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ABSTRACT

ULTRAWIDE STOP BAND IN A 3D ELASTIC

METAMATERIAL WITH INERTIAL AMPLIFICATION

MECHANISMS HAVING CROSS FLEXURE HINGES

Inertial amplification is a new method to obtain phononic band gaps in peri-

odic structures. The aim in this thesis is to obtain an ultrawide stop band in three

dimensions by using inertial amplification mechanisms. In order to be used in three

dimensions, a two stage remote center flexure mechanism design that allows bending

in two orthogonal axes is added to the ends of the inertial amplification mechanism.

Moreover, cross flexure hinges that prevent undesired torsional, in-plane and out-of-

plane bending modes of the inertial amplification mechanism are utilized in order to

maximize the stop band frequency range. An octahedron structure is formed with this

mechanism, which is also used as the building block of a 3D periodic structure. It

is shown that a wide stop band can be achieved with the use of cross flexure hinges

and a two stage remote center flexure mechanism. By making design and dimensional

changes on the mechanisms forming the octahedron, the stop band of the octahedron

is widened. Finally, the stop band is maximized by optimizing the thicknesses of the

flexures in the inertial amplification mechanisms.
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ÖZET

ÇAPRAZ ESNEK MAFSALA SAHİP ATALET ARTIRIM

MEKANİZMALARIYLA 3 BOYUTLU ELASTİK

METAMALZEMELERDE ULTRA GENİŞ DURDURMA

BANDI

Atalet artırımı periyodik yapılarda fonon bant aralığı oluşturan yeni bir

yöntemdir. Bu tezin amacı atalet artırım mekanizmalarıyla üç boyutta çok geniş

bir durdurma bandı elde etmektir. Üç boyutlu olarak kullanılabilmesi için atalet

artırım mekanizmasının uçlarına iki dik eksende bükülmeye izin veren iki kademeli

bir uzak merkezli esnek mekanizma tasarımı eklenmiştir. Ayrıca, durdurma bandı

frekans aralığını en üst düzeye çıkarmak için atalet artırım mekanizmasının istenmeyen

burulma, düzlem içi ve düzlem dışı bükülme modlarını önleyen çapraz esnek mafsal-

lar kullanılmıştır. Bu mekanizmayla üç boyutlu periyodik yapıların yapı taşı olarak

kullanılacak bir oktahedron yapısı oluşturulmuştur. Çapraz esnek mafsallar ve iki

kademeli uzak merkezli esnek mekanizma kullanılarak geniş bir durdurma bandının

elde edilebileceği gösterilmiştir. Oktahedronu oluşturan mekanizmalar üzerinde tasarım

ve boyut değişiklikleri yapılarak oktahedronun durdurma bandı genişletilmiştir. Son

olarak, atalet artırım mekanizmalarındaki esnek bağlantıların kalınlıkları eniyilenerek

durdurma bandı en yüksek seviyeye getirilmiştir.
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1. INTRODUCTION

1.1. Vibration Isolation with Periodic Structures

Vibration isolation is a crucial concept for many systems and structures such

as buildings, vehicles, white goods, industrial machines, sensitive measurement equip-

ment, and opto-electronic devices. In this thesis, a mechanism providing broadband

vibration isolation is designed with the inertial amplification method to be used for

different purposes in many fields.

Recent studies in solid-state physics show that periodic structures can be used to

prevent the transmission of vibrations and elastic waves [6–27]. If the elastic waves and

vibrations excite periodic structures within the frequency range called phononic band

gap, they cannot propagate in the structure. These band gaps, i.e. stop bands, can

occur both in infinite and finite periodic structures. In an infinite periodic structure,

the transmission of the waves corresponding to the phononic band gap is completely

prevented [8]. On the other hand, the transmission of waves and vibrations can be

partially blocked in a finite periodic structure. The depth of the band gap in frequency

response functions of finite periodic structures determines the amount of vibration

isolation of the system [19,21]. Structures having phononic band gaps can be periodic

in one, two or three dimensions. While the structure periodic in one dimension can

prevent the transmission of the waves coming only in this direction, the structure

periodic in three dimensions can block waves from all directions [7, 11].

1.2. Literature Review

3D periodic structures known as phononic crystals and elastic metamaterials

display phononic band gaps so that they inhibit the propagation of vibrations or waves

in certain frequency ranges irrespective of direction or polarization. The concept of

phononic band gap can be applied to many structures of different sizes. Current studies



2

show that the structures periodic in one dimension [4,28–36], in two dimensions [1,2,37–

42] and in three dimensions [5,43–53] are developed. In the literature, local resonators

and Bragg scattering methods are generally used to obtain phononic band gaps [54].

In the Bragg scattering method, the phononic band gap with the lowest frequency

that can be produced is determined by the ratio of the wave transmission speed to the

dimension of a unit cell in the periodic structure, which is also known as the lattice

parameter. Therefore, materials with high density and low elastic modulus or large

size structures are needed to create band gaps at low frequencies. On the other hand,

local resonators can provide low frequency band gaps. However, heavy resonators are

needed to obtain wide band gaps in this method. Periodic structures that utilize Bragg

scattering method are oftentimes called as phononic crystals, while the ones that use

the local resonance method are generally called as elastic metamaterials because band

gaps can be generated below the Bragg limit.

In 2007, a new method called “inertial amplification” was developed to obtain

phononic band gaps [54]. In this method, the effective inertia of the wave propagation

medium is increased with some embedded mechanisms. Due to the increased inertia,

the transmission of waves becomes difficult and the structure provides wide band gaps

at low frequencies [54, 55]. As inertial amplification allows to form band gaps below

the Bragg limit, periodic structures with embedded inertial amplification mechanisms

are also considered as elastic metamaterials. Inertial amplification method has been

applied to 1D [4,56], 2D [1–3] and 3D [5,57,58] structures. In recent years, many works

have been published that highlight the potential of this method [33,36,39,51,59–72].

In Table 1.1, the bandwidth comparison of elastic metamaterials and phononic

crystals in the literature which are capable of 3D vibration isolation and whose arith-

metic mean normalized bandwidth (BW = ωu−ωl

(ωu+ωl)/2
) exceeds 100% are given. As can

be seen in Table 1.1, the maximum BW obtained as yet is 171.5% with a frequency

ratio of the upper limit of the stop band, (ωu), to the lower one, (ωl), of 13.06 in

Ref [53]. The aim in this study is to surpass this value and obtain the widest gap in

three dimensions.
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Table 1.1. Bandwidth comparison of 3D elastic metamaterials and phononic crystals

in the literature whose arithmetic mean normalized bandwidth, BW, exceeds 100%.

References ωl (Hz) ωu (Hz) BW ωu/ωl

Muhammad and Lim, 2021 [53] 1292.5 16875 171.5% 13.06

Martinez et al., 2021 [73] 600000 7500000 170.4% 12.5

Muhammad and Lim, 2021 [52] 1247.2 11319 160.3% 9.1

Muhammad and Lim, 2021 [52] 929.24 7847.3 157.6% 8.44

Muhammad, 2021 [50] 2207.7 17890 156.1% 8.10

Muhammad, 2021 [50] 1446.4 11656 155.8% 8.06

D’Alessandro et al., 2019 [47] 455 2337 134.8% 5.14

D’Alessandro et al., 2016 [48] 3850 18870 132.2% 4.90

Taniker and Yilmaz, 2015 [5] 50 242 131.5% 4.84

Lu et al., 2017 [49] 75000 230000 101.6% 3.07

Finally, the original contributions of this research for the literature can be sum-

marized as follows

• Two stage remote center flexure mechanisms are used at the end connections of

the inertial amplification mechanisms for the first time. This type of connection

allows obtaining a wide band gap in three dimensions.

• Cross flexure hinges are used within the inertial amplification mechanisms for

the first time. This type of flexures prevent undesired torsional, in-plane and

out-of-plane bending modes of the inertial amplification mechanism, which can

reduce the bandwidth of the mechanism.

• Size optimization is conducted to maximize bandwidth of the mechanism and

an octahedron structure is built with the optimized mechanisms that achieves a

stop band in which ωu/ωl is 13.65. Hence, the stop band is achieved with 172.7%

arithmetic mean normalized bandwidth. Moreover, a 3x2 periodic structure is

formed using these octahedron structures and a stop band is obtained with 167.6%

arithmetic mean normalized bandwidth.



4

2. LUMPED PARAMETER MODEL OF THE INERTIAL

AMPLIFICATION MECHANISM

The lumped parameter model describing the main principle of the inertial ampli-

fication mechanism is given in Figure 2.1 [1].

Figure 2.1. Lumped parameter model of the inertial amplification mechanism [1].

In the model shown in Figure 2.1, there are masses m at both ends of the mech-

anism. These masses are connected to each other by a spring with stiffness k. In the

upper part of the mechanism, there is a mass ma, which is connected to each mass m

by rigid links. The angle between the links and the horizontal plane is shown as θ.

The input displacement of this mechanism is y, while the output displacement is

x. In this case, the displacement of the mass ma is calculated in terms of y and x as

x+y
2

in the horizontal and (y−x)cot(θ)
2

in the vertical directions. Therefore, motion of the

mass ma is coupled to the mass m and the base motion, and the degree of freedom of

the mechanism is one.

Assuming that y and x displacements are very small relative to the dimensions

of the mechanism, the equation of motion of the mechanism is calculated as [3, 55]

(
ma(cot

2(θ) + 1)

4
+m

)
ẍ+ kx =

(
ma(cot

2(θ)− 1)

4

)
ÿ + ky. (2.1)
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The resonance frequency of the mechanism is calculated as

ωp =

√
k

m+ ma(cot2(θ)+1)
4

(2.2)

and the antiresonance frequency of the mechanism is calculated as

ωz =

√
k

ma(cot2(θ)−1)
4

. (2.3)

When these equations are examined, it can be seen that the numerators of both

resonance and antiresonance frequencies are the same, while the denominator of the

resonance frequency is always greater than the denominator of the antiresonance fre-

quency. Therefore, the resonance frequency of the mechanism is always smaller than

the antiresonance frequency. These types of systems are low pass filter type of vibration

isolation systems [3, 74].

