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ABSTRACT 

 

 

SIMULATING THE ELECTRICITY CONSUMPTION OF OCCUPANTS IN 

DORMITORY BUILDINGS BY USING AGENT BASED MODELING 

 

 

Buildings are recognized for their significant role in electricity consumption and 

carbon emissions. Policymakers and researchers have addressed the necessity of realizing 

many 

energy-efficiency strategies have been developed to achieve sustainability and lower energy 

consumption rates. Building energy performance is also proved to be significantly affected 

by occupant presence and behavior. However, understanding the dynamic relationship 

between occupants and buildings is not easy due to the complexities of human behavior. 

Until a few years ago, many building energy performance tools did not even consider 

occupant behavior in their analyses, resulting in noticeable gaps between actual and 

predicted energy performance. Strategies involving behavioral changes are considered low-

cost and effective methods in reducing building energy consumption. Although researchers 

have investigated occupants  role in different building types, the number of studies focused 

on dormitory buildings is limited. Occupant-building interactions in dormitories are more 

complicated than office buildings because of the differences in student  lifestyles and daily 

behaviors. In order to examine the role of students in the energy consumption of dormitories, 

an agent-based simulation was developed and validated using real-time consumption data 

. 

Results show satisfying accuracy, and this study explains how the model can be used for 

energy consumption prediction. Some scenarios are also simulated with the model to 

demonstrate its capabilities for recommending effective occupant-centric energy-saving 

strategies. The model is adjustable and can be modified to be employed in other similar 

buildings. Moreover, this study paves the way for other researchers to use the agent-based 

simulation for occupancy prediction and building energy analysis and gives 

recommendations on improving and achieving a more sophisticated model. 
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ÖZET 

 

 

ETMEN TABANLI MODELLEME KULLANARAK YURT B NALARINDA 
K TÜKET M N   

 

 

Binalar, dünyadaki elektrik tüketimi ve karbon  önemli paya sahiptir. 

Politika belirleyicilerin , binalardaki yüksek enerji tüketiminin 

gerçek nedenleri  

-

r.  kadar, 

 göz önünde bulunduran 

edilmektedir. Birçok a

incele   literatürde 

Yurtlardaki sakin-

incelemek için lyos Kampüsünde yer alan bir yur  

 verileri 

Bu  

sonuçlar, önerilen modelin enerji tüketim tahmini için göstermektedir. 

Modelin bina sakini-merkezli enerji tasarruf stratejileri göstermek için 

senaryolar  Önerilen m

uyarlanabilir

simülasyon yönteminin kullan

lece  
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1.  INTRODUCTION 

 

 

1.1.  Motivation 

 

In the past few decades, people s lifestyle has changed a lot due to technological 

developments. The advancement of technology has also increased 

comfort levels. The modern lifestyle requires utilizing various energy sources for dynamic 

personal and industrial activities, and societies demand as many resources as possible to 

maintain their quality of life. There are many sources of energy, but all of them can be 

grouped into two general categories; primary and secondary sources. Primary sources consist 

of fossil fuels, renewable sources, and nuclear energy. On the other hand, electricity can be 

categorized as a secondary source since it is generated from primary sources. Electricity is 

the foundation of modern civilization and has been the dominant form of energy, especially 

after the digital revolution. One needs no more than a few seconds of thinking to 

acknowledge the vital role electricity plays in our daily lives. Electricity is being consumed 

every second, from basic needs such as providing light for enclosed areas to generating 

power for microchips in all electrical devices. Even the Internet, without which most 

businesses and human connections could collapse, needs electricity to maintain functioning. 

Electricity use is not limited to individuals, and the industrial sector also consumes a 

significant amount of electricity. According to U.S. Energy Information Administration [1], 

only in 2020, about 3.88 trillion kWh of electricity was consumed, and 3.66 trillion kWh 

was billed to various sectors. According to electricity retail sales, residential buildings had 

the largest share in consumption with more than 38%, and the following major sectors are 

commercial and industry with around 34% and 25%, respectively [1]. The United States is 

not the only country with enormous energy consumption records; any country with 

overpopulated cities and large industrial and commercial sectors demands the same usage. 

