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ABSTRACT

QUANTITATIVE NON-DESTRUCTIVE

CHARACTERIZATION OF DEFECTS IN ELECTRONIC

PACKAGES USING FUZZY INFERENCE BASED

THERMAL TOMOGRAPHY

Thermal challenges have been a roadblock for electronic packaging with the in-

creasing number of transistors and smaller package sizes. Thermal interface material

(TIM) layers play a key role in heat dissipation at all levels within an electronic pack-

age. The function of TIM is to minimize the thermal contact resistance by filling the

microscale gaps between the die and the integrated heat spreader (IHS). For this reason,

there have been intensive efforts to achieve a high-quality TIM in electronic packaging.

Defects in TIM layers must be identified during the assembly process development to

obtain dependable thermal management. Non-destructive characterization techniques

such as scanning acoustic microscopy or X-ray tomography have been used to identify

such defects and help to advance manufacturing procedures. Thermal tomography is

proposed as a low-cost alternative to these qualitative imaging techniques, all of which

require high-cost devices and a long processing time. The location and size of defects

are identified by evaluating the measured thermal response of a heated electronic pack-

age. Fuzzy inference method (FIM) is used as an image reconstruction algorithm to

solve the resulting ill-posed inverse problem. The feasibility of thermal tomography is

studied numerically; therefore, simulated measurements are used in this study rather

than experimental data. The results indicate that the fuzzy inference based thermal

tomography can be a powerful tool for quantitative non-destructive characterization

of defects in the electronic packages, with less cost and shorter processing time than

other established methods.
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ÖZET

ELEKTRONİK PAKETLERDEKİ KUSURLARIN

BULANIK ÇIKARIM TABANLI ISIL GÖRÜNTÜLEME

KULLANILARAK NİCELİKSEL TAHRİBATSIZ

MUAYENESİ

Isıl zorluklar, artan transistör sayısı ve daha küçük paket boyutları ile elek-

tronik paketleme için bir engel teşkil etmektedir. Isıl arayüz malzemesi katmanları,

bir elektronik paket içindeki tüm seviyelerde ısı dağılımında önemli bir rol oynar. Isıl

arayüz malzemelerinin işlevi, çip ve birleştirilmiş ısı dağıtıcı arasındaki mikro ölçekli

boşlukları doldurarak ısıl temas direncini en aza indirmektir. Bu nedenle elektronik

paketlemede yüksek kaliteli bir ısıl arayüz malzemesi elde etmek için yoğun çaba sarf

edilmektedir. Güvenilir ısıl yönetim elde etmek için ısıl arayüz malzemesi katman-

larındaki kusurlar, montaj süreci geliştirme sırasında tanımlanmalıdır. Bu tür kusurları

belirlemek ve üretim prosedürlerini geliştirmek için taramalı akustik mikroskopi veya

X-ışını tomografisi gibi tahribatsız muayene teknikleri kullanılmıştır. Isıl görüntüleme,

tümü yüksek fiyatlı cihazlar ve uzun işlem süresi gerektiren bu niteliksel görüntüleme

tekniklerine düşük maliyetli bir alternatif olarak önerilmektedir. Kusurların yeri ve

boyutu, ısıtılmış bir elektronik paketin ölçülen ısıl tepkisi değerlendirilerek tanımlanır.

Bulanık çıkarım yöntemi, ortaya çıkan kötü konumlanmış ters problemi çözmek için

bir görüntü yeniden yapılandırma algoritması olarak kullanılır. Isıl görüntülemenin

uygulanabilirliği sayısal olarak incelenmektedir; bu nedenle, bu çalışmada deneysel

veriler yerine simüle edilmiş ölçümler kullanılmıştır. Sonuçlar, bulanık çıkarım tabanlı

ısıl görüntülemenin, elektronik paketlerdeki kusurların niceliksel tahribatsız muayenesi

için, diğer yerleşik yöntemlere kıyasla daha az maliyet ve daha kısa işlem süresi ile

güçlü bir araç olabileceğini göstermektedir.
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1. INTRODUCTION

1.1. Problem Overview

The electronics industry has been following “Moore’s Law”, a projection or fore-

cast proved to be valid for the past fifty years. The law states that the number of

transistors in an integrated circuit (IC) approximately doubles every two years, and it

has been a reliable predictor of the speed of electronic technology advancement since

1965 [1]. Today there are millions of transistors on a single IC chip, providing enor-

mous computing power. However, severe limitations may restrict further electronic

miniaturization and growing computing power.

One of the most significant limitations that have been encountered is thermal

management. Although it was once thought that the chips would be faster and con-

sume less power when they scaled to smaller sizes, they overheat as electrons moved

faster through smaller silicon circuits below 90 nanometers. The industry embraced

an integrated solution to overcome thermal management problems, including package

level management, component level cooling solutions, improving transistor architec-

ture, manufacturing process, and chip design.

The electronic package serves as a connection between the die (chip) and the

motherboard to obtain a solid performance in power and signal delivery, heat dissi-

pation, and protection from mechanical damage. Thermal interface material (TIM)

layers are placed among different package layers to reduce thermal contact resistance

and improve heat removal from the package.

A thermal resistance is observed at the interface when two solid layers are in

contact, depending on the pressure used to hold them together and the micro-scale

roughness over the facing surfaces. Another layer is usually added as a filler to reduce

the thermal contact resistance, in which case the characteristics of the layer are crucial.
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In flip chip packages, which are predominantly used for central processing units of high-

performance computers, a TIM layer referred to as TIM1 is inserted between the die

and integrated heat spreader (IHS), and another layer referred to as TIM2 is inserted

between the IHS and heat sink as an interface layer. Thus, the characteristics of TIM

layers are essential for achieving the required cooling performance [2].

Thermally conductive elastomers, phase change materials, thermally conductive

adhesive tapes and solders are the most common thermal interface materials [3]. The

application of the TIM1 layer during the assembly process is cumbersome as they can

have defects such as dendrite growth, metal migration, interfacial delamination, micro-

cracks, and voids [4, 5]. It is desired to prevent such defect formations as they lead to

poor thermal performance.

Electronic package assembly process development aims to determine the optimum

parameters that provide the best mechanical, electrical, and thermal performance. In

accordance with this purpose, a large number of prototype packages, generally referred

to as “test vehicles”, are manufactured and tested to optimize process parameters.

Thermal test is one of the tests performed on the test vehicles, which evaluates

the package’s thermal resistance. Thermal resistance of the package is identified from

the highest temperature of the die, junction temperature, to the upper surface tem-

perature of the lid, case temperature. When the measured thermal resistance is higher

than the desired one, the package must have a defect to be identified to achieve a

high-quality interface layer by modifying the assembly process. Therefore, the non-

destructive characterization of defects within TIM plays a crucial role in the assembly

process development. In particular, defects within TIM1 are more significant because

a 20% void in TIM2 increases the package’s thermal resistance by 10%, while a same-

sized void in TIM1 will increase it by 250% [6].

Various non-destructive testing (NDT) techniques are used for defect character-

ization in electronic packages. These include atomic force microscope, optical micro-
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scope, magnetic microscopy, scanning acoustic microscopy (SAM), X-ray, and liquid

crystal thermography. In recent years, infrared (IR) imaging has been introduced as

an practical way of inspecting defects that produce thermal failure in TIM [5, 7, 8].

IR imaging evaluates the temperature response of the system to the performed heat

flux to discover the defected area qualitatively relying on an IR camera. While these

qualitative approaches should be regarded as complementary solutions, quantitative

characterization of defects is also possible and has been investigated by researchers

lately.

