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ABSTRACT 

 

 

INVESTIGATION OF MEDULLOBLASTOMA METABOLISM BY 

TISSUE-SPECIFIC GENOME-SCALE BRAIN METABOLIC MODEL 

AND IDENTIFICATION OF THERAPEUTIC TARGETS  

 

 

Medulloblastoma (MB) is the most prevalent pediatric brain tumor arising in the 

cerebellum. Since conventional therapies decrease life quality and cause deleterious effects 

on children, computer models are urgently required to simulate cancer phenotypes and 

determine potential therapeutic targets with minimum side effects on healthy cells. In the 

present study, metabolic alterations specific to MB were reflected on the brain genome-scale 

metabolic model by employing transcriptome data. Moreover, the relation between 

metastasis and the Warburg effects and the pathways utilized by MB without carbon source 

were investigated. Flux sampling analysis was also performed to detect statistically different 

reactions in healthy and MB cases. Regulation, flux coupling, and essentiality analyses were 

conducted as well to find therapeutic targets for MB. Additionally, the antimetabolites which 

might lessen the use of substrates in cells by causing competitive inhibition were identified 

by using similarity scores and conducting FBA. To investigate sphingolipid metabolism in 

depth, 79 reactions were newly included in the MB model. Consequently, the MB model 

captured metabolic characteristics of MB successfully as confirmed by experimental studies. 

It was found that targeting proteins/enzymes related to fatty acid synthesis, mevalonate 

pathway in cholesterol synthesis and inhibition of cardiolipin production, and tumor-

inducing sphingolipid metabolites might be beneficial therapeutic strategies for MB. 

Furthermore, the suppression of GABA catalyzing and succinate-producing enzymes 

simultaneously might be a potential solution for metastatic MB. Using oleic acid as an 

antimetabolite owing to its structural similarity to linoleate and its downregulation in MB 

might be also a promising approach for this life-threatening disease.    



v 

 

ÖZET 

 

 

DOKUYA ÖZGÜ GENOM ÖLÇEKLİ BEYİN METABOLİK MODELİ 

İLE MEDULLOBLASTOM METABOLİZMASININ İNCELENMESİ 

VE TERAPÖTİK HEDEFLERİN BELİRLENMESİ  

 

 

 Medulloblastom (MB), beyincikte ortaya çıkan en yaygın pediatrik beyin tümörüdür. 

Geleneksel tedaviler yaşam kalitesini düşürdüğü ve çocuklar üzerinde zararlı etkilere neden 

olduğu için, kansere özgü özellikleri simüle etmek ve sağlıklı hücreler üzerinde minimum 

düzeyde yan etkisi olan potansiyel ilaç hedeflerini belirlemek için bilgisayar modellerine 

ihtiyaç duyulmaktadır. Bu çalışmada, MB’ye özgü metabolik değişiklikler, transkriptom 

verileri kullanılarak genom ölçekli metabolik beyin modeline yansıtılmıştır. Metastaz ile 

Warburg etkileri arasındaki ilişki ve MB’nin karbon kaynağı mevcut olmadığında kullandığı 

yolaklar araştırılmıştır. Sağlıklı ve MB durumlarındaki istatistiksel olarak farklı 

reaksiyonları tespit etmek üzere akı örnekleme analizi yapılmıştır. MB için ilaç hedeflerini 

tespit etmek amacıyla regülasyon, akı bağlantısı ve tek/çift gen ve reaksiyon silme analizleri 

yapılmıştır. Ek olarak, akı denge analizi uygulanarak ve benzerlik skorları kullanılarak, 

yarışmalı inhibisyona neden olarak hücrelerde substrat kullanımını azaltabilecek 

antimetabolitler belirlenmiştir. Sfingolipit metabolizmasını derinlemesine araştırmak için 

MB modeline 79 reaksiyon dahil edilmiştir. Sonuç olarak, burada oluşturulan MB modeli, 

deneysel çalışmalarla da doğrulandığı üzere MB’nin metabolik özelliklerini başarılı bir 

şekilde yakalamıştır. Yağ asidi sentezi, kolesterol sentezindeki mevalonat yolağı ile ilgili 

proteinlerin/enzimlerin hedef alınmasının ve kardiyolipin üretiminin ve tümör indükleyici 

sfingolipit metabolitlerinin inhibe edilmesinin MB için faydalı terapi stratejileri olabileceği 

bulunmuştur. Ayrıca, GABA’yı parçalayan ve süksinat üreten enzimlerin eş zamanlı olarak 

baskılanmasının, metastatik MB için potansiyel bir çözüm olabileceği tespit edilmiştir. Son 

olarak, linoleat’a yapısal benzerliği ve MB’deki aşağı regülasyonu nedeniyle bir 

antimetabolit olarak oleik asidin kullanılması da yaşamı tehdit eden bu hastalık için umut 

verici bir yaklaşım olarak sunulmuştur. 
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1.  INTRODUCTION 

 

 

Brain cancer is a serious disease that influences both children and adults (Chakraborty 

et al., 2018).  In children, after leukemia, primary brain tumor is the second prominent 

pediatric cancer. Among pediatric brain tumors, medulloblastoma (MB) is the most 

prevalent kind with an annual rate of ~5 cases per 1 million population. (Girardi et al., 2019; 

Northcott et al., 2019). In 2014, the malignant medulloblastoma was reported as the most 

prevalent brain tumor type appearing in children by World cancer report (Stewart and Wild, 

2014).  

 

The treatment for MB is surgery followed by radiation and chemotherapy to remove 

any remaining tumor and decrease the risk of metastasis (Kumar et al., 2017). However, 

radiation therapy is generally not applied to children younger than three since radiation can 

be detrimental for the developing brain, thus this can jeopardize patient survival (Kumar et 

al, 2017). Moreover, many patients face treatment-related neurological sequelae after these 

therapies (Hovestadt et al., 2019). The most prominent side effect is a decline in intelligence 

(Riggs et al., 2014). The patients also had issues such as poor memory and difficulty focusing 

after receiving chemotherapy and spinal irradiation (Palmer et al., 2013). Therefore, there is 

a dire need for innovative and effective strategies which have minimum toxic effects on 

healthy cells and alleviate patients’ therapy-related burdens.           

 

Genome-scale metabolic modeling has been an effective tool to study cancer 

metabolism within the past two decades (Özcan and Çakır, 2016). The opportunity to get 

information about the transcriptomic activities and analyze the intricate metabolism of brain 

tumors makes genome-scale models attractive. 

 

Herein, the genome-scale brain metabolic model iMS570, developed by Sertbaş et al 

and then customized to iMS570g model to reflect glioblastoma metabolism by Özcan and 

Çakir, was expanded and changed to capture the metabolic variations that occur in 

medulloblastoma and thus named MB model.  
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There are two main goals of the present study. Firstly, to obtain a brain metabolic 

model that imitates the metabolic and transcriptomic changes in brain metabolism caused by 

medulloblastoma and make accurate predictions about this disease in question. Secondly, to 

propose effective and non-hazardous approaches/ compounds that can pass through the 

blood-brain barrier, and that will act on the therapeutic targets uncovered by this model. The 

genome-scale model and transcriptomic data are the two major tools required to achieve 

these two goals. 

 

The next chapter covers background information about these tools. In addition, Flux 

balance analysis and minimization of metabolic adjustment methods employed in this study 

are explained comprehensively. The information about metabolic activities of 

medulloblastoma and a brief explanation about earlier studies that have investigated cancer 

using genome-scale modeling approach are included. 

 

The third chapter answers questions such as how the biomass reaction was made 

specific to the cerebellum, which reactions were added to the model and for what purpose, 

how the constraints required for the analysis were determined, and how the transcription data 

were integrated into the model. The aims of flux balance, flux sampling, regulation, flux 

coupling, essentiality analyses, and how they were performed are also given in this methods 

chapter. Lastly, investigation of therapeutic targets for medulloblastoma and analyses done 

particularly for this part of the study are presented. 

 

The fourth chapter contains the results of flux balance analysis of the MB model and 

a comparison of these findings with the literature and healthy brain model results. Then 

comes the part that examines wherefrom the cell meets its energy requirement without a 

carbon source. Next, the question of whether there is a relation between metastasis and the 

Warburg effect is discussed. Furthermore, flux sampling results, flux sampling histograms 

of the key reactions, and statistically most different reactions in the MB model compared to 

ones in the healthy model are detailed. Regulation, flux coupling, and essentiality analyses 

results are also discussed extensively with the purpose of uncovering potential drug targets. 

Afterward, the two parts of the investigation process of therapeutic targets in 

medulloblastoma are explained in detail.  
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The first part includes the common genes that are essential for lactate and energy 

production alongside growth and therapeutic suggestions based on these results. The second 

part includes the results of the flux balance analyses where drug effects were simulated for 

each metabolite in the model to identify the antimetabolites which might reduce the use of 

substrates in cells. Potential antimetabolite-metabolite pairs using similarity scores and FBA 

results are also presented. Lastly, the results of essentiality and flux balance analyses 

specifically performed for the sphingolipid pathway and therapeutic targets that were found 

based on these findings are covered.  

 

The main conclusions and recommendations for further studies are summarized in the 

“Conclusion and Recommendations” chapter.  
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2.  BACKROUND ASPECTS 

 

 

2.1.  Systems Biology 

 

Systems biology is an important field of science that links constituents of biological 

systems (cells, tissues, and organs) and controls these biological systems by taking 

advantage of computational and experimental methods (Tavassoly et al., 2018). Systems 

biology methods allow researchers to study behaviors and interactions of biological 

components (Tavassoly et al., 2018). It is also possible to investigate alterations that 

occurred in biological entities entailed by chemical, biological, and genetic perturbations 

(Ideker et al., 2001). 

 

A systems biology approach requires 4 main steps (Palsson, 2015).  Firstly, necessary 

components for biological processes are determined and compiled. Then, relations of these 

components are investigated to develop genome-scale networks. Developed networks are 

adapted to mathematical format to be investigated. Afterward, computational models are 

constructed to predict hypothetical biological information to be verified experimentally. 

 

2.1.  Constraint Based Modeling    

 

The constraint-based modeling is the most frequently used approach that allows 

reconstructing of genome-scale in silico models which observe properties of organisms 

under different conditions (Haggart et al., 2011), (Sun et al., 2009). Constraint-based model 

(CBM) development process over the last decades can be explained in four stages (Bordbar 

et al., 2014). At first, CBMs have been utilized to detect pathway yields.  

 

Experimental fluxes have been demonstrated to agree with the results obtained with 

objective functions such as minimum generation of reactive oxygen species (ROS) and 

maximum biomass in hybridoma cells and Escherichia coli, respectively. The similarity 

between CBM and experimental results has encouraged researchers to benefit from in silico 

models to predict characteristics from a reconstructed metabolic network. 
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Afterward, whole-genome sequencing has enabled the construction of CBM at the 

genome-scale and made the reactions in CBM connect to the genes.  Gene-reaction relation 

has also made it possible to obtain the outcomes of gene silencing method providing 

detection of drug targets. After omics data became more accessible, researchers started to 

integrate these data sets into CBM. Then omics data were utilized by restricting certain 

metabolic reactions to enhance the context specificity of CBM (Bordbar et al., 2014). 

Finally, all these efforts culminated in Genome-scale metabolic models (GSMMs) that allow 

determining the properties of metabolism in biological systems (Bordbar et al., 2014). 

 

2.2.1.  Flux Balance Analysis 

 

Flux Balance Analysis (FBA) is the most used constraint-based modeling method that 

computes the flows of metabolites in a biochemical network, thus ensures prediction of the 

experimental flux rate of metabolites or growth rate in a biological system (Orth et al., 2010). 

In a certain condition, FBA presumes that the biological system will achieve a steady-state 

where given constraints are met (Kauffman et al., 2003).  

 

FBA has three major steps: (i) definition of components found in the model, (ii) 

addition of constraints, and (iii) optimization of the system. In the first step, all reactions and 

metabolites in the metabolic model should be defined.  

 

                           

   
 Figure 2.1. Sample system A has 4 internal and 3 external reactions. 
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As given in Figure 2.1 sample system A has 3 metabolites (X, Y, and Z) related to 3 

external (A1, A2, and A3) and 4 internal (V1, V2, V3, and V4) reactions.  

 

There are three types of constraints used in CBMs (Reed, 2017). The first constraint is 

the mass-balance constraint where flux rates of metabolites are computed based on the 

steady-state condition. Once all components in the model are defined as explained in the first 

step, metabolic reactions in the model are required to be expressed mathematically. Mass 

balance equations for each component are expressed in differential forms (Kauffman et al, 

2003). The mass balance equations for sample system A are shown as  

 

                               

 

Subsequently, the differential equations are written in a matrix notation (Kauffman et 

al, 2003) as shown in  

 

                        

[
 
 
 
 
 
 −1 1 −1 0 1 0 0

1 0 0 1 0 −1 0

0 −1 1 −1 0 0 −1

 

]
 
 
 
 
 

  *  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  𝑣1  

𝑣2

𝑣3

𝑣4

𝐴1

𝐴2

𝐴3
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  =  

[
 
 
 
 
 

  

 𝑑𝑋

𝑑𝑡

𝑑𝑌

𝑑𝑡

𝑑𝑍

𝑑𝑡

  

]
 
 
 
 
 

 .  

     

𝑑𝑋

𝑑𝑡
=  −𝑣1 + 𝑣2 − 𝑣3 + 𝐴1 

𝑑𝑌

𝑑𝑡
=  𝑣1 +  𝑣4 − 𝐴2 

𝑑𝑍

𝑑𝑡
=  −𝑣2 + 𝑣3 − 𝑣4 − 𝐴3. 

            

(2.1)  

(2.2) 
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Since the system is assumed to be carried out in the steady-state condition, the changes 

in flux rates over time were reduced to zero as given in  

 

                       

[
 
 
 
 
 
 −1 1 −1 0 1 0 0

1 0 0 1 0 −1 0

0 −1 1 −1 0 0 −1

 

]
 
 
 
 
 

  *  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  𝑣1  

𝑣2

𝑣3

𝑣4

𝐴1

𝐴2

𝐴3
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  =  

[
 
 
 
 
 

   

0

0

0

   

]
 
 
 
 
 

 .    

 

The first matrix in Equation (2.3) is a stoichiometric matrix (S) which includes 

stoichiometric coefficients of each differential reaction. The second matrix (V) includes flux 

vectors of each reaction in sample system A. Thus, Equation (2.3) can be expressed as S x V 

= 0. 

In the stoichiometric matrix, while each column represents reactions found in the 

metabolic model, each row represents metabolites in the model. Since there are 3 metabolites 

and 7 reactions in sample system A, the dimension of the stoichiometric matrix is (3 x 7).  

While negative numbers show the metabolites consumed, positive numbers indicate the 

metabolites generated in sample system A. Zero indicates the metabolites that do not have a 

relation with the corresponding reactions. 

 

The second constraint used in FBA is related to the reversibility of the reactions found 

in the metabolic model (Reed, 2017). Acceptable maximum and minimum values for 

reversible reactions are +∞ and -∞, respectively. This range for irreversible reactions on the 

other hand is between 0 and +∞.  

 

(2.3) 
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The third constraint used in FBA is usually an experimentally measured or known flux 

value. Based on the flux value measured, upper and lower bounds can be defined as 

constraints (Reed, 2017). 

 

In the last step of FBA, optimization is employed to detect the optimum value of a 

determined objective function with the specified constraints in order to find a biologically 

logical result. In unconstrained solution space, many flux profiles for the metabolic network 

can be obtained. When mass balance and other constraints are included, solution space for 

flux profile decreases. However, more than one flux profile results are obtained within the 

solution space since a metabolic network includes more reactions than metabolites. (Orth et 

al., 2010). Therefore, optimization is utilized to predict a single and optimum flux 

distribution solution without extra constraints. Optimization is based on linear programming 

(LP) technique which computes minimum or maximum value of a certain variable (Bordbar 

et al., 2014), (Oath et al., 2010). That is why an objective function is required to specify how 

much each reaction contributes to desired objective (Oath et al., 2010). Maximization of 

growth is a prevalent objective function in microorganisms owing to their tendency to 

increase their biomass (Chen et al., 2019), (Haggart et al., 2011). Maximal production of a 

biologically important metabolite and maximal and minimal production of energy, 

maximization and minimization of nutrient uptake rate, are other objective functions used in 

biological entities (Haggart et al, 2011).  

 

2.2.2.  Minimization of Metabolic Adjustment 

 

Minimization of Metabolic Adjustment (MOMA) is another constraint-based method 

developed by assuming that perturbated biological systems cannot adapt their metabolisms 

quickly to reach the optimum biomass solution as their normal counterparts do (Haggart et 

al., 2011). Therefore, MOMA does not search for the optimum solution unlike FBA, instead 

aims for a suboptimal biomass flux profile solution that is closest to an unperturbed condition 

(Raman and Chandra, 2009). In other words, it works by considering the unperturbed 

condition in addition to the perturbated condition. It was indicated that MOMA gives more 

accurate and realistic results in perturbated biological systems compared to FBA (Segre et 

al., 2002). 
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 MOMA is also employed with FBA to improve the flux distribution results (Haggart 

et al., 2011). Dual objective function was used in the studies where human brain metabolism 

was investigated because it allows minimum enzyme use to reach the first objective 

determined for FBA (Çakιr et al.,  2007), (Özcan and Çakır, 2016), (Sertbaş et al.,  2014). 

The mathematical expression of MOMA is given as  

 

                                              D (w, v) = √∑ (wi − vi)2N
i=1  .                                               (2.4) 

 

W and v represent flux vectors of the unperturbed (wild type for microorganisms) and 

perturbated conditions, respectively. D represents the Euclidean distance between w and v. 

The expansion of Equation (2.4) is given as 

 

                                    D (w, v) = √∑ (𝑤𝑖2 − 2𝑤𝑖𝑣𝑖 + 𝑣𝑖2)𝑁
𝑖=1  .                                     (2.5) 

 

Since flux distribution in the unperturbed condition is known, 𝑤𝑖2 term is accepted as 

a constant and omitted from Equation (2.5). Hence minimization of Euclidean distance is 

equivalent to the minimization of the sum of −2𝑤𝑖𝑣𝑖 and 𝑣𝑖2 terms as given in  

 

                                                     Min(−2𝑤𝑖𝑣𝑖 + 𝑣𝑖2).                                                        (2.6) 

 

FBA employs linear programming technique, whereas MOMA uses quadratic 

programming principle due to quadratic terms in Equation (2.6) (Raman and Chandra, 2009).  

Quadratic programming solvers solve this expression based on  

 

                                              f (x) = L.x + 
1

2
 𝑥T.P.x                                                  (2.7) 

 

where x values are found by minimizing the f (x) function. L and P signify a vector and a 

matrix, respectively, and 𝑥T means transpose of x. 
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When -2wi, xi, and 2I where I represents unit matrix, are placed into Equation (2.7), 

Equation (2.6) is expressed as given in  

 

                                                     Min(−2𝑤𝑖𝑥𝑖 + 𝑥𝑖2).                                                       (2.8) 

 

Conclusively, MOMA finds flux profile of perturbed condition that satisfies Equation 

(2.8). 

 

2.2.  Genome Scale Metabolic Networking Models 

 

The development of genome-scale metabolic models is a promising field of system 

biology supported by constraint-based modeling methods (Haggart et al., 2011). Genome-

scale metabolic models (GSMM), composed of the gene, metabolite, and reaction 

interactions, allow us to determine the features of metabolism like growth rate, gene 

essentiality and robustness with the addition of few constraints (Duarte et al., 2007), 

(Puchałka et al., 2008). 

 

The first genome-scale metabolic model was constructed for Haemophilus 

influenzae in 1995. This GSMM included 488 reactions, 343 metabolites, and 296 genes 

(Fleischmann et al., 1995). In 2007, the first human-specific genome-scale metabolic 

network (Recon1) including 2766 metabolites, 1496 genes, and 3744 reactions was 

developed (Duarte et al., 2007). Afterward, different human models have been constructed 

by various research groups (Agren et al., 2012), (Brunk et al., 2018),  (Ma et al., 2007),  

(Mardinoglu et al., 2014), (Thiele et al., 2013). Over time the number of metabolites, 

reactions, and genes forming of GSMMs, has enhanced remarkably. 

 

2.3.1.  Context Specific Models 

 

Human genome-scale metabolic models contain all reactions realized in the human 

metabolism. Therefore, the reconstruction of a tissue-specific model is crucial to investigate 

a particular tissue.  
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To this end, several algorithms (such as iMAT, INIT, and GIMME) have been created 

in order to obtain a tissue-specific model by employing omics data (Becker and Palsson, 

2008), (Shlomi et al., 2008), (Agren et al., 2012). These methods are categorized into two 

groups based on the approach they use. The first group employs context-specific omics data 

without processing to enhance the predictability of flux profiles. The most known examples 

of the first group are MADE (Jensen and Papin, 2011), TEAM (Collins et al.,  2012), E-Flux 

(Colijn et al., 2009), tFBA (van Berlo et al., 2011), PROM (Chandrasekaran and Price, 

2010). The second group generates context-specific models after processing the omics data. 

Examples of the second group are GIMME (Becker and Palsson, 2008), iMAT (Shlomi et 

al., 2008), INIT (Agren et al., 2012), AdaM (Töpfer et al., 2012), mCADRE (Wang et al., 

2012). It has been determined that the two groups do not have an obvious advantage over 

each other (Machado and Herrgård, 2014). 

 

2.3.2.  Transcription Data 

 

The genetic material of a biological entity is stored in the Deoxyribonucleic Acid 

(DNA) and expressed with transcription (Lowe et al., 2017). Transcription is realized by 

which the information in a segment of DNA is replicated into an RNA molecule 

(Mercadante and Mohiuddin, 2020).  

 

Transcriptomics technologies that determine the expressions of genes in a microchip 

are employed to analyze an organism’s transcriptome (Lowe et al., 2017). The experimental 

findings obtained using Transcriptomics technology are shared by the Gene Expression 

Omnibus database (Edgar, 2002). GEO database contains four types of data which are GEO 

Platform (GPL), GEO Series (GSE), GEO Sample (GSM), and curated GEO DataSet 

(GDS). A Platform record (GPLxxx) involves a brief explanation of probe ID’s 

corresponding to related gene names.  

 

A Series record (GSExxx) has a group of samples associated with each other and it 

explains the important points of the study alongside outcomes and analyses. A Sample 

record (GSMxxx) includes the information about the results of samples utilized in the 

experiment. 
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 In addition to this information, this data contains information about what changes 

the sample has undergone and what substances are derived from it. Curated Dataset 

(GDSxxx) is a curated compilation of GEO Samples. 

 

2.4.  Metabolism 

 

Metabolism is a series of reactions carried out in organisms to sustain living conditions 

(Baart and Martens, 2012). Enzymes are essential in biochemical processes because they 

execute chemical reactions. The link between enzyme and reaction can be employed to 

reconstruct a network of reactions and thus create a model that reflects the metabolism. 

Metabolism is composed of catabolic and anabolic processes.  

 

Catabolic reactions generate the energy required by the organism breaking down large 

substances. On the other hand, anabolic reactions synthesize large substances by consuming 

the energy produced by catabolic reactions (Bronk, 1999). 

 

2.4.1.  Brain Metabolism 

 

The brain is the most intricate organ in the human body, and it has seven main 

sections: the medulla, the pons, the midbrain, the spinal cord, the cerebellum the 

diencephalon, and the cerebral hemispheres.  

 

The forebrain is composed of cerebral hemispheres and the diencephalon which 

enfold the lateral and 3rd ventricles. The pons, midbrain, and medulla together form the 

brainstem and they enclose the midbrain and 4th ventricle  (Purves, 2004). The brainstem 

that links the cerebrum with the spinal cord, is a channel for the central nervous system, that 

either transmit sensory input from the spinal cord to the forebrain or transmits motor 

commands from the forebrain to the motor neurons in the spinal cord (Singh, 2014), (Purves, 

2004). The brainstem has several nuclei that play a role in many significant functions like 

the regulation of respiration, heart rate, and blood pressure (Purves, 2004). 
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The cerebellum that extends through the dorsal aspect of the brainstem, is crucial for 

motor control, coordination and movement (Purves, 2004). It also plays a role in the 

regulation of language and attention (Wolf et al., 2009), (Schmahmann and Caplan, 2006). 

 

Glucose is the major source of energy and very substantial for the regular functions of 

the brain. It is known that in a fast person, the brain spends about 60% of glucose. 

(Wasserman, 2009). In addition, cerebral metabolism requires one-five of the body's oxygen.  

 

  Neurons that receive and send impulses are major cells in the central nervous system. 

Other significant cells for the central nervous system are glial cells that are responsible for 

providing support for neurons and regulating metabolic processes.  

 

Astrocyte is a kind of glial cell and procures substrates and eliminates unused 

substances from the brain (Bronk, 1999). There are complex metabolic relations between 

neurons and astrocytes with significant reactions.  

 

The transition of toxic substances to the brain is hindered by the blood-brain barrier 

(BBB). The BBB controls the entry of molecules and ions between the brain and blood.    

Endothelial cells (ECs) composing the walls of the blood vessels, regulate the blood-brain 

barrier (Daneman and Prat, 2015). BBB ensures the important substances like amino acids 

water, and glucose, cross with selective transport and passive diffusion. On the contrary, the 

movement of long-chain fatty acids and protein are restricted by the barrier (Bronk, 1999). 

 

2.4.1.1.  Medulloblastoma.   

 

MB is an embryonal tumor arising in the cerebellum in early life and considered to 

occur from the neuronal progenitor or stem cells. (Northcott et al., 2019). MB has been 

grouped into four molecular subtypes as Sonic Hedgehog (SHH), WNT, Group 3, and Group 

4 with peculiar molecular and clinical traits (Wang et al., 2018).  

 

SHH occurs in cerebellum while WNT and Group 4 occur in dorsal brain stem and 

brain stem, respectively.  
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Group 3 MB which arises in fourth ventricle, is the most aggressive subgroup of MB 

(Northcott et al., 2019).  A high rate of metastasis is frequently encountered at GR3 diagnosis 

and that is a strong indication that the outcome will be poor (Northcott et al., 2019). 

Especially patients with MYC gene over-expressed are in the highest risk group (Northcott 

et al., 2019). Group 3 MB patients make up approximately 25% of all MB patients (Northcott 

et al., 2019).   

 

 

 

 

 

 

    

     

 

 

 

 

 

GR4, other aggressive subtype of MB, is the most prevalent subtype consisting of 

approximately 35–40% of patients and nearly 1 of 3 patients with GR4 are metastatic 

(Northcott et al., 2019). On the contrary, WNT type of MB which is composed of 

approximately 10% of all diagnoses, is rarely metastatic, and young individuals generally 

show a good prognosis (Northcott et al., 2019). The risk criteria of the SHH group changes 

concerning age, metastatic level, genotype, and histology (Northcott et al., 2019).  

Cerebellum 

Dorsal   

Brainstem 
Midline Fourth  

Ventricle 

Brainstem 

Figure 2.2. Subgroups of Medulloblastoma WNT (Cross in Purple), SHH (Triangle in 

Red), Group 3 (Square in Green), Group 4 (Oval in Orange). 
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For example, SHH with Tp53 mutation is categorized as one of the most malignant 

types (Northcott et al., 2019).  The regions where MB subtypes occur are given in Figure 

2.2. 

 

High production of glycine, lipid and taurine are characteristics of MB (Bennett et al.,  

2018), (Davies et al., 2008), (Hekmatyar et al., 2010). Another distinctive feature of MB is 

the Warburg effect whose typical properties are abnormal glucose use and overproduction 

of lactate even in the presence of oxygen (Tech and Gershon, 2015), (Warburg, 1925). As a 

result of the Warburg Effect, low activity in citric acid cycle (TCA cycle) and oxidative 

phosphorylation pathways was observed in MB (Tech et al., 2015).  

 

Moreover, lipid synthesis is triggered to increase tumor growth. On the other hand, 

protein production is decreased to restrain energy consumption (Tech et al., 2015).  It was 

also detected that the expression of amino acid transporter SLC1A5 which allows uptake of 

glutamine into cells was enhanced in MB (Munford, 2019).  

 

Furthermore, experimental results on cancer and MB showed that PPP activity is 

increased relative to normal cell (Bensaad et al., 2006), (Niklison-Chirou et al., 2017).   

 

2.5.  Genome-Scale Modeling of Cancer and Brain Metabolism 

 

Lately, omics data have been used to be integrated with a human GSMM in order to 

study cancer. Alongside the investigation of metabolic changes related to different cancer 

types, it was aimed to identify drug targets and biomarkers (Yizhak et al., 2015). 

 

In 2011, Folger et al created the first genome scale metabolic model for cancer (Folger 

et al., 2011). They also used omics data to examine cancer-related metabolic alterations. 

Their findings were consistent with the main metabolic changes observed in various cancer 

types. Additionally, they identified essential genes for tumor growth (Yizhak et al., 2015). 
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Many studies investigated common changes seen in different cancers such as higher 

biomass production, proliferation, and the Warburg effect (Folger et al., 2011), (Resendis-

Antonio et al.,  2010), (Shlomi et al.,  2011), (Vazquez, 2011).    