In order to explain the width and depth of a stop band, a two degrees of free-

dom inertial amplification model with two resonance frequencies, ωp1 and ωp2, and

two antiresonance frequencies, ωz1 and ωz2, can be analyzed. The frequency response

function of this model can be found as the ratio of the output displacement to input

displacement, or equivalently the ratio of the output acceleration to input acceleration.

With the excitation frequency, ω, it can be calculated as [2]

H(ω) =

∣∣∣∣∣∣
(
1− ω2

ω2
z1

)(
1− ω2

ω2
z2

)
(
1− ω2

ω2
p1

)(
1− ω2

ω2
p2

)
∣∣∣∣∣∣ . (2.4)

In Figure 2.2, the frequency response function can be obtained with ωp1 = 3,

ωp2 = 23, ωz1 = 10, ωz2 = 23 for the red solid curve. As, ωp2 = ωz2, they cancel

each other and the system behaves as if it is single degree of freedom with resonance

frequency ωp1 and antiresonance frequency ωz1. In order to have a system with two
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degrees of freedom, ωp2 and ωz2 should be unequal. The green dashed curve shows the

frequency response for ωp1 = 3, ωp2 = 23, ωz1 = 10, ωz2 = 22.9. The width and depth

of the vibration isolation frequency band are shown in Figure 2.2.

Figure 2.2. Frequency response function plot showing the width and depth of the

stop band for a two degrees of freedom system. Green dashed curve is for ωp1 = 3,

ωp2 = 23, ωz1 = 10, ωz2 = 22.9. Red solid curve is for ωp1 = 3, ωp2 = 23, ωz1 = 10,

ωz2 = 23.

The stop band is defined as the interval in which H(ω) is lower than 1 [3]. In

Equation 2.2, the mass ma is multiplied by cot2(θ)+1
4

making it more effective. To

obtain a high effective inertia, the θ angle is chosen small. In this way, a small mass

of ma affects the system as a mass much higher than its static value and reduces ωp

with the effect of the angle θ. Thus, the mechanism provides vibration isolation at

low frequencies and this model shows the effect of the mass ma in the middle of the

mechanism on the reduction of the lower limit of the stop band. While the upper limit

of the stop band can go to infinity for the lumped parameter single degree of freedom

model as shown by the red dashed curve in Figure 2.2, there will be an upper limit for

distributed parameter models that will be used in the next section. Hence, the stop



7

band will look like the green dashed curve in Figure 2.2, and to maximize bandwidth

the lower limit should be minimized while the upper limit needs to be maximized.
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3. 3D ULTRAWIDE INERTIAL AMPLIFICATION

MECHANISM DESIGN

The basic principle of the inertial amplification mechanisms in the literature is

to provide vibration isolation at low frequencies by increasing the effective inertia of

the system without the need to reduce the stiffness. In Figure 3.1, the distributed

parameter model of the inertial amplification mechanism examined in [2] is shown.

Figure 3.1. Inertial amplification mechanism in [2].

The first two mode shapes of the mechanism are shown in Figure 3.2. The first

natural frequency of the mechanism is 279.2 Hz and the second natural frequency is

651.9 Hz obtained from the 1D finite element analysis result [2].

Figure 3.2. Mode shapes of the mechanism shown in Figure 3.1. (a) First mode shape

of the mechanism at 279.2 Hz. (b) Second mode shape of the mechanism at 651.9

Hz [2].

By periodically assembling these mechanisms in two dimensions, the structure

shown in Figure 3.3 is obtained. Frequency response function graph of this structure

obtained from 2D finite element model is given in Figure 3.4. In this graph, the lower
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and upper limits of the stop band are 285 Hz and 617 Hz, and they are close to

the first and second natural frequencies of a single inertial amplification mechanism.

Therefore, when the difference between the natural frequencies of the first two modes

are increased, a wider stop band can be obtained. For the structure in Figure 3.3, the

frequency ratio of the upper limit to the lower one is around 2.16 [2].

Figure 3.3. 2D periodic structure in [2].
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Figure 3.4. Frequency response function graph of the structure shown in Figure

3.3 [2].

By performing size and shape optimization on this mechanism, and assembling

them in two dimensions as in Figure 3.5, a wider stop band is obtained between 265

Hz and 830 Hz, giving a frequency ratio of 3.13 [3].

Figure 3.5. 2D periodic structure with the shape optimized inertial amplification

mechanisms in [3].
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In [1], the end connections of the mechanisms are redesigned and the mechanism

is topologically optimized. At the end, the 2D periodic structure shown in Figure 3.6 is

obtained. It provides a stop band between 29 Hz and 590 Hz, resulting in a frequency

ratio of 20.3 [1].

Figure 3.6. 2D periodic structure with remote center flexure mechanisms at the end

connections and topologically optimized mechanisms in [1].

In this study, a 3D periodic structure will be designed with inertial amplification

mechanisms and the stop band of this structure will be maximized. In order to do

that, inertial amplification mechanisms should have appropriate end connections to be

assembled in three dimensions.
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3.1. Design of End Connections

Connecting inertial amplification mechanisms periodically in one, two, or three

dimensions is a crucial concept to obtain a wide vibration isolation frequency band,

since it has a direct effect on the natural frequencies and mode shapes of the mecha-

nisms.

Figure 3.7 shows the inertial amplification mechanism generating an ultra wide

vibration isolation band in one dimension analyzed in [4] and Figure 3.8 shows the

first three mode shapes of this mechanism and their corresponding natural frequencies.

For this 1D system, vibration isolation can be achieved between the first two modes.

The ratio of the upper limit of the vibration isolation frequency band to the lower

one is 38.9 for an infinitely periodic array in one dimension [4]. In this mechanism

design, the rectangular blocks at the ends do not rotate. Therefore, although a wide

isolation frequency band in one dimension can be obtained with this mechanism, it

cannot provide the same in two or three dimensions.

Figure 3.7. Inertial amplification mechanism in [4].
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Figure 3.8. Mode shapes of the mechanism shown in Figure 3.7. (a) First mode shape

of the mechanism at 6.9 Hz. (b) Second mode shape of the mechanism at 303.6 Hz,

the bending mode of the long flexures in the middle. (c) Third mode shape of the

mechanism at 373 Hz, vertical translation of the rectangular blocks at the ends [4].

The inertial amplification mechanism analyzed in [5] is shown in Figure 3.9. The

four triangular blocks bring the center of gravity of the structure closer to the flexure

hinges in the middle. Thus, it is aimed to decrease the first natural frequency by

increasing the effective inertia of the system. The first three mode shapes of this

mechanism are given in Figure 3.10.

Figure 3.9. Inertial amplification mechanism in [5]
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Figure 3.10. Mode shapes of the mechanism shown in Figure 3.9. (a) First mode

shape of the mechanism at 49.6 Hz. (b) Second mode shape of the mechanism at

241.6 Hz. (c) Third mode shape of the mechanism at 248.2 Hz [4].

The octahedron structure built with this mechanism is shown in Figure 3.11. The

stop band of this structure is between 64 and 267.2 Hz and the frequency ratio of the

upper limit to the lower one is 4.18 [5]. Notice that this ratio is lower than the ratio

of the second and first natural frequencies of the inertial amplification mechanism in

Figure 3.10, which is 4.87.

Figure 3.11. Octahedron structure built with the mechanism shown in Figure 3.9 [5].
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In order to widen the stop band of the octahedron structure, the end connections

of the inertial amplification mechanism in Figure 3.9 are modified as in Figure 3.12(a)

[5]. Thin end connections can bend in a perpendicular direction compared to the

neighboring flexure hinges. In this design, the thin end connections and flexure hinges

allow the end of the mechanism to rotate in two orthogonal axes. When this mechanism

is combined in three dimensions as shown in Figure 3.12(b), the ratio of the upper limit

of the isolation frequency band to the lower limit is approximately 4.8 [5].

The bandwidth of structure in Figure 3.12(b) can be increased if the flexure hinge

design is changed. In order to widen the stop band, the first natural frequency of the

mechanism can be decreased by reducing the bending stiffness of the flexure hinges.

However, this will also decrease the second natural frequency, resulting in a narrow

stop band. Therefore, these flexures should not be allowed to rotate and a separate

part should perform the rotation function.

(a) (b)

Figure 3.12. Building a 3D periodic structure with inertial amplification mechanisms

having thin end connections. (a) Inertial amplification mechanism with thin end

connections. (b) Octahedron structure formed with these mechanisms [5].
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In Figure 3.13, a new end connection design is used, which involves a flexible four-

bar mechanism model with a remote center of rotation [1]. As can be seen in Figure

3.14, the end connection of this mechanism act like a pin-roller type of connection

in two dimensions. Using inertial amplification mechanisms with this type of an end

connection, a vibration isolation band with a frequency ratio of 20.3 can be obtained

in two dimensions [1]. In this thesis, this end connection idea is developed to be used

in three dimensions.

Figure 3.13. Inertial amplification mechanism in [1].

Figure 3.14. Pin-roller type of end connection designed in [1].

The remote center of rotation concept can be explained with a rigid four-bar

mechanism. Figure 3.15 shows a planar four-bar mechanism. Assuming that the rect-

angular part (3) is fixed, it can be seen that the instantaneous center of rotation of the

link (1) is point O.



17

Figure 3.15. Four-bar mechanism with remote center of rotation for link (1) at point

O, which is the intersection of the extensions of the rods (2) and (4).

Any structure added to link (1) will rotate around the point O. The flexure hinge

design equivalent of the structure in Figure 3.15 is given in Figure 3.16. Instead of pin

joints, thin sections acting as flexure hinges are used in order to eliminate the rattle,

friction and wear problems. In this design, thick sections act like links.

Figure 3.16. Planar flexure hinge mechanism with remote center of rotation at the

intersection of the yellow dashed lines.

