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ABSTRACT 

 

 

SUBSETS OF SLOW DYNAMIC MODES REVEAL GLOBAL 

INFORMATION SOURCES AS ALLOSTERIC SITES 

 

 

 Allostery is a crucial biological regulation mechanism, and dynamic information flow   

offers a framework to characterize allosteric interactions in causal links. Here, using a novel 

application of the Transfer Entropy (TE) calculations based on the Gaussian Network Model 

(GNM), it has been demonstrated how the dissection of dynamic information into subsets of 

slow dynamic modes reveals various layers of multi-directional allosteric pathways that are 

intrinsic in a particular protein structure. The degree of collectivity (Col) in the information 

transfer of residues with their TE values (TECol score) in these subsets of slow modes 

identifies particular residues as potent effectors and global information sources having a 

strong dynamic capacity to collectively disseminate information to other residues in the 

protein structure. These information source residues are linked to known active and allosteric 

sites, as demonstrated by aspartate transcarbamoylase (ATCase), Na+/K+-adenosine 

triphosphatase (Na+/K+-ATPase), and human transient receptor potential melastatin 2 

(TRPM2), along with a dataset of 20 proteins. These specific residues provide feasible 

binding sites for structure-based rational drug design since they together affect/control others 

and direct pathways of allosteric communication.  
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ÖZET 

 

 

YAVAŞ DİNAMİK MODLARIN ALT KÜMELERİ KOLLEKTİF 

BİLGİ KAYNAKLARINI ALLOSTERİK BÖLGELER OLARAK 

ORTAYA ÇIKARIR 

 

 

Allosteri, biyolojik moleküller için önemli bir kontrol mekanizmasıdır ve dinamik 

bilgi akışı, nedensel allosterik etkileşimleri karakterize etmek için bizlere bir çerçeve sunar. 

Burada, Gauss Ağ Modeli (GNM) bazlı Transfer Entropi (TE) hesaplamalarının yeni bir 

uygulaması kullanılarak, dinamik bilginin yavaş dinamik modların alt kümelerine ayrımının, 

belirli bir protein yapısına özgü olan çok yönlü allosterik davranış katmanlarını nasıl ortaya 

çıkardığı gösterilmiştir. Yavaş modların bu alt kümelerinde rezidülerin sergilediği TE 

değerleri ile bu bilgi transferindeki kolektivite dereceleri (Col) bir arada kullanılarak, belirli 

rezidülerin güçlü efektörler olarak, yani protein yapısındaki diğer rezidülere toplu olarak 

bilgi yaymada güçlü dinamik kapasitelere sahip bilgi kaynakları olarak tanımlanması 

sağlanmıştır. Bu bilgi kaynağı rezidüler; aspartat transkarbamilaz (ATCaz), Na+/K+-

adenozin trifosfataz (Na+/K+-ATPaz) ve insan geçici reseptör potansiyel melastatin 2 

(TRPM2) proteinleri başta olmak üzere 23 proteinden oluşan bir veri seti üzerinde 

saptanarak, bu bilgi kaynağı rezidülerin bilinen aktif ve allosterik bölgelerle bağlantılı 

olduğu keşfedilmiştir. Bu spesifik rezidülerin protein yapısındaki birçok farklı rezidüyü 

etkileyerek yapı içindeki allosterik iletişim patikalarını doğrudan etkilediği/kontrol ettiği göz 

önüne alındığında, bu rezidülerin yapı bazlı rasyonel ilaç tasarımı için uygulanabilir 

bağlanma bölgelerine denk geldiği düşünülmektedir.  
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1.  INTRODUCTION 

 

 

Proteins carry out a variety of tasks in cells while adapting to various environments 

and engaging numerous partners. This adaptability is a result of their dynamic nature, which 

enables dynamic allosteric interactions with the protein active sites rather than direct 

interactions to modify protein activity. Drug design efforts are especially interested in 

allostery since it is a crucial mechanism for regulating functions [1-3]. 

 

When Jacques Monod and François Jacob originally used the term allostery in 1961 

[4], it was more of a structural phrase than a dynamical one. In years [5–14], the significance 

of dynamics in allostery has become increasingly clear. Dynamic fluctuations are strongly 

related to structural changes that result from perturbations. Allosteric modulation, however, 

is assumed by a shift in dynamic modes and their frequency and primarily entails an entropic 

effect, also known as dynamic allostery, in the absence of conformational modifications 

[10,14-18]. As has already been taken into account in various graph-based computations 

[19–23], allosteric pathways offer feasible paths for communication among functional 

regions within the network of dynamic interplay. Communities of residues on these 

interaction networks show functional significance and appear as potential sites for global 

transmission of allosteric information [24–26].  

 

Correlated fluctuations between residue pairs can be explained in terms of the mutual 

information which measures how much the uncertainty in one residue’s own fluctuations is 

decreased by the knowledge of fluctuations of the other. Transfer entropy (TE) [27] can 

therefore be used to assess the allosteric communication by seeing it as a straightforward 

information flow from one residue to another. In order to account for causal allosteric 

interactions, TE incorporates a time delay into the mutual information of residues using 

Shannon's entropy as a measure of information flow. Information flow from Molecular 

Dynamics (MD) trajectories could be retrieved using the transfer entropy approach [28–33], 

although the available MD simulation lengths are frequently in doubt.  
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Recently, a coarse-grained analytic approach based on Gaussian Network Model 

(GNM) combined with Schreiber’s information transfer concept has been proposed [34] that 

it is utilized in the present TE calculations of this study. 

 

GNM being straightforward, coarse-grained method for studying biological 

macromolecules represents these molecules as an elastic mass-and-spring model to analyse 

their mechanical characteristics of long-term dynamics. In an ensemble of substates, or in a 

dynamic mode spectrum, characterized by the 3D protein structure, GNM predicts complex 

structural fluctuations. The 3D protein structure specifies an ensemble of substates, i.e., 

conformers, or a spectrum of dynamic modes, in which GNM predicts complicated structural 

fluctuations (See Figure 1, Materials & Methods). These conformers such as ligand-bound, 

active/inactive, and open/closed states, are frequently inherently attainable, especially via a 

small group of slow dynamic modes which have the capacity to characterize specific 

functional movement patterns by moving several regions simultaneously and collectively 

just like choreographing out of basic dynamic aspects [10,17,35–38]. Using the vitamin B12 

importer protein BtuCD as an example, the computational identification showed the impact 

of particular slow modes in the conformational change between the outward and inward 

conformers, which was consistent with the behavior seen in experimental FRET distances 

and point mutations [37,39]. Therefore, due to the dominant effect of slower modes or the 

slowest mode, certain functionally important slow modes of motion -thus related allosteric 

communication pathway- may not be evident if all slow mode residue fluctuations are 

contributed as an average.  

 

Slow modes incorporate allosteric interactions, whose distinctive cooperativity allows 

coordinated action necessary for the generation of allosteric communication pathways within 

a protein structure. As a result, allosteric effects frequently result from activating or changing 

these global modes that already exist [10,17,37,38]. Global modes not only enable 

conformational changes between substates, but also render certain directional allosteric 

communication pathways [10,37,38,40,41]. For instance, the particular slow modes -which 

provide conformational transition between the outward and inward facing conformers of the 

two ATP-dependent ABC transporters BtuCD and MalFGK- are associated with opposite 

directional allosteric pathways pursuant to their distinctive functionalities [37]. Because of 

this, it is crucial to decompose dynamic behavior, in this case transfer entropy, into 
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individual or subsets of slow modes to be able to comprehend all possible causal relations 

and allosteric pathways that intrinsically exist within a particular topology.  

 

The aim of this thesis is to show that subsets of slow dynamic modes reveal collective 

residues in the sense of information transfer, in an other saying global information source 

residues, as allosteric sites in a protein structure. An information-theoretic strategy to 

determine allosteric interactions between residues has been developed and used to identify 

the subsets of slow modes that maximize collective information transfer behaviour of 

residues. Thus, each residue is thought to have a specific amount of transferable information, 

namely degree of collectivity, which is based on the protein's vibrational modes of motion 

[34,37,38]. This collectivity measure is created based on the idea of transferable 

information/entropy capacity and the Bruschweiler’s theory [42] and it assesses how 

globally a residue affects and controls the other residues in the protein structure. The term 

“global” is used for the residues demonstrating high collectivity in transferring this 

information. Here, these global information source residues are believed to be plausible 

binding sites for possible drugs as they collectively affect others and guide allosteric 

pathways.  

 

Allosteric interactions between different sites produced by various subsets of slow 

modes may have causal links that are relevant to the functional mechanism involving a 

particular kind of motion. As a result, this may help to accurately comprehend the allosteric 

phenomena with functional modularity and make it possible to anticipate functionally 

important regions that are either active or allosteric sites within multi- or bi-directional 

allosteric communication pathways.  
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2.  MATERIALS AND METHODS 

 

 

  2.1.  Dataset 

 

The proposed information-theoretic approach is validated using a dataset of the 20 

known allosteric proteins from Amor et al. [21] and three additional allosteric examples of 

interest. The corresponding PDB codes of the active and allosteric state structures of the 23 

test proteins with their known active and allosteric ligand binding sites are provided in Table 

2.1. With consideration of multiple domain configurations, multimerization states, various 

ligands, and different protein sizes from 128 to 3432 residues, Amor’s dataset covers a large 

region of the cytosolic protein structures [21]. Incorporation of three extra test proteins, two 

membrane proteins, human TRPM2 ion channel (PDB: 6MIX [43]) with 5348 residues and 

Na+/K+-ATPase transporter (PDB: 4HQJ [44]) with 1297 residues, and a large human DNA-

PK holoenzyme (PDB: 5Y3R [45]) with 4670 amino acids, to this dataset offers further 

variety.  

 

Table 2.1. Dataset of allosteric proteins. 

 

Protein 

 

Res. 

Num. 

 

PDB 
(Active) 

 

Chain 

 

Active 

Site 

Ligand 

 

Binding 

Sites 

 

PDB 
(Allos-

teric) 

 

Chain 

Allos-

teric Site 

Ligand 

 

Binding 

Sites 

 

 

ATCase 

 

 

2778 

 

 

1D09 

 

 

 

 

A, C, E, 

G, K, M 

(310) 

 

 

PALA 

51-55, 80, 

84, 105, 

134, 137, 

167, 229,   

231, 267. 

 

 

1RAC 

 

 

B, D, F 

H, L, N 

(153) 

 

 

CTP 

 

9, 11, 12, 

17, 19, 60, 

82, 84, 86, 

89, 91, 94. 

 

 

 

 

 

Gluco- 

kinase 

 

 

 

 

 

447 

 

 

 

 

 

1V4S 

 

 

 

 

 

A 

(447) 

 

 

GLC 

 

151-153, 

168, 169, 

204, 205, 

225, 229-

231, 256, 

287, 290. 

 

 

 

 

 

1V4S 

 

 

 

 

 

A 

(447) 

 

 

 

 

 

MRK 

 

 

 

61-66, 

210, 211, 

214, 215, 

220, 235, 

452, 455. 
 

ATP 

 

(from 

3ID8) 

 

78-83, 

228, 295, 

296, 332-

336, 411-

415. 
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Table 2.1. Dataset of allosteric proteins (cont.). 

 

 

 

Lac  

Repres-

sor 

 

 

 

658 

 

 

 

1EFA 

 

 

 

A, B 

(328) 

 

 

 

DNA 

 

 

5-7, 15-

19, 21, 22, 

24, 29, 47, 

49, 50, 53, 

54, 56, 57, 

59. 

 

 

 

1EFA 

 

 

 

A, B 

(328) 

 

 

 

NPF 

73, 74, 75, 

76, 79, 

125, 148, 

149, 161, 

193, 197, 

220, 246, 

248, 274, 

291, 293, 

296. 

 

 

H-Ras  

GTPase 

 

 

166 

 

 

3K8Y 

 

 

A 

(166) 

 

 

GNP 

12-18, 28-

32, 

34, 35, 60, 

116, 117, 

119, 120, 

145-147. 

 

 

3K8Y 

 

 

A 

(166) 

 

 

ACT 

 

97, 101, 

106-109, 

111. 

 

Fructos

e -1,6 

Bisphos

phatase 

 

 

 

1324 

 

 

 

1EYI 

 

 

A, B,  

C, D 

(331) 

 

 

 

F6P 

121, 122, 

212, 215, 

243, 244, 

246-248, 

264, 274, 

275, 280. 