 

In a study conducted by Yizhak et al. a GSMM of NCI-60 cell lines was developed to 

find a correlation between metastasis and the Warburg effect (Yizhak et al., 2014).  Lewis 

et al. reconstructed a brain-specific genome-scale metabolic model (iNL403) by utilizing 

brain proteome databases (Lewis et al., 2010). They validated the model by comparing its 

flux rates with the experimental results. iNL403 model is employed to study Alzheimer’s 

Disease (AD) and determine genes that cause neuron-related effects.   

 

In the following years, iMS570, which is also a brain-specific genome-scale metabolic 

model (Sertbaş et al., 2014), was developed expanding the model created earlier by the same 

group (Çakır et al., 2007). The scope of the study was to examine transcriptional changes 

associated with six prevalent neurodegenerative diseases: Parkinson’s disease (PD), 

Alzheimer’s disease (AD), Huntington’s disease (HD), and schizophrenia (SCH), multiple 

sclerosis (MS), and amyotrophic lateral sclerosis (ALS). The model was verified by 

comparing the flux profile with the experimental findings.  

 

Subsequently, Özcan and Çakır reconstructed iMS570g by expanding iMS570 to study 

one of the most malignant brain tumors, glioblastoma (Özcan and Çakir, 2016). Their results 

were in agreement with both in-vitro and in-vivo works.  

 

Then, Martin-Jimenez et al. created a genome-scale astrocyte-specific metabolic 

model called MODEL 1608180000 in 2017 (Martín-Jiménez et al., 2017).  

 

RasÏkevičius et al. demonstrated that how GSMMs can be employed for drug design 

and compared molecular structures of human metabolites and drugs/compounds found in the 

DrugBank database (Raškevičius et al., 2018), (Wishart, 2006). They determined that the 

compounds whose similarity scores are higher than 0.9 with a human metabolite are more 

probable to interact with the enzymes metabolizing that metabolite than other compounds.   
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In another study, Larsson et al. used GSMMs to investigate the transcriptomic data of 

glioblastoma (GBM) patients and they determined therapeutic targets (Larsson et al.,  2020).  

 

Recently, Paul et al. studied the gene silencing methods to be utilized as the detecting 

of drug targets using GSMMs of NCI60 cell lines developed by Yizhak et al (Paul et al., 

2021), (Yizhak et al., 2014). 
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3.  METHODS 

 

 

In this study, the first genome-scale brain metabolic model iMS570g was customized 

to the MB model to capture metabolic changes caused by medulloblastoma. Then several 

analyses including flux balance, flux sampling, flux coupling, and essentiality analyses were 

performed. Afterward, therapeutic targets for MB were investigated in depth. The summary 

of these works is shown in Figure 3.1. 

 

      

                        Figure 3.1. Flow chart of works done in this study. 

 

3.1.  Model Development 

 

The genome-scale brain metabolic model iMS570 (Sertbaş et al., 2014), was expanded 

to reflect the metabolic alterations that occur in glioblastoma and named iMS570g by Özcan 

and Çakir (Özcan and Çakir, 2016). The objective of the present study is to investigate 

metabolic changes realized in MB by further expanding iMS570g and consequently suggest 

putative therapeutic approaches. 
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The genome-scale brain metabolic model iMS570 (Sertbaş et al., 2014) created by 

Sertbas et al., has 630 metabolic reactions realized between astrocyte and neuron regulated 

by 570 genes. iMS570g has 659 metabolic reactions controlled by 572 genes (Özcan and 

Çakir, 2016). iMS570g covers the main pathways like glycolysis, pentose phosphate 

pathway, TCA cycle, oxidative phosphorylation, cholesterol synthesis, fatty acid synthesis 

and amino acid uptake and synthesis pathways. Since tumor cells proliferate unlike normal 

brain cells, growth reactions based on white matter where glioblastoma is observed, were 

defined by Özcan and Çakır. Additionally, four reactions indicating the glutaminolysis 

pathway and glutamine uptake were added to iMS570g in order to include the tumor-induced 

alterations in glutamine metabolism.  

 

In this work, the composition of the growth reactions based on the white matter defined 

by Özcan and Çakir was recalculated based on the brain cerebellum where MB frequently 

forms (Özcan and Çakir, 2016), (Northcott et al., 2019). Taurine and glycosphingolipid 

production pathways were added into iMS570g model. Furthermore, sphingomyelin 

pathway included by Sertbaş et al. was expanded. The expanded model has 753 metabolic 

reactions controlled by 601 genes (See Table 3.1).  

 

3.1.1. Addition of New Reactions to iMS570g 

 

3.1.1.1.  Taurine Pathway. 

 

Taurine is known as semi-essential amino acid and is found amply in the leukocytes, 

heart, skeletal muscle, retina, and brain (Schuller-Levis and Park, 2003). Taurine, which is 

produced from cysteine, plays a key role in the functions related to development in the brain 

(Ripps and Shen, 2012). Taurine deprivation leads to issues such as renal dysfunction, 

cardiomyopathy, and developmental anomalies.   

 

As a result of extended research, it was concluded that high level taurine is the 

characteristic feature of medulloblastoma (Bennett et al., 2018), (Davies et al., 2008), 

(Hekmatyar et al., 2010). Therefore, 15 Taurine Synthesis reactions were added to the 

model. These reactions are given in Appendix A.  
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Table 3.1.  The number of reactions and genes in pathways of the expanded model. 

Pathway 

Number 

of 

Reactions 

Number 

of 

Genes 

Glycolysis 31 38 

Pentose Phosphate Pathway 16 9 

TCA Cycle 31 30 

Oxidative Phosphorylation and 

ATPase 
10 92 

Glutamate - Glutamine Cycle 11 6 

GABA Cycle 6 4 

Aspartate Metabolism 3 3 

Asparagine Metabolism 1 1 

Histamine Metabolism 2 2 

Alanine Metabolism 3 2 

Glycine-Serine Metabolism 9 9 

Leucine Metabolism 9 8 

Leucine Metabolism; Ketone 

Body Metabolism 
2 5 

Valine Metabolism 10 14 
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Table 3.1.  The number of reactions and genes in pathways of the expanded model. (cont.) 

Pathway 

Number 

of 

Reactions 

Number 

of 

Genes 

Valine Metabolism; Isoleucine 

Metabolism 
3 4 

Isoleucine Metabolism 9 16 

Lysine Metabolism 10 4 

Lysine Metabolism; Ketone 

Body Metabolism 
1 4 

Phenylalanine-Tyrosine 

Metabolism 
9 8 

Tryptophan Metabolism 4 5 

Acetylcholine Metabolism 1 1 

Proline metabolism 2 5 

Methionine Metabolism 15 13 

Threonine Metabolism 6 1 

Cholesterol Synthesis 51 23 

Fatty Acid Synthesis 92 37 

Glycerol-3-phosphate Shuttle 3 2 
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Table 3.1.  The number of reactions and genes in pathways of the expanded model. (cont.) 

Pathway 

Number 

of 

Reactions 

Number 

of 

Genes 

Phosphatidylethanolamine 

Metabolism 
10 8 

Phosphatidylethanolamine 

Metabolism; 

Phosphatidylcholine Metabolism 

2 1 

Phosphatidylcholine Metabolism 6 6 

Cardiolipin Metabolism 6 2 

Sphingomyelin Metabolism 22 17 

CDP-Diacylglycerol 

Biosynthesis 
4 17 

Inositol Metabolism 26 53 

Inositol Metabolism; CDP-

Diacylglycerol Biosynthesis 
2 2 

Lipid Synthesis 2  

Reactive Oxygen Species 

Pathway 
18 16 
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Table 3.1.  The number of reactions and genes in pathways of the expanded model. (cont.) 

Pathway 

Number 

of 

Reactions 

Number 

of 

Genes 

Glycogen Degradation 

Metabolism 
2 6 

Ketone Body Metabolism 7 3 

Arginine Metabolism 16 13 

Polyamine Metabolism 13 16 

Creatine Metabolism 6 7 

Heme Metabolism 20 13 

Purine Nucleoside Metabolism 36 70 

Pyrimidine Nucleoside 

Metabolism 
36 10 

Taurine Synthesis 11 3 

Glycosphingolipid Metabolism 62 16 

Exchange 96  
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3.1.1.2.  Sphingolipid Metabolism. 

 

 Since one of the aims of this work is to investigate sphingolipid pathway in detail, the 

sphingomyelin metabolism pathway included by Sertbaş et al. was expanded and the 

glycosphingolipid pathway which is the subsequent pathway of sphingomyelin metabolism 

was added into MB model (Sertbaş et al., 2014). 79 reactions including sphingosine-1-

phosphate (S1P), phosphoryl-ethanolamine, ceramide derivatives production reactions 

employed in sphingolipid and glycosphingolipid metabolism pathways were added to the 

MB model. Additionally, galactose uptake reactions were included since galactose is used 

in the generation of galactosylceramide (Kanehisa et al.,  2021), (Roser et al.,  2009). These 

reactions are given in Appendix A.  

 

Sphingolipids are divided into two classes according to their head groups as 

glycosphingolipids and phosphosphingolipids (Ternes et al.,  2011). The most known 

phosphosphingolipid is sphingomyelin which forms with the combination of 

phosphocholine and ceramide (Quinville et al., 2021). Sphingomyelins whose structures are 

cylindrical and have phosphate groups are known to be the main constituents of myelin 

(Quinville et al., 2021). Ceramide 1-phosphate produced by ceramide kinase from ceramide 

is also phosphosphingolipid (Kanehisa et al., 2021).  

 

Glycosphingolipids are grouped into two categories as acidic and neutral   

glycosphingolipids (Quinville et al., 2021). Neutral glycosphingolipids are divided into three 

groups: glucosylceramide, lactosylceramide, and galactosylceramide (Quinville et al., 

2021). Cerebrosides (glucosylceramide and galactosylceramide) are made up of 

monosaccharides and ceramide (Quinville et al., 2021). Acidic glycosphingolipids are 

grouped into four classes; gangliosides, phosphoglycosphingolipids, 

glucuronoglycosphingolipids, and sulfatoglycoshpingolipids (Quinville et al., 2021). 

 

Sphingolipids are knowns to participate in cell membranes as structural elements 

(Ogretmen, 2018). Sphingolipids also play important roles in many cellular processes like 

proliferation, growth, migration, and metastasis by controlling signaling functions in the 

cancer cell (Oskouian and Saba, 2010).  
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Ceramide and sphingosine-1-phosphate (S1P) are especially significant sphingolipid 

metabolites responsible for regulating cell apoptosis and survival, respectively (Ogretmen, 

2018). In other words, while ceramide is a tumor inhibitor lipid, sphingosine-1-phosphate is 

a tumor promoting lipid (Ogretmen, 2018).  

 

3.1.2.  Biomass Reaction Based on The Cerebellum 

 

Protein, lipid reactions and the biomass reaction including protein, lipid, RNA, and 

ATP were calculated (Chavko et al.,  1993), (Ellis et al., 2005), (Scandroglio et al.,  2008), 

(Sultan, 2002), (Brady et al., 2012).  Firstly, the composition of amino acids (alanine, 

methionine, valine, leucine, isoleucine glutamine, glutamate, gamma-aminobutyric acid 

(GABA), glycine, serine, threonine, phenylalanine, tyrosine, aspartate, asparagine, lysine, 

arginine, ornithine, histidine, and taurine) was calculated using amino acid contents in the 

human cerebellum (given in moles of compounds found in gram fresh tissue) for the protein 

reaction (Banay-Schwartz et al., 1993). For example, alanine content was found as 4.9 

μmol/g fresh tissue.  

 

It is known that 1-gram fresh brain tissue is equivalent to 0.25 gram dry weight (gDW) 

(Andersen, 1997). Therefore, alanine content was calculated as given in  

 

      
4.9 𝜇𝑚𝑜𝑙

𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒
∗  

1 𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒

0.25 𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗  

1 𝑚𝑚𝑜𝑙

1000 𝜇𝑚𝑜𝑙 
=  

0.0196 𝑚𝑚𝑜𝑙 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
. (3.1) 

 

Like alanine, all compound contents were converted to mmol/gram dry weight (gDW). 

The results are given in the second column of Table 3.2. In order to find the mol fractions, 

each amino acid content in mmol/gram dry weight was divided to the total amino acid 

content which is 0.420 mmol/gDW.  These fractions were used as stoichiometric coefficients 

for protein reaction composed of amino acids. Then, multiplying molecular weights of all 

amino acids (Özcan and Çakır, 2016) with molar fractions calculated, the molar weight of 

protein was detected as 0.13 g/mol to be used in the main biomass reaction. 
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                           Table 3.2. Calculation of amino acid composition.  

Compound 

Compound 

Content in 

Fresh Tissue 

(μmol/g fresh 

tissue) 

(Banay-

Schwartz et 

al., 1993) 

Compound 

Content in 

Cerebellum 

(mmol/ 

gDW) 

Mol 

Fraction 

(mmol 

Compound 

/mmol 

protein) 

Molecular 

Weight 

(g/mol) 

Compound 

Content in 

1 mol of 

Protein  

(g amino 

acid/1 mol 

protein) 
 

Alanine 4.90 0.020 0.047 89.094 4.16 

Methionine 0.57 0.002 0.005 149.214 0.81 

Valine 1.72 0.007 0.016 117.148 1.92 

Leucine 2.42 0.010 0.023 131.175 3.02 

Isoleucine 0.82 0.003 0.008 131.175 1.02 

Glutamine 19.84 0.079 0.189 146.146 27.63 

Glutamate 28.34 0.113 0.270 147.130 39.73 

GABA 6.94 0.028 0.066 103.120 6.82 

Glycine 11.74 0.047 0.112 75.067 8.40 

Serine 4.63 0.019 0.044 105.093 4.64 

Threonine 3.84 0.015 0.037 119.120 4.36 

Phenylalanine 0.85 0.003 0.008 165.192 1.34 

Tyrosine 2.41 0.010 0.023 181.191 4.16 

Aspartate 3.74 0.015 0.036 133.103 4.74 

Asparagine 1.01 0.004 0.010 132.119 1.27 

Lysine 0.98 0.004 0.009 146.190 1.36 

Arginine 1.80 0.007 0.017 174.200 2.99 

Ornithine 0.60 0.002 0.006 132.160 0.75 
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Table 3.2. Calculation of amino acid composition. (cont). 

 

 

Additionally, cerebrosides and gangliosides reactions were created for the main lipid 

reaction (Norton et al., 1975), (Scandroglio et al., 2008). The distribution of gangliosides 

(GM3, GM2, GM1a, GD3, GD1a, GT1a, GD1b, GT1b, and GQ1b) was calculated using 

ganglioside contents in the whole brain (given in moles of compounds found in gram fresh 

tissue) (Scandroglio et al., 2008).  

 

Table 3.3. Calculation of gangliosides composition. 

Compound 

Compound 

Content in 

Fresh Tissue 

(nmol/mg 

fresh tissue) 

(Scandroglio 

et al., 2008) 

Compound 

Content in 

Brain 

(mmol/ 

gDW) 

Mol 

Fraction 

(mmol 

Compound 

/mmol 

Gang.) 

Molecular 

Weight 

(g/mol) 

Compound 

Content in 

1 mol 

(g 

Compound 

/1 mol 

Gang.) 

GM3 0.010 0.00004 0.0145 1269 18.40 

GM2 0.006 0.00002 0.0087 1385 12.04 

Compound 

Compound 

Content in 

Fresh Tissue 

(μmol/g fresh 

tissue) 

(Banay-

Schwartz et 

al., 1993) 

Compound 

Content in 

Cerebellum 

(mmol/ 

gDW) 

Mol 

Fraction 

(mmol 

Compoun

d /mmol 

protein) 

Molecular 

Weight 

(g/mol) 

Compound 

Content in 1 

mol of 

Protein 

(g amino 

acid/1 mol 

protein) 

Histidine 0.72 0.003 0.007 155.157 1.06 

Taurine 7.08 0.028 0.067 125.150 8.44 

Total 104.95 0.420 1  0.13 
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Table 3.3. Calculation of gangliosides composition. (cont.) 

Compound 

Compound 

Content in 

Fresh Tissue 

(nmol/mg 

fresh tissue) 

(Scandroglio 

et al., 2008) 

Compound 

Content in 

Brain 

(mmol/ 

gDW) 

Mol 

Fraction 

(mmol 

Compound 

/mmol 

Gang.) 

Molecular 

Weight 

(g/mol) 

Compound 

Content in 

1 mol 

(g 

Compound 

/1 mol 

Gang.) 

GM1/GM1a 0.119 0.00050 0.1725 1547 267 

GD3 0.032 0.00013 0.0464 1517 70 

GD1/ GD1a 0.172 0.00070 0.2500 1910 476 

GT1a 0.041 0.00020 0.0600 1989 119 

GD1b 0.081 0.00032 0.1174 1854 218 

GT1b 0.199 0.00080 0.2884 2130 614 

GQ1b 0.030 0.00012 0.0435 2505 109 

Total 0.690 0.00300 1  1903 

          

 

Mol fractions of gangliosides were obtained as determined for alanine in Equation 

(3.1). Afterward, using mol fractions calculated and molecular weights of all gangliosides 

(Kim et al., 2021) the molecular weight of all ganglioside (Gang.) compounds was detected 

to be used in the main lipid reaction (See Table 3.3). Then, glucosylceramide and 

galactosylceramide compositions were determined using their contents detected in the whole 

brain (given in molarity per gram dry tissue) (See Table 3.4) (Norton et al., 1975).  
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Table 3.4. Calculation of cerebrosides composition. 

Compound 

Compound 

Content in Brain 

(M/gDW)  

(Norton et al., 

1975) 
 

Molar fraction 

(M component/ M 

Cerebrosides) 

Glucosylceramide 0.000007 0.388 

Galactosylceramide 0.000011 0.611 

Total 0.000018 1 

 

 

Molar fractions of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl 

serine, sphingomyelin, phosphatidyl inositol, cholesterol, and cerebrosides were determined 

by using their molar weights and contents (given in mg compound found in gram fresh 

tissue) in the cerebellum for the lipid reaction (Chavko et al., 1993). For instance, cholesterol 

was calculated as 12.84 mg/g in cerebellum (Chavko et al., 1993). Cholesterol content in 

gDW was determined as  

 

         
12.84 𝑚𝑔 

𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒
∗  

1 𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒

0.25 𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗  

1 𝑔 

1000 𝑚𝑔 
=  

0.05 𝑔 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
, (3.2) 

 

and the result was divided to cholesterol molecular weight to find the amount of mole found 

in gram dry weight as given in  

 

                 
0.05 𝑔 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗  

𝑚𝑜𝑙

386.65 𝑔
∗  

1000 𝑚𝑚𝑜𝑙 

1 𝑚𝑜𝑙
=  

0.133 𝑚𝑚𝑜𝑙 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
.         (3.3) 

 

All compounds except cardiolipin and gangliosides were calculated as shown in 

Equation (3.2) and Equation (3.3).  
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Table 3.5. Calculation of lipid composition. 

Compound 

Compound 

Content in 

Fresh 

Tissue 

(mg/g fresh 

tissue) 

(Chavko et 

al., 1993) 

Compound 

Content in 

Cerebellum 

(mmol/gD

W) 

Mol 

Fraction 

(mol 

Compound 

/mol Lipid) 

Molecular 

Weight 

(g/mol) 

Compound 

Content in 

1 mol 

(g 

Compound 

/1 mol 

Lipid) 

Cholesterol 12.84 0.133 0.356 387 138 

Phosphatidyl-

ethanolamine 
13.96 0.076 0.204 734 150 

Phosphatidyl-

choline 
17.34 0.091 0.245 758 186 

Phosphatidyl-

serine 
4.26 0.022 0.058 788 46 

Sphingomyelin 2.40 0.013 0.035 741 26 

Phosphatidyl-

inositol 
1.14 0.005 0.014 887 12 

Cardiolipin   0.002 0.006 1466 8 

Cerebrosides  8.16 0.022 0.058 1510 88 

Gangliosides 
 

0.009 0.025 1903 47 

Total  
 

0.373 1   700 

 

 

Then, the ratio of sphingomyelin to gangliosides contents in the whole brain and 

sphingomyelin content in the cerebellum were used to determine ganglioside content in the 

cerebellum (Scandroglio et al., 2008), (Chavko et al., 1993).  
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After finding the proportion of sphingomyelin to gangliosides contents in the whole 

brain as given in  

 

       

                                   

sphingomyelin content in cerebellum was divided to this result in order to detect gangliosides 

contents in cerebellum as shown in 

                            

 

 

Likewise, the ratio of moles of sphingomyelin to that of cardiolipin in the whole brain 

was used to find the cardiolipin content in the cerebellum (Chavko et al., 1993), (Ellis et al., 

2005). The results for lipid reaction are included in Table 3.5. 

 

Table 3.6. Composition of lipid and protein in gray and white matter and distribution of   

gray and white matter in cerebellum.  

 

 

 

 

 

 

    

 

 

 

 

 

 

                    
𝑆𝑝ℎ𝑖𝑛𝑔𝑜𝑚𝑦𝑒𝑙𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑏𝑟𝑎𝑖𝑛

𝐺𝑎𝑛𝑔𝑙𝑖𝑜𝑠𝑖𝑑𝑒𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑏𝑟𝑎𝑖𝑛
=  

1.03
𝑛𝑚𝑜𝑙

𝑚𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒
 

0.73
𝑛𝑚𝑜𝑙

𝑚𝑔 𝑓𝑟𝑒𝑠ℎ 𝑡𝑖𝑠𝑠𝑢𝑒

= 1.411,          (3.4) 

                              
0.013

𝑚𝑚𝑜𝑙
𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

 

1.411
 =   0.0092  

𝑚𝑚𝑜𝑙

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 .                      (3.5) 

Compound 

Compound 

Content in 

Gray Matter 

(g/gDW) 

Compound 

Content in 

White 

Matter 

(g/gDW) 

Gray Matter 

in 

Cerebellum 

White 

Matter in 

Cerebellum 

Protein 0.55 0.40 

74% 26% 

Lipid 0.33 0.55 
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The central nervous system consists of white matter and gray matter (Mercadante and 

Tadi, 2021). The cerebellum is composed of an external layer of folded gray matter named 

the cerebellar cortex which covers white matter named the tree of life which also encloses 

cerebellar nuclei (Jimsheleishvili and Dididze, 2021). It is known that cerebellar nuclei also 

consist of gray matter (Mercadante and Tadi, 2021). 

 

Therefore, the main biomass reaction was updated based on the total amounts of 

protein and lipid found in gray and white matter (Brady et al., 2012). While the white matter 

volume is 24% of the total amount of gray and white matter in Alouatta palliata, a type of 

monkey, this value was found as 17% for Applodontia rufa, a type of rodent (Bush and 

Allman, 2003). The human neocortex is made up of approximately 42% white matter, 

whereas this rate is 26% for the human cerebellum (Sultan, 2002). Since Brady et al. 

published the composition of lipid and protein in both gray and white matter, the calculation 

of the composition of these compounds in the whole cerebellum became possible (Sultan, 

2002), (Bush and Allman 2003), (Brady et al., 2012) (See Table 3.6).  

 

For instance, protein content in cerebellum was calculated by multiplying percentages 

of gray matter and white matter in cerebellum with the contents of protein found in white 

matter and gray matter as shown in  

 

                   𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 = 0.4 
𝑔

𝑔𝐷𝑊
∗ 

26

100
= 0.1 

𝑔

𝑔𝐷𝑊
         (3.6) 

 

                  𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑔𝑟𝑎𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 = 0.55 
𝑔

𝑔𝐷𝑊
∗ 

74

100
 = 0.4  

𝑔

𝑔𝐷𝑊
.       (3.7) 

 

The sum of these results was divided to protein molecular weight to detect the amount 

of protein in mmol/gDW as given in  

 

                               
0.5 𝑔 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
∗  

𝑚𝑚𝑜𝑙

0.1286 𝑔
=  

3.97 𝑚𝑚𝑜𝑙 

𝑔𝑟𝑎𝑚 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 .                       (3.8) 
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The results obtained for protein and lipid are given in Table 3.7. The results obtained, 

3.97 mmol/gDW and 0.55 mmol/gDW for protein and lipid, respectively, were used for main 

biomass reaction. RNA and ATP compositions calculated by Özcan et al for GBM model 

were included to biomass reaction in MB model (Özcan and Çakır, 2016).  

 

      Table 3.7. Calculation of lipid and protein composition in cerebellum. 

Compound 

Compound Content 

in Cerebellum 

(mmol/gDW) 

Molecular Weight 

(g/mmol) 

Total Compound 

Content in 

Cerebellum 

(g/gDW) 

Protein 3.97 0.1286 0.5 

Lipid 0.55 0.6966 0.4 

 

Newly added ganglioside and cerebrosides reactions for the neuron and recalculated 

lipid, protein and main biomass reactions for the whole system are given in Table 3.8. 

 

                Table 3.8. Updated and newly added biomass reactions. 

 Reaction 

Gangliosides 

reaction 

0.0145 GM3_N + 0.0087 GM2_N + 0.1724 GM1_N + 0.046 

GD3_N + 0.25 GD1a_N + 0.06 GT1a_N + 0.1174 GD1b_N + 

0.28 GT1b_N + 0.043 GQ1b_N -> gangliosides_N 

Cerebrosides 

reaction 

0.4 Glucosylceramide_N + 0.6 Galactosylceramide_N -> 

cerebrosides_N 
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Table 3.8. Updated and newly added biomass reactions. (cont.) 

 Reaction 

Protein 

reaction 

0.047 Alanine + 0.005 Methionine + 0.016 Valine + 0.023 

Leucine + 0.008 Isoleucine + 0.189 Glutamine + 0.270 

Glutamate + 0.066 GABA + 0.112 Glycine + 0.044 Serine + 

0.037 Threonine + 0.008 Phenylalanine + 0.023 Tyrosine + 0.036 

Aspartate + 0.010 Asparagine + 0.009 Lysine + 0.017 Arginine + 

0.006 Ornithine + 0.007 Histidine + 0.067 Taurine -> Protein 

Lipid 

reaction 

0.356 Cholesterol + 0.204 Phosphoryl_ethanolamine + 0.245 

Phosphatidyl_choline + 0.058 Phosphatidyl_serine + 0.0347 

sphingomyelin + 0.0137 phosphatidyl_inositol + 0.0056 

cardiolipin + 0.058 cerebrosides + 0.0246 gangliosides -> Lipid 

Biomass 

Reaction 

3.97 Protein + 0.55 Lipid + 0.11 RNA + 24 ATP -> Biomass + 

24 ADP 

 

3.1.3.  Determination of Constraints  

 

In an experimental study conducted by Dranoff et al, glioblastoma (GBM) and 

medulloblastoma (MB) cell lines, U-251 and TE-671 which were kept in a concentration of 

5 ml of glutamine for 10 days, showed similar proliferation trend (Dranoff et al., 1985). It 

was determined that on the 6th day the viable cell counts for U-251 and TE-671, were 25.73 

x 105 and 29.77 x 105, respectively. 
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 Therefore, it is pertinent to think that the two cells may have used similar amounts of 

glutamine. It was concluded that experimental glutamine uptake for GBM, 0.080 

mmol/gDW/h employed for iMS570g could be used for MB model. 

 

In another study executed by Gershon et al, it was observed that the amount of glucose 

consumed in the SHH cell culture was approximately 3-11 times that of glutamine used by 

cells (Gershon et al., 2013). Based on this information, it was deduced that experimental 

glutamine uptake for GBM, 0.080 mmol/gDW/h and glucose uptake 0.852 mmol/gDW/h 

which is approximately 11 times of the amount of glutamine uptake, utilized in iMS570g 

could be also used in this study.   

 

Various oxygen uptake rates were tested to obtain optimum flux distribution. The test 

where oxygen uptake was set as 1/6 of MB glucose uptake gave better results. Lower than 

this value depleted the amount of glucose-6-phosphate entering pentose phosphate pathway 

(PPP).  However, experimental findings on cancer and MB indicate that PPP activity should 

be higher compared to normal cell (Moreno-Sánchez et al., 2009), (Niklison-Chirou et al., 

2017). Since cancer cells are rapidly proliferating, they need to increase nucleotide 

generation. Through PPP, cancer cells obtain large amounts of ribose-5 phosphate which is 

a precursor for nucleotide and NADPH productions (Villa et al., 2019). On the other hand, 

higher oxygen uptakes led to an increase in oxidative phosphorylation which is inconsistent 

with the Warburg effect known to be observed in MB (Tech et al., 2015).  Therefore, oxygen 

uptake was fixed as 0.142 mmol/gDW/h which is 1/6 of determined glucose uptake.  

 

Upper bound of leucine uptake was constrained to 0.034 mmol/gDW/h since Gershon 

et al found that glucose consumed by SHH cells is 25 time higher than leucine consumed 

(Gershon et al., 2013).  

