ϕ−1(t)− t
=

1 + vz

lc(t)
(4.35)
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is the propagation speed of the transport system (4.33)–(4.34). It can be easily verified

that (4.29) is the solution to (4.33)–(4.34), and where from (4.31):

Π(0, t) = U
(
ϕ(t)

)
. (4.36)

System (4.32)–(4.34) constitutes a PDE-ODE cascade system. The output of the trans-

port PDE (4.33) and its boundary input (4.34) acts as a time-varying delay input (4.36)

into the ODE (4.32). Following Bekiaris-Liberis and Krstic (2013) define the backstep-

ping transformation as the mapping of the system (4.32)–(4.34) into the target system

W (z, t) = b̂Π(z, t)− (k − â)
(
eâzlc(t)X(t) + lc(t)b̂

∫ z

0

eâ(z−ζ)lc(t)Π(ζ, t)dζ
)
, (4.37)

where k ∈ R is the control gain. Since parameters a and b are unknown, utilize

estimates defined as â = a − ã and b̂ = b − b̃. Without stating it explicitly, assume

time dependence of all tilde and hat parameters.

The inverse transformation,
(
X,W

)
→
(
X,Π

)
, is given as

Π(z, t) =
1

b̂

(
W (z, t) + (k − â)

(
ekzlc(t)X(t) + lc(t)

∫ z

0

ek(z−ζ)lc(t)W (ζ, t)dζ
))

. (4.38)

The existence of the inverse transformation (4.38) can be verified by solving equation

(4.37) for Π(z, t). The recursive function obtained in this manner can then be expanded

thru self-substitution. Using integration by parts and the definition of a power series

expansion for an exponential function gives expression (4.38). For details, please see

Appendix B.

Evaluating Wz(z, t) and Wt(z, t) using (4.37) gives us the dynamics of W (z, t).

This, together with (4.32), evaluated using Π(0, t) from (4.38) gives the target system

Ẋ(t) = kX(t) + ãX(t) +W (0, t) +
b̃

b̂

(
W (0, t) + (k − â)X(t)

)
, (4.39)

Wt(z, t) = π(z, t)Wz(z, t) + ãg1(z, t) + b̃g2(z, t) + ˙̂ag3(z, t) +
˙̂
bg4(z, t), (4.40)

W (1, t) = 0, (4.41)

g1(z, t) = − (k − â)eâzlc(t)X(t), (4.42)

g2(z, t) = − 1

b̂
(k − â)2eâzlc(t)

(
W (0, t)

(k − â)
+X(t)

)
, (4.43)



51

g3(z, t) =
(
1− (k − â)lc(t)z

)
eâzlc(t)X(t)

+ lc(t)

∫ z

0

eâ(z−ζ)lc(t)
(
1− (k − â)lc(t)(z − ζ)

)
·
(
W (ζ, t) + (k − â)

(
ekζlc(t)X(t)

+ lc(t)

∫ ζ

0

ek(ζ−σ)lc(t)W (σ, t)dσ
))
dζ,

(4.44)

g4(z, t) =
1

b̂

(
W (z, t) + (k − â)

(
ekzlc(t)X(t) + lc(t)

∫ z

0

ek(z−ζ)lc(t)W (ζ, t)dζ
)

− (k − â)lc(t)

∫ z

0

eâ(z−ζ)lc(t)
(
W (ζ, t) + (k − â)

(
ekζlc(t)X(t)

+ lc(t)

∫ ζ

0

ek(ζ−σ)lc(t)W (σ, t)dσ
))
dζ

)
.

(4.45)

The PDE–ODE cascade system (4.32)–(4.34) has been successfully transformed

into the target system (4.39)–(4.41) using transformation (4.37). Since the backstep-

ping transformation is invertible, please see (4.37)–(4.38), proving stability of the target

system in the transformed variables (X,W ) implies stability of the system in the vari-

ables (X,U). However, before proving stability, important results which include the

control law, the update laws, and the stability theorem, are first offered.

4.5. Main Results and Stability Theorem

Evaluating (4.37) at z = 1, and in light of (4.41), (4.31), (4.34), (4.28), state

(4.25), and input (4.2), our controller becomes

u(t) = (1− v)yx(0, t)

+
(k − â)

b̂
eâlc(t)

(
yt
(
lc(t), t

)
− vu

(
ϕ(t)

)
− v(v − 1)yx

(
0, ϕ(t)

))
+ (k − â)lc(t)

∫ 1

0

eâ(1−z)lc(t)

(
u
(t+ zlc(t)− 1

1 + v

)
+ (v − 1)

· yx
(
0,
t+ zlc(t)− 1

1 + v

))
dz.

(4.46)

The update laws for the unknown parameters are

˙̂a(t) = kaProja

{
τ(t)

(
yt
(
lc(t), t

)
− vu

(
ϕ(t)

)
− v(v − 1)yx

(
0, ϕ(t)

))}
, (4.47)

˙̂
b(t) = kbProjb

{
τ(t)

(
u
(
ϕ(t)

)
+ (v − 1)yx

(
0, ϕ(t)

))}
, (4.48)
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for ka > 0 and kb > 0, the update gains, and where

τ(t) =
1

N(t)

(
p

cw

(
yt
(
lc(t), t

)
− vu

(
ϕ(t)

)
− v(v − 1)yx

(
0, ϕ(t)

))
− (k − â)

∫ 1

0

ez(h+âlc(t))W (z, t)dz

)
,

(4.49)

N(t) = 1 + p
(
yt
(
lc(t), t

)
− v(v − 1)yx

(
0, ϕ(t)

)
− vu

(
ϕ(t)

))2
+ cw

∫ 1

0

ehzW (z, t)2dz

+ cξ

∫ lc(t)

0

ex
(2yt

(
lc
(
t− lc(t) + x

)
, t− lc(t) + x

)
1− v

+ (1 + v)

· yx
(
0, ϕ
(
t− lc(t) + x

))
− 1 + v

1− v
u
(
ϕ
(
t− lc(t) + x

)))2

dx,

(4.50)

for scalars cw > 0, cξ > 0, and with h bounded by

h ≥ max

{
0,−vmax

{
1,

1

1 + v

}}
. (4.51)

Please note, the last integral term of (4.50) is equivalent to cξ
∫ lc(t)

0
exξ(x, t)2dx, where

(4.14), (4.10), and (4.17) have been used. Expression in (4.50) is then given in terms

of the measurable boundary states as per Assumption 4.7. The expression given in

terms of ξ(x, t) is used in the later part of this chapter where the stability analysis is

discussed.

Furthermore, scalar p > 0 satisfies the following equation

2pk = − q, (4.52)

where q ∈ R such that q > 0 is to be determined from the stability analysis. Generic

projection operator in the update laws is

Proj{τfκ} =


0 if κ̂ = κ̄ and τfκ ≥ 0

0 if κ̂ = κ and τfκ ≤ 0

τfκ otherwise

(4.53)

for fκ = X(t), U
(
ϕ(t)

)
, and where κ̂ stands for estimate of a or b with κ̄ and κ

representing maxima and minima bounds as per Assumption 4.6. The main stability

theorem can now be stated.
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Theorem 4.9. Consider a closed-loop system comprised of system (4.1)–(4.3), the

control law (4.46), and the update laws (4.47)–(4.48) under Assumptions 4.5–4.7. There

exists a constant k̄ > 0 such that for any update gain ki ∈ (0, k̄] there exists a positive

constant Λ and Λ̄ such that the following inequality holds

Υ(t) ≤ Λ
(
eΛ̄Υ(0) − 1

)
, ∀t ∈ [0, T ), (4.54)

where

Υ(t) = ã2 + b̃2 +
(
yt
(
lc(t), t

)
− v(v − 1)yx

(
0, ϕ(t)

)
− vu

(
ϕ(t)

))2
+

∫ 1

0

(
u
(t+ zlc(t)− 1

1 + v

)
+ (v − 1)yx

(
0,
t+ zlc(t)− 1

1 + v

))2

dz

+

∫ lc(t)

0

(2yt

(
lc
(
t− lc(t) + x

)
, t− lc(t) + x

)
1− v

+ (1 + v)

· yx
(
0, ϕ
(
t− lc(t) + x

))
− 1 + v

1− v
u
(
ϕ
(
t− lc(t) + x

)))2

dx,

(4.55)

i.e., the equilibrium of the closed-loop system is stable in the sense of norm Υ(t)
1
2 .

Remark 4.10. Please observe that the control (4.46), as well as the update laws,

(4.47)–(4.48), call for prior states, states evaluated at t ∈ [− 2
1−vc

, 0). In general, these

states are not available. Once these states become accessible the system achieves

closed-loop stability as per Theorem 4.9.

4.6. Stability Proof

In this section, the proof of stability Theorem 4.9 is presented. First, however,

an important inequality required for the proof is given. The following lemma provides

the necessary result.

Lemma 4.11. There exists a suitably large constant M̄ > 0 such that the following

inequality holds

2cw

∫ 1

0

ehzW (z, t)
(
˙̂ag3(z, t) +

˙̂
bg4(z, t)

)
dz

≤ 2cwk̄M̄
(
|X(t)|2 + ||W (t)||2 + |W (0, t)|2

)
,

(4.56)

where k̄ = max{ka, kb}.
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Proof of Lemma 4.11. Insert expressions (4.44)-(4.45) and the update laws (4.47)-

(4.48) on the left-hand side of inequality (4.56). Use Young’s Inequality and expand

the resulting expression by multiplying out all the terms. Use Cauchy-Schwarz’ In-

equality to reduce integral terms. The time-dependent parameters such as â(t), b̂(t),

and lc(t), are bounded using Assumptions 4.5–4.6, and expression (4.9). Use the def-

inition of a norm. In particular, for z ∈ [0, 1] and h ≥ 0 as per (4.51) one can

write
∫ 1

0
e2hzW (z, t)2dz ≤ eh

∫ 1

0
ehzW (z, t)2dz = eh||W (t)||2. When encountering quar-

tic terms, X(t)4, ||W (t)||2X(t)2, ..., utilize the normalization function (4.50). When

written in the denominator as min{1, p, cw, cξ}
(
1+X(t)2+ ||W (t)||2+ ||ξ(t)||2

)
it allows

us to reduce quartic terms to quadratic terms such as X(t)2, ||W (t)||2, and ||W (0, t)||2.

Taking maximum and now constant pre-multiplicative coefficient and calling it M̄ al-

lows us to then state inequality (4.56).

Proof of Theorem 4.9. Consider the Lyapunov-Krasovski functional

V (t) = ln
(
N(t)

)
+
cw
ka
ã2 +

cw
kb
b̃2 (4.57)

with normalization function N(t) defined as in equation (4.50). Using Young’s and

Cauchy-Schwarz’ Inequalities, together with the results of Lemma 4.11, the time deriva-

tive of the Lyapunov-Krasovski functional (4.57) is then bounded by the following

expression

V̇ ≤ 1

N(t)

(
− Lξ

(
||ξ(t)||2 + ξ(0, t)2

)
− LXX(t)2

− LW ||W (t)||2 − LW0W (0, t)2
) (4.58)

for

Lξ = cξ(1− v), (4.59)

LX = q − ϵ1 − 2cwk̄M̄ − 2cξe
l̄

(b1)2(1− v)2
(
2b2 + (1− v)ak

)2
, (4.60)

LW = cwβ − 2cwk̄M̄ , (4.61)

LW0 =
cw
l̄
− p2

ϵ1
− 2cξe

l̄

(b1)2
− 2cwk̄M̄ , (4.62)

where, for bounded lc(t) under Assumption 4.5, l̄ ≥ max{lc(t)}. Moreover, where

ϵ1 > 0, b1 = min{|b|, |b̄|}, b2 = max{|b|, |b̄|}, ak = max{|k − a|, |k − ā|}, and recalling
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definition of h in (4.51)

β =
1

l̄
min

{
h+ v, h+ v(h+ 1)

}
. (4.63)

By selecting

k̄ ≤ M

2cwM̄
, (4.64)

where

M = min

{
q − ϵ1 −

2cξe
l̄
(
2b2 + (1− v)ak

)2
(b1)2(1− v)2

, cwβ,
cw
l̄
− p2

ϵ1
− 2cξe

l̄

(b1)2

}
, (4.65)

and for M > 0, the following inequality is stated

V (t) ≤ V (0), ∀t ∈ [0, T ). (4.66)

I.e., the equilibrium of the target system is stable and all signals of (4.57) are uniformly

bounded.

Before the main proof is completed, a set of signal inequalities is first derived.

Using definition of the Lyapunov-Krasovski functional (4.57), and the fact that (ex −

1) ≥ x for x ≥ 0, state (ka
cw

+
kb
cw

)(
eV (t) − 1

)
≥ ã2 + b̃2. (4.67)

Starting form functional (4.57) once more, and using ex ≥ 1 for x ≥ 0, write the

following set of inequalities

eV (t) − 1

p
≥ X(t)2, (4.68)

eV (t) − 1

cw
≥ ||W (t)||2, (4.69)

eV (t) − 1

cξ
≥ ||ξ(t)||2. (4.70)

From the backstepping transformation (4.37) and the inverse (4.38), bounded lc(t) from

Assumption 4.5–4.6, and for sufficiently large and positive constants r1, r2, and s1, s2,

one can obtain inequalities:

||W (t)||2 ≤ r1X(t)2 + r2||Π(t)||2, (4.71)

||Π(t)||2 ≤ s1X(t)2 + s2||W (t)||2. (4.72)
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Using (4.68) and (4.69) in (4.72) gives

||Π(t)||2 ≤
(s1
p
+
s2
cw

)(
eV (t) − 1

)
. (4.73)

Furthermore, please notice that (4.55) can be written as

Υ(t) = X(t)2 + ã2 + b̃2 +

∫ lc(t)

0

ξ(x, t)2dx+

∫ 1

0

Π(z, t)2dz. (4.74)

Having obtained the above expressions, it is now possible to prove inequality (4.54).

Using inequalities (4.67), (4.68), (4.72), and (4.69) in definition (4.74) results in

Υ(t) ≤ Λ
(
eV (t) − 1

)
, (4.75)

where

Λ =
1 + s1
p

+
s2 + ka + kb

cw
+

1

cξ
. (4.76)

Starting from expression (4.57), and using ln(1 + x) ≤ x for x ≥ −1, together with

(4.71), gives the following

V (t) ≤ Λ̄Υ(t), (4.77)

where

Λ̄ = max

{
(p+ cwr1), cwr2e

h, cξe
l̄,
cw
ka
,
cw
kb

}
. (4.78)

Evaluating (4.77) at t = 0 and together with (4.66) allows one to state

V (t) ≤ Λ̄Υ(0). (4.79)

Inserting (4.79) into (4.75) finally gives the main stability statement, the inequality

(4.54).

From the Lyapunov analysis |X(t)|, ||W (t)||, and ||ξ(t)|| are all uniformly bounded.

Using inequality (4.72), and having already established the boundedness of all other

variables, one concludes boundedness of ||Π(t)||. Bounded ||Π(t)|| implies bounded

intermediate control input |U(t)| in accordance with expression (4.31). From the def-

inition of the state (4.25), control (4.2), and (4.28), expressions |yt(lc(t), t)|, |yt(0, t)|,

and |yx(0, t)| are all bounded. Bounded input |u(t)| follows from (4.28).
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The stability will now be extended to that of the in-domain states, yt(x, t) and

yx(x, t). Considering (4.11), (4.15), and (4.2), write

η(x, t) = U
(
t− x

1 + v

)
. (4.80)

The relation between x ∈ [0, l(t)] and z ∈ [0, 1] can be stated as

z =
x

l(t)
. (4.81)

Examining (4.80), (4.31), and (4.81) gives

η(x, t) = Π
(
1− x

l(t)
, t
)
. (4.82)

Since ||Π(t)|| is known to be bounded, ||η(t)|| must be bounded as well. From the

definitions of the Riemann variables (4.10) and (4.11), the explicit expressions for

yt(x, t) and yx(x, t) are obtained

ξ(x, t)− η(x, t) = 2yx(x, t), (4.83)

(1− v)ξ(x, t) + (1 + v)η(x, t) = 2yt(x, t). (4.84)

Using the definition of a norm, the above expressions can be written as the following

inequalities

||ξ(t)||+ ||η(t)|| ≥ 2||yx(t)||, (4.85)

(1− v)2||ξ(t)||+ (1 + v)2||η(t)|| ≥ 2||yt(t)||. (4.86)

The boundedness of the in-domain states, yx(x, t) and yt(x, t), is due to that of

||ξ(t)||, based on the Lyapunov analysis and the boundedness of ||η(t)|| established

from that of ||Π(t)|| and the relation (4.82).

4.7. Numerical Results

The closed-loop system comprised of (4.1)–(4.3), the control law (4.46), and the

update laws (4.47)–(4.48) is simulated using the explicit FDM in Matlab (R2020b)

environment. The simulation is performed with ∆t = 0.0005 and ∆z = 0.05 in both

the extraction mode, v1 = 0.071, and in the retraction mode where v2 = −0.071. Please

see Chapter 6 for a more detailed overview of the numerical analysis employed in the
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simulations. The unstable boundary system parameters av1 = 0.1 corresponding to

v1 and av2 = 0.1286 corresponding to v2 with bounds a ∈ [−0.1, 1] and parameters

bv1 = 0.1857 and bv2 = 0.2143 with bounds b ∈ [0.1, 1] are used during the simulation.