Thermal tomography is a thermal characterization technique that uses a thermal

signal diffusing through the characterized object, and the characterization is based on

an IR image of an area. Unknown parameters are estimated using temperature mea-

surement data and image reconstruction algorithms. Thus, defects can be characterized

by estimated parameters which are material properties in this case.

The implementation of thermal tomography for quantitative defect characteriza-

tion in electronic packages faces three major challenges. First, the spreading effect due

to different IHS and die sizes leads to the loss of thermal signal. Second, estimating

material properties from temperature measurement data constitutes an inverse prob-

lem that is typically ill-posed, and the solutions’ existence, stability, and uniqueness

might not be all satisfied. Therefore, the image reconstruction algorithm used must be

able to overcome these challenges. Lastly, there is a practical difficulty associated with

powering the die for a very short time as the heat sink is removed to capture thermal

images.

1.2. Literature Survey

1.2.1. Non-destructive Testing Techniques

X-ray imaging is one of the earliest methods in IC package inspection [9]. An

X-ray is sent from a source to a receiver, based on interaction of X-ray photons with the
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package and signal received by a detector, an image of package is constructed reflecting

the elemental composition of the material and and the geometry of the package. Defects

in the package can be observed from the images qualitatively [10], or quantitative data

can be generated with the help of image processing tools.

Scanning acoustic microscopy creates visual images of differences in the mechan-

ical characteristics of an electronic package by using acoustic waves as a source. The

transducer, which transforms electrical signals into acoustic signals, is the essential

component of an acoustic microscope. The acoustic waves are focused and transmitted

to the package via a couplant, usually distilled water or alcohol. The couplant conveys

an effective ultrasonic propagation to the electronic package in this case. When the

emitted acoustic waves interact with the package, part of the waves reflect to the trans-

ducer while others are transmitted [11]. Defects such as delaminations and voids lead

to air gaps, and ultrasound cannot travel through the air, leading to the identification

of the defect [12].

Figure 1.1. Schematic image of an example IR imaging inspection for IC packaging.

Infrared imaging is one of the most widely used NDT technologies for material

assessment. The IR imaging method’s primary operating premise is to detect the

emission from the surface within IR wavelengths and capture the surface’s temperature

distribution [13]. The IR imaging method has been used to inspect IC packaging for

almost half a century [14,15], and it has become a practical NDT technique to examine
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electronic packaging since then [5, 16–18]. Either the die is powered up or an external

heat flux is applied to evaluate the temperature response at the top surface of IHS via

an IR camera. Heat penetrates the IC package over time, while subsurface defects alter

heat flow. In this way, IR imaging can qualitatively detect defects in the IC package.

The schematic diagram of an example IR imaging method is illustrated in Figure 1.1.

These above-mentioned non-destructive techniques produce qualitative outcomes,

and they should be considered complementary solutions. X-ray inspection is promising

to detect voids with a resolution at the micron level, and it is suitable for an in-line

application. However, it has a long processing time in the order of hours [10]. SAM

inspection has poor sensitivity to edge defects due to the so-called edge effect, which is

the distortion of reflections from the edge [19]. Also, it is not convenient for an in-line

application. The benefits of IR imaging are ease of setup procedure, its direct relation to

thermal behavior, and rapid application for extensive area assessment. Nevertheless,

the defect image acquired by IR imaging might not be totally apparent because of

lateral heat dissipation [17].

Thermal tomography is a thermal imaging method that uses a thermal signal

that diffuses through the characterized object and allows qualitative and quantitative

examination. Previous studies revealed that thermal tomography is suitable for fast,

comprehensive, and low-cost detection [2, 20], and it can be used for medical [21] and

materials science [22,23] applications. Even though thermal diffusion rate can restrain

the precision of defect characterization, research on the quantitative non-destructive

characterization of defects using thermal tomography is still progressing [24].

Thermal tomography can be implemented coupled with IR imaging in electronic

packaging. The test vehicle is heated either by providing power to die or applying

an external heat flux. Then the temperature data can be taken by high-speed IR

cameras from the top of the surface. These temperature measurements are used in

image reconstruction algorithms to estimate the unknown material properties, which

characterize defects in electronic packaging.
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1.2.2. Algorithms to Solve Inverse Heat Transfer Problems

Thermal tomography technique typically involves a problem classified as an in-

verse heat transfer problem (IHTP). Direct heat transfer problems are primarily con-

cerned with determining the temperature distribution when the initial and boundary

conditions, heat generation rates, and thermophysical properties are known. In op-

position to direct heat transfer problems, IHTPs are concerned with estimating the

unknown characteristic parameters such as boundary conditions, heat generation, and

thermophysical properties by using internal or surface temperature measurements. Di-

rect heat transfer problems are mathematically classified as well-posed, as the condi-

tions of existence, stability, and uniqueness are all satisfied for their solutions with the

input data. On the other hand, IHTPs are typically ill-posed, which means that the

solutions’ existence, stability, and uniqueness might not be all satisfied.

While the existence of a solution for an IHTP can be ensured, the uniqueness

condition can be mathematically proven only for some particular instances. However,

the unavoidable random errors (noise) in the measurements might induce a dramatic

change in the estimated unknowns leading to issues related to stability. As a result,

specific approaches are necessary to handle the stability issues for an IHTP solution [25].

Inverse heat transfer problems can be classified according to the mode of heat

transfer; conduction, convection, radiation, or a combination of these. An alterna-

tive categorization considers the estimated parameter in the problem; boundary con-

dition estimation problems, initial condition estimation problems, source estimation

problems, geometry estimation problems, and material property estimation problems.

Conduction is the primary heat transfer mechanism in the thermal tomography prob-

lem presented here, and the resulting inverse heat conduction problem (IHCP) is about

estimating the thermal properties of a material in this study.

Inverse heat conduction studies started in the late 1950s with the pioneering

engineering work by Shumakov [26] in the Soviet Union. It became known in the USA
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by the work published by Stolz [27] in 1960. For years, the IHCPs were assumed

to be insolvable, or the outcomes were considered to be meaningless when any of

the conditions mentioned above were not satisfied. Thus, there was a loss of interest

among engineers, physicists, and mathematicians for the solution of IHCPs [28]. It was

Tikhonov’s regularization technique [29,30], Alifanov’s iterative regularization methods

[28, 31], and Beck’s parameter estimation [32] approach that showed the solution of

IHCPs possible.

With the availability of high speed and large capacity computers, many scholars

have proposed various new techniques for a successful solution of IHCPs during the

last decades. Regarding the defect characterization, Siavashi et al. [33] applied the

conjugate gradient method (CGM) to spot the two-dimensional flaws with various

geometries and sizes in a specimen under the steady-state heat conduction. They

analyzed the effect of the initial guesses and the number of measurement points on the

defect characterization.

Huang and Chaing [34] used the steepest descent method (SDM) in a three-

dimensional thermal tomography problem to characterize the shape of the unknown

surface. Three test cases are used to evaluate the validity of thermal tomography,

each with a different initial guess and measurement error. Fan et al. [35] utilized the

Levenberg-Marquardt method (L-MM) to specify the size, depth and thermal conduc-

tivity of a subsurface defect, and the influence of the measurement errors, defect depth,

and material’s thermal conductivity on the defect characterization results.