 

The ratio of maximum tryptophan uptake in MB to normal cerebellum was found as 

3.5-3.7 using a mouse model for SHH subgroup of MB (Xin et al., 2020). In another study 

conducted by Dunkl et al, the ratio of maximum tyrosine uptake in MB to normal cerebellum 

was detected as 2.8 (Dunkl et al., 2015).  Tryptophan and tyrosine uptakes in healthy brain 

were determined as 0.002 mmol/gDW/h and 0.001 mmol/gDW/h by Sertbaş et al. (Sertbaş 

et al., 2014).  
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Using both information, upper bounds of tryptophan tyrosine uptakes were calculated 

as 0.0074 mmol/gDW/h and 0.0028 mmol/gDW/h. Upper bound of methionine was 

restricted to 0.008 which was used for GBM in iMS570g (Özcan and Çakır, 2016).   

 

Ketone metabolism and glycogen uptake were fixed to zero because these pathways 

are used when the activity of glucose metabolism is not sufficient for the cell and glucose 

avidity is one of the main characteristic of MB as observed in many primary brain tumor 

metabolism (Çakιr et al., 2007), (Gururangan et al., 2004), (Venneti and Thompson, 2017).  

 

     Table 3.9. Upper bounds and lower bounds of all the constraints used in MB models. 

Reaction Lower bound Upper bound 

-> Glucose_A 0.02556 0.02556 

-> Glucose_N 0.82644 0.82644 

-> O2_A 0.00426 0.00426 

-> O2_N 0.13774 0.13774 

-> Glutamine_N 0.0776 0.0776 

-> Glutamine_A 0.0024 0.0024 

-> Leucine_A 0 0.0340 

-> Tyrosine_N 0 0.0028 

-> Tryptophan_N 0 0.0074 

-> Methionine 0 0.0080 

-> Glycogen 0 0 

-> BHB 0 0 

-> Acetoacetate 0 0 

<-> NH3_A -1000 1000 
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Upper bounds and lower bounds of all the constraints used in MB models are shown 

in Table 3.9. These uptake values were shared between neuron and astrocyte as 97% and 3% 

respectively, due to the distribution of these cells in the cerebellum (von Bartheld et al.,  

2016). 

 

3.1.4.  Obtaining Medulloblastoma-Specific Genome Scale Models 

 

To acquire Medulloblastoma-specific genome scale models, GSE datasets were 

integrated to MB model by implementing Gene Inactivity Moderated by Metabolism and 

Expression (GIMME) algorithm (Becker and Palsson, 2008).  

 

Herein three GSE datasets were used from two different platforms, which are GPL570 

and GPL96 (Affymetrix Human Genome U133 Plus 2.0 Array and Affymetrix Human 

Genome U133A Array) (See Table 3.10). The Samples in GSE62600 (Hooper et al., 2014) 

and GSE37418 (Robinson et al., 2012) from GPL96 and GPL570 platforms, respectively, 

have been classified with respect to MB subtypes. 

 

                            Table 3.10. GSE datasets used in this study. 

GSE Dataset GPL Platform Content Reference 

GSE62600 GPL96 

28 MB samples including 4 

different subgroups and normal 

neural tissue samples 

(Hooper et 

al., 2014) 

GSE37418 GPL570 
76 pediatric MB samples 

including 4 different subgroups 

(Robinson 

et al., 2012) 

GSE10327 GPL570 

Non-metastatic, and metastatic 

MB tissue samples from grade 

1 to grade 4 

(Kool et al., 

2008) 
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GSE10327 from GPL570 platform including non-metastatic, and metastatic MB 

samples, was utilized to find whether there is a correlation between metastasis and the 

Warburg effect in MB as found in breast cancer cell lines (Yizhak et al., 2014).   

 

 In GSE62600, gene expression profiles of different MB subtypes and normal neural 

tissue samples were compared (Hooper et al., 2014).   

 

In GSE37418, 76 pediatric MB samples including 4 different subgroups were analyzed 

in order to determine mutations that cause MB types (Robinson et al., 2012).  Both datasets 

were integrated into the computational model to reflect alterations occurring in MB subtypes 

and compare them with each other. As it was stated earlier, MB has been categorized into 

four main subtypes as WNT, Sonic Hedgehog (SHH), Group 3, and Group 4 (Wang et al., 

2018). Since GR3 is known to be the most aggressive type of MB, the genes controlling 

lactate production in GR3 have significantly higher expression values compared to other 

subgroups in both datasets (Northcott et al., 2019), (Hooper et al., 2014), (Robinson et al., 

2012). 

 

To create context-specific MB reconstructions, these three-transcription data were 

integrated by using GIMME algorithm which requires binarized GSE data and a metabolic 

network (Becker and Palsson, 2008). GIMME algorithm eliminates the reactions whose gene 

expression values fall below a predetermined threshold. In this study, gene expression values 

were binarized using a determined threshold to identify up-regulated and down-regulated 

genes. 

 

3.1.4.1.  Threshold Selection. 

 

The threshold for the MB model was considered to be lower than the expression value 

of Hexokinase 2 (HK2), Pyruvate kinase M2 subtype (PKM2), Fatty Acid Synthase (FASN), 

Acetyl-CoA Carboxylase 1 (ACC1), Glutaminase (GLS1) genes which are known to be 

over-expressed in MB (Bhatia et al., 2012), (Gershon et al., 2013), (Marie and Shinjo, 2011), 

(Tech et al., 2015), (Tech and Gershon, 2015), (Venneti and Thompson, 2017), (Munford, 

2019).   
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HK2, PKM2, FASN, ACC1, GLS1 genes are responsible for controlling glucose-6-

phosphate, pyruvate, fatty acid, malonyl-CoA, glutamate productions, respectively (Sertbaş 

et al., 2014).   

 

 At first, to find the optimal range for the threshold, random values like 150%, 100%, 

75%, 50%, 33%, of the mean of transcriptome data of three datasets were used. For 

GSE37418, the thresholds which are higher than 75% of the mean of transcriptome data of 

MB were eliminated because these values were higher than the FASN expression value. 

 

 It was detected that the thresholds lower than 50% of the mean of transcriptome data 

were too low, consequently, no reactions were removed by GIMME. Therefore, the range 

between 75% and 50% of means of transcriptome data were considered optimum and various 

thresholds between these values were tested on the MB model to find the ideal results. Since 

expression levels of genes in this dataset were too close to each other, slight changes in 

thresholds affected the flux distribution and the number of removed reactions significantly.  

For example, with 72% of means of GSE37418 transcriptome data, 4 reactions were 

extracted by GIMME, while 7 reactions were removed with 72.3% of means of 

transcriptome data. To capture MB-specific flux values, the highest threshold possible was 

chosen. Eventually, 72.3% of the means of GSE37418 transcriptome data was considered as 

the optimum threshold for the MB model. That threshold was slightly lower than the FASN 

expression level and high enough to change the model so that it resembles MB metabolism.   

 

 Afterward, the thresholds for SHH, WNT, GR3, and GR4 subgroups were calculated. 

Since the gene expression levels of the more aggressive subtypes are higher, the threshold 

values were increased accordingly.  

 

TP53 gene which activates glycolysis by upregulating HK2 and phosphoglucomutase 

(PGM) is a mutated gene in WNT and the highest risk group of SHH (Marie and Shinjo, 

2011), (Northcott et al.,  2019).  
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Elevated MYC expression level, which is a typical hallmark of GR3, induces 

glycolysis activity by upregulating HK2, PKM2, phosphofructokinase (PFK1), lactate 

dehydrogenase (LDHA), and glucose transporter 1 (GLUT1) (Northcott et al., 2019), (Marie 

and Shinjo, 2011). Therefore, the thresholds which exceed the expression levels of these 

glycolytic genes specific to WNT, SHH, and GR3 were eliminated.  

 

For GR4, the thresholds higher than 76.34% of means of GR4 gene expressions exceed 

the expression levels of the FASN gene. Furthermore, the glutamate decarboxylase 1 

(GAD1) gene which is responsible for GABA production using glutamate is known to be 

downregulated in MB (Munford, 2019). Hence GAD1 gene expression level became the 

lower limit for choosing thresholds. Based on the bounds determined, maximum thresholds 

for all groups were determined as 72.5%, 74.7 %, 90.24%, and 76.34% of means of WNT, 

SHH, GR3, and GR4 gene expressions, respectively.   

 

For all subgroups, as threshold values increases, the flux distribution became more like 

MB metabolism. It was observed that as the threshold became lower than 76.34% of means 

of gene expressions, flux values on PPP decreased in GR4. Additionally, lower thresholds 

than the determined value for GR3 led to an increase in the activation of oxidative 

phosphorylation and ATPase pathway (OXPHOS) which is supposed to have low flux values 

due to the Warburg effect. While 7 reactions were removed by GIMME from the MB model 

7, 9, 13, and 8 reactions were extracted from WNT, SHH, GR3, and GR4 models 

respectively for GSE37418.  

 

For GSE62600, higher thresholds than 50% of the mean of transcriptome data of MB 

were eliminated since these values were higher than the GLS expression value.  Unlike 

GSE37418, the expression values in GSE62600 were too high and far from each other. 

Therefore, slight changes in the threshold value did not affect the system tremendously. The 

expression values of the specified genes (HK2, PKM2, FASN, ACC1, and GLS1) were 

accepted as the limit like in GSE37418. As a result of testing all threshold values, 30% of 

the mean of transcriptome data of MB was selected. 38 reactions were removed by GIMME 

from the MB model for GSE62600. 
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For GSE10327, the means of expression values of each non-metastatic and metastatic 

groups were calculated. According to Chang's classification, in the M0 stage, there is no sign 

of metastasis (Chang et al., 1969). In the M1 stage, there are microscopic cancer cells in 

cerebrospinal fluid. In the M2 stage, metastasis is detected in cerebral subarachnoid space 

or cerebellar or in the third or lateral ventricle. In the M3 stage, metastasis is observed in 

spinal subarachnoid space. And lastly, in the M4 stage, metastasis occurs outside the central 

nervous system. 

 

To find whether there is a relation between metastasis and the Warburg effect in MB, 

the expression values of M0, M2, and M4 stages were used. The ratio of ATP generated in 

glycolysis over the energy produced in OXPHOS (ATPG/ATPOP), was found to be higher 

in metastatic breast cancer cell lines compared to non-metastatic samples (Yizhak et al., 

2014).  

 

Moreover, the ratio of lactate production over oxygen uptake (LacR/OCR) was also 

detected to be higher in metastatic breast cancer cell lines relative to non-metastatic ones 

(Yizhak et al., 2014).  This metabolic difference detected in non-metastatic and metastatic 

samples indicate that the Warburg effect intensifies as the metastasis increases.  

 

Finding proper thresholds played a critical role to reflect these changes to the MB 

model. Values higher and lower than 45% of the mean of transcriptome data led to an 

increase in LacR/OCR for non-metastatic (M0) condition. As a result, inconsistent with 

experimental findings, LacR/OCR became much higher than both LacR/OCR values found 

for M2 and M4 metastatic samples. Therefore, 45% of the mean of transcriptome data was 

chosen for the non-metastatic (M0) condition.  

 

Higher thresholds than 55% of the means of transcriptome data for the M4 sample 

caused an increase in OXPHOS which is inconsistent with the literature. Lower thresholds 

resulted in a lower LacR/OCR value than the one found for the non-metastatic (M0) sample 

which is also inconsistent with the literature. Therefore, 50% and 55% of the means were 

taken as thresholds for M2 and M4 metastatic conditions, respectively.  
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While 31 reactions were extracted by GIMME from non-metastatic (M0) and 

metastatic (M2) MB models, 26 reactions were removed from the metastatic (M4) MB 

model.  

 

After determining the appropriate thresholds for nine MB-specific metabolic models, 

they were used to detect upregulated and downregulated genes. Genes with an expression 

value below the threshold were defined as Absent (A) and genes with an expression value 

above the threshold were defined as present (P). Absent and present (A/P) data which 

indicates inactive and active genes and the list of Entrez Gene ID’s which are identifiers for 

the genes in the NCBI Entrez database, corresponding to (A/P) data were used as inputs for 

GIMME. Alongside binarized gene expression data, GIMME uses the genome-scale 

metabolic network to generate a context-specific reconstruction. Therefore, GIMME should 

be run with the constraints which show important characteristics of MB. The implementation 

of the GIMME algorithm in the COBRA Toolbox is explained in detail in Appendix B. 

 

3.2.  Analyses 

 

After the integration of MB transcriptome data from Gene Omnibus Database with the 

model, the MB-specific metabolic alterations were examined, and the drug targets were 

determined in a context-specific manner. MB transcriptome data was also used to detect 

whether there is a correlation between metastasis and the Warburg effect in MB as found in 

breast cancer cell lines (Yizhak et al., 2014).    

 

FBA combined with MOMA was employed to predict the behavior of MB under 

different conditions. In addition, flux sampling was performed to observe all feasible flux 

solutions of the reactions. The results obtained from the flux sampling approach were used 

to calculate statistical p values to identify MB reactions that differ significantly from the 

ones in the healthy model. Subsequently, various analyses like the regulation analysis and 

Flux coupling analysis (FCA) were performed to decipher therapeutic targets in MB. 

 

Single-double gene and reaction deletion analysis for growth were conducted to find 

essential genes and reactions in MB.  
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Moreover, to detect potential drug targets, the essential genes necessary for all three 

important parameters for the survival of cancer cells were obtained. It was aimed to identify 

genes that have an impact on cell energy production and lactate production as well as growth 

rate. 

 

Another prediction was on the compounds that could be used as antimetabolites targeting 

metabolic enzymes and to observe the impact of these compounds on both MB and healthy 

cells. The compounds similar to 315 metabolites present in the brain model were searched 

one by one from DrugBank Database (Wishart, 2006) by using SMILES (Simplified 

Molecular Input Line Entry System) of the metabolites and similarity score.  

 

Lastly, after the addition of sphingolipid and glycosphingolipid pathways, essentiality 

analyses and FBA analyses were repeated to investigate potential therapeutic targets in these 

pathways as well. 

 

3.2.1.  Flux Balance Analyses 

 

The results obtained with GUROBI and CPLEX ILOG optimizers were almost the 

same whereas the ones obtained with GLPK were remarkably different and not plausible 

compared to others. Hence all analyses were performed using CPLEX ILOG optimization 

algorithms provided by IBM’s Academic Initiative Program on COBRA toolbox under 

MATLAB 2017b.  

 

Firstly, flux balance analyses were carried out. After the addition of taurine, 

sphingolipid reactions, and growth reactions to the iMS570 brain model, the constraints for 

glycogen, ketone, ammonia, glucose, oxygen, glutamine, tyrosine uptakes were defined as 

mentioned earlier.  

 

Then objective function was set as maximization of biomass reaction. In all analyses, 

two flux balance analyses were carried out, before and after the integration of transcription 

data by GIMME. If the model does not obtain the desired results, GIMME adds back the 

reactions extracted. After the first FBA, an updated gene rules list including Entrez ID’s of 

all genes corresponding to reactions in the model was uploaded.  
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This is a critical step because GIMME removes the reactions and the genes controlling 

these reactions based on the gene rules list after determining upregulated and downregulated 

genes in AP and EID lists. Subsequently, AP and EID lists created based on the thresholds 

determined for nine MB-specific metabolic models were uploaded to be used by GIMME.  

 

After the implementation of transcription data based on the specified constraints, 

additional constraints for tryptophan, methionine, and leucine uptakes were defined. These 

constraints were defined after the integration of GIMME because defining all constraints 

before GIMME caused a 65% decrease in the first reaction of PPP and a 74% increase in 

ATP production in OXPHOS. Ammonia and tyrosine uptake constraints were defined before 

GIMME because when their constraints were defined after integration of GIMME, FBA 

solution space reduced, and no solution was obtained as a result of FBA analysis.  

 

After MB-specific models were created by GIMME, the second FBA was performed. 

Subsequently, the minimization of metabolic adjustment method which aims to find closer 

results to healthy state rather than finding optimum result was executed to improve the flux 

results obtained with FBA (Haggart et al., 2011), (Özcan and Çakir, 2016). While objective 

function for FBA was maximization of growth reaction, the objective function for MOMA 

was minimization of distance between healthy condition and perturbated condition. In other 

words, it is aimed to minimize the Euclidean distance between these two conditions to obtain 

results closer to healthy condition. 

 

Flux balance analysis combined with MOMA was performed in various analyses to 

predict metabolic alterations that occurred in MB. Furthermore, it was aimed to compare the 

results with the computational healthy model and experimental results obtained for MB. In 

addition to two analyses carried out for the MB-specific model where the mean of all gene 

expression levels was used for two GSE data, 4 analyses were performed for subtypes of 

MB which are WNT, SHH, GR3, GR4. 

 

Additionally, glucose uptake constraint was restricted to zero to detect whether the 

system produces ATP without a carbon source. In another analysis, glutamine uptake was 

also restricted to zero to observe energy production without two important carbon sources.  
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The relation between metastasis and the Warburg effect was also investigated by using 

the FBA approach. 

 

3.2.2.  Sampling Approach 

 

10000 results which satisfy the constraints in solutions space were obtained by using 

gpSampler function for each reaction. The plots were created for each reaction to show all 

feasible solutions. 

 

Exchange reactions required for growth reaction were removed from the MB model 

because the healthy model does not have them. The reactions removed by GIMME from MB 

model were also erased manually from the healthy model. The number of common reactions 

found in both models became 594. 

 

In order to determine whether there is statistically important difference between flux 

sampling results in MB and healthy models, 2-sample t-test with unequal variances was 

applied to both models. After obtaining p values, Benjamini-Hochberg correction (BH) was 

used to reduce false discovery rate. As a first step of BH, all p values are sequenced in 

smallest to largest. Each p-value was given a value in order of smallness and 1 was assigned 

to the smallest p value. The numbers given to other p-values were increased as p values get 

higher.  Then all numbers assigned to p values were multiplied with false discovery rate (Q) 

which was determined as 0.01. The results obtained were divided to the number of tests 

which is 10000. The highest p value smaller than BH correction result was accepted as a 

critical value and 79 p values higher than this value, were eliminated. In order to reduce the 

number of p values, the difference between flux sampling mean of the reactions in both 

conditions were calculated and then the results were divided to sum of the standard 

deviations of the reactions in both conditions. 94 results lower than 0.5 were removed. The 

reactions, which have lowest p values, in other words, the ones statistically different, were 

listed. 
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3.2.3.  Regulation 

 

 DNA microarrays give information that can be used to compare mRNA expression 

levels under different conditions. Transcriptionally important points can be determined with 

these data. However, metabolic fluxes are controlled by the interaction of gene expression, 

metabolite levels, and enzyme kinetics. DNA microarrays do not give information about the 

relation between metabolic flux and gene expression. Bordel et al., developed a method 

which combines flux data with gene expression data by converting flux and DNA microarray 

data into statistical scores (Bordel et al., 2010). This method allows us to detect whether 

reactions are metabolically or transcriptionally or post-transcriptionally regulated. The 

results obtained with this method can be used to study the metabolic diseases in humans.  

 

As a first step of regulation, sampling algorithm was used to obtain a set of flux 

distributions satisfying the constraints in solutions space for each reaction. The means and 

standard deviations of the reactions present in both models were calculated using the results 

obtained from the sampling algorithm.  

 

In order to determine the significance of change between MB and healthy conditions, 

Z-scores were calculated by dividing the difference of the means between two conditions to 

the square root of sum of the two variances (Bordel et al., 2010). This equation where μm, 

μh, Var(m) and Var(h) represent flux sampling means and variances of each reaction for MB 

and healthy conditions respectively, is shown as  

 

                                                           𝑍 =  
𝜇𝑚 − 𝜇ℎ

√𝑉𝑎𝑟(𝑚) + 𝑉𝑎𝑟(ℎ)
 .                                               (3.9) 

 

After the calculation of Z scores for metabolic fluxes, Z scores for expression data 

were determined following same steps. Z scores are named as ZF and ZG for Z scores of 

fluxes and gene expression data, respectively. In order to eliminate statistically less 

important reactions, which have Z scores close to 0, Z critical value is required. 

 

When the difference of the means between both cases (μm-μh) were compared, it was 

observed that there were values both greater and less than 0.  
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That is why, two tailed Z test was chosen where a difference is hypothesized (μc ≠ μh) 

(Montgomery and Runger, 2003). Z critical value was calculated at 5% significance level. 

Low significance level was chosen deliberately in order to differentiate the reactions which 

have highest and lowest significance scores.  

 

Zα/2 critical value is Z0.025 for two tailed Z test at 5% significance level. Zα/2 critical 

value was calculated by subtracting 0.025 from 1 and then determining corresponding value 

to this result in Z distribution table. 

 

  

Figure 3.2. The distribution of Z when μc ≠ μh at 5% significance level. 

 

The reactions whose flux values and/or expression levels higher/lower than 1.96 and 

-1.96 which are critical values, were classified based on whether they are metabolically or 

transcriptionally or post-transcriptionally regulated. On the other hand, the reactions whose 

ZF and ZG scores found in dark areas on the bell curve were removed (See Figure 3.2). In 

other words, the ones which have a significance score close to 0 were eliminated since they 

do not show important difference between two cases.  

 

The reactions where there is an alteration in its flux but not an alteration in its gene 

expression are called metabolically regulated reactions.  

-Zα/2 

Critical Region 

Zα/2 

Critical Region 

-1.96 1.96 
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The reactions, where there is an alteration in its gene expression but not an alteration 

in its flux, are called post-transcriptionally regulated reactions. Lastly, the ones whose flux 

and gene expression vary as well, are named as transcriptionally regulated (Bordel et al., 

2010).   

 

Some reactions have more than one controlling gene, consequently they have more 

than one ZG score. ZG scores of these reactions were calculated by summing up all ZG 

values found for each gene controlling these reactions. The reactions whose genes having 

ZG scores lower/higher than 1.96/-1.96 were not taken into account.  

 

3.2.4.  Flux Coupling 

  

Flux coupling analysis is used to detect the reactions that are fully coupled, partially 

coupled, or directionally coupled to growth reaction (Burgard and Maranas, 2003). When 

the two fluxes control the activity of each other, these fluxes are named as partially coupled. 

When two fluxes control and fix the activity of each other, these fluxes are called fully 

coupled. When the flux of a reaction controls the activity of other flux however not 

reciprocally, these fluxes are named as directionally coupled. 

 

 Flux coupling analysis was carried out with the F2C2 function to find reactions 

directly related to biomass reaction. Thus, it was determined which reactions should be 

interfered with in order to inhibit growth in MB. 

  

3.2.5.  Essentiality Anayses  

 

In essentiality analysis, all genes or reactions are removed one by one from the model 

and if the deletion of genes or reactions causes a determined reaction to decrease less than 

the specified lower bound of that reaction, then they are assumed to be essential. In several 

studies, essentiality analyses were used to detect a therapeutic target (Folger et al., 2011), 

(Larsson et al., 2020), (Paul et al., 2021).   

 

In the present study, single, double gene deletion and reaction deletion analyses were 

also conducted in order to detect essential genes and reactions. 
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 In this part of the study, the genes or reactions whose removal reduces the flux rate of 

growth reaction under 10-6 mmol/gDW*hour were assumed to be essential for the MB 

model. 

 

Unlike single deletion analysis, in double gene analysis, gene pairs are removed one 

at the time from the MB model, and the flux rate of a specified reaction is detected after each 

removal. If the flux rate of the determined reaction falls below a certain value because of 

double gene deletion, these gene combinations are accepted as essential for the system. In 

double gene analysis, the gene pairs whose removal decreases the flux rate of biomass 

reaction under 10-6 mmol/gDW*hour were assumed to be essential for the MB model. For 

double gene deletion analysis, the single genes already found as essential were removed from 

the analysis, and the remaining genes were searched in pairs for essentiality. 

 

3.2.6.  Investigation of Threpautic Targets for Medulloblastoma 

 

In the first part, the essential genes for the MB model were detected. They were 

analyzed based on their effects on the healthy and MB models. All drugs/compounds related 

to essential genes were investigated in DrugBank Database and then therapeutically potential 

ones were detected.  

 

In the second part, the compounds similar to all metabolites in the brain model were 

detected by using DrugBank Database (Wishart, 2006). Then, the metabolic reactions related 

to these metabolites were determined. Drug effect was simulated in both healthy and MB 

models by inhibiting these reactions. The metabolites whose reaction inhibitions do not 

affect/ slightly affect the healthy model and decrease cancer growth reactions significantly 

(Biomass reactions) were detected. The appropriate drug/compound candidates were 

identified. The flow chart of both works is shown in Figure 3.3. 

 

3.2.6.1.  Determination of Common Essential Genes for Three Parameters. 

 

It was aimed to identify genes that have an impact on cell energy production and lactate 

production as well as growth rate.  
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Figure 3.3. Flow chart of investigation of therapeutic targets for MB. 
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Therefore, in addition to gene deletion analysis for biomass reaction, the same analysis 

was executed by maximizing ATP production and lactate production one at a time. For both 

analyses, the upper bound of biomass reaction was constrained to biomass flux obtained in 

the MB model (0.000116 mmol/gDW*hour) while the lower bound was restricted to 50% of 

it (0.000058 mmol/gDW*hour). With this, it was ensured that the biomass value does not 

fall below a certain value while determining the genes that are essential for lactate production 

and energy production.  

 

As a result, the essential genes necessary for all three important parameters for the 

survival of cancer cells were obtained. It is expected that targeting the genes that are certainly 

necessary for all these three parameters would increase the impact of the treatment. 32 

essential genes found in three analyses were analyzed in detail.  

 

To identify potential therapeutic targets, among 32 common the essential genes whose 

inhibition do not affect healthy brain cells were determined. Therefore, the constraints of 

reactions controlled by essential genes were restricted to zero one by one in the healthy 

model. Subsequently, results were compared with normal healthy cell and the ones which 

fail to fulfill vital tasks were left out. For instance, the genes whose inhibitions affect the 

main pathways like glycolysis, PPP tremendously were eliminated, Afterward, the same 

gene inhibition procedure was applied for the MB model. The ones whose inhibition 

influences the MB model significantly were detected. 

 

3.2.6.2.  Identification of Potential Metabolite-Antimetabolite Pairs. 

 

Drug design is a process where new medicines are designed relied on the data of a 

metabolic target (Zhou and Zhong, 2017). Drug discovery is a long, difficult, and expensive 

process in spite of recent developments in biotechnology. 

 

Computer-aided drug design is an indispensable alternative that accelerates this 

process. Computer-aided drug design is divided into two groups, ligand-based drug design 

(LBDD) and structure-based drug design (SBDD) (Yu and MacKerell, 2017). LBDD is used 

when the structure of target cannot be identified by modeling methods (Huang et al., 2010). 
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Statistical methods are used to associate ligand activity with structural data. In SBDD, 

it is important to have a target structure before studying the link between receptor and ligand 

(Huang et al., 2010). The target molecule for SBDD should be related to the disease and it 

should have a binding site so that the designated substance competes with the natural 

metabolite for the target to lose its effect (Anderson, 2003). Enzymes, hormone receptors, 

G-coupled protein receptors (GPCRs), transporters, nucleic acid, and ion channels are the 

main drug targets (Robertson, 2007). Enzymes are known as potential drug targets because 

they have ligand-binding pockets which is ideal for drug development (Anderson, 2003).  

Furthermore, knowing the ligands of enzymes and the substrates with which they interact 

makes enzymes promising drug targets. It is assumed that compounds similar to natural 

metabolites will bind to the enzyme by causing competitive inhibition of that enzyme 

(Raškevičius et al., 2018).  

 

Drug repurposing is a promising approach where novel uses of approved 

drugs/compounds are investigated for another use other than its intended purpose 

(Pushpakom et al., 2018). This approach has an edge over designing a new drug for a certain 

indication. Since the repurposed drug has already been detected to be harmless in humans, 

the probability of being unsuccessful is lower. Additionally, the drug designing process may 

be decreased as various assessments have already been performed. Furthermore, less 

expenditure is required than is necessary to develop a new drug. 

 

Antimetabolites are chemically similar substances to natural metabolites, which are 

part of cellular metabolism (Peters, 2014). Antimetabolites which are often used for cancer 

and viral diseases, inhibit the use of metabolites (Peters, 2014), (Smith, 1997). Raškevičius 

et al. compared molecular structures of human metabolites and drugs found in the DrugBank 

database (Raškevičius et al., 2018), (Wishart, 2006). They found that the drug agents whose 

Tanimoto scores are more than 0.9 with a human metabolite are almost 30 times more 

possible to interact with the enzymes metabolizing that metabolite than other ligands. 

Considering these results obtained in this study, here, it was aimed to predict the compounds 

targeting metabolic enzymes and their impact on both medulloblastoma and healthy cells.  

