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ABSTRACT

MULTI-SCALE MODELLING OF SUPERCAPACITORS: A

COMBINED SIMULATION AND MACHINE LEARNING

APPROACH

Electrical double layer capacitors (EDLCs) store and release energy via re-

versible adsorption/desorption of ions at the electrode–electrolyte interface. Research

on EDLCs mainly focus on improving their energy density while maintaining their at-

tractive properties such as high power density and long cycle life. EDLC performance

is a complex function of the properties of its components, as well as the interactions

between them. Given the large number of parameter combinations make traditional

experiments remain infeasible for parameter optimization. To address this problem,

we use molecular dynamics simulation data for a set of room temperature ionic liq-

uid/nanoporous carbon based EDLCs. By analyzing the charging kinetics and equi-

librium behavior of EDLCs using a transmission line model, we construct a simple

data-driven method that is capable of quantitatively predicting energy density and

time-dependent charging profile as a function of electrode micropore size and elec-

trolyte composition. In particular, linear and ridge regression, elastic networks, lasso,

and neural network models are trained to predict gravimetric and volumetric capac-

itance (CG and CV ), charging time (τM), and electrical resistance (Rl). The elastic

network model yields the best performance with a root mean square error of 3.10 F/g

(CG), 0.15 s (τM), 1.09 F/cm3 (CV ), and 0.54 Ohm m (Rl). This model is then used

to construct diagrams that show the dependence of the above-mentioned performance

metrics to electrode pore size and electrolyte composition, and allow designing EDLCs

with a set of predetermined performance criteria. This work can be extended to provide

a framework that can quantify the effect of key factors on the EDLC performance.
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ÖZET

SÜPER KAPASİTÖRLERİN ÇOK ÖLÇEKLİ

MODELLENMESİ: MOLEKÜLER SİMÜLASYON VE VERİ

TABANLI TASARIM

Elektrikli çift katmanlı kapasitörler (EDLC’ler) elektrolit ve yüksek yüzey alanlı

elektrot arasındaki arayüzde iyonların tersinir adsorpsiyon/desorpsiyonu yoluyla ener-

jiyi depolar ve serbest bırakır. EDLC’ler üzerinde yapılan araştırmaların ana odağı

mevcut güç yoğunluğunu ve işlem ömrünü korurken enerji yoğunluğunu artırmaya

yöneliktir. EDLC performansı, bileşenlerinin özelliklerinin yanı sıra bunların arasındaki

etkileşimlerden de etkilenen karmaşık bir sisteme bağlıdır. Bu parametreler ve kom-

binasyonlarından oluşan olasılıklar deneysel yöntemleri ya da simulasyonları optimiza-

syon için yetersiz ve etkisiz kılmaktadır. Bunu çözmek için, bir dizi oda sıcaklığında

iyonik sıvı ve nanogözenekli karbon bazlı EDLC’ler için moleküler simulasyon veri-

leri oluşturuldu. Bir iletim hattı modeli kullanarak EDLC’lerin şarj kinetiğini ve denge

davranışını analiz ederek enerji yoğunluğunu ve karakteristik şarj/boşalım süresini elek-

trot gözenek boyutu ve elektrolit özelliklerinin fonksiyonu olarak tahmin edebilecek

modeller oluşturuldu. Lineer regresyon, ridge regresyon, elastik ağlar, lasso regresyon

ve yapay sinir ağları kullanarak ağırlıksal kapasitans (CG), şarj süresi (τM), hacim-

sel kapasitans (CV ) ve direnç (Rl) tahminleri yapıldı. Elastik ağ modeli, 3,10 F/g

(CG), 0,15 s (τM), 1,09 F/cm3 (CV ) ve 0,54 Ohm m’lik (Rl) bir kök ortalama kare

hatasıyla en iyi performansı verdi. Bu model performans ölçütlerinin elektrot gözenek

boyutuna ve elektrolit bileşimine bağımlılığını gösteren ve seçilen performans kriteriyle

EDLC’lerin tasarlanabileceği aralıkları gösteren tasarım haritaları oluşturmak için kul-

lanıldı. Bu çalışma, diğer faktörlerin de performans parametreleri üzerlerindeki etki-

lerini gözlemlemek için genişletilebilir.
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1. INTRODUCTION

Supercapacitors are electrochemical energy storage devices that store and release

energy via reversible adsorption and desorption of ions at the interface between an

electrolyte and a high surface area electrode material [1–4]. That ion exchange leads

to high power density and long cycle lives [5–8]. Supercapacitors are able to store

up to a hundred times more energy per unit volume or mass than their electrolytic

counterparts. They accept and deliver charges much faster than batteries and used in

various systems and applications that require fast charge and/or discharge [9]. Super-

capacitors are able to tolerate significantly more cycles of charging and discharging.

Energy is stored in the form of electrical charges in a supercapacitor, while a battery

stores its energy in a chemical form. Electrochemical energy storage devices that store

energy through redox reactions yield greater energy densities, in other words capable

of storing more energy per weight, than supercapacitors. However, the power density

of batteries is smaller than that of the supercapacitors because there is a latency stem

from the chemical reaction to transfer the chemical energy into electrical energy [10].

Difference between batteries and supercapacitors can be investigated under five

main categories, namely energy density, energy discharging rate, lifespan, energy chang-

ing time, and cost. Currently batteries have higher energy density and better leakage

current than supercapacitors. But they have limited cycle life, there are harsher volt-

age and current limitations, and also they have lower power densities. Furthermore,

supercapacitors can operate safely in a wider range of temperatures. But supercapac-

itors have higher self-discharge, and the cost is higher per watt. Although batteries

have longer charging times, they cover this deficiency with their higher energy den-

sities hence longer occupancies and less frequent charging requirements. Being less

dependent on charging is an important factor for an active life which leads batter-

ies domination over the marketplace. For delivering energy for extended periods of

time, coupling supercapacitors with batteries or another energy storage device is still

necessary [11].
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Supercapacitors are also more expensive than conventional capacitors. While

capacitors store energy in the form of electric field typically between two metal plates,

supercapacitors store energy at the interface between electrode and electrolyte in a

double layer of charge. As a medium activated carbon is used in supercapacitors while

in conventional counterparts aluminum oxide, polymer films or ceramic are used.

Figure 1.1. Energy density and power density comparison of energy storage systems.

Supercapacitors are mainly used in applications that require rapid charge and dis-

charge cycles. Due to their high power density and long cycles lives they can be more

advantageous that conventional batteries for niche applications that require bursts of

energy in small amounts [12, 13]. Smaller supercapacitors can be used as a backup

power supply for static random-access memory. But due to limited energy storage

capacity, supercapacitors cannot be used in applications that require long-term com-

pact energy storage like smartphones and consumer-grade devices. However, there are

some consumer-grade applications that use supercapacitors because characteristics like

quick recharge or prolonged life cycle are required. Examples of these include MP3

players and the flash for a professional-grade camera. Another common application for

supercapacitors is smoothing out the intermittent power supply in wind turbines. [14].
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1.1. The Working Principles of Supercapacitors

Supercapacitors are energy storage devices featuring high power delivery and

rapid charge-discharge cycles. Supercapacitors are divided into three groups based on

the mechanism of their energy storage, namely pseudocapacitors, hybrid capacitors,

and electrical double layer capacitors (EDLCs) [15].

Figure 1.2. Supercapacitor types and their charging mechanisms.

Pseudocapacitors use faradaic mechanism for storing and/or exchanging charge

which involves charge transfer between electrode and electrolyte similar to oxidation-

reduction reactions. The applied potential leads oxidation and reduction on the elec-

trode and charge passage over a double layer, resulting in the faradaic current passing

through supercapacitor cell [16, 17].

EDLCs can either store the charges electrostatically or via a non-faradaic mech-

anism that does not need charge transfers between the electrode and electrolyte [18].

When voltage is applied, there is no charge buildup on the electrode surface since the

potential difference causes opposing charge attraction. Hybrid capacitors are trying to

combine the best features of pseudocapacitors and EDLCs via combining their stor-

age mechanism and using electrochemical double layer ion adsorption/desorption and

reversible faradaic reaction.
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Hybrid capacitors are divided into three categories via their electrode combina-

tion, namely asymmetric, composite, and battery-type. The composite electrodes use

carbon based materials with polymer conduction or metal oxides in a single electrode

and have two mechanisms for storage, physical and chemical. Based on the amount

of material types used, composites have two types namely binary and ternary com-

posites [16]. Asymmetric hybrid capacitors uses faradaic and non-faradaic processes

via coupling pseudocapacitor electrode with EDLCs [16] while battery type tries to

combine the supercapacitor recharging times with battery properties [19].

This work specifically focuses on EDLCs. EDLCs are comprised of two oppositely

charged electrodes separated by an electrolyte. Typically, a metal current collector

coated with carbon-based active electrode material is used in supercapacitors. The

separator is sandwiched between these foils. The separator is an ion-permeable mem-

brane, that provides insulation and allows the electrolyte’s ions to pass between the

electrodes. The interaction between the electrolyte and electrode ions leads to physical

adsorption of counter-ions and desorption of co-ions at the interface. That leads charge

accumulation and ion separation.

Figure 1.3. A schematic of an electrical double layer capacitor.
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EDLC performance is a complex function of the physical properties and chemical

properties of its components, as well as the interactions between them [20–22]. Elec-

trode and electrolyte material features affect inherent properties such as capacitance

and conductivity, and easy to control during device manufacturing. Hence the inter-

action between electrode and electrolyte needs to be optimized to enhance the overall

device performance. Average electrode pore size, specific surface area, porosity, salt

cation size, salt anion size, solvent size, solvent polarity, and electrolyte concentration

are some of these factors that affect the performance of an EDLC.

Customizing electrode materials via changing pore geometry or/and size is one of

the possible routes for performance optimization. Selected materials should be cheap

and abundant, have large specific surface area and good conductivity, be easily pro-

cessable and environmentally friendly. Therefore, nanoporous carbonecous materials

are among the most promising electrode materials [1, 6, 23,24].

1.2. Performance Parameters of Supercapacitors

Energy storage performance depends on several interlinked parameters. The op-

erating voltage, equivalent series resistance, cell capacitance, power density, energy

density, and characteristic charging time are all important metrics to consider when

evaluating the performance of a supercapacitor.

Supercapacitors are evaluated based on two predominant performance metrics

namely energy density and power density. Energy density (ED) refers to the quantity

of energy that is stored in a device and defined as follows [25,26]

ED =
CmaxV

2

2
(1.1)

where Cmax is the maximum capacitance and V is the applied potential difference.

Power density (PD) describes how fast the device can be charged and discharged and

can be calculated from the following relation [25,26]
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PD =
V 2

4Rs

(1.2)

where V is the maximum cell voltage and Rs is the equivalent series resistance including

all ohmic contributions.

The ultimate goal in supercapacitor optimization is to determine the design which

will lead maximum energy and power densities. The performance of a supercapacitor

is often evaluated based on gravimetric properties [27–30]. But the porous structure,

electrode dimensions and compression ratio highly effect the performance, hence volu-

metric performance parameters should also be taken into account to make practical and

compact devices [31–35]. To take into account both material properties and its packing

and processing affects, gravimetric and volumetric performance should be investigated

together. For that purpose, in this work gravimetric and volumetric specific capaci-

tances and resistances are estimated. While capacitance is the reflection of electrical

charge stored under a given voltage, resistance determines the duration of charging

or discharging. For gravimetric investigation gravimetric energy density (Wh/kg) and

characteristic charging time (s), for volumetric investigation volumetric energy density

(Wh/l) and resistance (Ohm m) are used as performance parameters.

1.3. Optimization of Supercapacitor Performance

Performance evaluation of the supercapacitors are mainly based on two predom-

inant performance metrics, namely energy density and power density [36]. The design

criteria that control each of these performance measurements, on the other hand, are

diametrically opposed. To increase power density, one might try to increase the pore

sizes but that will lead lower energy densities hence the resulting device can no longer

be as compact as it should be. On the other hand via maximizing the surface area one

can try to achieve high energy densities but it will lead low power densities because

ionic transport will be substantially limited by the exceedingly tiny pores [37].
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Other than power and energy densities, capacitance, total resistances, character-

istic charging duration can also be used to compare such devices. There are two main

sides of that optimization; electrolyte side and electrode side. Both experimental and

computational methods can be used for optimizing EDLC performance.