 

 

 

1EYJ 

 

 

A, B,  

C, D 

(327) 

 

 

 

AMP 

17, 20, 21, 

24, 26-31, 

112, 113, 

140, 160, 

177. 

 

 

 

 

 

Phosph

oglycer

ate DH 

 

 

 

 

 

 

1592 

 

 

 

 

 

 

1YBA 

 

 

 

 

 

 

A, B,  

C, D 

(398) 

 

 

 

 

 

 

NAD 

 

84,106,10

8, 112, 

158-162, 

180-182, 

185, 

 210-212, 

216,217, 

220, 238-

240, 264, 

265,292, 

294,295. 

 

 

 

 

 

 

1PSD 

 

 

 

 

 

 

A, B,  

C, D 

(398) 

 

 

 

 

 

 

SER 

 

 

 

 

 

 

344-350 

370. 

 

 

 

Lactate  

DH 

 

 

 

1252 

 

 

 

1LTH 

 

 

 

A, B, 

C, D 

(313) 

 

 

 

NAD 

13, 14, 

16-18, 

38-40, 44, 

82-86, 

103, 107, 

123-125, 

180, 230, 

237, 240. 

 

 

 

1LTH 

 

 

 

A, B,  

C, D 

(313) 

 

 

 

FBP 

 

 

 

158, 170, 

171, 173, 

175. 

 

 

Caspa-

se-1 

 

 

512 

 

 

2HBQ 

A, D 

(168) 

z-VAD-

FMK 

179, 236-

238, 

283-285. 

 

 

2FQQ 

A, D 

(147) 

 

F1G 258, 286. 

B, E 

(88) 

z-VAD-

FMK 

339-343, 

348, 383. 

B, E 

(88) 

 

F1G 331, 390, 

391. 

 

 

 

 

ATP 

Sulfu-

rylase 

 

 

 

 

 

3432 

 

 

 

 

 

1I2D 

 

 

 

 

A, B, C, 

D, E, F 

(572) 

 

 

 

 

 

APS 

 

 

196-200, 

206, 209, 

267,289, 

291,292, 

294, 295, 

331-333. 

 

 

 

 

1M8P 

 

 

 

 

A, B, C, 

D, E, F 

(573) 

 

 

 

 

 

PPS 

 

 

405, 434, 

437, 446, 

451, 454, 

455, 476-

479, 515, 

517, 527-

530. 
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Table 2.1. Dataset of allosteric proteins (cont.). 

 

 

 

 

 

 

 

Gluta-

mate  

DH 

 

 

 

 

 

 

 

 

 

3006 

 

 

 

 

 

 

 

 

6DHD 

 

 

 

 

 

 

A, B, C, 

D, E, F 

(501) 

 

 

 

 

 

 

NADH-

GLU 

 

90-92,  

94, 111, 

114, 126, 

134, 166-

170, 211, 

215, 250-

255, 275-

276, 295, 

325-327, 

330, 347-

349, 374, 

377, 378, 

381. 

 

 

 

 

 

 

 

 

6DHD 

 

 

 

 

 

 

A, B, C, 

D, E, F 

(501) 

 

 

 

 

 

 

NADH-

GTP 

85-87, 

115, 116, 

119-122, 

195, 205, 

206, 209, 

210, 213, 

217, 257, 

258, 261, 

262, 265, 

292, 387, 

388, 391-

393, 446, 

450, 488, 

491. 

 

glcN-6-

P 

deamin

ase 

 

 

 

1596 

 

 

1HOT 

 

A, B, C, 

D, E, F 

(266) 

 

 

 

PO4 

 

42-44, 

172, 208. 

 

 

1HOT 

 

A, B, C, 

D, E, F 

(266) 

 

 

 

16G 

 

1, 2, 151, 

152, 158-

161. 

 

ADP-

glucose 

phos-

phory-

lase 

 

 

 

1727 

 

 

 

1YP3 

 

 

A, B,  

C, D 

(432) 

 

 

 

ATP 

26, 28,29, 

43, 73,75, 

118-120, 

123,  

143-145, 

233, 

253-256. 

 

 

 

1YP2 

 

 

A, B,  

C, D 

(428) 

 

 

 

PMB 

 

297, 298, 

322, 324, 

338-340, 

354, 355, 

 

 

Phos-

pho-

fructo-

kinase 

 

 

 

1276 

 

 

 

4PFK 

 

 

 

A, B,  

C, D 

(319) 

 

 

 

 

F6P 

 

 

 

 

 

127, 169-

171, 222, 

249, 252. 

 

 

 

6PFK 

 

 

 

A, B, 

C, D 

(319) 

 

 

 

PGA 

 

 

21, 25, 55, 

58, 59, 

154, 185, 

211, 213, 

214. 

 

 

UPR-

Tase 

 

 

846 

 

 

1XTT 

 

A, B,  

C, D 

(215) 

 

 

U5P 

81, 105, 

140, 142-

148, 201-

203, 208-

210. 

 

 

1XTU 

 

A, B,  

C, D 

(215) 

 

 

CTP 

29, 30, 33, 

37, 87, 90, 

91, 93, 

94,96. 

 

 

PTP1B 

 

 

298 

 

 

1PTY 

 

 

A 

(298) 

 

 

PTR 

24, 27, 46, 

48, 49, 

182, 215-

221, 254, 

258, 259, 

262. 

 

 

1T48 

 

 

A 

(292) 

 

 

BB3 

189, 192, 

193, 196, 

200, 276, 

277, 280, 

291, 292. 

 

Glyco-

gen 

Phosph

ory- 

lase 

 

 

 

3292 

 

 

 

7GPB 

 

 

A, B, 

C, D 

(823) 

 

 

PLP 

138, 491, 

568, 648-

650, 653, 

675-677, 

680. 

 

 

7GPB 

 

 

A, B,  

C, D 

(823) 

 

 

AMP 

42-45, 

67, 68, 71, 

72, 

75, 76, 

309, 310. 

SO4 135, 569, 

574. 

SO4 11, 14, 16, 

69. 

 

 

 

Throm-

bin 

 

 

 

280 

 

 

 

1SFQ 

A (29) - -  

 

 

1SFQ 

A (29) - - 

 

 

 

B 

(251) 

 

 

 

0G6 

 

57, 60A, 

60D, 97-

99, 189-

195, 214-

216, 219, 

220, 226. 

 

 

 

 

B, E 

(251) 

 

 

 

NA 

 

 

 

221, 224. 
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Table 2.1. Dataset of allosteric proteins (cont.). 

 

 

PDK1 

 

 

277 

 

 

3ORZ 

 

 

A 

(277) 

 

 

BI4 

88-91, 

109, 111, 

143, 

159-162, 

209, 212, 

222, 223. 

 

 

3ORZ 

 

 

A 

(277) 

 

 

2A2 

115, 118, 

119, 124, 

148, 149, 

155. 

 

 

CHK1 

 

 

257 

 

 

2BRG 

 

 

A 

(257) 

 

 

DFY 

15, 16, 23, 

36, 68, 

84-87, 90, 

91, 137, 

147. 

 

 

3JVS 

 

 

A 

(256) 

 

 

 

AGY 

93-98, 

133, 173, 

200, 204-

206. 

 

 

CheY 

 

 

128 

 

 

1F4V 

 

 

A 

(128) 

 

 

 

BEF3 

 

57-59, 87, 

88, 109, 

129. 

 

 

1F4V 

 

 

A 

(128) 

 

 

FliM 

Peptide 

 

90-92, 95, 

99, 103-

108, 119, 

122. 

 

 

Human 

TRPM2 

Ion 

Channe

l 

(Apo 

State) 

 

 

 

 

5348 

 

 

 

 

6MIX 

 

 

 

A, B,  

C, D 

(1337) 

 

 

 

 

Ca 

 

(from 

6PUU) 

 

 

 

 

842, 846, 

869, 1073. 

 

 

 

 

 

6MIX 

 

 

 

A, B,  

C, D 

(1337) 

 

 

 

 

ADPR 

 

(from 

6PUU) 

 

 

 

174, 175, 

176, 177, 

178, 295, 

332, 333, 

334, 335, 

336. 

 

 

 
 

 

 

Na+/K+ 

ATPase 

 

 

 

 

 

1297 

 

 

 

 

 

4HQJ 

 

 

 

 

A 

(985) 

 

 

 

ADP-

ALF-

Mg 

369, 370, 

371, 443, 

445, 446, 

475, 477, 

482, 501, 

502, 544, 

546, 610-

613, 685, 

691, 710, 

713. 

 

 

 

 

 

4HQJ 

 

 

 

 

A 

(985) 

 

 

 

 

Na 

 

322, 323, 

325-327, 

771, 774-

776, 779, 

804, 808, 

854, 923, 

926. 

B (285) 

G (27) 

- - B (285) 

G (27) 

- - 

 

 

 

 

 

 

 

 

 

 

Human  

DNA-

PK 

Holo-

enzyme 

 

 

 

 

 

 

 

 

 

 

 

4670 

 

 

 

 

 

 

 

 

 

 

 

5Y3R 

 

 

 

 

 

 

 

 

 

 

 

C 

(3636) 

 

 

 

 

 

 

 

 

 

 

 

Cataly-

tic 

Sites 

 

 

 

 

 

 

 

 

 

 

 

3921-

3927. 

 

 

 

 

 

 

 

 

 

 

 

5Y3R 

 

 

A 

(493) 

 

 

DNA 

35, 80, 

254-258, 

275, 278, 

282, 284, 

285, 331, 

363, 366, 

403, 404. 

 

B 

(526) 

 

 

DNA 

265, 272, 

275, 397-

402, 404, 

486. 

K 

(15) 

DNA 12, 13. 

 

 

 

 

C 

(3636) 

 

 

 

 

DNA 

 

123-125, 

128, 167-

169, 259-

261, 2231, 

2311-

2313, 

2356, 

2357. 
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2.2.  Theoretical Background and Computational Methodology 

 

 

2.2.1.  The Gaussian Network Model (GNM)-based Transfer Entropy (TE) 

 

GNM [46,47] predicts residue fluctuations and their correlations assuming a Gaussian 

probability distribution for instant caneous residue fluctuations (R). It models the protein 

structure as an elastic network of α-carbon atoms of residues interacting with a harmonic 

potential function within a threshold radius (Rcut=10 Å). Using the  force constant and R 

fluctuation vectors, potential energy V is defined as  

𝑉 =  (𝛾/2) ∆𝑹𝑇𝜞𝛥𝑹                                                  (2.1) 

where   is the Kirchhoff residue connectivity matrix. With the pseudoinverse of  revealing 

N-1 intrinsic modes of motion, the correlation between fluctuations of residue pairs, i and j, 

is given as  

< 𝛥𝑹𝑖. 𝛥𝑹𝑗 > = (3𝑘𝐵𝑇/𝛾)[𝜞−1]𝑖𝑗 , 

 = (3𝑘𝐵𝑇/𝛾)[𝑼𝜦−1𝑼𝑇]𝑖𝑗 ,                           (2.2)                                                           

 
= (3𝑘𝐵𝑇/𝛾) ∑ [𝜆𝑘

−1𝑼𝑘𝑼𝑇
𝑘]𝑖𝑗

𝑘
 

where  and U are respectively the eigenvalue and eigenvector matrices of  with k and Uk 

representing the kth mode component, kB is the Boltzmann constant, and T is the absolute 

temperature in Kelvin. Modes are ranked in ascending order of eigenvalues with k=1 is the 

slowest mode and k=N-1 is the fastest mode.  