Ertürk [24] evaluated the iterative perturbation method, Levenberg-Marquardt,

and Regularized Newton-Gauss algorithms for non-destructive characterization of ther-

mal interfaces for electronic packages. It is shown that all three methods can estimate

the void distribution within the thermal interface, and if the number of measurements

taken at different times is high enough, all three algorithms’ prediction accuracy, con-

vergence rate, and computational effort are comparable. The study uses a simplistic

geometry in which the heat spreading effect is not considered.
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Öner and Ertürk [36] investigated the feasibility of thermal tomography for an

electronic package, where the spreading effect is considered due to different sized IHS

and die. The study aims to identify defects in TIM quantitatively by detecting void lo-

cation and size following the formulation outlined by Ertürk [24]. Öner and Ertürk [36]

used L-MM as an image reconstruction algorithm to solve the resulting IHCP. The

results show that the method is useful to identify defects causing more significant tem-

perature differences in the thermal performance test. However, the study has limited

resolution for void fractions due to L-MM’s computationally expensive calculation of

Jacobian matrix that shows the effect of change in void fraction distribution on the

temperature distribution of the system. Therefore, the Jacobian size increases quadrat-

ically as finer resolution grids are selected, leading to a higher computation time.

Besides widely used gradient-based optimization algorithms, some metaheuris-

tics for solving IHCPs are also available in the literature. Divo et al. [37] employed

genetic algorithm (GA) to specify the subsurface defects in a two-dimensional heat-

conducting specimen using the temperature measurements from the IR image. Genetic

algorithm is a global search algorithm, and the main drawback of this technique is its

long computation time during the search process. For a three-dimensional problem,

this shortcoming will be more significant. Kou et al. [38] applied a bacterial colony

chemotaxis algorithm and the radial basis function neural network to identify the defect

parameters. The accuracy of characterization depends mainly on a significant quantity

of experimental data, and the adaptability of this method is not decisive.

One of the more recent methods for handling ill-posed IHCPs is fuzzy inference

method (FIM) presented by Wang et al. [39], which is an approach based on fuzzy

logic theory. The results show that FIM can successfully estimate the unknown pa-

rameters and effectively reduce dependency on the number of measurement points,

initial guesses, and temperature measurement errors. Also, this method does not use

the Jacobian matrix to calculate the effect of the change in void fraction distribution

on the temperature distribution of the system.
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1.2.3. Fuzzy Inference Method

Fuzzy logic is a form of many-valued logic in which the truth value of variables

range between 0 and 1, contrasting with traditional Boolean logic. It is used to deal

with the concept of partial truth, in which the truth value may range between com-

pletely true and completely false. Fuzzy logic was introduced by Lotfi Zadeh [40] in

1965, and it arises from the observation that people can make decisions based on impre-

cise and non-numerical knowledge. Fuzzy models are mathematical means of referring

to ambiguity and imprecise information, as it can be understood from the word fuzzy.

These models are capable of recognizing, representing, processing, interpreting, and

utilizing data that are ambiguous and contain uncertainty.

Fuzzy inference is a method that interprets the values in the input vector and

assigns values to the output vector based on specific sets of rules relating quantitative

information to qualitative. Fuzzy inference systems have been successfully performed

in several engineering fields, such as automatic control, data classification, and deci-

sion analysis [41]. However, its application in inverse heat conduction studies is quite

limited.

Wang et al. [39] used fuzzy inference process to estimate the unknown boundary

condition of an IHCP. A decentralized fuzzy inference (DFI) method is used for the

two-dimensional steady IHCP, where the finite difference method is used to model heat

conduction. The results are compared with those predicted by L-MM. The comparison

shows that the DFI method has higher prediction accuracy than L-MM when there

are few measurement points, poor initial guesses, and large temperature measurement

errors.

Although the finite difference method and the finite element method are widely

used discretization approaches for modeling, their mesh-dependent characteristics re-

quire substantial computational effort when a high number of grids are needed. Li et

al. [42] used the DFI method to solve an IHCP using the boundary element method
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for modeling, transforming heat conduction equations into boundary integral equa-

tions to prevent this issue. The boundary element method only discretizes the system

boundary, which reduces the computation time required for the solution of the direct

problem. The results predicted by DFI are compared with those predicted by CGM.

The outcome is similar to the previous study regarding the dependency on the number

of measurement points, initial guesses, and temperature measurement errors.

Wang et al. [43] proposed a double decentralized fuzzy inference (DDFI) method

to estimate time-dependent unknown boundary conditions. A two-dimensional tran-

sient IHCP is solved, and the results are compared with the dynamic matrix control

method. The study shows that the DDFI method predicts more accurately than the

dynamic matrix control method when there are large temperature measurement errors.

After two-dimensional and transient IHCPs, Wang et al. [44] used the DFI method

to solve a three-dimensional steady-state IHCP. The impacts of different functional

forms of the heat flux distribution, initial condition guesses, and measurement errors

are also observed and compared with CGM. The DFI method has higher prediction

accuracy than CGM when there are few measurement points, poor initial guesses, and

large temperature measurement errors.

The most recent study using the fuzzy inference method to identify a three-

dimensional subsurface defect is by Wang et al. [45]. The problem is solved using the

finite element method. It is simply a steady-state conducting cuboid specimen with a

three-dimensional subsurface defect. The effects of the defect size and shape, the initial

guess value, the number of measurement points, and the temperature measurement

errors on the characterization results are studied and compared with L-MM. The results

show that the prediction accuracy of FIM depends less on the factors mentioned above,

with fewer iterations and less computation time.
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1.3. Objective

Various NDT techniques such as X-ray and SAM are used for defect character-

ization in electronic packages. These qualitative approaches are promising to detect

voids with a resolution at the micron level. However, they require high-cost devices

and a long processing time. Thermal tomography is proposed as a low-cost and rapid

alternative to these qualitative approaches and allows qualitative and quantitative ex-

amination. Thermal tomography is performed on a flip chip electronic package in which

the spreading effect is considered due to different sized IHS and die in this study. The

package is heated by applying power to the die, and the measured response is the

temperature distribution obtained by temporal IR camera readings from the top sur-

face of IHS. The objective of this study is to quantitatively identify defects in TIM

by detecting void location and size. The fuzzy inference method is proposed to solve

the resulting inverse problem because it does not include computationally expensive

calculation of Jacobian matrix, and it is expected to detect smaller voids by reaching

higher grid resolution than similar studies.
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2. PROBLEM DESCRIPTION AND FORMULATION

2.1. Problem Description

As mentioned earlier, a large number of packages are produced and tested to

identify optimum process parameters during the assembly process development. A flip

chip electronic package with an air-cooled heat sink used for a thermal performance

test is shown in Figure 2.1. If the measured thermal resistance of the package is higher

than the targeted specification during the test, the package is assumed to have a defect

to be identified, and the problem in the process must be identified and fixed.

Figure 2.1. A standard electronic package used in regular development test (Test-1).

Qualitative methods such as X-ray and SAM are used to determine defects in

the interface layer during process development. As it is proposed to identify defects

quantitatively using thermal tomography, another test is performed on the package, as

shown in Figure 2.2.

Thermal tomography test (Test-2) consists of two simultaneous steps: heating

the package with no cooling solutions attached and recording the thermal image over

the IHS surface using an IR camera. A constant uniform die power of 90 W is applied

for 100 ms to heat the package, and the heat sink used in the standard electronic
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package is removed to capture IR images. Instead, the air moved by a fan is directed

over the IHS to provide cooling, with an effective heat transfer coefficient (heff ) of 100

W/(m2 K) that is typical for forced convection of air. Thermal images of the IHS top

surface are recorded with 10 ms intervals during 100 ms of heating. These images are

utilized to characterize TIM1 layer using a fuzzy inference algorithm.

Figure 2.2. An electronic package used in thermal tomography (Test-2).

This study aims to introduce the concept theoretically, utilizing numerical sim-

ulations rather than experiments. The simplified geometry of electronic package in

thermal performance test (Test-1) and in thermal tomography test (Test-2) with the

boundary conditions considered are shown in Figure 2.3 and Figure 2.4, respectively.