The flexure hinge mechanism in Figure 3.16 can be used in planar applications

in which in-plane bending is possible. However, 3D structures can be subject to both
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in-plane and out-of-plane bending loads. A new flexure hinge mechanism is designed

which allows bending in two orthogonal axes while having the same remote center of

rotation at point O as shown in Figure 3.17.

Figure 3.17. Spatial flexure hinge mechanism design that allows bending in two

orthogonal axes. (a) Isometric view. (b) Side view in the x -y plane. (c) Top view in

the x -z plane.

While the first stage of the structure moving in the x -y plane allows rotation

around the z axis, the second stage connected in series moving in the x -z plane allows

rotation around the y axis. There are two links with flexure hinges at both stages.

The center of rotation of all of these links coincide at the center of the back surface of

the rectangular prism to which they are attached. Figure 3.18 shows that the central

lines of all four links intersect at the same point.
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Figure 3.18. Instantaneous center of rotation of the spatial flexure hinge mechanism

at the center of the back surface of the rectangular prism which is the intersection of

the link extensions. (a) Isometric view. (b) Side view in the x -y plane. (c) Top view

in the x -z plane.

3.2. Design of the Inertial Amplification Mechanism

The finite element analysis software Abaqus is used to design and analyze the

mechanisms. Firstly, the 2D design in Figure 3.13 is modified as in Figure 3.19 in

order to obtain a band gap in three dimensions. Although the mechanism in Figure

3.13 provides the widest band gap in two dimensions, it only moves in-plane and the

out-of-plane and torsional modes are not taken into account. Since these modes should

also be considered in 3D inertial amplification mechanism design, the bandwidth in

this study should not be expected as wide as in [1]. In Figure 3.20, the alignment of

the parts in the inertial amplification mechanism is shown. The yellow dashed lines

pass through the center of the back surface of the rectangular block at the end of
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the mechanism, the flexure hinge connected to this rectangular block, the center of

the horizontal flexure between the remote center flexure mechanism and the triangular

blocks, and the center of the short flexure in the middle of the mechanism. The

remote center flexure mechanisms are added to the mechanism by keeping the total

length same as in [1], and they are connected to the middle triangular blocks with

horizontal flexures. As in [1], the thinnest parts of the initial design are 0.3 mm. The

center of mass of the triangular blocks are close to the middle of the mechanism where

displacement amplification is large for axial motions. These blocks can be optimized

topologically as in [1]. However, the main aim in this study is to optimize the flexure

hinges in the mechanism. So, different flexure hinge configurations are compared and

the size optimization is done for the best configuration.

Figure 3.19. Initial design of the mechanism.
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(a)

(b)

Figure 3.20. Alignment of the inertial amplification mechanism. (a) Side view of the

mechanism in the x -y plane. (b) Close up view of the end of the mechanism.

In order to identify the mode shapes of the inertial amplification mechanism in

Figure 3.19, different boundary conditions are imposed. First, the left end of the

mechanism is clamped and pin-roller type of boundary condition is imposed to the

other end as shown in Figure 3.21. The first ten mode shapes are given in Figures
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3.22-3.31, and corresponding natural frequencies are given in Table 3.1.

Figure 3.21. Clamped-pin roller boundary condition for the initial design of the

mechanism. (a) Boundary condition at the left end. The back surface of the

rectangular prism of the left end is clamped, i.e., it cannot translate or rotate in any

directions. (b) Boundary condition at the right end. The front surface of the

rectangular prism of the right end is coupled with the reference point RP-2, and the

translations in y- and z -axes of this point are prevented but all the other degree of

freedoms are free.

Figure 3.22. First mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 33.73 Hz.



23

Figure 3.23. Second mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 177.9 Hz.

Figure 3.24. Third mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 283.3 Hz.
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Figure 3.25. Fourth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 390.7 Hz.

Figure 3.26. Fifth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 673.0 Hz.
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Figure 3.27. Sixth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 720.3 Hz.

Figure 3.28. Seventh mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 876.6 Hz.
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Figure 3.29. Eighth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 901.7 Hz.

Figure 3.30. Ninth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 1118 Hz.
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Figure 3.31. Tenth mode shape of the mechanism imposed to clamped-pin roller

boundary condition at 1121 Hz.

Table 3.1. First ten natural frequencies of the mechanism shown in Figure 3.19

imposed to clamped-pin roller boundary condition.

Natural frequencies Frequency (Hz)

ω1 33.73

ω2 177.9

ω3 283.3

ω4 390.7

ω5 673.0

ω6 720.3

ω7 876.6

ω8 901.7

ω9 1118

ω10 1121
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When clamped-roller boundary condition is imposed to the inertial amplification

mechanism as shown in Figure 3.32, the resulting first ten mode shapes are calculated

and given in Figures 3.33-3.42 and corresponding natural frequencies are given in Table

3.2.

Figure 3.32. Clamped-roller boundary condition for the initial design of the

mechanism. (a) Boundary condition at the left end. The back surface of the

rectangular prism of the left end is clamped, i.e., it cannot translate or rotate in any

directions. (b) Boundary condition at the right end. Only the translation in x -axis of

the side and top surfaces of the rectangular prism of the right end is allowed.
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Figure 3.33. First mode shape of the mechanism imposed to clamped-roller boundary

condition at 33.73 Hz.

Figure 3.34. Second mode shape of the mechanism imposed to clamped-roller

boundary condition at 300.9 Hz.
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Figure 3.35. Third mode shape of the mechanism imposed to clamped-roller

boundary condition at 334.8 Hz.

Figure 3.36. Fourth mode shape of the mechanism imposed to clamped-roller

boundary condition at 404.4 Hz.
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Figure 3.37. Fifth mode shape of the mechanism imposed to clamped-roller boundary

condition at 719.1 Hz.

Figure 3.38. Sixth mode shape of the mechanism imposed to clamped-roller boundary

condition at 721.1 Hz.
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Figure 3.39. Seventh mode shape of the mechanism imposed to clamped-roller

boundary condition at 888.3 Hz.

Figure 3.40. Eighth mode shape of the mechanism imposed to clamped-roller

boundary condition at 904.5 Hz.
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Figure 3.41. Ninth mode shape of the mechanism imposed to clamped-roller

boundary condition at 1118 Hz.

Figure 3.42. Tenth mode shape of the mechanism imposed to clamped-roller

boundary condition at 1122 Hz.
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Table 3.2. First ten natural frequencies of the mechanism shown in Figure 3.19

imposed to clamped-roller boundary condition.

Natural frequencies Frequency (Hz)

ω1 33.73

ω2 300.9

ω3 334.8

ω4 404.4

ω5 719.1

ω6 721.1

ω7 888.3

ω8 904.5

ω9 1118

ω10 1122

When clamped-free boundary condition is imposed to the inertial amplification

mechanism as shown in Figure 3.43, the resulting first five mode shapes are given in

Figures 3.44-3.48, and corresponding natural frequencies are given in Table 3.3. The

clamped boundary condition allows to investigate the bending stiffness of the remote

center flexure mechanism in two orthogonal axes. Instead of a clamped end, if a

frictionless ball joint were used, the natural frequencies of the modes seen in Figures

3.45 and 3.46 would be zero. However, the frequencies of these modes are greater than

zero due to the stiffness of the remote center flexure mechanism in two orthogonal axes.

As the natural frequency of the third mode is higher than the second mode, bending

stiffness about the y axis is higher.
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Figure 3.43. Clamped-free boundary condition for the initial design of the mechanism.

(a) Boundary condition at the left end. The back surface of the rectangular prism of

the left end cannot translate or rotate in any direction. (b) The right end is free.

Figure 3.44. First mode shape of the mechanism imposed to clamped-free boundary

condition at 33.73 Hz.
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Figure 3.45. Second mode shape of the mechanism imposed to clamped-free

boundary condition at 34.93 Hz.

Figure 3.46. Third mode shape of the mechanism imposed to clamped-free boundary

condition at 48.69 Hz.
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Figure 3.47. Fourth mode shape of the mechanism imposed to clamped-free boundary

condition at 178.0 Hz.

Figure 3.48. Fifth mode shape of the mechanism imposed to clamped-free boundary

condition at 474.6 Hz.
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Table 3.3. First five natural frequencies of the mechanism shown in Figure 3.19

imposed to clamped-free boundary condition.

Natural frequencies Frequency (Hz)

ω1 33.73

ω2 34.93

ω3 48.69

ω4 178.0

ω5 474.6

When Tables 3.1-3.3 are compared, one can see that the first natural frequency

corresponding to the first mode is the same for different boundary conditions. However,

as the boundary conditions change, the higher mode shapes and natural frequencies

differ.

The aim in this thesis is to assemble inertial amplification mechanisms to form

a 3D periodic structure. As an initial study, the mechanism in Figure 3.19 is used.

The rectangular blocks at each end of the mechanism are joined at their centers of

rotations shown in Figure 3.18 to form the nodes in the periodic structure. As there

are two stages of remote center flexure mechanisms, the mechanisms can bend about

two orthogonal axes. The initial design of the octahedron structure is shown in Figure

3.49, which is built as in [5]. The octahedron structure is the repeating unit cell in the

3D periodic structure shown in Figure 3.50.
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Figure 3.49. Octahedron structure formed with the mechanisms in Figure 3.19.
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Figure 3.50. 3D periodic structure formed with the octahedron structures in Figure

3.49.

Imposing free boundary conditions, the natural frequencies of the octahedron

structure are calculated. The finite element analysis shows that the first six frequencies

are around zero, which correspond to the rigid body modes. Table 3.4 shows the non-

zero natural frequencies of the structure.
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Table 3.4. First 40 non-zero natural frequencies of the octahedron structure shown in

Figure 3.49 imposed to free boundary conditions.