 

Following, the correlation of zero-time fluctuations of i with future τ time fluctuations 

of j can be expressed as [47] 

< 𝛥𝑹𝑖(0). 𝛥𝑹𝑗(𝜏) >  =  (3𝑘𝐵𝑇/𝛾)[𝜞−1]𝑖𝑗 𝑒−𝜆𝑘𝜏/𝜏0 , 

 
=  (3𝑘𝐵𝑇/𝛾) ∑ [𝜆𝑘

−1𝑼𝑘𝑼𝑇
𝑘]𝑖𝑗 𝑒−𝜆𝑘𝜏/𝜏0

𝑘
                    (2.3) 

where 0 is a characteristic time of the vibrational dynamics of all folded proteins [47]. 
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GNM based time-delayed correlations in conditional Shannon entropies, defining the 

amount of transfer entropy, i.e., information transfer, Ti→j() from residue i to j in time delay 

τ, using the expression by Schreiber [27] as    

                 𝑇𝑖→𝑗(𝜏) = 𝑆(𝛥𝑹𝑗(𝑡 + 𝜏)|𝛥𝑹𝑗(𝜏)) − 𝑆(𝛥𝑹𝑗(𝑡 + 𝜏)|𝛥𝑹𝑖(𝜏), 𝛥𝑹𝑗(𝜏)).           (2.4) 

 

The conditional Shannon entropies are calculated as described in [34] under the 

Equations 2.2 and 2.3. The net information transfer from residue i to j at time τ can be written 

as 

                                                  ∆𝑇𝑖→𝑗(𝜏) = 𝑇𝑖→𝑗(𝜏) − 𝑇𝑗→𝑖(𝜏)                                        (2.5) 

where Ti→j() estimates the direction of information flow between residues i and j in a 

certain time delay , yielding the degree to which the present movement of residue i 

decreases the amount of uncertainty for the future movement of residue j. If, Ti→j() > 0 

then the dynamics of residue i affects the dynamics of residue j, meaning a causal directional 

relationship between fluctuations of residues i and j. 

 

 

 

Figure 2.1. Schematic view of GNM-based information transfer.  
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In Figure 2.1, spheres represent Cα atoms of residues. R0
i and R0

j with gray arrows 

represent equilibrium position vectors of residues i and j. ∆Ri and ∆Rj with dashed black 

arrows are respectively the fluctuation vectors from the equilibrium positions of residues i 

and j at time t and t+. The information transfer between residue pairs of i and j with  is 

described by green arrows. The difference between Tij and Tji described by red thunder 

reveals the net information transfer (TE) from residue i to j at time  (∆𝑇𝑖𝑗 ()).  

 

Additionally, the information transfer capability of a residue can be defined as how 

much it transfers information to the rest of the protein, as defined by cumulative TE 

formulation as 

                                                  ∆𝑇𝑖→𝑟𝑒𝑠𝑡(𝜏) = ∑ 𝑇𝑖→𝑗(𝜏)
𝑁

𝑗=1
.                                        (2.6) 

 

Maximum and minimum cumulative TE (Ti→rest()) values are regarded as 

entropy/information sources and sinks respectively. Entropy sources send and entropy sinks 

receive information to/from the rest of the protein. Two parameters are effective in TE 

values: time delay τ and slow mode component k. Here instead of all modes, we develop a 

measure to identify distinct sets of slow modes to disclose plausible layers of allosteric 

communication pathways.  

 

2.2.2.  The Degree of Collectivity in the GNM-based Transfer Entropy 

 

The residues with high net information transfer to many other residues are likely 

powerful effectors meaning that these residues affect most of the others, as dynamically key 

sites that lead and control rest of the protein. The motivation is thus to dissect dynamic 

information by the decomposition of the internal dynamics to disclose the subsets of slow 

modes maximizing the collectivities of residues in their information transfer: the net TE 

(Ti→j()) values.  

 

The degree of collectivity (Col) values can be calculated using the positive net TE 

values of residues with  to determine the most collective information source residues 

(effectors) benefiting from Bruschweiler’s study [42] as  
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                          𝜅𝑖,𝑠 =
1

𝑁
 𝑒𝑥𝑝 (− ∑ 𝛼(𝛥𝑇𝑖𝑗,𝑘(𝜏))2 𝑙𝑜𝑔(𝛼(𝛥𝑇𝑖𝑗,𝑘(𝜏))2) 

𝑁

𝑗=1
)                (2.7)   

where ĸi,s is the Col value of residue i in the information transfer through the subset of slow 

modes (s), N is the residue number, and ∆Tij,k (τ) is the positive net transfer entropy from 

residue i to j in slow mode k for time delay τ. In Equation 2.7, α is a normalization factor 

that is determined as 

                                                     ∑ 𝛼(𝛥𝑇𝑖𝑗,𝑘(𝜏))2
𝑁

𝑖=1
 = 1.                                           (2.8) 

 

One-dimensional plots comprised of the Col values of residues in the information 

transfer yield powerful effectors as global information source residues, which affect 

collectively the others. The multiplication of the Col values with cumulative positive net TE 

values of residues reveals powerful effectors collectively affecting the others with higher 

entropy signals, which we call as TECol score. 

 

2.2.3.  Degenerate and Nondegenerate GNM Modes  

 

Degenerate and nondegenerate modes are determined for the test proteins which have 

structural symmetry such as homodimers, homotrimers, homotetramers, homohexamers, etc. 

Degeneracy analyses for these cases are performed by calculating the MSF (Mean Square 

Fluctuation) of residues in each individual GNM mode. The MSF values of the Cα atoms in 

the individual mode k, are obtained from the diagonal elements of Γ–1 using the definition 

of [46] 

                                                    < 𝛥𝑹𝑘
2 > = [𝜞−1]𝑘𝑘 .                                                 (2.9) 

 

In these individual mode calculations; if the MSF shape of repating units are not the 

same with each other, i.e. not symmetrical, this individual mode is recorded as degenerate. 

Usually, two successive degenerate modes complement each other, revealing the 

symmetrical behavior of the protein together. On the other hand, nondegenerate modes by 

itself can fully reveal the structurally repetitive behavior of the protein, thus MSF shapes of 

the repetitive units are identical in an nondegenerate slow mode calculation. 
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The dissection of degenerate and nondegenerate modes of the dataset proteins with 

structural symmetry are summarized in Table 3.2 in the Results and Discussion Section, and 

the related MSF plots of these proteins are provided in Appendix A.  

 

Information about active or allosteric sites is carried by both nondegenerate and 

degenerate slow modes. As recently demonstrated, degenerate slow modes may also be 

functionally significant in addition to nondegenerate slow modes that are necessary for 

symmetric functional patterns of complex proteins with different oligomerization states [48].  

 

2.2.4.  Identifying Subsets of Slow Modes Maximizing Information Transfer 

 

To determine the collective capacity of residues in information transfer, and to develop 

a general protocol, collectivity expressed in Equation 2.7 is utilized as a dynamic measure. 

The procedure applied in this developed protocol is demonstrated in Figure 2.2. After the 

mode decomposition step, we have two -simple and combinatorial- search schemes for the 

subsets of slow modes of likely functional importance; the five basic subsets of slow modes 

(i.e., n-Ns, with n being the slow modes of 1 to 5) and the subsets of slow mode combinations 

(i.e., three-to-five slow mode combinations), where Ns represents the number of slow modes 

in each case having the major contribution to the overall dynamics, which is determined 

according to the degeneracy analysis. Furthermore, Ns ranging from 8 to 11 slow modes over 

23 structures, takes the degeneracy for the cases with fold symmetries into account (See 

Table 3.2 in the Results and Discussion Section). Around ten slow modes on average are 

considered to represent the slow end of the dynamic spectrum [49,50].  
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Figure 2.2. Method Flow Chart. 

 

In the flow of this general protocol, it is started with the simple search scheme 

emphasizing the contribution of slowest/slower modes in these subsets as simply selected 

from the Ns slow modes. If this search scheme does not yield residues at least two subsets of 

slow modes with collectivities of residues higher than a threshold value (i.e., 0.45) or if 

additional subsets of slow modes with high collectivity in terms of transfer entropy are 
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desired, the combinatorial search scheme is followed. Then, the residues with maximum 

TECol score values are identified from these subsets of slow modes by both of these search 

schemes as global information source residues.  

 

Using either the simple or combinatorial search scheme yields more than one subset 

of slow modes with which unique functional sites or the same functional sites in a different 

dynamic context could be disclosed. The proposed protocol is applied to a dataset of 23 

proteins, and we have shown that active and allosteric sites are distinguishable based on their 

capacity to disseminate information to others collectively as global information sources.  

 

2.2.5.  Statistical Significance Analysis 

 

The statistical significance of each functional site prediction is examined using random 

sampling. First, the average 3D distance between the TECol score peaks above the peaks’ 

average and the known active/allosteric binding residues are calculated. Secondly, the 

average 3D distances are calculated for 10,000 randomly selected sample sets having the 

same number of residues as the number of those TECol score peaks. Then, Z score is 

calculated using the definition of 

                                                           𝑍 =  
(𝑋 − 𝜇)

𝜎⁄                                                     (2.10) 

where X is the mean distance between the above-average TECol score peaks and the binding 

residues. μ and σ are the mean and the standard deviation of the population of random 

sampling, respectively. After calculating Z scores of each prediction, p-values are obtained 

by two-tailed hypothesis test using a significance level of 0.05.  

 

The performance of the functional site predictions is also measured in terms of 

sensitivity (SN), specificity (SP), precision (PRE), and accuracy (ACC) with the 

formulations of 

𝑆𝑁 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                             (2.11)  

𝑆𝑃 =  𝑇𝑁/(𝐹𝑃 + 𝑇𝑁)                                        (2.12) 

𝑃𝑅𝐸 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2.13) 

𝐴𝐶𝐶 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) (2.14) 
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where the number of true positives, the number of false positives, the number of true 

negatives, and the number of false negatives, are represented by TP, FP, TN, and FN, 

respectively. For each functional site prediction, TP corresponds to the number of above-

average TECol score peaks -in that subset of slow mode- whose 3D distances to the known 

active/allosteric ligand binding residues are below or equal to the threshold distance, while 

FP corresponds to the number of the ones with 3D distances above the threshold. On the 

other hand, FN and TN correspond to the numbers of below-average TECol score peaks with 

3D distances less and higher than the threshold, respectively. These numbers are determined 

using two different threshold distances, 7 Å and 10 Å.  
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3.  RESULTS AND DISCUSSIONS 

 

 

Aspartate transcarbamoylase (ATCase), Na+/K+-adenosine triphosphatase (Na+/K+-

ATPase), and human transient receptor potential melastatin 2 (TRPM2) are used as three 

exemplary cases to illustrate the prediction method proposed in this thesis. Furthermore, the 

same strategy is applied for a test set composed of 20 allosteric proteins given in Table 2.1.  

 

3.1.  Three Exemplary Cases of the Prediction Method 

 

3.1.1.  Aspartate Transcarbamoylase (ATCase) 

 

ATCase catalyzes the synthesis of N-carbamoyl-L-aspartate with inorganic phosphate 

from carbamoyl phosphate and L-aspartate in many prokaryotes, including Escherichia coli 

[51]. It is a system that has received extensive study and is a prime example of allosteric 

control and cooperativity [52-54]. It also holds relevance as a potential anticancer target for 

investigations on allosteric drug design because of the homology it has with human ATCase 

[55]. ATCase works as a heterododecamer composed of six catalytic subunits arranged in 

two trimers with three active sites at their interfaces [56] and six regulatory chains put 

together in three dimers [57]. Nucleotides (such as ATP, CTP, and UTP) serve an allosteric 

effect by binding to the regulatory subunits whereas carbamoyl phosphate or L-aspartate 

bind to the active site. It is strictly controlled to keep the purine/pyrimidine ratio in cell 

stable. This is maintained by the interaction of the tense (T) and relaxed (R) states, by which 

ATP induces activity by maintaining the R state and CTP and UTP inhibit function by giving 

priority to the T state. ATP and CTP bind to the same residues while UTP binds to a distinct 

but nearby position.  

 

N-Phosphonacetyl-L-Aspartate (PALA), a well-known inhibitor of ATCase, functions 

by binding to the active site on the catalytic subunits and stabilizing the R-state [58]. The 

allosteric modulators ATP and CTP have a significant impact on the PALA's binding affinity 

[59]. Here, the PALA-bound R-state structure (PDB: 1D09 [51]) is used in the GNM-based 

TE computations.  
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Collectivities and TECol score values of residues in information transfer are calculated 

for five subsets of slow modes, and their distributions are illustrated in Figure 3.1.  

 

 

 

Figure 3.1. Collectivity and TECol score distributions for ATCase (PDB: 1D09). 

 

The collectivity distributions of the TE values of residues in five subsets of slow modes 

show that the 1-10 and 4-10 slow modes maximize the collective information transfer of 

residues.  