1.3.1. Properties of the Electrode Side

Carbons are the most preferred materials to date due to their high specific

surface area, relative low cost, ease of processing, high electrical conductivity, non-

toxicity, easiness of access, and stability [38]. Variety of carbon materials such as

carbon nonofibres [39], carbon aerogels [40], template porous carbon [41–43], carbon

nanotubes [44, 45], and activated carbon and composites [46–50] are used in various

experimental studies.

Specific surface area is one of the key elements of the charge storage in supercapac-

itors. Higher surface area leads to more available sites for charge accumulation hence

improved capacitances. Steam or CO2 activation, heat treatment, alkaline treatment,

and plasma surface treatment with NH3 have all been tried to improve the specific area

of carbon materials [47,51–60].

Pore size also affects the performance as it is directly linked to ion diffusion re-

sistance through electrodes. Pore size can be evaluated in three categories, namely

micropores, which have less than 2 nm pore diameter, mesopores, which have between

2 and 50 nm pore diameter, and macropores, which have more than 50 nm pore di-

ameter. Although micropores result in the largest surface area, presence of mesopores

is essential for smooth and fast ion diffusion through electrodes. Hence, presence of

mesopores on the surface increases the capacitance [61,62]. Experimental studies have

revealed an anomalous increase in gravimetric capacitance in micropores that cannot

be readily explained solely by larger surface area, suggesting that pore structure affects

the capacitance, hence selecting appropriate pore size according to the size of the ions

can increase the overall performance compared to larger pore sizes [63,64].
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To reach the micropores, the existence of mesopores is required for the transporta-

tion of electrolyte ions into the bulk of the active material. Addressing this question

through experiments alone is difficult due to the lack of techniques to examine the

relationship between local structures of pores and local degree of charge separation. In

that case, molecular simulations can provide more information yet previous research

has been limited to simulations on flat surfaces of idealized geometries due to the chal-

lenges associated with representing the charge/discharge mechanisms accurately and

computational cost of simulating such electrodes [20]. To investigate the performance

of supercapacitors constant charge method, which distributes the charges uniformly, is

used to approximate systems with open electrodes with planar, cylindrical, or spherical

surface [65–67]. But that method does not give accurate results for nanoporous elec-

trodes [68–71]. In modelling of nanoporous supercapacitors to get accurate charging

dynamics and heat generation, constant potential method is preferred which maintains

electrode atoms at constant potentials by self-adjusting electrode charges [71–74].

1.3.2. Properties of the Electrolyte Side

Room temperature ionic liquids (RTILs), salts that are liquid near room temper-

ature, possess a unique combination of properties such as high charge density, electro-

chemical stability, low and negligible volatility, and tunable polarity. These properties

make RTILs very attractive electrolytes for EDLCs [12,20,22]. Most importantly, their

large electrochemical windows (up to 5 V) allows operation at high voltages that are

inaccessible to conventional electrolytes [75].

Pure RTILs typically have lower ionic conductivity than conventional dilute elec-

trolytes, which is detrimental to power density, but their conductivity can be altered

through ion modifications or introducing an additive to the electrolyte [3,4,76]. RTILs’

incorporation into EDLCs has been hindered, for the most part, due to the lack of

fundamental knowledge on their structural and capacitive properties at the electrical

double layer which differs markedly from that of conventional dilute electrolytes.



9

In the recent years, the interfacial properties of pure RTILs have begun to be

unraveled using experimental, simulation and analytical techniques [20, 77–84]. Nev-

ertheless, these studies have been limited to a narrow range of pure RTILs. Due to

the large number of RTIL cations and anions, and easiness of mixing RTILs with each

other and/or with other substances, there are an infinite number of solvent-free and/or

solvent-enriched electrolytes with tunable properties. That makes the optimum RTIL

selection of any selected application highly nontrivial, leaving the experimentalists with

the only option of using heuristics [77,80].

1.3.3. Data-driven Approaches for Energy Storage Device Design

To compare the systems hence find the optimum settings, physically meaningful

performance outputs should be selected. For the supercapacitors, capacitances, energy

densities, characteristic charging time, and total resistances can be used as performance

parameters. In this project, gravimetric and volumetric energy densities, characteris-

tic charging time, and internal resistance of electrode per unit length are selected as

performance parameters. To calculate and predict these, various input parameters

can be used such as electrolyte composition, electrical conductivity, equivalent series

resistance, pore size and applied voltage. Some of these parameters and properties

are related to operating conditions while some show the physical characteristics of the

system. Due to high number of key parameter combinations, traditional experiments

and computational modelling is not a feasible way to optimization as it requires signif-

icant amount of time and resources. Machine learning is a promising tool that can be

used to understand and predict supercapacitor behavior without conducting extensive

experiments and simulations. Zhang et al. shows the power and use of machine learn-

ing and deep learning tools in fault detection, diagnosis and prognosis in application

domains including energy storage devices [85]. Hu et al. and Meng and Li reviewed the

application of various model based, data-driven and hybrid approaches on the lifetime

prognosis of energy storage devices [86, 87]. Gu et al. and Chen et al. reviewed the

the machine learning assisted design, development, and discovery of novel materials for

rechargeable batteries, superconductors and solar cells [88, 89].
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Wu et al. studied the effect of thickness, solid volume ratio, particle radius, elec-

trolyte concentration and applied C-rate on capacitance with negligible computational

cost and generate a design map that fulfills the requirements of both specific power

and energy [90]. Machine learning algorithms are also used in life prediction of su-

percapacitors with aging experiments at different temperature and work voltage [91].

Ren et al. applied an artificial neural network (ANN) model to predict the life cycle

with a data-set generated from 66 supercapacitors and it is seen that ANN can have

a higher prediction accuracy than principal component analysis and logistic regres-

sion algorithms [92]. To be able to use machine learning methods, problem should

be determined carefully first, then appropriate data should be collected. For that,

some specifications and/or parameters should be selected to predict and evaluate per-

formance parameters. To successfully predict the performance parameters, the related

input parameters should be extracted from the models prepared. For our case, constant

potential molecular dynamics simulation results will be used in an equivalent circuit

model to create these parameters hence to understand the macroscopic behaviors.

To describe the charge/discharge kinetics and capacity of electrical double layer

capacitors transmission line models can be used. In the transmission line model, charge

penetrates progressively into the electrodes. Parallel slices that consist of a capacitor

under constant potential solid surface creates the system. Pean et al. in 2014 used a

small simulation system and divide their electrode into two slices of equal thicknesses

and obtain a bi-exponential function which describes the charging kinetics of their

system [73]. Later Sampaio et al. used that bi-exponential function to describe and

investigate their simulation results [93]. In 2016, Pean et al. further simplified that

model via taking the capacitance of each slice similar [94]. That model later used by

various studies [95,96]. Once inputs are created, machine learning models will be used

to predict the performance parameters which are energy density and charging time for

gravimetric investigation and energy density and electrode inner resistance for volu-

metric investigation. After the investigation of the factors affecting the supercapacitor

performance and selecting the key factors that affect the charge storage, the aim is to

find the optimum settings of these factors.
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2. MATERIALS & METHODS

2.1. Molecular Modelling of Supercapacitors

The physically accurate simulations of an EDLC’s charge and discharge mech-

anism requires maintaining a constant-potential difference between electrodes. Pre-

viously this description has been implemented in a few computer simulations [72, 82,

84, 97, 98]. but its use was limited to only primitive studies due to the computational

cost of constant potential ensemble simulations. Instead, constant electrode charge

simulations have been performed, but these do not correspond to experimental setups.

This work used constant potential ensemble simulations to provide insights into the

microscopic mechanisms that determine the electronic properties of the interface as a

function of the molecular features of the electrolyte. An ideal model EDLC should

be able to represent the actual device behavior while having the ability to tune many

different experimental parameters independently.

The specific system considered here employs molecular simulation models of 1-

butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) acetonitrile (ACN) mix-

tures confined by nanoporous carbon electrodes. The molecular simulation data used in

this thesis is retrieved from Uralcan [99]. In particular, quenched molecular dynamics is

performed to generate the nanoporous carbon electrodes using the molecular simulation

software LAMMPS [100]. Constant potential ensemble simulations of the EDLCs are

performed by applying a constant potential difference between the electrodes and let-

ting the electrode charge fluctuate to reach equilibrium. Electrode charge is computed

from summing up the individual charges of the electrode atoms. Self-diffusion coeffi-

cients are computed from the Einstein relation [101]. Electrode pore size distributions

are obtained using the Zeo++ algorithm [102].



12

2.2. The Transmission Line Model

Transmission line model can be used to describe the charge/discharge kinetics

and capacity of electrical double layer capacitors [73, 93, 94]. In the transmission line

model an EDLC is represented by connected electrode slices and a bulk electrolyte,

and charge penetrates progressively into the electrodes. Number of electrode slices is

selected based on the size of the simulated system.

There are two types of transmission line models. The first one involves splitting

the electrodes into slices with different capacitance values connected in parallel [73].

The second, simplified model assumes equal capacitance for each slice [94].

In the transmission line model with slices with different capacitance values, two

slices of equal thickness are set. The mathematical model describing the total charge

of the electrodes as a function of time is given by the following bi-exponential function

Q (t) = Qmax

[
1 − A1 exp

(
− t

τ1

)
− A2 exp

(
− t

τ2

)]
(2.1)

where Qmax is the final charge and t is time. To be able to calculate the terms Qmax,

A1, A2, τ1, and τ2, first following relations should be calculated

a =
(Rbulk + 2Rl)C1

Rl (Rbulk + 2Rl)ClC2

(2.2)

b =
2

Rl (Rbulk + 2Rl)C1C2

(2.3)

c =
C1 + C2

Rl (Rbulk + 2Rl)ClC2

(2.4)

d =
1

Rbulk + 2Rl

(2.5)

where Rbulk is the resistance of the electrolyte in the bulk region, Rl is the resistance of

each electrode slice, C1 and C2 are the capacitance values of the inner and outer slices,

respectively.



13

Once these terms calculated, terms of Equation (2.1), namely Qmax, A1, A2, τ1,

and τ2, can be calculated using following relations

Qmax =
C1 + C2

2
V0 (2.6)

τ1 =
2

a +
√
a2 − 4b

(2.7)

τ2 =
2

a−
√
a2 − 4b

(2.8)

A1 =
1

2

[
1 +

2bd− ac

2c
√
a2 − 4b

]
(2.9)

A2 =
1

2

[
1 − 2bd− ac

2c
√
a2 − 4b

]
(2.10)

where C1 and C2 are the capacitance values of the inner and outer slices, and V0 is the

operating potential for which its maximum value is determined by the electrochemical

stability of the device. This model is first used by Pean et al. in the context of molecular

simulations of a model system composed of an ionic liquid electrolyte confined between

a pair of nanoporous carbon electrodes [73]. The capacitances of inner and outer slices

(C1 and C2) are given by the final total charge (Qmax). Bulk electrolyte conductivity

(Rbulk) is computed from the electrical conductivity of the electrolyte (κ) using following

relation

RBulk =
1

κ

lz
A

(2.11)

where A is the cross-sectional area of the electrode, lz is the bulk electrolyte region

thickness, and κ is the conductivity. Conductivity of electrolyte with various ion frac-

tions can be calculated via

κ =
ρ e2 (D+ + D−)

kBT
(2.12)

where e is the electric charge unit, ρ is the density ρ = n/V in which n is the number of

cations (or anions), V is the volume of bulk electrolyte region, and T is the temperature

of the system [103].
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The only unknown left, Rl, is determined by fitting on charging data using a

least-square method. To calculate the charge of the inner electrode slice, namely Q1, c

in Equation (2.4) is replaced by

c1 =
1

Rl (Rbulk + 2Rl)C1

(2.13)

which is used together with the other a, b and d values to calculate A and τ terms

hence bi-exponential function in Equation (2.1) to obtain charge of the inner electrode

slice. Then the charge of the outer electrode slice is calculated by

Q2 (t) = QT (t) −Q1(t) (2.14)

which is simply the difference between total charge and the inner slice charge. The

transmission line model can be further simplified by assuming identical capacitance

values for each electrode slice based on the idea that applied potential and pore size

distribution is similar for each slice. Simplified model needs new set of equations

for the terms a, b, c and d. The changes in these terms leads changes in τ and A

calculations. The modified equations for Equation (2.6) through Equation (2.10) are

given in Equation (2.15) through Equation (2.18)

a =
2Rbulk + 6Rl

Rl (Rbulk + 2Rl)Cl

(2.15)

b =
2

Rl (Rbulk + 2Rl)C2
l

(2.16)

c =
2

Rl (Rbulk + 2Rl)Cl

(2.17)

d =
1

Rbulk + 2Rl

(2.18)

which can be obtained via equating C1 to C2 except Equation (2.15). Also Qmax

equation is simplified since average capacitance of slices now become C1.
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2.3. Machine Learning Methods

The first step of machine learning is to decide the target parameters. Target

parameters here are gravimetric energy density and characteristic charging time for

gravimetric investigation, and volumetric energy density and resistance for volumetric

investigation.