 

 



53 

 

In this work, all the compounds similar to 315 metabolites present in the 

medulloblastoma brain model were determined using the DrugBank database (Wishart, 

2006). Firstly, SMILES (Simplified Molecular Input Line Entry System) of the metabolites 

were determined from the DrugBank database and then tabulated to be used in search of 

similar compounds (Wishart, 2006).   Afterward, the compounds whose chemical structures 

are similar to these metabolites were searched one by one from the Chemical Structure 

Search engine found in the DrugBank Database by using SMILES of these metabolites 

(Wishart, 2006). For example, to find similar compounds to lactate, the chemical structure 

of lactate was drawn by importing SMILE of that metabolite (See Figures 3.4).  

 

 

    Figure 3.4. Addition of SMILE of lactate in chemical structure search engine 

(Wishart, 2006). 

 

Search options were set for similarity and the similarity threshold was specified as 0.8 

(See Figure 3.5). As a result, 7 compounds similar to lactate were detected (See Table 3.11). 

In the first column of Table 3.11, there are similarity scores, which show the similarity 

between the chemical structures of the compound and the metabolite. The second column of 

the table includes the DrugBank ID’s of these compounds. Other columns contain name, 

SMILE, and status for these compounds. These steps done for lactate were repeated for all 

315 metabolites (See Appendix C). Almost 1900 similar compound-metabolite pairs were 

detected and tabulated (See Appendix C). 
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Then all the metabolic genes/proteins that catalyze the reactions of the metabolites 

(anti-metabolites/substrates) and that could be targeted by the drug to create a drug effect on 

the model were determined. For example, it was considered that a compound similar to 

glucose-6-phosphate will target reactions R2, R17, R47, and R61 (See Table 3.12).  

 

The constraints of reactions were set as 0.1 of their flux rates determined without the 

drug. The results were compared with normal healthy cell and the ones which fail to fulfill 

vital tasks in the presence of drug were left out. 

 

 

                        Figure 3.5. Setting search options (Wishart, 2006). 

 

 

For example, after decreasing the constraints of reactions whose substrate are glucose-

6-phosphate, (R2, R17, R47, and R61) solution space reduced with new constraints, and no 

solution was obtained as a result of FBA analysis. It is considered that their inhibition will 

damage healthy cells alongside cancer cells. As a result, drug effects were created in the 

healthy model by performing 315 flux balance analyses for each metabolite in the model.   

 

  Flux balance analyses in the presence of drug were carried out in the MB model as 

well. The same procedure used for the healthy model was repeated. The decrease in growth 

rates (Biomass) of all results realized in the medulloblastoma model with the drug was 

calculated as a percentage.  
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Table 3.11. The compounds similar to lactate (Wishart, 2006).     

Similarity Score Drug Bank ID 
Compound 

Name 
Status 

Compound 

Smile 

1 DB03066 D-Lactic acid Experimental 
[H][C@](C)(O)

C(O)=O 

1 

 

DB14475 

 

D-Lactic acid 
Approved, 

Experimental 

C[C@H](O)C(

O)=O 

0.95 

 

DB06768 

 

Ammonium 

lactate 
Approved 

[NH4+].CC(O)

C([O-])=O 

0.95 

 

DB09483 

 

Potassium 

lactate 
Approved 

[K+].CC(O)C([

O-])=O 

0.95 DB13231 Calcium lactate 

Approved, 

Investigational, 

Vet approved 

[Ca++].CC(O)C

([O-

])=O.CC(O)C([

O-])=O 

0.95 DB14515 
Magnesium 

lactate 
Nutraceutical 

[Mg++].CC(O)

C([O-

])=O.CC(O)C([

O-])=O 

0.826 DB03680 Tartronate Experimental 

OC(C([O-

])=O)C([O-

])=O 
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The results in which the growth rate decreased by less than 40% in the 

medulloblastoma model were left out. The results where vital tasks were realized in the 

healthy model and the ones in which growth rate reduce more than 40% in the MB model 

were detected and evaluated. 

 

Table 3.12. Reactions related to glucose-6-phosphate. 

Pathway Reactions Related to Metabolites 
Reaction 

Name 

Controlling 

Gene 

Glycolysis 
Glucose-6-phosphate_A <->  

Fructose-6-phosphate_A 
R2 GPI 

Pentose 

Phosphate 

Pathway 

Glucose-6-phosphate_A + 

NADP_A  <->  6-

phosphoglucone_A + NADPH_A 

R17 G6PD 

Glycolysis 
Glucose-6-phosphate_N <->  

Fructose-6-phosphate_N 
R47 GPI 

Pentose 

Phosphate 

Pathway 

Glucose-6-phosphate_N + 

NADP_N  <->  6-

phosphoglucone_N + NADPH_N 

R61 G6PD 
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4.  RESULTS AND DISCUSSION 

 

 

4.1.  Validation of MB Model Results with Experimental Results 

 

This section includes the comparison of healthy brain model and the experimental 

findings with the results obtained from MB-specific models. SHH, WNT, GR3, and GR4 

MB specific models are going to be referred to as SHH-MB, WNT-MB, GR3-MB, and GR4-

MB from now on. MB model where the mean of all expression values was used, is going to 

be referred to as MB. 

 

As it was mentioned in the previous section, the glucose uptake rate for all nine MB-

specific models is constrained to 0.852 mmol/gDW/h (3-11 fold of glutamine uptake as 

reported in Gershon et al., 2013) while this value was 0.08 mmol/gDW/h for the healthy 

model (Sertbaş et al., 2014). The high difference between glucose uptake rates in healthy 

and MB models stems from the Warburg Effect whose typical characteristics are excessive 

glucose consumption and high lactate production (Warburg, 1925). Tumor cells tend to 

generate ATP via glycolysis rather than oxidative phosphorylation regardless of the 

availability of oxygen (Kim et al., 2012). In accordance with the Warburg effect, high lactate 

production, low TCA cycle, and OXPHOS activities were observed in all MB specific 

models.  

 

Pyruvate kinase is a significant enzyme that carries out the conversion of 

phosphoenolpyruvate and ADP to pyruvate and ATP (Sertbaş et al., 2014). PKM2, one of 

the isozymes of pyruvate kinase, is overexpressed in MBs and GBMs (Venneti and 

Thompson, 2017). Consistent with experimental results, high flux rates in pyruvate 

production reactions (R10 and R55) were observed in MB models (See Figure 4.1 and Figure 

4.2). The ratio of pyruvate production to glucose uptake was calculated as 1.96 in MB models 

while it is only 1.2 for the healthy model.  

 

Furthermore, ATP generation in glycolysis was significantly higher in MB models 

compared to the healthy model (See Figure 4.3).  
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ATP generation reactions in glycolysis (R7+R10+R52+R55) met 99% of the ATP 

needs of the system while OXPHOS reactions (R45+R88) which are the main ATP producer 

reactions of normal cells, only met 1% of the ATP needs of tumor cell. On the contrary, the 

healthy model produced only 11% of ATP in the glycolysis pathway.  

 

  

  Figure 4.1 Main reactions carried out in glycolysis, PPP, TCA cycle, and other pathways. 

 

High lactate synthesis is one of the prominent characteristics of MB (Valvona, 2016). 

Gershon et al, found that the cerebellar granule cell with Sonic Hedgehog (SHH) produces 

almost twice as much lactate as its glucose uptake (Gershon et al., 2013). In agreement with 

experimental findings, the flux values of the lactate production reactions (R11 and R56) were 

found as approximately 1.67 mmol/gDW/h in MB computational models which is correlated 

with the stoichiometric coefficient of 1 molecule glucose producing 2 molecules of lactate 

(See Figure 4.2 and Table 4.1) (Gershon et al., 2013), (Holthoff et al., 1993). 

 

On the other hand, the lactate production rate in the healthy model was detected to be 

eight times lower than its glucose uptake rate (See Table 4.1). These alterations observed in 

the glycolysis pathway of MB models are consistent with the Warburg Effect which is 

known as one of the important hallmarks of cancer metabolism.   
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Figure 4.2. Pyruvate and lactate production rates of astrocyte (R10 and R11) and 

                       neuron (R55 and R56) for MB and healthy models. 

 

It is known that cancer cells need ribose-5 phosphate to be used in the productions of 

nucleotides to support their uncontrollable proliferation. To meet their needs, cancer cells 

activate PPP where ribose-5 phosphate and NADPH are generated (Villa et al., 2019). It is 

determined that phosphofructokinase (PFK-1) is 22–56 times more active in various human 

cancer cells than normal cells (Moreno-Sanchez et al., 2009). However, in brain cancers 

(gliomas, medulloblastoma, meningiomas, schwannomas), the activity of PFK-1 is the same 

or 1.3–2.5 times less active compared to normal brain (Moreno-Sanchez et al., 2009). The 

low activity of PFK-1 stems from the stimulation of the TIGAR gene (Tp53-induced 

glycolysis and apoptosis regulator) (Bensaad et al., 2006). Consequently, the deactivation of 

PFK-1 causes glucose 6-phosphate to head to the pentose phosphate pathway (PPP) and 

activate this pathway. Additionally, the TAp73α gene was detected to be considerably 

upregulated in GR4 and GR3 subtypes of MB relative to normal brain (Niklison-Chirou et 

al., 2017). TAp73α gene is known to be responsible for increasing serine production, PPP 

activity, and regulating glutaminolysis (Niklison-Chirou et al., 2017). Based on these 

experimental findings on cancer and MB, the ratio of glucose-6-phosphate rate entering PPP 

to glucose uptake rate was aimed to keep at higher level in MB models than healthy models. 

As seen from Figure 4.4, the first reactions of PPP (R17 and R61) and R5P production 

reactions (R21 and R65) are more active in the MB model than the healthy model.  

 

0,04 0,06

1,63 1,62

0,02 0,01
0,08

0,00
0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

R10 R11 R55 R56

F
lu

x
 r

at
e 

m
m

o
l/

g
D

W
/h

Reaction

MB HEALTHY



60 

 

Table 4.1. The comparison of MB-specific models results with healthy model and 

experimental (exp.) results. 

 MB-All SHH WNT GR3 GR4 Healthy 

Exp. 

Results for 

MB 

Glucose 

uptake rate 
0.852 0.852 0.852 0.852 0.852 0.080  

Lactate 

production 

rate 

1.67 1.67 1.67 1.67 1.67 0.011 

Twice of 

glucose 

uptake rate  

PPP rate 

/glucose 

uptake 

0.084 0.084 0.084 0.085 0.084 0.055 

Higher than 

healthy 

brain 

R5P 

production 

rate 

0.024 0.024 0.024 0.024 0.024 0.001 

Higher than 

healthy 

brain 

(TCA) 

flux 
0.043 0.043 0.043 0.043 0.043 0.120 

Lower than 

healthy 

brain 

Acetyl-

CoA flux 
0.043 0.043 0.043 0.043 0.043 0.003 

Higher than 

healthy 

brain 

Glutamate 

Production 
0.074 0.074 0.074 0.074 0.073 0.056 

Higher than 

healthy 

brain 

Glutamate 

production 

/glutamine 

production 

1.43 1.43 1.43 1.43 1.43 
No 

Data 
1.18 - 1.71 
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Table 4.1. The comparison of MB-specific models results with healthy model and 

experimental (exp.) results. (cont.) 

 MB-All SHH WNT GR3 GR4 Healthy 
Exp. Results 

for MB 

GABA 

Production 
0.0004 0.0004 0.0004 0.0005 0.0004 0.0659 

Lower than 

healthy brain 

 

 

Other models of MB have also more active flux rates than the healthy model as seen 

in Table 4.1. While the 7.5% of total glucose is diverted to PPP in the MB model, this value 

is 5% for the healthy model. As mentioned earlier in the method section, defining a proper 

oxygen uptake constraint was a crucial step to keep higher flux rates in PPP in MB models. 

The test where oxygen uptake rate was restricted to 1/6 of MB glucose uptake gave plausible 

results as shown in Table 4.1 and Figure 4.4.   

 

    

Figure 4.3. Total ATP flux rates produced in glycolysis (R7+R10+R52+R55) and 

OXPHOS (R45+R88) for MB and healthy models. 

 

2,74

0,02
0,16

1,24

0,00

0,50

1,00

1,50

2,00

2,50

3,00

ATP generated in Glycolysis  ATP generated in OXPHOS

T
o

ta
l 

en
er

g
y
 p

ro
d

u
ct

io
n

 r
at

e 
m

m
o

l/
g
D

W
/h

MB HEALTHY



62 

 

A higher oxygen uptake rate than this value led to significant increase in OXPHOS 

which is inconsistent with the Warburg effect. Lower oxygen uptake rates than this value 

resulted in a decrease in PPP activity, which is inconsistent with the literature. There could 

be two possible reasons that the oxygen uptake rate affects PPP tremendously. The first 

reason may be that when there is a limited amount of oxygen, cancer cell uses most of the 

glucose to obtain energy from glycolysis instead of spending it in PPP. Low-level oxygen 

restricts cancer cells to divert some of glucose-6-phosphate to PPP in order to produce 

sufficient energy in glycolysis. But when cancer cell takes up more oxygen, more energy is 

produced in OXPHOS, hence the energy production in glycolysis decreases, and some of 

glucose 6 phosphate molecules are directed to PPP.  

 

 

 Figure 4.4. The glucose uptake (R593 and R594), oxygen uptake rates (R595 and R596), 

6-phosphogluconate (R17 and R61), and R5P production (R21 and R65) rates in PPP of 

astrocyte and neuron, respectively for MB and healthy models. 

 

Even though the activity of OXPHOS decreases in many cancer types, most cancers 

including MB utilize the respiratory chain for ATP generation (Moreno-Sánchez et al., 

2009), (Niklison-Chirou et al., 2017), (Stincone et al., 2015). That is why optimum oxygen 

uptake was chosen that would not conflict with the Warburg effect and would support the 

information about PPP activation.  
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The second reason may be that PPP is activated when cells are subjected to oxidative 

stress (Stincone et al., 2015). PPP not only contributes to precursor synthesis for nucleotide 

production but also keeps cell reduction-oxidation (redox) in balance (Stincone et al., 2015). 

The ratio of glucose-6-phosphate entering PPP to glucose uptake changes depending upon 

reactive oxygen species (ROS) generation. Hydrogen peroxide (H2O2) produced in the 

reactive oxidative pathway disrupts the ratio of nicotinamide adenine dinucleotide phosphate 

(NADH) to NADPH. Consequently, this disruption makes the glucose-6-phosphate 

dehydrogenase (G6PDH) enzyme which generates 6-phosphogluconate and NADPH, 

susceptible to oxidants. At first, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 

pyruvate kinase (PK) are inhibited leading to a slowdown in glycolysis.  

 

Subsequently, transcriptional regulators enhance the activity of PPP by inducing 

responsible enzymes that activate G6PDH (Stincone et al., 2015). Then triosephosphate 

isomerase (TPI) is suppressed as the amount of phosphoenolpyruvate (PEP) increases, thus, 

the fluxes in PPP reactions enhance even more (Stincone et al., 2015). It was observed that 

PK activity decreases in cancer cells to prevent oxidative damage (Stincone et al., 2015). In 

agreement with the literature, in addition to PPP activity, the H2O2 production rate was 

detected to be elevated after increasing the oxygen uptake rate (See Figure 4.5). As seen in 

Figure 4.5, when the total oxygen uptake rate (R595+R596) was increased from 0.006 to 

0.14 mmol/gDW/h, the total H2O2 production rate (R421+R431) was also enhanced from 

5e-06 to 0.13 mmol/gDW/h. The flux of the first reaction in PPP was also increased 

significantly.  

 

Consistent with the Warburg effect, TCA cycle activity is lower in MB models than in 

the healthy model (See Table 4.1).  The first reaction of the TCA cycle, citrate synthase 

reaction (R69), in which acetyl-CoA and oxaloacetic acid (OAA) are converted to citrate in 

neuron, is active due to its use in the production of acetyl-CoA but it has still lower flux rate 

relative to one in the healthy model (See Table 4.1 and Figure 4.6). The same reaction carried 

out in astrocyte (R25) is relatively less active compared to one in neuron because astrocyte 

takes only 3% of all uptakes. 
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 Acetyl-CoA produced in mitochondria is the source of most of the carbon found in 

fatty acids (Marie and Shinjo, 2011). Since acetyl-CoA cannot be transported from 

mitochondria, oxaloacetate and acetyl-CoA produce citrate which can be exported from the 

mitochondria. Then, citrate is converted back to acetyl-CoA by ATP citrate lyase (ACL). 

Subsequently, malonyl-CoA is produced from acetyl-CoA by acetyl-CoA carboxylase 

(ACC) and both are used for the fatty acid synthesis (Marie and Shinjo, 2011). 

 

Bennet et al. determined that the high amount of lipid found in MB differentiates it 

from some other pediatric tumors (Bennett et al., 2018). Bhatia et al. also found that the SHH 

pathway, which leads to the SHH subtype of MB, activates necessary proteins for lipid 

synthesis (Bhatia et al., 2012). In the early years of life, the number of cerebellar granule 

cells is increased by sonic hedgehog (SHH) signaling.  

 

     

 

When the cerebellum develops, sonic hedgehog (SHH) signaling ceases. However, 

when the SHH pathway is abnormally regulated, it may keep on stimulating proliferation, 

which makes this pathway prone to MB (Munford, 2019).  
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   Figure 4.5. Alterations of total hydrogen peroxide (H2O2) (R421+R431) and 6-

phosphogluconate productions with respect to total oxygen uptake  

(R595+R596) for the MB model. 
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Moreover, the SHH pathway changes the metabolic properties of the cells by 

enhancing lipogenesis and glycolysis activity. In order to activate lipid production, SHH 

upregulates major lipid synthesis enzymes like FASN and ACC1 (Bhatia et al., 2012). Since 

acetyl-CoA production in the TCA cycle is a precursor reaction for lipid synthesis, their flux 

values are expected to be higher than the normal brain model. In agreement with the 

literature, the flux rate of this reaction (R72) in neuron was found to be higher than healthy 

brain model (See Table 4.1 and Figure 4.6). However, the flux rate for the same reaction 

(R28) in astrocyte was too close to zero in both MB and healthy models. Therefore, this 

reaction (R28) was not included in Figure 4.6 for both cases. 

 

    

Figure 4.6.  Citrate (R25 and R69) and acetyl-CoA (R72) production rates in astrocyte and 

neuron for MB and healthy models. 

 

It was detected that in all MB subtypes, the expression levels of EAAT1 and EAAT2-

4 proteins which control glutamate uptake were decreased (Munford, 2019). It was also 

found that the expression level of the SLC1A5 gene which controls glutamine uptake was 

considerably higher than normal cells (Munford, 2019). These results show that MB prefers 

de novo glutamate production over external glutamate uptake. The expression of the GLS1 

gene which regulates glutamate and ammonia productions was determined to be higher in 

all MB subtypes relative to healthy cerebellum in the same study (Munford, 2019). 

 

0

0,042 0,042
0,040

0,077

0,003

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

R25 R69 R72

F
lu

x
 r

at
e 

m
m

o
l/

g
D

W
/h

Reaction

MB HEALTHY



66 

 

In agreement with the literature, the reaction where glutamine is converted to 

glutamate has higher flux values in all MB models compared to the healthy model (See Table 

4.1). Additionally, in MB models, the ratio of glutamate over glutamine concentration was 

determined as 1.43 which is very similar to the results obtained experimentally (Davies et 

al., 2008), (Kohe et al., 2018), (Panigrahy et al., 2006) (See Table 4.1). 

 

GAD1, one of the genes regulating the GABA cycle, is also expressed lowly in MB 

relative to the healthy brain (Munford, 2019). Furthermore, the expression of SLC6A1 which 

plays an important role in GABA uptake was found to be lowly expressed in MB. All this 

information supports that MB prefers low concentrations of GABA and inhibits its 

production. Agreement with the literature, it was observed that all MB subtypes have lower 

GABA synthesis fluxes than the healthy model (See Table 4.1). 

 

4.2.  Energy Production without Carbon Source 

 

        The aim of this section is to determine from which pathway the MB cell meets its energy 

needs in the case of glucose and glutamine deficiency by employing Flux balance analysis. 

Firstly, the glucose uptake rate was constrained to zero so that the effects of glucose absence 

on energy generation in the brain can be observed. It was determined that the difference in 

total ATP production between the MB model with a carbon source and the one without a 

carbon source is distinctive (See Figure 4.7). In the absence of glucose, total energy 

production decreased by 83%. In the presence of glucose, the main ATP producer is the 

glycolysis pathway in the MB model due to the Warburg effect (See Figure 4.8).  

 

However, when glucose uptake was restricted to zero, the OXPHOS met most of the 

energy needs of the system. This result is compatible with the opinion about the ketogenic 

diet targeting the glycolysis pathway by decreasing the required metabolites for this pathway 

(Tech and Gershon, 2015). Ketones that are produced in fatty acid degradation can be the 

main energy source with a diet that includes high-fat nutrients and restricts carbohydrates. 

This diet was applied to brain cancer patients in several studies. In the study reported by 

Seyfried et al. the size of astrocytoma decreased 80% in mice after ketogenic diet application 

(Seyfried et al., 2003). The reason 6% of energy needs are met from the TCA cycle is that 

glutamine is one of the main carbon sources for this pathway (Özcan and Çakır, 2016). 
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 In glucose absence, MB also uses glutamine to meet its energy and carbon needs. It 

was found that TCA cycle intermediates are enhanced in the absence of glucose suggesting 

that cells also meet their energy needs from TCA by using glutamine (Le et al., 2012). 

 

     

                      Figure 4.7. Alterations in total energy production rate with respect 

                                        to glucose and glutamine uptake restrictions. 

 

Afterward, the glutamine uptake rate was also constrained to zero in order to observe 

the impact of two simultaneous perturbations on the MB model. Without two main carbon 

sources, like before, MB obtained most of its energy needs from OXPHOS as shown in 

Figure 4.8. In the TCA cycle, ATP is generated as a result of succinate production from 

succinyl-CoA (Sertbaş et al., 2014). Succinyl-CoA is produced from alpha-ketoglutarate 

which is also used in the glutamine-glutamate cycle. When glutamine uptake was restricted 

to zero alongside glycolysis, alpha-ketoglutarate was consumed to produce glutamate thus 

MB could obtain glutamine from glutamate. That is why, energy produced in TCA cycle 

decreased to 4% from 6%. However, in the absence of glutamine, the total energy production 

rate was reduced by only 25% than in the case where there was only glucose deficiency. In 

other words, glutamine absence did not influence the system as much as glucose deficiency.  
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Consequently, in both cases (Without glucose and without both glucose and 

glutamine), to meet its energy requirement MB turned to OXPHOS which was the only 

option for ATP production.  

 

 

Figure 4.8. Alterations in energy production distribution with respect to glucose and 

glutamine uptake restrictions. 

 

MB using aerobic glycolysis even in the presence of oxygen was observed to be almost 

completely dependent on OXPHOS in glucose deficiency. Furthermore, the decrease in total 

energy production observed in both cases suggests that the absence of glucose makes 

survival difficult for MB, as observed in the ketogenic diet results for astrocytoma (Seyfried 

et al., 2003). 

 

4.3.  The Relation Between Metastasis and The Warburg Effect 

 

The objective of this section is to find whether there are any changes in the Warburg 

effect as primary MB tumor spreads to other parts of the human body by using Flux balance 

analysis and gene expression data.  
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Once MB metabolic model was integrated with GSE10327 dataset which included 

expression data of 62 human medulloblastoma samples (Kool et al., 2008), MB-M0, MB-

M2, and MB-M4 models which reflect non-metastatic, grade 2 and grade 4 metastatic MB 

tumors were obtained.  

 

Yizhak et al. detected that as migration enhances in NCI-60 cell lines, the ratio of ATP 

generated in glycolysis over the energy produced in OXPHOS increases. They silenced some 

of the active genes in glycolysis such as PGAM1, PGK2, GAPDH, and HK2 whose 

expression values were higher in metastatic samples and detected a decrease in glycolysis 

activity as metastasis decelerates. For instance, after HK2 was inhibited, they found that 

oxygen uptake elevated whereas the activity of glycolysis and lactate production reduced. 

 

               

  Figure 4.9. The comparison of genes expression levels between non-metastatic and   

metastatic samples (M0 and M4). 

 

According to the experimental data reported by Kool et al (Kool et al., 2008), HK2, 

PFKL, and PKM genes found in the glycolysis pathway have higher expression levels in 

grade 4 metastatic tumors (M4) compared to M0 (Figure 4.9). ATP citrate lyase (ACL) and 

fatty acid synthase (FASN) which are responsible for the production of acetyl-CoA and fatty 

acids (Marie and Shinjo, 2011) have also higher expression levels in metastatic tumor 

samples compared to non-metastatic (M0) samples.  
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Orthodenticle Homeobox 2 (OTX2) which has been shown as a potential oncogene in 

several cancers has also a higher expression level in metastatic tumor samples compared to 

M0 (See Figure 4.9) (Lu et al., 2017). Previously, OTX2 was described as an oncogene in 

all types of MB. However, the aggressive role of OTX2 in GR4 and GR3 compared to WNT 

and SHH subgroups was emphasized in few studies (Wortham et al., 2012). Additionally, it 

was indicated that OTX2 inhibition decreases the size of tumor (Panwalkar et al., 2015).   

 

             

Figure 4.10. The comparison of ATPG/ATPOP and LacR/OCR between non-metastatic 

(M0) and metastatic samples (M2 and M4). 

 

Since the expression levels of HK2, PFKL, and PKM genes functioning in glycolysis 

are higher in metastatic samples, the Warburg effect is expected to increase in metastatic 

cases of MB. Indeed, the ratio of ATP generated in glycolysis over ATP generated in 

OXPHOS (ATPG/ATPOP) was found to be almost 7 times higher in MB-M2 than 

ATPG/ATPOP detected in MB-M0 (See Figure 4.10). Although the difference in 

ATPG/ATPOP observed between MB-M0 and MB-M2 was not detected between MB-M2 

and MB-M4, ATPG/ATPOP was distinctly higher in MB-M4 compared to one in MB-M2.  
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The ratio of lactate secretion to oxygen consumption rate (LacR/OCR) increased 

slightly as metastasis intensified suggesting that MB uses its energy to support metastasis 

rather than growth. Consistently, no important change was observed between growth 

reactions of MB-M0 and MB-M2 models. 

 

Consequently, the alteration observed in ATPG/ATPOP indicates that the Warburg 

effect increases as the metastatic level in MB increases. Metastasis in MB can be alleviated 

by targeting the genes linked to the Warburg effect and reducing ATPG/ATPOP. Yizhak et 

al. also detected that the cells that have a higher Warburg effect, are more resilient and need 

a higher dose of drugs to inhibit their growth (Yizhak et al., 2014). With this finding, it can 

be concluded that a different approach is required for metastatic samples of MB to suppress 

them. 

4.4.  Sampling 

 

In this section, it was aimed to obtain all possible flux values that can be obtained 

within the given constraints that each reaction can take and compare these ranges of values 

for the two cases. Additionally, it was aimed to detect whether there is a statistical difference 

between reaction flux rates of MB and healthy models. To find the flux range and the most 

probable flux values for each reaction, flux sampling analysis was performed by using 

gpSampler function of COBRA Toolbox, and 10000 results which satisfy the constraints in 

solutions space were obtained for each reaction.  

 

Moreover, in order to determine whether there is statistically important difference 

between flux sampling results in medulloblastoma and healthy models, 2-sample t-test with 

unequal variances was applied to both models.  

 

After obtaining p values, Benjamini-Hochberg correction was used to reduce false 

discovery rate. False discovery rate (Q) was determined as 0.01. The reactions were divided 

into two lists for neuron and astrocyte. Then the ratio of the difference between flux means 

of both conditions to the sum of the standard deviations of both conditions (RDMSD) was 

used to reveal the most important reactions for neuron and astrocyte.  
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Since only 3% of metabolites are taken up by astrocytes in the cerebellum, the 

difference in reactions between MB and healthy models for astrocyte is notably higher than 

the ones obtained for neuron. Therefore, lower p values were found for astrocyte.  

 

To acquire the most significant reactions in both cells, 98 reactions whose RDMSD 

values are higher than 60 were assumed to be significantly different in astrocyte while 80 

reactions whose RDMSD values are higher than 3 were assumed to be statistically different 

in neuron. Furthermore, 27 exchange reactions whose RDMSD values are higher than 60 

were accepted as statistically important reactions. Consequently, 205 reactions out of 594 

common reactions found in both models, were determined to be the statistically important 

reactions. All significant reactions detected are given in Appendix D with fold changes (the 

ratio of flux values in the MB model to flux values in the healthy model), p values, and 

RDMSD values. For both cells, the percentages of significant reactions for each subsystem 

were calculated as shown in Figure 4.11 and Figure 4.12. 

 

In leucine metabolism, transport reaction of leucine from neuron to astrocyte, 

ketoisocaproic acid transport reaction from astrocyte to neuron, and leucine production from 

glutamate and ketoisocaproic acid were found to be significantly decreased in the MB model 

relative to the healthy model. Similar transport reactions required for isoleucine generation 

and the reaction in which isoleucine produced from glutamine were also detected to be lower 

than the fluxes of the normal brain. It is known that L‐type amino acid transporter 1 (LAT1) 

which is responsible for transporting amino acids including leucine, valine, glutamine, and 

isoleucine are upregulated in MB (Cormerais et al., 2018), (Munford, 2019).  