 

As shown in Figure 3.2 below, where all colored ribbon representations are from the 

highest (red) to lowest (blue) TECol score values, in the subsets of 1-10 and 4-10 slow 

modes, the residues with high TECol score values coincide with the active PALA (green) 

and allosteric ligand ATP/CTP (cyan) binding residues. That is to say, when all first ten 

slowest modes (1-10) are taken into account, the active ligand -PALA- binding residues 

seem to be the most collective/global information source residues in terms of information 

transfer. The allosteric ligand -CTP- binding residues, however, acquire the entire dynamic 

capacity for the collective information transfer in the 4-10 slow modes with the exclusion of 

the slowest to third slowest modes.  
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Figure 3.2. ATCase (PDB: 1D09). Net Transfer Entropy (TE) maps (a,c) and the 

corresponding collectivity and TECol score plots (b,d) in the subsets of 1-10 and 4-10 slow 

modes. The allosteric ligand CTP is taken from the CTP-bound T state structure (PDB ID: 

1RAC). 

 

The first three slowest modes in this case represent the prepotent function of active 

sites, whereas slow modes four through ten denote potential stimulability upon a perturbation 

(ligand binding, post-translational changes, etc.), leading particular slow modes to disappear, 

emerge, and/or rearrange. The stability of the R-state structure by the PALA binding is an 

example of how the active site residues may be anticipated to cause a stronger regulation in 

the dynamics within structure in this conformational state. 

 

Different global information source residues with high collectivity but smaller TECol 

scores than active site residues in the subset of 1-10 slow modes are revealed with the C-

terminal end of Helix 12 (A298-N305) in the catalytic subunit. According to previous 

research, the stability of the trimer and its interactions with the regulatory subunits are both 

affected by mutations at this region of the helix [60]. As a result, information source residues 
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identify also other parts with potential functional roles in a protein structure, such as the 

stability of quaternary structure, in addition to active/allosteric ligand binding sites. 

 

3.1.2.  Na+/K+-Adenosine Triphosphatase (Na+/K+-ATPase) 

 

Na+/K+-ATPase transports three Na+ ions in exchange with two K+ ions through the 

cellular membrane by the ATP hydrolysis [61]. This needs an allosteric interplay between 

the intracellular ATP and transmembrane Na+ and K+ binding residues as well as the 

translocation tunnel. It is a key protein for several physiological activities to maintain 

concentrations of these ions across the cell membrane. It also regulates the energy-

consuming action against the ion gradient.  

 

Na+/K+-ATPase is composed of three different subunits which are the main catalytic 

α-subunit and two smaller subunits, β and γ. To carry out its function, it cycles between the 

two main conformations E1 and E2. E1 binds three Na+ ions and ATP in the cytoplasmic 

part, releases these ions upon phosphorylation to the outside, and switched over to E2. Two 

K+ ions are bound by E2 and dephosphorylated after binding them in the extracellular area. 

The E2 to E1 conformational transition that releases trapped K+ ions into the cell depends 

on ATP hydrolysis [62]. During this conformational change, the β-subunit experiences 

considerable changes compared to the α and γ subunits [44].  

 

The crystal structure of Na+/K+-ATPase in the E1 comformation with bound ADP and 

Na+ (PDB: 4HQJ [44]) is used in the GNM-based TE computations. Collectivities and 

TECol score values of residues in information transfer are determined for five subsets of 

slow modes, and their distributions are illustrated in Figure 3.3. 
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Figure 3.3. Collectivity and TECol score distributions for Na+/K+-ATPase (PDB: 4HQJ). 

 

The collectivity distributions of the TE values of residues illustrate that the subsets of 

1-10 and 2-10 slow modes maximize the collective information transfer of residues. 
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Figure 3.4. Na+/K+-ATPase (PDB: 4HQJ). Net Transfer Entropy (TE) maps (a,c) and the 

corresponding collectivity and TECol score plots (b,d) in the subsets of 1-10 and 2-10 slow 

modes. Coloured representations of TECol score values in the subsets of 3-10 and 5-10 (e). 

 

As shown in Figure 3.4 -where all colored ribbon representations are from the highest 

(red) to lowest (blue) TECol score values as well as in Figure 3.2- in the subsets of 1-10 and 

2-10 slow modes, the residues with high TECol score values appear at the ADP, 

tetrafluoroaluminate ion (ALF) and Mg2+ (green) and allosteric Na+ (cyan) binding sites. 

The 3-10 and 5-10 slow modes likewise point to the allosteric and active sites, respectively, 

with comparable collectivities of the TE values. Thus, it can be said that the subsets of 1-10 

and 2-10 slow modes, respectively, mask the behaviour of latter susbets of slow modes.  
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It is interesting to note that the β-subunit also exhibits highly collective residues in the 

TE values, especially more significantly in the 2-10 slow modes. This supports the idea that 

the β-subunit regulates ion binding on the α-subunit and stabilizes the Na+-occluded E1-P 

state [63]. In particular, the β-subunit contains asparagine aminoacids that post-

translationally bind oligosaccharides and are associated with cell-specific activity [64]. In 

the subset of 2-10 slow modes, two of these oligosaccharide binding residues -N158 and 

N193- appear as global information sources (Figure 3.4d). Also, the 2-10 slow modes reveal 

the cysteine residue pairs C159-C175 and C213-C276 forming disulphide bridges as 

collective information sources, while the latter is also revealed in the 1-10 slow modes. The 

assembly of the α-β subunits depends significantly on these disulphide bonds and 

oligosaccharide binding regions [65]. All of these are distant from the interface, yet possibly 

having an allosteric role in stabilization. Nevertheless, in the subset of 5-10 slow modes, the 

signalling effect of the β-subunit is replaced by the collective information transfer of the 

ADP-ALF-Mg2+ binding sites which appear as global information sources. This highlights 

the influence of the first four slowest modes on the allosteric communication led by the β-

subunit. 

 

Around E818 is another remarkable information source residue that has the highest 

collectivity in the information transfer in the 2-10 slow modes. A human mutation at this 

location has been demonstrated to impair proton transport and the E1>E2 conformational 

transition, resulting in severe alternating hemiplegia of childhood (AHC) disease [66]. The 

dynamic explanation provided by the GNM-based TE compoutations may help to identify 

the unidentified allosteric mechanism underlying this mutation.  

 

3.1.3.  Human Transient Receptor Potential Melastatin 2 (TRPM2) 

 

TRPM2 is a nonselective Ca2+-permeable cation channel on the cellular membrane 

activated by heat, redox signals and/or chemical binding of ADP-ribose (ADPR) and Ca2+. 

It is a homotetramer with three tiers stacked on top of one another. ADPR is bound to the 

bottom pier and Ca2+ is bound to the top pier while a middle tier is in between. TRPM2 

undergoes a significant conformational transition from closed to open state in order to 

permeate Ca2+ ions through the allosteric interaction between ADPR and Ca2+ [43]. The 

function of TRPM2 is crucial for various cells to manage oxidative stress and control 
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temperature [43]. However, the precise molecular process by which human TRPM2 is 

activated remains unknown.  

 

The unbound structure of human TRPM2 in closed conformation (PDB: 6MIX [43]) 

is used in the GNM-based TE computations. Collectivities and TECol score values of 

residues in information transfer are determined for five subsets of slow modes, and their 

distributions are provided in Figure 3.5.  

 

 

 

Figure 3.5. Collectivity and TECol score distributions for human transient receptor 

potential melastatin 2 (TRPM2; PDB: 6MIX). 

 

The collectivity distributions of the TE values of residues show that the subsets of 1-

11 and 2-11 slow modes maximize the collective information transfer (among other simple 

subsets).  
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Figure 3.6. TRPM2 (PDB: 6MIX). Net Transfer Entropy (TE) maps (a,c) and the 

corresponding collectivity and TECol score plots (b,d) in the subsets of 1-11 and 2-11 slow 

modes. Coloured representations of TECol score values in the subsets of 1,4,8,9 , 1,4,7,8 

and 4,7,8 (e).  

 

As seen from Figure 3.6, the gating S6 helix -whose rotation is the key for the channel 

opening- is appeared as global information sources in the 1-11 slow modes, while the ADPR 

binding sites (cyan) -whose allosteric effect on the Ca2+ binding leads the gating S6 helix to 

rotate- are revealed to be collective information transfer residues in the subset of 2-11 slow 

modes. Despite the fact that both discovered sites are functionally important, the binding 

residues of Ca2+ (green) are absent in these five simple subsets of slow modes.  
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Additionally, there is a slight distortion of the symmetry in the TE patterns in such a 

symmetric structure although the degenerate modes of 10 and 11 having the same 

eigenvalues are taken together. Both of these need further analysis of the mode combinations 

to designate other possible slow mode subsets having higher collectivities in the information 

transfer than the five simple subsets of slow modes.  

 

Indeed, it is determined by the combinatorial search scheme that, as shown in Figure 

3.5, the 1,4,8,9 and 1,4,7,8 slow modes are the best slow mode combinations maximizing 

the collective information transfer of residues. Ca2+ binding sites (green) appear as collective 

information sources in the 1,4,8,9 slow modes while the ADPR binding sites (cyan) along 

with the cytoplasmic gate of the channel are disclosed in the 1,4,7,8 slow modes.  

 

Moreover, the channel pore stretching from the extracellular to intracellular side of the 

top tier takes high TECol score values in an additional subset of 4,7,8 slow modes. Zn2+, an 

allosteric modulator of TRPM2 inactivates the protein by binding to residues in the outer 

pore [67]. This exemplifies that already known different functionally important sites can also 

be identified with the proposed fine-tuned combinatorial search scheme strategy. Thus, with 

more subsets of slow modes with strong collectivity in information transfer, a new additional 

functional site may be discovered. For example, the cytoplasmic gate and ADPR binding 

sites, which appear separately in the 1-11 and 2-11 modes respectively, appear together in 

the 1,4,7,8 slow modes.  

 

3.1.4.  Directional Allosteric Pathways in ATCase, Na+/K+-ATPase and TRPM2 

 

Global information source residues, which collectively affect many other residues in 

the protein structure, direct allosteric communication pathways within biological 

macromolecular machines. Thus, to be able to clarify allosteric interplay within the three 

exemplary cases (ATCase, Na+/K+-ATPase, and TRPM2), the information flow (net TE) 

from the strongest global information source residue to the others is determined and 

represented in Figures 3.7-9 that are color-coded from the highest (red) to the lowest (blue) 

Net TE values with yellow dash arrows displaing its direction.  
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Figure 3.7. Directional allosteric pathways in ATCase. From the active ligand PALA 

binding residue A51 in the 1-10 slow modes and from the allosteric ligand CTP binding 

residue V17 in the 4-10 slow modes to the other residues, mainly to the catalytic sites of 

other subunits and to the active sites of all subunits, respectively.  
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Figure 3.8. Directional allosteric pathways in Na+/K+-ATPase. From the active binding 

residue N476 in the 1-10 slow modes and from the allosteric ADP-ALF-Mg binding 

residue D808 in the 2-10 slow modes to the other residues, mainly to the allosteric and to 

the active sites, respectively.  
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Figure 3.9. Directional allosteric pathways in TRPM2. From the Ca2+ ligand binding 

residue E842 in the 1,4,8,9 slow modes and from the ADPR binding residue Y295 in the 

1,4,7,8 slow modes to the other residues, mainly to the ADPR and to the Ca2+ binding 

sites, respectively.  
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Figure 3.7 shows that, based on the PALA bound active structure of ATCase, residue 

A51 with highest collectivity in the TE values at the active site of one catalytic subunit 

collectively transfers information to the other catalytic subunits in the 1-10 slow modes. This 

implies cooperativity among catalytic sites/subunits for the ligand PALA binding in this 

inhibited R-state. On the other hand, residue V17 with high collectivity in the TE values at 

the allosteric site collectively transfers information to the active sites in the 4-10 slow modes 

even in the absence of allosteric ligands. This also provides a dynamic basis for the inhibitory 

effect of ATP/CTP on the binding affinity of PALA [59]. Notably, this behavior is latent in 

the 1-10 slow modes in this R state conformation of ATCase.  

 

As illustrated in Figure 3.8 that in Na+/K+-ATPase with bound ADP and Na+, N476 is 

one of the residues with high collectivity in its TE values of the 1-10 slow modes at the ADP 

binding site and directs allosteric communications pathways towards the allosteric region 

close to the NA binding sites and the -subunit. On the other hand, D808 with high 

collectivity in the TE values of the 2-10 slow modes at the NA binding site collectively 

transfers information towards the ADP binding sites and to the -subunit. That the ADP and 

NA binding sites exchange directed information shows bidirectionality in their allosteric 

communications.  The altered directions are revealed in two different subsets of slow modes, 

indicating the importance of mode dissection for layering of allosteric communication 

pathways. 