For that purpose, gravimetric capacitance and volumetric capacitance values are

predicted as step one. In the second step resistances are predicted via using various new

feature sets. The effect of various initial charging data, namely initial slope (singular

data) and 10-point initial charging data (extracted from 0.25 ns of the data) in both

prediction steps and the effect of predicted capacitance in Rl prediction step is con-

trolled. Predicted capacitance and resistance values together with physical properties

provide information on the energy storage performance of the corresponding designs.

Performance parameters, namely energy densities, characteristic charging time and re-

sistance, will be explained in detail in section 2.4. Performance Parameters. In Figure

2.1 design steps through data generation to optimum design selection are given.

Figure 2.1. Design steps through data generation to design maps.
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2.3.1. Linear Regression

Linear regression is used to fit a data model with linear coefficients. It depicts the

relationship between the independent predictor variables xi and the dependent input

variable y. The following equation describes the relationship between one independent

variable and one output variable in simple linear regression

y = β0 + β1x + ϵ (2.19)

where β0 is the intercept, β1 is the regression coefficient (slope), and ϵ is the error.

Then there is multiple linear regression which predicts the outcome using several input

variables. The following is the multiple linear regression model

y = β0 +
N∑
i=1

βixi + ϵ (2.20)

where β0 is the intercept, xi values are the features, βi values are the regression coef-

ficients, and ϵ is the error. Negative coefficients imply a negative relationship between

the characteristic and the goal value, whilst positive coefficients suggest a positive

relationship between them [104].

2.3.2. Ridge Regression

Ridge regression is a type of linear regression that is used in scenarios where

independent variables are highly correlated. The independence of the model terms is

used to estimate coefficients in multiple linear regression models. The matrix
(
XTX

)−1

is close to singular when terms are correlated, and the columns of the design matrix X

exhibit an approximate linear relationship. Therefore, the least-squares estimate

β̂ =
(
XTX

)−1
XTy (2.21)
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has a significant variation since it is highly sensitive to random errors in the observed

response variable y. When data is collected without employing an experimental design,

this type of multicollinearity might emerge. Ridge regression overcomes the problem

of multicollinearity via using the equation below to estimate regression coefficients

β̂ =
(
XTX + kI

)−1
XTy (2.22)

where k is the ridge parameter and I is the identity matrix. Small, positive k values

increase the problem’s conditioning and reduce the variability of the estimates. When

compared to least-squares estimates, the smaller variance of ridge estimates typically

leads to a lower mean squared error. For a given value of λ, i, a non-negative parameter,

ridge solves the following problem

min

β0β

(
1

2N

N∑
i=1

(
yi − β0 − xT

i β
)2

+ λ

p∑
j=1

β2
j

)
(2.23)

where N is the number of observations, yi is the response at observation i, xi is the

data, a vector of length p at observation i, λ is a non-negative regularization parameter

corresponding to one value of λ, the parameter β0 is a scalar, and the parameter β is

a vector of length p [105].

2.3.3. Lasso Regression

Lasso is an abbreviation for the least absolute shrinkage and selection operator. It

uses shrinkage meaning that the data values are shrinking towards a central. Addition-

ally, it creates sparse models where feature selection occurs depending on the effect of

the feature on the outcome. If a variable does not have a great impact on target value,

lasso regression sets zero to its coefficient and as a result, it works with fewer param-

eters. In short, lasso creates simpler models hence leads faster solutions/predictions.
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The lasso regression model is as the following

min

β0β

(
1

2N

N∑
i=1

(
yi − β0 − xT

i β
)2

+ λ

p∑
j=1

|βj|

)
(2.24)

where N is the number of observations, yi is the response at observation i, xi is data,

a vector of length p at the observation i, λ is a nonnegative regularization parameter

corresponding to one value of λ, the parameters β0 and β are scalar and a vector

of length p, respectively. As λ increases, the number of nonzero components of β

decreases. The lasso problem involves the L1 norm of β, as contrasted with the elastic

net algorithm [105,106].

2.3.4. Elastic Networks

Ridge regression and lasso regularization are combined in elastic networks. Elas-

tic networks generate reduced models by producing zero-valued coefficients like lasso

regression. For data-sets with strongly correlated variables, elastic networks outper-

forms lasso regularization [107]. For α strictly between 0 and 1, and non-negative λ,

elastic net solves the following problem

min

β0β

(
1

2N

N∑
i=1

(
yi − β0 − xT

i β
)2

+ λPα(β)

)
(2.25)

where N is the number of observations, yi is the response at observation i, xi is data,

a vector of length p at the observation i, λ is a nonnegative regularization parameter

corresponding to one value of λ, the parameters β0 and β are scalar and a vector of

length p, respectively. Pα can be calculated using following relation

Pα (β) =
1 − α

2
||β||22 + α||β||1 =

P∑
j=1

(
1 − α

2
β2
j + α |βj|) (2.26)
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which shows that elastic net is the same as lasso when α is equal to unity. For other

values of α, the penalty term Pα(β) interpolates between the L1 norm of the β and the

squared L2 norm of β. As α shrinks toward 0, elastic net approaches ridge regression.

In MATLAB lasso and elastic networks fit many values of λ simultaneously by an

efficient procedure named coordinate descent, based on Friedman, Tibshirani, and

Hastie [108,109].

2.3.5. Support Vector Machines

In a high or infinite-dimensional space, a support-vector machine (SVM) creates a

hyperplane (or hyperplanes) for regression. The hyperplane with the greatest distance

to the nearest training-data point of any class, known as the functional margin, is used

to create a decent separation, since the greater the margin, the lower the classifier’s

generalization error [110]. Even though the initial problem is expressed in a finite-

dimensional space, the sets to discriminate are frequently not linearly separable in that

space. As a result, the original finite-dimensional space was proposed to be mapped into

a considerably higher-dimensional space. To keep the computational load reasonable,

SVM systems utilize mappings that ensure that dot products of pairs of input data

vectors can be readily computed in terms of the variables in the original space by

defining them in terms of a kernel function selected to suit the problem. In a higher-

dimensional space, hyperplanes are defined as a set of points whose dot product with

a vector in that space is constant, where such a set of vectors is orthogonal, and so

minimum, and forms a hyperplane. The hyperplanes’ vectors can be chosen as linear

combinations with parameters of images of feature vectors found in the data base. In

this way, the sum of kernels can be used to calculate the distance between each test

point and the data points originating in one of the discriminated sets. As a result, the

set of mapped into any hyperplane can become rather complicated, allowing for far

more intricate discriminating between sets which are not convex at all in the original

space [110].
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2.3.6. Artificial Neural Networks

An artificial neural network (ANN) is an adaptive system that uses a layered

structure of interconnected nodes or neurons to learn using fed data. A neural network

can be trained to identify patterns, to categorize data, and to predict future events

using appropriate data. For training a data-set or creating a predictive model, neural

network is a great way to perform machine learning [111].

ANNs consist of three main layers, namely an input layer, a hidden layer (or

multiple hidden layers), and an output layer. The training set is introduced to the

system through the input layer of the neural network. The independent parameters

are specific in this part through neurons. The analysis of the relationships between data

is done in hidden layers. Each node layer trains on distinct parameters dependent on

the output of the preceding layer. Finally, in the output layer, target value is obtained

from the input and hidden layers [111]. The neural network’s primary concept is to

evaluate, test, evaluate again, test again, and continue until the desired output is

attained. The following equation represents the neural network model

y = f(b +
n∑

i=1

xiwi) (2.27)

in which y, x values, w values, b and f stand for the output of the neuron, inputs,

corresponding weights of the inputs, bias, and the activation function, respectively.

There are three properties one can select and change in ANNs. First one is the

feed type. The positioning of each input can affect the output since that changes the

interactions and interaction possibilities with other inputs. In this project, two step

prediction is done. Output of the first step used as an additional input in second predic-

tion step at some models. Also, initial charging data, which is actually an intermediate

result, is used in some of the systems to obtain more accurate results. Feeding position

of initial charging data also varies in neural network models. Schematic explanation

for each model can be found in corresponding results and discussion section.
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Second parameter one can change is number of hidden layers. With each layer,

neural network will become a more powerful tool to find and show the interactions

between the inputs and outputs yet it can also do over-fitting. Due to input size and

parameter amount, one hidden layer is used in this project. The third parameter one

can change is the size of these hidden layers, or in other words number of nodes. The

number of unknowns and number of equations (input size) limits the hidden layer size.

To avoid underestimating and/or overestimating, hidden layer size should be selected

carefully. In Figure 2.2 a typical neural network architecture consists of tree inputs,

a corresponding input layer, two hidden layers with four nodes, and an output layer

with two outputs can be seen.

Figure 2.2. Typical neural network architecture.

2.4. Performance Parameters

To determine the goodness of the systems four performance parameters are se-

lected, two for volumetric and two for gravimetric investigation. For gravimetric in-

vestigation, gravimetric energy density (EDG) and characteristic charging time (τM)

are selected as performance parameters while for volumetric investigation volumetric

energy density (EDV ) and resistance (R) are selected. Rl, τ1 and τ2 from transmission

line model fits are eliminated since they do not have direct physical meanings.
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First performance parameter of the gravimetric investigation, gravimetric energy

density can be calculated as follows

EDG =
1

2
CGV

2 (2.28)

where CG is the gravimetric capacitance of the system in F/g unit and V is the po-

tential difference applied to the system in Volts. Final unit of the gravimetric energy

density is chosen as Wh/kg, hence necessary conversions are done accordingly. To cal-

culate gravimetric capacitance, C1 values obtained from transmission line model, can

be simply divided to weight of the electrode.

Characteristic charging time is the second performance parameter of gravimetric

investigation, and it can be calculated as follows

τM = Rl

(
lmacro

lsim

)
CT (2.29)

in which CT is the total capacitance of the system, Rl is the resistance inside the

electrode, lsim is the thickness of these electrodes and lmacro is the thickness of a typical

commercial supercapacitor which is around 100 µm.

For volumetric investigation, volumetric energy density (EDG) and resistance (R)

are used. Volumetric energy density can be calculated from the following equation

EDV =
1

2
CV V

2 (2.30)

where CV is the volumetric capacitance in F/cm3 and V is the potential difference

applied to the system in Volts. Resulting volumetric density should have the units

of Wh/L, hence necessary conversions are done accordingly. To calculate volumetric

capacitance, C1 values obtained from transmission line model, can be simply divided

to volume of the electrode.



23

Rl value calculated via transmission line is an extensive property, which means it

depends on the size and/or amount of the system. To be able to analyze systems, in-

tensive properties should be used. In volumetric investigation section following relation

is used as resistance

R =
RlA

lsim
(2.31)

where Rl is the resistance calculated from transmission line model in units of Ohm, A

is the cross sectional area of the electrode and lsim is the thickness of the electrode.

Resulting resistance will have the units of Ohm meter.
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3. RESULTS & DISCUSSION

3.1. Dataset Preparation

3.1.1. Molecular Simulations

The molecular simulation data used in this work is comprised of 23 molecular sim-

ulation models of 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) ace-

tonitrile (ACN) mixtures confined by nanoporous carbon electrodes. The molecular

simulations of the charging process start near the potential of zero charge after apply-

ing a potential difference of 1 V, and the charging process is monitored as shown in

Figure 3.1. In particular, these simulations investigate the effect of electrode pore size

and electrolyte composition on energy storage performance.

The simulations used in this work differ from previous approaches as two key

features were implemented: a) realistic atomistic structures for microporous carbon

electrodes corresponding to nanoporous carbon synthesized from crystalline SiC at

high chlorination temperatures, and (b) realistic modelling of the charging process by

allowing charge fluctuations [103]. This approach allows us to perform simulations

under constant applied electrical potential, analogous to experiments [112]. These

simulations provide a training set that contains the relationship between electrode

micro-structure, electrolyte composition and energy storage performance.