In Test-1, the heat sink is modeled only with its base, and an effective heat

transfer coefficient (heff ) of 1600 W/(m2 K) is applied that represents the effect of a

typical heat sink. A constant uniform die power of 90 W is applied until the system

reaches steady state. The ambient temperature is considered to be 20 °C in both tests.

Dimensions and thermophysical properties of the package components [46] are shown in

Table 2.1 where k is thermal conductivity, ρ is density, and cp is specific heat capacity.
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Figure 2.3. Simplified geometry of electronic package in Test-1 (shown in two

dimensions, not to scale).

Figure 2.4. Simplified geometry of electronic package in Test-2 (shown in two

dimensions, not to scale).
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Table 2.1. Dimensions and thermophysical properties of the package components.

Component Material
Dimensions

[mm3]

k

[W/m-K]

ρ

[kg/m3]

cp

[J/kg-K]

Die Silicon 10x10x0.55 141.2 2330 700

TIM1 G1 [46] 10x10x0.1 5 2500 876

IHS Copper 20x20x1.05 400 8960 390

TIM2 G9 [46] 20x20x0.2 2.87 2500 767

Heat Sink Copper 60x60x5.5 400 8960 390

2.2. Direct Problem Formulation

Direct problem is solved to simulate thermal tomography temperature measure-

ment data, and it can be formulated by the heat conduction equation for the model

shown in Figure 2.4:

∇[k(r)∇T (r, t)] = C(r)
∂T (r, t)

∂t
, (2.1)

where T is temperature, k is thermal conductivity, C is volumetric heat capacity, and

r =
[

x y z
]T

. The initial condition is defined as:

T (r, 0) = T∞, (2.2)

where T∞ is the ambient temperature.

The boundary condition equations are given as below where q′′(x, z) is heat flux

and heff is the convective heat transfer coefficient to the moving air over the IHS:

−k (r)

(

∂T

∂y

)

y=0

= q′′(x, z) , |x| ≤
Lx,die

2
, |z| ≤

Lz,die

2
, (2.3)

(

∂T

∂y

)

y=0

= 0 , |x| >
Lx,die

2
, |z| >

Lz,die

2
, (2.4)
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(

∂T

∂y

)

y=0

= 0 , |x| >
Lx,die

2
, |z| >

Lz,die

2
, (2.5)

(

∂T

∂x

)

x=±
Lx

2

= 0 , 0 ≤ y ≤ Ly , |z| ≤
Lz

2
, (2.6)

(

∂T

∂z

)

z=±
Lz

2

= 0 , 0 ≤ y ≤ Ly , |x| ≤
Lx

2
, (2.7)

−k (r)

(

∂T

∂y

)

y=Ly

= heff [T (r, t)− T∞] , |x| ≤
Lx

2
, |z| ≤

Lz

2
. (2.8)

Interface boundary conditions are as follows:

−ki (r)

(

∂T

∂x

)

x=L
x,i−

= −kj (r)

(

∂T

∂x

)

x=L
x,i+

, (2.9)

−ki (r)

(

∂T

∂y

)

y=L
y,i−

= −kj (r)

(

∂T

∂y

)

y=L
y,i+

, (2.10)

−ki (r)

(

∂T

∂z

)

z=L
z,i−

= −kj (r)

(

∂T

∂z

)

z=L
z,i+

, (2.11)

T
(

x, y, Lz,i− , t
)

= T
(

x, y, Lz,i+ , t
)

, (2.12)

T
(

x, Ly,i− , z, t
)

= T
(

x, Ly,i+ , z, t
)

, (2.13)

T
(

Lx,i− , y, z, t
)

= T
(

Lx,i+ , y, z, t
)

, (2.14)

where (i,j) pairs are (die,TIM), (TIM,IHS), (air,IHS) for Equation (2.10), and (air,die),

(air,TIM) for Equation (2.9) and Equation (2.11). Lx,i− and Lx,i+ denote values ap-

proaching Lx,i from +x and −x directions, respectively. The same is valid for Ly,i and

Lz,i.

Void properties are set equal to those of air in this study. Also, this study defines

a void fraction to save computational time by defining kTIM and CTIM in terms of void

fractions. The void fraction in a control volume is defined as follows:

ϕ =
Vv

V
, 0 ≤ ϕ ≤ 1, (2.15)



17

where ϕ is the void fraction, and Vv is the volume of the void in a control volume V .

There are different alternatives to model the heat capacity and the thermal conductivity

of TIM. Volume fraction mixture theory [47] is chosen to calculate TIM’s heat capacity

and thermal conductivity as follows:

CTIM = Cvϕ+ (1− ϕ)CTIM,ideal, (2.16)

kTIM = kvϕ+ (1− ϕ) kTIM,ideal, (2.17)

where kv and Cv are the thermal conductivity and the heat capacity of void, respec-

tively.

The temperature distribution of the system can be found for a given void fraction

distribution since the governing equation, initial condition, boundary equations, and

material properties are all known in the direct heat conduction problem. Different

numerical solution methods can be used to solve the direct problem [48].

In this study, the system shown in Figure 2.3 is modeled and solved using com-

mercial finite volume software ANSYS Icepak due to its ease of use, whereas the system

shown in Figure 2.4 is modeled using a developed MATLAB code. In the code, the

rectangular domain with dimensions Lx × Ly × Lz is divided into N = Nx ×Ny ×Nz

sub elements with (Nx + 1) × (Ny + 1) × (Nz + 1) volumes. Die, TIM, IHS, and air’s

thermal conductivity and heat capacity are assigned to these volumes according to

their location. Then, the finite volume method is used with implicit formulation to

solve the transient heat transfer problem. The equations of the finite volume method

are equivalent to the equations of the finite difference method in this problem. The

MATLAB code developed is used to solve the direct problem for the thermal tomog-

raphy test as thermophysical properties to each volume can be assigned in the code.

Besides, it can reach solutions faster than commercial finite element software such as

COMSOL Multiphysics. This feature is essential considering that the direct problem

is solved repeatedly during the inverse problem solution through iterations.



18

2.3. Verification of Direct Problem Solution

A verification study for modeling the heat capacity and the thermal conductivity

of TIM is carried out to validate the accuracy of the volume fraction mixture the-

ory [47]. First, an actual void with 0.1 mm3 volume is added to the center of the TIM,

and the direct problem explained in Section 2.2 is modeled and solved using ANSYS

Icepak. Then, a 0.33 void fraction is assigned to a volume of 0.3 mm3 at the center of

the TIM. The heat capacity and the thermal conductivity of TIM are calculated using

Equations (2.16) and (2.17), and the direct problem explained in Section 2.2 is modeled

and solved using ANSYS Icepak. Temperature variation over the IHS is obtained for

both cases, and their difference is shown in Figure 2.5. The maximum difference is

0.058 °C, indicating that predictions of the volume fraction mixture theory show good

agreement with the actual void case.

Figure 2.5. Difference of temperature distributions over the IHS between the volume

fraction mixture theory and the actual void cases (t=100 ms).
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Figure 2.6. Temperature variation comparison at the bottom surface of the die at

t=100 ms along the x-axis (y=0, z=0) for MATLAB and ANSYS Icepak.
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Figure 2.7. Temperature variation comparison over the IHS at t=100 ms along the

x-axis (y=1.7 mm, z=0) for MATLAB and ANSYS Icepak.
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A verification study for the MATLAB code developed is also carried out to val-

idate the accuracy of the direct problem solution. The direct problem explained in

Section 2.2 is modeled and solved using a commercial software ANSYS Icepak to com-

pare the results obtained by MATLAB code. Temperature variations at the bottom

surface of the die for both MATLAB and ANSYS Icepak solvers are shown in Fig-

ure 2.6. Maximum die temperatures for MATLAB and Icepak are found as 50.8 ◦C

and 50.7 ◦C, respectively. Temperature variation over the IHS for MATLAB and AN-

SYS Icepak solvers is also shown in Figure 2.7. Predictions of the MATLAB code show

good agreement with the ANSYS Icepak results and underline the verification of the

MATLAB model.