 

It was also found that several brain malignancies break down leucine, valine, and 

isoleucine to support their metabolism (Cormerais et al., 2018). In another work, the SHH 

subtype of MB consumed leucine and valine to be used for cancer metabolism rather than 

producing them (Gershon et al., 2013).  Additionally, MB cells require glutamate 

tremendously to synthesize glutamine and support the TCA cycle because glutamate uptake 

was found to be downregulated in MB (Munford, 2019). Hence instead of consuming 

glutamate to generate leucine and isoleucine, MB may prefer to use them for glutamine 

production.  
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Figure 4.11. The percentages of significant reactions in neuron for each subsystem. 
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     Figure 4.12. The percentages of significant reactions in astrocyte for each subsystem. 
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Therefore, it is pertinent to consider that MB cells decrease leucine and isoleucine 

productions from glutamate, take up them externally, and use them up for important 

biological processes like cell division, nucleotide, and protein production (Cormerais et al., 

2018).  Both lysine uptake and lysine metabolism reactions were also found to be lower in 

the MB model compared to ones in the healthy model.  

 

73% of glycolysis reactions in neuron were also detected as statistically important 

owing to the high glucose uptake and abnormal lactate production of malignant cells 

compared to normal cells (Tech et al., 2015), (Warburg, 1925). 38% of glycolysis reactions 

were identified as significantly different in astrocyte. Figure 4.13 and Figure 4.14 show the 

flux sampling results for lactate production in astrocyte and neuron, respectively. While the 

black asterisk on the red histogram indicates the flux result obtained using FBA for MB, the 

red asterisk on the blue histogram shows the flux rate for the healthy model. 

 

  

 

 

 

 

   

 

            Figure 4.13. Lactate production (R11) in glycolysis for astrocyte. Flux sampling  

            results for  MB are shown in red while the results for healthy  are shown in blue. 

 

In the sampling approach, lactate production in astrocyte was determined to be higher 

than the one in the healthy model (See Figure 4.13). Similarly, lactate production result 

obtained with FBA was found almost six times higher in MB than the flux rate for healthy. 

Lactate production reaction was determined to be one of the significantly different reactions 

in the neuron. In both FBA and flux sampling, lactate production was found to be 

significantly higher compared to the results for the healthy model (See Figure 4.14). 
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Consistent with the previous findings in this study and experimental outcomes, 80% 

and 100% of OXPHOS pathway reactions were found to be significant for neuron and 

astrocyte, respectively. Although ATP generation in OXPHOS was detected to be 

remarkably lower in the MB model than the healthy model in both approaches, the ATP 

generation rates obtained in FBA were observed to be lower relative to flux sampling mean 

values in astrocyte and neuron (See Figure 4.15 and Figure 4.16).  

 

Unlike FBA, flux sampling is employed without defining an objective (Herrmann et 

al., 2019). 

 

 

 

 

       

  

 

 

 

 Figure 4.14. Lactate production (R56) in glycolysis for neuron. Flux sampling 

results   for MB are shown in red while the results for healthy are  shown in blue. 

 

  Figure 4.15. ATP production (R45) in OXPHOS for astrocyte. Flux sampling  

results for MB are shown in red while the results for healthy are shown in blue. 
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The difference in the activity of OXPHOS in both approaches indicates that when 

growth reaction was taken into consideration like in FBA, MB reduces the OXPHOS activity 

much more to promote its growth. Therefore, there is a correlation between the low activity 

of OXPHOS and growth in MB.   Taken together with both FBA and sampling approaches, 

the MB model captured the Warburg effect successfully.  

 

 

 

 

 

 

 

 

 

Figure 4.16. ATP production (R88) in OXPHOS for neuron. Flux sampling 

results  for MB are shown in red while the results for healthy are  shown in blue. 

 

Since the first reaction of PPP in the healthy model was constrained to the values found 

by Sertbaş et al. for flux sampling, histograms for the healthy model were not shown in 

Figure 4.17 and Figure 4.18.  

 

                                   

               Figure 4.17. 6-phosphogluconate production (R17) in pentose phosphate 

                 pathway for astrocyte. Flux sampling results for MB are shown in red. 
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For astrocyte, the first reaction flux of PPP in MB was found to be twice of the result 

obtained for the healthy model in FBA. On the other hand, the mean of the flux sampling 

results of the same reaction was detected to be almost ten times lower than the FBA result 

of the reaction in healthy model. Similarly, for neuron, the FBA result was observed to be 

almost ten times higher than the mean of flux sampling results in the MB model, which 

indicates MB utilizing PPP to support its proliferation (See Figure 4.18). However, with both 

methods, increased activity in PPP was determined for the neuron in MB compared to its 

healthy counterpart. 

 

                                     

    Figure 4.18. 6-phosphogluconate production (R61) in the pentose phosphate  

           pathway for neuron. Flux sampling results for MB are shown in red. 

 

TCA cycle activity was estimated to be decreased in FBA analyses due to the Warburg 

effect. In flux sampling analysis, 27% of TCA cycle reactions were also assessed to be 

important in agreement with the FBA results in this study and experimental findings. Citrate 

production reaction, which is the first step of the TCA cycle, was relatively activated in FBA 

analysis because of its use in the generation of acetyl-CoA. Still, its flux rate was found to 

be lower than the flux rate in the healthy model. Conversely, the means of flux sampling 

results for MB and healthy were estimated to be very similar to each other in both astrocyte 

and neuron (See Figure 4.19 and Figure 4.20). 

 

One of the reactive oxygen pathway reactions where oxidized glutathione is produced 

from H2O2 and reduced glutathione was also found as a significantly changed reaction in 

neuron and astrocyte. In MB, the mean of the fluxes for this reaction was found to be 

negative in flux sampling analysis.  
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Similarly, in the FBA approach, the flux of this reaction was zero while much higher 

flux values were obtained in both methods for the healthy model.  

 

 

 

 

 

 

 

        

            

      Figure 4.19. Citrate production (R25) in the TCA cycle for astrocyte. Flux sampling 

             results for MB are shown in red while the results for healthy shown in blue. 

 

Considering the high level of ROS found in many cancer types leading to stimulation 

of PPP-related enzymes to activate this pathway and promote cancer growth, inhibition of 

this reaction in the MB model is quite plausible (Liou and Storz, 2010), (Stincone et al., 

2015). Low flux values, found in both techniques, show that there is an accumulation of 

H2O2 in MB as found in many cancer types (Liou and Storz, 2010). 

 

                           

   

 

 

 

 

 

 

               Figure 4.20. Citrate production (R69) in the TCA cycle for neuron. Flux 

sampling results for MB are shown in red while the results for healthy are shown in blue. 
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Compatible with lots of studies that found low inositol activity in many cancer types 

including astrocytoma and lung cancer, inositol uptake reactions for neuron and astrocyte 

were found to be lower compared to the fluxes in the healthy model (Badodi et al., 2021), 

(Castillo et al., 2000), (Ren et al., 2017), (Vucenik, 2019).  

 

4.5.  Regulation 

 

The aim of this section is to identify which reactions are metabolically, 

transcriptionally, and post-transcriptionally are regulated using flux sampling results and 

GSE expression levels for two cases. First, sampling algorithm was used to obtain a set of 

flux distributions satisfying the constraints in solutions space for each reaction. Means and 

standard deviations of the reactions present in both models were calculated using the results 

obtained from sampling algorithm. In order to determine the significance of change between 

MB and healthy conditions, Z-scores were calculated (ZF-Z scores for metabolic fluxes, ZG-

Z scores for expression data).  

 

201 reactions out of 594 common reactions found in both MB and healthy models were 

removed because both ZF and ZG scores of these reactions were found to be lower than 1.96 

or higher than -1.96. 240 of the remaining reactions were detected to be regulated 

metabolically since only the ZF score of these reactions are significantly different suggesting 

that there are other factors other than gene expression level affecting their flux rates. 80 of 

them were determined to be controlled transcriptionally as both ZF and ZG values of these 

reactions are significant. 73 reactions were estimated to be regulated post-transcriptionally 

since there is a remarkable change in gene expression of their related genes whereas there is 

no important change in their flux rates compared to the healthy model. Figure 4.21 shows 

the number of the reactions regulated, metabolically, transcriptionally, and post-

transcriptionally in both neuron and astrocyte based on the pathway, they are carried out. M, 

T, and PT stand for metabolically, transcriptionally, and post-transcriptionally reactions. For 

example, in glycolysis metabolism, 16, 2, and 4 reactions are controlled metabolically, 

transcriptionally, and post-transcriptionally, respectively. Some of the pathways like 

pyrimidine nucleoside metabolism were removed from Figure 4.21 because no significantly 

differential reactions were detected in these pathways.  
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  16 2 4 Glycolysis 

  5 3 3 PPP   

  14 5 3 TCA Cycle 

  4 6 0 OXPHOS 
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Figure 4.21. The number of the reactions regulated metabolically (M), transcriptionally 

(T), and post-transcriptionally (PT) in both neuron and astrocyte for each pathway. 
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In metabolic engineering, it is important to identify transcriptionally regulated 

reactions (TRR) whose flux rate changes stem from gene expression alterations.  Variations 

in gene expression are frequently utilized to change metabolic fluxes in the desired way. In 

other words, the genes controlling TRR can be used as therapeutic targets. When fluxes and 

gene expression levels of reactions do not differ similarly, the genes related to these reactions 

can not be used to change flux rates by the means of gene expression.    

 

Figure 4.22 demonstrates the genes whose associated reactions were found to be 

significantly different in MB model compared to ones in the healthy model . The red color 

indicates whether the genes are associated with metabolically or transcriptionally or post-

transcriptionally reactions. Glycolysis, PPP, TCA, OXPHOS, fatty acid synthesis pathways 

do not include the genes detected in only astrocyte because it was aimed to find the genes 

whose perturbation affects both cells or only neuron where MB occurs (Northcott et al., 

2019). Since the cholesterol pathway is realized in astrocyte, the genes related to 

significantly differential reactions in this pathway were included.  

 

As seen in Figure 4.21, the pathway with the highest TRR ratio was fatty acid synthesis 

with more than one-third of reactions. 2 TRR’s realized in both neuron and astrocyte are 

regulated by ACOT2, ACOT4, ACOT7, FADS1, FADS2, FADS6, SCD5, and SCD (See 

Figure 4.22). While ACOT2, ACOT4, ACOT7 genes are responsible for the production of 

stearate from stearoyl-CoA, FADS1, FADS2, FADS6, SCD, and  SCD5 genes control the 

generation of oleoyl-CoA from stearoyl-CoA. The expression values of ACOT2, ACOT4, 

FADS1, and FADS6 were not included in the GSE datasets used in this study. Therefore, 

their ZG scores were not calculated. ZF score of  SCD5 was found to be insignificant. 

However, both ZG and ZF scores of ACOT7, FADS2, and SCD genes were estimated to be 

significantly lower than the critical value (-1.96) determined for this work. These results 

suggest that the oleoyl-CoA synthesis is downregulated in MB. Importantly, oleoyl-CoA is 

converted to oleic acid which has been shown by many studies to have anti-cancer properties 

(Li et al., 2014), (Natali et al., 2007), (Ruggiero et al., 2014), (Zhu et al., 2005).  

 

Based on the significantly low ZF and ZG scores, it can be deduced that there is a 

reduction in oleic acid amount in MB compared to the normal brain.  
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Consistently, according to a recent paper conducted by Anna et al, oleic acid 

production was found to be lower expressed in brain tumors including MB based on the 

results obtained in the Raman technique (Anna et al., 2017). Therefore, lower production of 

oleic acid may be a phenotype of MB metabolism. Application of oleic acid on MB might 

be a potential therapeutic strategy considering its anti-tumor effects on NB and GBM (Zhu 

et al., 2005), (Natali et al., 2007).  

 

Interestingly, oleic acid was also detected in two separate analyzes performed in the 

present study. Firstly, it was found in the GeneCards database due to its relation to the FASN 

gene which was identified as one of eight common essential genes in gene essentiality 

analysis (See Section 4.8.1). Secondly, it was determined as a potential antimetabolite in the 

DrugBank database because of its similarity to linoleate and arachidonate with 0.90 and 0.83 

similarity scores, respectively (See Section 4.8.2). In this part of the work, inhibition of the 

reactions where linoleate and arachidonate are substrates led to a decrease of 80% and 79%, 

respectively in the growth reaction of the MB model. In the same study performed by Anna 

et al, the peaks detected for linoleate and arachidonate were the same as the ones obtained 

for brain tumors in the Raman technique suggesting the upregulation of these metabolites 

(Anna et al., 2017).  

 

Based on experimental findings and results obtained in this study, the effect of 

extraneous oleic acid on MB should be investigated in further studies because it might 

suppress the conversion of arachidonate from linoleate as an antimetabolite and prevent 

tumor progress with anticancer effects simultaneously. However, it is important to note that 

keeping oleic acid and stearic acid proportion at a normal level is crucial because an 

imbalance between these two fatty acids disrupts the membrane structure which is known as 

a cancer-specific feature (Habib et al., 1987).  

 

Most of the reactions in cholesterol synthesis were identified as metabolically 

regulated reactions (MRR) (See Figure 4.21). 12 TRRs related to cholesterol synthesis are 

controlled by 10 genes (See Figure 4.22). 5 of these including HMGCS1, HMGCS2, 

HMGCR, PMVK, and MVD are associated with the mevalonate pathway.  
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HMGCR, PMVK, and MVD were also identified in the group of eight potential genes 

in gene essentiality analysis (See Section 4.8.1). Many metabolites whose enzymes could be 

used as therapeutic targets were also found to be related to mevalonate pathway genes (See 

Section 4.8.2).  

 

Despite the contribution of this pathway to growth, both ZG and ZF scores of reactions 

related to HMGCS1, HMGCR, PMVK, and MVD were estimated to be significantly low in 

this analysis. ZG score for HMGCS2 was found to be insignificant.  The reactions related to 

other genes including, LSS, NSDHL, and DHCR7 have also remarkably low ZF and ZG 

scores. Additionally, ZF and ZG scores of reactions associated with FDFT1 and SQLE which 

are identified as essential genes are significantly lower than the critic value (-1.96). Despite 

low expressions of these genes relative to the healthy brain, cholesterol is one of the main 

structural lipids forming cell membranes (Maxfield and van Meer, 2010). Therefore, to 

survive, MB cells have to produce metabolites related to cholesterol synthesis even in the 

low levels. Considering numerous studies which show that inhibition of cancer cells by 

interfering cholesterol pathway and the essentiality of many cholesterol genes in this study, 

perturbating cholesterol pathway might be a promising approach for MB (Dimitroulakos et 

al., 2000), (Girgert et al., 1999), (Hindler et al., 2006), (Jiang et al., 2014), (Mahmoud et al., 

2016), (Shellman et al., 2005), (Song et al., 2014), ( Larner et al., 1998), (Kim et al., 2001). 

 

In glycolysis, most of the reactions are not affected by the expression levels of the 

genes controlling them (See Figure 4.21). Probably, an extreme level of glucose internalized 

by glucose carriers leads to activations of the enzymes in the glycolysis pathway. Only 

fructose-1-6-biphosphate producing reaction whose ZF and ZF scores both significantly alter 

can be classified as a TRR. This reaction is controlled by PFKL, PFKM, and PFKP genes 

(See Figure 4.22). ZG score of fructose-6-phosphate production reaction is lower than the 

critical value (-1.96), in agreement with the literature (Moreno-Sanchez et al., 2009). ZF 

score is remarkably higher than the critical value (1.96). Although both z scores change 

significantly, there is a huge difference between them. The high flux value of this reaction 

in this case probably stems from abnormal glucose uptake of MB cells (Tech et al., 2015).  

It was observed that lactate production reaction in glycolysis has a high ZF score while its 

ZG score is considerably lower.  
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Perhaps, this reaction is also affected by external concentrations. A high amount of 

pyruvate accumulating activates lactate production. ZF score of the reaction where acetyl-

CoA is produced from pyruvate in glycolysis pathway is lower than the critical value (-1.96). 

Therefore, less acetyl-CoA is generated in glycolysis compared to the healthy case since 

most of the pyruvate is used in the production of lactate in the MB model.   

 

Consistent with p values obtained for PPP, ZF values for the reactions in PPP were 

also estimated to be unimportant (See Figure 4.21). ZG values of G6PD and TKTL1 genes, 

on the other hand, were found to be significantly lower than the critical value (-1.96) which 

makes their associated reactions post-transcriptionally regulated (See Figure 4.22). Even 

though there is an insignificant change in ZF values of these reactions, ZF values are higher 

than zero suggesting that there is a small increase in these reaction rates compared to the 

healthy brain. Therefore, significantly lower expressions of G6PD and TKTL1 genes, do not 

affect the flux rates of the reactions controlled by them. While G6PD is responsible for the 

production of 6-phosphogluconate, the TKTL1 gene plays role in the generation of fructose-

6-phosphate and glyceraldehyde-3-phosphate with other genes which are TKTL2 and TKT. 

The reaction controlled by G6PD is the first reaction of PPP and it is known to be affected 

by many factors such as oxidative stress and lower activation of PFK in brain tumors 

(Moreno-Sanchez et al., 2009), (Stincone et al., 2015). These factors may be the reason for 

the noncorrelation between ZG and ZF. 

 

   The first reaction of the TCA cycle where oxaloacetate and acetyl-CoA are converted 

to citrate by CS and SLC35G3 is regulated post-transcriptionally (See Figure 4.22). On the 

other hand, the following two reactions where cis aconitate and isocitrate production are 

controlled by ACO1 and ACO2 genes are transcriptionally regulated reactions.  It was 

observed that ZF scores of these reactions were significantly lower than the critical value (-

1.96) because of the low activity of the TCA cycle in cancer (Warburg, 1925). Other 

reactions wherein only ZF score changes significantly, are metabolically regulated reactions 

because of the insufficient amount of substances produced in the first steps of TCA.  

 

 One other reason for low ZF scores of MRR’s in the TCA cycle may be the aberrant 

consumption of the pyruvate for lactate production in the glycolysis pathway.  
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Consequently, less acetyl-CoA and oxaloacetate are synthesized from pyruvate in the 

glycolysis pathway and this affects the first reaction of TCA where citrate is produced from 

these metabolites. 
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Figure 4.22. The genes whose associated reactions are significantly different in 

MB compared to the reactions in the healthy model based on  pathways. 
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While the first three reactions of OXPHOS are regulated transcriptionally, the last two 

are regulated metabolically (See Figure 4.22). It was observed that all ZF scores in OXPHOS 

reactions including the ZF score of the third reaction where CytCox and Hc are produced 

and oxygen is consumed are significantly lower than the critical value (-1.96) which is in 

agreement with the fact that cancer cells take low oxygen even in the presence of oxygen 

(Kim et al., 2012). 

 

 

 

Figure 4.22. The genes whose associated reactions are significantly different in 

MB compared to the reactions in the healthy model based on  pathways. 
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4.6.  Flux Coupling Analysis 

 

The purpose of this section is to obtain the reactions that are fully coupled, partially 

coupled and directionally coupled to biomass reaction using Flux coupling analysis. The 

reactions coupled with growth are considered as putative drug targets to reduce tumor 

growth. In order to find the reactions coupled with biomass reaction, flux coupling analysis 

was performed.  It was estimated that 158 reactions are related to biomass reaction. 32 

reactions out of 158 reactions are fully coupled to growth reaction. Only 6 of them are 

partially connected to biomass reaction, while 120 of them are directionally linked to 

biomass rection. Naturally, all the reactions in which the metabolites from the neuron and 

astrocyte combine and participate in the biomass reaction were found to be fully related to 

the biomass reaction. In addition, uptake reactions of lysine, phenylalanine, and histidine 

which are not synthesized in the human body (Buford, 2008) were found to be fully 

connected to biomass reaction suggesting that any perturbation on these reactions influence 

growth reaction tremendously. Reciprocally, any change in growth also affects the uptake of 

these amino acids. Lysine was detected to be internalized abundantly by breast cancer cells 

(Vazquez Rodriguez et al., 2020). Limiting lysine in diets was also suggested to support 

cancer treatment (Kang, 2020).   

 

LAT1 carrier which internalizes isoleucine, phenylalanine, histidine, and leucine, was 

also found to be upregulated in MB (Wei et al., 2021), (Cormerais et al., 2018), (Munford, 

2019). These experimental findings and the results of the present work indicate that the 

inhibitory effect of essential amino acid uptake reactions on MB should be investigated in 

further studies. Since arginine is taken up by neuron via astrocyte (Sertbaş et al., 2014), the 

transport reaction of arginine between two cells is also fully connected to the growth 

reaction.  Furthermore, the uracil production reaction from uridine is entirely connected to 

growth reaction since uracil is one of the main nucleotides used in RNA synthesis (Sertbaş 

et al., 2014).  

 

All reactions partially connected to growth are related to nucleotide exchange reactions 

including guanosine, uridine, and cytidine uptakes. In gene essentiality analysis, the PNP 

and ADK genes which are responsible for the guanine and adenosine monophosphate 

syntheses were also found as essential.  
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Both analyses indicate that nucleotide metabolism is directly related to growth. Indeed, 

there are various chemotherapeutic agents targeting nucleotide production (Marie and 

Shinjo, 2011).  

 

The related pathways of 120 reactions associated with growth directionally are shown 

in Figure 4.23. The reactions directionally related to growth include nucleoside metabolism 

reactions like guanine synthesis from guanosine. Additionally, ribose-5-phosphate 

production from ribose-1-phosphate was detected as a directionally coupled reaction to 

growth. Ribose-5-phosphate is a precursor metabolite for nucleotide synthesis. In fact, 

ribose-1-phosphate inhibition led to a 91% decrease in the growth reaction of MB in this 

study (See Section 4.8.2).  

 

Exchange reactions related directly to growth include isoleucine, methionine, 

threonine, and oxygen uptake reactions. In addition, tyrosine and ornithine intakes were 

found to be directly related to biomass reaction. Tyrosine can be also synthesized from 

phenylalanine which is an essential amino acid. Ornithine is a precursor non-essential amino 

acid for the production of polyamines including spermidine, spermine, and putrescine 

associated with cell growth (Casero et al., 2018). Choices of cells to get isoleucine, 

methionine and threonine are limited, because these amino acids are not synthesized in the 

human body (Buford, 2008). Overall, the MB model detected essential amino acid uptake 

reactions and reactions related to amino acids produced from another essential amino acid 

like tyrosine. Oxygen intake is vital for OXPHOS. Even though cancer cells are prone to 

meet their ATP need mostly from glycolysis, it was shown that they need to generate energy 

in OXPHOS to survive (Moreno-Sanchez et al., 2009). Naturally, lipid synthesis which is 

one of the important reactions forming the main biomass reaction was also estimated in this 

analysis. While lipid synthesis reaction was found as directionally related to growth, protein 

reaction was detected to be fully coupled to growth. That probably stems from higher protein 

content found in the cerebellum relative to lipid (See Section 3.1.2). Therefore, a 

computational change in biomass reaction influences protein metabolism more than lipid 

metabolism. The reactions related to the production of cardiolipin which is known to take 

part in the structure of the cell membrane (Nielson and Rutter, 2018) are directly related to 

growth (See Figure 4.23). Consistently, cardiolipin synthesis genes, CRLS1 and PGS1 were 

also found to be essential genes in this study (See Section 4.7).  
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Cardiolipin is formed with the combination of cytidine diphosphate diacylglycerol 

(CDP diacylglycerol) and glycerol-3-phosphate (Sertbaş et al., 2014). Glycerol-3-phosphate 

syntheses reactions are detected in this analysis since this metabolite is used in both 

cardiolipin and CDP diacylglycerol syntheses (See Figure 4.23). GPD1 and GPD2 genes 

which control glycerol-3-phosphate syntheses were also found as essential genes (See 

Section 4.7). CDP diacylglycerol is the main metabolite in the productions of cardiolipin and 

phosphatidyl-inositol (Blunsom and Cockcroft, 2020). Indeed, the reactions in CDP 

diacylglycerol metabolism were estimated as partially linked reactions to growth (See Figure 

4.23). 

 

89% of reactions in fatty acid synthesis are directly linked to growth in agreement with 

other analyses done for this work (See Figure 4.23). The reaction directly related to 

cholesterol metabolism is the one where cholesterol is transported from astrocyte to neuron 

because its synthesis is only carried out in astrocyte (See Figure 4.23). Consistent with other 

analyses, cholesterol production is coupled to growth reaction. 

 

       

Figure 4.23. The distribution of reactions directionally coupled to growth  

based on the pathway. 
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          Other reactions directly coupled to growth are related to amino acid metabolisms 

including isoleucine, valine, leucine, glycine, serine, and asparagine. Isoleucine, valine, and 

leucine are transported to astrocyte and they are converted to keto-beta-methyl valeric acid 

(KMV), alpha-ketoisovalerate (KIV) ketoisocaproate (KIC), respectively (Sertbaş et al., 

2014).  Then KMV, KIV, and KIC are transported to neuron and transformed to isoleucine, 

valine, and leucine. The reactions where KMV, KIV, and KIC are internalized by neuron 

and then converted back to isoleucine, valine, and leucine were found to be directly related 

to growth. It is known that intermediates of these three amino acids and lysine are converted 

to acetyl-CoA which is benefited by histone proteins (Lieu et al., 2020). Histone proteins 

are linked to proliferation and they are frequently deregulated in cancer (Lieu et al., 2020), 

(Wei et al., 2021). Isoleucine, valine, and leucine are also converted to alpha-ketoglutarate 

which also contributes to tumor survival by refilling the TCA cycle (Lieu et al., 2020).  

 

Serine transport reaction from astrocyte to neuron was also detected as a reaction 

related to growth (See Figure 4.23). Serine is a non-essential amino acid produced in 

astrocyte (Sertbaş et al., 2014) Serine is also known to promote proliferation in cancer cells 

(Yang and Vousden, 2016). It was shown that a decrease in serine level caused suppression 

of growth of several cancers (Maddocks et al., 2013). In addition, serine is necessary for 

glycine production. Once serine is synthesized in astrocyte, it is transported to neuron to be 

converted into glycine with tetrahydrofolate (Yang and Vousden, 2016). This finding is quite 

compatible with the literature considering one of the characteristics of MB is high glycine 

concentration (Bennet, 2018). 

 

The reaction where glutamine and aspartate are consumed to produce asparagine and 

glutamate was detected in coupling analysis (See Figure 4.23). ASNS gene controlling this 

reaction was also detected in essentiality analysis (See Section 4.7). Increased activity of 

ASNS was determined in several cancer types like pancreatic, ovarian, and prostate 

(Panosyan et al., 2014). Moreover, it was found that decreased amount of asparagine in brain 

metabolism increased the impact of chemotherapy significantly in DAOY, MB cell line by 

enhancing the sensitivity of MB cells (Panosyan et al., 2014). Thus, ASNS which was found 

by the MB model in both analyses could be a potential therapeutic target for MB. 
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4.7.  Essentiality Analyses 

 

Single gene deletion, double gene deletion, and reaction deletion analyses were 

performed to determine potential therapeutic targets for MB. In single gene and reaction 

deletion analyses, all genes and reactions found in the model are extracted one by one, and 

flux rates of a determined reaction are calculated after each extraction. If the flux rate of 

specified reaction falls below a certain value as a result of gene or reaction deletion, these 

genes or reactions are assumed to be essential for the system.  

 

In this part of the study, the genes or reactions whose removal decrease the flux rate 

of biomass reaction below 10-6 mmol/gDW*hour were accepted as essential for the MB 

model. As a result of single-gene deletion analysis, 45 essential genes were detected in the 

MB model. 3 of 45 essential genes are shown in Table 4.2. These 3 genes were detected in 

only the single deletion analysis, while 42 of them were identified in reaction deletion 

analysis as well. These 42 essential genes are demonstrated in Table 4.3. 

 

As seen from Table 4.2 and 4.3, almost 60% of essential genes detected by the MB 

model regulate reactions in pathways such as cholesterol, phosphatidylethanolamine, 

sphingomyelin, phosphatidyl-inositol, glycosphingolipid, and fatty acid metabolism coupled 

to main lipid reaction. These findings indicate that lipid production is essential for MB cell 

growth and they are compatible with experimental results where a high amount of lipid was 

found in MB (Bennett et al., 2018).  

 

        Table 4.2. Essential genes in MB model and their associated pathways. 

 

Essential gene Pathway 

SC5DL Cholesterol Synthesis 

DHCR7 Cholesterol Synthesis 

DHCR24 Cholesterol Synthesis 
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      Table 4.3. Essential genes detected in both analyses and their associated pathways. 