Charging data throughout the simulation and distribution of the charging data

are investigated first. To reduce the noise moving averages are taken and the the

following total charge as a function of time graphs are generated. The first figure,

Figure 3.1, shows the processed data of the training set and the second figure, Figure

3.2, shows the distribution of the charges in systems with various pore sizes at 0.03 M,

0.12 M, 0.47 M, 0.63 M, and 0.89 M electrolytes via histograms.
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Figure 3.1. Total charge as a function of time a) 0.03 M, b) 0.12 M, c) 0.47 M, d)

0.63 M, and e) 0.89 M.

Figure 3.2. Charge distribution histograms of a) 0.03 M, b) 0.12 M, c) 0.47 M, d)

0.63 M, and e) 0.89 M.



26

It is seen from the Figure 3.1 that, there is a fast increase in initial charging

period and then they reach a plateau value which is taken as equilibration. Systems

with lower pore sizes reach equilibrium faster especially in systems with higher ion

fractions. The difference became unclear in systems with lower ion fractions.

Figure 3.2 shows the distribution in data and as expected, systems with higher

pore sizes generally have higher average charges. The difference became unclear in

lower ion fractions since the process is faster and the decision of beginning of the

equilibrium is problematic.

In the next section, after the validation of the transmission line model, TLM fits

of these systems will be done and extracted model parameters will used in Section 3.2.

Machine Learning Methods.

3.1.2. Transmission Line Model

3.1.2.1. Validation of Transmission Line Model. Demonstrating the applicability of

the transmission line model using data from the literature is the first step in vali-

dating the generalizability of the transmission line model to different electrode and

electrolytes of interest. Both models are tested in this section yet second model, model

with equal capacitances for each electrode slice, is selected for further investigation

since the parameter estimation is more straightforward for the second model due to

the capacitance estimation step. To validate the models, molecular simulation data of

a variety of electrode and electrolyte materials from the literature are used.

The room temperature ionic liquid electrolyte 1-butyl-3-methylimidazolium hex-

afluorophosphate (BMI-PF6) confined between a pair of carbide-derived carbon elec-

trodes structures (CDC-800, CDC-950 and CDC-1200) are used as the model system

in Pean et al. [73]. The charging simulations are carried out at 1 V. Other than elec-

trolyte region thickness lz which is 10 nm for all three systems, parameters used in

Pean et al. are tabulated in Table 3.1.
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Table 3.1. Parameters used in Pean, 2014 [73].

κ lx Rbulk Rl C1 C2

CDC (S m-1) (nm) (108 Ohm) (108 Ohm) (10-18 F) (10-18 F)

800 4.5 4.33 1.2 4.9 3.9 2.6

900 5.0 4.36 1.1 0.7 3.6 3.2

1200 5.3 4.37 1.0 1.2 4.3 2.7

Using the parameters in Table 3.1, together with lz and V infoelectrode charging

profiles for the two slices Q1 and Q2, inner and outer slices respectively, and the total

charge (QT) as a function of time are plotted in Figure 3.3.

Figure 3.3. Charge as a function of time for a) CDC-800, b) CDC-950, and c)

CDC-1200.

In Sampaio et al. sulfonium and phosphonium ionic liquids electrolytes are used

as electrolytes for simulating the charging of carbide-derived carbon electrodes [93]. In

particular, (2-methoxy-ethyl)-ethyl-methyl sulfonium bis (trifluoro methane sulfonyl)

imide (P222,201-NTf2) (IL-1) and (2-methoxy-ethyl)- triethyl-phosphonium bis (trifluo-

romethanesulfonyl) imide (S12G1-NTf2) (IL-2) are the tested ionic liquids. Both systems

are tested under two different potential difference, namely 2.5 V and 4 V. [93]. Bulk

electrolyte resistances are calculated as 1.71 x 108 Ohm for IL-1 and 1.80 x 108 Ohm for

IL-2. Rest of the TLM parameters together with τ1 and τ2 values, and corresponding

applied potentials are tabulated in Table 3.2.
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Table 3.2. Parameters used in Sampaio, 2020 [93].

Qmax τ1 τ2 Rl C1 C2 ∆V

(e) (ps) (ps) (108 Ohm) (10-18 F) (10-18 F) (V)

IL-1 22.0 348 2250 6.04 1.73 1.09 2.5

IL-2 26.0 210 1500 3.00 1.92 1.41 2.5

IL-1 36.5 383 2460 6.42 1.80 1.12 4.0

IL-2 42.8 270 1840 3.89 2.08 1.28 4.0

Using the parameters in Table 3.2, and Rbulk values mentioned above with equa-

tions explained in Materials & Methods section, electrode charging profiles for the two

slices Q1 and Q2, inner and outer slices respectively, and the total charge (QT) as a

function of time are evaluated. Figure 3.4 demonstrates the excellent fits obtained by

using the transmission line model on the simulations of CDC electrodes (P222,201-NTf2)

(IL-1) and (S12G1-NTf2) (IL-2) electrolytes at 2.5 V and 4.0 V.

Figure 3.4. Charge as a function of time for Sampaio, 2020.

Figure 3.5 shows the electrode charging profiles Q1 and Q2, inner and outer slices

respectively, and the total charge (QT) as a function of time for these four systems

separately. The initial charging period and the equilibrium point for each slice and for

the whole system can be investigated from these graphs.
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Figure 3.5. Charge as a function of time a) IL-1 at 2.5 V, b) IL-2 at 2.5 V, c) IL-1 at

4.0 V, and d) IL-2 at 4.0 V.

The work of Pean et al., Noh et al., and Liu et al. have used the simplified

version of transmission line models which assume similar capacitances for electrode

slices [94–96]. In Pean et al., the room temperature ionic liquid electrolyte 1- ethyl-

3-methylimidazolium hexafluorophosphate (C4mim-PF6) confined between a pair of

carbide-derived carbon electrodes structure (CDC-1200) is used as the model system

[94]. The charging simulations are carried out at 1 V potential difference. Transmission

line model parameters of that study together with κ, lx and lz values are tabulated in

Table 3.3.

Table 3.3. Parameters used in Pean, 2016 [94].

κ lx lz RBulk Rl C1 ∆V

CDC (S m-1) (nm) (nm) (108 Ohm) (108 Ohm) (10-18 F) (V)

1200 5.3 4.37 10 1.0 1.2 3.5 1.0
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In Figure 3.6 experimental results of that system is plotted together with total

charge obtained from transmission line model. Result shows that the simplified version

is quite successful to describe the charging of the supercapacitor.

Figure 3.6. Charge as a function of time for Pean, 2016.

In Noh et al., 1-ethyl-3-methylimidazolium thiocyanate (EMIM-SCN) ionic liquid

is confined between graphene walls for the simulations [95]. Parameters of the [EMIM]

cation were taken from the study on the imidazolium-based ionic liquids, and the

[SCN] anion parameters were taken from a previous study of cyano-anion ionic liquids.

Various electrical potentials (0.5 V to 4 V with 0.5 V increments) are tested [95].

Dimensions of the whole model and electrolyte concentration are the same for each

test. Cross-sectional area of the electrode is taken as 1.165 x 10−17 m2, while electrolyte

section length is taken as 6.3 x 10−9 m. Using Equation (2.1) Rbulk of each system is

calculated as 108 Ohm.

Table 3.4. Parameters used in Noh, 2019 [95].

Potential (V) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Qmax (e) 0.701 1.467 2.538 3.705 4.479 5.508 6.397 7.041

C1 (10-19 F) 2.248 2.350 2.711 2.968 2.870 2.941 2.928 2.820

Rl (10
8 Ohm) 0.94 1.96 2.37 2.90 2.45 2.08 1.74 9.74
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Using these TLM parameters in Table 3.4, and Rbulk values mentioned above with

equations explained in Materials & Methods section, electrode total charging profiles

are plotted together with their corresponding experimental values in Figure 3.7.

Figure 3.7. Charge as a function of time for Noh, 2019.

In Liu et al., molecular dynamics simulations are used to screen the zeolite-

templated carbon materials of Braun et al. as electrode materials, namely FAU 1, BEA

and EMT [113], and 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF4) and

acetonitrile (ACN) with the concentration of ions equal to 1 M is used as electrolyte [96].

Conductivity is 10.2 S/m for each system while surface area is 1.056 x 10−17 m2, and

electrolyte region thickness is 10.66 nm hence Rbulk is calculated as 9.9 x 107 Ohm.

Rest of the TLM parameters, namely Qmax, C1, and Rl can be found in Table 3.5.

Table 3.5. Parameters used in Liu, 2019 [96].

Qmax (e) C1 (10-19 F) Rl (10
8 Ohm)

FAU 1 2.36 3.79 0.715

BEA 1.70 2.72 6.510

EMT 2.41 3.86 1.360
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Using the parameters in Table 3.5, and Rbulk values mentioned above electrode

total charging profiles of FAU 1, BEA and EMT are plotted together with their corre-

sponding experimental values in Figure 3.8.

Figure 3.8. Total charge as a function of time for a) FAU 1, b) BEA, and c) EMT.

3.1.2.2. Application of the Transmission Line Model to Simulation Data. The valida-

tion tests demonstrate the applicability of the transmission line model to such systems.

Next step is to use TLM on our own molecular simulation data.

Figure 3.9. Simulation cell and equivalent circuit of transmission line model.
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To be able use the charge versus time data of 23 simulations created, noise should

be reduced first. After the pre-processing step we start to obtain required data for TLM

fits. As it is implied earlier TLM fit has three different parameters in it. Rbulk is the

resistance of the electrolyte in the bulk region, Rl is the resistance of each electrode slice,

and C1 is the capacitance of the electrode slices. Equivalent circuit in the transmission

line model can be seen in Figure 3.9.

Due to noise in data, estimation of Qmax is a bit problematic since the decision of

equilibrium point is harder in noisy data. To overcome this problem, moving average

of the raw data is generated and starting points of the equilibrium are selected. Qmax

values are obtained via averaging the rest of the data. Once Qmax values are found,

and used for root mean square of error (RMSE) calculation for verification then C1

values are calculated using Equation (2.6) and charging data.

For the Rbulk calculation together with the dimensions of the electrolyte, conduc-

tivity of the ionic liquid is required. Using Equation (2.12) five different conductivity

values for our five different ion fractions at room temperature are found.

Figure 3.10. a) bulk conductivity, b) D+ and D− as a function of ion fraction.

In Figure 3.10 for each ion fraction, D+, D− values and bulk conductivity results

are plotted. Then using these conductivity values and dimensions of the systems 23

different Rbulk values are calculated via Equation (2.11).
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With the calculation of C1 and Rbulk, since potential difference is already set,

only unknown of the TLM will become Rl, the resistance of each electrode slice. Rl is

back calculated via minimizing the error sum of the initial charging part of the data

using MATLAB cftool then controlled via solver plug-in of the Microsoft Excel.

Table 3.6. TLM parameters of the molecular simulations.

Model

No

Qmax

(e)

C1

(10-19 F)

Rbulk

(107 Ohm)

Rl

(108 Ohm)

τM

(s)

1 2.97 4.758 6.584 2.453 0.811

2 5.10 8.171 4.392 3.537 1.374

3 5.14 8.235 4.103 2.277 0.833

4 5.93 9.501 3.812 2.195 0.815

5 13.41 21.485 2.225 1.002 0.538

6 2.17 3.477 4.192 1.735 0.419

7 5.78 9.261 2.919 2.763 1.217

8 7.44 11.920 2.726 1.339 0.709

9 9.17 14.692 2.554 2.095 1.202

10 10.35 16.583 1.478 0.398 0.165

11 2.64 4.230 3.269 3.083 0.906

12 8.80 14.099 2.274 1.367 0.916

13 8.82 14.131 2.142 1.390 0.873

14 6.33 10.142 1.990 1.433 0.568

15 12.32 19.739 1.123 0.452 0.223

16 2.58 4.134 3.493 0.456 0.131

17 4.11 6.585 2.587 0.053 0.017

18 4.16 6.665 2.414 0.625 0.185

19 4.19 6.713 2.260 0.177 0.046

22 3.18 5.095 5.972 0.945 0.214

23 3.36 5.383 5.670 0.989 0.208
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Figure 3.11. TLM charging as a function of time a) 0.03 M, b) 0.12 M, c) 0.47 M, d)

0.63 M, and e) 0.89 M.

3.2. Machine Learning Methods

There are various parameters that affect the performance of the supercapacitors

which can be considered as input parameters such as molarity of the electrolyte solution,

ion fraction of electrolyte, conductivity of the electrolyte, bulk electrolyte resistance,

electrode dimensions, electrolyte dimensions, pore size, porosity, applied voltage, and

initial slope of the charge data. In this particular work, features that represent physical

meanings and adequate variances namely pore size, ion fraction, conductivity, porosity,

initial slope of the charging data, and bulk electrolyte resistance, selected as input

parameters and fed to machine learning models.