Natural frequencies Frequency (Hz) Natural frequencies Frequency (Hz)

ω1 34.32 ω21 263.7

ω2 36.60 ω22 263.7

ω3 37.24 ω23 268.7

ω4 37.24 ω24 270.8

ω5 42.26 ω25 276.0

ω6 42.26 ω26 278.8

ω7 42.60 ω27 279.0

ω8 46.27 ω28 279.2

ω9 46.27 ω29 300.4

ω10 46.50 ω30 309.9

ω11 50.32 ω31 309.9

ω12 50.69 ω32 314.2

ω13 209.7 ω33 323.5

ω14 209.7 ω34 324.1

ω15 227.7 ω35 324.2

ω16 227.7 ω36 335.2

ω17 227.8 ω37 402.0

ω18 253.6 ω38 402.2

ω19 253.6 ω39 404.4

ω20 263.2 ω40 418.7

As can be seen from Table 3.4, the natural frequencies increase with small in-

crements up to 50.69 Hz, which correspond to the 12th mode. The next mode occurs

at 209.7 Hz. Hence, there is a large frequency gap between the 12th and 13th modes.

The main aim in this study is to obtain a very wide frequency gap and to quantify the

width of the frequency gap, ratio of the upper limit to the lower limit will be used.
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ω13/ω12 ratio can be calculated as 4.14 for the octahedron structure in Figure 3.49.

In the first 12 non-zero modes of the octahedron structure, the 1D building blocks,

i.e., inertial amplification mechanisms, deform close to their first mode shapes for var-

ious boundary conditions given in Figures 3.22, 3.33 and 3.44. In fact, the frequency

of the first mode shape of the inertial amplification mechanism is the same (33.73 Hz)

for various boundary conditions as can be seen in Figures 3.22, 3.33 and 3.44. The

first non-zero mode shape and the 12th mode shape of the octahedron structure, which

determine the lower limit of the stop band, are shown in Figures 3.51 and 3.52, respec-

tively. In the octahedron structure, when the nodes translate in three dimensions, the

ends of the inertial amplification mechanisms are subject to both axial and transverse

displacements. When the mechanism with clamped-free boundary condition is ana-

lyzed, it is seen that as the free end displaces transversely, the corresponding natural

frequencies of the second and third modes given in Figures 3.45 and 3.46 are higher

than that of the first mode shape in Figure 3.44 in which the free end displaces along

the central axis of the mechanism. Due to these combined effects, the frequency of the

12th mode of the octahedron structure (50.69 Hz) is significantly higher than the first

mode of the building block mechanisms (33.73 Hz) in which only axial displacements of

the ends are observed. In the 13th mode shape given in Figure 3.53, which determine

the upper limit of the stop band, the 1D building blocks, i.e., inertial amplification

mechanisms, deform close to their second mode shapes in the case of clamped-pin

roller boundary condition shown in Figure 3.23. In this mode, the triangular blocks

display torsional vibration about the central axis of the mechanism. Moreover, the

torsional mode shape is at 177.9 Hz when clamped-pin roller boundary condition is im-

posed to the mechanism and it is at 334.8 Hz when clamped-roller boundary condition

is imposed. Torsional stiffness of the mechanism in which both ends are constrained

to rotate is twice of that of the mechanism in which one end is constrained to rotate.

Moreover, the inertia of the torsionally vibrating part is smaller when both ends are

constrained to rotate. As the torsional stiffness is higher and the inertia is smaller in

the case of clamped-roller boundary condition, the resulting natural frequency is signif-

icantly higher. In the octahedron structure, two ends of each mechanism are attached
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to nodes. When these nodes are subject to torsional loads, they allow rotation but

display some torsional resistance. Hence, the torsional natural frequency of the mech-

anisms in the octahedron structure is expected to be higher than the mechanism with

clamped-pin roller boundary condition but lower than the mechanism with clamped-

roller boundary condition. As expected, the natural frequency of the torsional mode

shape of the octahedron is at 209.7 Hz, which is higher than 177.9 Hz, and lower than

334.8 Hz.

If the parameters of the inertial amplification mechanism are changed, another

mode shape can be the upper limit of the stop band. For instance, in the 37th mode

shape of the octahedron structure in Figure 3.54, some of the mechanisms display the

fourth mode shape shown in Figure 3.36. Even small changes in the mechanism can

increase or decrease the natural frequencies of the mode shapes, bring different mode

shapes to the upper limit of the stop band and dramatically affect the ratio of the upper

and lower limits of the stop band. In order to increase the upper to lower frequency

ratio of the stop band, the upper limit is aimed to be increased while the lower limit

is aimed to be decreased.

Figure 3.51. First mode shape of the octahedron in Figure 3.49 at 34.32 Hz.
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Figure 3.52. 12th mode shape of the octahedron in Figure 3.49 at 50.69 Hz.

Figure 3.53. 13th mode shape of the octahedron in Figure 3.49 at 209.7 Hz.
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Figure 3.54. 37th mode shape of the octahedron in Figure 3.49 at 402.0 Hz.

3.3. Design Improvements and Topological Changes Regarding the

Inertial Amplification Mechanism

The main purpose of the design improvement process is to maximize the ratio of

the vibration isolation frequency band of the octahedron structure. Therefore, the lower

limit of the stop band of the octahedron, with the first mode shape motion of a single

mechanism in Figure 3.22, is aimed to be minimized, and the next natural frequency,

with whichever type of mode shape (torsional, in-plane bending, out-of-plane bending,

etc.), is aimed to be maximized.

In Figure 3.55, the short flexures that are attached to the triangular blocks can

be seen in close up view regarding the second mode shape of the inertial amplification

mechanism at 177.9 Hz. It can be seen that the short flexures are twisted due to the

torsional motion of the triangular blocks.
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Figure 3.55. Close up view of the short flexures in the second mode shape shown in

Figure 3.23 at 177.9 Hz.

Rather than dimensional changes, a topological design change is needed for the

short flexures to prevent torsional motion of the triangular blocks. Instead of wide

horizontal flexures, the novel cross flexure design is added to the mechanism. While

this design does not change the first natural frequency significantly (33.73 Hz vs. 32.70

Hz), it provides much higher torsional stiffness, which in turn significantly increases the

second natural frequency of the mechanism (177.9 Hz vs. 257.8 Hz). The cross flexure

design is shown in Figure 3.56. Each inner flexure makes a 45◦ angle with the vertical

axis. These flexures increase the torsional stiffness. However, cross flexures do not

provide high axial stiffness, which is required to increase the natural frequencies of the

out-of-plane modes. In order to increase the stiffness in the axial direction, horizontal

flexures are used at the two sides. Figure 3.57 shows the second mode shape of the

mechanism subject to clamped-pin roller boundary condition.
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Figure 3.56. Design of cross flexures.

Figure 3.57. The second mode shape of the mechanism with cross flexure design at

257.8 Hz.

With clamped-pin roller boundary condition, the first natural frequency, ω1, and

the second natural frequency, ω2, of the mechanism in Figure 3.19 with horizontal

flexure are at 33.73 Hz and 177.9 Hz, respectively. Hence, the ratio of the second natural
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frequency to the first one, ω2/ω1, is 5.27. Imposing the same boundary conditions, the

first natural frequency, ω1, and the second natural frequency, ω2, of the mechanism with

cross flexures are at 32.70 Hz and 257.8 Hz, and the ratio of these natural frequencies,

ω2/ω1, is 7.88. Therefore, this design change improves the bandwidth of the mechanism.

The inertial amplification mechanism with cross flexures is shown in Figure 3.58.

In this mechanism, the thickness of the rectangular blocks connected to the flexure

hinge mechanisms arrowed in Figure 3.58 are increased by keeping the total length of

the mechanism constant. Hence, the bending motion of these blocks are prevented.

The octahedron structure built with these mechanisms is shown in Figure 3.59.

Figure 3.58. Inertial amplification mechanism with cross flexures.
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Figure 3.59. Octahedron structure formed with the mechanisms in Figure 3.58.

Imposing free boundary conditions, the natural frequencies of the octahedron

structure are calculated. The first 40 non-zero natural frequencies of the octahedron

are given in Table 3.5.
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Table 3.5. First 40 non-zero natural frequencies of the octahedron structure shown in

Figure 3.59 imposed to free boundary conditions.

Natural frequencies Frequency (Hz) Natural frequencies Frequency (Hz)

ω1 43.33 ω21 376.4

ω2 44.97 ω22 376.6

ω3 45.59 ω23 376.7

ω4 45.61 ω24 426.8

ω5 51.12 ω25 427.3

ω6 51.12 ω26 427.3

ω7 51.46 ω27 440.1

ω8 56.63 ω28 441.0

ω9 56.66 ω29 445.4

ω10 56.93 ω30 445.4

ω11 61.79 ω31 445.8

ω12 61.99 ω32 446.2

ω13 277.6 ω33 455.4

ω14 277.7 ω34 458.7

ω15 300.4 ω35 459.2

ω16 301.0 ω36 459.3

ω17 301.1 ω37 487.9

ω18 353.5 ω38 488.1

ω19 353.9 ω39 489.0

ω20 355.2 ω40 510.0

It can be seen that the stop band occurs again between the 12th and 13th modes.

The lower limit of the stop band, ω12, is 61.99 Hz and the upper limit of the stop band,

ω13, is 277.6 Hz. Comparing this stop band with the one in Table 3.4, it can be seen

that ω12 increases from 50.69 Hz to 61.99 Hz and ω13 increases from 209.7 Hz to 277.6

Hz. Since the increase in the upper limit of the stop band, ω13, is relatively larger than
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the increase in the lower limit of the stop band, ω12, the ratio ω13/ω12 increases from

4.14 to 4.48. The mode shapes at the lower and upper limit of the stop band of the

octahedron in Figure 3.59 are shown in Figures 3.60 and 3.61, respectively.

Figure 3.60. 12th mode shape of the octahedron in Figure 3.59 at 61.99 Hz.