The initial conditions for x ∈ [0, 1] at t = 0 are set to y(x, 0) = 0.1 sin(3πx) and

yt(x, 0) = −0.3 sin(πx) with â(0) = b̂(0) = 0.5. All the update gains, ka, and kb, are

set to 2.2 ·10−14, together with cw = 0.5, cξ = 5 ·10−8, ϵ = 0.2, q = 0.4, and the control

gain k = −2.

Figures 4.2 and Figure 4.3 illustrate the bottom boundary velocity yt
(
lc(t), t

)
and the control input u(t) for the extraction mode, v1 = 0.071. Similarly, Figure 4.4

and Figure 4.5 give the bottom boundary velocity yt
(
lc(t), t

)
and the control input

u(t) for the retraction mode, v2 = −0.071. All the subplots include four separate

cases: a) the proposed controller as in (4.46), b) robust proportional controller of the

form u(t) = (1 − v)yx(0, t) + KX(t), where A + BK < 0 for A taking values of a

and ā, and for B taking values of b and b̄, here, K = −11, c) high gain adaptive

controller of the form u(t) = (1 − v)yx(0, t) +
(k−â)

b̂
X(t) where ˙̂a(t) = kaX(t)2 and

˙̂
b(t) = −kbsign(b)(k − â)X(t)2, and d) the free boundary condition where the top of

the string is free, u(t) = (1− v)yx(0, t). Case b) and c) allow for comparison between

the delay-compensated and the closest two uncompensated controllers based on system

(4.27) with no delay, ϕ(t) = t. Case d) is given to illustrate that the simulated systems

are unstable and diverge as the mass at the bottom of the string accelerates and pulls

the top free end of the string. Table 4.1 summarizes performance of the outlined

controllers by providing RMS values over the relevant time periods for the bottom

boundary velocity yt
(
lc(t), t

)
and the input velocity u(t) = yt

(
0, t
)
. The root mean

square (RMS) value is calculated over a time interval as per

fRMS =

√
1

t2 − t1

∫ t2

t1

f(t)2dt. (4.87)

In the case of yt
(
lc(t), t

)
, the interval is t ∈ [1, 10], as it takes signal introduced at

x = 0 one time unit to reach the bottom of the string. The interval t ∈ [0, 1] is then

fully governed by the response to the initial conditions. For the input, the relevant

time interval depends on the mode. In the extraction mode t ∈ [0, 8.400] and in the
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retraction mode t ∈ [0, 9.692], ie., the last signal to reach the bottom of the string

at t = 10 is emitted at t = 8.400 and t = 9.692, respectively. Finally, Figure 4.6 and

Figure 4.7 present the total in-domain displacement for the proposed controller in both

the extraction and the retraction modes respectively.

Table 4.1. RMS values of yt
(
lc(t), t

)
and u(t) = yt(0, t) for various controllers.

RMS
Extraction Mode Retraction Mode

yt
(
lc(t), t

)
u(t) yt

(
lc(t), t

)
u(t)

Proposed Controller 0.033 0.173 0.0149 0.2294

Robust Controller 0.822 3.0377 0.1394 1.1143

High Gain Controller 0.0395 0.2584 0.0228 0.2351

4.8. Discussion

This chapter provides an effectual method for boundary control of a string-mass

system with a time-varying length. This is achieved by reformulating the original prob-

lem as an adaptive control of an uncertain LTI system with a non-constant input delay.

The application of the backstepping method enabled the derivation of the control and

transformed the problem into a target system whose stability was then proven. The

proposed controller clearly outperforms the delay-uncompensated controllers in stabi-

lizing the string-mass system. Even though the analysis guarantees only stability in the

Lyapunov sense, the velocity state converges to zero. Furthermore, the convergence of

the velocity signal is much faster, and the control effort much smaller for the proposed

controller. The extraction where v > 0 is a more challenging mode, when compared

to the retraction mode, as the delay increases with the length of the string. While the

current chapter considered a special case where v = const., in the next one, a more

general case where v = v(t) will be investigated.



60

0 1 2 3 4 5 6 7 8 9 10

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 4.2. Boundary velocity yt
(
lc(t), t

)
in the extraction mode v = 0.071 for: a)

Proposed Controller (4.46), b) Robust Proportional Controller of the form

u(t) = (1− v)yx(0, t) +KX(t), c) High Gain Adaptive Controller of the form

u(t) = (1− v)yx(0, t) +
(k−â)

b̂
X(t), d) Free Boundary Condition u(t) = (1− v)yx(0, t).
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Figure 4.3. Control input u(t) in the extraction mode v = 0.071 for: a) Proposed

Controller (4.46), b) Robust Proportional Controller of the form

u(t) = (1− v)yx(0, t) +KX(t), c) High Gain Adaptive Controller of the form

u(t) = (1− v)yx(0, t) +
(k−â)

b̂
X(t), d) Free Boundary Condition u(t) = (1− v)yx(0, t).
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Figure 4.4. Boundary velocity yt
(
lc(t), t

)
in the retraction mode v = −0.071 for: a)

Proposed Controller (4.46), b) Robust Proportional Controller of the form

u(t) = (1− v)yx(0, t) +KX(t), c) High Gain Adaptive Controller of the form

u(t) = (1− v)yx(0, t) +
(k−â)

b̂
X(t), d) Free Boundary Condition u(t) = (1− v)yx(0, t).
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Figure 4.5. Control input u(t) in the retraction mode v = −0.071 for: a) Proposed

Controller (4.46), b) Robust Proportional Controller of the form

u(t) = (1− v)yx(0, t) +KX(t), c) High Gain Adaptive Controller of the form

u(t) = (1− v)yx(0, t) +
(k−â)

b̂
X(t), d) Free Boundary Condition u(t) = (1− v)yx(0, t).
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Figure 4.6. Total string displacement y(x, t) in the extraction mode for the proposed

controller.

Figure 4.7. Total string displacement y(x, t) in the retraction mode for the proposed

controller.
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5. BOUNDARY CONTROL FOR A STRING-MASS

SYSTEM WITH TIME-VARYING LENGTH HAVING

TIME-VARYING VELOCITY

5.1. Introduction

This chapter presents the most general case for the control of a string-mass system

as considered in this work. The length of the string will be assumed to change under a

time-dependent velocity profile. As in the previous problems, the equations of motion

found in Chapter 2 are used to model an ideal string-mass system with a a non-constant

length.

5.2. Problem Statement

Consider (2.42)–(2.44). The following physical assumptions are made about the

system:

Assumption 5.1. The velocity governing the length of the string is assumed to be a

function of time, v(t).

Assumption 5.2. There are not any in-domain damping forces affecting the string,

cρ = 0.

Assumption 5.3. Tension in the string is constant and due only to the weight of the

mass, Fτ (x, t) = mg. This implies: ϵτ = 0 and ϵa = 0.

Assumption 5.4. The string as well at the mass are not affected by any disturbances,

p(x, t) = P
(
l(t), t

)
= 0.

Under Assumptions 5.1–5.4 system (2.42)–(2.44) reduces to

ytt(x, t) =
(
1− v(t)2

)
yxx(x, t)− 2v(t)ytx(x, t)− v̇(t)yx(x, t), (5.1)

yt(0, t) = u(t), (5.2)
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ytt
(
l(t), t

)
= − v(t)2yxx

(
l(t), t

)
− 2v(t)yxt

(
l(t), t

)
−
(v(t)L0ρ

m
+

cmL0

m
√

mg
ρ

)
yt
(
l(t), t

)
−
(v(t)2L0ρ

m
+
v(t)cmL0

m
√

mg
ρ

+
L0ρ

m
+ v̇(t)

)
yx
(
l(t), t

)
,

(5.3)

where t ∈ [0,∞), x ∈ [0, l(t)], and where

l(t) = 1 +

∫ t

0

v(t)dt (5.4)

is the normalized string length. Symbol v(t) ∈ R is the velocity or rate at which the

boundary of the domain x is changing. Please see Assumption 2.7 and Figure 5.1.

m

x

y

l(t)

g v(t)
y(x, t)

yt(0, t) = u(t)

cm

Figure 5.1. String diagram.

As in the previous chapters, the delay control methods will be employed in the

analysis. To bound the delay, an additional constraint is placed on the velocity:

Assumption 5.5. The velocity profile v(t) is a known, continuous, and a differentiable,

function such that |v(t)| < 1. Furthermore,
∫ t

0
v(t)dt > −1, v(t < 0) = 0, and

v(t ≥ T ) = 0 where time T is known, finite, and constant.

Condition |v(t)| < 1 ensures the string remains under tension. In general, |v(t)| ≪ 1.

Condition
∫ t

0
v(t)dt > −1 guarantees that the length of the string l(t) > 0, ∀t ≥ 0.

The last condition indicates the length is bounded and becomes constant for t ≥ T .
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Assumption 5.6. All physical parameters: initial length L0, mass m, linear density

ρ, and damping coefficient cm are assumed to be constant and known.

In addition, the following control assumption is made for the system (5.1)–(5.3):

Assumption 5.7. Boundary states, yt(0, t), yx(0, t), and yt
(
l(t), t

)
are assumed to be

measured. Their present values as well as their histories are available for feedback.

The aim of this chapter is to design boundary control input u(t) at boundary

x = 0, see (5.2), such that

lim
t→∞

yt
(
l(t), t

)
= 0, (5.5)

i.e., it is desired to stabilize the transverse velocity, yt
(
l(t), t

)
, of the mass at x = l(t)

by actuating the transverse velocity, yt(0, t), of the string at the boundary x = 0.

Furthermore, the closed-loop stability of the system (5.1)–(5.3) needs to be proven.

In the following section system (5.1)-(5.3) is reformulated using a set of Riemann

variables. This enables one to express the bottom BC as an LTV system with a non-

constant input delay.

5.3. Reformulation of the Problem

The outlined problem is first reformulated as a stabilization of an LTV system

describing the dynamics at the bottom boundary, x = l(t). This is accomplished by

following Cai and Krstic (2016) and Basturk (2017) and defining two Riemann variables

ξ(x, t) = yt(x, t) +
(
1 + v(t)

)
yx(x, t), (5.6)

η(x, t) = yt(x, t)−
(
1− v(t)

)
yx(x, t), (5.7)

which transform PDE (5.1) into a 2× 2 hyperbolic system

ξt(x, t) =
(
1− v(t)

)
ξx(x, t), (5.8)

ηt(x, t) = −
(
1 + v(t)

)
ηx(x, t). (5.9)
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Solutions to PDEs (5.8) and (5.9) are

ξ(x, t) = Ψ
(
x+

∫ t

0

(
1− v(τ)

)
dτ
)
, (5.10)

η(x, t) = Φ
(
− x+

∫ t

0

(
1 + v(τ)

)
dτ
)
, (5.11)

which are given for arbitrary functions Ψ and Φ. In light of (5.10)–(5.11) and under

Assumption 5.5 the following statements are enforced

ξ(x, t) = ξ
(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
, (5.12)

η(x, t) = η
(
0, t− g(x, t)

)
, (5.13)

for yet to be determined functions f(x, t) and g(x, t) such that f
(
l(t), t

)
= 0 and

g(0, t) = 0. Substitute (5.10)–(5.11) into (5.12)–(5.13) to obtain

l
(
t+ f(x, t)

)
− x =

∫ t

t+f(x,t)

(
1− v(z)

)
dz, (5.14)

x =

∫ t

t−g(x,t)

(
1 + v(z)

)
dz. (5.15)

The functions f(x, t) and g(x, t) are obtained by solving (5.14)–(5.15), respectively.

Since |v(t)| < 1 from Assumption 5.5 and x ≥ 0, t − g(x, t) ≤ t and t + f(x, t) ≤ t.

Now, define the delay function ϕ(t) as

ϕ(t) = t− g
(
l(t), t

)
, (5.16)

where g
(
l(t), t

)
is the time-varying delay. It can be shown that for v(t) = 0, g(x, t) = x,

and ϕ(t) = t − 1 or a constant delay as in the problem in Chapter 3. For v(t) = v,

g(x, t) = x
1+v

and ϕ(t) = t− 1+vt
1+v

or a linearly changing delay as found in the problem

in Chapter 4. Moreover, by taking spatial and time derivatives of the expression (5.15)

it can shown that

gx
(
l(t), t

)
=

1

1 + v
(
ϕ(t)

) , (5.17)

gt
(
l(t), t

)
=
v
(
ϕ(t)

)
− v(t)

1 + v
(
ϕ(t)

) , (5.18)

and

ϕ̇(t) = 1− gt
(
l(t), t

)
− v(t)gx

(
l(t), t

)
=

1

1 + v
(
ϕ(t)

) . (5.19)

Once more, since |v(t)| < 1, ϕ̇(t) > 0.
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Variables ξ(x, t) and η(x, t) are continuous and differentiable functions in both

x ∈ [0, l(t)] and t ∈ [0,∞) by definitions (5.6)–(5.7) and Assumption 5.5. Since the

transport PDEs (5.8)–(5.9) are non-dissipative and decoupled, the signals ξ(x, t) and

η(x, t) are preserved as they propagate. This allows enforcement of relations (5.12)–

(5.13). The existence and the continuity of functions f(x, t) and g(x, t) is then stated.

Assuming that there exist a continuous g
(
l(t), t

)
∈ R which is the solution to equation

(5.15) at x = l(t), then the delay g
(
l(t), t

)
and the delay function ϕ(t) are differentiable

as per (5.16)–(5.19), and Assumption 5.5. Since ϕ(t) is continuously differentiable

and with nonzero derivatives as per (5.19) and Assumption 5.5, by Inverse Function

Theorem, ϕ(t) is an invertible function and the inverse is continuously differentiable.

Now, take the spatial derivative of (5.13) to obtain

ηx(x, t) = ηt
(
0, t− g(x, t)

)(
− gx(x, t)

)
, (5.20)

which together with (5.9), and when evaluated at x = l(t), gives

ηx(l(t), t) =
(
1 + v

(
ϕ(t)

))
gx
(
l(t), t

)
ηx
(
0, ϕ(t)

)
. (5.21)

Re-express yx
(
l(t), t

)
, ytx

(
l(t), t

)
, and yxx

(
l(t), t

)
in the BC (5.3) in terms of the states

at x = 0. Use (5.7) in (5.13) and evaluate at x = l(t) to obtain the first expression

yx
(
l(t), t

)
=

1

1− v(t)

(
yt
(
l(t), t

)
− yt

(
0, ϕ(t)

)
+
(
1− v

(
ϕ(t)

))
yx
(
0, ϕ(t)

))
. (5.22)

Solve (5.1) for yxx(x, t) and evaluate at x = l(t):

yxx
(
l(t), t

)
=

1

1− v(t)2

(
ytt(l(t), t) + 2v(t)ytx

(
l(t), t

)
+ v̇(t)yx

(
l(t), t

))
. (5.23)

For the second expression, take spatial derivative of (5.7), evaluate at
(
x = l(t), t

)
, and

at
(
x = 0, t = ϕ(t)

)
, and substitute into (5.21). Use (5.23) together with (5.22) and

solve for ytx
(
l(t), t

)
:

ytx
(
l(t), t

)
=

1 + v(t)

1− v(t)

(
ytx
(
0, ϕ(t)

)
−
(
1− v

(
ϕ(t)

))
yxx
(
0, ϕ(t)

))
+

v̇(t)(
1− v(t)

)2(yt(l(t), t)− yt
(
0, ϕ(t)

)
+
(
1− v

(
ϕ(t)

))
yx
(
0, ϕ(t)

))
+
ytt
(
l(t), t

)
1− v(t)

.

(5.24)
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Substitute (5.24) into (5.23) to obtain the third:

yxx
(
l(t), t

)
=

ytt
(
l(t), t

)(
v(t)− 1

)2 − v̇(t)(
v(t)− 1

)3
·
(
yt
(
l(t), t

)
− yt

(
0, ϕ(t)

)
+
(
1− v

(
ϕ(t)

))
yx
(
0, ϕ(t)

))
+

2v(t)(
v(t)− 1

)2(ytx(0, ϕ(t))− (1− v
(
ϕ(t)

))
yxx
(
0, ϕ(t)

))
.

(5.25)

The boundary condition (5.3) can now be re-express as an LTV system. Substi-

tute (5.22), (5.24), and (5.25) into BC (5.3) and solve for ytt
(
l(t), t

)
:

ytt
(
l(t), t

)
= a(t)yt

(
l(t), t

)
+ b(t)

(
yt
(
0, ϕ(t)

)
−
(
1− v

(
ϕ(t)

))
yx
(
0, ϕ(t)

))
+ d(t)

(
ytx
(
0, ϕ(t)

)
−
(
1− v

(
ϕ(t)

))
yxx
(
0, ϕ(t)

))
.