 

Figure 3.9 demonstrates that E842 is one of the residues with high collectivity in the 

TE values of the 1,4,8,9 slow modes at the Ca2+ binding region and directs allosteric 

communications pathways towards the ADPR binding sites in the apo structure of human 

TRPM2 in closed state. On the other hand, Y295 with high collectivity in the TE values of 

the 1,4,7,8 slow modes at the ADPR binding sites collectively transfers information mainly 

towards the Ca2+ binding sites. That the ADPR binding sites at the bottom tier and Ca2+ 

binding sites at the top tier exchange directed information shows bidirectionality in the 

allosteric crosstalk in the close to open transition of the channel to permeate the Ca2+ ions.   
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These three exemplary cases (Figures 3.7-9) show that the simple search scheme is 

already powerful to reveal the subsets of slow modes maximizing the collective information 

transfer and active/allosteric sites global information sources. Yet, as in the case of human 

TRPM2, the combinatorial search scheme may help identify new subsets of slow modes with 

functional importance and fine-tune the already notable subsets of slow modes.  

 

3.1.5.  Effect of Time Delay on Collectivity 

 

The time delay  is selected based on the maximization of the degree of collectivities 

of net TE values, which is 3 x opt. opt is the time window in which total TE of residues is 

maximized. Figure 3.10 illustrates the effect of different  values on the collectivities in the 

TE values of residues for three main exemplary cases.  
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Figure 3.10. Collectivities at different time delays. The abbreviation opttau is opt, which is 

the time window in which the total TE values are maximized in the structure. Here, the TE 

calculations are performed in the folds of opt to identify  that maximizes the collectivities 

in the residues’ TE values. 
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3.2.  Predictions on Allosteric Test Proteins  

 

In addition to the three exemplary cases, the predictions are evaluated on 20 more 

allosteric proteins given the dataset table (Table 2.1). In the GNM based TE calculations, the 

active state structures are mostly used without explicitly including active and allosteric 

ligands or their binding sites information. As presented in Figures 3.11-3.31, the active and 

allosteric sites in these allosteric proteins are predicted as global information sources.  

 

 

 

Figure 3.11. Human Glucokinase (PDB: 1V4S [68]). Net TE maps (a,c) and collectivity 

and TECol score plots (b,d) in the 1-10 and 3-10 slow modes, respectively, for the 

monomeric closed conformation with the active site ligands glucose-AMP-PNP(ATP)-Mg 

(green) and the allosteric ligand MRK (cyan). AMP-PNP is taken from PDB structure 

3ID8 [69] aligned to 1V4S [68]. 

 

As shown in Figure 3.11 that the information source residues are at/around AMP-PNP 

and MRK binding residues in the subsets of 1-10 and 3-10 slow modes, respectively. 
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Figure 3.12. Lac Repressor (PDB: 1EFA [70]). Net TE maps (a,c) and collectivity and 

TECol score plots (b,d) in the 1-10 and 3-10 slow modes, respectively, for the DNA bound 

dimeric structure with the active site ligand DNA (green) and the allosteric ligand operator 

NPF (cyan). 

 

The 1-10 slow modes reveal the DNA binding residues as information source residues 

(Figure 3.12b). Additionally, this subset of slow modes highlights the region including 

D278, which is stated as the key residue for the interaction between the NH2-subdomain of 

one monomer and the CO2-subdomain of the other in the inducer-bound T state conformation 

[70]. The DNA binding residues are also information source residues with the region 

extending to the NPF binding in the 3-10 slow modes (Figure 3.12d). Collective information 

transfer characteristics along the beta sheets in both subdomains are observed in the 5-10 

slow modes (Figure 3.12e), also overlapping with some of the NPF binding residues.  

 

 

 

 

 



34 
 

 

 

Figure 3.13. H-Ras GTPase (PDB: 3K8Y [71]). Net TE maps (a,c) and collectivity and 

TECol score plots (b,d) in the 4-10 and 5-10 slow modes, respectively, for the monomeric 

wild-type Ras with the active site ligand GNP (green) and the allosteric calcium acetate 

(cyan). 

 

The subset of 4-10 slow modes detects most of the GNP binding residues as 

information source residues (Figure 3.13b). Besides, the calcium acetate binding residues, 

albeit slightly, coincide with lower local peaks here. The calcium acetate binding residues 

become more pronounced than the GNP binding residues when the fourth slowest mode is 

excluded (Figure 3.13d). 

 

 

 

 

 

 

 



35 
 

 

 

Figure 3.14. Fructose-1,6 bisphosphatase (PDB: 1EYI [72]). Net TE maps (a,c) and 

collectivity and TECol score plots (b,d) in the 1-10 and 2-10 slow modes, respectively, for 

the tetrameric R-state conformation with the active site ligand F6P (green) and the 

allosteric site ligand AMP (cyan) [72]. The allosteric AMP is taken from the T-state 

conformation (PDB: 1EYJ [72]). 

 

All F6P binding residues and the adjacent loops and helices appear as information 

source residues in the 1-10 slow modes (Figure 3.14b). Mainly, the AMP binding residues 

appear as information source residues in the 2-10 slow modes yet some of the active sites 

also continue to emerge at lower peaks (Figure 3.14d). Interesting to note, although the 

collectivities remain at moderate values in the 2-10 slow modes, as seen on the 2D net TE 

maps, it shows quite high collectivities when evaluated based on the individual dimers 

(Figure 3.14a and c). This implies the collective behavior of the chains in the dimeric units 

of the tetramers in this topology. On the other hand, the 4-10 slow modes, although not as 

collective as in the 1-10 slow modes, leads to the emergence of the helix regions approaching 

both the F6P and AMP binding residues as more pronounced than they are in the 1-10 slow 

modes (Figure 3.14e).  
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Figure 3.15. Phosphoglycerate Dehydrogenase (PDB: 1YBA [73]). Net TE maps (a,c) and 

collectivity and TECol score plots (b,d) in the 1-10 and 2-10 slow modes, respectively, for 

the quaternary active conformation whose subunits all bind the cofactor NAD (green) and 

the allosteric ligand serine (SER) (cyan). SER is taken from the effector-bound structure 

(PDB: 1PSD [74]). 

 

In the 1-10 slow modes, the information source residues are most at the NAD binding 

residues and extending in-between active regions (Figure 3.15b). In the 2-10 slow modes, 

all SER binding residues are information source residues with significant high TECol score 

values than the other residues (Figure 3.15d). 
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Figure 3.16. Lactate DH (PDB: 1LTH [75]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 2-10 slow modes, respectively, for the tetrameric structure 

of L-lactate dehydrogenase containing T- and R-state tetramers with the active site ligand 

NAD (green) and the allosteric ligand FBP (cyan). 

 

In the 1-10 slow modes, the NAD binding residues are information source residues to 

a very large extent (Figure 3.16b). In the 2-10 slow modes, the FBP binding residues become 

more pronounced than they are in the 1-10 slow modes while most of the NAD binding 

residues as information source residues in the 1-10 slow modes reset to the 2-10 slow modes 

(Figure 3.16d). Interestingly also to note here, the dimeric collectivities of TE emerge in this 

conformational state of tetramer (Figure 3.16a and c). The ligand binding residues that are 

not visible in the first two subsets of slow modes are found in the 5-10 slow modes, albeit 

with relatively lower TECol score values (Figure 3.16e).  
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Figure 3.17. Caspase-1 (PDB: 2HBQ [76]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 2-10 slow modes, respectively, for the dimeric structure 

with the active site peptide z-VAD-FMK (green) and the allosteric ligand F1G (cyan) 

(PDB: 2FQQ [76]).   

 

The peptide and F1G bindings appear right next to the information source residues, to 

the peaks of collectivity or TECol scores, which extends towards the ligand binding residues 

through beta sheets in both subunits in the 1-10 slow modes (Figure 3.17b). However, some 

of the peptide and FIG binding residues appear as information source residues in the 2-10 

slow modes (Figure 3.17d). Interestingly to note here as well, the information source 

residues in these subsets of slow modes are effective mainly on the monomers as seen from 

the TE maps (Figure 3.17a and c). 
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Figure 3.18. ATP Sulfurylase (PDB: 1I2D [77]). Net TE maps (a,c) and collectivity and 

TECol score plots (b,d) in the 1-8 and 5-8 slow modes, respectively, for an allosterically 

regulated hexameric enzyme with the R state conformation with the active site ligand APS 

(green) of the catalytic domain [77] and the allosteric inhibitor PPS (cyan) which is taken 

from the T-state conformation of the enzyme (PDB: 1M8P [77]). 

 

The structure of ATP Sulfurylase is made up of two asymmetric units joined together 

[77]. Due to its asymmetric nature, the functional sites do not appear symmetrically in six 

monomers (see Figure 3.31b). Thus, here, subunit-based TE is evaluated to eliminate this 

asymmetry. APS binding residues appear as information source residues in the 1-8 slow 

modes (Figure 3.18b), and PPS binding residues appear as information source residues in 

the 5-8 slow modes (Figure 3.18d). Interesting to note here as well, although the collectivities 

are moderate in the 1-8 slow modes, as seen on the 2D TE map, it yields quite high 

collectivities when evaluated based on the three individual monomers (see Figure 3.31a).  
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Figure 3.19. Glutamate DH (PDB: 6DHD [78]). Net TE maps (a,c) and collectivity and 

TECol score plots (b,d) in the 1-10 and 4-10 slow modes, respectivelyi for the hexameric 

structure of glutamate dehydrogenase with the active site ligand NADH-GLU (green) and 

in the inhibited state bound to the allosteric ligand NADH-GTP (cyan). 

 

As viewed along the three-fold axis, most of the NADH-GTP binding residues are 

information source residues in the 1-10 slow modes (Figure 3.19b). Although the 

collectivities of TEs are relatively low in the 4-10 slow modes (Figure 3.19d), most of the 

NADH-GLU binding residues are information source residues, in fact, these two subsets of 

slow modes have the relatively highest TEs among the five basic slow mode subsets. 

However, interestingly to note as seen on the 2D maps, the collectivities of the TEs 

emphasize an extensive information flow within monomers in this conformation of the 

hexameric structure (Figure 3.19a and c). Indeed, the 2,3,8,9,10 slow modes reveal the 

NADH-GLU binding residues as information source residues with higher collectivities 

(Figure 3.19e) and most likely this could also emerge in the slower mode combinations of 

another conformation.  
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Figure 3.20. GlcN-6-P Deaminase (PDB: 1HOT [79]) (View along the threefold axis). Net 

TE maps (a,c) and collectivity and TECol score plots (b,d) in the 1-10 and 4-10 slow 

modes, respectively, for the hexameric structure with the active site ligand PO4 (green) and 

the allosteric activator 16G (cyan) [79]. 

 

Most of the 16G binding residues are information source residues circulating the 

allosteric region in the 1-10 slow modes (Figure 3.20b). Also, most of the PO4 binding 

residues are information source residues in the 4-10 slow modes (Figure 3.20d). In fact, as 

seen on the 2D maps (Figure 3.20a and c), the information source residues are more effective 

in the dimeric and monomeric subunits and the collectivities of TE values could be much 

higher if evaluated over these subunits.  
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Figure 3.21. ADP-glucose Phosphorylase (PDB: 1YP3 [80]). Net TE maps (a,c) and 

collectivity and TECol score plots (b,d) in the 1-9 and 5-9 slow modes, respectively, for 

the tetrameric structure in complex with active site ligand ATP (green) and the allosteric 

ligand PMB (cyan) (PDB: 1YP2 [80]). 

 

While the allosteric ligand PMB binding residues with the surrounding loops and 

sheets are major information source residues in the 1-9 slow modes (Figure 3.21b), the active 

ligand ATP binding residues are also information source residues in the 5-9 slow modes 

(Figure 3.21d).  
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Figure 3.22. Phosphofructokinase (PDB: 4PFK [81]). Net TE maps (a,c) and collectivity 

and TECol score plots (b,d) in the 1,3,8,9,10 and 4,7,8,9,10 slow modes, respectively, for 

the tetrameric R state conformation bound to the active site ligand F6P (green) [81] and the 

allosteric ligand PGA (cyan). PGA is taken from the inhibited T-state conformation (PDB: 

6PFK [82]). 

 

The 1-10 and 4-10 slow modes reveal the PGA and F6P binding residues, respectively. 