Figure 3.61. 13th mode shape of the octahedron in Figure 3.59 at 277.6 Hz.
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In Figure 3.62, the horizontal and vertical axes are drawn passing through the

center of the mechanism. In order to increase the natural frequency of the torsional

mode shape of this mechanism, the centers of mass of the triangular blocks should

approach the horizontal axis, and the moment of inertia of the rotating part should be

decreased. To do that, the peak point of the triangular blocks are decreased as in Figure

3.63. Furthermore, the triangular blocks are hollowed out as shown in Figure 3.64 and

supported with a truss structure in order to prevent the bending of the triangular

blocks. Thus, the centers of mass of the triangular blocks are brought closer to both

the vertical and horizontal axes as shown in Figure 3.62. If the center of mass of the

triangular blocks were placed close to the vertical axis and its mass were preserved,

the first natural frequency would decrease. However, the mass of the triangular blocks

are significantly reduced due to the truss structure. Thus, the first natural frequency

will increase. But, the natural frequency of the torsional mode will increase more. As

a result, the ratio of the upper and lower limits of natural frequencies will increase.

Figure 3.62. Inertial amplification mechanism in Figure 3.58 with horizontal and

vertical lines passing through the center of mass of the mechanism.
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Figure 3.63. Inertial amplification mechanism with triangular blocks with reduced

heights.

Figure 3.64. Inertial amplification mechanism with triangular blocks supported by

trusses.

The octahedron structure built with the mechanism in Figure 3.64 is shown in

Figure 3.65. Imposing free boundary conditions, the natural frequencies of the octahe-

dron structure are calculated and the first 40 non-zero natural frequencies are given in

Table 3.6.
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Figure 3.65. Octahedron structure formed with the mechanism in Figure 3.64.
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Table 3.6. First 40 non-zero natural frequencies of the octahedron structure shown in

Figure 3.65 imposed to free boundary conditions.

Natural frequencies Frequency (Hz) Natural frequencies Frequency (Hz)

ω1 75.49 ω21 715.8

ω2 78.35 ω22 718.3

ω3 79.53 ω23 718.4

ω4 79.53 ω24 723.2

ω5 88.48 ω25 723.2

ω6 88.49 ω26 724.2

ω7 89.14 ω27 829.3

ω8 97.23 ω28 851.6

ω9 97.24 ω29 851.7

ω10 97.82 ω30 851.7

ω11 107.1 ω31 896.7

ω12 107.4 ω32 898.6

ω13 623.0 ω33 898.8

ω14 624.9 ω34 994.0

ω15 625.0 ω35 995.5

ω16 670.0 ω36 1039

ω17 670.1 ω37 1039

ω18 671.2 ω38 1039

ω19 704.5 ω39 1040

ω20 705.9 ω40 1040

Again, the stop band occurs between the 12th and 13th modes. When the stop

bands in Tables 3.5 and 3.6 are compared, it can be seen that both ω12 and ω13 increase,

since the total mass of the mechanism is decreased. ω12 increases from 61.99 Hz to

107.4 Hz and ω13 increases from 277.6 Hz to 623.0 Hz. However, the ratio ω13/ω12

increases from 4.48 to 5.80. The 12th and 13th mode shapes are shown in Figures 3.66
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and 3.67. As can be seen in Figure 3.67, the mode shape of the upper limit changes

this time. In Figure 3.61, the mechanisms make the torsional motion. However, in

Figure 3.67, the mechanisms make the out-of-plane bending motion.

Figure 3.66. 12th mode shape of the octahedron in Figure 3.65 at 107.4 Hz.
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Figure 3.67. 13th mode shape of the octahedron in Figure 3.65 at 623.0 Hz.

In order to increase the natural frequency of the mode shape with out-of-plane

bending motion, the out-of-plane bending stiffness of the middle short flexures can be

increased. To that end, the width of the mechanism is increased in the middle by

adding rectangular blocks to the sides of the mechanism and the middle flexures are

divided into two as in Figures 3.68 and 3.69. The two pieces are placed towards the

two ends of the widened section to increase the out-of-plane bending stiffness. If the

middle short flexures were extended across the widened section of the mechanism, their

in-plane bending stiffness would increase, which in turn would increase the first natural

frequency. As a result, the bandwidth would decrease.
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Figure 3.68. Inertial amplification mechanism with the added rectangular blocks in

the middle.

Figure 3.69. Isometric view of the inertial amplification mechanism in Figure 3.68 in

which the middle flexures are divided into two and placed far away from each other to

increase the out-of-plane bending stiffness.

With the inertial amplification mechanism in Figure 3.68, the octahedron struc-

ture is built and shown in Figure 3.70. The natural frequencies of the octahedron

imposed to free boundary conditions are given in Table 3.7.
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Figure 3.70. Octahedron structure formed with the mechanism in Figure 3.68.
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Table 3.7. First 40 non-zero natural frequencies of the octahedron structure shown in

Figure 3.70 imposed to free boundary conditions.

Natural frequencies Frequency (Hz) Natural frequencies Frequency (Hz)

ω1 71.90 ω21 713.4

ω2 74.79 ω22 714.7

ω3 75.89 ω23 721.0

ω4 75.89 ω24 724.0

ω5 84.11 ω25 724.0

ω6 84.12 ω26 725.0

ω7 84.72 ω27 795.1

ω8 93.20 ω28 813.5

ω9 93.21 ω29 813.6

ω10 93.77 ω30 813.6

ω11 102.3 ω31 850.2

ω12 102.7 ω32 852.3

ω13 630.7 ω33 852.4

ω14 632.5 ω34 938.6

ω15 632.6 ω35 940.2

ω16 678.3 ω36 986.8

ω17 678.3 ω37 986.8

ω18 679.5 ω38 989.4

ω19 685.6 ω39 994.0

ω20 685.8 ω40 994.0

Similar to previous octahedron analyses, the stop band occurs between the 12th

and 13th modes. The lower limit of the stop band, ω12, decreases from 107.4 Hz to

102.7 Hz due to the addition of the rectangular blocks in the middle, and the upper

limit of the stop band, ω13, increases from 623.0 Hz to 630.7 Hz due to the increasing

out-of-plane bending stiffness of the middle flexures. Hence, the ratio ω13/ω12 increases
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from 5.80 to 6.14. The 12th and 13th mode shapes are shown in Figures 3.71 and 3.72,

respectively. It can be seen that the mode shape at the upper limit of the stop band

of the octahedron is still the out-of-plane motion.

Figure 3.71. 12th mode shape of the octahedron in Figure 3.70 at 102.7 Hz.
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Figure 3.72. 13th mode shape of the octahedron in Figure 3.70 at 630.7 Hz.

3.4. Optimization of the Inertial Amplification Mechanism

In the previous section, several design improvements and topological changes were

made to increase the bandwidth of the mechanism. In this section, size optimization

will be conducted on the thin flexures that are used in the mechanism.
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(a)

(b)

Figure 3.73. Seven different thin flexures of the inertial amplification mechanism. (a)

Flexures of the first remote center mechanism, (1), flexures of the second remote

center mechanism, (2), horizontal short flexures, (3), cross flexures making a 45◦

angle with the vertical axis, (4) and (5). (b) Long flexures in the middle, (6), and

short flexures between the triangular blocks, (7).

In the final design of the inertial amplification mechanism, there are seven dif-

ferent thin flexures shown in Figure 3.73 which affect the natural frequencies, mode

shapes, and hence, the 3D stop band of the octahedron structure. These are the flex-
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ures of the first remote center mechanism, (1), the flexures of the second remote center

mechanism, (2), the horizontal short flexures, (3), each of two different cross flexures,

(4) and (5), the long flexures in the middle, (6), and the short flexures between the

triangular blocks, (7). By changing their thicknesses, the lower limit of the stop band

of the octahedron structure can be decreased and the upper one can be increased.

Certainly, there are lots of other dimensions in the mechanism that can increase the

frequency ratio. However, in this thesis, it is aimed to maximize the frequency ratio

by optimizing the thicknesses of these seven flexures.

In the optimization process, the shell model of the octahedron structure is used

instead of the solid model. The shell model makes it possible to change the thicknesses

of the flexures parametrically and shorten the analysis time. In Table 3.8, the natural

frequencies of the octahedron with shell elements are given. Notice that the frequencies

in Table 3.8 are slightly lower than the ones in Table 3.7. However, the ratio ω13/ω12

does not change much (6.14 vs. 6.21). Run time comparison of the solid and shell

models is given in Table 3.9. It can be seen that the run time for the model with shell

elements is order of magnitude less than the one with solid elements.
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Table 3.8. First 40 non-zero natural frequencies of the octahedron structure with

shell elements imposed to free boundary conditions.

Natural frequencies Frequency (Hz) Natural frequencies Frequency (Hz)

ω1 70.37 ω21 672.8

ω2 74.58 ω22 673.1

ω3 74.92 ω23 678.2

ω4 75.14 ω24 682.1

ω5 81.22 ω25 683.3

ω6 81.57 ω26 683.8

ω7 81.59 ω27 740.2

ω8 91.81 ω28 754.0

ω9 92.26 ω29 755.3

ω10 92.29 ω30 756.9

ω11 96.15 ω31 850.2

ω12 96.25 ω32 851.6

ω13 598.0 ω33 852.6

ω14 598.1 ω34 941.3

ω15 598.6 ω35 942.8

ω16 640.4 ω36 943.0

ω17 640.7 ω37 943.6

ω18 640.8 ω38 947.9

ω19 659.9 ω39 948.7

ω20 661.1 ω40 949.9
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Table 3.9. Run time comparison of solid and shell models of the octahedron structure.

Solid model Shell model

6 h 29 min 47 sec 15 min 48 sec

The variables of the optimization process are determined as follows: x1 is the

thickness of the flexures of both outer and inner remote center flexure mechanisms, (1)

and (2), x2 is the thickness of the horizontal flexures, (3), x3 is the thickness of the

cross flexures, (4) and (5), and x4 is the thickness of the short flexures in the middle,

(7).

The thickness of the long flexures in the middle, (6), is not taken as one of the

optimization variables. Instead, it is kept thick enough such that its mode shapes shown

in Figures 3.30 and 3.31 do not appear within the stop band. The thickness of the

long flexure is directly proportional to its natural frequency at these modes. Therefore,

after the optimization process, the thickness of these parts is chosen such that their

mode shapes are located just above the upper limit of the stop band. Hence, as the

thickness of the long flexures are decreased, the lower limit of the stop band is expected

to decrease more effectively than the upper one, resulting in a higher frequency ratio.