(5.26)

where

a(t) =
(
v(t)− 1

)( cmL0

m
√

mg
ρ

+
L0ρ
(
1 + v(t)

)
m

+
v̇(t)(

v(t)− 1
)2), (5.27)

b(t) =

(
v(t)− 1

)2
1− v(t)

(
cmL0v(t)

m
√

mg
ρ

+
L0ρ
(
1 + v(t)2

)
m

+
v̇(t)(

v(t)− 1
)2), (5.28)

d(t) = − 2v(t). (5.29)

Now, define state X(t) ∈ R as

X(t) = yt
(
l(t), t

)
− v(t)U

(
ϕ(t)

)
, (5.30)

where the intermediate input is

U(t) = u(t)−
(
1− v(t)

)
yx
(
0, t). (5.31)

Taking the time derivative of X(t) gives

Ẋ(t) = A(t)X(t) +B(t)U
(
ϕ(t)

)
, (5.32)

where

A(t) = a(t) +
a(t)v(t)

1− v(t)
+

v(t)v̇(t)(
1− v(t)

)2 , (5.33)

B(t) = − v̇(t)− b(t) + a(t)v(t)

v(t)− 1
−
(
1− v(t)

)
v(t)v̇(t)(

v(t)− 1
)2 . (5.34)
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The effects of the input U(t) at the boundary x = 0 show up explicitly in the

boundary dynamics at x = l(t) as a delayed input U
(
ϕ(t)

)
. The boundary condition

(5.3) is then cast into a form of an LTV system (5.32) with a non-constant input delay.

Remark 5.8. Please note that under Assumption 5.5, the delay g
(
l(t), t

)
> 0 and

g
(
l(t), t

)
< ∞. The first condition guarantees that the LTV system (5.32) is causal,

while the second one ensures that all input signals eventually reach the system. Fur-

thermore,
Dg
(
l(t),t
)

Dt
=

v
(
ϕ(t)
)

1+v
(
ϕ(t)
) < 1 indicates that the direction of the input signal may

never change, and the condition
Dg
(
l(t),t
)

Dt
> −∞ guarantees that the delay may only

disappear gradually.

5.4. Feedback Control and Predictor State

The input-delayed LTV system (5.32) will be stabilized using control of the form

U(t) = K
(
ϕ−1(t)

)
X
(
ϕ−1(t)

)
(5.35)

where ϕ−1(t) is the inverse of the delay function ϕ(t) such that ϕ−1
(
ϕ(t)

)
= t, and were

K1(t) = K
(
ϕ−1(t)

)
(5.36)

is yet to be determined time-varying update gain. Evaluating (5.35) at t = ϕ(t) gives

the desired feedback control

U
(
ϕ(t)

)
= K(t)X(t). (5.37)

Begin by evaluating (5.32) at t = σ(θ) = ϕ−1(θ) with dt = dσ(θ)
dθ

dθ, resulting in

dX
(
σ(θ)

)
σ̇dθ

= A
(
σ(θ)

)
X
(
σ(θ)

)
+B

(
σ(θ)

)
U
(
ϕ
(
ϕ−1(θ)

))
, (5.38)

all for ϕ(t) ≤ θ ≤ t. Now, define a predictor state

P (t) = X
(
ϕ−1(t)

)
, (5.39)

and two auxiliary variables

A1(θ) = A
(
σ(θ)

)
, (5.40)

B1(θ) = B
(
σ(θ)

)
. (5.41)
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Using the predictor state (5.39) and (5.40)–(5.41) write (5.38) as

Ṗ (θ) = σ̇
(
A1(θ)P (θ) +B1(θ)U(θ)

)
. (5.42)

The solution to (5.42) is given as

P (θ) = e
∫ θ
θ0

A1(s)σ̇(s)ds
(
P (θ0) +

∫ θ

θ0

e
−

∫ τ
θ0

A1(s)σ̇(s)dsB1(τ)U(τ)σ̇(τ)dτ
)
, (5.43)

where θ0 = ϕ(t). Recognizing that P (θ0) = P (ϕ(t)) = X(t), d
dθ
ϕ−1(θ) = σ̇(θ) =

1
ϕ′(ϕ−1(t))

using differentiation rule for the inverse of a function where ϕ′(·) denotes

the derivative of ϕ(·), and finally evaluating the above expression at θ = t gives the

predictor state

P (t) = e
∫ t
ϕ(t)

A1(s)

ϕ′(ϕ−1(s))
ds
(
X(t) +

∫ t

ϕ(t)

e
−

∫ τ
ϕ(t)

A1(s)

ϕ′(ϕ−1(s))
ds
B1(τ)

U(τ)

ϕ′(ϕ−1(τ))
dτ
)
. (5.44)

The predictor state (5.44), together with the original definition of the state found

in (5.39), allows one to obtain control (5.35) necessary to secure the desired feedback

law (5.37).

In the next section, the backstepping transformation will be utilized, and the

system will be transformed into the target system.

5.5. Infinite-Dimensional States and Backstepping Transformation

The aim of this section is to transform the input-delayed system (5.32) into

the target system. This PDE-ODE cascade system will be characterized by desirable

stability properties and can be obtained by performing a backstepping transformation.

Once again, the analysis follows Krstic and Smyshlyaev (2008a). In preparation for the

backstepping transformation, and as per Bekiaris-Liberis and Krstic (2013), variables

need to be re-expressed using the transport PDE representation.

Start with the infinite-dimensional version of the predictor state which will be

used to define the backstepping transformation. For θ = ϕ
(
t + z(σ(t)− t)

)
where the
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domain {z ∈ R|0 ≤ z ≤ 1} define

p(z, t) = P (θ) = P
(
ϕ
(
t+ z(σ(t)− t)

))
. (5.45)

Since dθ
dz

= ϕ′
(
t+ z

(
σ(t)− t

))(
σ(t)− t

)
rewrite (5.42) as

dp(z, t)

dz

dz

dθ
=
dσ(θ)

dz

dz

dθ

(
A1(θ)p(z, t) +B1(θ)U(θ)

)
. (5.46)

For dσ(θ)
dz

= dϕ−1(θ)
dz

= d
dz

(
ϕ−1
(
ϕ(t+ z(σ(t)− t)

))
= (σ(t)− t), (5.46) becomes

dp(z, t)

dz
=
(
σ(t)− t

)(
A1(θ)p(z, t) +B1(θ)U(θ)

)
(5.47)

Equation (5.47) is the expression (5.42) written in terms of the infinite-dimensional

predictor state (5.45). Similarly, define additional states and their boundary values:

Π(z, t) = U(θ) = U
(
ϕ
(
t+ z(σ(t)− t)

))
, (5.48)

Π(0, t) = U
(
ϕ(t)

)
, (5.49)

α(z, t) = A1(θ) = A1

(
ϕ
(
t+ z(σ(t)− t)

))
, (5.50)

α(0, t) = A1

(
ϕ(t)

)
= A(t), (5.51)

β(z, t) = B1(θ) = B1

(
ϕ
(
t+ z(σ(t)− t)

))
, (5.52)

β(0, t) = B1

(
ϕ(t)

)
= B(t), (5.53)

κ(z, t) = K1(θ) = K1

(
ϕ
(
t+ z(σ(t)− t)

))
, (5.54)

κ(0, t) = K1

(
ϕ(t)

)
= K(t). (5.55)

Using the infinite-dimensional states (5.48), (5.50), and (5.52), rewrite (5.47), plus the

boundary condition, as

dp(z, t)

dz
=
(
σ(t)− t

)(
α(z, t)p(z, t) + β(z, t)Π(z, t)

)
, (5.56)

p(0, t) = P
(
ϕ(t)

)
= X(t). (5.57)

Solution to the system (5.56)–(5.57) is then

p(z, t) = e
∫ z
0 α(s,t)

(
σ(t)−t

)
ds
(
p(0, t)

+

∫ z

0

e−
∫ τ
0 α(s,t)

(
σ(t)−t

)
dsβ(τ, t)Π(τ, t)

(
σ(t)− t

)
dτ
)
.
(5.58)

Now, define the backstepping transformation

W (z, t) = Π(z, t)− κ(z, t)p(z, t), (5.59)
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which, using expression (5.58), is

W (z, t) = Π(z, t)− κ(z, t)e
∫ z
0 α(s,t)

(
ϕ−1(t)−t

)
ds

·
(
X(t) +

(
ϕ−1(t)− t

) ∫ z

0

e−
∫ τ
0 α(s,t)

(
ϕ−1(t)−t

)
dsβ(τ, t)Π(τ, t)dτ

)
.

(5.60)

Inverse transformation,
(
X,W

)
→
(
X,Π

)
, is given as

Π(z, t) = W (z, t) + κ(z, t)e
∫ z
0

(
α(s,t)+β(s,t)κ(s,t)

)(
ϕ−1(t)−t

)
dsX(t) +

(
ϕ−1(t)− t

)
· κ(z, t)

∫ z

0

(
e(ϕ

−1(t)−t)
( ∫ z

0

(
α(s,t)+β(s,t)κ(s,t)

)
ds−

∫ τ
0

(
α(s,t)+β(s,t)κ(s,t)

)
ds
)

· β(τ, t)W (τ, t)
)
dτ.

(5.61)

The procedure for the derivation of the inverse transformation (5.61) is given in Ap-

pendix B. Now, using expression (5.49), (5.51), and (5.53), the LTV system (5.32) is

written as

Ẋ(t) = α(0, t)X(t) + β(0, t)Π(0, t). (5.62)

Transport equations for the infinite-dimensional variables are:

Πt(z, t) = π(z, t)Πz(z, t), (5.63)

Π(1, t) = U(t), (5.64)

αt(z, t) = π(z, t)αz(z, t), (5.65)

α(1, t) = A(ϕ−1(t)), (5.66)

βt(z, t) = π(z, t)βz(z, t), (5.67)

β(1, t) = B(ϕ−1(t)), (5.68)

κt(z, t) = π(z, t)κz(z, t), (5.69)

κ(1, t) = K(ϕ−1(t)), (5.70)

where propagation speed of the transport equations is

π(z, t) =
1 + z

(d(ϕ−1(t))
dt

− 1
)

ϕ−1(t)− t
. (5.71)

System (5.62)–(5.64) constitutes a PDE-ODE cascade system. The output of the

transport PDE (5.63) and its boundary input (5.64) acts as a time-varying delay input

(5.49) into the ODE (5.62).
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EvaluatingWz(z, t) andWt(z, t) using (5.60) gives the dynamics ofW (z, t). This,

together with (5.62), evaluated using Π(0, t) from (5.61) and inserting (5.51), (5.53),

and (5.55), gives the target system:

Ẋ(t) =
(
A(t) +B(t)K(t)

)
X(t) +B(t)W (0, t), (5.72)

Wt(z, t) = π(z, t)Wz(z, t), (5.73)

W (1, t) = 0. (5.74)

To obtain the BC (5.74), evaluate (5.60) at z = 1 and use expression (5.64) to obtain

U(t) on the right hand side. Evaluate the same U(t) using (5.35), (5.39), and (5.44).

The PDE–ODE cascade system (5.62)–(5.64) is transformed into the target sys-

tem (5.72)–(5.74) using transformation (5.60). Since the backstepping transformation

is invertible, please see expressions (5.60)–(5.61), proving stability of the target system

in the transformed variables (X,W ) implies stability of the system in the variables

(X,U). Important results, such as the control law and the stability theorem, are now

stated.

5.6. Main Results and Stability Theorem

Evaluate the backstepping transformation (5.60) at z = 1. In light of (5.74), and

using the definition of the infinite-dimensional states (5.50)–(5.55), the intermediate

control becomes

U(t) = K
(
ϕ−1(t)

)
e
∫ t
ϕ(t)

A(ϕ−1(τ))

ϕ′(ϕ−1(τ))
dτ

·
(
X(t) +

∫ t

ϕ(t)

e
−

∫ τ
ϕ(t)

A(ϕ−1(s))

ϕ′(ϕ−1(s))
dsB(ϕ−1(τ))U(τ)

ϕ′
(
ϕ−1(τ)

) dτ
)
.

(5.75)

Using definitions (5.30) and (5.31), the boundary controller can be written as

u(t) =
(
1− v(t)

)
yx(0, t) +K

(
ϕ−1(t)

)
e
∫ t
ϕ(t)

A(ϕ−1(τ))

ϕ′(ϕ−1(τ))
dτ

·

([
yt
(
l(t), t

)
− v(t)

(
u
(
ϕ(t)

)
−
(
1− v

(
ϕ(t)

))
yx
(
0, ϕ(t)

))]

+

∫ t

ϕ(t)

e
−

∫ τ
ϕ(t)

A(ϕ−1(s))

ϕ′(ϕ−1(s))
ds
B(ϕ−1(τ))

(
u
(
τ
)
−
(
1− v(τ)

)
yx(0, τ)

)
ϕ′
(
ϕ−1(τ)

) dτ

)
,

(5.76)
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where A(t) and B(t) can be obtained from (5.33)–(5.34) for a(t) and b(t) as per (5.27)–

(5.28). The update gain in (5.75) and (5.76) is

K(t) = −1

2
B(t)

(
R(t) + 1

)
, (5.77)

where R(t) ∈ R is a solution to the Riccati differential equation (RDE):

Ṙ(t) + 2R(t)A(t)−R2(t)B2(t) +Q(t) = 0, (5.78)

and where Q(t) ∈ R is to be determined from the stability analysis.

Two important prepositions concerning system
(
A(t), B(t)

)
are further stated.

Preposition 5.9. Since A(t) and B(t) are differentiable on R+, please see Assumption

5.5, definitions (5.33)–(5.34) and (5.27)–(5.27), and B(t) ̸= 0, then system
(
A(t), B(t)

)
is Globally-Null Controllable (GNC) in finite time Phat (2006).

Preposition 5.10. Since system
(
A(t), B(t)

)
is GNC in finite time, for any Q(t) ∈ R≥0

the associated RDE (5.78) has a solution R(t) ∈ R≥0 Phat (2006). Furthermore, R(t)

is bounded:

sup
t∈R+

||R(t)||∞ = R < +∞, (5.79)

where the over-bar (·) and the underline (·) denote the maximum and the minimum

bounds, respectively.

Remark 5.11. Please notice that control law (5.75) calls for the future values of

K
(
ϕ−1(t)), A

(
ϕ−1(t)), and B

(
ϕ−1(t)). These values are available as per Assumption

5.5–5.6. In practice, the RDE (5.78) is to be solved on a time interval tf = ϕ−1(t) → 0

for a terminal value R(tf ) = Rf which can be obtained by solving Riccati Algebraic

Equation (ARE), RDE (5.78) with Ṙ(t) = 0 and t = tf .

The main stability theorem is now stated.

Theorem 5.12. Consider a closed-loop system comprised of system (5.1)–(5.3), the

control law (5.75) under Assumptions 5.5–5.7. There exist constants λ > 0 and Λ0 > 0
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such that the following inequality holds

Υ(t) ≤ Λ0e
−λtΥ(0), ∀t > 0, (5.80)

for

Υ(t) =

(
yt
[
l(t), t

]
− v(t)

(
u
[
ϕ(t)

]
−
(
1− v

[
ϕ(t)

])
yx
[
0, ϕ(t)

]))2

+

∫ 1

0

(
u
[
ϕ
(
ϱ(z, t)

)]
−
(
1− v

[
ϕ
(
ϱ(z, t)

)])
yx

[
0, ϕ
(
ϱ(z, t)

)]
−K

[
ϱ(z, t)

]
e
∫ z
0 A[ϱ(s,t)]

(
ϕ−1(t)−t

)
ds

·
(
yt
[
l(t), t

]
− v(t)

(
u
[
ϕ(t)

]
−
(
1− v

[
ϕ(t)

])
yx
[
0, ϕ(t)

])
+
(
ϕ−1(t)− t

) ∫ z

0

e−
∫ τ
0 A[ϱ(s,t)]

(
ϕ−1(t)−t

)
dsB
[
ϱ(τ, t)

]
·
(
u
[
ϕ(ϱ(τ, t))

]
−
(
1− v

[
ϕ(ϱ(τ, t))

])
yx
[
0, ϕ(ϱ(τ, t))

])
dτ

))2

dz

+

∫ l(t)

0

(
2

1− v
[
t+ f(x, t)

]yx[l(t+ f(x, t)
)
, t+ f(x, t)

]
−

1 + v
[
t+ f(x, t)

]
1− v

[
t+ f(x, t)

](u[ϕ(t+ f(x, t)
)]

−
(
1− v

[
ϕ
(
t+ f(x, t)

)])
yx
[
0, ϕ
(
t+ f(x, t)

)]))2

dx,

(5.81)

and where for conciseness ϱ(z, t) = t+ z
(
ϕ−1(t)− t

)
.

I.e., the equilibrium of the closed-loop system is exponentially stable in the sense of

the norm Υ(t)
1
2 . Furthermore,

lim
t→∞

yt
(
l(t), t

)
= 0, (5.82)

lim
t→∞

u(t) = 0. (5.83)

Remark 5.13. Please observe that the control (5.75) calls for prior states, states

evaluated at t ∈ [ϕ
(
t + f(0, t), t

)
, 0). In general, these states are not available. Once

these states become accessible the system achieves closed-loop stability in accordance

with Theorem 5.12.
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5.7. Stability Proof

This section presents the proof of Theorem 5.12.