Performance parameters with respect to pore size, ion fraction, conductivity,

porosity, initial slope of the charging data, and bulk electrolyte resistance are plotted

in Figure 3.12 and Figure 3.13 for gravimetric investigation, and Figure 3.14 and Figure

3.15 for volumetric investigation.
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Figure 3.12. Gravimetric energy density as a function of a) ion fraction, b) pore size,

c) conductivity, d) porosity, e) initial slope, and f) bulk electrolyte resistance.

Figure 3.13. Characteristic charging time as a function of a) ion fraction, b) pore size,

c) conductivity, d) porosity, e) initial slope, and f) bulk electrolyte resistance.
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Figure 3.14. Volumetric energy density as a function of a) ion fraction, b) pore size,

c) conductivity, d) porosity, e) initial slope, and f) bulk electrolyte resistance.

Figure 3.15. Resistance as a function of a) ion fraction, b) pore size, c) conductivity,

d) porosity, e) initial slope, and f) bulk electrolyte resistance.
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Feature selection is an important part of machine learning. Features with a higher

variance contain more useful information since the effect can be trained with data. If

there is no variance in a parameter that parameter should be excluded from the model.

Since simulations have no variance in voltage, these values are eliminated but will be

used in calculation of performance parameters. Correlations are the second thing one

should consider, since highly correlated data increase the weight of these variables in

prediction. For example, Rbulk and κ is related via Equation (2.11), hence using them

both in a model can make their weight significantly higher in prediction which can

lead over-fitting. In addition to that, after investigating the effect of each via adding

them one by one to a linear regression model, parameters related to the geometry of

the systems will be eliminated. Some machine learning methods include parameter

elimination in them, for example LASSO regularization add penalty terms to different

features to reduce the freedom of the model to avoid over-fitting. The feature selection

leads simplification of models hence shorter training duration.

The optimization here is a two-step process. In the first step, capacitance values

are predicted using various set of inputs. In the second step, various set of features are

generated and tried to predict Rl. Some of these sets include predicted capacitance

values as well to control the effect that additional feature. The reasoning comes from

the Rl calculation method of transmission line model. In TLM, Rl is estimated using

the charging data and the rest of the TLM parameters. Therefore, the effect of capac-

itance in prediction might be significant hence should be controlled. To control and

compare the goodness of the fits RMSE and R2 values are used. That give the required

information about the importance of each parameter. But for that method some of the

simulation results must be eliminated to make that parameter the only variable. Since

the effect of each can also be seen directly from data, some combinations of the features

are selected, and R2 and RMSE are controlled again. Via observing the effect of param-

eters, possible sets of inputs are selected. Since our systems have the similar electrode

weight, gravimetric capacitance can be directly predicted using predetermined trans-

mission line model parameters. Also in the volumetric capacitance calculation, porosity

gave us the similar freedom together with the similar carbon volume in electrodes.
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3.2.1. Gravimetric Investigation

For the gravimetric investigation, as a first step, capacitance values are predicted

in units of farad per gram. In the second step, Rl values are predicted in units of

ohm with new set of inputs. The effect of addition of predicted capacitance is also

controlled in that step. Once Rl and capacitance values are predicted, energy densities

are calculated using Equation (2.28) and characteristic charging time values are calcu-

lated using Equation (2.29). Below the simulation results of gravimetric capacitance

and characteristic charging time values for the simulation data can be seen. Since the

results show that system with 0.03 ion fraction and 5.2 Å and 6.12 Å pore sizes have

not reached equilibrium yet, these results are eliminated from the data-set used to train

the machine learning models.

Table 3.7. Gravimetric capacitance and characteristic charging time values.

IF Capacitance (F/g) Charging Time (s)

0.89 13.25 22.76 22.94 26.47 59.85 0.81 1.37 0.83 0.81 0.54

0.63 9.68 25.80 33.20 40.93 46.19 0.42 1.22 0.71 1.20 0.17

0.47 11.78 11.78 39.36 28.25 54.98 0.91 0.92 0.87 0.57 0.22

0.12 11.51 18.34 18.57 18.70 - 0.13 0.02 0.19 0.05 -

0.03 - - 14.19 15.00 - - - 0.21 0.21 -

PS (Å) 5.2 6.12 14 14.1 15.5 5.2 6.12 14 14.1 15.5

3.2.1.1. Linear Regression. The simplest way to find the relation between input pa-

rameters and design parameters are to use linear regression. First the simplest model

is created to predict the capacitance.

C1 = β0 + β1PS + β2IF + β3Co (3.1)

in which pore size, ion fraction, and conductivity are used to predict gravimetric ca-

pacitance of the system.
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To test the goodness of the fits R2 and p-values are used as performance metrics.

R2 needs to be close to unity while p-value needs to be less than the significance level

which is generally set to 0.05. That shows a significant linear regression relationship

exists between the response variables and the predictor variables. To investigate the ef-

fect of each parameter test input sets are generated and R2 and p-values are monitored.

This guides us in determining the appropriate feature set for further evaluation.

The simplest model (T-1) which uses pore size, conductivity, and ion fraction to

predict the capacitance has 0.577 R2 and 0.0018 p-value. To increase the accuracy

of the system additional parameters and interaction terms should be added to the

model. Four interaction terms added to the T-1 model which are combinations of two

parameters. That new model, namely T-2, has a higher R2 value and lower p-value.

R2 for the T-2 is found as 0.760 while p-value is found as 0.0010 which is again below

the required amount. Since the effect of some parameters can also be seen directly

from data, some combination of these are selected. Also, for each system the effect of

interaction terms are controlled. Via that method possible sets of inputs are selected

and total of eight models created.

Table 3.8. Gravimetric parameter set control results.

Model Input Interactions R2 P-Value

T-1 PS, IF, Conductivity - 0.577 0.0018

T-2 PS, IF, Conductivity Included 0.760 0.0010

T-3 T-1 & Electrode Dimensions - 0.841 <0.0001

T-4 T-1 & Electrode Dimensions Included 0.885 0.0001

T-5 T-3 & Electrolyte Dimensions - 0.845 0.0001

T-6 T-3 & Electrolyte Dimensions Included 0.873 0.0008

T-7 T-5 & Initial Slope - 0.944 <0.0001

T-8 T-7 & Porosity - 0.945 <0.0001

T-9 T-7 & Porosity Included 0.960 0.0001
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In Table 3.8 the set of inputs of each model, together with R2 and p-values are

tabulated. Among these test models, it is seen that the model which includes infor-

mation on pore size, ion fraction, conductivity, porosity, dimensions of the electrolyte

region, initial slope of the charging data, interactions of pore size, ion fraction, and

conductivity as independent variables leads the best results. This result shows that

the dimensions of the electrode and electrolyte should be considered in prediction.

To be able to understand the effect of pore size and ion fraction better, the

parameter selection step is important. To create meaningful contour plots, most of

the parameters should change for each point of that plot accordingly. Keeping them

as constants reduces the explanation power of the contour plots, hence additional sets

are made accordingly. Porosity is related to pore size and conductivity is related to

ion fraction. Hence these are chosen as the main set of inputs and four models are

created. First model uses ion fraction, pore size, conductivity, and porosity as inputs.

In second model interaction terms are added to the system to increase the accuracy

of the prediction. Third model uses initial slope data in addition to the parameters

used in first model. And finally, the fourth model include the terms of the third model

together with interaction terms for prediction.

Figure 3.16. Gravimetric linear regression models created.
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First model (LR-1) has R2 = 0.753 and RMSE = 8.049 F/g. Second model (LR-

2) with the addition of interaction terms R2 decreases to 0.706 and RMSE increases

to 9.5639 F/g. Third model (LR-3) has R2 = 0.908 and RMSE = 5.5834 F/g. The

fourth model (LR-4) with the addition of interaction terms of ion fraction, pore size,

porosity, and conductivity R2 increases to 0.9421 while RMSE decreases to 3.9769 F/g.

In Rl prediction step, similar setups are used. In first model ion fraction, pore size,

conductivity, and porosity are used as input features. In second model interaction

terms are added to the system to increase the accuracy of the prediction. Third model

uses initial slope data in addition to the parameters used in first model and finally,

the fourth model interaction terms in addition to the input set of the third model.

Predicted Rl values are used to compute characteristic charging times with Equation

(2.29) and resulting τM values are used for comparison.

First model has R2 = 0.576 and RMSE = 0.301 s while second model has R2 =

0.772 and RMSE = 0.251 s. Third model has R2 = 0.671 and RMSE = 0.249 s while

fourth model has R2 = 0.737 and RMSE = 0.194 s. The best model is found as LR-3.

Related capacitance and charging time graphs are plotted in Figure 3.17. Results are

tabulated in Table 3.9. Both cross validation average and overall RMSE values are

given for each model in Table 3.9.

Figure 3.17. Linear regression (LR-3) comparison graphs a) gravimetric capacitance,

b) characteristic charging time.
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Table 3.9. Gravimetric linear regression model results.

CG (F/g) τM (s)

Model R2 RMSE R2 RMSE

LR-1 0.7353 8.0491 8.0845 0.5760 0.3013 0.3241

LR-2 0.7057 9.5639 9.9661 0.7725 0.2507 0.2792

LR-3 0.9075 5.5834 6.0050 0.6709 0.2493 0.2655

LR-4 0.9421 3.9769 5.5214 0.7372 0.1937 0.2261

3.2.1.2. Ridge Regression. First model, namely R-1, uses ion fraction, pore size, con-

ductivity, and porosity alone. R-2 added interaction terms to the model to increase

R2 and to decrease RMSE. The third model R-3 uses initial slope data together with

pore size, porosity, ion fraction, and conductivity. The fourth and final model added

interaction terms to the third model. Predicted Rl values are used to compute charac-

teristic charging times with Equation (2.29). Ridge parameter (k) values are tried with

0.1 increments for each model. Both cross validation average and overall RMSE values

are given for each model in Table 3.10 together with the selected ridge parameters.

Table 3.10. Gravimetric ridge regression model results.

CG (F/g) τM (s)

Model k R2 RMSE k R2 RMSE

R-1 0.01 0.7526 7.4015 7.4440 0.01 0.5980 0.2827 0.2927

R-2 0.01 0.7488 7.7637 7.9173 0.01 0.7656 0.2188 0.2419

R-3 0.01 0.9675 3.5418 3.7639 0.01 0.7356 0.2210 0.2316

R-4 0.01 0.9754 3.1244 3.3484 0.01 0.8491 0.1700 0.1748

Considering the R2 and RMSE values of both gravimetric capacitance and charac-

teristic charging time, the best predictive model is selected as R-4. Related gravimetric

capacitance and characteristic charging time comparison graphs are plotted.
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Figure 3.18. Ridge regression (R-4) comparison graphs a) gravimetric capacitance, b)

characteristic charging time.

3.2.1.3. Lasso Regression & Elastic Networks. In MATLAB, elastic network solution

and lasso regression use same build-in function. While alpha (α) set to unity solution

gives the lasso regression, the change in α values leads scanning through elastic net-

work. For all models, λ values that gave minimum deviance and error summation is

selected. Figure 3.19 shows the models created for gravimetric investigation with their

corresponding Rl prediction inputs. Total of six systems are created.

Figure 3.19. Elastic network models created.
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A1 and A2 have elastic network solutions. B1 to B4 use generalized linear models,

particularly normal distribution. Initial slope, pore size, porosity, ion fraction, and

conductivity data are used to predict capacitance. A1, A2, B1, and B2 use interaction

terms in addition to these parameters. In Rl prediction all models uses pore size,

porosity, ion fraction, conductivity, and predicted capacitance as input parameters.

A2, B3, and B4 use initial slope in addition to these. Also B1 and B3 use interaction

terms in Rl prediction. Predicted Rl values are used to compute characteristic charging

times with Equation (2.29). Best model is found as B2.

Table 3.11. Gravimetric elastic network model results.