At the beginning of the optimization process, the thicknesses of all the flexures

are decreased from 0.3 mm to 0.15 mm. When the thicknesses of the seven flexures

are reduced to half, the lower limit of the stop band of the octahedron, ω12, becomes

39.60 Hz, and the upper limit of the stop band of the octahedron, ω13, becomes 469.0

Hz. Hence, the frequency ratio dramatically increases from 6.14 to 11.84.

Using the Latin hypercube sampling method [75, 76], 90 different trials between

0.1 and 0.2 are made for these four design variables. The numerical results show that

maximum values of frequency ratio are obtained when x1 is between 0.14 and 0.17, and

the other variables are around 0.1, which is their lower limit. In order to obtain the
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global maximum of the search space, the lower limit is relaxed for these three variables

and selected as 0.05. Then, another 30 data points are determined with the Latin

hypercube sampling method for a narrower search space: x1 is between 0.14 and 0.17,

x2 is between 0.05 and 0.14, x3 is between 0.05 and 0.13, x4 is between 0.05 and 0.12.

30 data points are given in Table 3.10.

Table 3.10. 30 data points with frequency ratios in descending order determined

with the Latin hypercube sampling method for the following search space: x1 is

between 0.14 and 0.17, x2 is between 0.05 and 0.14, x3 is between 0.05 and 0.13, x4 is

between 0.05 and 0.12.

x1 (mm) x2 (mm) x3 (mm) x4 (mm) ω12 (Hz) ω13 (Hz) ω13/ω12

0.1513 0.0857 0.0943 0.0781 34.676 462.01 13.3236

0.1451 0.0676 0.0836 0.0809 33.145 440.34 13.2853

0.1663 0.1203 0.1017 0.0916 39.108 516.12 13.1973

0.1407 0.0989 0.0970 0.0753 32.369 426.81 13.1858

0.1593 0.1246 0.0697 0.0972 37.215 489.56 13.1549

0.1589 0.1043 0.0675 0.0764 36.44 479.30 13.1531

0.1572 0.0710 0.0895 0.0733 35.865 471.27 13.1401

0.1546 0.1332 0.0599 0.0964 35.981 472.48 13.1314

0.1672 0.1173 0.0752 0.0921 39.226 514.02 13.1041

0.1622 0.0733 0.0562 0.0868 37.406 489.43 13.0843

0.1530 0.0779 0.1278 0.1009 36.335 474.8 13.0673

0.1449 0.1305 0.1155 0.0881 34.234 446.04 13.0292

0.1636 0.0976 0.0623 0.1031 38.403 500.32 13.0281

0.1612 0.1360 0.1090 0.1091 38.648 503.33 13.0234

0.1467 0.0893 0.1206 0.0691 33.785 439.59 13.0114

0.1535 0.0584 0.1079 0.1109 36.514 474.06 12.9830

0.1489 0.0947 0.1034 0.1080 35.509 459.26 12.9336

0.1560 0.0808 0.1191 0.1161 37.608 485.21 12.9018

0.1604 0.0870 0.0543 0.1193 38.101 488.26 12.8149
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0.1427 0.1387 0.0813 0.1053 34.124 436.17 12.7819

0.1699 0.1097 0.0869 0.1136 40.685 519.76 12.7752

0.1495 0.1031 0.0517 0.0653 33.595 419.8 12.4959

0.1436 0.0524 0.0731 0.0624 32.03 395.75 12.3556

0.1682 0.0541 0.1114 0.0839 39.209 483.16 12.3227

0.1658 0.0645 0.1269 0.0669 38.393 441.14 11.4901

0.1414 0.1128 0.0648 0.0581 31.728 361.04 11.379s2

0.1559 0.0751 0.0915 0.0616 35.343 393.52 11.1343

0.1503 0.1151 0.0987 0.0557 34.065 342.11 10.0428

0.1476 0.0604 0.0775 0.0501 32.807 294.2 8.9676

0.1647 0.1274 0.1226 0.0544 38.202 332.46 8.7027

Examining Table 3.10, one can see that the variables x1 and x4 converge to

specific values while x2 and x3 change over a wider range for the highest frequency

ratios. Using the computational method Smoothed-particle hydrodynamics [77–79], a

surface plot can be obtained for x1 = 0.15 and x4 = 0.08 while x2 and x3 are varied.

In Figure 3.74, the surface plot is given that x2 is between 0.05 and 0.14, and x3 is

between 0.05 and 0.13.
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(a)

(b) (c)

Figure 3.74. Surface plot of data given in Table 3.10 with Smoothed-particle

hydrodynamics method for x1 = 0.15 and x4 = 0.08. The red dots show the

maximum point on the surfaces. (a) Isometric view. (b) Side view such that x2 is the

horizontal axis. (c) Side view such that x3 is the horizontal axis.

In Figure 3.74, the global maximum of the surface can be seen clearly. However,

there are several other local maxima near the global maximum. Since this surface
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is formed by using the data points in Table 3.10, the global maximum may improve

if a gradient based optimization method is utilized around the peak point. Around

this peak, a new set of x1, x2, x3 and x4 is determined in order to find the maximum

frequency ratio with the steepest descent method. Considering many peaks in narrow

intervals of variables, the step size is chosen as 1%. After two steps of iterations with the

steepest descent method, the variables are found as follows: x1 = 0.1542, x2 = 0.08417,

x3 = 0.08958, and x4 = 0.07940. The lower limit of the stop band, ω12, becomes 35.29

Hz and the upper limit, ω13, becomes 471.0 Hz. Consequently, ω13/ω12 is obtained as

13.35. Finally, decreasing the thickness of the long flexures, (6), from 0.15 mm to 0.115

mm causes ω12 to decrease to 34.41 Hz, and also ω13 to decrease to 469.6 Hz, leading

to the ratio ω13/ω12 of 13.65. The mode shapes at the lower and upper limit of the

stop band are shown in Figures 3.75 and 3.76, respectively.

Figure 3.75. 12th mode shape of the final design of the octahedron at 34.41 Hz.
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Figure 3.76. 13th mode shape of the final design of the octahedron at 469.6 Hz.

Finally, a 3x2 periodic structure is formed by using optimized octahedron struc-

ture shown in Figure 3.77. There are 72 modes up to 39.76 Hz and the next mode

appears at 448.1 Hz. Notice that the stop band in the 3x2 periodic structure has a

upper to lower limit ratio of 11.27, while the building block octahedron has a frequency

ratio of 13.65. Hence, periodic assembly of the octahedrons slightly reduce the stop

band frequency range.
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Figure 3.77. 3x2 periodic structure formed with optimized octahedron structure.
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4. CONCLUSION

Using the novel inertial amplification method, an ultrawide stop band is obtained

in three dimensions. First, an inertial amplification mechanism is designed suitable for

3D assembly. Since 3D structures can be subject to both in-plane and out-of-plane

bending loads, spatial remote center flexure mechanisms are used at the ends of the

mechanism. They are constituted of two stages allowing rotation around two axes

orthogonal to each other. Using the inertial amplification mechanisms, an octahedron

is formed. Between the 12th and 13th modes of the octahedron, a wide frequency

gap is obtained and its width is quantified by the ratio of the upper limit of the stop

band to the lower one, ω13/ω12. In this thesis, this frequency ratio is aimed to be

maximized. To do that, the mode shapes and natural frequencies of a single inertial

amplification mechanism and the octahedron structure are examined. By imposing

different boundary conditions to a single mechanism, mode shapes are identified. While

the first natural frequency corresponding to the first mode shape is the same, higher

modes differ as the boundary conditions change. Moreover, even small dimensional

changes in the mechanism can affect natural frequencies and change the mode shape

at the upper limit of the stop band of the octahedron. With design improvements and

topological changes, the 12th natural frequency of the octahedron, ω12, is aimed to

be minimized, and the 13th natural frequency, ω13, is aimed to be maximized. For

that purpose, the novel cross flexure design is added to the mechanism to increase

the torsional, in-plane bending and out-of-plane bending modes of the mechanism.

Moreover, the triangular blocks in the middle of the mechanism are hollowed out by

supporting them with a truss structure in order to bring their centers of mass closer to

the rotation axis of the torsional mode shape motion. In order to increase the natural

frequency of the out-of-plane bending motion, the width of the mechanism is increased

in the middle with additional blocks and the middle short flexures are divided into

two and placed towards the two ends of the widened section in order to increase the

out-of-plane bending stiffness. The final design of the inertial amplification mechanism

has seven thin flexures which affect the natural frequencies and mode shapes of the
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mechanism. Size optimization is conducted on these flexures and the stop band of

the octahedron is obtained between 34.41 Hz and 469.6 Hz, resulting in a frequency

ratio of 13.65. This frequency ratio is the highest considering all the 3D designs in

the literature. Finally, a 3x2 periodic structure is formed by using the optimized

octahedrons. It is seen that the stop band of this periodic structure is between 39.76

Hz and 448.1 Hz. Hence, its frequency ratio is 11.27, which is slightly less than the

octahedron building block.



75

REFERENCES

1. Yuksel, O. and C. Yilmaz, “Realization of an Ultrawide Stop Band in a 2-D Elastic

Metamaterial with Topologically Optimized Inertial Amplification Mechanisms”,

International Journal of Solids and Structures , Vol. 203, pp. 138–150, 2020.

2. Acar, G. and C. Yilmaz, “Experimental and Numerical Evidence for the Exis-

tence of Wide and Deep Phononic Gaps Induced by Inertial Amplification in Two-

Dimensional Solid Structures”, Journal of Sound and Vibration, Vol. 332, No. 24,

pp. 6389–6404, 2013.

3. Yuksel, O. and C. Yilmaz, “Shape Optimization of Phononic Band Gap Structures

Incorporating Inertial Amplification Mechanisms”, Journal of Sound and Vibra-

tion, Vol. 355, pp. 232–245, 2015.