Proof of Theorem 5.12. Consider the Lyapunov-Krasovski functional

V (t) =
(
R(t) + 1

)
X(t)2︸ ︷︷ ︸

VX(t)

+ cw

∫ 1

0

ehzW (z, t)2dz︸ ︷︷ ︸
VW (t)

+ cξ

∫ l(t)

0

exξ(x, t)2dx︸ ︷︷ ︸
Vξ(t)

.
(5.84)

where cw > 0, cξ > 0, and for

h ≥
(
1− ˙(

ϕ−1(t)
))

max{1, 1
˙(

ϕ−1(t)
)}. (5.85)

Furthermore, for h ≥ 0

X(t)2 + cw

∫ 1

0

W (z, t)2dz + cξ

∫ l(t)

0

ξ(x, t)2dx ≤ V (t)

≤
(
R + 1

)
X(t)2 + cw

∫ 1

0

ehW (z.t)2dz + cξ

∫ l(t)

0

elξ(x, t)2dx.

(5.86)

The functional V (t) is positive definite, radially unbounded and decrescent. Using

(5.77), (5.78), and Young’s Inequality (A.3), the time derivative of VX(t) in (5.84) is

V̇X(t) ≤
(
Q(t) + 2A(t)− ϵX

)
X(t)2 +

(B(t)2R(t)2

ϵX
+ 1
)
W (0, t)2, (5.87)

for ϵX > 0. In a similar fashion, take the time derivative of VW (t) term in func-

tional (5.84). Using the dynamics of the target system (5.73)–(5.74), and applying the

Cauchy-Schwarz’ Inequality (A.5), the derivative becomes

V̇W (t) ≤− cwπ0β0||W (t)||2 − cwπ0W (0, t)2, (5.88)

where

β(t) = min{h− 1 + ˙(
ϕ−1(t)

)
, (h+ 1) ˙(

ϕ−1(t)
)
− 1}, (5.89)

and β0 = β(t), and π0 = π(0, t) as per (5.71). The derivation of the time derivative of

Vξ(t) term of functional (5.84) can be found in Appendix D. The result is given as

V̇ξ(t) ≤− cξ
(
1− v(t)

)
||ξ(t)||2 − cξ

(
1− v(t)

)
ξ(0, t)2

+
2cξe

l(t)(
1− v(t)

)2(2 + 1

2
B(t)

(
R(t) + 1

)(
1− v(t)

))2
X(t)2

+ 2cξe
l(t)W (0, t)2,

(5.90)
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Collecting individual terms of (5.84), as found in expressions (5.87), (5.88), and (5.90),

the time derivative of the Lyapunov-Krasovski functional V (t) can be written as

V̇ (t) ≤

(
−Q+ 2|A|+ ϵX + 4cξe

l̄

(
4(

1− |v|
)2 + 0.25|B|

2
(R + 1)2

))
X(t)2

+

(
− cwπ0 +

|B|
2
(R + 1)2

ϵX
+ 1 + 2cξe

l̄

)
W (0, t)2

− cwπ0β0||W (t)||2 − cξ
(
1− v(t)

)
||ξ(t)||2 − cξ

(
1− v(t)

)
ξ(0, t)2.

(5.91)

Now set

ϵX =
|B|

2
(R + 1)2

cwπ0 − 1− 2cξel̄
, (5.92)

and collect likewise terms

V̇ (t) ≤
(
−Q+ 2|A|+ 16cξe

l̄(
1− |v|

)2
+ |B|

2
(R + 1)2

( 1

cwπ0 − 1− 2cξel̄
+ cξe

l̄
))

X(t)2

− cwπ0β0||W (t)||2 − cξ
(
1− v(t)

)
||ξ(t)||2 − cξ

(
1− v(t)

)
ξ(0, t)2.

(5.93)

Set

cw =
1 + 2cξe

l̄ + 1
cξel̄

π0
, (5.94)

such that

V̇ (t) ≤

(
−Q+ 2|A|+ cξe

l̄

(
16(

1− |v|
)2 + 2|B|

2
(R + 1)2

))
X(t)2

− cwπ0β0||W (t)||2 − cξ
(
1− v(t)

)
||ξ(t)||2 − cξ

(
1− v(t)

)
ξ(0, t)2.

(5.95)

The above expression can be written as

V̇ (t) ≤− LX

(
R(t) + 1

)
X(t)2 − π0β0cw||W (t)||2 −

(
1− |v|

)
cξ∥|ξ(t)||2, (5.96)

where

LX =
1

(R + 1)

(
Q− 2|A| − cξe

l̄

(
16(

1− |v|
)2 + 2|B|

2
(R + 1)2

))
. (5.97)

Setting Q > 2|A|, and since cξ is a free parameter, LX > 0. Using the functional (5.84),

now state

V̇ (t) ≤− λV (t), (5.98)
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where

λ = min
{
LX , π0β0,

(
1− |v|

)}
. (5.99)

Recall that by Assumption 5.5, |v(t)| < 1. Finally,

V (t) ≤ e−λtV (0), (5.100)

Assuming finite prior and initial conditions, and using definitions (5.2), (5.30), (5.31),

(5.6), (5.48), and (5.60), results in V (0) being finite and bounded.

The definition (5.84) allows one to write further

V (t) ≥ X(t)2, (5.101)

V (t)

cw
≥ ||W (t)||2, (5.102)

V (t)

cξ
≥ ||ξ(t)||2. (5.103)

Assumptions 5.5–5.6 and definitions (5.27)–(5.28) guarantee boundedness of a(t)

and b(t). This in turn gives us boundedness of A(t) and B(t) using (5.33)–(5.34).

Bounded R(t) gives bounded K(t) as per (5.77). In light of the above, the definitions

(5.50), (5.52), and (5.54), together with (5.36), (5.40), and (5.41), the boundedness of

||α(t)||, ||β(t)||, and ||κ(t)|| is stated.

From the transformation (5.60) and the inverse (5.61), bounded l(t) from As-

sumption 5.5, and for sufficiently large and positive constants r1, r2, and s1, s2, it can

be shown that

||W (t)||2 ≤ r1X(t)2 + r2||Π(t)||2, (5.104)

||Π(t)||2 ≤ s1X(t)2 + s2||W (t)||2. (5.105)

Bounded ||Π(t)|| implies bounded control |U(t)| in accordance with expression (5.48).

From the definition of the state (5.30), control (5.2), and (5.31) one obtains bounded

|yt
(
l(t), t

)
|, |yt(0, t)|, and |yx(0, t)|. Bounded |Ẋ(t)| comes from (5.32). Using (5.101)

and (5.102) in the expression (5.105) gives

||Π(t)||2 ≤
(
s1 +

s2
cw

)
V (t). (5.106)
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The inequality (5.80) can now be proven. Please notice that (5.81) can be written as

Υ(t) = X(t)2 +

∫ 1

0

Π(z, t)2dz +

∫ l(t)

0

ξ(x, t)2dx. (5.107)

Using expressions (5.101), (5.103), and (5.106), in (5.107) gives

Υ(t) ≤ ΛV (t), (5.108)

where

Λ = 1 + s1 +
1

cξ
+
s2
cw
. (5.109)

Starting from functional (5.84), together with (5.104), results in

V (t) ≤ Λ̄Υ(t), (5.110)

where

Λ̄ = max
{
(R + 1 + cwr1), cwr2e

h, cξe
l̄
}
. (5.111)

Evaluate (5.110) at t = 0, and together with (5.100) state

V (t) ≤ Λ̄Υ(0). (5.112)

Inserting (5.112) into (5.108) finally gives the inequality (5.80) for Λ0 = ΛΛ̄.

The stability analysis can now be extended to the in-domain states, yt(x, t) and

yx(x, t). Considering (5.13), (5.7), (5.31), and boundary input (5.2), write

η(x, t) = U
(
t− g(x, t)

)
. (5.113)

Evaluate (5.64) at t = t′ and then at t′ = t− g(x, t) to get

Π
(
1, t− g(x, t)

)
= U

(
t− g(x, t)

)
. (5.114)

Comparing expressions (5.113) and (5.114) allows one to state a relation between Rie-

mann variable η and the state Π as:

η(x, t) = Π
(
1, t− g(x, t)

)
. (5.115)

Since ||Π(t)|| is known to be bounded by (5.105), so must be its boundary state at an

earlier time, see right hand side of (5.115). This implies boundedness of ||η(t)||. From
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(5.6) and (5.7), an explicit expressions for yt(x, t) and yx(x, t) can be obtained as

ξ(x, t)− η(x, t) = 2yx(x, t), (5.116)(
1− v(t)

)
ξ(x, t) +

(
1 + v(t)

)
η(x, t) = 2yt(x, t). (5.117)

Using the definition of a norm finally gives

||ξ(t)||+ ||η(t)|| ≥ 2||yx(t)||, (5.118)(
1− v(t)

)2||ξ(t)||+ (1 + v(t)
)2||η(t)|| ≥ 2||yt(t)||. (5.119)

The boundedness of the in-domain states, yx(x, t) and yt(x, t), is due to that of

||ξ(t)||, based on the Lyapunov analysis and the boundedness of ||η(t)|| established

from that of ||Π(t)|| and the relation (5.115).

5.8. Numerical Results

The explicit FDM is used to simulate the closed loop system comprised of (5.1)–

(5.3) and the control law (5.75). The simulation utilizes ∆t = 0.005 and ∆z = 0.1.

Please see Chapter 6 for a more detailed overview of the numerical analysis employed

in the simulations. In accordance with Assumption 5.5 the velocity profile is set to

v(t) =


− 1.40030 · 10−5 t6 + 4.20076 · 10−4 t5

− 4.20063 · 10−3 t4 + 1.40017 · 10−2 t3
0 ≤ t ≤ 10

0 t > 10.

(5.120)

The length of the string, its velocity, and the acceleration are given in Figure

5.2. The time-varying coefficients A(t) and B(t) are shown in Figure 5.3. Figure 5.4

illustrates the delay function ϕ(t), its inverse ϕ−1(t), and the delay g
(
l(t), t

)
. The

RDE input, set to Q(t) = 2|A(t)| + 50, and the resulting solution R(t) can bee seen

in Figure 5.5. Finally, the initial conditions for x ∈ [0, 1] at t = 0 are set to y(x, 0) =

−0.25 sin(3πx) and yt(x, 0) = 0.5 sin(4.5πx).

Figure 5.6 gives the resultant bottom boundary velocity yt
(
l(t), t

)
for: a) pro-

posed boundary controller (5.76), b) free boundary condition u(t) =
(
1− v(t)

)
yx(0, t).
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In Figure 5.7 the required control input u(t) as per (5.75) is shown for both cases.

Finally, Figure 5.8 and Figure 5.9 illustrate the motion of the string-mass system for

the proposed controller. The total string displacement is given as a 3D plot in Figure

5.8. The profile motion of the system is shown in Figure 5.9 for t = 0 : 0.5 : 10.

5.9. Discussion

The boundary control of a string-mass system with a time-variable length has

been successfully illustrated using the most general case where the string velocity is a

function of time. The restrictions placed on the velocity profile are minimal and lend

themselves to a reasonable simulation of a problem where the string is extended or re-

tracted in any practical applications. The delay control method for an LTI system with

a variable input delay has been extended to an LTV system describing the dynamics

of the mass. However, the stability of the system depends on the validity of the Prepo-

sitions (5.9)–(5.10). The numerical simulations appear to support the analysis. While

the analytic derivation of the delay function may not in general be possible, one can

rely on the numerical methods to solve equation (5.15). While the derived controller

requires future values of parameters A(t) and B(t), these, under Assumptions 5.5–5.6,

are available and can be computed offline. The control gain K(t) can then be obtained

from (5.77) where, for sufficiently large Q(t), R(t) is a positive solution of the RDE

(5.78).
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Figure 5.2. String length l(t), velocity v(t), and acceleration v̇(t).
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Figure 5.3. Time-varying parameters A(t) and B(t).
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Figure 5.4. Delay function ϕ(t), its inverse ϕ−1(t), and the delay g
(
l(t), t)

)
.
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Figure 5.5. Riccati differential equation solution R(t) and input Q(t).
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Figure 5.6. Boundary velocity yt
(
l(t), t

)
for: a) Proposed Boundary Controller (5.76),

b) Free Boundary Condition u(t) =
(
1− v(t)

)
yx(0, t).
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Figure 5.7. Control input u(t) for: a) Proposed Boundary Controller (5.76), b) Free

Boundary Condition u(t) =
(
1− v(t)

)
yx(0, t).
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Figure 5.8. Total string displacement y(x, t).

Figure 5.9. String motion, t = 0 : 0.5 : 10. Lighter lines correspond to earlier time

frames.
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6. NUMERICAL ANALYSIS

6.1. Introduction

The numerical methods have been successfully applied to solve PDEs in various

scientific fields. Here, the finite-difference method has been used to simulate the string-

mass system on a domain with a constant as well as a moving boundary.

The FDM uses finite differences to approximate the derivatives of a continuous

PDE. When the spatial and temporal domains are discretized, the values at the nearby

points are used to calculate the derivatives. As such, a continuous PDE is transformed

into a system of linear equations. This system is then solved giving the value of the

function at each discrete point. In the explicit FDM, one derives an explicit formula

for a value of a function at a particular point in terms of the earlier values. This

formula is then applied at each spatial point to obtain the solution. The implicit FDM

solves a system of equations for all points at a particular time. While the explicit

method is simpler to implement than the implicit one, it is also prone to numerical

instabilities due to a potential build-up of the round-off error. The numerical results

given previously are all based on the explicit FDM. A more comprehensive overview of

the method will be presented in this chapter. First however, the nature of the variable

domain associated with a moving boundary has to be addressed.

6.2. Domain Transformation

Since the domain of the problem (2.42)–(2.44) for v(t) ̸= 0 is not constant but

varies with time, it is convenient to transform the problem into a one on a constant

domain. This is achieved by introducing a new function Z(z, t) and a domain variable

z ∈ [0, 1] such that

y(x, t) = Z(z, t), (6.1)

z =
x

l(t)
. (6.2)
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Taking the partial derivative of Z(z, t) with respect to z gives

∂Z(z, t)

∂z
=
∂y(x, t)

∂z
=
∂y

∂x

∂x

∂z
+
∂y

∂t

∂t

∂z
. (6.3)

Since ∂t
∂z

= 0 and ∂x
∂z

= l(t), the above expression gives the partial derivative of y(x, t)

with respect to spatial variable x as follows

yx(x, t) =
1

l(t)
Zz(z, t). (6.4)

Using the same procedure, and by taking the partial derivative with respect to z of the

expression (6.3), results in

yxx(x, t) =
1

l(t)2
Zzz(z, t). (6.5)

By taking the partial derivative of Z(z, t) with respect to time, and in light of ∂x
∂t

=

zv(t), one obtains

yt(x, t) = Zt(z, t)−
zv(t)

l(t)
Zz(z, t). (6.6)

In the same manner, and using expressions (6.4)–(6.5), it can be shown that

ytx =
1

l(t)
Zzt(z, t)−

zv(t)

l(t)2
Zzz(z, t)−

v(t)

l(t)2
Zz(z, t). (6.7)

Finally, taking the partial derivative with respect to time of equation (6.6) and using

the definition of the total derivative and expression (6.7) gives

ytt = Ztt(z, t)−
z
(
v̇(t)l(t)− 2v(t)2

)
l(t)2

Zz(z, t)

− 2zv(t)

l(t)
Zzt(z, t) +

z2v(t)2

l(t)2
Zzz(z, t).

(6.8)

Expressions (6.4)-(6.8) and (6.2) can be used to rewrite original equations of motion

(2.42)-(2.44), including the input BC (3.4), (4.2), or (5.2), such that the domain of the

transformed system is now constant. The transformed equations of motion are

Ztt(z, t) +
2v(t)

l(t)
(1− z)Zzt(z, t) +

cρL0

ρ
√

mg
ρ

Zt(z, t)− p
(
zl(t), t

)
+

1

l(t)2

(
v(t)2(1− z)2 −

(m
ρ

+ ϵτL0l(t)(1− z)
)( ρ
m

− ϵav̇(t)

L0

))
Zzz(z, t)

+
1

l(t)2

(
− 2v(t)2(1− z)

+ l(t)
(
ϵτ
(L0ρ

m
− v̇(t)

)
+ (1− z)

(cρL0v(t)

ρ
√

mg
ρ

+ v̇(t)
)))

Zz(z, t) = 0,

(6.9)
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Zt(0, t) = u(t), (6.10)

Ztt(1, t) =− L0ρ

m

( cm

ρ
√

mg
ρ

+ v(t)
)
Zt(1, t)

− 1

l(t)

(L0ρ

m
− ϵav̇(t)

)
Zz(1, t) + P (1, t).