2.4. Inverse Problem Formulation

The simulated temperature measurements are obtained from the upper surface

of IHS by solving the direct problem mentioned above. Then, a total of M = Mx ×

My temperature measurement points can be uniformly selected. These temperature

measurement points are defined as:

Tmea
m,s =

















Tmea
1,1 Tmea

1,2 . . . Tmea
1,S

Tmea
2,1 Tmea

2,2 . . . Tmea
2,S

...
...

. . .
...

Tmea
M,1 αM,2 . . . Tmea

M,S

















, (2.18)

where s and S represent different measurement times and total number of measurement

times, respectively. All measurements are subject to random measurement error due

to the instrument’s measurement uncertainty; an error with a normal distribution is

introduced to the solution of the direct problem for establishing Tmea
m,s .

Similarly, a total of G = Gx×Gy×Gz uniformly distributed sub volumes are con-

sidered in TIM. These sub volumes are where void fractions have represented. The IHS

upper surface temperature field can be determined, represented as T cal
m,s(ϕ

n
g ) for a given
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void fraction vector ϕn
g = [ϕn

1
, ϕn

2
, · · · , ϕn

G
]T and thermal boundary conditions by

solving the direct problem again.

The inverse problem is the estimation of void fractions by iterations using the

M measured temperature points for S measurement times to minimize the objective

function defined as follows:

J(ϕn
g ) =

M
∑

m=1

S
∑

s=1

(

T cal
m,s(ϕ

n
g )− Tmea

m,s

)2

. (2.19)
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3. METHODOLOGY

3.1. Fuzzy Inference Method

The inverse property estimation for identifying the void fraction distribution in

TIM by the fuzzy inference method is shown in Figure 3.1 as a block diagram. The

system includes a set of one-dimensional fuzzy inference units (FIUm) which carry

out the fuzzy inference process to generate the fuzzy inference results ∆um by using

the temperature deviation em(ϕ
n
g ) = [e1, e2, · · · , eM ]T at each mth measurement

point. The equation for the temperature deviation calculation is given below:

em,s(ϕ
n
g ) = T cal

m,s(ϕ
n
g )− Tmea

m,s , (3.1)

em(ϕ
n
g ) =

1

S

S
∑

s=1

em,s, (3.2)

where T cal
m,s(ϕ

n
g ) and Tmea

m,s represent the calculated and measured temperature at the

mth measurement point for sth measurement time, respectively.

Figure 3.1. Block diagram for the decentralized fuzzy inference system (Adapted

from [44]).
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First, the fuzzification process is performed in the FIM. The domains of the in-

put variable em and the output variable ∆um for the decentralized FIUm are set as

[−pe, pe] and [−pu, pu], respectively. Seven fuzzy sets are separately defined for in-

put variable em and output variable ∆um. These fuzzy sets are labeled in the same

linguistic terms of negative big (NB), negative medium (NM), negative small (NS),

zero (ZO), positive small (PS), positive medium (PM), and positive big (PB). The

membership degrees of these fuzzy sets can be determined using the triangle functions

which are shown in Figure 3.2 [39].

Figure 3.2. Membership functions of (a) em and (b) ∆um for fuzzy sets.

As a next step, fuzzy inference rules are identified and performed. The rules are

chosen according to the qualitative knowledge of the heat conduction process. When

only considering error at the mth measurement point, if em > 0, it means that the cal-

culated temperature at the mth measurement point, T cal
m , is higher than the measured
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temperature, T cal
m . In this case, the guessed void fraction should be increased to mini-

mize the error, em; in other words, the fuzzy inference should result in ∆um > 0. Also,

for bigger values of em, the guessed void fraction must be increased more accordingly,

or vice versa. The fuzzy inference rules of FIUm for this study are listed in Table 3.1.

Table 3.1. Fuzzy inference rules.

em NB NM NS ZO PS PM PB

∆um NB NM NS ZO PS PM PB

The most commonly used fuzzy inference method, the Max-Min inference engine,

or Mamdani inference engine [49] is used to calculate the fuzzy set B of ∆u∗

m at the

domain [−pu, pu]:

γB (∆u∗

m) =
7

max
l=1

{min [γAl
(em) , γBl

(∆u∗

m)]} , (3.3)

where γAl
(em) and γBl

(∆u∗

m) are the membership degree of em and ∆um, respectively.

Finally, defuzzification procedure is employed to obtain each ∆um. The fuzzy

inference result ∆um for the corresponding temperature deviation em is obtained by

the center of gravity method [50] as follows:

∆um =

∫ pu

−pu
γB (∆u∗

m)∆u∗

md∆u∗

m

∫ pu

−pu
γB (∆u∗

m) d∆u∗

m

, (3.4)

where each ∆um is calculated by Fuzzy Logic Toolbox in MATLAB.

The inference result ∆um of FIUm is the compensation for the guessed void frac-

tion of all sub volumes when only the mth measured temperature is considered. In

reality, the void fraction at all sub volumes affects the temperature at more than one

measurement points. Thus, the temperature at all measurement points should be
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considered synthetically to adjust the guessed void fraction at all sub volumes. The

adjustments to the void fraction profile at all sub volumes can be calculated as follows:

















∆ϕ1

∆ϕ2

...

∆ϕG

















=

















α1,1 α1,2 . . . α1,M

α2,1 α2,2 . . . α2,M

...
...

. . .
...

αG,1 αG,2 . . . αG,M

































∆u1

∆u2

...

∆uM

















, (3.5)

where αg,m is the weighting coefficient, and its sum must be equal to 1.

The weighting coefficient αg,m denotes the impact of ϕg at the gth sub volume

on the temperature at the mth measurement point. This study follows a weighted

approach with the three-dimensional normal distribution that specifies the weighting

coefficient αg,m as follows:

αg,m =
exp

{

−
[

(xg − xm)
2 /θ2

1
+ (yg − ym)

2 /θ2
2
+ (zg − zm)

2 /θ2
3

]}

M
∑

m=1

exp
{

−
[

(xg − xm)
2 /θ2

1
+ (yg − ym)

2 /θ2
2
+ (zg − zm)

2 /θ2
3

]}

, (3.6)

where (g = 1, 2, . . . , G), (m = 1, 2, . . . ,M), x, y, z are the coordinates of sub volumes

and measurement points, and θ1, θ2, θ3 > 0 are the variation coefficients of the three-

dimensional normal distribution.

After weighting and synthesizing the fuzzy inference results, the guessed void

fraction distribution is updated as following:

ϕn
g = ϕn−1

g +∆ϕg (g = 1, 2, · · · , G), (3.7)

where n denotes for the number of iterations.

The stopping criterion applied in the inverse estimation process is shown as fol-

lows:
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J(ϕn
g ) =

M
∑

m=1

S
∑

s=1

(

T cal
m,s(ϕ

n
g )− Tmea

m,s

)2

≤ E , (3.8)

where convergence criteria E is a specified small positive number. The convergence

criteria is chosen as E=0.01 °C2 for problems using simulated data with no random

error, and E = M ×S×σ2 for problems using simulated data with random error intro-

duced based on a standard deviation σ. The solution algorithm for FIM is presented

in Figure 3.3.