Essential genes Pathway 

GPI Glycolysis 

TPI1 Glycolysis 

RPE Pentose phosphate pathway 

TALDO1 Pentose phosphate pathway 

FH TCA cycle 

ETFDH Oxidative Phosphorylation 

ASNS Asparagine metabolism 

QDPR 
Phenylalanine-Tyrosine 

Metabolism 

TH 
Phenylalanine-Tyrosine 

Metabolism 

DDC 
Phenylalanine-Tyrosine 

Metabolism 

GCAT Threonine Metabolism 

HMGCR Cholesterol Synthesis 

MVK Cholesterol Synthesis 

PMVK Cholesterol Synthesis 

MVD Cholesterol Synthesis 

FDFT1 Cholesterol Synthesis 

SQLE Cholesterol Synthesis 

LSS Cholesterol Synthesis 

CYP51A1 Cholesterol Synthesis 

SC4MOL Cholesterol Synthesis 

NSDHL Cholesterol Synthesis 

HSD17B7 Cholesterol Synthesis 
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Table 4.3. Genes detected in both analyses and their associated pathways. (cont.) 

Essential genes Pathway 

EBP Cholesterol Synthesis 

FASN Fatty Acid Synthesis 

GPD1 Glycerol-3-phosphate Shuttle 

GPD2 Glycerol-3-phosphate Shuttle 

PCYT2 
Phosphatidylethanolamine 

Metabolism 

PTDSS2 
Phosphatidylethanolamine 

Metabolism 

PISD 
Phosphatidylethanolamine 

Metabolism 

PGS1 Cardiolipin Metabolism 

CRLS1 Cardiolipin Metabolism 

SPTLC1 Sphingomyelin Metabolism 

KDSR Sphingomyelin Metabolism 

DEGS2 Sphingomyelin Metabolism 

CDIPT Inositol Metabolism 

INPP1 Inositol Metabolism 

GSS Reactive Oxygen Species Pathway 

AMD1 Polyamine Metabolism 

SMS Polyamine Metabolism 

SMOX Polyamine Metabolism 

ADK Purine Nucleoside Metabolism 

PNP Purine Nucleoside Metabolism 
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Glycolysis pathway genes, glucose-6-phosphate isomerase (GPI) and triosephosphate 

isomerase 1 (TPI1), and PPP genes, ribulose-5-phosphate-3-epimerase (RPE), and 

transaldolase 1 (TALDO1) were detected as essential genes because they all take part in vital 

pathways for MB and cancer cells. GPI and TPI1 are responsible for fructose-6-phosphate 

and glyceraldehyde-3-phosphate productions (Sertbaş et al., 2014). Therefore, silencing 

these genes leads to the termination of the production of pyruvate used in syntheses of 

significant metabolites like alanine, acetyl CoA, and lactate alongside ATP generation in 

glycolysis. RPE regulates the reversible reaction where xylulose-5-phosphate is produced 

from ribulose-5-phosphate in PPP (Liang et al., 2011). TALDO1 controls the reversible 

reaction where fructose-6-phosphate and erythrose-4-phosphate are synthesized from 

sedoheptulose-7-phosphate and glyceraldehyde-3-phosphate (Sertbaş et al., 2014). The 

metabolites like fructose 6-phosphate, glyceraldehyde 3-phosphate, and erythrose 4-

phosphate produced in PPP are required for the generations of the ATP and aromatic amino 

acids (Liang et al., 2011). It was also shown that RPE contributes to decreasing oxidative 

stress because it controls the reaction involved in NADPH generation (Liang et al., 2011).  

 

In the TCA cycle, the fumarate hydratase (FH) gene that is responsible for the 

production of malate from fumarate was also found as an essential gene in both single gene 

and reaction deletion analyses. That stems from the fact that malate is used in the production 

of oxaloacetate which is utilized in glycolysis, TCA, and aspartate pathways to synthesize 

phosphoenol-pyruvate, citrate, and aspartate, respectively (Sertbaş et al., 2014). Malate is 

also utilized in the production of pyruvate which is a crucial metabolite used in lactate and 

alanine syntheses.  

 

Electron transfer flavoprotein dehydrogenase (ETFDH) which is responsible for the 

production of ubiquinol and flavin adenine dinucleotide (FAD) from reduced flavin adenine 

dinucleotide (FADH2) and ubiquinone, is also identified as an essential gene by the MB 

model. FAD, which is responsible for transporting electrons, is a crucial molecule for the 

electron transfer chain (Le and Ou, 2016). In the TCA cycle, FAD is converted to FADH2 

by accepting two electrons. In leucine, valine, and isoleucine metabolisms, FAD is utilized 

as a cofactor (Brody, 1999).   
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Although the identification of these vital genes related to glycolysis, PPP and 

OXPHOS in both essentiality analyses supports the robustness of the MB model, inhibitions 

of the genes in these pathways might cause deleterious effects on healthy cells as well. 

 

Asparagine synthetase (ASNS) regulates asparagine production from glutamine and 

aspartate. High activity of ASNS was related to various malignancies including ovarian, 

pancreatic, and prostate cancers (Panosyan et al., 2014). ASNS was also detected in flux 

coupling analysis.  

 

Glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate 

dehydrogenase 2 (GPD2) control the productions of glycerol-3-phosphate, NAD, and FAD. 

GPD2 takes part in glycolysis, glycerol, lipid, and gluconeogenesis metabolisms.  Glycerol-

3-phosphate is used in cardiolipin metabolism to synthesize cardiolipin which forms 20% of 

mitochondrial membrane (Nielson and Rutter, 2018). GPD2 was found to be overexpressed 

in many cancers (Lu et al., 2020). Moreover, GPD2 suppression resulted in anti-cancer 

effects in a prostate cancer cell line (Singh, 2014). GPD1 and GPD2 genes and their related 

reactions were detected in both single gene deletion and flux coupling analyses by the MB 

model. 

 

Polyamines including spermine, spermidine, and putrescine participate in main 

biological activities such as survival, apoptosis, and cell growth (Casero et al., 2018). 

Decreased levels of polyamines lead to inhibition of growth (Casero et al., 2018). Putrescine 

is synthesized from ornithine by ornithine decarboxylase 1 (ODC1). S-adenosyl-L-

methionine produced in methionine metabolism is converted to S-adenosyl-L-

methioninamine by adenosylmethionine decarboxylase 1 (AMD1) which was found as an 

essential gene by the MB model (Casero et al., 2018). Subsequently, spermidine is generated 

by spermidine synthase (SRM) by using putrescine and S-adenosyl-L-methioninamine 

(Casero et al., 2018). Afterward, spermine synthase (SMS) which is an essential gene carries 

out the production of spermine from spermidine. Spermine can be converted to spermidine 

releasing H2O2 by spermine oxidase (SMOX) which is also an essential gene (Sertbaş et al., 

2014).  Polyamine metabolism is generally disrupted in cancer (Casero et al., 2018).  
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SMOX was found to be overexpressed leading to overproduction of H2O2 in several 

cancers including liver, lung, colon, prostate, and stomach (Casero et al., 2018). Depleting 

the activity of SMOX caused an important reduction in ROS generation and thus decreased 

oxidative damage in gastric and colon cancers (Casero et al., 2018). It was demonstrated that 

SHH, which is dysregulated in the SHH type of MB, also triggers polyamine production 

(D’Amico et al., 2015). Some studies demonstrated that a reduction in polyamines resulted 

in tumor suppression (Coni et al., 2019). It was determined that with the deactivation of the 

polyamine pathway, MB growth in a mouse model was notably disrupted (Casero et al., 

2018). Therefore, SMS, SMOX, and AMD1 which play important roles in polyamine 

synthesis and are also associated with cancer were successfully detected by the MB model.  

 

Nucleotide production has been inhibited to prevent cancer growth recently (Marie and 

Shinjo, 2011). There are chemotherapeutic compounds known to target nucleotide synthesis 

(Marie and Shinjo, 2011). Consistently, purine nucleoside phosphorylase (PNP) which 

regulates the production of guanine from guanosine, and adenosine kinase (ADK) which 

controls the adenosine monophosphate synthesis from adenosine were identified as essential 

genes by the MB model. 

 

In reaction deletion analysis, 312 essential reactions were identified in the MB model. 

The controlling genes of 116 essential reactions were also determined in single deletion gene 

analysis. The distribution of common essential genes detected in both analyses is shown 

based on the associated metabolic pathways (See Figure 4.24). The pathway including most 

of the common essential genes was found as cholesterol synthesis.   

  

Apart from the genes identified in both analyses, in reaction deletion analysis, reaction 

55, pyruvate, and ATP producer in neuron was identified as an essential reaction for the 

system because of its contributions to lactate, acetyl-CoA, and alanine productions (Marie 

and Shinjo, 2011).  In agreement with the experimental results where a high amount of lipid 

found in MB, reaction 69 was also detected as an essential reaction because this reaction 

produces citrate which can be transported from the mitochondrial membrane, and then citrate 

is converted to acetyl- CoA that is used for the lipid synthesis (Bennett et al., 2018). 
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Like glucose, glutamine is also an important metabolite for tumors. GLS enzyme 

produces glutamate and ammonia by consuming glutamine. It was detected that GLS1 is 

upregulated in all MB subgroups in comparison to the healthy brain (Munford, 2019). 

Consistent with that information, reaction 96 where glutamate is produced, was found as an 

essential reaction. 

 

Figure 4.24. The distribution of common essential genes estimated in single-gene deletion 

and reaction deletion analyses based on associated pathways. 

 

After performing single gene deletion and reaction deletion analyses, double gene 

deletion analysis was performed. In double gene deletion analysis, combinations of gene 

pairs are sequentially removed from the model, and the flux rate of a specified reaction is 

estimated after each removal. If the flux rate of the determined reaction falls below a certain 

value as a result of double gene deletion, these gene combinations are assumed to be essential 

for the system. In this analysis, the gene combinations whose removal reduces the flux of 

biomass reaction below10-6 mmol/gDW*hour were accepted as essential for the MB model. 

 

One of the gene combinations detected is the pair of ACL and FASN which was also 

detected in single gene deletion analysis.  
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Inhibition of ACL which carries out the production of acetyl CoA in the TCA cycle 

led to a decrease in the growth of lung cancer cells (Hatzivassiliou et al., 2005), (Marie and 

Shinjo, 2011). FASN deactivation also resulted in suppression of tumor-specific features 

like lipid synthesis in multiple cancers like pancreatic, ovarian, and lung tumors (Ventura et 

al., 2015). Additionally, it was determined that the deactivation of ACL and FAS genes 

restricted cancer cell division (Marie and Shinjo, 2011). Consistent with the literature, the 

combination of ACL and FASN genes was estimated by the MB model in double gene 

deletion analysis. 

 

When essential genes obtained from single gene deletion analysis were removed from 

the results obtained as a result of double gene analysis, 26 pairs of genes remained. These 

gene combinations are demonstrated in Figure 4.25. The combinations whose removal 

reduces the biomass below 10-6 mmol/gDW*hour, are shown in green, while others are 

shown in blue.  

 

The number of gene combinations based on the pathway is shown in Figure 4.26. For 

instance, there is one gene combination in the TCA cycle and both genes take part in the 

TCA cycle. There are four gene pairs which include eight genes taking part in GABA and 

TCA cycle. That is why, 4 is written in the square where TCA and GABA pathways intersect, 

in Figure 4.26.   

 

In MB, the activity in the GABA cycle decreases compared to normal cells (Munford, 

20). It was found that GABA transaminase (ABAT) which converts GABA and alpha-

ketoglutarate to glutamate and SuccinateSAL is downregulated in primary MB relative to 

healthy cerebellum (Martirosian et al., 2021). It was also detected that ABAT activity is 

lower in malignant GR3 and GR4 subgroups than SHH and WNT. Moreover, upregulated 

ABAT was found to trigger apoptosis and decrease cancer proliferation in rats with MB 

(Martirosian et al., 2021). However, recently Martirosan et al found that the expression of 

ABAT is remarkably higher in metastatic MB samples than primary MB since they need to 

meet its energy requirement by catabolizing GABA (Martirosan et al., 2021). Metastatic 

tumor cells were observed to divert OXPHOS to generate sufficient energy and survive 

under hard conditions.  



100 

 

Moreover, the ABAT gene was determined to be vital for metastatic cells since ABAT 

replenishes metabolites used in the TCA cycle and OXPHOS by contributing to NADH and 

succinate syntheses (Figure 4.27). 

 

 

 

 

 

 

 

 

      

 

   

 

 

 

 

 

 

    

In GABA metabolism, glutamate is converted to GABA in neuron and then they are 

transported to astrocytes (See R97 in Figure 4.27). Then GABA and alpha-ketoglutarate 

form glutamate and succinate SAL by GABA transaminase regulated by ABAT (See R99 

and R101 in Figure 4.27). Afterward, succinate and NADH were produced from succinate 

SAL and NAD by aldehyde dehydrogenase 5 family member A1 (ALDH5A1) (See R100 

and R102 in Figure 4.27). Then in the TCA cycle, FAD and succinate are converted to 

FADH2 and fumarate. FAD is transformed to FADH2 by accepting two electrons and these 

electrons are transferred to electron transfer chain (Le and Ou, 2016). 

Figure 4.25. The interrelationship of the genes found in double gene deletion analysis.     

The gene combinations whose removal affects biomass significantly are shown in green. 
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   Figure 4.26. The number of gene combinations obtained in double gene deletion  

 analysis and their related pathways. 

 

Overexpression of succinate is also related to cancer (Jiang, 2017). Abnormalities 

related to Succinate dehydrogenase (SDH) which produces fumarate from succinate was 

estimated in some cancer types because an increase in succinate leads to hypoxia-inducible 

factor 1-alpha (HIF-alpha) stabilization and HIF-alpha regulates the genes inducing cell 

proliferation (Jiang, 2017). This study shows targeting the genes that regulate succinate 

production is a promising therapeutic approach. 

 

Congruent with experimental results, ABAT gene with both succinate-CoA ligase 

ADP-forming subunit beta (SUCLA2) and succinate-CoA ligase GDP/ADP-forming subunit 

alpha (SUCLG1) genes producing succinate from succinyl-CoA in TCA cycle were detected 

by MB model.  
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Various compounds targeting these three genes and their interaction with each other 

were investigated from GeneCards and DrugBank (Stelzer et al.,  2016), (Wishart, 2006). 

The Food and Drug Administration (FDA) approved Acyclovir, which is utilized for herpes, 

targets both SUCLA2 and SUCLG1 genes (Stelzer et al., 2016).   

 

 

         Figure 4.27. The relation between GABA shunt, TCA cycle and 

     electron transfer chain. 

 

Acyclovir was shown to reduce the growth of glioblastoma cell lines by 68.3% whilst 

it reduced healthy cells by 38.3% (Kominsky et al., 2000). A similar study also demonstrated 

that Acyclovir was effective on glioblastoma (Özdemir and Göktürk, 2019). Phenelzine and 

Vigabatrin are compounds approved by FDA and they both inhibit ABAT (Puniya et al., 

2021).  While Phenelzine is used as an antidepressant, Vigabatrin is an antiepileptic drug 

(Wishart, 2006). Both cross the blood-brain barrier (BBB) (Wishart, 2006). Phenelzine 

which also targets Monoamine Oxidase A (MAOA) was found effective for prostate tumor 

cells (Gross et al., 2021). The side effects of Phenelzine were detected to be low but 

important cardiovascular effects were estimated infrequently (Gross et al., 2021).  However, 

the interaction of Acyclovir with Phenelzine may reduce the secretion of Phenelzine 

(Wishart, 2006).  
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Vigabatrin was detected to be a promising drug for brain tumors and effective for 

metastatic brain tumors in vivo (Hung et al., 2021), (Schnepp et al., 2017). According to a 

recent study conducted in glioblastoma cell lines, Vigabatrin was shown to suppress ion 

channels which ease aggressive migration and contribute to cell proliferation (Hung et al., 

2021). Unlike interaction between Phenelzine and Acyclovir, no toxic effects were found for 

the interaction between Acyclovir and Vigabatrin (Wishart, 2006).  Based on the 

experimental results obtained for Acyclovir and Vigabatrin in different cancer types, the 

synergistic effect of two drugs targeting SUCLA2, SUCLG1, and ABAT on MB should be 

investigated.  

 

In addition to DrugBank and GeneCards databases, the Connectivity map database 

which includes disease, drug, and gene relations was examined for the compounds that 

inhibit SUCLA2, SUCLG1, and ABAT genes (Jiang et al., 2021), (Subramanian et al.,  

2017). While no extra compounds were found for SUCLA2 and SUCLG1 genes, natural 

compound vanillin was detected to reduce activities of both ABAT and ALDH5A1 genes 

(Tao et al., 2006). Moreover, vanillin was found to be transported through BBB (Wishart, 

2006). However, unlike Vigabatrin and Phenelzine inhibiting ABAT, vanillin is still being 

investigated experimentally.  

 

It is important to note that upregulation of the ABAT gene has reverse effects on non-

metastatic MB, unlike metastatic MB (Martirosan et al., 2021). Therefore, it is significant to 

deliver these agents only in metastatic cases. 

 

4.8.  Therapeutic Targets for Medulloblastoma 

 

4.8.1.  Common Essential Genes for Three Critical Parameters 

 

The aim of this section is to detect the essential genes required for growth, lactate, and 

ATP productions for the survival of MB cells (by repeating the above analysis for lactate 

and ATP syntheses). Targeting the genes that are essential for three parameters was expected 

to enhance the efficacy of the treatment.  
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Figure 4.28 shows the number of essential genes obtained for each of the three 

analyses. The intersection of essential genes found in three analyses is also shown in Figure 

4.28. These 32 common genes were examined in detail. 32 common essential genes and the 

results where these genes were silenced in both models are also included in Appendix E. 

 

       

          Figure 4.28. The number of essential genes obtained for each of the three cases. 

 

After the reactions related to these 32 essential genes were removed one at a time from 

the healthy brain model, the genes whose removal does not have an impact on the main 

functions of the normal cell were identified. The results were compared with healthy model 

FBA results and the genes whose removal cause the healthy cell to fail to fulfill vital tasks 

were left out. For instance, after TPI1 gene knockout, solution space reduced with new 

constraints, and no solution was obtained as a result of FBA analysis. These types of genes 

were left out because their removal affected the system significantly. It was predicted that 

biologically, their inhibition would damage healthy cells alongside cancer cells. However, 

here, it is aimed to determine genes whose removal causes as minimum side effects as 

possible of therapeutic means on healthy cells. The genes whose removal do not affect the 

MB model significantly were also eliminated. For example, FH gene knockout did not affect 

MB growth at all. After Quinoid Dihydropteridine Reductase (QDPR) gene knockout, the 

growth reaction in MB only decreased by 26% of its previous value.  
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That is why these essential genes were removed. However, after the 3-Hydroxy-3-

Methylglutaryl-CoA Reductase (HMGCR) gene knockout in the MB model, the growth 

reaction in MB decreased 100% of its previous value. This gene and similar genes were 

considered as good therapeutic targets.   Based on these criteria, the essential gene list was 

narrowed down to 8 from 32. Eight essential genes whose removal does not affect or slightly 

affect the healthy model and affect the MB model more than 40% were identified. Table 4.4 

demonstrates potential therapeutic genes (HMGCR, MVK, PMVK, MVD, FDFT1, CRLS1, 

FASN and SQLE) and the results where they were silenced in healthy model.  

 

In the first column of table 4.4, eight common essential genes were shown while in the 

second one, the pathways related to these essential genes are shown. The third column of 

Table 4.4 includes information about how metabolic activities in the healthy cell changed 

after essential gene knockout.  

 

For all 32 essential genes common to growth, lactate, and ATP productions, the drugs 

and potential compounds (approved, experimental, investigational) were also compiled from 

the DrugBank and GeneCards databases (Wishart, 2006), (Stelzer et al., 2016). There are 

206 compounds detected in databases. Out of 206 drug compounds, 26 are approved, while 

61 of them are at experimental status. 9 of 206 drugs are at investigational status. The rest 

of the compounds have either no status or have more than one status.  

 

  The appropriate compounds determined for eight essential genes were tabulated 

(Tables 4.5-9) with the help of DrugBank and GeneCard databases. 54 compounds were 

detected for eight potential therapeutic genes (HMGCR, MVK, PMVK, MVD, FDFT1, 

CRLS1, FASN, SQLE). The number of total compounds, whose drug status is available, is 

47 for eight potential therapeutic genes. 10 compounds out of 47 are approved while 19 of 

them are at experimental status. 5 drug compounds out of 47 are at investigational status. 

Other compounds have more than one status. In Figure 4.29 the number of compounds for 

eight potential therapeutic genes based on the approved, investigational, experimental status 

and the ones with more than one status is demonstrated. 1 drug compound whose drug 

status is Vet-approved was not included in Figure 4.29.  

 

 



106 

 

Table 4.4. Eight potential therapeutic genes for medulloblastoma. 

Gene Pathway 

 

The Effects of Gene Knockout on 

The Healthy Model 

HMGCR 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 

MVK 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 

PMVK 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 
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Table 4.4. Eight potential therapeutic genes for medulloblastoma. (cont.) 

Gene Pathway 

 

The Effects of Gene Knockout on 

The Healthy Model 

MVD 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 

FDFT1 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 

SQLE 
Cholesterol 

metabolism 

Mild change in Glycolysis, PPP, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle and Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 
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Table 4.4. Eight potential therapeutic genes for medulloblastoma. (cont.) 

Gene Pathway 

 

The Effects of Gene Knockout on 

The Healthy Model 

FASN 
Fatty acid 

synthesis 

No change in PPP. 

Mild change in Glycolysis, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle, Glutamate - 

Glutamine Cycle. 

Significant change in Cholesterol Synthesis and 

Fatty Acid Synthesis. 

CRLS1 
Cardiolipin 

metabolism 

No change in PPP. 

Mild change in Glycolysis, Oxidative 

Phosphorylation and ATPase. 

Moderate change in TCA Cycle, Glutamate-

Glutamine Cycle. 

Significant change in Cholesterol Synthesis, Fatty 

Acid Synthesis. 

 

 

24 compounds out of 54 drugs are related to cancer, and (including ones whose status 

is not available) the MB model successfully help us find them. The Drugs/Compounds 

expected to give satisfactory results in MB were investigated in detail.   
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The production of mevalonate from 3-hydroxy-3 methylglutaril-CoA carried out by 

HMGCR is the key rate-determining reaction in cholesterol synthesis (Feltrin et al., 2020).   

 

HMGCR inhibitors (Table 4.5) known as statins are normally utilized in cholesterol-

related problems and cardiovascular diseases. Statins might be beneficial for cancer owing 

to their relations to important biological processes, like cell proliferation (Hindler et al., 

2006). Statins have been detected to suppress tumor growth and trigger cell death in 

leukemia, neuroblastoma (NB), melanoma, and glioma cell lines (Dimitroulakos et al., 

2000), (Girgert et al., 1999), (Shellman et al., 2005), (Song et al., 2014). 

 

              

       Figure 4.29. The Number of Drugs/Compounds based on their status. 

 

  Lovastatin which is also one of the statins, (See Table 4.5), has been utilized as a 

potential anticancer drug in several studies related to glioblastoma, astrocytoma, gastric 

adenocarcinoma, and breast cancer (Larner et al., 1998), (Kim et al., 2001), (Mahmoud et 

al., 2016). Macaulay et al observed that Lovastatin reduces cell growth and stimulates 

apoptosis in MB cells (Macaulay et al., 1999). Sheikholeslami et al. found that Simvastatin, 

another statin, initiates apoptosis in MB cell lines (Sheikholeslami et al., 2019).  
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Atorvastatin, one other statin was studied on a glioma model (Bayat et al., 2016). They 

detected that tumor-specific features of glioblastoma substantially alleviated after 

Atorvastatin application. 

 

 In another study conducted by Kumar et al, Mevastatin significantly reduced the NB 

cells viability (Kumar et al., 2002). In the same study, pravastatin was not found as effective 

as Mevastatin. In another study, Jiang et al examined the impact of various statin agents 

(Lovastatin, Cerivastatin, Rosuvastatin Simvastatin, Atorvastatin, Fluvastatin, Pitavastatin, 

Mevastatin, and Pravastatin) which reduce the activity of mevalonate synthesis on brain 

cancer cells (See Table 4.5) (Jiang et al., 2014). They detected that Pitavastatin, Fluvastatin, 

and Cerivastatin were the most effective drugs in glioblastoma cell lines. However, 

Cerivastatin was removed from the market, because of its unwanted effects on the human 

body (Wishart, 2006). 

 

  Sławinska-Brych et al. studied the impact of Fluvastatin on rat glioma cells 

(Sławińska-Brych et al., 2014). They detected that Fluvastatin remarkably decreased cell 

viability and demonstrated anti-cancer characteristics. Moreover, Fluvastatin did not affect 

healthy neurons. 

 

   Cannabidiol is found in cannabis and utilized to alleviate pain (See Table 4.5) 

(Wishart, 2006).  Nabiximols is also a plant-derived agent obtained from cannabis (See Table 

4.5) (Wishart, 2006). Medical cannabis decreases nausea caused by chemotherapy according 

to early studies (See Table 4.5) (Borgelt et al., 2013).  Many studies detected that they have 

anti-tumor features (Andradas et al., 2021). A brain tumor-related study realized in a mouse 

model of glioblastoma showed that Cannabidiol enhanced mouse survival when it was 

applied with chemotherapy temozolomide (López-Valero et al., 2018). Andradas et al. 

studied the behaviors of D9-tetrahydrocannabinol and cannabidiol in MB and ependymoma 

(EP). They found that cannabinoids have detrimental impacts on MB and EP, but they did 

not observe any change in mouse survival (Andradas et al., 2021). Moreover, cannabinoids 

did not affect chemotherapy at all in MB.  
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Table 4.5. Drugs/ Compounds for HMGCR. 

 

HMGCR - Cholesterol Pathway 

 

Drug 
Status 

(Wishart, 2006) 

Lovastatin Approved, Investigational 

Cerivastatin Approved, Withdrawn 

Simvastatin Approved 

Atorvastatin Approved 

Rosuvastatin Approved 

Fluvastatin Approved 

Pravastatin Approved 

Mevastatin Experimental 

Pitavastatin Approved 

Meglutol Experimental 

Cannabidiol Approved, Investigational 

Nabiximols Investigational 

Medical Cannabis Experimental, Investigational 
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Lots of studies have detected that Farnesol decreases aberrant cell division and 

stimulates apoptosis in cancer cells (See Table 4.6) (Adany et al., 1994), (Rioja et al., 2000), 

(Yazlovitskaya and Melnykovych, 1995). Tumor cells were usually observed to be more 

sensitive to Farnesol than healthy cells. Rioja et al. examined the effects of Farnesol on 

leukemic cell lines (Rioja et al., 2000). They observed that Farnesol leads to apoptosis of 

leukemic cell lines while it does not affect normal cells.  

 

Preliminary works revealed that apoptosis initiation and the mitigation in cell 

proliferation by Farnesol might be associated with the reduction in the activity of 3-hydroxy-

3-methylglutaryl CoA (HMG-CoA) reductase (Joo and Jetten, 2010). Another work showed 

that deactivation of HMG-CoA reductase causes endoplasmic reticulum (ER) stress, which 

is related to apoptosis (Chen et al., 2008). 

 

TAK-475 is another cholesterol regulator (See Table 4.7) (Wishart, 2006).  But instead 

of suppressing HMG-CoA reductase like statins, this agent reduces the activity of squalene 

synthase which is a downstream step of cholesterol synthesis (Wishart, 2006).  

Benakanakere et al used cholesterol regulators including TAK-475 to evaluate their impacts 

on leukemia cell lines (Benakanakere et al., 2014). Their study revealed that inhibition of 

squalene synthase increased the susceptibility of cancer cells to chemoimmunotherapy. 

 

Squalene is an organic substance found abundantly in shark liver and produced in the 

cholesterol synthesis in humans (See Table 4.7) (Gunes, 2013).  Because squalene has anti-

cancer features, it is mainly utilized as an additional treatment in many cancer types.  

 

Squalene is considered to affect the formation of cancer by suppressing the production 

of mevalonate from HMG-CoA, reducing the enzymatic synthesis of xenobiotics, and lastly 

removing free radicals (Gunes, 2013). Furthermore, squalene was found to protect healthy 

cells from the detrimental effects of chemotherapy (Das et al., 2003). Similarly, squalene 

protected healthy bone cells from harmful impacts of anti-cancer agents whereas it did not 

protect NB cells (Das et al., 2008).  According to another study conducted on colon cancer, 

1% squalene diet decreased aberrant cell genesis by 46% (Rao et al., 1998).  
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It was also detected Roidex that has squalene hindered cancer growth in mice. In the 

same study, Roidex led to remission in cancer progression (Desai et al., 1996).     

 

Orlistat is an agent utilized for obesity (See Table 4.8). Orlistat is also known to cease 

cancer progress by restricting fatty acid metabolism and stimulating apoptosis. Another 

study performed on prostate cancer demonstrated that this agent suppresses tumor growth in 

vivo (Kridel et al., 2004).  Grube et al found that Orlistat suppressed fatty acid biosynthesis, 

decreased growth by approximately 64%, and lowered cell viability in glioblastoma cells 

(Grube et al., 2014). 