(6.11)

The initial conditions, given y(x, 0) and yt(x, 0), are as follows

Z(z, 0) = y(x, 0), (6.12)

Zt(z, 0) = yt(x, 0) + zv(0)Zz(z, 0). (6.13)

The above equations are valid on a domain z ∈ [0, 1]. As such, these are now ready for

discretization using finite-difference approximations of individual derivative terms.

6.3. Finite-Difference Approximation

The finite-difference approximation is an approximation of a derivative using

values at a discrete set of points. This numerical technique allows one to write the

governing equations (6.9)–(6.13) in terms of discrete formulas, which are then used in

the numerical simulation of the string-mass system.

Using Taylor series expansion of a function, see (A.11), one can write

Z(z +∆z, t) = Z(z, t) + ∆zZz(z, t) +
1

2!
(∆z)2Zzz(z, t) + ... (6.14)

and

Z(z −∆z, t) = Z(z, t)−∆zZz(z, t) +
1

2!
(∆z)2Zzz(z, t) + ... (6.15)

where ∆z and ∆t are space and time increments, respectively. Retaining only the

linear terms in (6.14) and solving for the Zz(z, t) gives the forward-difference (FD)

approximation of the first-order spatial derivative

Zz(z, t) ≈
Z(z +∆, t)− Z(z, t)

∆z
. (6.16)

The approximation is due to an omission of the higher order terms from the infinite

Taylor expansion. Similarly, retaining only the linear terms and solving (6.15) for

Zz(z, t) gives the backward-difference (BD) approximation of the first-order spatial
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derivative

Zz(z, t) ≈
Z(z, t)− Z(z −∆, t)

∆z
. (6.17)

Taking average of the two gives the central-difference (CD) formula

Zz(z, t) ≈
Z(z +∆z, t)− Z(z −∆z, t)

2∆t
. (6.18)

The second time derivative approximation is obtained by adding (6.14) and (6.15)

together, retaining only linear and quadratic terms, and solving for Zzz(z, t)

Zzz(z, t) ≈
Z(z +∆z, t)− 2Z(z, t) + Z(z −∆z, t)

(∆z)2
. (6.19)

The temporal derivatives are obtained in the same manner. The first-order derivative

expressed using the central-difference, and the second-order time derivative are

Zt(z, t) ≈
Z(z, t+∆t)− Z(z, t−∆t)

2∆t
, (6.20)

Ztt(z, t) ≈
Z(z, t+∆t)− 2Z(z, t) + Z(z, t−∆t)

(∆t)2
. (6.21)

The mixed derivative Zzt(z, t) can be expressed in various ways. Using central-difference

approximation for both the space and the time, the derivative becomes

Zzt(z, t) ≈
1

4∆t∆z

(
Z(z +∆z, t+∆t)− Z(z −∆z, t+∆t)

− Z(z +∆z, t−∆t) + Z(z −∆z, t−∆t)
)
.

(6.22)

The domain of the problem is discretized by dividing the z − t plane into a

rectangular grid using assumed increments ∆z and ∆t. The coordinates of a function

at a particular node within the domain can then be written as

z = (i− 1)∆z, i = 1, 2, ..., Nz, (6.23)

t = (n− 1)∆t, n = 1, 2, ..., Nt. (6.24)

Since the domain in z is already bounded, z ∈ [0, 1], Nz =
1
∆z

+1. The temporal domain

is bounded by assuming the maximum and finite time T . As such, Nt =
T
∆t

+ 1.

Once the equations of motion are written in terms of the finite-difference approx-

imations, an iterative process is used to solve for the value of the function at the next
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i = 1
n = 1

n

n = Nt

i

Zn
i

Zn+1
i

i = Nz

z = 0

t = T

z = 1

t = 0

Figure 6.1. Discretized domain, current node Zn
i , and the target node Zn+1

i .

point in the domain, the target node. The target node will be denoted as Zn+1
i . The

index notation will be used from now on. Furthermore, the approximation sign, ≈,

will be replaced with equality.

The range of the indices i and n represents the physical domain both in z and t

as per Figure 6.1. The analysis, however, extends the range of the indices to include

ghost nodes beyond the physical domain. Ghost nodes at i = 0, i = Nz + 1, as well as

n = 0, corresponding to a prior state t = −∆t, are used. Ghost nodes allow one to

use the central-difference approximation for the first derivative at the boundary. Two

equations, the PDE and the BC, are solved for the two unknowns, the ghost node, and

the target node. Given initial conditions y(x, 0) and yt(z, 0) the prior state Zn=0
i can

be obtained from (6.12)–(6.13) using BD approximation.

Two different discretization schemes are presented. The choice of the finite-

difference formulas for each scheme is outlined in Table 6.1. For all schemes, the

finite-difference formulas (6.18)–(6.21) are used. The major difference comes about in

the choice of the finite-difference for the mixed derivative Zzt. The first scheme utilizes

CD for z and the BD in t for the mixed derivative, both for the in-domain and the

boundary nodes at n > 1. This in turn requires one to solve and then store data for
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the ghost nodes. For n = 1 the boundary node at i = 1 calls for BD in time and FD in

space. Again at n = 1, the boundary node at i = Nz uses BD in both space and time.

The marching process in the first scheme is from i = 1 to i = Nz. The second scheme

has two separate cases, one for v ≥ 0 where the marching process is from i = 1 to

i = Nz and another one for velocity v < 0 where the marching process is from i = Nz

to i = 1.

The first case uses CD in t and BD in z in the PDE for 1 < i ≤ Nz. At i = 1,

the mixed derivative has FD in space and BD in time. The second case uses CD in t

and FD in z in the PDE for 1 ≤ i < Nz. At i = Nz, the mixed derivative has BD in

both space and time. In general, for Nz > i > 1, the PDE needs to be solved for one

unknown, the target node Zn+1
i . At the boundary nodes, two equations, the PDE and

the corresponding boundary conditions have to be solved for two unknowns, the target

node, and the ghost node. However, only in two instances are the ghost nodes required

for subsequent iterations. Please see the table note in Table 6.1. The last column of

Table 6.1 gives the resultant stencil for the target node.

Finally, the equations of motion expressed using the finite-difference formulas are

given in Appendix E. Furthermore, the same appendix provides the explicit formulas

for the target nodes.

6.4. Finite-Difference Scheme Comparison and Instability

In the previous section, two finite-difference schemes were presented. The first one

is a standard explicit scheme where the target node is calculated based on the values

at the earlier time. In the second scheme, the formula for the target node includes a

node located at the same temporal level, the same time. This is readily illustrated by

the stencil for the target node, as seen in Table 6.1.

A comparison of the two schemes is given below. Unless noted otherwise, the

parameters given in the numerical results of Chapter 5 are used throughout this anal-



92

ysis. Figure 6.2 gives the bottom boundary string velocity yt
(
l(t), t

)
for both schemes

evaluated at ∆t = 0.005 and ∆z = 0.1. Since v ≥ 0, scheme two defaults to case 1,

where i = 1 : 1 : Nz. Figure 6.3 gives the same data for increments ∆t = 0.001 and

∆z = 0.05.

Table 6.1. Finite-difference schemes.

Scheme
March

Direction
n i Zzt Equations

Ghost
Node

Stencil,
for Zn+1

i

1 i = 1 : 1 : Nz

n = 1

i = 1
BD in t,
FD in z

PDE
+BC(z = 0)

Z1
0
*

0 1 2
0

1

2

Nz > i > 1
BD in t,
CD in z

PDE —

i− 1 i i+ 1
0

1

2

i = Nz
BD in t,
BD in z

PDE
+BC(z = 1)

Z1
Nz+1

Nz − 1,Nz, Nz + 1
0

1

2

n > 1

i = 1

BD in t,
CD in z

PDE
+BC(z = 0)

Zn
0
*

0 1 2
n− 1

n

n+ 1

Nz > i > 1 PDE —

i− 1 i i+ 1
n− 1

n

n+ 1

i = Nz
PDE

+BC(z = 1)
Zn

Nz+1

Nz − 1,Nz, Nz + 1
n− 1

n

n+ 1

2

v ≥ 0,
i = 1 : 1 : Nz

n ≥ 1

i = 1
BD in t,
FD in z

PDE
+BC(z = 0)

Zn
0

0 1 2
n− 1

n

n+ 1

Nz > i > 1

CD in t,
BD in z

PDE —

i− 1 i i+ 1
n− 1

n

n+ 1

i = Nz
PDE

+BC(z = 1)
Zn

Nz+1

Nz − 1,Nz, Nz + 1
n− 1

n

n+ 1

v < 0,
i = Nz : −1 : 1

n ≥ 1

i = 1

CD in t,
FD in z

PDE
+BC(z = 0)

Zn
0

0 1 2
n− 1

n

n+ 1

Nz > i > 1 PDE —

i− 1 i i+ 1
n− 1

n

n+ 1

i = Nz
BD in t,
BD in z

PDE
+BC(z = 1)

Zn
Nz+1

Nz − 1, Nz Nz + 1
n− 1

n

n+ 1

* These ghost nodes require storage for subsequent iterations.
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Figure 6.2. Boundary velocity yt
(
l(t), t

)
for schemes 1 and 2 at ∆t = 0.005 and

∆z = 0.1.

0 1 2 3 4 5 6 7 8 9 10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.3. Boundary velocity yt
(
l(t), t

)
for schemes 1 and 2 at ∆t = 0.001 and

∆z = 0.05.

The convergence of the solution is much faster when scheme 2 is utilized. This

is true in both cases. Please see Figure 6.2 and Figure 6.3. Furthermore, scheme 1

at ∆t = 0.001 and ∆z = 0.05 under-performs the output of scheme 2 at ∆t = 0.005

and ∆z = 0.1. This behavior can be glanced at when comparing both figures. The
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superior performance of scheme 2 extends to all simulations where v ̸= 0. It is not

just the feature of this particular example. Please notice that scheme 2 comes with

two separate cases differentiated by the direction of the marching process. For the

string velocity v ≥ 0, the marching process is from i = 1 to i = Nz. For the string

velocity v < 0, an opposite marching process is used. Figure 6.4 illustrates the output

of the simulation using scheme 2 for case v ≥ 0 but with a reversed marching direction

i = Nz : −1 : 1. Plot for the forward-marching direction, i = 1 : 1 : Nz, is given

for reference. The bottom boundary velocity appears to oscillate about the zero value

with increasing amplitude. The oscillations appear to be unrelated to the size of the

increments ∆t and ∆z. Moreover, Figure 6.5, where the total string displacement

is given, shows the same behavior taking place not only at i = Nz associated with

y
(
l(t), t

)
and yt

(
l(t), t

)
, but at each spatial node.
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0.4

0.5
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Figure 6.4. Boundary velocity yt
(
l(t), t

)
as per scheme 2, where v ≥ 0, ∆t = 0.001,

and ∆z = 0.1, for the forward-marching direction i = 1 : 1 : Nz and for the

backward-marching direction i = Nz : −1 : 1.

Observe that the oscillations are independent of the nature of the control. Figure

6.6 and Figure 6.7 give the output for a stable boundary dynamics with cm = 0, where

the top of the string is free to move: U = 0 and fixed: yt(0, t) = 0, respectively. When
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backward-marching direction is used for v ≥ 0, the osculations inevitably appear.

Identical behavior shows up for v < 0 case where forward-marching direction is used.

Figure 6.5. Total string displacement y(x, t) as per scheme 2, where v ≥ 0,

∆t = 0.005, and ∆z = 0.1, for the backward-marching direction i = Nz : −1 : 1.
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Figure 6.6. Boundary velocity yt
(
l(t), t

)
as per scheme 2, where v ≥ 0, ∆t = 0.005,

∆z = 0.1, cm = 0, and free top BC: U = 0, for the forward-marching direction

i = 1 : 1 : Nz and for the backward-marching direction i = Nz : −1 : 1.
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Figure 6.7. Boundary velocity yt
(
l(t), t

)
as per scheme 2, where v ≥ 0, ∆t = 0.005,

∆z = 0.1, cm = 0, and fixed top BC: yt(0, t) = 0, for the forward-marching direction

i = 1 : 1 : Nz and for the backward-marching direction i = Nz : −1 : 1.

6.5. Discussion

The examination indicates a numerical instability associated with scheme 2 when

the marching direction opposes the string’s axial velocity. This pairing is an example

of a downwind scheme. The downwind scheme is characterized by the usage of the

larger number of downstream nodes than the upstream nodes in the calculation of

the flow field. In general, the downwind schemes are numerically unstable. As an

illustrative example, please see Figure 6.5. When the marching direction matches the

velocity of the string, more upstream nodes are used, and the scheme is called an

upwind scheme. Please see the stencils for the target nodes associated with scheme 2

for Nz > i > 1 as per Table 6.1. The upwind schemes for hyperbolic equations are only

conditionally stable. For a simple, first order upwind scheme describing a 1D linear

advection equation

∂f

∂t
+ v

∂f

∂x
= 0, (6.25)
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represented by either

nn+1
i − nn

i

∆t
+ v

uni − uni−1

∆x
= 0 for v > 0, (6.26)

or

nn+1
i − nn

i

∆t
+ v

uni+1 − uni
∆x

= 0 for v < 0, (6.27)

the stability is conditioned upon the CFL (Courant-Friedrichs-Lewy) number defined

by

σ =
∣∣∣v∆t
∆x

∣∣∣. (6.28)

The CFL stability criterion then becomes

0 ≤ σ ≤ 1. (6.29)

The above CFL stability can be readily verified using the Von Neumann method

for stability analysis. More detailed overview of the subject can be found in Hirsch

(2007). Clearly, in the above example, the differentiation of the schemes based on

the direction of propagation matches the prescription found in Table 6.1 for scheme 2.

However, stability analysis for initial, boundary value problem with complex boundary

conditions can be quite complicated. No attempt is made here to derive the stability

condition. The numerical results presented in this work are verified to converge by

running successive simulations with different increment values.
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7. CASE STUDY

7.1. Introduction

This chapter contains a numerical simulation. Previously derived controllers are

used to control a load in the presence of the water waves. Unlike the preceding results,

where the parameters were chosen to stress the pedagogy, this simulation is more

comprehensive and based on a ”realistic” disturbance model that utilizes parameters

obtained from the experimental data. The analysis and the results in this chapter

are presented using the original ”bar” coordinates. The outcomes of the simulation,

and the discussion that follows, should give the reader a better insight into a practical

application of the research presented in this work.

7.2. Problem Statement

Consider an underwater sensor deployed into the sea from a surface vessel. The

load is submerged up to a designated depth where it then loiters until stabilized to

perform the desired sensing operation. The effect of sea waves on the sensor should

be eliminated, as it represents an undesired disturbance. The deployment is then

comprised of two stages. During the first extraction stage, the load is extended following

a prescribed velocity profile v̄(t̄) up to time t̄1. It then remains at the desired depth

until its lateral velocity falls below a specific limit at t̄2. Once the deployment is

complete, the sensing operation can commence, t̄ > t̄2. Please see Figure 7.1 for a

general overview.

The above system is considered under previously stated Assumptions: 2.1–2.3,

2.5–2.7, 3.6, 3.7, 3.9, and 5.1. As per Assumption 2.5 the power required for the

actuation of the system is neglected in the analysis. Furthermore, the dynamics of the

vessel and the effect of the water disturbances on the vessel itself are not considered,

i.e., it is assumed that the vessel has the power to track required input velocity ȳt̄(0, t̄).
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m

x̄ = 0

x̄ = L0

x̄ = Lf

x̄ = d

t̄

x̄

t̄ = 0 t̄ t̄1 t̄2

v̄(t̄) v̄(t̄) = 0

Figure 7.1. Underwater deployment and operation.

In addition, the following assumptions are stated:

Assumption 7.1. For the purpose of calculating the drag coefficient, the underwater

sensor is assumed to be a smooth sphere of radius rs. Similarly, the cable is a smooth

cylinder of diameter dc, Figure 7.2.

Assumption 7.2. The disturbance force Fd acting on a sphere and force per unit

length fd acting on a cylinder are due to the water flow/drag and are proportional to

velocity square as per

Fd =

0 if vr = 0,

− v̄r
2|v̄r|ρw(πr

2
s)cds v̄

2
r else,

(7.1)

fd =

0 if vr = 0,

− v̄r
2|v̄r|ρwdccdc v̄

2
r else,

(7.2)

for the relative velocity v̄r = ȳt̄ − v̄ȳ, horizontal flow velocity v̄ȳ, water density ρw, and

drag coefficients cds and cdc for the sphere and the cylinder respectively. The damping

parameters cρ and cm are assumed to be zero and the the effect of damping/drag are

incorporated into the definition of the disturbance.



100

rs

dc

Figure 7.2. Geometry of the sensor, a sphere, and the cable, a cylinder.

Since the relative velocity vr is anticipated to be around 100, together with typical

values for the density and the dynamic viscosity of water, the resulting Reynolds‘s

number (Re≫ 1). As such, the drag equation in Assumption 7.2 is that of square-law,

and not the Stoke‘s drag which is linear in nature, Fox and McDonald (1999).