(i) Initial guess: ϕ0

g, n=1

(ii) T cal
m,s(ϕ

0

g) from Equations (2.1)-(2.17)

(iii) J(ϕ0

g) from Equation (2.19)

(iv) While (J(ϕn−1

g ) > E)

(a) ∆um from Equations (3.1)-(3.4)

(b) αg,m from Equation (3.6)

(c) ∆ϕg from Equation (3.5)

(d) ϕn
g from Equation (3.7)

(e) T cal
m,s(ϕ

n
g ) from Equations (2.1)-(2.17)

(f) J(ϕn
g ) from Equation (2.19)

(g) n = n+ 1

Figure 3.3. Fuzzy Inference Method.
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4. RESULTS AND DISCUSSIONS

4.1. Grid Independence Study

All numerical simulations are subject to discretization error due to the use of

a finite number of grid points. It is essential to verify that the solution of a numer-

ical problem is insensitive to the grid resolution; therefore, a grid refinement study

should be carried out [51]. For this purpose, simulations with different mesh sizes are

performed and compared for Test-1 and Test-2. The Grid Convergence Index (GCI),

which is one of the most common grid refinement methods proposed by Roache [52],

is used to verify the grid independence of numerical models.
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Figure 4.1. The results of grid refinement study on temperature variation at the

bottom surface of the die along the x-axis (y=0, z=0) for Test-1.

In Test-1, the problem is modeled and solved using ANSYS Icepak. The grid

refinement study is performed for coarse, medium, and fine meshes using the hex-

dominant mesher consisting mainly of hexahedral elements. The details for three mesh

types are given in Table 4.1, along with the maximum die temperatures Tj for all cases.
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Table 4.1. Mesh details of Icepak model for Test-1.

Grid Type

Maximum

Element Size

[mm]

Total Node

Number

Tj

[◦C]

Fine 0.25 4588399 89.49

Medium 0.5 1156639 89.52

Coarse 1 293959 89.60

Temperature variation at the bottom surface of the die for all cases is presented in

Figure 4.1 to compare the results of different mesh types in Test-1. All three cases ex-

hibit the same trend in terms of temperature variation, and the results show a tendency

to converge as the mesh type goes from medium to fine. The junction temperatures,

Tj, and the total number of nodes given in Table 4.1 are used to calculate GCI values.

For fine and medium grids, GCI12 is calculated as 0.025, while for medium and coarse

grids, GCI23 is found as 0.067. Therefore, the grids are in the asymptotic range of

convergence, and the Icepak model solved in Test-1 is considered grid independent.
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Figure 4.2. The results of grid refinement study on temperature variation over the

IHS at t=100 ms along the x-axis (y=1.7 mm, z=0) for Test-2.
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In Test-2, the problem is modeled and solved using the developed MATLAB code.

The grid refinement study is performed for coarse, medium, and fine meshes using a

rectangular prism shaped elements with (Nx + 1) × (Ny + 1) × (Nz + 1) nodes. The

details for three mesh types are given in Table 4.2, along with the maximum die tem-

peratures Tj for all cases.
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Figure 4.3. The results of grid refinement study on temperature variation at the

bottom surface of the die at t=100 ms along the x-axis (y=0, z=0) for Test-2.

Temperature variation over the IHS and at the die bottom surface for Test-2 are

presented in Figure 4.2 and 4.3, respectively. In Figure 4.2, the temperature distri-

bution is identical for all mesh types, and Figure 4.3 illustrates that the temperature

distributions of different meshes show the same trend. Also, GCI12 is calculated as

0.012 for fine and medium grids, while GCI23 is found as 0.037 for medium and coarse

grids using the junction temperatures and the total number of nodes given in Table 4.2.

As a result, the grids are found in the asymptotic range of convergence, and the de-

veloped MATLAB model solved in Test-2 is regarded as grid independent. In this

research, fine meshes are employed for both tests.



30

Table 4.2. Mesh details of the developed MATLAB model for Test-2.

Grid Type

Maximum

Element Size

[mm]

Total Node

Number

Tj

[◦C]

Fine 0.53 27378 50.81

Medium 0.77 13122 50.82

Coarse 1.11 6498 50.85

4.2. Temperature Measurement Simulations

The temperature measurement data, which is supposed to be evaluated by actual

testing devices, is simulated by solving the direct heat transfer problem for a given

void fraction in this research. First, the effect of voids in the thermal performance

test (Test-1) is investigated to see whether the voids have an apparent impact on the

temperature distribution of the package.

Figure 4.4. Actual void fraction distribution across TIM1.
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Table 4.3. Individual effects of voids on thermal performance test (Test-1).

Void 1 Void 2 Void 3 Void 4 Void 5

∆Tj [°C] 0.1 0.2 1.7 0 1

∆Tlocal [°C] 1.1 2.7 1.7 1.9 3.3

Void fraction distribution across TIM1, which is to be identified by the thermal

tomography test (Test-2), is illustrated in Figure 4.4. The effects of five voids on the

temperature increase in Test-1 are investigated one at a time before examining their

combined effect together. Table 4.3 shows how much the maximum die temperature

and the temperature at the void location increase for each void. Relatively small voids

such as Void 1 and Void 4 cause a smaller temperature increase than the larger ones like

Void 5. It can be seen that the locations of voids also play a significant role in junction

temperature increase. For instance, Void 2 creates a considerable local temperature

increase at its center; however, it does not make a noticeable difference in the junction

temperature. The voids that do not considerably increase the junction temperature

show that their effects on the thermal performance test are less significant than the

others. However, identifying these voids is substantial in terms of discovering the limits

of the proposed method.

Thermal performance test (Test-1) is conducted by following the procedure ex-

plained in Section 2.1. The simplified model illustrated in Figure 2.3 is solved using

ANSYS Icepak with voids shown in Figure 4.4 and without voids. The comparison of

these two cases is shown in Figure 4.5 by means of temperature distribution at the die

bottom surface. Figure 4.5 indicates that the maximum die temperature increases by

2.1 °C for the case with voids.

Considering the voids have a measurable impact on the temperature distribution

of the die during the thermal performance test, the identification of void locations and

sizes is required through the thermal tomography test (Test-2). Thermal tomography

test follows the procedure explained in Sections 2.1 and 2.2. The simplified model
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illustrated in Figure 2.4 is solved with assigned void fractions given in Figure 4.4 using

the developed MATLAB code. The temperature distribution over the IHS is recorded

with 10 ms intervals during the solution of the direct problem. These recordings, also

referred to as simulated measurements, are used in place of experimental data for eval-

uating the proposed method, which is supposed to be captured by an IR camera.

Figure 4.5. Temperature distribution of the die bottom surface (y=0) in Test-1 (a)

without voids and (b) with five voids.

Figure 4.6 illustrates simulated temperature measurements with 10 ms intervals.

All measurements are subject to random measurement error due to instrument’s mea-

surement uncertainty, which makes it very challenging to solve inverse problems due to

their instable nature. Scientific cameras with photon-based and cryogenically cooled

detectors have a measurement uncertainty of σ = 0.02 °C, with 95% of the random error

lying within ±2σ [53]. A random measurement error based on a Gaussian distribution

with a standard deviation of σ = 0.02 °C is introduced to simulated measurements to

produce the synthetic measurement data. Synthetic measurement data is illustrated

in Figure 4.7, with 99.7% of the introduced random error lying within ±3σ.
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Figure 4.6. Simulated measurements of IHS temperature distribution for the case

including voids without introducing measurement errors.
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Figure 4.7. Synthetic measurement data obtained by introducing random error to

simulated measurements (σ = 0.02 °C).
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4.3. Void Fraction Estimation

Temperature measurements illustrated in Figures 4.6 and 4.7 are used to quan-

titatively characterize voids in TIM by estimating the void fractions using the fuzzy

inference method. A constant uniform die power of 90 W is applied for 100 ms to heat

the package. The power map is a constant uniform heat flux q′′(x, z) of 90 W/cm2 ap-

plied to the bottom surface of the die as a step function that starts at t=0 ms. Although

power maps used in real-life applications usually have non-uniform and temporal dis-

tribution, a simplified power map function is considered in this study. The period and

duration of measurements (t=10 ms to 100 ms) are chosen to portray system reaction

while preserving the die from overheating. During the thermal tomography test, the

maximum die temperature reaches 53.5 °C, far below the temperatures that the die

gets harmed.