4. Taniker, S. and C. Yilmaz, “Generating Ultra Wide Vibration Stop Bands by a

Novel Inertial Amplification Mechanism Topology with Flexure Hinges”, Interna-

tional Journal of Solids and Structures , Vol. 106-107, pp. 129–138, 2017.

5. Taniker, S. and C. Yilmaz, “Design, Analysis and Experimental Investigation of

Three-Dimensional Structures with Inertial Amplification Induced Vibration Stop

Bands”, International Journal of Solids and Structures , Vol. 72, pp. 88–97, 2015.

6. Economou, E. N. and M. Sigalas, “Stop Bands for Elastic Waves in Periodic Com-

posite Materials”, The Journal of the Acoustical Society of America, Vol. 95, No. 4,

pp. 1734–1740, 1994.

7. Kafesaki, M., M. M. Sigalas and E. Economou, “Elastic Wave Band Gaps in 3-

D Periodic Polymer Matrix Composites”, Solid State Communications , Vol. 96,

No. 5, pp. 285–289, 1995.

8. Kushwaha, M. S., “Classical Band Structure of Periodic Elastic Composites”, In-



76

ternational Journal of Modern Physics B , Vol. 10, No. 09, pp. 977–1094, 1996.

9. Kushwaha, M., B. Djafari-Rouhani, L. Dobrzynski and J. O. Vasseur, “Sonic Stop-

Bands for Cubic Arrays of Rigid Inclusions in Air”, The European Physical Journal

B-Condensed Matter and Complex Systems , Vol. 3, No. 2, pp. 155–161, 1998.

10. Sainidou, R., N. Stefanou and A. Modinos, “Formation of Absolute Frequency

Gaps in Three-Dimensional Solid Phononic Crystals”, Physical Review B , Vol. 66,

No. 21, p. 212301, 2002.

11. Jensen, J. S., “Phononic Band Gaps and Vibrations in One- and Two-Dimensional

Mass-Spring Structures”, Journal of Sound and Vibration, Vol. 266, No. 5, pp.

1053–1078, 2003.

12. Goffaux, C. and J. Sánchez-Dehesa, “Two-Dimensional Phononic Crystals Studied

Using a Variational Method: Application to Lattices of Locally Resonant Materi-

als”, Physical Review B , Vol. 67, No. 14, p. 144301, 2003.

13. Wang, G., J. Wen and X. Wen, “Quasi-One-Dimensional Phononic Crystals Stud-

ied Using the Improved Lumped-Mass Method: Application to Locally Resonant

Beams with Flexural Wave Band Gap”, Physical Review B , Vol. 71, No. 10, p.

104302, 2005.

14. Halkjær, S., O. Sigmund and J. S. Jensen, “Maximizing Band Gaps in Plate Struc-

tures”, Structural and Multidisciplinary Optimization, Vol. 32, No. 4, pp. 263–275,

2006.

15. Jensen, J. S. and N. L. Pedersen, “On Maximal Eigenfrequency Separation in

Two-Material Structures: the 1D and 2D Scalar Cases”, Journal of Sound and

Vibration, Vol. 289, No. 4-5, pp. 967–986, 2006.

16. Wang, G., X. Wen, J. Wen and Y. Liu, “Quasi-One-Dimensional Periodic Structure

with Locally Resonant Band Gap”, Journal of Applied Mechanics , Vol. 73, No. 1,



77

pp. 167–170, 2006.

17. Yu, D., Y. Liu, H. Zhao, G. Wang and J. Qiu, “Flexural Vibration Band Gaps

in Euler-Bernoulli Beams with Locally Resonant Structures with Two Degrees of

Freedom”, Physical Review B , Vol. 73, No. 6, p. 064301, 2006.

18. Chen, J. J., H. L. W. Chan and J. C. Cheng, “Large One-Dimensional Band Gaps

in Three-Component Phononic Crystals Plates”, Physics Letters A, Vol. 366, No.

4-5, pp. 493–496, 2007.

19. Shen, H., J. Wen, D. Yu and X. Wen, “The Vibrational Properties of a Periodic

Composite Pipe in 3D Space”, Journal of Sound and Vibration, Vol. 328, No. 1-2,

pp. 57–70, 2009.

20. Soliman, Y. M., M. F. Su, Z. C. Leseman, C. M. Reinke, I. El-Kady and R. H.

Olsson III, “Phononic Crystals Operating in the Gigahertz Range with Extremely

Wide Band Gaps”, Applied Physics Letters , Vol. 97, No. 19, p. 193502, 2010.

21. Yu, D., J. Wen, H. Shen, Y. Xiao and X. Wen, “Propagation of Flexural Wave in

Periodic Beam on Elastic Foundations”, Physics Letters A, Vol. 376, No. 4, pp.

626–630, 2012.

22. Badreddine Assouar, M. and M. Oudich, “Enlargement of a Locally Resonant

Sonic Band Gap by Using Double-Sides Stubbed Phononic Plates”, Applied Physics

Letters , Vol. 100, No. 12, p. 123506, 2012.

23. Olhoff, N., B. Niu and G. Cheng, “Optimum Design of Band-Gap Beam Struc-

tures”, International Journal of Solids and Structures , Vol. 49, No. 22, pp. 3158–

3169, 2012.

24. Yin, J., J. Huang, S. Zhang, H. W. Zhang and B. S. Chen, “Ultrawide Low Fre-

quency Band Gap of Phononic Crystal in Nacreous Composite Material”, Physics

Letters A, Vol. 378, No. 32-33, pp. 2436–2442, 2014.



78

25. Wang, P., F. Casadei, S. H. Kang and K. Bertoldi, “Locally Resonant Band Gaps

in Periodic Beam Lattices by Tuning Connectivity”, Physical Review B , Vol. 91,

No. 2, p. 020103, 2015.

26. Trainiti, G., J. J. Rimoli and M. Ruzzene, “Wave Propagation in Periodically

Undulated Beams and Plates”, International Journal of Solids and Structures ,

Vol. 75, pp. 260–276, 2015.

27. Bacigalupo, A. and L. Gambarotta, “Simplified Modelling of Chiral Lattice Ma-

terials with Local Resonators”, International Journal of Solids and Structures ,

Vol. 83, pp. 126–141, 2016.

28. Bao, J., Z. Shi and H. Xiang, “Dynamic Responses of a Structure with Periodic

Foundations”, Journal of Engineering Mechanics , Vol. 138, No. 7, pp. 761–769,

2012.

29. Xiang, H. J., Z. F. Shi, S. J. Wang and Y. L. Mo, “Periodic Materials-Based

Vibration Attenuation in Layered Foundations: Experimental Validation”, Smart

Materials and Structures , Vol. 21, No. 11, p. 112003, 2012.

30. Shi, Z., Z. Cheng and H. Xiang, “Seismic Isolation Foundations with Effective

Attenuation Zones”, Soil Dynamics and Earthquake Engineering , Vol. 57, pp. 143–

151, 2014.

31. Liu, X., Z. Shi, Y. L. Mo and Z. Cheng, “Effect of Initial Stress on Attenuation

Zones of Layered Periodic Foundations”, Engineering Structures , Vol. 121, pp.

75–84, 2016.

32. Oh, J. H., S. Qi, Y. Y. Kim and B. Assouar, “Elastic Metamaterial Insulator

for Broadband Low-Frequency Flexural Vibration Shielding”, Physical Review Ap-

plied , Vol. 8, No. 5, p. 054034, 2017.

33. Yuksel, O. and C. Yilmaz, “Size and Topology Optimization of Inertial Amplifi-



79

cation Induced Phononic Band Gap Structures”, ASME International Mechanical

Engineering Congress and Exposition, Vol. 58486, p. V013T01A007, American So-

ciety of Mechanical Engineers, 2017.

34. Dianlong, Y., L. Yaozong, W. Gang, C. Li, Q. Jing et al., “Low Frequency Torsional

Vibration Gaps in the Shaft with Locally Resonant Structures”, Physics Letters

A, Vol. 348, No. 3-6, pp. 410–415, 2006.

35. Coffy, E., T. Lavergne, M. Addouche, S. Euphrasie, P. Vairac and A. Khelif, “Ultra-

Wide Acoustic Band Gaps in Pillar-Based Phononic Crystal Strips”, Journal of

Applied Physics , Vol. 118, No. 21, p. 214902, 2015.

36. Li, J. and S. Li, “Generating Ultra Wide Low-Frequency Gap for Transverse Wave

Isolation via Inertial Amplification Effects”, Physics Letters A, Vol. 382, No. 5, pp.

241–247, 2018.

37. Jia, G. and Z. Shi, “A New Seismic Isolation System and Its Feasibility Study”,

Earthquake Engineering and Engineering Vibration, Vol. 9, No. 1, pp. 75–82, 2010.

38. Cheng, Z. and Z. Shi, “Novel Composite Periodic Structures with Attenuation

Zones”, Engineering Structures , Vol. 56, pp. 1271–1282, 2013.

39. Yan, Y., A. Laskar, Z. Cheng, F. Menq, Y. Tang, Y. L. Mo and Z. Shi, “Seismic

Isolation of Two Dimensional Periodic Foundations”, Journal of Applied Physics ,

Vol. 116, No. 4, p. 044908, 2014.

40. Jiang, S., H. Hu and V. Laude, “Ultra-Wide Band Gap in Two-Dimensional

Phononic Crystal with Combined Convex and Concave Holes”, Physica Status

Solidi (RRL)–Rapid Research Letters , Vol. 12, No. 2, p. 1700317, 2018.

41. Wen, G., H. Ou and J. Liu, “Ultra-Wide Band Gap in a Two-Dimensional Phononic

Crystal with Hexagonal Lattices”, Materials Today Communications , Vol. 24, p.

100977, 2020.



80

42. Bilal, O. R. and M. I. Hussein, “Ultrawide Phononic Band Gap for Combined

in-Plane and out-of-Plane Waves”, Physical Review E , Vol. 84, No. 6, p. 065701,

2011.