Under the above assumptions, it is desired to stabilize the lateral velocity ȳt̄(Lf , t̄)

of the sensor m, below given threshold ȳt̄max. . This is done using the actuation input

ū(t̄) = ȳt̄(0, t̄).

7.3. Disturbance Modeling

The disturbance affecting the underwater sensor and the cable is modeled as

water waves. The following assumptions are made about the problem:

Assumption 7.3. The fluid motion is assumed to be irrotational and the fluid to be

incompressible. The effects of viscosity, surface tension, turbulence, or sea bed are

neglected. Stoke‘s drift and water currents are not considered.

Assumption 7.4. The water waves are progressive and periodic in nature. Wave

parameters such as the wave period T , the wavelength λ and the wave height h are

assumed to be known. The depth of the sea bed d is known.

Assumption 7.5. The waves will be analyzed using the linear wave theory. It is

assumed that h≪ λ and h≪ d.
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The analysis presented below mirrors the one found in Dean and Dalrymple

(1991). Given the velocity vector u = v̄x̄ i + v̄ȳ j, the periodic water waves under

the Assumption 7.3 can be modeled using the continuity equation

∇ · u = 0, (7.3)

which under the definition of a potential function, u = −∇ϕ, such that v̄ȳ = −∂ϕ
∂ȳ

and

v̄x̄ = −∂ϕ
∂x̄
, leads to the Laplace’s equation

∇2ϕ =
∂2ϕ

∂x̄2
+
∂2ϕ

∂ȳ2
= 0. (7.4)

The equation (7.4) is the PDE describing the fluid. The boundary value problem is

illustrated by Figure 7.3. The boundary conditions are stated as follows. At the sea

bed, where x̄ = d, the flow is assumed to be along the horizontal direction only. This

is then the bottom boundary condition (BBC) which can be expressed as

∂ϕ

∂x̄

∣∣∣
x̄=d

= 0. (7.5)

Since the problem is periodic in nature, please see Assumption 7.4, periodic lateral

boundary conditions (PLBC) in space and time are used:

ϕ(ȳ, t̄) = ϕ(ȳ + λ, t̄), (7.6)

ϕ(ȳ, t̄) = ϕ(ȳ, t̄+ T ), (7.7)

Finally, the boundary conditions describing the free wave surface are required. The

kinematic free surface boundary condition (KFSBC) describing no flow across the sur-

face, u · n = 0 where n is the unit vector normal to the free surface, is stated as(∂ϕ
∂x̄

= −∂η
∂t̄

+
∂ϕ

∂ȳ

∂η

∂ȳ

)
x̄=η(ȳ,t̄)

, (7.8)

where η(ȳ, t̄) is the displacement of the free surface about the horizontal plane x̄ = 0.

For reference, see Figure 7.3. The second surface BC is called the dynamic free surface

boundary condition (DFSBC). It is a statement of a uniform pressure on the free surface

along the wave form, which can be expressed using Bernoulli’s equation(
− ∂ϕ

∂t̄
+

1

2

((∂ϕ
∂ȳ

)2
+
(∂ϕ
∂x̄

)2)− gη = C(t̄)

)
x̄=η(ȳ,t̄)

, (7.9)

where g is the gravitational acceleration constant, C(t̄) is an integration ”constant”,

and where the gauge pressure is assumed to be zero.
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v̄ȳ

n
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x̄ = 0

x̄ = d

ȳ

Figure 7.3. Boundary value problem for periodic water waves.

As per Assumption 7.5 the Taylor series expansion (A.11) can be used to linearize

the KFSBC and the DFSBC. The solution is then obtained by utilizing the method of

separation of variables. For a step by step derivation procedure the reader is referred

to Dean and Dalrymple (1991). As per Assumption 7.4, the progressive solution to the

boundary value system (7.4)–(7.9) is

ϕ = −ghT
4π

cosh
(
2π
λ
(−x̄+ d)

)
cosh

(
2π
λ
d
) sin

(2πȳ
λ

− 2πt̄

T

)
. (7.10)

The displacement of the free surface is

η = −h
2
cos
(2πȳ
λ

− 2πt̄

T

)
. (7.11)

Lastly, the dispersion equation which describes dependence of the wave angular fre-

quency on the wavelength is given by

ω̄2 =
4π2

T 2
= g

2π

λ
tanh

(2π
λ
d
)
. (7.12)

The flow velocities can be obtained from the solution (7.10) and the definition of a

potential function as

v̄ȳ =
ghT

2λ

cosh
(
2π
λ
(−x̄+ d)

)
cosh

(
2π
λ
d
) cos

(2πt̄
T

− 2πȳ

λ

)
, (7.13)

v̄x̄ =
ghT

2λ

sinh
(
2π
λ
(−x̄+ d)

)
cosh

(
2π
λ
d
) sin

(2πt̄
T

− 2πȳ

λ

)
. (7.14)
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In addition to being periodic in space and time, the flow velocity functions are ex-

ponentially decaying in x̄. Assuming the sensor reached the final depth x̄ = Lf and

the controller stabilized the lateral velocity ȳt̄(Lf , t̄) ≈ 0 such that ȳ is constant, then

the velocity function is periodic in time only and resembles the type of disturbances

assumed in Chapter 3. The in-domain disturbance however, would still be a function

of depth x̄.

Now, using definitions (7.1)–(7.2) the disturbances, please recall Figure 2.4, can

be written as

P̄
(
x̄ = L(t̄), ȳ, ȳt̄, t̄

)
=

0 if v̄r = 0,

− v̄r
2|v̄r|(πr

2
s)ρwcds v̄

2
r else,

(7.15)

p̄(x̄, ȳ, ȳt̄, t̄) =

0 if vr = 0,

− v̄r
2|v̄r|dcρwcdc v̄

2
r else.

(7.16)

The relative velocity v̄r, using (7.13), becomes

v̄r(x̄, ȳ, ȳt̄, t̄) = ȳt̄(x̄, t̄)−
ghT

2λ

cosh
(
2π
λ
(−x̄+ d)

)
cosh

(
2π
λ
d
) cos

(2πt̄
T

− 2πȳ(x̄, t̄)

λ

)
. (7.17)

Please observe that (7.15)–(7.16) are functions of the depth x̄, string displacement

ȳ(x̄, t̄), time t̄, and the lateral string velocity ȳt̄(x̄, t̄). The equations (7.15)–(7.16) are

the disturbances affecting the cable and the sensor and together with the definition

(7.17) will be used in the forthcoming numerical simulation.

7.4. Parameter Data

The disturbance model given in the previous section calls for parameters such

as wave height, wave period, wavelength, sea bed depth, etc. These parameters are

taken from the experimental as well as analytical data obtained from the relevant

publications. Table 7.1 gives typical data for a sea swell which is the best physical

match for the type of waves considered by the linear wave theory. The wave parameters

for the Black Sea are from Divinsky and Kosyan (2018), which in turn relies on the

experimental data collected by the Datawell Waverider instrument Kos’ yan et al.
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(1998). The wavelength has been calculated on the assumption that λ = gT 2

2π
as per

Hastie (1985). The sea water properties, at the temperature of 10◦C and salinity of

20 ppt, are taken from Nayar et al. (2016b). Please also see Sharqawy et al. (2010) and

Nayar et al. (2016a).

Table 7.1. Wave parameter data and sea water properties.

Parameter Parameter Name Value Reference

T Wave period 7 s Divinsky and Kosyan (2018)

h Wave height 0.5m Divinsky and Kosyan (2018)

λ Wavelength 76.5m Hastie (1985)

d Sea bed depth 85m Divinsky and Kosyan (2018)

ρw Sea water density 1015.2 kg
m3 Nayar et al. (2016b)

µw Sea water dynamic viscosity 0.001355 kg
m s

Nayar et al. (2016b)

The physical parameters of the sensor, a sphere, and the steel cable, a cylinder,

were selected judiciously and are given in Table 7.2. The drag coefficients are taken

as typical values for Reynolds‘s number in the range between 104 − 105. The velocity

at which the surface waves propagate is c = λ
T
or, as per data in Table 7.1, equal to

10.928 m
s
. The IC are assumed to be ȳ(x̄, 0) = ȳt̄(x̄, 0) = 0. The velocity profile is:

v̄(t̄) =


− 140

t̄ 71
(Lf − L0)t̄

6 +
420

t̄ 61
(Lf − L0)t̄

5

− 420

t̄ 51
(Lf − L0)t̄

4 +
140

t̄ 41
(Lf − L0)t̄

3
0 ≤ t̄ ≤ t̄1

0 t̄ > t̄1.

(7.18)

Table 7.2. Physical parameter data.

Parameter Parameter Name Parameter Value

m Sensor mass 60 kg

rs Sensor radius 0.2m

ρ Cable linear density 0.36 kg
m

dc Cable diameter 0.0095m

L0 Initial depth 2m

Lf Desired depth 40m

t̄1 Time to depth 40 s

cds Drag coefficient of a sphere 0.5*

cdc Drag coefficient of a cylinder 1.1**

* Bailey and Hiatt (1972).
** Heddleson et al. (1957).
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The string velocity v̄(t̄) should not exceed the maximum velocity of an object

falling thru the fluid under the influence of gravity, buoyancy, and the fluid drag. For

the sensor sphere, and neglecting the effect of the cable, the falling velocity v̄f (t̄) can

be obtained by solving

˙̄vf (t̄) = g − 1

2m
(πr2s)ρwcds

(
v̄f (t̄)− v̄x̄(t̄)

)2 − gρw
m

(
4

3
πr3s), (7.19)

for v̄x̄(t̄) as per (7.14) with x̄ = L(t̄) and ȳ = ȳ
(
L(t̄), t̄

)
.

7.5. Conventional Control and Tuning

The proposed controllers will be compared with standard control methods. The

forthcoming numerical results include data for the conventional controllers such as

Proportional-Integral-Derivative (PID) and Proportional-Derivative (PD) + lead com-

pensator. Here, a short overview is given. Furthermore, tuning and the final control

parameters are provided at the end of this section.

The PID control is an industry-standard feedback control that applies correction

input based on the error between the setpoint and the output. The controller utilizes

a sum of proportional, integral, and derivative terms to construct a corrective input

u(t) = kpe(t) + ki

∫ t

0

e(t)dt+ kdė(t), (7.20)

where kp, ki, kd are the proportional, integral, and the derivative gain constants, re-

spectively, and where e(t) is the difference between feedback and the desired setpoint.

Please see Figure 7.4 for the block diagram. The PD + lead/lag controller is a series

connection between the PD controller and a compensator. In the frequency domain,

the compensator is usually given in terms of the transfer function

TF = kl
s− zl
s− pl

, (7.21)

where zero: zl =
1
Tl
, and pole: pl =

1
βTl

. For β < 1, the compensator is the lead com-

pensator. For β > 1, the lag compensator is obtained. In general, the lead compensator

is used to improve stability and to increase the response time. The lag compensator

rectifies the steady-state error. The compensator’s transfer function (7.21) can be
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transformed into a time-domain state-space filter

Ẋl(t) = − 1

βTl
Xl(t) + kl

( 1
Tl

− 1

βTl

)
ue(t), (7.22)

u(t) = Xl(t) + klue(t), (7.23)

where ue(t) is the compensator‘s input as per Figure 7.5.

u(t) = kpe(t) + kdė(t) + ki
∫ t

0
e(t)dt

PID Controller

System:
(2.42)–(2.44)

Plant

e(t) = yt
(
l(t), t

)
Feedback

u(t) yt
(
l(t), t

)

Figure 7.4. PID controller.

ue(t) = kpe(t) + kdė(t)

PD Controller
Ẋl(t) = − 1

βTl
Xl(t) + kl(

1

Tl
− 1

βTl
)ue(t)

u(t) = Xl(t) + klue(t)

Compensator

System:
(2.42)–(2.44)

Plant

e(t) = yt
(
l(t), t

)
Feedback

ue(t) yt
(
l(t), t

)
u(t)

Figure 7.5. PD controller with compensator.

For optimal performance, the constant parameters are tuned. A manual method

is used to arrive at the final values. The tuning takes place on the actual system (2.42)–

(2.44) with previously described disturbance model as per (7.15)–(7.17), and Tables

7.1 and 7.2. It is assumed that the string is of constant length and at the desired

depth. For the PID controller, the kp gain is set first. The kp = −32 gives the most

stable performance with the lowest amplitude of oscillations, Figure 7.6. Afterward,

the integral gain ki is found. Here, the value of ki = −2 lowers the steady-state error

without significantly affecting the amplitude of the oscillations, see Figure 7.7. The

derivative gain kd = −10 provides stability over the undamped case, Figure 7.8.

Adding a lead compensator to the PID controller did not provide the expected

improvements in the performance. Ultimately, it was found that a single lead compen-

sator coupled with a PD controller or the PD + lead control provides the best results.
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While various PID control and lead/lag compensator combinations were attempted, it

was learned that this particular cascade is the most effective in terms of controlling

the amplitude of the oscillations. A similar tuning procedure is used for the PD +

compensator controller to obtain kd = −120, kl = 1, Tl = 5, and β = 0.05. The data

for the parameter β in the lead configuration is shown in Figure 7.9. In Figure 7.10,

the PD + lag compensator is compared to the previously obtained PID control. As

mentioned earlier and viewed from the figure, the lag compensator lowers the steady-

state error. The performance of the PD + lag control is inferior to that of the PID

controller. As it is possible to use multiple compensators, Figure 7.11 gives the results

for a series connection PD + lag + lead. The proportional constant for the extraction

stage, t̄ ∈ [0, t̄1], is set to kp = −5.7, the equivalent gain used in the delay-compensated

controller. The final control parameters are summarized in Table 7.3.

Table 7.3. Final control parameters for PID and PD + Lead Controllers.

Control Parameters

kp kd ki kl Tl β

PID Controller −5.7 /− 32* −10 −2 – – –

PD + Lead Controller −5.7 /− 32* −120 – 1 5 0.05

* Left value of the proportional gain kp is for the extraction t̄ ∈ [0, t̄1]. Value on the
right is for t̄ > t̄1.
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Figure 7.6. PID parameter tuning for proportional gain kp.
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Figure 7.7. PID parameter tuning for integral gain ki.
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Figure 7.8. PID parameter tuning for derivative gain kd.



109

0 10 20 30 40 50 60

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 7.9. PD + Lead compensator parameter tuning for β with all other

parameters as per Table 7.3.
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Figure 7.10. PD + Lag compensator at different β with all other parameters as per

Table 7.3 vs. PID.
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Figure 7.11. PD + Lag + Lead cascade at different β vs. PD + Lead compensator.

All other parameters as per Table 7.3.

7.6. Numerical Results

The numerical simulation includes four separate control cases. Please see Table

7.4 for the complete listing. Case 1 gives the response for the free boundary condition

where the top of the string is free to move along the horizontal direction. Physically, this

can be interpreted as a string-mass system suspended on a free-to-move floating buoy.

This case constitutes the baseline for the comparison between various control methods.

Next, a standard PID controller is used in Case 2, where feedback e(t) = yt
(
l(t), t

)
.

Case 3 gives results for a PD controller cascaded with a lead compensator. Finally,

Case 4 shows the response for the proposed, delay-compensated boundary controllers

derived in Chapters 3 and 5.

Table 7.4. Controller specifications.

Case Controller

Free Boundary Condition u(t) =
(
1− v(t)

)
yx(0, t) ∀ t̄

PID Controller u(t) = kpe(t) + kdė(t) + ki
∫ t

0
e(t)dt

PD + Lead Controller See Figure 7.5

Proposed Controllers (5.76) for t̄ ∈ [0, t̄1] and (3.69) for t̄ > t̄1
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The problem is simulated over two separate rounds. After the initial extraction

stage t̄ ∈ [0, t̄1], the final conditions of the string, such as the string displacement and

transverse velocity, are used as the IC in the second simulation round t̄ ∈ (t̄1, t̄2] where

v̄(t̄) = 0. The data is combined to give the total simulation results. The simulation

parameters for both stages are as follows: ∆t = 0.025 and ∆z = 0.1 for stage 1, and

∆t = 0.0025 and ∆z = 0.1 for stage 2. The relatively large time increment for stage 1

is due to a low value of the normalization constant tc = 0.0495, which in turn gives a

large normalized time of 808.08. This corresponds to an actual stage time of only 40 s.

Control parameters for Case 2 and Case 3 are summarized in Table 7.3.

The control parameters for the delay-compensated controllers (3.69) and (5.76)

are as follows. The RDE input is set to Q(t) = 2|A(t)| + 150. Larger values of Q(t)

provide marginal improvement but lead to oscillations in the input at the predefined

time increment. Since controller (5.76) is employed, it is assumed that all system

parameters are known. The problem at hand is still adaptive in the sense that controller

(3.69) employs an observer for the estimation and rejection of the unknown disturbance.

All Update gains, kθ, kβa , and kβb
, are set at 1.9 · 10−21, together with cw = 0.55,

cτ = 0.1, ca = 0.1, cξ = 10−7, cδ = 108 q = 15.5, QG = I2x2, and control gain k = −8.