However, as they result in relatively lower collectivities in the behavior of information 

source residues on the tetrameric basis, as in the case of hexameric PDB structure 6DHD 

(see Figure 3.19), the results are presented here by the most collective mode combinations 

including the slow modes 1 and 4. This is to exemplify how the fine-tuned 1-10 and 4-10 

slow modes have higher collectivities in the information source residues while revealing the 

same functional sites. The PGA binding residues are information source residues in the 

1,3,8,9,10 slow modes (Figure 3.22b) and mainly the F6P bindings are information source 

residues in the 4,7,8,9,10 slow modes (Figure 3.22d). 
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Figure 3.23. UPRTase (PDB: 1XTT [83]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 3-10 slow modes, respectively, for the tetrameric structure 

with the active site ligand U5P (green) [83] and the allosteric site ligand CTP (cyan). The 

CTP binding residues are taken from (PDB: 1XTU [83]). 

 

The most collective slow mode subsets in the information transfer are the 2-10 and 3-

10 slow modes (Figure 3.23a and c). Both U5P and CTP binding residues are information 

source residues in the 2-10 slow modes (Figure 3.23b). However, with the exclusion of the 

second slowest mode, the U5P binding residues continue to act as information source 

residues while the CTP binding residues disappear in the 3-10 slow modes (Figure 3.23d). 

This implies that without the second slowest mode, the active binding residues maintain the 

shear control over the structure. The subset of 1-10 slow modes, although the information 

transfer is not as collective as in the latter subsets of slow modes, reveals the different 

binding regions of U5P and CTP (Figure 3.23e). These regions do not contribute to the 

collective information transfer in the 2-10 and 3-10 slow modes. 
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Figure 3.24. PTP1B (PDB: 1PTY [84]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 2-10 slow modes, respectively. The monomeric protein-

tyrosine phosphatase 1B complexed with the active site ligand PTR (green) [84] and the 

allosteric ligand BB3 (cyan). BB3 is taken from the allosteric BB3-bound conformation 

(PDB: 1T48 [85]). 

 

In the 1-10 slow modes, the BB3 binding residues only from one side come out as 

information source residues (Figure 3.24b). Here additional information source residues 

A228, F95, and G93 likely point to another allosteric site appearing away from the known 

ones. In the 2-10 slow modes, the PTR binding residues are predominant information source 

residues, and some of the BB3 binding residues not visible in the 1-10 slow modes appear 

in this subsets of slow modes (Figure 3.24d).  
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Figure 3.25. Glycogen Phosphorylase (PDB: 7GPB [86]). Net TE maps (a,c) and 

collectivity and TECol score plots (b,d) in the 1-10 and 3-10 slow modes, respectively, for 

the tetrameric structure with the active site ligand PLP-SO4 (green) and the allosteric 

ligand AMP-SO4 (cyan) [86]. 

 

The subsets of slow modes with relatively higher collectivities in the information 

transfer are the 1-10 and 3-10 slow modes. The PLP-SO4 binding residues are mostly 

information source residues, which are also very close to and extending to the AMP-SO4 

binding residues, in the 1-10 slow modes (Figure 3.25b).  The PLP-SO4 binding residues are 

also information source residues in the 3-10 slow modes (Figure 3.25d). Worth to note, the 

information source residues are more collective in information transfer in the 1-10 slow 

modes within the individual subunits as seen from its TE map (Figure 3.25a).  
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Figure 3.26. Thrombin (PDB: 1SFQ [87]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 3-10 and 5-10 slow modes, respectively, for the heterodimeric 

allosteric enzyme with the active site ligand 0G6 (green) and the allosteric ligand Na+ 

(cyan) [87]. 

 

The subsets of slow modes maximizing the collectivities of residues in the information 

transfer are the 3-10 and 5-10 slow modes. The information source residues of the 3-10 slow 

modes reveal both the 0G6 and Na+ binding residues (Figure 3.26b). However, some other 

0G6 binding residues that are not visible in the 3-10 slow modes are captured as the 

information source residues of the 5-10 slow modes (Figure 3.26d). 
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Figure 3.27. PDK1 (PDB: 3ORZ [88]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 2,7,8,10 slow modes, respectively, for the monomeric 

protein kinase with the active site ligand BI4 (green) and the allosteric activator 2A2 

(cyan) [88]. 

 

Information source residues of the 1-10 slow modes touching both ligands (represented 

in spheres) collectively transfer information to many others (Figure 3.27b). The five basic 

subsets of slow modes except the 1-10 slow modes yield very low collectivities, thus the 

most collective mode combination excluding the first mode (2,7,8,9,10) is evaluated (Figure 

3.27c and d). This slow mode combination suggests plausible functional sites that overlay 

with the drug binding residues (shown as wheat spheres) obtained for the PDK1 kinase from 

the Kinase Atlas [89] (Figure 3.27d). 
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Figure 3.28. CHK1 (PDB: 2BRG [90]). Net TE maps (a,c) and collectivity and TECol 

score plots (b,d) in the 1-10 and 2-10 slow modes, respectively, for the monomeric kinase 

with the active site ligand DFY (green) [90] and the allosteric ligand AGY (cyan). AGY is 

taken from the allosterically inhibited structure (PDB: 3JVS [91]). Information flow from a 

global information source residue A186 which is also one of the drug binding sites (e). 

 

The most prominent information source residues are at the DFY binding residues, yet 

one -at a lower peak- an information source residue is at the AGY binding residues in the 1-

10 slow modes (Figure 3.28b). However, in the 2-10 slow modes, additional sites with 

information source residues appear that we observe to be associated with the drug (shown as 

wheat spheres) binding to the CHK1 kinase from Kinase Atlas [89] (Figure 3.28d). 

 

Additionally, the information flow from a selected global information source residue 

A186 (one of the drug binding residues) to the others is shown from the highest (red) to the 

lowest (blue) net TE values (Figure 3.28e). Yellow dashed arrows show the direction of 

information flow to the allosteric ligand AGY binding region. 
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Figure 3.29. Che-Y (PDB: 1F4V [92]). Net TE maps (a,c) and collectivity and TECol score 

plots (b,d) in the 1,5,6,7,10 and 4,7,8,9,10 slow modes, respectively, for the monomeric 

chemotaxis protein with the active ligand BeF3 (green) and an N-terminal peptide Flim 

(cyan) [92]. 

 

Although the structure is monomer, the collectivities in information transfer are not 

high enough in any of the simplest basic five subsets of slow modes. Thus, the best results 

obtained by the subsets of slow modes by the combinatorial search scheme are presented in 

Figure 3.29. Both slow mode combinations, the 1,5,6,7,10 slow modes (Figure 3.29b) and 

the 4,7,8,9,10 slow modes (Figure 3.29d), give mainly the Flim binding residues as 

information source residues. However, the BeF3 binding sites are also information source 

residues in the latter subset of slow modes. L25, F30 and V33 are proposed to be extra 

allosteric sites appearing as information source residues in both subsets of slow modes. 

Additionally, D12 and R73 are information source residues in the 4,7,8,9,10 slow modes and 

we see them to be functionally important residues, involved in salt bridge and an 

intermolecular hydrogen bond formation, respectively [21,92]. 

 



51 
 

 

 

Figure 3.30. Human DNA-PK Holoenzyme (PDB: 5Y3R [45]). Net TE maps (a,c) and 

collectivity and TECol score plots (b,d) in the 1-10 and 2-10 slow modes, respectively. 

Information flow from a global information source residue in the 2-10 slow modes is 

represented by yellow dashed arrows (e).   

 

The DNA-dependent protein kinase (DNA-PK) complex composed of a catalytic 

subunit (DNA-PKcs) and KU70/80 heterodimer bound to DNA (cyan), which allosterically 

stimulate the catalytic activity in kinase domain [45]. Most of the DNA binding residues of 

KU70/80 are information source residues in the 1-10 slow modes (Figure 3.30b). Also, 

catalytic sites (green) in the kinase domain of the DNA-PKcs appear as information source 

residues with the collective information transfer capability. Hidden information sources 

along with the catalytic sites appear at an extra allosteric region in the 2-10 modes (Figure 

3.30d), which indeed overlap the breast cancer 1 (BRCA1) binding residues [93]. It is near 

to the PQR cluster, which is known to be regulating the autophosphorylation of the catalytic 

site of DNA-PK [94]. Additionally, the information flow from a selected global information 

source residue S2056 (one of the BRCA1 binding residues) to the others is shown from the 

highest (red) to the lowest (blue) net TE values (Figure 3.30e). Yellow dashed arrows show 

the direction of information flow to the regions including catalytic cavity and to the KU70/80 

associated with DNA binding. 
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Figure 3.31. ATP Sulfurylase (PDB: 1I2D).  TECol score values based on the 

individual/isolated monomer and the hexameric biological unit of the enzyme with the 

subsets of slow modes maximizing the collectivity of residues in the information transfer. 

 

When the isolated monomeric subunit is considered, allosteric and active ligand 

binding residues appear as information source residues in the 1-10 and 2-10 slow modes, 

respectively (Figure 3.31a). However, due to the asymmetric nature when the biological unit 

is considered (see caption of Figure 3.18), the active sites appear as information source 

residues in the four chains (chains B and C) in the 1,3,7,8,9 slow modes, two of which are 

relatively more collective in information transfer than the others (Figure 3.31b). On the other 

hand, the PPS binding residues appear as information source residues in two chains of the 

hexamer (chains C) in the 2,4,5,9,10 slow modes.  
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3.2.1.  Overview from Allosteric Proteins in the Dataset 

 

The proposed method of collectivity in information transfer is applied on 20 more 

allosteric proteins in addition to the three illustrative scenarios for functional site predictions. 

The active state structures are mostly used in the GNM-based TE computations without 

giving any input about their active or allosteric ligand binding sites. As summarized in Figure 

3.32 below, the active and allosteric sites in these allosteric proteins are revealed as global 

information sources.  

 

 

 

Figure 3.32. Active and allosteric sites as information sources for a test set of 20 proteins. 

Each ribbon structure is color-coded from the highest (red) to lowest (blue) TECol score 

values of residues in subsets of slow modes of maximal information transfer. Active 

(green) and allosteric (cyan) ligands are represented with spheres. 

 

In the 18 cases, the simple search scheme of five subsets of slow modes that 

sequentially exclude the slowest mode disclose active and allosteric sites as global 

information sources. For the remaining two cases -phosphofructokinase (PDB: 4PFK) and 

chemotaxis protein Che-Y (PDB: 1F4V)- these subsets of slow modes partially detect 



54 
 

functional sites with relatively lower collectivities in their information transfer (Figures 3.22 

and 3.29). However, the combinatorial search scheme of the three-to-five slow mode 

combinations based on the maximization of the collectivities of residues in the transfer of 

information also give active and allosteric sites as information sources in these structures.   

 

For most of these cases, global information sources overlap with active site residues 

in the subsets of slow modes including the slowest mode. However, when the effects of the 

slowest mode and the next slower modes are sequentially removed, latent allosteric 

communications in which allosteric sites turn to the most pronounced information sources 

appear. There are the subsets of slow modes that we observe, both active and allosteric sites 

are detected as globular information sources. Appearance order of active and allosteric sites 

in the slowest mode may alter with the change in the conformational state, prioritizing a 

certain functional behavior or an information source over another. 

 

The three-to-five slow mode combinations besides the simple five subsets modes are 

also evaluated for the 18 cases in the dataset. The slowest mode in a subset of slow modes 

mainly drives the general information transfer behavior. However, it is also possible to see 

more than one dynamic behavior in the subsets of different combinations starting with the 

same slowest mode. The averaging - the superimposition - of the information transfer in 

multiple modes of a crude dissection in such cases may preclude a clear view of information 

transfer patterns with eliminated “mode pollution” as well as lead to the identification of 

some unique functional sites that could not be observed otherwise. 

 

3.2.2.  Information Flow in Subunit Cooperativity 

 

In multimeric proteins of identical subunits, the dynamic characteristics of functional 

-active and allosteric- sites as global information sources in different subsets of slow modes 

could be manifold as described below. 