Capacitance (F/g) Charging Time (s)

Model α λ R2 RMSE α λ R2 RMSE

A1 0.11 0.0152 0.980 3.127 3.362 0.54 0.0215 0.870 0.161 0.172

A2 0.11 0.0152 0.980 3.127 3.362 1.00 0.0185 0.861 0.165 0.174

B1 0.07 0.0015 0.966 3.623 3.824 0.01 0.0110 0.699 0.231 0.243

B2 0.11 0.0115 0.980 3.103 3.350 0.58 0.0166 0.875 0.159 1.170

B3 0.07 0.0015 0.966 3.623 3.824 0.01 0.0306 0.704 0.230 0.242

B4 0.11 0.0115 0.980 3.103 3.350 1.00 0.0154 0.868 0.161 0.171

Figure 3.20. Elastic network (B2) comparison graphs a) gravimetric capacitance, b)

characteristic charging time.
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3.2.1.4. Support Vector Machines. For the capacitance prediction, initial slope data,

pore size, porosity, ion fraction, and conductivity data are used. R2 is found as 0.960

and RMSE is found as 3.703 F/g. In Rl prediction in addition to pore size, porosity, ion

fraction, and conductivity, predicted capacitance values are used. Predicted Rl values

are used to compute characteristic charging times with Equation (2.29). R2 is found as

0.734 and RMSE is found as 0.250 s for charging time prediction. Related gravimetric

capacitance and characteristic charging time comparison graphs are plotted.

Figure 3.21. Support vector machines comparison graphs a) gravimetric capacitance,

b) characteristic charging time.

3.2.1.5. Artificial Neural Network. Total of 17 models are created for gravimetric in-

vestigation. Models have different input types and positions yet can be grouped. Unless

otherwise explicitly stated, in capacitance prediction pore size, porosity, ion fraction,

and conductivity are used. There are four types of systems related to feeding positions

and input types. First, matrix type input is used in two models, namely G1 and G2.

Then there are separated feeds which enters the system via various positions.

In type NN1, all the inputs entered to the first hidden layer including initial

charging data. In type NN2, initial charging data fed to both layers hence has an

additional direct effect on the outcome and prediction. In type NN3, initial charging

data only fed to the second layer. In Figure 3.22 whole set of models created for

gravimetric investigation can be seen.
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Figure 3.22. Gravimetric neural network models created.

Hidden layers are controlled via various sizes, namely one to five since the optimal

size of the hidden layer is usually between the size of the input and size of the output

layers. The layer size which gave the best R2 and RMSE values selected for each model

for further calculations. In Table 3.12 selected hidden layer sizes (HLS), input types

(Matrix, NN1, NN2, or NN3), and terms used in Rl prediction in addition to pore size,

ion fraction, porosity, and conductivity are given for each system.
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Table 3.12. Gravimetric neural network model details.

Hidden Layer Sizes Rl Prediction

Model Type CG Prediction Rl Prediction Qi Type CG Qi

G1 Matrix 3 Nodes 4 Nodes Initial Slope + -

G2 Matrix 3 Nodes 3 Nodes Initial Slope + +

G3 NN1 3 Nodes 2 Nodes 10-Point + -

G4 NN1 3 Nodes 3 Nodes 10-Point + +

G5 NN1 3 Nodes Failed 10-Point - -

H3 NN2 1 Nodes 3 Nodes 10-Point + -

H4 NN2 1 Nodes 3 Nodes 10-Point + +

H5 NN2 1 Nodes Failed 10-Point - -

H6 NN2 3 Nodes 2 Nodes Initial Slope + -

H7 NN2 3 Nodes 3 Nodes Initial Slope + +

H8 NN2 3 Nodes 4 Nodes Initial Slope - -

I3 NN3 1 Nodes 4 Nodes 10-Point + -

I4 NN3 1 Nodes 3 Nodes 10-Point + +

I5 NN3 1 Nodes Failed 10-Point - -

I6 NN3 3 Nodes 3 Nodes Initial Slope + -

I7 NN3 3 Nodes 3 Nodes Initial Slope + +

I8 NN3 3 Nodes 3 Nodes Initial Slope - -

Both G1 and G2 have pore size, porosity, ion fraction, conductivity, and initial

slope data to predict capacitance. Initial slope is defined as the maximum charge in the

first 0.25 ns of the simulation trajectory. Matrix type feeds use maximum charge of 0.25

ns of the data. G1 and G2 have R2 = 0.987 and RMSE = 2.583 F/g in capacitance

prediction. In Rl prediction G1 uses predicted capacitance, pore size, porosity, ion

fraction, and conductivity while G2 also uses initial slope. Predicted Rl values are

used to compute characteristic charging times with Equation (2.29). G1 has R2 =

0.796 and RMSE = 0.211 s while G2 has R2 = 0.836 and RMSE = 0.196 s.
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Figure 3.23. Matrix type ANN design for G1 and G2.

G3, G4, and G5 uses NN1 type of feeding. In capacitance prediction pore size,

porosity, ion fraction, conductivity, and 10-point initial charging data entered the first

layer together. Capacitance prediction has R2 = 0.951 and RMSE = 3.763 F/g. In

Rl prediction G3 uses predicted capacitance, while G4 also uses initial charging data.

G5 uses the base predictors only which consist of pore size, porosity, ion fraction, and

conductivity. Predicted Rl values are used to compute characteristic charging times

with Equation (2.29). G3 has R2 = 0.770 and RMSE = 0.216 s while G4 has R2 =

0.732 and RMSE = 0.232 s. G5 is failed to predict Rl hence eliminated.

Figure 3.24. NN1 type ANN design for G3, G4, and G5.
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H3, H4, and H5 uses NN2 type of feeding. Predictors entered to first layer to-

gether. Initial charging data added to both first and second layer. In capacitance

prediction pore size, porosity, ion fraction, conductivity, and 10-point initial charging

data are used. Visual explanation of the models can be seen in Figure 3.25. Capac-

itance prediction has R2 = 0.898 and RMSE = 5.949 F/g. In Rl prediction H3 uses

predicted capacitance, while H4 also uses 10-point initial charging data. H5 uses the

base predictors only which consist of pore size, porosity, ion fraction, and conductivity.

Predicted Rl values are used to compute characteristic charging times with Equation

(2.29). H3 has R2 = 0.680 and RMSE = 0.255 s while H4 has R2 = 0.686 and RMSE

= 0.254 s. H5 is failed to predict Rl hence characteristic charging time.

Figure 3.25. NN2 type ANN design for H3, H4, and H5.

H6, H7, and H8 uses NN2 type of feeding. Predictors entered to first layer

together. initial slope data added to both first and second layer. In capacitance

prediction pore size, porosity, ion fraction, conductivity, and initial slope data is used.

Capacitance prediction has R2 = 0.973 and RMSE = 3.296 F/g. In Rl prediction H6

uses predicted capacitance, while H7 also uses initial slope data. H8 uses the base

predictors only which consist of pore size, porosity, ion fraction, and conductivity.

Predicted Rl values are used to compute characteristic charging times with Equation

(2.29). H6 has R2 = 0.785 and RMSE = 0.211 s while H7 has R2 = 0.811 and RMSE

= 0.186 s. H8 has R2 = 0.633 and RMSE = 0.242 s.
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Figure 3.26. NN2 type ANN design for H6, H7, and H8.

I3, I4, and I5 uses NN3 type of feeding. In capacitance prediction pore size, ion

fraction, porosity, and conductivity entered the first layer together. 10-point initial

charging data added to the second layer only. In Rl prediction step, I3 uses predicted

capacitance, while I4 also uses 10-point initial charging data to increase accuracy of

the prediction. I5 uses the base predictors only which consist of pore size, porosity,

ion fraction, and conductivity. Predicted Rl values are used to compute characteristic

charging times with Equation (2.29). Visual explanation of the models I3, I4, and I5

can be seen in Figure 3.27.

Figure 3.27. NN3 type ANN design for I3, I4, and I5.
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Capacitance prediction has R2 = 0.903 and RMSE = 6.018 F/g. I3 has R2 =

0.690 and RMSE = 0.245 s while I4 has R2 = 0.700 and RMSE = 0.557 s. I5 is failed

to predict Rl hence characteristic charging time.

I6, I7, and I8 uses NN3 type of feeding. Predictors entered to first layer together.

Initial slope data added to second layer only. In capacitance prediction pore size,

porosity, ion fraction, conductivity, and initial slope data is used. Visual explanation

of the models can be seen in Figure 3.28. Capacitance prediction has R2 = 0.964

and RMSE = 3.708 F/g. In Rl prediction I6 uses predicted capacitance, while I7 also

uses 0.25 ns initial slope data. I8 uses the base predictors only which consist of pore

size, porosity, ion fraction, and conductivity. Predicted Rl values are used to compute

characteristic charging times with Equation (2.29). I6 has R2 = 0.795 and RMSE =

0.207 s while I7 has R2 = 0.777 and RMSE = 0.213 s. I8, the simplest model of these

three, has R2 = 0.601 and RMSE = 0.251 s.

Figure 3.28. NN3 type ANN design for I6, I7, and I8.

In Table 3.13 whole set of neural network models can be found. Lines with no

hidden layer size or R2 and/or RMSE values are failed predictions which have below

0.6 R2 values. 5-Fold cross validation is applied to each system and pre-selected sets

are used in calculation. Both cross validation average and overall RMSE values are

given for each model.
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Table 3.13. Gravimetric neural network model results.

Capacitance (F/g) τM (s)

Model R2 RMSE R2 RMSE

G1 0.9871 2.5829 2.8091 0.7961 0.2110 0.2207

G2 0.9871 2.5829 2.8091 0.8360 0.1964 0.2029

G3 0.9508 3.7634 3.8699 0.7696 0.2157 0.2255

G4 0.9508 3.7634 3.8699 0.7324 0.2319 0.2407

G5 0.9508 3.7634 3.8699 - - -

H3 0.8981 5.9493 6.1567 0.6795 0.2551 0.2711

H4 0.8981 5.9493 6.1567 0.6859 0.2537 0.2685

H5 0.8981 5.9493 6.1567 - - -

H6 0.9732 3.2964 3.4709 0.7852 0.2110 0.2203

H7 0.9732 3.2964 3.4709 0.8110 0.1862 0.1972

H8 0.9732 3.2964 3.4709 0.6330 0.2416 0.2610

I3 0.9026 6.0183 6.2461 0.6896 0.2451 0.2711

I4 0.9026 6.0183 6.2461 0.7000 2.5570 0.2687

I5 0.9026 6.0183 6.2461 - - -

I6 0.9640 3.7085 3.8707 0.7948 0.2066 0.2173

I7 0.9640 3.7085 3.8707 0.7771 0.2126 0.2218

I8 0.9640 3.7085 3.8707 0.6094 0.2512 0.2708

According to these values in Table 3.13, G2 is found as the most accurate predic-

tive ANN model of the gravimetric investigation. None of the models is eliminated in

capacitance prediction step. Models using 10-point initial charging data as an input in

first step yet predicting Rl without such data failed to predict Rl hence characteristic

charging time. Although there are models that gave quite close results in capacitance

prediction step, in Rl prediction they became far worse than the G2. Comparison

graphs of G2 for gravimetric capacitance and characteristic charging time values can

be seen in Figure 3.29.
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Figure 3.29. Neural network (G2) comparison graphs a) gravimetric capacitance, b)

characteristic charging time.

3.2.2. Volumetric Investigation

For the volumetric investigation, as a first step capacitance values are predicted

in units of farad per cubic centimeter. In the second step, Rl values are predicted in

units of ohm with new set of inputs. The effect of addition of predicted capacitance is

also controlled in that step. Once Rl and capacitance values are predicted volumetric

energy densities are calculated using Equation (2.30) and resistances are calculated

using Equation (2.31). In Table 3.14 the simulation results of volumetric capacitances

and resistances can be found.

Table 3.14. Volumetric capacitance and resistance values.

IF Capacitance (F/cm3) Resistance (Ohm m)

0.89 14.69 13.92 12.56 12.62 13.22 2.76 4.94 3.32 3.23 2.04

0.63 10.73 15.78 18.18 19.52 10.20 1.95 3.86 1.95 3.08 0.81

0.47 13.05 13.05 21.56 13.47 12.14 3.47 1.91 2.03 2.11 0.92

0.12 12.43 11.22 10.17 8.92 - 0.53 0.07 0.91 0.26 -

0.03 - - 7.77 7.15 - - - 1.38 1.45 -

PS (Å) 5.2 6.12 14 14.1 15.5 5.2 6.12 14 14.1 15.5
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Since the results show that system with 0.03 ion fraction and 5.2 Å and 6.12

Å pore sizes have not reached equilibrium yet, these results are eliminated from the

data-set used to train the machine learning models

3.2.2.1. Linear Regression. Pore size, porosity, ion fraction, and conductivity are cho-

sen as the main inputs and four models are created for volumetric investigation.