Controllable pair (G, l) is given as l = [0, 1]T and G = [0, 1;−3,−3.5] with eigenvalues

of −2 and −1.5. Bounds on the unknown angular frequency ω = 2π
T

= 0.8976 rad
s

are

set as ω ∈ [0.5, 1]. Furthermore, the second delay-compensated controller does have

access to prior states; states generated during the first stage.

The length of the string L(t̄), its axial velocity v̄(t̄), and acceleration ˙̄v(t̄) are

given in Figure 7.12. The maximum permissible velocity v̄f (t̄) of a sphere falling thru

fluid is plotted here as well. Please observe that the falling, ”terminal”, velocity is not

constant. It varies because of the fluid flow and the motion of the sensor. The delay

function ϕ̄(t̄), its inverse ϕ̄−1(t̄), time t̄, and the delay ḡ
(
L(t̄), t̄)

)
are shown in Figure

7.13 for t̄ ∈ [0, 40] s. The transverse velocity of the sensor ȳt̄
(
L(t̄), t̄

)
for all cases is

given in Figure 7.14. Finally, the total displacement for the delay-compensated control

can be seen in Figure 7.15.
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Figure 7.12. String length L(t̄), left axis, and axial velocity v̄(t̄), acceleration ˙̄v(t̄),

and terminal velocity v̄f (t̄), right axis.
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Figure 7.13. The delay function ϕ̄(t̄), its inverse ϕ̄−1(t̄), and time t̄, left axis. The

delay ḡ
(
L(t̄), t̄

)
, right axis. All on t̄ ∈ [0, t̄1].
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Figure 7.14. Bottom velocity ȳt̄
(
L(t̄), t̄

)
for: a) PD Controller with Lead

Compensator, b) Proposed Boundary Controllers (5.76) and (3.69).

Figure 7.15. Total string displacement ȳ(x̄, t̄) for the proposed controllers.

The performance of each control strategy is evaluated in terms of the RMS values

as per Table 7.5. The extraction column gives the RMS values for t̄ ∈ [0, 40] s when

the string is extending as per velocity profile (7.18). The steady-state column shows

values for a portion of the holding stage, a string of constant length, for t̄ ∈ [100, 125] s.

This time period corresponds to stable harmonic oscillations for all cases. Since every
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response exhibits a drift, the DC offset has been removed from the data samples before

calculating the RMS values in Table 7.5. The DC offset in (m
s
) for ȳt̄

(
L(t̄), t̄

)
and over

the steady-state period is given explicitly in the last column.

Table 7.5. RMS values of ȳt̄
(
L(t̄), t̄

)
and ū(t̄).

RMS* in [m/s]
Extraction: t̄ ∈ [0, 40] s Steady State: t̄ ∈ [100, 125] s

ȳt̄
(
L(t̄), t̄

)
ū(t̄) ȳt̄

(
L(t̄), t̄

)
ū(t̄) DC offset

Free Boundary Condition 2.82 3.71 0.60 4.01 0.66

PID Controller 1.90 4.15 0.88 9.35 0.12

PD + Lead Controller 2.34 3.08 0.17 5.09 1.20

Proposed Controllers 2.33 3.07 0.13 8.26 1.20

* DC offset over the relevant time period was subtracted from the signal before cal-
culating the RMS values.

The robustness of the proposed control strategy is tested by adjusting the wave

height h of the disturbance. The parameter is changed from the original value of

0.5m to 0.75m. The comparison between the PD + lead controller and the proposed

boundary control is shown in Figure 7.16. The simulation is performed using original

control parameters and runs up to 250 s. The RMS values are given in Table 7.6.
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Figure 7.16. Bottom velocity ȳt̄
(
L(t̄), t̄

)
at h = 0.75m for: a) PD Controller with

Lead Compensator, b) Proposed Boundary Controllers (5.76) and (3.69).
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Table 7.6. RMS values of ȳt̄
(
L(t̄), t̄

)
and ū(t̄) for wave height: h = 0.75m.

RMS* in [m/s]
Extraction: t̄ ∈ [0, 40] s Steady State: t̄ ∈ [200, 250] s

ȳt̄
(
L(t̄), t̄

)
ū(t̄) ȳt̄

(
L(t̄), t̄

)
ū(t̄) DC offset

PD + Lead Controller 3.90 5.05 0.29 5.66 3.72

Proposed Controllers 3.44 5.48 0.21 5.45 1.51

* DC offset over the relevant time period was subtracted from the signal before cal-
culating the RMS values.

7.7. Discussion

The simulated system is stable but follows the trajectory dictated by the presence

of wave disturbances. This can be discerned from Table 7.5, where the DC offset for the

free boundary condition case is given. Here, the string is free to move, and no external

actuation occurs. As the string oscillates under the influence of the waves, it also drifts

away. Similar behavior takes place for all other cases. Please see Figure 7.14. Even

the PID controller with the smallest DC offset value of 0.12 m
s
cannot firmly anchor

the string at one location. Further, the PID controller fairs worst in terms of the RMS

values for the bottom boundary velocity and the input. The observed steady-state

error is even more pronounced for Case 3 and Case 4 with a value for the DC offset

of 1.20 m
s
. However, the amplitude of oscillations decreases substantially over those in

Case 1 and Case 2. Clearly, the two control strategies are best in terms of limiting

the oscillations. The delay-compensated controller edges the results for the PD + lead

controller, 0.13 m
s
versus 0.17 m

s
, at an expense of higher input and longer time required

to achieve this result. The proposed control is successful in limiting the effects of the

delay and the wave disturbances on the system. The delay at the depth of 40m is

approximately 1 s, Figure 7.13. In the extraction stage, t̄ ∈ [0, 40] s, the differences

between Case 3 and Case 4 are relatively small, both in terms of the state ȳt̄
(
L(t̄), t̄

)
and the input ū(t̄).

The results for Case 2 and Case 3 are for controllers tuned for the system described

by the particular plant parameters and the specific disturbance. The robustness of the

control can then be tested by changing the system while retaining previously obtained

control parameters. This is done by adjusting the disturbance parameter h describing
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the wave height as per Figure 7.3. Here, the value increases from 0.5m to 0.75m. The

resulting performance for the PD + lead controller and the proposed delay-compensated

controllers can be seen in Figure 7.16. The RMS values for the comparison are found

in Table 7.6. The proposed boundary controller outperforms the standard controller

0.21 m
s
versus 0.29 m

s
in terms of the RMS values. Furthermore, the DC offset is also

smaller. As the parameter h is increased by 50%, the DC offset for the proposed

controller only goes from 1.20 m
s
to 1.51 m

s
. The same change results in a DC offset for

the PD + lead controller to go from 1.20 m
s
to a staggering value of 3.7 m

s
.

The proposed boundary control is more robust in handling the change in the

disturbance. While the PD + lead control would require a new round of tuning of the

control parameters, the delay-compensated control derived in this thesis adapts and is

more capable of dealing with variations in the system parameters and the disturbances.

None of the control methods is capable of eliminating the steady-state error.

The omnipresence of the DC offset results from the complex nature of the disturbance

affecting the system, which goes beyond the observer design presented in this work.

Simply increasing the number of observer frequencies did not produce the desired re-

sults. Incorporating a constant term into the observer by increasing dimensionality

from 2n to 2n + 1 failed to compensate the bias. Please see Section 3.4. It may then

be necessary to fully integrate an integral control into the delay design utilized in this

thesis. Doing this would greatly extend the performance of the proposed control.

The case study simulates the deployment of an underwater sensor. The perfor-

mance of the previously derived controllers has been tested under conditions mimicking

those found in the field operations. The wave disturbance affecting the cable-sensor

system is based on actual experimental data. Since the nature of the problem goes far

beyond the applicability of the analysis, any statement concerning stability can only

be made on a case-by-case basis. It has been observed that the delay-compensated

controllers perform well, decreasing the effects of the disturbance on the velocity of

the sensor. The proposed control outperforms open-loop control, synonymous with the
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free boundary condition. It also fairs better than the industry standard PID and PD

+ lead controllers in limiting the amplitude of the oscillations. Finally, the proposed

boundary control proves to be more robust in handling potential changes in the system

or the disturbance.
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8. CONCLUSIONS

This thesis provides boundary control strategies for a 1D string-mass system.

Variations on the problem include variable string length, adaptivity, and the presence

of the disturbances. Under a set of assumptions, this rather difficult problem can be

transformed into a more familiar one. Here, it becomes the control of a linear ODE with

an input delay. Furthermore, the transformation offers a good insight into the nature

of the system itself. The flow of the input signal from one end of the string to the other

is explicitly illustrated. The time required for the signal to reach the bottom boundary

is the delay. As the length of the string changes, the delay becomes time-varying.

Consequently, the controller at the top of the string needs to predict the required input

at the bottom some time in the future. It is an intuitive understanding of the problem

at hand. Mathematically, it is modelled by decomposing the governing wave equation

into two decoupled first-order transport PDEs. The solutions to these equations give

the relationships between the states at the two boundaries. By re-expressing the BBC

in terms of the states at the top, the delay naturally appears in the dynamics describing

the mass. Once a linear system with an input delay is obtained, the machinery of the

delay and adaptive controls is applied. Using the backstepping method, the control

is derived. The control laws are guaranteed to stabilize the system and in certain

instances ensure convergence of the velocity state. Finally, the boundedness of the

in-domain states is proven as well.

In summary, an analytically derived boundary input based on the delay control

that can guarantee the stability of the string-mass system exists. Furthermore, by

utilizing the adaptive strategies, the uncertainties in the boundary dynamics and the

presence of disturbances can be overcome with the proposed boundary control.

Within limits imposed by the set of stated assumptions, the analysis guarantees

stability and, in some cases, convergence. When one moves beyond the limits, the

claims can no longer be substantiated. It is often the case when applying theoretical
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results to a practical problem. Revisiting the initial assumptions and discussing their

merits in light of a practical application is a worthwhile endeavor.

First, an ideal string does not possess the stiffness of an actual cable. The wave

speed is non-dispersive. The lack of material properties beyond the linear density

leads to more a predictive response and a better overall performance. Realistically, it

would be more difficult to actuate a cable. While stability would most likely not be

affected, the ability of the controller in suppressing the effects of disturbances might

be. Second, a 1D problem is examined. In practice, the mass would move in two lateral

directions. This case is discussed in more detail further down in this section. Whenever

the geometry of the load is to be considered, the dynamic on the bottom boundary will

be affected. In the case of a sphere, as in Chapter 7, this leads to a drag disturbance

force.

The presence of a velocity-proportional damping is used to make systems unsta-

ble in the theoretical work. In the case study, the damping is due to the drag force.

Here, the velocity-proportional term appears in the disturbance, which is highly non-

linear due to a square drag law. The obtained simulation results indicate a sensitivity

of the proposed design to the form of disturbances affecting the system. While the

stability is achieved, the performance suffers. The mathematical model introduced in

Chapter 2 assumes position and time-dependent disturbances. Controllers derived in

the subsequent chapters further limit admissible forms of the disturbances or exclude

them entirely. The case study proves that the presence of more complex disturbances

significantly reduces the ability of the controller to restrain the oscillations. Please see

the upcoming discussion about the possibility of handling spatially dependent distur-

bances.

Next, by assuming a constant string tension, the equations of motion can be

greatly simplified. The wave speed becomes constant along the length of the string.

This then allows for the derivation of the delay and the control laws. It is a reasonable

assumption whenever the mass of the load is much greater than the mass of the cable.
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When that is no longer true, additional effects show up in the actual response of the

system. Indeed, this happens in the case study where the mass of the sensor is 60 kg

and the total mass of the cable is 14.4 kg. As a result, the performance degrades in

terms of controlling the amplitude of the oscillations. Furthermore, while still offering

the best performance among tested control strategies, the proposed control cannot

eliminate the DC offset. Once again, please see a list of suggestions for a potential

solution to this problem.

The reliance on the boundary feedback is a strong point of the design. As only

the boundary measurements are required, there is no need for an infinite-dimensional

observer, which would be difficult to achieve in field applications. For certain problem

configurations, it is further possible to integrate a boundary observer as in Yilmaz

and Basturk (2020). The only feedback required in this case would come from the

actuated boundary. Please observe that the present design is for velocity stabilization.

The regulation of displacement ȳ is not currently possible under the measurement

assumptions and the boundary conditions. Position regulation could be achieved, at

least for the string with a constant length, if a direct measurement of the displacement

is available.

Another critical feature of the proposed design is the adaptivity of the controller

in overcoming parameter uncertainties. It is of high value as the determination of

the parameters might be difficult in practice. Furthermore, the adaptive controllers

should handle slow variations in the parameters that might, for example, show up in

the physical systems affected by the thermal cycles of night and day. Moreover, the

observer estimates and cancels out the unknown harmonic disturbances. Even in the

presence of more complex scenarios, as in the case study, the controller does reasonably

well. Furthermore, the controller is more reliable as it can adapt to the changing nature

of the disturbances as portrayed in the numerical results of Chapter 7.

The analysis presented in the thesis can be extended further. The following list

contains some of the most compelling and practical paths for potential future research:
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� Inclusion of the spatially-dependent disturbances as in Basturk and Ayberk (2018)

should be a natural step forward. In the paper, the in-domain spatial disturbance

is first projected onto the dynamics of the bottom boundary. Here, the dimension-

ality of the boundary system is increased by incorporating the known dynamics of

the disturbance. Then, a full state observer is designed leading to an appropriate

update law. The stability analysis is finally performed using the error system. A

similar analysis can potentially be applied to the problem given in Chapter 3 as

long as the system parameters a and b are known. This approach might result

in a better control performance for the type of problem presented in Chapter

7. Furthermore, given the results of the case study, an integral control should

be examined to alleviate the steady-state error. This option is considered in the

discussion at the end of Chapter 7.

� Increasing the dimensionality of the problem might be another worthwhile op-

portunity. At present, the analysis is limited to a 1D problem. However, it might

be possible to apply the proposed controller design to a 2D problem where each

independent axis is handled separately and in a discrete sequence. A full 2D

motion of the mass would result in a coupled dynamics, Xing et al. (2020), that

might be challenging to handle with the current methods. If the system could

be decoupled under a strict set of assumptions or the coupling were ignored for

the feedback design as in Böhm et al. (2014), each direction could be handled by

a separate controller. Finally, the effects of coupling could also be considered as

a disturbance into each independent controller and could potentially be canceled

out using the observer.

� Since the reduction model used in the analysis for a string with a moving boundary

precluded the inclusion of the disturbances, it would be imperative to look for

another method to alleviate this limitation. In Chapter 3, the projection of the

in-domain disturbance onto the dynamics of the bottom boundary is equivalent

to a change in amplitude and a phase shift. In the case of the dynamic domain,

the projection also results in a shift of the angular frequencies. This prevents one

from leveraging the same adaptive techniques in dealing with the disturbance.

More work in this direction would make the proposed design more practical.
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� More research is necessary to see if it is possible to extend the analysis to systems

characterized by internal stiffness such as cables and beams. The backstepping

control has been successfully applied in the stabilization of beams described by

the Euler–Bernoulli or the Timoshenko beam models. Please see Krstic and

Smyshlyaev (2008a) for a brief overview. However, the literature is limited to a

narrow range of applicable boundary conditions, disturbances, length constraints,

and a requirement for an infinite-dimensional state observer. With regard to the

research presented in this thesis, the difficulty arises in projecting the controlled

boundary states onto the dynamics describing the opposite boundary and ex-

pressing control in terms of a system with an explicit delay.

Identification of the challenges in the application of the presented research goes

a long way in establishing future efforts. The implementation of the above suggestions

would be a great way of extending the applicability of this work.
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APPENDIX A: USEFUL FORMULAS AND IDENTITIES

L2 norm (Scalar)

||w(t)||2 =
∫ 1

0

w(x, t)2dx (A.1)

L2 norm (Vector)

||w(t)||2 =
∫ 1

0

w(x, t)Tw(x, t)dx (A.2)

Young’s Inequality (Scalar)

ab ≤ a2ϵ

2
+
b2

2ϵ
∀ϵ > 0 (A.3)

Young’s Inequality (Vector)

aTb ≤ aTaϵ

2
+

bTb

2ϵ
∀ϵ > 0 (A.4)

Cauchy-Schwarz’ Inequality (Scalar)∫ 1

0

f(x, t)g(x, t)dx ≤

√∫ 1

0

f(x, t)2dx

∫ 1

0

g(x, t)2dx = ||f(t)|| ||g(t)|| (A.5)

Cauchy-Schwarz’ Inequality (Vector)∫ 1

0

a(x, t)Tb(x, t)dx ≤√∫ 1

0

aT (x, t)a(x, t)dx

∫ 1

0

bT (x, t)b(x, t)dx = ||a(t)|| ||b(t)||
(A.6)

Square Norm Inequality (Scalar)

||u± v||2 ≤ 2
(
||u||2 + ||v||2

)
(A.7)

Triangle Inequality (Vector)

||u+ v|| ≤ ||u||+ ||b|| (A.8)

Other inequalities, assuming ai ∈ R for i = 1, 2, ..., n

(a1 + a2 + ...+ an)
2 ≤ n(a21 + a22 + ...+ a2n) (A.9)

Leibniz’s rule

d

dx

∫ b(x)

a(x)

f(x, y)dy =

∫ b(x)

a(x)

df(x, y)

dx
dy + f

(
x, b(x)

)db(x)
dx

− f
(
x, a(x)

)da(x)
dx

(A.10)
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Taylor series expansion of a function f(x)

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 + ... (A.11)
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APPENDIX B: INVERSE TRANSFORMATIONS

The procedure for obtaining the inverse transformation Γ(z, t) is illustrated on

the problem from Chapter 3. Without any loss in generality, the same procedure is

applicable to the problem found in Chapter 4. The inverse transformation for the

problem in Chapter 5 is given later in this appendix. First, solve (3.53) for Γ(z, t)

Γ(z, t) =
1

b̂

(
− θ̂T

a γ
τ (z, t)− β̂T

a γ
ρa(z, t)− β̂T

b γ
ρb(z, t) + (k − â)eâzyt(1, t)

+W (z, t) + (k − â)

∫ z

0

eâ(z−ζ)
(
b̂Γ(ζ, t) + θ̂T

a γ
τ (ζ, t)

+ β̂T
a γ

ρa(ζ, t) + β̂T
b γ

ρb(ζ, t)
)
dζ

)
.