 

Table 4.6. Drugs/ Compounds for MVK and MVD. 

MVK - Cholesterol Pathway 

 

Drug 
Status 

(Wishart, 2006) 

Farnesol Experimental 

Scopolamine 

 

Approved, Investigational 

 

Isopentenyl pyrophosphate 

 

Experimental 

 

  

 

Isoniazid is utilized to cure tuberculosis (See Table 4.8). Studies on the use of isoniazid 

as an anticancer drug have been observed to be very few. In a study carried out by Lv et al, 

isoniazid depleted MAOA which is related to prostate cancer progress and dissemination 

(Lv et al., 2019).  
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   Oleic Acid is frequently used in drugs and it demonstrates anticancer features when 

it interacts with lactoferrins and α-lactalbumin proteins (See Table 4.8) (Ruggiero et al.,  

2014). That is why, Ruggiero et al. combined oleic acid and Gc protein-derived macrophage 

activating factor (GcMAF) (Ruggiero et al., 2014). That complex with a special diet rich in 

protein and including low carbohydrate nutrients was applied to cancer patients. The study 

has resulted in the inhibition of tumor growth by 25% (Ruggiero et al., 2014). 

 

  Stearic acid is a substance used in skin products (See Table 4.8). Habib et al studied 

the effect of stearic acid on cancer progress in vivo and in vitro (Habib et al., 1987). A 

reduction in membrane rigidity is one of the properties of cancer cells. It stems from the 

disruption in the proportion of oleic acid to stearic acid. By keeping the proportion of cell 

membrane at a normal level, tumor growth in the mouse model could be restrained (Habib 

et al., 1987). 

  

Cerulenin is an antifungal drug that hinders sterols and fatty acids generations (See 

Table 4.8) (Volpe et al., 1976). It also suppresses HMG-CoA synthase in cholesterol 

synthesis (Ohno et al., 1974). Slade et al. studied the influence of cerulenin on childhood 

cancer cell lines including MB, NB, retinoblastoma, and rhabdoid tumor and they observed 

that cerulenin triggers apoptosis (Slade et al., 2003). Decreasing the activity of squalene 

epoxidase lessened cholesterol generation significantly (Feltrin et al., 2020). Butenafine 

which is a SQLE inhibitor is an antifungal substance utilized for dermatologic diseases (See 

Table 4.9) (Wishart, 2006).  

 

Naftifine is also an antifungal drug (See Table 4.9) (Wishart, 2006). It is known that 

abnormal initiation of WNT/β-catenin signaling leads to many diseases including the WNT 

subtype of MB (Raabe and Eberhart, 2013), (Schmeel et al., 2015). Schmeel et al. tested 

Naftifine which has similar properties to WNT inhibitors, to observe its effect on lymphoma 

and myeloma cell lines (Schmeel et al., 2015). They detected that Naftifine lessened cell 

viability in lymphoma and myeloma cell lines. Moreover, they observed that the influence 

of Naftifine on normal cells was very mild. 

 

 

 

https://en.wikipedia.org/wiki/Antibiotic
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Table 4.7. Drugs/ Compounds for FDFT1. 

FDFT1 - Cholesterol Pathway 

Drug 
Status 

(Wishart, 2006) 

TAK-475 Investigational 

Squalene Vet approved 

 

 

Terbinafine which is very similar to Butenafine also decreases SQLE activity (See 

Table 4.9) (Porras et al., 2018). Unlike other antifungal agents like Butenafine and Naftifine, 

there are more studies that focus on the anti-cancer features of Terbinafine. Chien et al, 

investigated the influence of Terbinafine on oral cancer (Chien et al., 2012). Terbinafine 

suppressed growth substantially in oral cancer cell lines. 

 

Ellagic acid (EA) is found in berries, walnuts, grapes, and pomegranates (See Table 

4.9) (Ceci et al., 2018).  In the last decades, Ellagic acid (EA) has been examined for its 

anticancer characteristics in various tumors such as colon cancer, lung cancer, ovarian 

cancer, melanoma, and GBM (Ceci et al., 2018). Both studies related to GBM revealed that 

EA caused an important reduction in cell division and stimulated apoptosis (Wang et al.,  

2016), (Wang et al., 2017). Studies carried out in GBM revealed that the tumor-suppressive 

impact of EA was related to the deactivation of NOTCH1 and the Akt signaling pathway 

(Ceci et al., 2018). Notch signaling is significant for cerebellar development (Kahn et al., 

2018). The genes controlling the NOTCH1 pathway are overexpressed in MB. Kahn et al 

uncovered that NOTCH1 is the main reason for Group 3 MB metastasis (Kahn et al., 2018).  
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Table 4.8. Drugs/ Compounds for FASN. 

FASN - Fatty Acid Synthesis 

Drug 
Status 

(Wishart, 2006) 

Orlistat 
Approved, 

Investigational 

Isoniazid 
Approved, 

Investigational 

Oleic acid 

Approved, 

Investigational, Vet 

approved 

Stearic acid 
Approved, 

Experimental 

Cerulenin Experimental 

 

 

  Liranaftate is another SQLE drug used for fungal-related diseases (See Table 4.9) 

(Kim et al., 2021). However, there are no cancer-related studies based on this inhibitor.   NB-

598 is another compound that targets SQLE and it is utilized to regulate cholesterol 

generation (See Table 4.9) (Feltrin et al., 2020). Lately, it was shown that reducing SQLE 

activity is a promising approach in cancer. It was found that lung cancer cells are affected 

significantly by NB-598 because of excessive squalene accumulation (Mahoney et al.,  

2019). 
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Table 4.9. Drugs/ Compounds for SQLE. 

SQLE - Cholesterol Pathway 

Drug 
Status 

(Wishart, 2006) 

Butenafine 

 

Approved 

 

Naftifine 

 

Approved 

 

Terbinafine 

Approved, 

Investigational, 

Vet_approved 

Ellagic acid Investigational 

Liranaftate  

NB-598  

 

 

4.8.2.  Potential Metabolite-Antimetabolite Pairs 

 

The objective of this section is to determine potential antimetabolites which might 

decrease the use of chosen natural metabolites in cells by creating competitive inhibition.  
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Firstly, the compounds similar to metabolites in the brain model were searched in 

DrugBank Database by using the structural information (SMILES code of each metabolite). 

Then, the metabolic reactions related to these metabolites were determined. Drug effect was 

simulated in both healthy and medulloblastoma models by inhibiting these reactions. 

 

Once 315 Flux Balance Analyses where drug effects were simulated, were completed 

for the healthy model, the same procedure was performed for the MB model. The results 

where vital tasks were not realized in the healthy model and the ones in which the growth 

rate reduced by less than 40% in the MB model were removed. As a result, 114 natural 

substrates whose enzymes could be used as drug targets are detected by both MB and healthy 

models (See Table 4.10). These substrates are shown in the first column of Table 4.10 and 

related pathways of the substrates are included in the second column. The third column of 

Table 4.10 includes the number of similar compounds found in the DrugBank Database 

(Wishart, 2006).  

 

 

 

Figure 4.30. The distribution of substrates detected in FBA analysis according to their 

related pathways. 
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In other words, this column contains the number of potential antimetabolites for 

therapeutic purposes. The last column indicates how much MB growth rate decreased as a 

percentage in the presence of the drug.  

 

For example, 3 compounds similar to 6-phosphogluconate were found in DrugBank 

Database (Wishart, 2006). And, the inhibition of reactions where 6-phosphogluconate is the 

substrate, reduced the growth rate by 100% in the MB model. No similar compounds were 

found from DrugBank Database for several metabolites like threonine (Wishart, 2006). 

Natural substrates related to sphingomyelin and glycosphingolipid metabolisms are shown 

in the next section. The total number of drug-metabolite pairs that could be used for 

therapeutic purposes, is 544. 

 

The distribution of detected substrates based on their related pathways was calculated 

(Figure 4.30). Most of the metabolites whose enzymes are potential drug targets are linked 

to fatty acid synthesis (32%), cholesterol synthesis (10%), sphingomyelin metabolism (8%), 

inositol metabolism (8%), and glycosphingolipid metabolism (7%). 

 

    Indeed, fatty acid synthesis (FAs) was investigated as a target for malignancies by 

many researchers since lipids are used in many metabolic pathways which are vital for cancer 

progress (Röhrig and Schulze, 2016). After Warburg et al. found that tumors have glucose 

avidity and they carry out glycolysis whether oxygen is available, Medes et al. detected that 

tumors use acetate or glucose to produce lipids (Warburg, 1925), (Medes et al., 1953). 

Afterward, Fatty acid synthase was found to be an antigen in breast cancer (Kuhajda et al.,  

1994). FASN was also found to be upregulated in the SHH subtype of MB (Tech and Gerson, 

2015).  

 

Several agents such as Cerulenin, C75 have been examined for FASN suppression 

(Röhrig and Schulze, 2016). Cerulenin, normally used as a fungal drug, is being investigated 

as a cancer drug based on the findings that it triggers apoptosis and inhibits uncontrolled cell 

division (Röhrig and Schulze, 2016), (Slade et al., 2003). C75 also reduced cancer growth 

and enhanced the survival of mice with MB (Bhatia et al., 2012).  
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Table 4.10. The substrates whose enzymes could be used as drug targets. 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

6-Phosphogluconate 
Pentose Phosphate 

Pathway 
3 100 

Ribulose-5-Phosphate 
Pentose Phosphate 

Pathway 
3 100 

Xylulose-5-Phosphate 
Pentose Phosphate 

Pathway 
3 100 

Sedoheptulose-7-

Phosphate 

Pentose Phosphate 

Pathway 
11 100 

Erythrose-4-Phosphate 
Pentose Phosphate 

Pathway 
6 100 

Histidine 

Histamine 

Metabolism, 

Exchange 

2 76 

3_Phospho_Serine 
Glycine-Serine 

Metabolism 
5 48 

Serine 

Glycine-Serine 

Metabolism, 

Sphingomyelin 

Metabolism 

8 92 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Leucine Leucine Metabolism 7 90 

Valine 
Valine Metabolism, 

Exchange 
5 90 

Lysine 
Lysine Metabolism, 

Exchange 
1 90 

Threonine 

Threonine 

Metabolism, 

Exchange 

0 88 

R-Mevalonate Cholesterol Synthesis 4 79 

Mevalonate-5-Phosphate Cholesterol Synthesis 0 79 

Mevalonate-Diphosphate Cholesterol Synthesis 0 79 

Isopentenyl_Diphosphate Cholesterol Synthesis 3 79 

Dimethylallyl_ 

Diphosphate 
Cholesterol Synthesis 0 80 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Geranyl_Diphosphate Cholesterol Synthesis 2 80 

2E_6E_Farnesyl_Diphosp

hate 
Cholesterol Synthesis 2 79 

Presqualene_Diphosphate Cholesterol Synthesis 0 79 

Squalene Cholesterol Synthesis 0 79 

S_2_3_Epoxysqualene Cholesterol Synthesis 0 79 

Lanosterol Cholesterol Synthesis 13 79 

Desmosterol Cholesterol Synthesis 12 100 

Cholesterol Cholesterol Synthesis 12 79 

Acetoacetyl-Acp Fatty Acid Synthesis 0 91 

R-3-Hydroxybutanoyl-Acp Fatty Acid Synthesis 0 91 

Crotonyl-Acp Fatty Acid Synthesis 0 91 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Butyryl-Acp Fatty Acid Synthesis 0 91 

Malonyl-Coa Fatty Acid Synthesis 48 91 

3-Oxo-Hexanoyl-Acp Fatty Acid Synthesis 0 91 

R-3-Hydroxyhexanoyl-

Acp 
Fatty Acid Synthesis 0 91 

Trans_Hex-2-Enoyl-Acp Fatty Acid Synthesis 0 91 

Hexanoyl-Acp Fatty Acid Synthesis 0 91 

3-Oxo-Octanoyl-Acp Fatty Acid Synthesis 0 91 

R-3-Hydroxyoctanoyl-Acp Fatty Acid Synthesis 0 91 

Trans_Oct-2-Enoyl-Acp Fatty Acid Synthesis 0 91 

Decanoyl-Acp Fatty Acid Synthesis 0 91 

Trans_Dodec-2-Enoyl-Acp Fatty Acid Synthesis 0 91 

Dodecanoyl-Acp Fatty Acid Synthesis 0 91 

3-Oxo-Myristoyl-Acp Fatty Acid Synthesis 0 91 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

R-3-Hydroxypalmitoyl-

Acp 
Fatty Acid Synthesis 0 91 

Trans_Hexadecenoyl-Acp Fatty Acid Synthesis 0 91 

Palmitoyl-Acp Fatty Acid Synthesis 0 91 

Acetyl-Acp Fatty Acid Synthesis 0 91 

Palmitoyl-Coa 

Fatty Acid Synthesis, 

Sphingomyelin 

Metabolism 

44 91 

Amp 
Purine Nucleoside 

Metabolism 
19 91 

3-Oxo-Stearoyl-Coa Fatty Acid Synthesis 23 91 

Oleoyl-Coa Fatty Acid Synthesis 23 91 

Linoleate Fatty Acid Synthesis 10 80 



125 

 

Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Arachidonate Fatty Acid Synthesis 10 79 

Linolenate Fatty Acid Synthesis 9 79 

Decosahexenoate Fatty Acid Synthesis 1 79 

Octanoyl-Acp Fatty Acid Synthesis 0 91 

3-Oxo-Decanoyl-Acp Fatty Acid Synthesis 0 91 

R-3-Hydroxydecanoyl-Acp Fatty Acid Synthesis 0 91 

Trans-Delta2-Decenoyl-

Acp 
Fatty Acid Synthesis 0 91 

3-Oxo-Dodecanoyl-Acp Fatty Acid Synthesis 0 91 

R-3-Hydroxydodecanoyl-

Acp 
Fatty Acid Synthesis 0 91 

3R-3-Hydroxymyristoyl-

Acp 
Fatty Acid Synthesis 0 91 

Trans_Tetradec-2-Enoyl-

Acp 
Fatty Acid Synthesis 0 91 

Myristoyl-Acp Fatty Acid Synthesis 0 91 

3-Oxo-Palmitoyl-Acp Fatty Acid Synthesis 0 91 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Palmitate Fatty Acid Synthesis 7 91 

Malonyl-Acp Fatty Acid Synthesis 0 91 

3-Hydroxy-Stearoyl-Coa Fatty Acid Synthesis 22 91 

Trans-2-3-Stearoyl-Coa Fatty Acid Synthesis 0 91 

Stearoyl-Coa Fatty Acid Synthesis 21 91 

Fatty acid 
CDP-Diacylglycerol 

Biosynthesis 
0 91 

Ctp 

Phosphatidylethanola

mine Metabolism, 

Phosphatidylcholine 

Metabolism, Inositol 

Metabolism; CDP-

Diacylglycerol 

Biosynthesis, 

Pirimidine 

Nucleoside 

Metabolism 

20 91 

CDP-Ethanolamine 
Phosphatidylethanola

mine Metabolism 
21 90 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

1_2-Diacylglycerol 

Phosphatidylethanola

mine Metabolism, 

Phosphatidylcholine 

Metabolism, Inositol 

Metabolism 

1 90 

Phosphatidyl-

Ethanolamine 

Phosphatidylethanola

mine Metabolism; 

Phosphatidylcholine 

Metabolism 

0 90 

Cmp 

Pirimidine 

Nucleoside 

Metabolism 

23 91 

Phosphatidyl-Serine 
Phosphatidylethanola

mine Metabolism 
5 90 

Ethanolamine 
Phosphatidylethanola

mine Metabolism 
0 90 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Phosphoryl-Ethanolamine 
Phosphatidylethanola

mine Metabolism 
0 90 

CDP-Diacylglycerol 

Cardiolipin 

Metabolism, Inositol 

Metabolism 

0 100 

Phosphatidylglycerol-

Phosphate 

Cardiolipin 

Metabolism 
0 100 

Phosphatidyl-Glycerol 
Cardiolipin 

Metabolism 
0 100 

Phosphatidate 

Inositol Metabolism; 

CDP-Diacylglycerol 

Biosynthesis 

0 91 

1-Acyl-Sn-Glycerol-3-

Phosphate 

CDP-Diacylglycerol 

Biosynthesis 
0 91 

Myo-Inositol 
Inositol Metabolism, 

Exchange 
6 100 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Phosphatidyl-Inositol Inositol Metabolism 6 90 

Phosphatidyl-1D-Myo-

Inositol-4-Phosphate 
Inositol Metabolism 0 90 

Phosphatidyl-1D-Myo-

Inositol-4-5-Bisphosphate 
Inositol Metabolism 0 90 

Myo-Inositol-(1-4-5)-

Trisphosphate 
Inositol Metabolism 11 90 

Myo-Inositol-(1-4)-

Bisphosphate 
Inositol Metabolism 17 90 

Myo-Inositol-(4)-

Monophosphate 
Inositol Metabolism 17 90 

Arginine Arginine Metabolism 0 90 

Guanosine 
Purine Nucleoside 

Metabolism 
5 91 

Ribose-1-Phosphate 
Purine Nucleoside 

Metabolism 
5 91 

Uridine 

Pirimidine 

Nucleoside 

Metabolism 

3 92 
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Table 4.10. The substrates whose enzymes could be used as drug targets. (cont.) 

Metabolites Pathway 

The Number of 

Compounds 

Found Similar to 

Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Cytidine 

Pirimidine 

Nucleoside 

Metabolism 

3 100 

Cdp 

Pirimidine 

Nucleoside 

Metabolism 

7 91 

Taurine Exchange 0 90 

 

 

In analyses related to fatty acid synthesis in healthy model, no changes were detected 

in PPP and OXPHOS while severe changes were observed in the acetyl-CoA, alpha-

ketoglutarate, succinate, fumarate, and malate production reactions in the TCA cycle. In 

Fatty acid synthesis, moderate changes were observed. 

 

 Most of the metabolites detected in cholesterol synthesis are intermediates of the 

mevalonate pathway. HMGCR, MVK, PMVK, and MVD genes that control mevalonate 

(MVA) metabolism were also determined in gene essentiality analyses by the MB model. 

MVA metabolism which converts acetyl-CoA into isoprenoids and sterols is known to be 

crucial for malignant cells (Mullen et al., 2016). It was observed that the oncogenic signaling 

pathways stimulate the MVA metabolism in order to promote cancer-related properties such 

as abnormal proliferation.  

 

Interfering with this characteristic of malignant cells is one of the promising 

therapeutic alternatives (Mullen et al., 2016).  
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In analyses related to cholesterol synthesis in healthy model, moderate changes were 

observed in flux values of fatty acid synthesis. Severe changes were observed in acetyl-CoA 

and alpha-ketoglutarate production reactions of the TCA cycle and all reactions in 

cholesterol synthesis.  

 

  In addition to the fatty acid and cholesterol synthesis metabolites, ones related to 

inositol pathway enzymes were also detected by the MB model. Inositols are known to be 

responsible for the physiological functions of the cell (Badodi et al., 2021). Energy 

generation is controlled by Akt/mTOR pathways where inositol pyrophosphates and 

phosphoinositides are mainly involved. Abnormal changes related to inositol metabolism 

have been detected in malignant tumors (Badodi et al., 2021). Studies showed that there was 

a decrease in the amount of inositol in several tumors like astrocytoma and lung cancer 

(Castillo et al.,  2000), (Ren et al., 2017). Moreover, inositol metabolism intermediates were 

found to be lower in human disseminated osteosarcoma tumor cells than low metastatic cells 

(Ren et al., 2017).  

 

 

Figure 4.31. Metabolite and antimetabolite pair with 0.90 similarity score. Number 1 and 

number 2 represent linoleate and oleic acid, respectively (Wishart, 2006). 

 

After determining the natural substrates whose enzymes could be used as drug targets, 

these metabolite-drug pairs were examined in terms of their toxicity and permeability 

through the BBB, and several compounds were selected regarding whether they cross the 

BBB and they are carcinogenic. Figure 4.31-4.37 show chemical structures of potential 

metabolites and drugs/compounds with similarity scores. 
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Both arachidonate and linoleate are very similar to oleic acid, and they have common 

ligands (See Figure 4.31 and 4.32). Oleic Acid is utilized in various drugs due to its 

antibacterial features (Wishart, 2006). Oleic acid was observed to stimulate apoptosis in 

human NB cell lines (Zhu et al., 2005).  

 

 

Figure 4.32. Metabolite and antimetabolite pair with 0.83 similarity score. Number 1 and 

number 2 represent arachidonate and oleic acid, respectively (Wishart, 2006). 

 

Oleic acid was also detected to inhibit cholesterol and fatty acid metabolisms in glioma 

cells by decreasing HMGCR and ACC1 impacts (Natali et al., 2007). It was also found that 

Oleic acid reduced the growth of cancer cells in breast and gastric cancer cell lines (Li et al.,  

2014).   

 

After the production of gamma-linolenic acid from linoleate by fatty acid desaturase 

2, arachidonate is synthesized from gamma-linolenic acid in fatty acid synthesis (Hanna and 

Hafez, 2018).  Aside from the fact that oleic acid showed anti-cancer properties in previous 

studies (Zhu et al., 2005), (Natali et al., 2007), (Li et al., 2014), it can be presumed that oleic 

acid which is very similar to linoleate, might bind fatty acid desaturase 2 and inhibit this 

enzyme by causing competitive inhibition. 

 

Icosapent is an omega-3 fatty acid that is very similar to arachidonate and linoleate 

(See Figure 4.33 and 4.34) (Wishart, 2006).   
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Icosapent is currently being investigated for cancer and Alzheimer's. It was found that 

icosapent uptake for 6 months decreased distinctly the size of benign polyposis (West et al., 

2010).  Considering the molecular similarity between icosapent, arachidonate, and linoleate, 

and the results where MB growth rate was decreased by 79% and 80% as the results of 

inhibitions of arachidonate and linoleate producing enzymes, our results suggest that the use 

of icosapent as an antimetabolite in cancer should be investigated in detail. 

 

   

Figure 4.33. Metabolite and antimetabolite pair with 0.95 similarity score. Number 1 and 

number 2 represent arachidonate and icosapent, respectively (Wishart, 2006). 

 

 

Figure 4.34. Metabolite and antimetabolite pair with 0.88 similarity score. Number 1 and 

number 2 represent linoleate and icosapent, respectively (Wishart, 2006). 
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Figure 4.35. Metabolite and antimetabolite pair with 0.97 similarity score. Number 1 and 

number 2 represent linoleate and gamolenic acid, respectively (Wishart, 2006). 

 

Another potential antimetabolite candidate is Gamolenic acid (GLA) which is similar 

to both linoleate and arachidonate (See Figure 4.35 and 4.36). Gamolenic acid showed high 

toxicity in cancer by inhibiting abnormal cell division in NB and colon tumor cell lines 

(Hrelia et al., 1996). In another study about breast cancer, tamoxifen and GLA were given 

to a group of patients, while only tamoxifen was given to others (Kenny et al., 2000). As a 

result, patients who received both GLA and tamoxifen responded more quickly to treatment 

by one and a half months. Our results show that Gamolenic acid should be investigated as 

an antimetabolite in further studies due to its similarity to certain metabolites in fatty acid 

synthesis. 

 

Statins are known to target the mevalonate pathway, decrease tumor growth and induce 

apoptosis (Girgert et al., 1999), (Song et al., 2014), (Shellman et al., 2005), (Dimitroulakos 

et al., 2000), (Feltrin et al., 2020). In addition to statins, Meglutole should be investigated 

experimentally in further studies since its similarity to mevalonate might make it a desirable 

antimetabolite for the treatment of MB even though there are no comprehensive studies 

regard of its effects on cancer cells. As seen from Figure 4.37, both substances have the same 

ligands and their similarity score is 0.97 which is really high.  

 

 

 



135 

 

   

Figure 4.36. Metabolite and antimetabolite pair with 0.95 similarity score. Number 1 and 

number 2 represent arachidonate and gamolenic acid, respectively (Wishart, 2006). 

             

Figure 4.37. Metabolite and antimetabolite pair with 0.97 similarity score. Number 1 and 

number 2 represent R-mevalonate and meglutol, respectively (Wishart, 2006). 

 

Sphingomyelin and glycosphingolipid metabolism will be examined in the next 

section in detail.  

 

4.8.3.  Investigation of Sphingolipid Metabolism 

 

This section includes the effects of intermediates of sphingolipid metabolism on cancer 

and MB metabolism and therapeutic suggestions based on the results of FBA analyses where 

drug effect was created and gene essentiality analyses. 
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    In the first step of the sphingolipid metabolic pathway, dehydrosphinganine was 

synthesized with the combination of palmitoyl CoA and serine metabolites (Figure 

4.38).  Then sphinganine is generated from dehydrosphinganine by 3-ketosphinganine 

reductase encoded by the KDSR gene (Lahiri and Futerman, 2007), (Sertbaş et al., 2014). 

Sphingosine kinase produces sphinganine 1-phosphate from sphinganine (Kanehisa et al., 

2021). Sphinganine 1-phosphate is converted to phosphoryl-ethanolamine which is used in 

phosphatidylethanolamine metabolism (Lahiri and Futerman, 2007), (Kanehisa et al., 

2021).  After sphinganine is converted to dihydroceramide by dihydroceramide synthase, 

ceramide synthesis is carried out by dihydroceramide reductase encoded by the DEGS2 gene 

(Lahiri and Futerman, 2007), (Sertbaş et al., 2014). The production of ceramide is triggered 

by radiation and chemotherapy since it directs the cell to apoptosis (Ogretmen, 2018).   

 

Afterward, ceramidase synthesizes sphingosine, and sphingosine kinase (SPHK1) 

produces sphingosine-1-phosphate (S1P) using sphingosine (Lahiri and Futerman, 2007), 

(Kanehisa et al., 2021). Subsequently, phosphoryl-ethanolamine is generated from 

sphingosine-1-phosphate. Galactosyl ceramide, ceramide-1-phosphate, sphingomyelin, 

sphingosine, and glucosylceramide are synthesized from ceramide (Lahiri and Futerman, 

2007), (Kanehisa et al., 2021). Glucosylceramide is a precursor of more than 300 

glycosphingolipids (GSL), whereas galactosylceramide is used only to produce a couple of 

GSLs (Ichikawa and Hirabayashi, 1998).  

 

Next, lactosylceramide is synthesized with the combination of glucosylceramide and 

galactose (Schömel et al., 2020). Lactosylceramide is known to have critical roles in 

metastasis and cell division (Schömel et al., 2020).  

 

Afterward, the several GSL series which are named Globo, Ganglio, Lacto/neo-Lacto, 

and neutral are formed from lactosylceramide (Schömel et al., 2020), (Kanehisa et al., 2021). 

GSLs are important constituents of the cell membrane and regulate various biological 

activities (D’Angelo et al., 2013).  

 

Since cancer cells desire to keep ceramide levels low, they increase ceramide 

breakdown and restrict its generation (Oskouian and Saba, 2010). Indeed, 50% less ceramide 

was detected in collateral cancer compared to its healthy counterpart (Selzner et al., 2001).   
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Moreover, inhibition of ceramidase, the enzyme that produces fatty acids from 

ceramide, enhanced the ceramide level in malignancies and led to the initiation of apoptosis 

(Oskouian and Saba, 2010). Consistent with the literature, inhibition of ceramide 

degradation reaction led to a reduction in growth rate by 91% (See Table 4.11). 

 

 

 

 

 

      Figure 4.38.  Sphingolipid Metabolism. 
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Like ceramide, S1P is also known to be linked to pivotal metabolic processes like 

growth, apoptosis, and proliferation. Unlike ceramide which leads to cell apoptosis, S1P 

supports cell survival, thus cancer cells generate S1P from ceramide to avoid cell arrest 

(Ogretmen, 2018), (Hawkins et al., 2020).  

 

In glioblastoma (GBM), a higher level of S1P was determined while a reduction was 

detected in ceramides relative to the normal brain (Hawkins et al., 2020). In addition, 

overexpression of S1P is associated with the uncontrolled cell division and metastasis of 

GBM (Hawkins et al., 2020). To initiate apoptosis in GBM cells, ceramide synthesis from 

sphingomyelin is promoted with radiation and chemotherapy therapies. However, cells 

divert ceramide to the generation of S1P, which triggers survival effects, consequently 

reducing the effectiveness of these treatments (Ogretmen, 2018), (Hawkins et al., 2020).  

 

Cellular signal is controlled with the interplay of GSLs with receptors and other 

components found on the cell (Schömel et al., 2020). GSLs expressions alter based on cell 

types and tissues (Zhuo et al., 2018). Abnormalities seen in GSL metabolism have been 

linked to malignancies (Ogretmen, 2018). It is known that the changes realized throughout 

early development also occur in oncogenic alteration (Russo et al., 2018). Aberrations 

related to GSLs metabolism were studied in many malignancies including renal, breast, 

gastric, colorectal, leukemia, melanoma, lung, prostate, bladder, ovarian (Zhuo et al., 2018). 

Some GSLs as tumor markers were also investigated for cancer therapy (Zhuo et al., 2018). 