First, the case of simulated measurements without measurement error, as shown

in Figure 4.6, is considered to estimate void fractions within TIM. The solution of this

case is referred to as “inverse crime” as the same model is used for mapping between

the synthetic measurements and its inversion. However, this is a required setup for

testing the method’s reliability before moving on to the more realistic or demanding

example with measurement data containing errors, as shown in Figure 4.7.

A total of 39×39 = 1521 uniformly distributed temperature measurement points,

Tmea
m,s , are selected over the IHS according to the grid independence study explained

in Section 4.1. Similarly, a total of 19 × 19 = 361 uniformly distributed sub volumes,

ϕn
g , are considered in TIM layer. As an initial guess, TIM is considered to be ideal,

which means that there is no void within TIM (ϕ0

g=0). The domains of the input

variable em and the output variable ∆um for the decentralized FIUm are set as pe = 1

°C and pu = 0.2, respectively. The three-dimensional normal distribution weighting

coefficient matrix, αg,m, is calculated with θ1 = θ2 = θ3 = 0.075 variation coefficients.

The convergence criteria, E , is defined as 0.01 for the case of without measurement

error as suggested in [2, 44, 45].
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Figure 4.8. Estimated void fractions in TIM without any measurement error (σ = 0

°C).

Figure 4.9. Ad-hoc filtered estimated void fractions in TIM without any measurement

error (σ = 0 °C).
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Figure 4.8 illustrates estimated void fractions in TIM for the case of simulated

measurements without measurement error. Calculated results are out of the physically

possible range [0,1] for some of the sub volumes. Therefore, ad-hoc filtering is applied

to eliminate this problem by equating values greater than 1 to 1 and values less than

0 to 0. The results are illustrated in Figure 4.9. The average absolute error after the

ad-hoc filtering is 0.033, whereas the maximum absolute error is 0.28 for the case shown

in Figure 4.9. Each iteration uses about 20 seconds with Intel® i5 processor with 1.80

GHz frequency, and the convergence is achieved after 50 iterations.

Figure 4.10. Ad-hoc filtered estimated void fractions in TIM with normally

distributed random measurement error with σ = 0.02 °C.

The same procedure is performed for the synthetic measurement data with a nor-

mally distributed random measurement error with σ = 0.02 °C. Here, the convergence

criteria, E , is calculated according to the discrepancy principle [31] as E = M ×S× σ2

where M , S, and σ represent the number of temperature measurement points, the

number of temperature measurement times, and the standard deviation of the random

measurement error introduced, respectively. Figure 4.10 illustrates the ad-hoc filtered

estimated void fractions in TIM for the case of synthetic measurement data with a
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normally distributed measurement error of σ = 0.02 °C. Convergence is achieved in

less than 30 iterations due to the significant increase in the convergence criteria. In

the meantime, the void fractions are estimated less accurately compared to the case

with no measurement errors. The average absolute error is 0.11, whereas the maximum

absolute error is 0.50 for the case shown in Figure 4.10.

Void fraction estimations for synthetic measurement data with normally dis-

tributed random measurement errors with 2σ and 3σ are also illustrated in Figure 4.11

and Figure 4.12, respectively. The average absolute errors are 0.14 and 0.19, whereas

the maximum absolute errors are 0.55 and 0.67 for the cases with 2σ and 3σ measure-

ment errors, respectively. Convergence is achieved in less than 20 iterations due to a

considerable increase in the convergence criteria for the synthetic measurement data

with 2σ and 3σ errors. However, the prediction accuracy decreases even more than the

case with normally distributed error of σ = 0.02 °C. Also, the voided regions appear

to expand and connect the areas between the actual void locations in all cases except

the “inverse crime” one.

Figure 4.11. Ad-hoc filtered estimated void fractions in TIM with normally

distributed random measurement error with σ = 0.04 °C.



39

Figure 4.12. Ad-hoc filtered estimated void fractions in TIM with normally

distributed random measurement error with σ = 0.06 °C.

Effects of different test parameters should be determined to see the proposed

method’s limits. First, effect of applied die power is investigated. The effect of die

power used for the test for void fraction estimation is compared using 80 W, 90 W, and

100 W die power with 100 ms test duration. The results are illustrated in Figure 4.13.

The average absolute errors are 0.13, 0.14, and 0.14, whereas the maximum absolute

errors are 0.60, 0.55, and 0.55 for the cases using 80 W, 90 W, and 100 W die power,

respectively. The void fraction estimations appear similar in Figure 4.13, and the

average absolute errors are almost identical. Maximum absolute error results show

that the prediction accuracy slightly improves when the die power used for the test

is increased from 80 W to 90 W. However, there is almost no change in void fraction

prediction accuracy when the die power used is increased from 90 W to 100 W. Further

increase in applied die power is expected to improve the estimation accuracy, but it

would restrict the test duration as the die reaches maximum operating temperature

faster. As a result, 90 W die power is selected to be used in the test.
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Figure 4.13. Ad-hoc filtered estimated void fractions in TIM when different die

powers are applied (σ = 0.04 °C).

Figure 4.14. Ad-hoc filtered estimated void fractions in TIM for different test

duration (σ = 0.04 °C).

Similarly, effect of test duration is investigated to see the limits of the proposed

method. The effect of test duration on void fraction estimation is compared using 100

ms, 300 ms, and 500 ms test duration with 10 ms intervals. The results are shown in

Figure 4.14. The average absolute errors are 0.14, 0.12, and 0.12, whereas the maxi-

mum absolute errors are 0.52, 0.53, and 0.54 for the cases with 100 ms, 300 ms, and 500

ms test duration, respectively. During the 500 ms test, the maximum die temperature

reached 83 °C, below the maximum operating temperature. Figure 4.14 shows that the

extension of test duration from 100 ms to 300 ms leads to more accurate prediction re-
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sults. The void fractions around and between the actual voids are observed to decrease,

and the geometry and the size of voids become more distinguishable. More temper-

ature measurement data is obtained with the prolongation of the test period, which

helps to reduce the noise due to random temperature measurement error by increasing

sample size. However, the increase in temperature measurement data obtained causes

little or no change in void fraction estimations after a point. Therefore, 300 ms test

duration is considered for the test.

Figure 4.15. (a) The average temperature difference between the ideal TIM case and

the synthetic measurements with σ = 0.04 °C, (b) zoomed and normalized

temperature difference.

The initial guess choice plays a significant role in the inverse problem solution.

As an initial guess, TIM is considered to be ideal, which means that there is no void

within TIM (ϕ0

g=0) for the simulations presented so far. An improved initial guess

choice is investigated to decrease the number of iterations during void fraction distri-

bution estimation and improve prediction accuracy. First, temperature measurements

of IHS for the package with ideal TIM are calculated. A constant uniform die power

of 90 W is applied for 300 ms to heat the package, and the simulated measurements
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are recorded with 10 ms intervals. Similarly, synthetic temperature measurements of

IHS for the package with five voids are calculated by introducing normally distributed

random measurement error with σ = 0.04 °C. The average temperature difference ∆T

between the ideal TIM case and the synthetic measurements is illustrated in Figure 4.15

(a). It can be observed that the image at the center of Figure 4.15 (a) is similar to

the actual void fraction distribution shown in Figure 4.4. In order to transform this

information into an improved initial guess choice, the average temperature difference

distribution illustrated in Figure 4.15 (a) is zoomed and normalized by dividing each

temperature value by the maximum temperature value. The resulting distribution,

which is to be used as an improved initial guess, is shown in Figure 4.15 (b).