Figure 3.30. Volumetric linear regression models created.

First model uses ion fraction, pore size, conductivity, and porosity alone. That

leads R2 = 0.489 and RMSE = 3.871 F/cm3. In second model, interaction terms are

added to the system and R2 value increases to 0.631 and RMSE value increases to 4.173

F/cm3. In third model in addition to the parameters used in first model, volumetric

initial slope data is also used. That increases the R2 to 0.687 and reduces the RMSE

to 1.580 F/cm3. The fourth model uses interaction terms of ion fraction, pore size,

porosity, and conductivity, and further increases the R2 to 0.718 while increases RMSE

to 3.442 F/cm3. In Rl prediction step, similar setups are used. First model gives 0.730

R2 with 0.726 Ohm m RMSE while second model gives 0.622 R2 and 0.787 Ohm m

RMSE. Third model gives 0.746 R2 and 0.735 Ohm m RMSE while fourth model gives

0.775 R2 and 0.976 Ohm m RMSE. Results are tabulated in Table 3.15.
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Table 3.15. Volumetric linear regression model results.

CV (F/cm3) Rl (Ohm m)

Model R2 RMSE R2 RMSE

LR-1 0.4893 3.8712 3.8856 0.7303 0.7259 0.7456

LR-2 0.6310 4.1734 4.5856 0.6224 0.7866 0.8756

LR-3 0.6867 1.5803 1.6149 0.7462 0.7351 0.7589

LR-4 0.7183 3.4417 3.9097 0.7753 0.9763 1.2431

According to the results in Table 3.15 the best predictive linear regression model is

selected as LR-3 via considering R2 and RMSE values. Related volumetric capacitance

and resistance comparison graphs are plotted in Figure 3.31.

Figure 3.31. Linear regression (LR-3) comparison graphs a) volumetric capacitance,

b) resistance.

3.2.2.2. Ridge Regression. R-1 uses ion fraction, pore size, conductivity, and porosity

alone. R-2 added interaction terms to the model to increase R2 and to decrease RMSE.

The third model uses initial slope data together with pore size, porosity, ion fraction,

and conductivity. The fourth uses additional interaction terms for prediction. Ridge

parameter (k) values are tried with 0.1 increments for each model. Below together with

the results, the selected ridge parameter values are tabulated in Table 3.16.
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Table 3.16. Volumetric ridge regression model results.

CV (F/cm3) Rl (Ohm m)

Model k R2 RMSE k R2 RMSE

R-1 0.02 0.5817 3.0932 3.2166 0.02 0.7641 0.6758 0.6947

R-2 0.02 0.6852 2.8017 2.9577 0.02 0.7219 0.6822 0.7140

R-3 0.02 0.7262 1.4926 1.5722 0.02 0.7582 0.6734 0.6930

R-4 0.02 0.8246 1.2421 1.2781 0.02 0.8579 0.5096 0.5360

According to the results in Table 3.16 the best ridge regression model is as selected

R-4, and volumetric capacitance and resistance comparison graphs are plotted.

Figure 3.32. Ridge regression (R-4) comparison graphs a) volumetric capacitance, b)

resistance.

3.2.2.3. Lasso Regression & Elastic Networks. For volumetric investigation total of

six systems are created and tested. First two, namely A1 and A1, have elastic network

solutions. B1 to B4 use generalized linear models, particularly normal distribution.

All six models use initial slope together with pore size, porosity, ion fraction, and

conductivity to predict capacitance. A1, A2, B1, and B2 use interaction terms in

addition to these parameters.
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In Rl prediction all models use pore size, porosity, ion fraction, conductivity, and

predicted capacitance as input parameters. A2, B3, and B4 use initial slope in addition

to these. Also B1 and B3 use interaction terms in Rl prediction. Predicted Rl values

are used to compute resistance with Equation (2.31). Results of all six models together

with their corresponding α and λ values can be seen in Table 3.17. According to the

results in Table 3.17 the best predictive elastic network model is found as B4. Related

volumetric capacitance and resistance comparison graphs are plotted in Figure 3.33.

Both cross validation average and overall RMSE values are given for each model.

Table 3.17. Volumetric elastic network model results.

Capacitance (F/cm3) Resistance (Ohm m)

Model α λ R2 RMSE α λ R2 RMSE

A1 0.08 0.0113 0.888 1.097 1.181 0.28 0.0503 0.831 0.555 0.571

A2 0.08 0.0113 0.888 1.097 1.181 0.33 0.0514 0.841 0.534 0.561

B1 0.06 0.0553 0.728 1.610 1.701 0.38 0.0003 0.767 0.671 0.689

B2 0.09 0.0083 0.890 1.090 0.172 0.26 0.0450 0.835 0.545 0.562

B3 0.06 0.0553 0.728 1.610 1.701 0.22 0.0002 0.767 0.671 0.689

B4 0.09 0.0083 0.890 1.090 0.172 0.27 0.0522 0.844 0.527 0.553

Figure 3.33. Elastic network (B4) comparison graphs a) volumetric capacitance, b)

resistance.
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3.2.2.4. Support Vector Machines. For the capacitance prediction, initial slope data,

pore size, porosity, ion fraction, and conductivity are used. R2 is found as 0.859 and

RMSE is found as 1.640 F/cm3 in volumetric capacitance prediction. In Rl prediction

in addition to pore size, porosity, ion fraction, and conductivity, predicted capacitance

values are used. Predicted Rl values are used to compute resistance with Equation

(2.31). R2 is found as 0.672 and RMSE is found as 0.779 Ohm m in resistance predic-

tion. Volumetric capacitance and resistance comparison graphs are plotted.

Figure 3.34. Support vector machine comparison graphs a) volumetric capacitance,

b) resistance.

3.2.2.5. Artificial Neural Network. Total of 17 models are created for volumetric in-

vestigation. Models have different input types and positions yet can be grouped. Unless

otherwise explicitly stated, in capacitance prediction pore size, porosity, ion fraction,

and conductivity are used in all systems. There are four types of systems related to

feeding positions and input types. First, matrix type input is used in two models,

namely G1 and G2. Then there are separated feeds which enters the system via vari-

ous positions. In type NN1, all the input parameters entered to the first hidden layer

including selected type of initial charging data. In type NN2, initial charging data fed

to both of the layers, namely hidden layer and output layer, hence have a more direct

effect on the outcome. In type NN3, selected type of initial charging data only fed to

the output layer.
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Layers are controlled via various sizes, namely one to five since the optimal size

of the hidden layer is generally between the size of the input and size of the output

layers. The layer size which gave the best R2 and RMSE values are selected for the

corresponding model and used in further studies.

Figure 3.35. Volumetric neural network models created.

As it can be seen from the Figure 3.35, NN2 and NN3 type of models are failed

while using 10 point initial charging data. They cannot give consistent above 0.6 R2

values, hence eliminated in capacitance prediction step. Selected hidden layer sizes

(HLS), input types (Matrix, NN1, NN2, or NN3), and features used in Rl prediction

(predicted capacitance and initial charging data with its corresponding type) in ad-

dition to pore size, porosity, ion fraction, and conductivity are tabulated for each in

Table 3.18.
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Table 3.18. Volumetric neural network model details.

Model

Name

Input

Type

Hidden Layer Sizes Rl Prediction

CG Prediction Rl Prediction Qi Type CG Qi

G1 Matrix 3 Nodes 2 Nodes Initial Slope + -

G2 Matrix 3 Nodes 3 Nodes Initial Slope + +

G3 NN1 3 Nodes 3 Nodes 10-Point + -

G4 NN1 3 Nodes 4 Nodes 10-Point + +

G5 NN1 3 Nodes 4 Nodes 10-Point - -

H6 NN2 4 Nodes 5 Nodes Initial Slope + -

H7 NN2 4 Nodes 3 Nodes Initial Slope + +

H8 NN2 4 Nodes 2 Nodes Initial Slope - -

I6 NN3 3 Nodes 3 Nodes Initial Slope + -

I7 NN3 3 Nodes 2 Nodes Initial Slope + +

I8 NN3 3 Nodes 3 Nodes Initial Slope - -

Both G1 and G2 have pore size, porosity, ion fraction, conductivity, and initial

slope data to predict capacitance. initial slope is defined as the maximum charge

obtained in the first 0.25 ns of the simulation. The design of the G1 and G2 can be

seen from the Figure 3.23. G1 and G2 have R2 = 0.898 and RMSE = 1.295 F/cm3

in capacitance prediction. In Rl prediction G1 uses predicted capacitance, pore size,

porosity, ion fraction, and conductivity while G2 also uses initial slope. Predicted Rl

values are used to compute resistance with Equation (2.31). G1 has R2 = 0.691 and

RMSE = 0.889 Ohm m while G2 has R2 = 0.861 and RMSE = 0.680 Ohm m.

G3, G4, and G5 uses NN1 type of feeding. Selected set of features entered to first

layer together. In capacitance prediction pore size, porosity, ion fraction, conductivity,

and 10-point initial charging data is selected as input parameters. The design of the

G3, G4, and G5 can be seen from the Figure 3.24. Capacitance prediction has R2 =

0.667 and RMSE = 2.732 F/cm3.
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In Rl prediction G3 uses predicted capacitance, while G4 also uses 10-point initial

charging data. G5 uses the base predictors only which consist of pore size, porosity,

ion fraction, and conductivity. Predicted Rl values are used to compute resistance with

Equation (2.31). G3 has R2 =0.670 and RMSE = 0.905 Ohm m while G4 has R2 =

0.667 and RMSE = 0.778 Ohm m. G5 has R2 = 0.672 and RMSE = 0.766 Ohm m.

H3, H4, and H5 uses NN2 type of feeding. Predictors entered to first layer

together. Initial charging data added to both first and second layer. The design of

the H3, H4, and H5 can be seen from the Figure 3.25. In capacitance prediction pore

size, porosity, ion fraction, conductivity, and 10-point initial charging data is used.

Capacitance predictions have failed hence these systems are eliminated.

H6, H7, and H8 uses NN2 type of feeding. Predictors entered to first layer

together. initial slope data added to both first and second layer. In capacitance

prediction pore size, porosity, ion fraction, conductivity, and initial slope is used. The

design of the H6, H7, and H8 can be seen from the Figure 3.26. Capacitance prediction

has R2 = 0.864 and RMSE = 1.064 F/cm3.

In Rl prediction H6 uses predicted capacitance, while H7 also uses 0.25 ns max-

imum initial slope data. H8 uses the base predictors only which consist of pore size,

porosity, ion fraction, and conductivity. Predicted Rl values are used to compute resis-

tance with Equation (2.31). H6 has R2 = 0.683 and RMSE = 0.818 Ohm m while H7

has R2 = 0.692 and RMSE = 0.884 Ohm m. H8 has R2 = 0.680 and RMSE = 0.816

Ohm m.

I3, I4, and I5 uses NN3 type of feeding. Predictors entered to first layer together.

Initial charging data added to second layer only. In capacitance prediction pore size,

porosity, ion fraction, conductivity, and 10-point initial charging data is used. The

design of the I3, I4, and I5 can be seen from the Figure 3.27. Capacitance predictions

have failed hence systems are eliminated.
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I6, I7, and I8 uses NN3 type of feeding. Predictors entered to first layer together.

initial slope data added to second layer only. In capacitance prediction pore size,

porosity, ion fraction, conductivity, and initial slope is used. The design of the I6, I7,

and I8 can be seen from the Figure 3.28. Capacitance prediction has R2 = 0.784 and

RMSE = 1.396 F/cm3. In Rl prediction I6 uses predicted capacitance, while I7 also

uses initial slope. I8 uses the base predictors only which consist of pore size, porosity,

ion fraction, and conductivity. Predicted Rl values are used to compute resistance with

Equation (2.31). I6 has R2 = 0.680 and RMSE = 0.901 Ohm m while I7 has R2 =

0.676 and RMSE = 0.998 Ohm m. I8 has R2 = 0.679 and RMSE = 0.890 Ohm m.

Below full table of neural network set results can be found. Models with failed

capacitance predictions are eliminated. Predictions with R2 values below 0.6 are con-

sidered as failed. Both cross validation average and overall RMSE values are given for

each model in Table 3.19.

Table 3.19. Volumetric neural network model results.