 

In tetrameric fructose-1,6 bisphosphatase (PDB: 1EYI) (Figure 3.14), the 1-10 slow 

modes result in active sites as the only information sources to integrate all subunits where 

the communication of diagonal monomer pairs are more emphasized. On the other hand, the 
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2-10 slow modes enable the allosteric sites of each monomer to transfer information to its 

neighboring monomer. In L-lactate dehydrogenase (PDB: 1LTH) (Figure 3.16), the 1-10 

slow modes define information transfer within the dimers as a general pattern. The active 

site residues behave as exceptions to this general behavior and communicate with the other 

dimer at various positions. However, the 2-10 slow modes integrate all subunits with the 

information transfer from both active and allosteric sites. Similar behavior is observed in 

glycogen phosphorylase (PDB: 7GPB) (Figure 3.25) where the 1-10 slow modes enable 

information transfer from both active (relatively more collective) and allosteric sites within 

the dimers. On the other hand, the 3-10 slow modes having active sites with information 

transfer capacity integrate all subunits. The degeneracy shared by slow modes 1 and 2 is 

apparently at play for the allosteric communication on the level of dimers. ADP-glucose 

phosphorylase (PDB: 1YP3) (Figure 3.21) in the 1-9 slow modes shows that active and 

allosteric sites (relatively more collective) as global information sources integrate all 

subunits yet being more effective within dimers. Active and allosteric sites are also 

information sources with collective information transfer to all subunits in the 5-9 slow 

modes. A more repetitive communication pattern is apparent in glutamate dehydrogenase 

(PDB: 6DHD) (Figure 3.19), a hexameric protein. Here, allosteric sites maintain the 

information flow within each monomer in the 1-10 slow modes, whereas active sites display 

information flow within each dimer in the 4-10 slow modes. GlcN-6-P deaminase (PDB: 

1HOT) (Figure 3.20) displays similar behavior to glutamate dehydrogenase. In the 1-10 slow 

modes, the information transfer is mainly within monomers in general, yet allosteric sites 

act as information sources and integrate all subunits. In the 4-10 slow modes, active site 

residues transfer information within dimers.  

 

The appearance of active and allosteric sites alone or together and their control at 

different subunit levels revealed in various subsets of slow modes are based on the functional 

states represented by the structures on which the calculations are based. With conformational 

changes or in another functional state, it would be possible to see the slow modes/these 

subsets of slow modes to efface, appear, and/or shuffle, prioritizing certain functional 

motions according to the specific functional state. 
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3.2.3.  Additional New Functional Sites  

 

It is also possible to observe additional information source residues of likely functional 

importance, such as in PDK1 (PDB: 3ORZ) and CHK1 (PDB: 2BRG) kinases. In these two 

kinases, while the active and allosteric sites appear in the 1-10 slow modes, the information 

source residues also point to some other regions of the structure in the 2-10 slow modes that 

we see them overlapping with the drug bindings sites from Kinase Atlas [89] (Figures 3.27 

and 3.28). Indeed, in CHK1, the information flow from a selected global information source 

residue A186 -which is one of the drug binding sites- is seen towards the allosteric sites 

(Figure 3.28e).  

 

Along, in another kinase, human DNA-PK Holoenzyme (PDB: 5Y3R), the allosteric 

DNA binding region together with the catalytic sites in the kinase domain appear in the 1-

10 slow modes (Figure 3.30b). However, other regions appear as additional allosteric sites 

in the 2-10 slow modes that we observe one of these coinciding with the breast cancer 1 

(BRCA1) binding sites [93] (Figure 3.30d), which is known for its role in the 

autophosphorylation of the DNA-PK catalytic unit [94]. Indeed, the information flow from 

a selected global information source residue S2056 (one of the BRCA1 binding sites) is seen 

towards the catalytic cavity and the DNA binding sites associated with KU70/80 protein 

(Figure 3.30e). These examples indicate that information source residues are likely allosteric 

druggable sites to be targeted. 

 

 

 

 

 

 

 

 

 

 

 



57 
 

3.3.  Statistical Analyses of Functional Site Predictions 

 

The statistical significance of functional -active and allosteric- site predictions of each 

case has been measured by the p-value analysis as well as the performance metrics of 

sensitivity, specificity, precision, and accuracy. The results of the statistical analysis for the 

predictions are given in Table 3.1. where p-values that exceed the significance level of 0.05 

are underlined. 

 

Table 3.1. P-value analysis and performance metrics of functional site predictions.  

 

 

Case 

 

Subset of 

Slow 

Modes 

 

 

Site 

Revealed 

 

p-value 

(α = 0.05) 

 

Sensitivity Specificity Precision Accuracy 

 

7 Å 

 

10 Å 

 

7 Å 

 

10 Å 

 

7 Å 

 

10 Å 

 

7 Å 

 

10 Å 

1D09 1-10 Active p < .00001 0.33 0.43 0.72 0.76 0.17 0.36 0.67 0.68 

4-10 Allosteric p < .00001 1.00 0.97 0.81 0.84 0.35 0.51 0.83 0.86 

1V4S 1-10 Active p = .04504 0.31 0.37 0.72 0.77 0.24 0.50 0.63 0.61 

3-10 Allosteric p = .00004 0.59 0.54 0.81 0.84 0.34 0.52 0.77 0.76 

1EFA 1-10 Active p < .00001 0.69 0.67 0.86 0.88 0.51 0.63 0.83 0.84 

3-10 Allosteric p = .29445 0.45 0.40 0.68 0.67 0.36 0.49 0.61 0.55 

3K8Y 4-10 Active p = .45809 0.29 0.35 0.68 0.73 0.36 0.57 0.53 0.53 

5-10 Allosteric p = .00081 0.70 0.67 0.87 0.94 0.58 0.83 0.84 0.86 

1EYI 1-10 Active p < .00001 0.75 0.67 0.74 0.79 0.50 0.67 0.74 0.74 

2-10 Allosteric p < .00001 0.64 0.72 0.75 0.83 0.30 0.56 0.74 0.80 

1YBA 1-10 Active p = .00411 0.42 0.39 0.69 0.69 0.32 0.41 0.62 0.59 

2-10 Allosteric p < .00001 1.00 1.00 0.78 0.82 0.32 0.50 0.80 0.85 

1LTH 1-10 Active p < .00001 0.54 0.54 0.73 0.79 0.48 0.69 0.67 0.68 

2-10 Allosteric p < .00001 0.56 0.60 0.68 0.71 0.18 0.33 0.66 0.69 

2HBQ 2-10 Active p = .02575 0.54 0.50 0.70 0.71 0.36 0.46 0.66 0.64 

Allosteric p = .08727 0.57 0.54 0.67 0.69 0.21 0.31 0.66 0.66 

1I2D 1-8 Active p < .00001 0.67 0.77 0.65 0.72 0.16 0.42 0.65 0.73 

5-8 Allosteric p = .01336 0.43 0.44 0.62 0.62 0.09 0.12 0.60 0.60 

6DHD 1-10 Allosteric p < .00001 0.52 0.49 0.92 1.00 0.64 1.00 0.83 0.81 

4-10 Active p = .00699 0.48 0.40 0.59 0.56 0.26 0.35 0.56 0.50 

1HOT 1-10 Allosteric p < .00001 0.79 0.62 0.86 0.89 0.34 0.51 0.85 0.84 

4-10 Active p = .00611 0.31 0.33 0.66 0.67 0.10 0.28 0.62 0.57 

1YP3 1-9 Allosteric p < .00001 0.54 0.62 0.77 0.81 0.14 0.34 0.75 0.78 

5-9 Both p < .00001 0.32 0.32 0.79 0.83 0.36 0.61 0.66 0.60 
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Table 3.1. P-value analysis and performance metrics of functional site predictions 

(cont.). 

4PFK 1 3 8 9 10 Allosteric p < .00001 0.60 0.57 0.85 0.87 0.47 0.63 0.80 0.73 

4 7 8 9 10 Active p < .00001 0.57 0.56 0.78 0.84 0.21 0.47 0.77 0.78 

1XTT 2-10 Allosteric p = .00844 0.44 0.50 0.74 0.77 0.32 0.46 0.67 0.70 

3-10 Active p < .00001 0.39 0.35 0.83 0.86 0.53 0.70 0.68 0.60 

1PTY 2-10 Active p = .24119 0.31 0.35 0.72 0.74 0.21 0.42 0.64 0.61 

Allosteric p= .98963 0.60 0.54 0.77 0.76 0.32 0.32 0.74 0.73 

7GPB 1-10 Active p < .00001 0.85 0.74 0.73 0.75 0.26 0.36 0.74 0.75 

Allosteric p < .00001 0.04 0.08 0.65 0.65 0.01 0.03 0.61 0.60 

1SFQ 3-10 Active p = .06681 0.44 0.42 0.76 0.80 0.35 0.55 0.68 0.66 

Allosteric p = .08913 1.00 0.71 0.74 0.76 0.10 0.25 0.74 0.76 

3ORZ 1-10 Active p = .00856 0.64 0.47 0.81 0.82 0.39 0.50 0.78 0.72 

Allosteric p = .00824 0.50 0.54 0.77 0.80 0.22 0.39 0.74 0.75 

2BRG 1-10 Active p = .00514 0.43 0.43 0.86 0.90 0.46 0.69 0.76 0.75 

1F4V 1 5 6 7 10 Active p = .33907 0.57 0.46 0.74 0.76 0.36 0.54 0.71 0.65 

Allosteric p = .08876 0.40 0.44 0.74 0.81 0.54 0.73 0.59 0.62 

4HQJ 1-10 Active p = .02687 0.90 0.85 0.72 0.76 0.23 0.37 0.74 0.77 

2-10 Allosteric p < .00001 0.95 0.81 0.79 0.82 0.27 0.41 0.80 0.82 

 

6MIX 

1 4 8 9 Active p < .00001 1.00 1.00 0.75 0.76 0.11 0.14 0.76 0.77 

2-11 Allosteric p < .00001 0.90 0.91 0.70 0.72 0.10 0.17 0.71 0.73 

1 4 7 8 Allosteric p = .02464 0.93 0.82 0.70 0.72 0.10 0.18 0.71 0.73 

 

 

5Y3R 

 

1-10 

KD, 

KU70/80 

 

p < .00001 

0.58 0.59 0.77 0.79 0.08 0.14 0.76 0.77 

 

2-10 

KD, 

KU70/80, 

BRCA1 

 

p < .00001 

0.44 0.45 0.73 0.73 0.07 0.13 0.71 0.71 

 

37 out of 46 predictions are statistically significant according to their p-value analyses, 

corresponding to the overall success of 80.4% of our methodology. The predictions with p-

values exceeding the significance level of 0.05 belong to the cases of small structures where 

the predictions may include both active and allosteric sites as they are in proximity on the 

structure. On the other hand, for the threshold distance of 7 Å, the values of four other 

performance metrics reached as high as 100%, 92%, 64%, and 85% respectively for 

sensitivity, specificity, precision, and accuracy.  

 

Overall, sensitivity and precision values are relatively lower than specificity and 

accuracy values. Relatively lower precision values may be due to the fact that the predictions 
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in a given subset of slow modes may reveal both active and allosteric sites while here we 

analyze on the assumption of one functional group per each statistical set. For example, in 

ADP-glucose pyrophosphorylase (PDB: 1YP3), using both groups of allosteric and active 

sites improved the precision values. There could also be additional unknown binding sites 

and/or other plausible functional sites such as the ones important for subunit folding and 

assembly. Furthermore, neighboring information source residues of a functional site are not 

counted when the threshold distance is relatively small (<7 Å). Thus, precision increases up 

to 100% when a threshold distance of 10 Å is considered. Besides, relatively lower precision 

values are partially balanced by the higher specificity values for most of the cases, meaning 

nonfunctional residues are defined correctly.  

 

On the other hand, lower sensitivity values reflect that some of the residues that make 

up a functional site do not appear as global information sources. This is expected that not all 

ligand or substrate binding residues need to have a dynamic capacity for collective 

information transfer, some may be important for additional roles such as the stabilization of 

the ligand-protein interactions. 

 

3.4.  Degenerate and Nondegenerate Modes 

 

Degenerate and nondegenerate GNM modes of 14 test proteins with structural 

symmetry are determined by analyzing the MSF shapes of individual GNM modes, and are 

summarized in Table 3.2. The MSF analysis for degeneracy is exemplified by the case of 

ATCase in Figure 3.33. The MSF results for rest of the dataset proteins are provided in 

Appendix A. 
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Figure 3.33. Individual GNM mode shapes for the ATCase protein (PDB: 1D09) as an 

example. 

 

As seen from the individual mode shapes of ATCase, the slow modes of 1 and 4 are 

nondegenerate. Ns is determined as 10 for this case since the 9th and 10th slow modes are 

degenerate couples. Whether or not to include modes after 10th slowest mode is optional.  