Figure 4.16. Ad-hoc filtered estimated void fractions in TIM using improved initial

guess (σ = 0.04 °C).

Estimated void fraction distribution using the improved initial guess for synthetic

measurement data with normally distributed random measurement errors with σ =

0.04 °C is illustrated in Figure 4.16. The average absolute error after the ad-hoc

filtering is 0.11, whereas the maximum absolute error is 0.53 for the case shown in

Figure 4.16. Although there is only a slight improvement in prediction accuracy, the
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number of iterations during void fraction distribution estimation decreased compared

to the previous initial guess choice. Convergence is achieved in 14 iterations instead of

20 iterations as in the previous initial guess choice. Also, the estimated geometry and

the size of Void 4 become more accurate, as shown in Figure 4.16.

The presented results indicate that the fuzzy inference method can estimate the

void fraction distribution and identify the defects quantitatively by using IR measure-

ments subject to random measurement error. The proposed method can even detect

the smallest void, Void 4, reaching a void resolution of 0.05 mm3. An IR imaging

equipment with a normally distributed measurement error up to ±0.12 °C is required

with a 100 Hz measurement frequency to obtain the data used in this study, which is

feasible with today’s technology [53].
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5. CONCLUSION

Tomography is a robust tool for the non-destructive characterization of systems

utilized in a wide range of applications, from medical applications to materials science.

Thermal tomography is a thermal imaging method that employs a thermal signal that

diffuses into the characterized object. The diffusive character of the thermal signal

makes accurate imaging a demanding problem. Due to the easy accessibility of thermal

imaging devices, thermal tomography can present a cost-efficient and more feasible

alternative to other imaging methods.

The feasibility of thermal tomography for the non-destructive characterization of

defects in a flip chip package is studied numerically in this research. More precisely,

the defects in thermal interface material layer that is referred to as TIM1 are identified

since the flaws in TIM1 have a significant impact on the thermal performance of the

package. The defects are modeled as voids whose properties are considered to be equal

to the air properties in this study.

Thermal tomography application for quantitative defect characterization in a flip

chip package faces two fundamental problems. The first one is the loss of thermal

signal due to the nature of thermal diffusion and the heat spreading effect. The second

one is the ill-posed nature of the thermal tomography problems, which means that the

solution’s existence, stability, and uniqueness might not be all satisfied. Therefore, the

problem’s solution is directly disturbed by the measurement error. The fuzzy inference

method is used as an image reconstruction algorithm to handle these challenges.

The effect of voids in the thermal performance test is examined first to identify

the size of the voids that have a noticeable impact on the temperature distribution of

the package. Then, the thermal tomography test is performed to identify void locations

and sizes.
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In this study, the temperature measurement data, which is meant to be evaluated

by experiments in Test-2, is simulated by solving the direct heat transfer problem for

specified void fractions in TIM1 using the finite volume method with the implicit for-

mulation. These simulated measurements are used to quantitatively characterize voids

in TIM by estimating the void fractions using the fuzzy inference method. The results

indicate that the void fraction estimation becomes considerably less accurate when a

normally distributed random measurement error is introduced to simulated tempera-

ture measurements, especially when a measurement error with a standard deviation of

σ = 0.06 °C is presented. Also, the results are out of the physically possible range of

[0,1] for some of the sub volumes. Therefore, ad-hoc filtering is applied to resolve this

problem.

Different test parameters are also investigated to find their effect on prediction

accuracy and discover the proposed method’s limits. Only minor improvements are

observed as the die power is increased from 80 W to 90 W. 90 W die power is considered

to be used in the test since there is almost no change in prediction accuracy when the die

power used is increased from 90 W to 100 W. The effect of test duration on void fraction

estimation is also investigated by comparing 100 ms, 300 ms, and 500 ms test duration.

Results indicate that the geometry and the size of voids become more noticeable as the

test duration is increased from 100 ms to 300 ms. The accuracy of the fuzzy inference

method improves with increasing the number of images used. However, the increase in

number of images obtained yields little or no change in void fraction estimations after a

certain point. Therefore, 300 ms test duration is considered for the test. An improved

initial guess choice is also investigated. The zoomed and normalized version of the

temperature difference between the ideal TIM case and the synthetic measurements

are calculated. It is used as an initial guess for the void fraction distribution, and the

results indicate that the improved initial guess reduces the number of iterations by

30%.

It is possible to deduce that the fuzzy inference based thermal tomography of-

fers great promise for non-destructive defect characterization in electronic packaging.
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The suggested method requires IR equipment with a random measurement error up

to ±0.12 °C with a 100 Hz measurement frequency. The main advantage of the pro-

posed method is that it does not include the computationally demanding Jacobian

calculation like other gradient-based optimization techniques. Thus, it can reach high

grid resolutions with a less computational load than other gradient-based methods and

detect voids as small as 0.05 mm3. As a future work, the fuzzy inference method’s

validity can be investigated using experimental measurement data instead of simulated

measurements. Also, the fuzzy inference method can be tested with different power

maps instead of the uniform power map used in this study.
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APPENDIX A: VERIFICATION OF FUZZY INFERENCE

METHOD

Verification studies are carried out to compare the results to those reported in

Wang et al. [39,44] to ensure correct implementation of FIM for different problems. In

the first study [39], FIM is used to estimate the unknown boundary temperature for a

two-dimensional steady inverse heat conduction problem. A rectangular system with

constant thermal properties is considered in the problem. The boundaries on the left

and the top are assumed to be insulated, and there is a convection boundary condition

on the right side. The boundary on the bottom maintains at a temperature function

f(x) = −2044x2 + 613x + 100 °C, which needs to be identified using temperature

measurement points on the top. The finite difference method is applied to solve the

direct heat conduction problem. The comparison of unknown boundary temperature

estimation with σ = 0.05 °C standard deviation of the measurement error is shown in

Figure A.1. The results show good agreement with the solution of Wang et al. [39] and

the exact solution.
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Figure A.1. Comparison of unknown boundary temperature estimation (σ = 0.05 °C).
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Another verification study is carried out to test the accurate implementation of

FIM for estimating unknowns when they are step functions. Wang et al. [44] utilized

FIM to estimate the unknown heat flux distribution for a three-dimensional steady

inverse heat conduction problem. A rectangular prism with constant thermal properties

is considered in this problem. There is a convective heat transfer boundary condition

on the right surface. The left surface of the plate is heated by a distributed heat flux

q(x, y), which needs to be identified using measured temperature at points on the right

surface. The other four surfaces are insulated. The finite difference method is applied

to solve the direct heat conduction problem. The exact distributed heat flux qexa(x, y)

is given below:

qexa(x, y) =











2000 W/m2 0.5 < x < 1 m and 0.5 < y < 1 m

0 W/m2 otherwise

, (A.1)

where the comparison of unknown heat flux estimation with σ = 0.1 °C standard de-

viation of the measurement error is shown in Figure A.2. The results are in a good

agreement with the solution of Wang et al. [44] and the exact solution. The permission

for reuse of figures illustrated in Figure A.2 (a) and (b) is shown in Figure A.3.

Figure A.2. (a) Actual heat flux, (b) estimated heat flux by Wang et al. [44], and (c)

estimated heat flux by current study (σ = 0.1).
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Figure A.3. Permission for reuse of Figure A.2 (a) and (b).