Capacitance (F/cm3) Resistance (Ohm m)

Model R2 RMSE R2 RMSE

G1 0.8980 1.2949 1.3908 0.6912 0.8890 0.8989

G2 0.8980 1.2949 1.3908 0.8611 0.6805 0.6826

G3 0.6674 2.7322 2.8672 0.6700 0.9051 0.9181

G4 0.6674 2.7322 2.8672 0.6669 0.7782 0.7970

G5 0.6674 2.7322 2.8672 0.6724 0.7662 0.7870

H6 0.8643 1.0636 1.1921 0.6844 0.8183 0.8306

H7 0.8643 1.0636 1.1921 0.6919 0.8839 0.8950

H8 0.8643 1.0636 1.1921 0.6805 0.8158 0.8309

I6 0.7841 1.3965 1.5065 0.6803 0.9007 0.9123

I7 0.7841 1.3965 1.5065 0.6755 0.9975 1.0103

I8 0.7841 1.3965 1.5065 0.6794 0.8895 0.9035
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Overall, neural networks with matrix type feed, namely G1 and G2, gave better

R2 and RMSE values. All the models using 10-point initial charging data as an in-

put failed to predict capacitance. Since capacitance prediction is the first step of the

optimization, these models are eliminated. Although models with NN2 type feeding,

namely H6, H7, and H8, have quite close R2 values and RMSE, their Rl prediction

results are worse than that of G2. Since the overall accuracy of the models are consid-

ered here, G2 is selected as the best predictive ANN model in volumetric investigation.

Below corresponding comparison graphs can be seen.

Figure 3.36. Neural network (G2) comparison graphs a) volumetric capacitance, b)

resistance.

3.3. Optimum Design Selection & Contour Plots

To determine the optimum design selection, in addition to R2 and RMSE values

calculated, detailed data/error investigation are done to avoid over-fitting. Relation

between pore size and porosity, and relation between ion fraction and conductivity

are formulated and used in generation of contour plots. In Figure 3.37 the resulting

equations together with the related data points can be seen. With the addition of these

relations each data other than initial charging data (initial slope) changes accordingly.

Since initial slope can be adjusted via changing potential difference applied, contour

plots can give useful information about these systems.
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Figure 3.37. Relation graphs a) conductivity as a function of ion fraction, b) porosity

as a function of pore size.

3.3.1. Gravimetric Contour Plots

As it is mentioned in previous section, A1, B2, and G2 are found as the best

models in gravimetric investigation. A1 is the elastic network solution with 0.11 α and

0.0152 λ for capacitance prediction and 0.54 α and 0.0215 λ for Rl prediction. B2 is the

normal distribution elastic network solution with 0.11 α and 0.0115 λ for capacitance

prediction and 0.58 α and 0.0166 λ for Rl prediction. And G2 is the neural network

model with matrix type input which has 3 hidden layers in both capacitance prediction

part and Rl prediction part. Among these three the minimum error and fluctuations

are seen in B2, hence it is selected as the best predictive model.

Throughout the Section 3.2.1 and Section 3.2.2, namely gravimetric and volu-

metric investigation, capacitances and Rl values are predicted yet to understand the

effect of parameters, in our case especially the effect of pore size and ion fraction, and

to optimize design parameters for improved energy density and fast charging, contour

plots are generated. For that purpose, pore size and ion fraction are selected as axis

parameters, using the relation between pore size and porosity and relation between ion

fraction and conductivity, these values are also changed accordingly for each point in

the map. The only constant in these graphs are initial charging data which is taken

from an average system, namely the system with 0.47 ion fraction and 6.12 Å pore size.
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Figure 3.38 shows the contour plots of gravimetric energy density and characteristic

charging time of the selected elastic network model, B2.

Figure 3.38. Contour plots of selected model (B2) a) gravimetric energy density

(Wh/kg), b) characteristic charging time (s).

It is seen that, higher energy densities are seen at medium pore sizes and gen-

erally at higher ion fractions. At low ion fractions, both end of pore sizes resulted in

lower energy densities, while at higher ion fractions the decrease in higher pore sizes

are lower. In general, at pore sizes smaller than or equal to size of ions, capacitance

hence energy density show a maximum at intermediate dilution. Capacitance enhance-

ment weakens with further increase in pore size and eventually disappears. In dilute

regime, ion saturation by increasing ion fraction enhances capacitance while in con-

centrated solutions solvent improves capacitance by decreasing charge overscreening.

Competition of two forces leads to capacitance max in mid-section.

The characteristic charging time graph indicates a similar trend which is actually

the opposite of what we want at the beginning. Lower charging times, which also shows

smaller resistances or higher power densities, are more preferable for supercapacitors.

Characteristic charging time has its preferable lower values at the areas where energy

density is also low.
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According to the data at hand, various energy density and characteristic charg-

ing time values are set as design limits, namely top ten, twenty, and thirty percentages

according to highest energy density and lowest characteristic charging time obtained

from these contour plots. But it is seen that there is no such intersection areas. There-

fore a decision should be made for either sacrificing energy density or charging time.

According to the data at hand, characteristic charging times are increased up to 60% of

its range which is 1.25 second and energy densities are decreased down to 75 and 70%

of their maximum value, namely 66.165 and 64.37 Wh/kg respectively. Two isolines

are generated and their intersection areas which are above the limiting energy densities

and below the limiting characteristic charging time are shaded.

Figure 3.39. Gravimetric isolines (B2) a) 75% gravimetric energy density and 60%

characteristic charging time, b) 70% gravimetric energy density and 60%

characteristic charging time.

3.3.2. Volumetric Contour Plots

A2, B4, and G2 are found as the best models in volumetric investigation. Using

capacitance values and Rl values found, contour plots of volumetric energy density and

resistance are generated. In the generation of these graphs, relation between pore size

and porosity and relation between ion fraction and conductivity are used.
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A2 is the elastic network solution with 0.08 α and 0.0113 λ for capacitance pre-

diction and 0.33 α and 0.0503 λ for Rl prediction. B4 is the normal distribution elastic

network solution with 0.09 α and 0.0083 λ for capacitance prediction and 0.27 α and

0.0522 λ for Rl prediction. And G2 is the neural network model with matrix type input

which has 3 hidden layers in both capacitance prediction part and Rl prediction part.

Among these three, the minimum error and minimum fluctuations are seen in B4,

hence it is selected as the best predictive model. To understand the effect of parameters,

in our case especially the effect of pore size and ion fraction, and to optimize design

parameters for improved energy density and fast charging, contour plots are generated.

For that purpose, pore size and ion fraction are selected as axis parameters,

using the relation between pore size and porosity, and relation between ion fraction

and conductivity, these values are also changed accordingly for each point in the map.

The only constant in these graphs are initial charging data which is taken from an

average system, namely the system with 0.47 ion fraction and 6.12 Å pore size. Figure

3.40 shows the contour plots of volumetric energy density and resistance of the selected

elastic network model, B4.

Figure 3.40. Contour plots of selected model (B4) a) volumetric energy density

(Wh/L), b) resistance (Ohm m).
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It is seen that, higher energy densities are seen at medium pore sizes and generally

at higher ion fractions. Pore sizes lower or equal to the solvated ion size capacitance

hence energy density shows a maximum at intermediate dilution. Capacitance enhance-

ment diminishes with further increase in pore size and eventually disappears. At low

ion fractions, both end of pore sizes resulted in lower energy densities, while at higher

ion fractions the decrease in higher pore sizes are lower. Resistance graph indicates a

similar trend which is actually the opposite of what we want at the beginning since

lower resistances are more preferable for supercapacitors. Therefore a decision should

be made for either sacrificing energy density or resistance. According to the contour

plots seen in Figure 3.40, various energy density and resistance values are set and tried

as design limits, namely top ten percentages, top twenty percentages and top thirty

percentages according to the highest energy density and lowest resistance obtained.

But it is seen that, there is no such intersection areas. Therefore a decision should be

made for either sacrificing energy density or resistance hence charging time. According

to the data at hand, resistances are increased up to 60% of its range, which is 2.23

Ohm m, and energy densities are decreased down to 75 and 70% of their maximum

value, namely 41.15 and 40.0 Wh/L respectively. Two isolines are generated and their

intersection areas which are above the limiting energy densities and below the limiting

resistance are shaded.

Figure 3.41. Volumetric isolines (B4) a) 75% volumetric energy density and 60%

resistance , b) 70% volumetric energy density and 60% resistance.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions

To overcome the challenges associated with the high costs of experiments and

molecular simulations, this work combines machine learning tools with molecular sim-

ulations to provide guidelines for tuning material properties for supercapacitors. Trans-

mission line models are fitted to molecular simulation data to link microscopic mate-

rial properties to macro-scale performance metrics. Using the transmission line model,

sets of input and performance parameters are generated. Various machine learning

methods, namely linear regression, ridge regression, lasso regression, elastic networks,

support vector machines, and neural networks are applied to the simulation data for

performance prediction. Among the microscopic material properties, pore size, poros-

ity, conductivity, and ion fraction data are determined as the most important features

for capacitance prediction. In addition, information on charging kinetics at the initial

stage of the charging process is also integrated into the model in several forms includ-

ing, i) slope of the initial charging data with respect to time, ii) the maximum charge

obtained from the 0.25 ns simulations, and iii) 10-point charge data from the same sim-

ulations. The most accurate predictions are obtained using the maximum charge data

of the first 0.25 ns trajectories. In Rl prediction step, predicted capacitance values from

the first section of the ML model are integrated into the model. Among the machine

learning methods applied to the data, elastic net gives the best results in predicting

both the gravimetric (CG and τM) and volumetric (CV and Rl) properties.

In predicting the gravimetric performance metrics, the elastic net model B2 yields

the best performance with α = 0.11 and λ = 0.115 in capacitance, and α = 0.58 and λ

= 0.0166 in Rl prediction. That model has a high coefficient of determination (R2 =

0.98) and an impressively low RMSE (3.1 F/g) for gravimetric capacitance. The model

gives R2 = 0.88 with RMSE = 0.16 s for characteristic charging time prediction.
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In volumetric investigation B4 is the selected as the optimum model. It has 0.09

α and 0.0083 λ in capacitance prediction and 0.27 α and 0.0522 λ in Rl prediction.

That model has 0.89 R2 with 1.09 F/cm3 RMSE for volumetric capacitance, and 0.84

R2 with 0.53 Ohm m RMSE for resistance prediction.

After the investigation of capacitance and ion transfer resistance inside the elec-

trodes, for a better understanding of the dependence of gravimetric energy density,

volumetric energy density, characteristic charging time and ion transfer resistance on

microscopic material properties, we generate contour plots of these performance met-

rics as a function of two variables used in the predictive models. In particular, the pore

size and ion fraction dependence of the above-mentioned performance metrics are eval-

uated. For energy density, both gravimetric and volumetric investigation yield similar

results in which energy density exhibits a maximum at intermediate dilution levels for

pore sizes smaller than or equal to the size of a solvated ion. Enhancement in energy

density weakens with further increase in pore size and eventually disappears for both

gravimetric and volumetric investigation. In the dilute regime, ion saturation with

increasing ion content enhances energy density while in concentrated solutions, solvent

improves energy density by decreasing charge over screening. Combining the contour

plots for energy density and τM (or Rl for volumetric investigation) yields design maps

that identify the feasible regions satisfying preset requirements both for energy density

and charging kinetics. These results show optimum design parameters can be identified

for given design requirements for further investigations.

4.2. Recommendations

This work currently considers the micropore structure of the electrodes via us-

ing average pore size and porosity. Yet, these global parameters may fall short in

describing the effect of micropore structure on energy storage performance as detailed

individual pore level information is lost in these parameters. That effect is seen when

set of systems whose average pore sizes are 9.8 Å but have narrowed down pore size

distribution introduced to the machine learning models.



72

Incorporating the effect of pore size distribution into the feature set can improve

the accuracy and generalizability of the model to a diverse class of carbon-based elec-

trode materials. Furthermore, the precise effect of pore size can be investigated more

accurately by simulating pores of fixed pore size, such as slit pores or cylindrical pores.

Expanding the data-set with new molecular simulations is also crucial in in-

creasing the accuracy and generalizability of the models. In particular, the present

simulations investigate electrodes with average pore size 5.2, 6.12, 14, 14.1, and 15.5

Å, respectively. Although training data has good enough amount of data for higher

and lower values, conducting simulations in the pore size range 6.12 to 14 Å can enrich

the data-set and lead better prediction especially in that mid-section.

The third thing that can be improved for further studies is incorporating the

effect of applied potential to energy storage performance. Sampaio et al. and Noh et

al. showed that applied potential and Qmax do not have a direct relation in between.

Therefore the relation between them can be examined via applying various potential

differences to set simulation models.
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