 

Table 3.2. Degeneracy analyses of 14 test proteins with structural symmetry. 

 

 

 

 

 

PDB 

 

 

 

# 

of  

Units 

 

 

 

 

Ns 

 

NONDEGENERATE 

  

 

DEGENERATE 

 

Slow 

Modes 

 

Maximum 

Collectivity 

Gained 

Sites 

Revealed 

with High 

TECol 

Scores 

 

Slow 

Modes 

 

Maximum 

Collectivity 

Gained  

Sites 

Revealed 

with 

High 

TECol 

Scores 

1D09 6 10 1, 4 0.63 Allosteric 2-3, 5-6, 

7-8, 9-10 

0.36 Allosteric 

1EYI 4 10 All (1-10) 0.67 Active None - - 

1I2D 3 8 5, 6  0.44 Both 1-2, 3-4, 

7-8 

0.29 Active 

1YP3 4 9 3, 6, 7  0.41 Active 1-2, 4-5, 

8-9 

0.44 Irrelevant 
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Table 3.2. Degeneracy analyses of 14 test proteins with structural symmetry (cont.). 

 

PDB structures of 1PSD, 1VST, and 1JYF are used for degeneracy analyses of 1YBA, 

1XTT, and 1EFA, respectively, due to sligh asymmetry in their 3D structures. 

 

Degenerate slow modes could be functionally relevant as well as nondegenerate slow 

modes that are essential for symmetric functional motions of the structure, as recently shown 

for toroidal proteins with different oligomerization states [48]. Although not revealing high 

collectivities, the functional significance of degenerate slow modes is evident in allosteric 

proteins with structural symmetries and both degenerate modes as well as nondegenerate 

ones carry information on active or allosteric sites (Table 3.2). 

 

2HBQ 2 10 All (1-10) 0.77 Active None - - 

4PFK 4 10 All (1-10) 0.30 Allosteric None - - 

7GPB 4 10 3, 4, 7, 10 0.78 Active 1-2, 5-6, 

8-9  

0.38 Active 

1HOT 6 10 1, 8 0.44 Both 2-3, 4-5,  

6-7, 9-10 

0.22 Active 

1LTH 4 10 All (1-10)  0.39 Active None - - 

6DHD 6 10 1, 6, 7, 8 0.77 Both 2-3, 4-5,  

9-10 

0.20 Both 

6MIX 4 11 1, 4, 7, 8, 

9 

0.82 Active 2-3, 5-6,  

10-11 

0.42 Allosteric 

1PSD* 4 10 All (1-10) 0.49 Active None - - 

1VST* 4 10 All (1-10) 0.51 Both None - - 

1JYF* 2 10 All (1-10) 0.41 Both None - - 
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Figure 3.34. Subsets of degenerate and nondegenerate slow modes for ATCase and Human 

TRPM2 (see Table 3.2 for their nondegenerate and degenerate slow modes). 

 

In Human TRPM2 (PDB: 6MIX), the subset of only degenerate slow modes mainly 

reveals the ADPR binding regions as seen in Figure 3.34d. Apparently, degenerate slow 

modes dominate the dynamics in the 2-11 slow modes that give the ADPR binding regions 

in this basic subset (Figure 3.6d). On the other hand, however, in some cases, it is not 

possible to identify either active or allosteric sites with the subsets of only nondegenerate or 
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only degenerate slow modes. That is for which their combinations can reveal functional sites 

with high collectivities such as in the case of aspartate transcarbamoylase (PDB: 1D09). For 

this case, two nondegenerate slow modes (1 and 4) together reveal allosteric sites (Figure 

3.34a), while the slowest mode discloses active sites with contributions of some degenerate 

slow modes (the slow modes 2, 3, and 5-10) as seen in Figures 3.2b.  

 

Further, not all nondegenerate or degenerate slow modes are of functional importance 

for a particular functional motion. Thus, the subsets of specific slow modes from 

nondegenerate or/and degenerate slow modes may yield higher collectivities in the 

information transfer and render functional sites more distinguishable as global information 

sources. The presence of the nondegenerate slowest mode is essential in the appearance of 

active sites in combinations with different slow modes, while its elimination discloses the 

allosteric sites in multiple subsets of slow modes being a major determinant of allosteric 

behavior (Figures 3.14-3.17), such as in fructose-1,6-bisphosphatase (PDB: 1EYI) (Figure 

3.14) and human caspase-1 (PDB: 2HBQ) (Figure 3.17). For TRPM2 (PDB: 6MIX), this 

observation becomes more complex, since different subsets of slow modes yield distinct and 

different functional sites such as channel entrance along with ligand binding sites (Figures 

3.6, 3.9 and 3.34c-d).  

 

As a general observation, only nondegenerate slow modes mostly appoint high 

collectivities to both active and allosteric sites, while only degenerate slow modes are more 

likely to hint at either active or allosteric sites, yielding compartmentalization in the 

allosteric communication. Thus, these degenerate slow modes might be beneficial in 

dissecting the dynamics into layers of allosteric communication exclusive for entropy 

sources of either allosteric or active sites. Upon coupling with other 

degenerate/nondegenerate slow modes, this would help to complete the allosteric circuit. 

Furthermore, degenerate slow modes are likely those that respond to internal/external 

perturbation through splitting and their coupling to other slow modes are plausible, which 

may lead to some functional responses.  
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In combination with nondegenerate slow modes in the present analysis, it is paid 

attention not to set apart the degenerate modes of a given eigenvalue. On the other hand, it 

is still possible to observe the subsets of slow modes in split degeneracies with relatively 

maximum information transfer of residues. However, using them for functional site 

prediction is avoided.  

 

3.5.  Application of the GNM-based Prediction Method on DNA 

 

As a novel application, GNM-based TE methodology has been applied to predict the 

functionally important sites on DNA. Unlike the model applied to proteins, now, the DNA 

structure is modelled as an elastic network of phosphorus atoms of nucleotides interacting 

with a harmonic potential function within a threshold radius (Rcut=19 Å). Then, nucleotides 

having high collectivities in information transfer are determined using the concepts 

explained in the Materials and Methods section.  

 

The DNA structure bound to the human DNA-PK holoenzyme (PDB: 5Y3R) is chosen 

as the case study. The subset of 2-10 slow modes is designated as the subset with maximal 

collectivity in terms of TE and is presented in Figure 3.35. 
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Figure 3.35. Net TE maps (a) and collectivity and TECol score plots (b) in the 2-10 slow 

modes. DNA structure (bound to human DNA-PK) is color-coded from the highest (red) to 

the lowest (blue) TECol score values of nucleotides in the subset of slow modes of 

maximal information transfer.  

 

Binding nucleotides (red circles on the plots) are mostly at the rising peaks of the 

collectivity plot (Figure 3.35b). Thus, the global information sources appear mostly at the 

DNA-to-protein binding sites (Figure 3.35c). The fact that the prediction strategy also works 

on DNA shows the developability of the model.  
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4.  CONCLUSION AND RECOMMENDATIONS 

 

 

4.1.  Conclusions 

 

In this study, allosteric communication - which is fundamentally an information 

exchange between two distant protein sites - is defined by the GNM-based Transfer Entropy 

methodology derived from information theory [34]. It is demonstrated that known 

functionally important sites (active or allosteric) have the dynamic ability to collectively 

send information to the others - as global information sources - in different subsets of slow 

modes [95]. In other words, this is a unique dynamic behavior of functional residues that is 

only disclosed by particular slow modes, distinguishing them from one another by nature of 

their allosteric function in guiding other residues and thereby directing their motion.  

 

Here, a dynamic measure is defined by adapting Bruschweiler's collectivity definition 

[42] to determine the subsets of slow modes from which it would be possible to reveal 

important residues with high collectivities in the information transfer. This allows to measure 

the collectivity of residues in information transfer and develop a procedure. In this developed 

protocol, there are two -simple and combinatorial- search schemes (Figure 2.2, Materials 

and Methods); the simple search scheme covers the basic dissection of slow modes into five 

subsets of slow modes by sequentially removing the slowest modes in each (i.e., 1-10, 2-10 

slow modes) and the combinatorial search scheme takes the subsets of the three-to-five slow 

mode combinations into account. There may be more than one subset of slow modes 

produced by either the simple or combinatorial search schemes, allowing for the disclosure 

of different functional sites in various dynamic contexts. The proposed protocol is applied 

on a dataset of 23 proteins (Table 2.1), and it is demonstrated that the dissection of dynamic 

information into subsets of slow dynamic modes discloses different layers of multi-

directional allosteric pathways inherent in a given protein structure.  

 

The predictions are elaborated for three exemplary cases; aspartate transcarbamoylase 

(ATCase), Na+/K+–adenosine triphosphatase (Na+/K+-ATPase), and human transient 

receptor potential melastatin 2 (TRPM2) and are summarized for the rest of the allosteric 
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proteins in the dataset. As presented in Figure 3.32, functional sites can lead and direct 

feasible multi-directional allosteric communication pathways thanks to their collective 

information transfer abilities in distinct subsets of slow modes. The overlap between 

functional sites and highly collective information sources offers a way of optimizing the 

protein topology in the most cost-efficient approach of allosteric communication. The 

layering of the complex allosteric communication made possible by the suggested approach 

may allow for the chance to target only some layers of allosteric interactions while 

maintaining others. Especially, the allosteric interactions related with binding specificity 

might be a potential target to develop drugs with less side effects. With an ever-increasing 

number of protein structures available, the effectiveness and robustness of the proposed 

approach make it possible also to explore functional processes in addition to the functional 

site predictions.  

 

4.2.  Recommendations 

 

In this thesis, subsets of slow modes maximizing collectivity in information transfer 

are identified and the results of these subsets are presented in terms of the predictions of 

functional sites. However, a different approach to the proposed methodology can also be 

brought by examining the TECol peaks produced by different mode combinations that 

passed the collectivity threshold. By such a mode selection algorithm, it can be observed 

which peaks appear in which specific subsets. Furthermore, by this approach, unique subsets 

in revealing distinct TECol peaks can be identified, adding a zoom-in approach to the 

method.  

 

As seen in the case study on DNA, the proposed method also offers the possibility to 

make predictions on different types of biological molecules. It is recommended that the data 

set be developed in this sense. By adding new DNA cases, the results can be analyzed in 

more detail. Additionally, RNA molecules can be modelled using the idea of GNM 

adaptation for DNA.  
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Considering all conformational states would offer a comprehensive picture of 

allosteric control, i.e., a more complete dynamic allosteric landscape. A detailed 

conformational study based on this methodology can be performed to comprehend dynamic 

allosteric landscape of a single protein. Collective subsets of slow GNM modes –which 

disclose functional sites– can be used in ANM-LD simulations to be able to lead transitional 

pathways without providing target structure information. Thus, the importance of these 

selected modes in the conformational transition can be revealed.  
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APPENDIX A:   MSF SHAPES OF INDIVIDUAL GNM 

MODES (FOR SYMMETRIC STRUCTURES) 

 

 

 

 

Figure A.1. Individual GNM mode shapes for Lac Repressor (PDB: 1EFA). 
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Figure A.2. Individual GNM mode shapes for Fructose-1,6 Bisphosphatase (PDB: 1EYI). 

 

 

 

Figure A.3. Individual GNM mode shapes for ATP Sulfurylase (PDB: 1I2D). 
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Figure A.4. Individual GNM mode shapes for UPRTase (PDB: 1XTT). 

 

 

 

Figure A.5. Individual GNM mode shapes for Phosphoglycerate DH (PDB: 1YBA). 
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Figure A.6. Individual GNM mode shapes for ADP-glucose Phosphorylase (PDB: 1YP3). 

 

 

 

Figure A.7. Individual GNM mode shapes for Caspase-1 (PDB: 2HBQ). 
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Figure A.8. Individual GNM mode shapes for Phosphofructokinase (PDB: 4PFK). 

 

 

 

Figure A.9. Individual GNM mode shapes for Glycogen Phosphorylase (PDB: 7GPB). 
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Figure A.10. Individual GNM mode shapes for glcN-6-P deaminase (PDB: 1HOT). 

 

 

 

Figure A.11. Individual GNM mode shapes for Lactate DH (PDB: 1LTH). 
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Figure A.12. Individual GNM mode shapes for Glutamate DH (PDB: 6DHD). 

 

 

 

Figure A.13. Individual GNM mode shapes for human TRPM2 (PDB: 6MIX). 
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