Interestingly, the impacts of GSLs change based on the type of cancer. For instance, GM3 

is downregulated in many malignancies, whereas it is upregulated in kidney cancer (Zhuo et 

al., 2018). 

 

Globotetraosylceramide (Gb4) is known to be overexpressed in malignancies. In breast 

and colon cancer cell lines, it increases proliferation by triggering the mitogen-activated 

protein kinase (MAPK) pathway which has important roles in apoptosis and cell division 

(Schömel et al., 2020), (Pearson et al., 2001).  

 

In the WNT subtype of Medulloblastoma (MB) the gene controlling Gb4 production, 

B3GALNT1, is upregulated in the GSE62600 dataset (Hooper et al., 2014).  
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GM3 is a precursor in the synthesis of more intricate gangliosides (Schömel et al., 

2020). The gene controlling GM3 production was detected to be abnormally expressed in 

several types of malignancies (Zhuo et al., 2018). While GM3 was observed to be 

upregulated in renal and leukemia cancers, it was determined to be downregulated in colon, 

ovarian, and bladder cancers (Zhuo et al., 2018). In glioma cells, GM3 initiates apoptosis 

and reduces migration of malignant cells in vivo and in vitro (Fujimoto et al., 2005).  

 

Furthermore, GM3 has anticancer effects and decreases growth in astrocytoma 

(Seyfried and Mukherjee, 2010). Growth factor proteins controlled by gangliosides are 

generated abundantly in cancer leading to an increase in proliferation (Krengel and 

Bousquet, 2014). Various malignancies are also associated with overexpression of growth 

factor proteins. The GM3 ganglioside is known to suppress growth factor proteins (Krengel 

and Bousquet, 2014). Conversely, GM3 synthase knockout decreased the cell invasion in 

lung metastasis of mouse breast tumor (Gu et al., 2008).  

 

In MB, GM3 was found as one of the prominent gangliosides in the both DAOY and 

TE-671 cell lines (Chang et al., 1997), (Gottfries et al., 1989). In the study realized by 

Hooper et al, the gene controlling GM3 production was detected to be upregulated in all 

subtypes relative to the control group (Hooper et al., 2014). Especially GM3 production was 

found to be overexpressed in the GR4 subtype of MB in comparison to the samples taken 

from other subgroups and control group in both datasets integrated into the MB model 

(Hooper et al., 2014), (Robinson et al., 2012).  

 

GM2 ganglioside induces tumor growth using the immune escape system (Schömel et 

al., 2020). It was found that in all subtypes, the gene controlling GM2 production, was lower 

expressed compared to the control group (Hooper et al., 2014). On the other hand, Chang et 

al detected that GM2 composes almost 66% of all gangliosides in MB (Chang et al., 1997). 

A recent study also supported Chang’s results by detecting ample GM2 in MB (Ermini et 

al., 2017).  

 

GD3 which is a precursor of GD1b, enhances growth and metastasis, whereas GD1b 

is known to trigger apoptosis by promoting caspase in breast cancer.  
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GD1b also suppresses uncontrolled cell division in melanoma (Kanda et al., 2001), 

(Hamamura and Furukawa, 2017), (Ha et al., 2016). 

 

GD2 is overexpressed in lung cancer, osteogenic sarcoma, and malignant melanoma 

(Hamamura and Furukawa, 2017).  

 

Both GQ1b and GT1b decrease growth in melanoma cells (Kanda et al., 2001). The 

genes which control GD3 and GQ1b productions are downregulated in all subgroups of MB 

(Hooper et al., 2014).   

 

GT3 are upregulated in WNT and GR4 subtypes of MB (Hooper et al., 2014).  

 

4.8.3.1. Detection of Antimetabolites in Sphingolipid (SL) Metabolism. 

 

Once the sphingomyelin and glycosphingolipid reactions were added to the brain 

model, the same analyses performed for all metabolites in MB and healthy models were 

carried out for these new SL metabolites. Table 4.11 contains metabolites whose enzymes 

could be therapeutic targets in sphingolipid metabolism. 

 

 As mentioned in section 4.8.2, 8% of all metabolites in the model MB are found to be 

related to the sphingomyelin pathway while 7% of them are linked to the glycosphingolipid 

pathway. Therefore 15% of substrates whose enzymes could be utilized as drug targets are 

associated with sphingolipid metabolism. This outcome renders sphingolipid metabolism the 

second most important pathway therapeutically after fatty acid synthesis where 32% of 

substrates are detected (See Figure 4.30). Correspondingly, intermediates and enzymes 

related to sphingolipid metabolism were determined to play substantial roles in cell 

metabolism as mentioned at the beginning of this section. Ceramide and sphingosine-1-

phosphate are key intermediates whose productions determine whether the cell will go to 

apoptosis or survive.  
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Table 4.11. The substrates whose enzymes could be used as drug targets in sphingomyelin 

metabolism and glycosphingolipid biosynthesis-ganglio series. 

Metabolites Pathway 

The Number of 

Compounds Found 

Similar to Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

Serine 

Glycine-Serine 

Metabolism, 

Sphingomyelin 

Metabolism 

8 92 

 3-

Dehydrosphinganine 

Sphingomyelin 

Metabolism 
1 90 

 Sphinganine 
Sphingomyelin 

Metabolism 
1 90 

 Dihydroceramide 
Sphingomyelin 

Metabolism 
0 90 

 Ceramide 
Sphingomyelin 

Metabolism 
0 91 

 Sphingomyelin 
Sphingomyelin 

Metabolism 
0 99 

 Phosphatidyl-

Choline 

Sphingomyelin 

Metabolism 
0 91 

 Palmitoyl-Coa 

Fatty Acid Synthesis, 

Sphingomyelin 

Metabolism 

44 91 

Galactose 

Exchange, 

Sphingomyelin 

Metabolism 

21  

Glucosylceramide 
Sphingomyelin 

Metabolism 
2  

Lactosylceramide 

Glycosphingolipid 

biosynthesis-ganglio 

series 

1  
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Table 4.11. The substrates whose enzymes could be used as drug targets in sphingomyelin 

metabolism and glycosphingolipid biosynthesis-ganglio series. (cont.) 

Metabolites Pathway 

The Number of 

Compounds Found 

Similar to Metabolite 

Decrease in 

Growth Rate in 

The Presence 

of Drug (%) 

GM3 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 70 

GM2 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 52 

GM1 

Glycosphingolipid 

biosynthesis-ganglio 

series 

1 85 

GD1a 

Glycosphingolipid 

biosynthesis-ganglio 

series 

0 78 

GD3 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 85 

GD2 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 63 

GD1b 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 85 

GT1b 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 78 

GD3 

Glycosphingolipid 

biosynthesis-ganglio 

series 

4 78 

 

 

Moreover, it is known that sphingolipids partake in cell membranes and contribute to 

the cell signaling mechanism. A change in ganglioside production might lead to cell arrest 

or an increase in tumor-promoting activities.  
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The major obstacle of targeting ganglioside-associated enzymes is their impacts on 

cells might be very different depending on the cancer type and tissue. Therefore, their effects 

on MB and other cancer types were investigated in detail before making any conclusion. 

Like Table 4.10, Table 4.11 includes the substrates whose enzymes could be potential 

targets. The antimetabolite candidates identified from DrugBank and GeneCards databases 

were investigated in terms of their toxicity and permeability through the BBB. 

 

               

Figure 4.39. Sphinganine and phytosphingosine with 0.825 similarity score. 

 Number 1, number 2 and number 3 represent Sphinganine, Sphingosine and 

Phytosphingosine, respectively (Wishart, 2006). 

 

Phytosphingosine was found in the DrugBank database due to its molecular similarity 

to sphinganine metabolite which is the reactant of both sphinganine-1-phosphate and 

dihydroceramide production reactions (See Figure 4.39) (Wishart, 2006), (Lahiri and 

Futerman, 2007). Phytosphingosine is ample in nature (Nagahara et al., 2005). 

Phytosphingosine is also available in white blood cells and microvilli in the small bowel of 

mammals (Nagahara et al., 2005). According to literature, phytosphingosine is known as an 

analog of sphingosine in addition to its molecular similarity to sphinganine (Park et al., 

2003a), (Nagahara et al., 2005), (Kang et al., 2017).  
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However, phytosphingosine was not detected in the DrugBank database when similar 

compounds for sphingosine were investigated (Wishart, 2006). That is why the similarity 

score for these two metabolites was not included in Figure 4.39.   

 

According to recent research conducted on colorectal cancer, sphinganine and 

sphingosine trigger apoptosis (Ahn et al., 2006). Additionally, sphinganine was determined 

to initiate apoptosis in leukemia cells (Ryland et al., 2011). Fingolimod which is an agent 

chemically similar to sphingosine was also found to trigger apoptosis in several cancer types 

including glioma (Ryland et al., 2011). According to studies realized in lung cancer and 

lymphoma cells, phytosphingosine initiates apoptosis stimulating caspase 8 (Nagahara et al., 

2005), (Park et al., 2003a). In the same study conducted on lung cancer and lymphoma cells, 

it was aimed to observe the impact of phytosphingosine on the activity of mitochondria 

which leaks out cytochrome c that is associated with apoptosis (Park et al., 2003a). They 

concluded their study by finding an increase in cytochrome c secretion. When cytochrome c 

excretion increases, caspase 9 was stimulated leading to the initiation of caspase 3. 

Subsequently, caspase 3 carries out apoptosis causing the cell to decrease in size (Park et al., 

2003a), (Nagahara et al., 2005).  

 

 After this study, the same group performed various studies that showed the therapeutic 

effects of phytosphingosine on cancer cells (Park et al., 2005), (Park et al., 2007), (Moon et 

al., 2007). For example, in their subsequent study, Park et al studied the effect of mitogen-

activated protein kinases (MAPKs) when phytosphingosine initiates cell arrest (Park et al., 

2003b). They found that phytosphingosine deactivates ERK1/2, which is an antiapoptotic 

pathway and promotes p38 MAPK which activates cytochrome c secretion (Park et al., 

2003b). In another study performed on lymphoma by the same group, it was detected that 

phytosphingosine and γ-radiation together trigger apoptosis of the cells resistant to radiation 

(Park et al., 2005).  

 

Next, Kang et al demonstrated that in breast cancer, phytosphingosine can decrease 

the transformation of epithelial cells to mesenchymal cells which may enhance the 

aggressiveness of cancer (Kang et al., 2017). They also indicated that phytosphingosine 

inhibits lung metastasis in vivo models (Kang et al., 2017).   
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Although there is no information about the permeability of phytosphingosine through 

the BBB in both the DrugBank Database and the literature, it is known that Sphingosine, a 

molecular analog of phytosphingosine, crosses BBB (Wishart, 2006).  

 

According to a recent study that tested the permeability of phytoceramides through the 

BBB for Alzheimer’s, plant-based ceramides were found to move across BBB in vivo and 

in vitro (Eguchi et al., 2020). Overall, considering the permeability of its analogs through 

the BBB and its potential to trigger apoptosis in cancer (Wishart, 2006), (Eguchi et al., 2020), 

(Nagahara et al., 2005), (Park et al., 2003a, b), (Park et al., 2005), (Kang et al., 2017), 

phytosphingosine should be investigated for MB in further studies.   

 

4.8.3.2.  Gene Deletion Analyses in Sphingolipid Metabolism. 

 

Both single and double gene deletion analyses were performed to identify essential 

genes after the addition of sphingolipid reactions and the glycosphingolipid pathway. KDSR 

and DEGS2 genes which control both sphinganine and ceramide production reactions were 

determined in sphingomyelin metabolism as a result of single deletion analysis.  In addition 

to other genes detected in previous analyses, B4GALNT1, B3GALT4, ST8SIA5, ST8SIA1, 

and ST3GAL5 genes related to glycosphingolipid biosynthesis-ganglio series were 

identified.    

     

In double gene deletion analyses, the SGPL1 gene which is responsible for reversible 

phosphoryl-ethanolamine production from sphingosine 1-phosphate was also detected with 

both KDSR and DEGS2 genes. Sphingosine-1-phosphate is an anti-apoptotic metabolite that 

intensifies cancer (Ogretmen, 2018). This result shows that the MB model successfully 

detected the SGPL1 gene whose activation might lead to the production of sphingosine 1-

phosphate even if KDSR or DEGS2 genes were inhibited. Since ceramide is the precursor 

of both sphingomyelin and GM3, inhibition of the genes that control their productions might 

result in the accumulation of ceramide which triggers apoptosis (Lahiri and Futerman, 2007). 

Consistently, SAMD8, SGMS1, and SGMS2 genes, sphingomyelin production genes, were 

identified by our model with ST3GAL5 gene which controls GM3 generation.  
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  Drugs/compounds related to essential genes in GeneCards and DrugBank Databases 

were determined (Stelzer et al., 2016), (Wishart, 2006). However, these compounds were 

not found appropriate since most of them do not permeate the BBB and some of them induce 

cancer instead of inhibiting them (Wishart, 2006).   

 

All these genes were detected successfully by our model because they all contribute to 

the growth of cancer cells. However, some of the metabolites produced by these genes have 

a pivotal role in controlling apoptotic or anti-apoptotic signals in the cell (Ogretmen, 2018), 

(Zhuo et al., 2018), (Schömel et al., 2020). For example, inhibition of the B3GALT4 gene 

causes a reduction in GD1b which triggers apoptosis in melanoma (Ha et al., 2016), (Kanda 

et al., 2001).  

 

    ST3GAL5 gene controlling GM3 production was detected by our model as an 

essential gene. When the activity of GM3 synthase controlled by the ST3GAL5 gene was 

reduced, also attenuated cell development and dissemination in metastatic samples of breast 

cancer (Gu et al., 2008). In a study realized by Nusinovich et al, GM3 synthase suppression 

led to a 70% reduction in all gangliosides in the MB cell line (Nusinovich and Ladisch, 

2008). However, over time, the ganglioside level returned to its previous amount. Then they 

deduced that there is another system that compensates for the reduced ganglioside. 

Conversely, abnormal cell division in breast and collateral cancer cells diminished 

remarkably when they suppressed GM3 synthase in the same study (Nusinovich and 

Ladisch, 2008). GM3 was detected abundantly in MB in several studies (Chang et al., 1997), 

(Gottfries et al., 1989), (Fredman, 1994). Especially in GR4, one of the MB subtypes, the 

ST3GAL5 gene was overexpressed relative to the control group and other subtypes (Hooper 

et al., 2014), (Brandon et al., 2012). Therefore, an analysis specifically for the MB-GR4 

model was performed. Inhibition of GM3 production by simulating drug effect resulted in a 

95% decrease in growth of GR4 (See Figure 4.40). However, many studies indicated that 

GM3 has anticancer properties as mentioned in previous sections (Zhuo et al., 2018), 

(Fujimoto et al., 2005), (Seyfried and Mukherjee, 2010), (Krengel and Bousquet, 2014). 

Furthermore, it is known that GM3 suppresses growth factor receptors (Krengel and 

Bousquet, 2014).  
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All in all, silencing GM3 synthase have anticancer effects on MB and some other 

cancer types, however, GM3 also shows apoptotic properties in various cancer types (Gu et 

al., 2008), (Nusinovich and Ladisch, 2008), (Zhuo et al., 2018), (Fujimoto et al., 2005), 

(Seyfried and Mukherjee, 2010), (Krengel and Bousquet, 2014). 

    

    B4GALNT1 which is responsible for GM2, GD2, and GT2 productions, is another 

essential gene detected by our model (Kanehisa et al., 2021). Precursors of these 

gangliosides are GM3, GD3, and GT3, respectively (Schömel et al., 2020). GM2 which is 

known to trigger tumor growth is the most and the second most abundant ganglioside in 

DAOY and TE-671 MB cell lines, respectively (Schömel et al., 2020), (Chang et al., 1997), 

(Ermini et al., 2017), (Gottfries et al., 1989), (Vrionis et al., 1989). Like GM2, GD2 was 

estimated higher in MB compared to the healthy brain (Longee et al., 1991). Another study 

conducted recently found that only MB has a high level of GD2 among nine other pediatric 

cancers (Balis et al., 2020). Cinatl et al evaluated the impact of L-cycloserine, an inhibitor, 

on the MB cell line (Cinatl et al.,1999). L-cycloserine reduced GM2 and GD2 expressions 

and led to a 60% decrease in growth in vivo (Cinatl et al., 1999). In agreement with the 

literature, we found a 97% decrease in growth when drug effect was created in the MB-GR4 

model by inhibiting both GD2 and GM2 productions.  

 

     

      Figure 4.40. The biomass reaction rate without and with drug effect in MB-GR4 model. 
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    B3GALT4 gene detected by MB model produces GM1 from GM2. Inhibition of 

this gene might not result well as expected since it might cause accumulation of GM2 which 

is known to trigger tumor growth in MB (Cinatl et al., 1999).  

   

    Inhibition of ST8SIA5 might cause an increase in GD1a which promotes 

angiogenesis (Yu et al., 2011). While a lower amount of GM3 over GD1a increases cancer 

growth in ependymoblastoma, a higher ratio decreases cancer growth in astrocytoma 

(Mukherjee et al., 2008).  GM3 was claimed to be an angiogenesis inhibitor, whereas GD1a 

triggers angiogenesis (Yu et al., 2011). GD1a is also the third ample ganglioside detected in 

MB (Chang et al., 1997), (Ermini et al., 2017).   

   

    ST8SIA1 which produces GD3 and GT3 from GM3 was also identified as an 

essential gene by the MB model. GD3 triggers cell arrest by increasing reactive oxygen 

species (ROS) generation (Schömel et al., 2020). A high level of GD3 in cancer is not lethal, 

however, GD3 was found to increase abnormal cell division and metastasis (Schömel et al., 

2020). Gottfries et al did not find any GD3 in MB cell line while high level of GD3 was 

found in several cancer types (Gottfries et al., 1989), (Schömel et al., 2020). Furthermore, 

inhibition of this gene might cause the accumulation of GM3. Although we are not entirely 

sure about the effects of GM3 on MB due to limited studies, many studies supported that 

GM3 has anti-cancer properties (Zhuo et al., 2018), Fujimoto et al., 2005), (Seyfried and 

Mukherjee, 2010), (Krengel and Bousquet, 2014). 

 

    Finally, it would be implausible to reach a definite conclusion because of the limited 

experimental studies on the inhibition of gangliosides in MB. However, as MB model 

predicted, targeting B4GALNT1, ST3GAL5, and ST8SIA1 genes can be effective 

therapeutic approaches for MB based on the previous literature studies and our results. 
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5. CONCLUSION AND RECOMMENDATIONS 

 

 

In this study, metabolic alterations specific to medulloblastoma which is the most 

prevalent pediatric tumor were attempted to capture by using system biology methods. In 

addition, novel therapeutic approaches on MB were suggested based on the findings of the 

present work. 

 

 In this scope, the growth reactions predefined based on the white matter were 

modified specifically to the cerebellum in the MB model. The MB model covers 753 

metabolic reactions controlled by 601 genes and 44 pathways including taurine synthesis 

and glycosphingolipid metabolism.  

 

Three GSE data were integrated into the MB model by the GIMME algorithm to obtain 

MB-specific models and find a correlation between metastasis and the Warburg effect. The 

flux rates of the reactions found in MB-specific models were estimated by utilizing Flux 

balance analysis combined with MOMA and the results were compared with the 

experimental and healthy model findings. Consistent with the Warburg effect, glycolysis 

activity was significantly higher in MB-specific models relative to those in the healthy 

model. Conversely, the flux rates in TCA and OXPHOS pathways were observed to be much 

lower than those in the healthy model. In agreement with the literature, the flux rates of lipid 

and nucleotide precursor reactions in the TCA cycle and PPP, respectively, were higher than 

the same flux rates in healthy case. Additionally, the ratio of glutamate to glutamine flux in 

MB was found to be very similar to experimental results. 

 

 Moreover, FBA was used to find from which pathway the MB cells meet their energy 

demand in the absence of glucose and glutamine.  It was observed that MB which normally 

obtains its energy from glycolysis, was prone to producing ATP in the TCA cycle by using 

glutamine in the lack of glucose.  When MB patient suffered from both glucose and 

glutamine deficiency, MB metabolism was diverted to OXPHOS, which was the only way 

for energy generation.  
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These results support the idea that the use of the ketogenic diet targeting the glucose 

pathway by depleting the necessary metabolites, might be a potential therapeutic approach. 

Therefore, the effects of this non-toxic diet should be tested on MB patients as well. 

 

The relation between the Warburg effect and metastasis was investigated in MB using 

FBA and GSE data containing metastatic and non-metastatic samples. Warburg effect was 

observed to be increased tremendously as metastasis intensifies. However, although 

LacR/OCR was slightly enhanced, it did not increase as much as the ATPG/ATPOP 

indicating that MB uses its energy to promote invasion rather than growth. Indeed, there was 

no significant change between biomass reactions of MB-M0 and MB-M2 models. 

Consequently, it is important to apply a different therapeutic strategy for metastatic MB 

cells. 

 

The Flux sampling approach was performed to acquire all possible flux values that 

satisfy the given constraints. The results obtained with Flux sampling were compatible with 

FBA outcomes. Flux sampling results were also employed to compare flux rates statistically 

in both cases. It was found that more than 70% of glycolysis and OXPHOS reactions in MB 

were significantly higher and lower, respectively, in comparison to the reactions in the 

healthy model consistent with the findings of the present study and the literature. Sampling 

results and gene expression levels were also used to obtain ZF and ZG scores in regulation 

analysis to detect especially transcriptionally regulated reactions. Almost half of the 80 

TRR’s were found in fatty acid synthesis and cholesterol metabolism consistent with other 

analyses performed in this study.            

 

Oleoyl-CoA production that is the precursor reaction for oleic acid, was downregulated 

in MB. Oleic acid was also encountered in essentiality analysis because of its relation to the 

FASN gene and it was identified as a promising antimetabolite owing to its similarity to 

natural intermediates used in fatty acid synthesis. Considering our findings of oleic acid and 

its inhibitory and anti-cancer behaviors in other brain tumors the effect of this compound on 

MB should be investigated in future studies. 
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Flux coupling analysis (FCA) was also performed in the present study to determine 

the reactions coupled to growth reaction. As a result, 158 reactions were found to be related 

to growth reaction. Interfering with these reactions may be a potential therapeutic strategy 

for MB. Many nucleotide exchange reactions were associated with growth reaction. This 

result indicates that the model makes accurate predictions about cancer metabolism since 

there are many cancer drugs targeting nucleotide metabolism. As in many analyzes in this 

study, reactions related to lipid metabolism came to the fore in this analysis. One of the most 

notable lipids was cardiolipin. Not only cardiolipin production reactions were found in FCA, 

but also other reactions related to syntheses of required metabolites including CDP 

diacylglycerol and glycerol-3-phosphate for the cardiolipin generation were detected. More 

importantly, cardiolipin and glycerol-3-phosphate production reactions and the CRLS1, 

PGS1, GPD1, and GPD2 genes controlling them were identified as essential in essentiality 

analyses. Strikingly, the CRLS1 gene was also determined as one of eight essential genes 

necessary for lactate and ATP production alongside the growth. Therefore, interventions on 

genes responsible for cardiolipin production or syntheses reactions of metabolites required 

for cardiolipin production can be important strategies for MB inhibition. One another 

reaction coupled to growth was the cholesterol transport reaction suggesting that cholesterol 

production in astrocyte is crucial for neuron. Almost 90% of the fatty acid synthesis reactions 

are associated with the growth reaction consistent with experimental findings and all 

analyses in this work. The transportation reactions of isoleucine, valine, and leucine 

derivatives to neuron from astrocyte and their conversion back to these essential amino acids 

in neuron were coupled to growth reaction. 

 

Essentiality analyses were conducted to find essential genes and reactions for the MB 

model. While 45 genes were detected in single-gene deletion analysis, 312 essential 

reactions were found in reaction deletion analysis. 42 of them were identified in both 

analyses and almost 60% of essential genes were related to lipid synthesis. Asparagine 

production reaction and the ASNS gene-regulating this reaction were also found as essential. 

This reaction was also detected in FCA. Considering the literature results and the findings 

in this study, the interference with asparagine metabolism might be a beneficial strategy for 

MB.  
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Another critical point in essentiality analysis is that the reactions related to polyamine 

production and SMS, SMOX, and AMD1 genes controlling these reactions were determined 

as essential.  Consequently, targeting polyamine metabolism might also be a promising 

approach in MB considering the SHH type of MB promoting polyamine synthesis. 

 

Double gene deletion analysis was also performed to uncover gene combinations 

whose inhibition might be the potential therapeutic approach. After the genes detected in 

single deletion analysis were removed, 26 gene combinations remained. ABAT gene, which 

is responsible for catalyzing GABA to produce glutamate and succinate precursor 

metabolite, succinate SAL, was found in two combinations with SUCLA2 and SUCLG1 

which also synthesize succinate in TCA. The fact that succinate overexpression is promoted 

in cancer and the determination of genes related to succinate production in this study render 

succinate-associated genes desirable targets for MB treatment. As a result of the literature 

survey, it was concluded that the combination of (FDA) approved drugs Acyclovir and 

Vigabatrin have a huge potential. They separately were shown to be effective in GBM in 

several studies. However, as far as known, the synergistic effect of these drugs has never 

been studied in MB. Based on the previous findings and results of this work, the combination 

of these drugs should be tested on MB.   

 

  The essentiality analyses (single deletion) were also performed for lactate and energy 

production. eight out of 32 common essential genes were selected based on whether their 

inhibitions cause any dysfunction in the healthy model and affect significantly the MB 

model. These therapeutically potential genes were determined as HMGCR, MVK, PMVK, 

MVD, FDFT1, SQLE, CRLS1, and FASN. The first 6 genes regulate the mevalonate 

pathway which is a therapeutically promising pathway in terms of cancer.  Statins known as 

cholesterol regulators, Farnesol, TAK-475, and anti-fungal agents were found as major 

inhibitors for the mevalonate pathway. Orlistat and Cerulenin were detected to be associated 

with the FASN gene and they showed anti-cancer effects on several cancers. Inhibiting 

mevalonate and fatty acid synthesis using these compounds may be a feasible way for MB 

treatment. 
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Next, the potential antimetabolites which might reduce the use of substrates in cells 

were identified.  The number of total metabolite-antimetabolite pairs was found as 544. 32%, 

15%, and 10% of substrates whose enzymes could be utilized as drug targets were detected 

in fatty acid synthesis, sphingolipid metabolism, and cholesterol synthesis, respectively. As 

a result of this work, Linoleate/ Arachidonate - Oleic acid, Arachidonate/ Linoleate - 

Icosapent, Linoleate/ Arachidonate - Gamolenic acid, and Mevalonate - Meglutol were 

determined as potential metabolite-antimetabolite pairs because of their similarity to each 

other. Inhibitions of the reactions whose substrates are Linoleate, Arachidonate, and 

Mevalonate resulted in a decrease in the growth reaction of MB by 79% for all. Therefore, 

utilizing these compounds (Oleic acid, Icosapent Gamolenic acid, and Meglutol) as analogs 

of the natural substrates might be a beneficial strategy for MB.   

 

 Once the sphingomyelin pathway was expanded and glycosphingolipid metabolism 

was included in the MB model, the essentiality analysis and antimetabolite investigation 

were repeated.  It was detected that phytosphingosine which is very similar to sphinganine 

and sphingosine might prevent MB survival by creating competitive inhibition. 

Consequently, phytosphingosine might hinder the conversion of sphingosine to S1P which 

promotes cell survival. Hence, owing to the permeability of its analogs through the BBB, its 

potential to induce cell death in cancer, and its similarity to sphingosine, the effects of 

phytosphingosine should be tested on MB in further studies.   

 

  The inhibition of B4GALNT1 and ST3GAL5 genes which were identified as 

essential might be potential therapeutic approaches for MB. Targeting B4GALNT1, which 

is responsible for GM2, GD2, and GT2 productions can be an effective therapeutic approach 

for MB because GM2 is known to induce tumor growth. Since suppressing GM3 synthase 

have anticancer effects and GM3 was found in MB plentifully, interfering with ST3GAL5 

gene regulating GM3 production might also be a promising strategy for MB treatment. 

Because ST3GAL5 was found to be overexpressed in GR4, GM3 production was inhibited 

in MB-GR4 resulting in a 95% decrease in growth of GR4. However, because of the scarcity 

of studies about the effects of gangliosides on MB, it would be unreasonable to draw any 

firm conclusions. Therefore, further research is required to get information about the 

influence of gangliosides on MB. 



154 

 

  In this work, MB model results were compared with the healthy results obtained from 

the model reconstructed based on general brain metabolism (Sertbaş et al., 2014). For further 

study, constructing a healthy model specific to the cerebellum and finding constraints 

particularly for this region of the normal brain will allow more realistic predictions and 

comparisons of MB and healthy models. Moreover, using Quantitative Structure-Activity 

Relationship (QSAR) models in further studies will provide more detailed and precise 

information about the toxicity and permeability of compounds detected in the DrugBank 

database. 
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