43. Shi, Z. and J. Huang, “Feasibility of Reducing Three-Dimensional Wave Energy

by Introducing Periodic Foundations”, Soil Dynamics and Earthquake Engineering ,

Vol. 50, pp. 204–212, 2013.

44. Yan, Y., A. Laskar, Z. Cheng, F. Menq, Y. Tang, Y. L. Mo and Z. Shi, “Periodic

Materials-Based 3D Seismic Base Isolators for Nuclear Power Plants”, Pressure

Vessels and Piping Conference, Vol. 46070, p. V008T08A008, American Society of

Mechanical Engineers, 2014.

45. Yan, Y., Z. Cheng, F. Menq, Y. L. Mo, Y. Tang and Z. Shi, “Three Dimensional

Periodic Foundations for Base Seismic Isolation”, Smart Materials and Structures ,

Vol. 24, No. 7, p. 075006, 2015.

46. Yan, Y., W. Witarto, S. J. Wang, Y. L. Mo, K. C. Chang, Y. Tang and M. Ruis,

“Periodic Material Based Seismic Isolation for Small Modular Reactors”, Pressure

Vessels and Piping Conference, Vol. 57034, p. V008T08A041, American Society of

Mechanical Engineers, 2015.

47. D’Alessandro, L., R. Ardito, F. Braghin and A. Corigliano, “Low Frequency 3D

Ultra-Wide Vibration Attenuation via Elastic Metamaterial”, Scientific Reports ,

Vol. 9, No. 1, pp. 1–8, 2019.

48. D’Alessandro, L., E. Belloni, R. Ardito, A. Corigliano and F. Braghin, “Modeling

and Experimental Verification of an Ultra-Wide Bandgap in 3D Phononic Crystal”,

Applied Physics Letters , Vol. 109, No. 22, p. 221907, 2016.

49. Lu, Y., Y. Yang, J. K. Guest and A. Srivastava, “3-D Phononic Crystals with

Ultra-Wide Band Gaps”, Scientific Reports , Vol. 7, No. 1, pp. 1–14, 2017.



81

50. Muhammad, “Design and Manufacturing of Monolithic Mechanical Metastruc-

tures Governing Ultrawide Low Frequency Three-Dimensional Gandgaps”, Additive

Manufacturing , Vol. 47, 2021.

51. Muhammad, S., S. Wang, F. Li and C. Zhang, “Bandgap Enhancement of Peri-

odic Nonuniform Metamaterial Beams with Inertial Amplification Mechanisms”,

Journal of Vibration and Control , Vol. 26, No. 15-16, pp. 1309–1318, 2020.

52. Muhammad and C. W. Lim, “Phononic Metastructures with Ultrawide Low Fre-

quency Three-Dimensional Bandgaps as Broadband Low Frequency Filter”, Sci-

entific Reports , Vol. 11, No. 1, pp. 1–11, 2021.

53. Muhammad and C. W. Lim, “Ultrawide Bandgap by 3D Monolithic Mechanical

Metastructure for Vibration and Noise Control”, Archives of Civil and Mechanical

Engineering , Vol. 21, No. 2, pp. 1–11, 2021.

54. Yilmaz, C., G. M. Hulbert and N. Kikuchi, “Phononic Band Gaps Induced by

Inertial Amplification in Periodic Media”, Physical Review B , Vol. 76, No. 5, p.

054309, 2007.

55. Yilmaz, C. and G. M. Hulbert, “Theory of Phononic Gaps Induced by Inertial

Amplification in Finite Structures”, Physics Letters A, Vol. 374, No. 34, pp. 3576–

3584, 2010.

56. Orta, A. H. and C. Yilmaz, “Inertial Amplification Induced Phononic Band Gaps

Generated by a Compliant Axial to Rotary Motion Conversion Mechanism”, Jour-

nal of Sound and Vibration, Vol. 439, pp. 329–343, 2019.

57. Taniker, S. and C. Yilmaz, “Phononic Gaps Induced by Inertial Amplification in

BCC and FCC Lattices”, Physics Letters A, Vol. 377, No. 31-33, pp. 1930–1936,

2013.

58. Taniker, S. and C. Yilmaz, “Inertial Amplification Induced Phononic Band Gaps



82

in SC and BCC Lattices”, ASME International Mechanical Engineering Congress

and Exposition, Vol. 56437, p. V014T15A046, American Society of Mechanical

Engineers, 2013.

59. Schmied, J. U., C. Sugino, A. Bergamini, P. Ermanni, M. Ruzzene and A. Erturk,

“Toward Structurally Integrated Locally Resonant Metamaterials for Vibration

Attenuation”, Active and Passive Smart Structures and Integrated Systems , Vol.

10164, No. 4, p. 1016413, 2017.

60. Hou, M., J. H. Wu, S. Cao, D. Guan and Y. Zhu, “Extremely Low Frequency Band

Gaps of Beam-Like Inertial Amplification Metamaterials”, Modern Physics Letters

B , Vol. 31, No. 27, p. 1750251, 2017.

61. Adhikari, S. and A. Banerjee, “Enhanced Low-Frequency Vibration Energy Har-

vesting with Inertial Amplifiers”, Journal of Intelligent Material Systems and

Structures , p. 1045389X211032281, 2021.

62. Li, Y. and W. Zhou, “Bandgap and Vibration Transfer Characteristics of Scissor-

Like Periodic Metamaterials”, Journal of Applied Physics , Vol. 130, No. 2, p.

025103, 2021.

63. Miniaci, M., M. Mazzotti, A. Amendola and F. Fraternali, “Inducing Dispersion

Curves with Negative Group Velocity in Inertially Amplified Phononic Crystals

through the Application of an External State of Prestress”, XI International Con-

ference on Structural Dynamic, EURODYN 2020 , pp. 612–620, 2020.

64. Miniaci, M., M. Mazzotti, A. Amendola and F. Fraternali, “Effect of Prestress on

Phononic Band Gaps Induced by Inertial Amplification”, International Journal of

Solids and Structures , Vol. 216, pp. 156–166, 2021.

65. Shoaib, M., W. Pang and F. Li, “Vibration Reduction of Pipes Conveying Fluid

with Periodic Inertial Amplification Mechanisms”, Waves in Random and Complex



83

Media, pp. 1–16, 2021.

66. Banerjee, A., S. Adhikari and M. I. Hussein, “Inertial Amplification Band-Gap

Generation by Coupling a Levered Mass with a Locally Resonant Mass”, Interna-

tional Journal of Mechanical Sciences , Vol. 207, p. 106630, 2021.

67. Barys, M. and R. Zalewski, “Analysis of Inertial Amplification Mechanism with

Smart Spring-Damper for Attenuation of Beam Vibrations”, MATEC Web of Con-

ferences , Vol. 157, p. 03002, EDP Sciences, 2018.

68. Cheng, Z., A. Palermo, Z. Shi and A. Marzani, “Enhanced Tuned Mass Damper

Using an Inertial Amplification Mechanism”, Journal of Sound and Vibration, Vol.

475, p. 115267, 2020.

69. Li, J., P. Yang and S. Li, “Phononic Band Gaps by Inertial Amplification Mecha-

nisms in Periodic Composite Sandwich Beam with Lattice Truss Cores”, Composite

Structures , Vol. 231, p. 111458, 2020.

70. Barys, M., J. S. Jensen and N. M. Frandsen, “Efficient Attenuation of Beam Vibra-

tions by Inertial Amplification”, European Journal of Mechanics-A/Solids , Vol. 71,

pp. 245–257, 2018.

71. Mu, D., H. Shu, L. Zhao and S. An, “A Review of Research on Seismic Metama-

terials”, Advanced Engineering Materials , Vol. 22, No. 4, p. 1901148, 2020.

72. Zhou, J., L. Dou, K. Wang, D. Xu and H. Ouyang, “A Nonlinear Resonator

with Inertial Amplification for Very Low-Frequency Flexural Wave Attenuations

in Beams”, Nonlinear Dynamics , Vol. 96, No. 1, pp. 647–665, 2019.

73. Martinez, J. A. I., J. Moughames, G. Ulliac, M. Kadic and V. Laude, “Three-

Dimensional Phononic Crystal with Ultra-Wide Bandgap at Megahertz Frequen-

cies”, Applied Physics Letters , Vol. 118, No. 6, p. 063507, 2021.



84

74. Yilmaz, C. and N. Kikuchi, “Analysis and Design of Passive Band-Stop Filter-

Type Vibration Isolators for Low-Frequency Applications”, Journal of Sound and

Vibration, Vol. 291, No. 3-5, pp. 1004–1028, 2006.

75. Loh, W.-L., “On Latin Hypercube Sampling”, The Annals of Statistics , Vol. 24,

No. 5, pp. 2058–2080, 1996.

76. Stein, M., “Large Sample Properties of Simulations Using Latin Hypercube Sam-

pling”, Technometrics , Vol. 29, No. 2, pp. 143–151, 1987.

77. Monaghan, J. J., “Smoothed Particle Hydrodynamics”, Annual Review of Astron-

omy and Astrophysics , Vol. 30, No. 1, pp. 543–574, 1992.

78. Monaghan, J. J., “Smoothed Particle Hydrodynamics”, Reports on Progress in

Physics , Vol. 68, No. 8, p. 1703, 2005.

79. Liu, M. and G. Liu, “Smoothed Particle Hydrodynamics (SPH): an Overview

and Recent Developments”, Archives of Computational Methods in Engineering ,

Vol. 17, No. 1, pp. 25–76, 2010.



85

APPENDIX A: ELSEVIER LICENSE NUMBER

5236891087000

Figure A.1. Elsevier license of [1] for Figures 2.1, 3.6, 3.13 and 3.14.
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Figure B.1. Elsevier license of [2] for Figures 3.1, 3.2, 3.3 and 3.4.
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Figure C.1. Elsevier license of [3] for Figure 3.5.
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Figure D.1. Elsevier license of [4] for Figures 3.7, 3.8, and 3.10.
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