(B.1)

Now substitute this expression into itself for Γ(ζ, t) found under the integral on the

right hand side of the equation. Do this a number of times

Γ(z, t) =
1

b̂

(
− θ̂T

a γ
τ (z, t)− β̂T

a γ
ρa(z, t)− β̂T

b γ
ρb(z, t) + (k − â)eâzyt(1, t)

+W (z, t) + (k − â)

∫ z

0

eâ(z−ζ)
(
(k − â)eâζyt(1, t)

+W (ζ, t) + (k − â)

∫ ζ

0

eâ(ζ−σ)
(
(k − â)eâσyt(1, t)

+W (σ, t) + (k − â)

∫ σ

0

eâ(σ−ϱ)(...)dϱ
)
dσ
)
dζ

)
.

(B.2)

Collect likewise terms

Γ(z, t) =
1

b̂

(
W (z, t)− θ̂T

a γ
τ (z, t)− β̂T

a γ
ρa(z, t)− β̂T

b γ
ρb(z, t)

+ (k − â)eâzyt(1, t)

+ (k − â)2
∫ z

0

eâzyt(1, t)dζ

+ (k − â)3
∫ z

0

eâ(z−ζ)

∫ ζ

0

eâζyt(1, t)dσdζ + ... (B.3)

+ (k − â)

∫ z

0

eâ(z−ζ)W (ζ, t)dζ

+ (k − â)2
∫ z

0

eâ(z−ζ)

∫ ζ

0

eâ(ζ−σ)W (σ, t)dσdζ

+ (k − â)3
∫ z

0

eâ(z−ζ)

∫ ζ

0

eâ(ζ−σ)

∫ σ

0

eâ(σ−ϱ)W (ϱ, t)dϱdσdζ + ...

)
.
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Consider terms which include yt(1, t). After performing integration and simplifying

one obtains

(k − â)eâzyt(1, t)
(
1 + (k − â)z + (k − â)2

z2

2
+ ...

)
. (B.4)

With just three terms it is easy to see clear progression of the exponential series:

ex =
∑∞

n=0
xn

n!
where x = (k − â)z. Then,

(k − â)eâzyt(1, t)
(
1 + (k − â)z + (k − â)2

z2

2
+ ...

)
= (k − â)ekzyt(1, t). (B.5)

Now consider all terms of (B.3) which contain W under the integral sign. Simplifying

gives

(k − â)

∫ z

0

eâ(z−ζ)W (ζ, t)dζ + (k − â)2
∫ z

0

∫ ζ

0

eâ(z−σ)W (σ, t)dσdζ

+ (k − â)3
∫ z

0

∫ ζ

0

∫ σ

0

eâ(z−ϱ)W (ϱ, t)dϱdσdζ + ... .

(B.6)

Starting with the second term of (B.6) and using integration by parts results in the

following

(k − â)2
∫ z

0

∫ ζ

0

eâ(z−σ)W (σ, t)dσ︸ ︷︷ ︸
= P (ζ)

dζ = (k − â)2
(
P (ζ)ζ

∣∣∣z
0
−
∫ z

0

ζP ′(ζ)dζ

)
,

(B.7)

where derivative P ′(ζ) can be evaluated using Leibniz’s rule (A.10). Now,

(k − â)2
∫ z

0

∫ ζ

0

eâ(z−σ)W (σ, t)dσdζ = (k − â)2
(
ζ

∫ ζ

0

eâ(z−σ)W (σ, t)dσ
∣∣∣z
0

−
∫ z

0

ζeâ(z−ζ)W (ζ, t)dζ

)
.

(B.8)

Evaluate the limits, and since σ is the dummy variable rename it to ζ. Simplifying

further gives

(k − â)2
∫ z

0

∫ ζ

0

eâ(z−σ)W (σ, t)dσdζ = (k − â)2
∫ z

0

eâ(z−ζ)(z − ζ)W (ζ, t)dζ. (B.9)

Turn your attention to the third term of (B.6). Write

(k − â)3
∫ z

0

∫ ζ

0

∫ σ

0

eâ(z−ϱ)W (ϱ, t)dϱdσdζ =

(k − â)3eâz
∫ z

0

∫ ζ

0

∫ σ

0

e−âϱW (ϱ, t)dϱ︸ ︷︷ ︸
= P (σ)

dσdζ,
(B.10)

which using integration by parts on term
∫ ζ

0
P (σ)dσ reduces to
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(k − â)3
∫ z

0

∫ ζ

0

∫ σ

0

eâ(z−ϱ)W (ϱ, t)dϱdσdζ =

(k − â)3eâz
∫ z

0

(z − ζ)

∫ ζ

0

e−âσW (σ, t)dσ︸ ︷︷ ︸
= R(ζ)

dζ.
(B.11)

Again, using integration by parts on
∫ z

0
(z − ζ)R(ζ)dζ results in

(k − â)3
∫ z

0

∫ ζ

0

∫ σ

0

eâ(z−ϱ)W (ϱ, t)dϱdσdζ =

1

2
(k − â)3

∫ z

0

eâ(z−ζ)(z − ζ)2W (ζ, t)dζ.

(B.12)

Re-express (B.6) using (B.9) and (B.12)

(k − â)

∫ z

0

eâ(z−ζ)W (ζ, t)dζ + (k − â)2
∫ z

0

eâ(z−ζ)(z − ζ)W (ζ, t)dζ

+
1

2
(k − â)3

∫ z

0

eâ(z−ζ)(z − ζ)2W (ζ, t)dζ + ...,

(B.13)

which can be written as

(k − â)

∫ z

0

eâ(z−ζ)W (ζ, t)
(
1 + (k − â)(z − ζ) +

1

2
(k − â)2(z − ζ)2 + ...

)
dζ. (B.14)

Using exponential series expansion, (B.14) reduces to

(k − â)

∫ z

0

ek(z−ζ)W (ζ, t)dζ. (B.15)

Finally, replacing all terms containing yt(1, t) in (B.3) with right hand side of (B.5),

and all terms of (B.3) which contain W under the integral sign with (B.15), gives the

inverse transformation (3.54).

The procedure for obtaining the inverse transformation in Chapter 5 is presented

below. The existence of the inverse transformation (5.61) can be verified by solving

(5.60) for Π(z, t). The recursive function obtained in this manner can then be expanded

thru self-substitution. The two series expansions, one in X and one in W , need to be

proven to converge to the corresponding terms in the transformation (5.61), i.e., are

equal to each other. As an example, let‘s examine the expansion in terms of X(t):

Θ1(z, t) = κ(z, t)e
∫ z
0 α(s,t)

(
ϕ−1(t)−t

)
ds

(
1 +

(
ϕ−1(t)− t

) ∫ z

0

β(τ, t)κ(τ, t)dτ

+
(
ϕ−1(t)− t

)2 ∫ z

0

β(τ, t)κ(τ, t)

∫ τ

0

β(ψ, t)κ(ψ, t)dψdτ + ...

)
X(t).

(B.16)
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The corresponding term in (5.61) is

Θ2(z, t) = κ(z, t)e
∫ z
0

(
α(s,t)+β(s,t)κ(s,t)

)(
ϕ−1(t)−t

)
dsX(t). (B.17)

It can be shown that both Θ1(z, t) and Θ2(z, t) obey

Θz(z, t) =
(
ϕ−1(t)− t

)
β(z, t)κ(z, t)Θ(z, t), (B.18)

Θ(0, t) = 1. (B.19)

Since both (B.16) and (B.17) obey the same ODE (B.18)–(B.19), and the solution to

(B.18)–(B.19) is unique by Picard–Lindelöf Theorem, expansion (B.16) converges to

(B.17). The same procedure applies in the case of the W terms, thus giving us the

inverse transformation (5.61).
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APPENDIX C: DISCUSSION ON R(x, t)

While R(x, t) in Chapter 3 is given in terms of the measurable signals, such as

the boundary feedback, the disturbance filter states, and the parameter estimates, it

may not be clear why it is used and what it represents. Start with derivation of (3.77).

Add expressions (3.9) and (3.10) together at t = t′ and then evaluate the outcome at

x = 1 and at t′ = t+ x− 1. Use resulting expression for ξ(1, t+ x− 1) found in (3.13),

ξ(x, t) = 2yt(1, t+ x− 1)− η(1, t+ x− 1)− νξ1(x, t). (C.1)

Now, evaluate (3.14) at t = t′, x = 1, and then at t′ = t + x− 1. Substitute resulting

expression for η(1, t+ x− 1) in (C.1)

ξ(x, t) = 2yt(1, t+ x− 1)− η(0, t+ x− 2) + νη0(1, t+ x− 1)− νξ1(x, t). (C.2)

Using definition of η(x, t) in (3.10), first evaluate at t = t′, at x = 0, then at t′ = t+x−2,

and finally use expressions (3.4), (3.35), and (3.48), to state

η(0, t+ x− 2) = Γ(0, t+ x− 1). (C.3)

Substitute (C.3) into (C.2) and use definition (3.54) to evaluate Γ(0, t+ x− 1). This,

after rearranging, gives

ξ(x, t)− 1

b̂(t+ x− 1)

(
θ̂T
a (t+ x− 1)γτ (0, t+ x− 1)

+ β̂T
a (t+ x− 1)γρa(0, t+ x− 1)

+ β̂T
b (t+ x− 1)γρb(0, t+ x− 1)

)
+ νη0(1, t+ x− 1)− νξ1(x, t) =(

2− k − â(t+ x− 1)

b̂(t+ x− 1)

)
yt(1, t+ x− 1)− 1

b̂(t+ x− 1)
W (0, t+ x− 1).

(C.4)

Define R(x, t) as left hand side of (C.4)

R(x, t) = ξ(x, t) + νη0(1, t+ x− 1)− νξ1(x, t)

− 1

b̂(t+ x− 1)

(
θ̂T
a (t+ x− 1)γτ (0, t+ x− 1)

+ β̂T
a (t+ x− 1)γρa(0, t+ x− 1)

+ β̂T
b (t+ x− 1)γρb(0, t+ x− 1)

)
.

(C.5)
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Alternatively, R(x, t) is equal to the right hand side of (C.4)

R(x, t) =
(
2− k − â(t+ x− 1)

b̂(t+ x− 1)

)
yt(1, t+ x− 1)

− 1

b̂(t+ x− 1)
W (0, t+ x− 1).

(C.6)

At x = 1 the above definition becomes

R(1, t) =
(
2− k − â(t)

b̂(t)

)
yt(1, t)−

1

b̂(t)
W (0, t), (C.7)

an expression required when evaluating V̇ (t) in (3.92).

By using definitions (3.53), (3.40)–(3.47) and control (3.69) in (C.6) one finally

obtains (3.77). By looking at the definition (C.6) it is clear that R(x, t) is directly

related to the control signals used in the stability analysis. Examining (C.5) indicates

link between R(x, t) and ξ(x, t) or through its definition to yx(x, t) and yt(x, t). As a

result, R(x, t) plays an important role in extending stability from the control variables

bounded by the Lyapunov analysis to the original in-domain states of the PDE.

Since no disturbances are present in the analysis found in Chapter 4 and Chapter

5, no explicit definition of the variable R(x, t) is given. Instead, boundary states are

used directly in the definition of the normalization function (4.50), which in turn is

included in the Lyapunov function (4.57). Since problem in Chapter 5 is non-adaptive,

the normalization function is not used.
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APPENDIX D: TIME DERIVATIVE OF Vξ(t).

The derivation of the expression (5.90) is given in this appendix. Subtract (5.7)

from (5.6) with t = t′, evaluate at x = l(t′) and then at t′ = t+ f(x, t), to get

ξ
(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
− η
(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
= 2yx

(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
.

(D.1)

Using definition of η(x, t) in (5.7) and expression (5.12) write (D.1) as

ξ(x, t) = yt

(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
+
(
1 + v

(
t+ f(x, t)

))
yx

(
l
(
t+ f(x, t)

)
, t+ f(x, t)

)
.

(D.2)

Using (5.22), one gets

ξ(x, t) =
( 2

1− v
(
t+ f(x, t)

))yt(l(t+ f(x, t)
)
, t+ f(x, t)

)
−
(1 + v

(
t+ f(x, t)

)
1− v

(
t+ f(x, t)

))
·
(
yt

(
0, t+ f(x, t)− g

(
l(t+ f(x, t)), t+ f(x, t)

))
−
(
1− v

(
t+ f(x, t)− g

(
l(t+ f(x, t)), t+ f(x, t)

)))
· yx
(
0, t+ f(x, t)− g

(
l(t+ f(x, t)), t+ f(x, t)

)))
.

(D.3)

Using (5.30) and (5.32) gives

ξ(x, t) =
( 2

1− v
(
t+ f(x, t)

))
·
(
X
(
t+ f(x, t)

)
+ v
(
t+ f(x, t)

)
U
(
ϕ
(
t+ f(x, t)

)))
−
(1 + v

(
t+ f(x, t)

)
1− v

(
t+ f(x, t)

))U(ϕ(t+ f(x, t)
))
.

(D.4)

Evaluate the above expression at x = l(t). Using f
(
l(t), t

)
= 0 results in

ξ
(
l(t), t

)
=
( 1

1− v(t)

)(
2X(t)−

(
1− v(t)

)
U
(
ϕ(t)

))
. (D.5)

Using (5.49), (5.55), (5.57), and (5.59) gives

ξ
(
l(t), t

)
=
(2−K(t)

(
1− v(t)

)
1− v(t)

)
X(t)−W (0, t). (D.6)
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Squaring left side the above expression allows one to write the following inequality

ξ
(
l(t), t

)2 ≤ 2
(2−K(t)

(
1− v(t)

)
1− v(t)

)2
X(t)2 + 2W (0, t)2. (D.7)

Now, take derivative of Vξ as found in (5.84):

DVξ(t)

Dt
= cξ

( d
dt

∫ l(t)

0

exξ(x, t)2dx+ v(t)
d

dx

∫ l(t)

0

exξ(x, t)2dx︸ ︷︷ ︸
=0

)
, (D.8)

V̇ξ(t) = cξ

(
2

∫ l(t)

0

exξ(x, t)ξt(x, t)dx+ el(t)v(t)ξ
(
l(t), t

)2)
. (D.9)

The Leibniz’s differentiation rule (A.10) has been used to obtain the above expression.

Recalling (5.8)

V̇ξ(t) =2cr
(
1− v(t)

) ∫ l(t)

0

exξ(x, t)ξx(x, t)dx+ cξe
l(t)v(t)ξ

(
l(t), t

)2
. (D.10)

Applying integration by parts

V̇ξ(t) = cξ
(
1− v(t)

)(
exξ(x, t)2

∣∣∣l(t)
0

−
∫ l(t)

0

exξ(x, t)2dx
)
+ cξe

l(t)v(t)ξ
(
l(t), t

)2
, (D.11)

finally gives

V̇ξ(t) = −cξ
(
1− v(t)

)
ξ(0, t)2 − cξ

(
1− v(t)

)
||ξ(t)||2 + cξe

l(t)ξ
(
l(t), t

)2
. (D.12)

Lastly, insert (D.5) and control gain (5.77) to obtain the final expression as in (5.90):

V̇ξ(t) ≤− cξ
(
1− v(t)

)
||ξ(t)||2 − cξ

(
1− v(t)

)
ξ(0, t)2

+
2cξe

l(t)(
1− v(t)

)2(2 + 1

2
B(t)

(
R(t) + 1

)(
1− v(t)

))2
X(t)2

+ 2cξe
l(t)W (0, t)2.

(D.13)
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APPENDIX E: FINITE-DIFFERENCE APPROXIMATION

OF THE EQUATIONS OF MOTION.

The following pages contain the equations of motion and the expressions for the

target and the ghost nodes written using the finite-difference formulas. The expressions

have been generated using Wolfram Research Inc. (2021).
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