High electricity demand, however, is not the main problem.  

 

A factor about energy consumption is the cost of using it; individuals and entities pay 

large sums of money for energy bills. The cost factor becomes even more pressing for 

energy-dependent countries since they import energy from abroad, which can have a 

considerable financial impact on the national economy. The more concerning factor is the 
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environmental effects both generating and using electricity leave behind, which leads to 

global climate change. The environmental damage of electricity use is mainly related to 

utilizing fossil fuels rather than benefitting from renewable and sustainable resources. 

Although there has been a worldwide trend in recent years to harness energy from renewable 

resources, in countries such as China and United States (the top two electricity cosumers in 

the world), more than 60% of electricity is still produced by fossils fuels and only 20% from 

renewable sources [1, 2]. Countries may have different policies for adaption to renewable 

energies, but broadly speaking, there is still a long way to build sustainable cities and 

societies. An indicator to assess the environmental effects of energy consumption is carbon 

footprint . Basically, it can be described as  or equivalent greenhouse gases (GHGs) 

emitted from an activity, operation, or any kind of process related to a product or service. 

Analyzing carbon footprint may not be the best method to understand the damage caused by 

energy consumption; however, due to its success at catching the , it is a 

good entry point for increasing energy usage awareness as well as fostering sustainability 

[3].  

 

The building industry (not just residential buildings) has a significant share in energy 

use, and evidently, it also has a dominant share in the carbon footprint. Many studies have 

reported the same statement, mentioning that buildings are the primary source of GHG 

emissions [1, 4 6]. For example, the Chinese building sector produces 50% of the nations  

GHG emissions [7]. In other developed countries, numbers are not much lower; 50% for the 

U.K. [8] and 23% for Australia [9]. As for the U.S., although there has been some 

improvement according to recent reports, the residential and commercial buildings still 

account for roughly 29% of total national indirect emissions [10]. These considerable 

numbers indicate one clear message; it is impossible to reduce GHG emissions without 

energy-efficient practices in the building industry. The efficiency measures are not limited 

to passive methods like sustainable design. There are also active energy-efficient practices 

that take into account the interactions humans have with buildings. This study focuses on 

active methods while considering the roles occupants can play in energy savings. 
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1.2.  Problem Statement 

 

All construction phases and the whole building lifecycle are taken into account when 

discussing the share building industry has in energy consumption. Nevertheless, the 

operation phase has a more significant role due to its inclusion of occupants. Buildings do 

not automatically consume energy; occupants are the ones who adjust the consumption rates 

according to their needs and comfort levels. Fenner et al. [11] mention that the operational 

phase of a building has the most contribution to emissions. The continuous operational GHG 

release represents 70% of total emissions per unit when it is compared together with 

embodied emissions. According to International Energy Agency [12], 20% of global carbon 

emission can be reduced by 2030 with some basic energy efficiency measures such as using 

energy-friendly home appliances and lighting systems.  

 

As a result, energy consumption in the building sector must be analyzed thoroughly as 

an essential issue for both policymakers and researchers [13]. Only after acknowledging the 

role occupants have in energy consumption during the operation phase of buildings would it 

be possible to develop appropriate strategies to save energy and reduce emissions. Not until 

a long time ago, professionals in the industry did not consider occupants in their energy 

analyses. Even later, when studies in the literature proved the significance of the relationship 

between occupants and buildings, professions started to incorporate occupant presence in 

their models, but with fixed occupancy schedules and very simplified assumptions [14, 15]. 

performance. Complex human behaviors and their occupancy schedules have more influence 

on energy consumption than what was assumed in the past. Therefore, analyzing energy-

related occupant behavior and presence prediction in buildings are hot research topics as 

incorporating detailed human actions into building energy performance analyses is still a 

challenge.  

 

1.3.  Aims and Objectives 

 

This study aims to develop a model that can predict energy consumption in a dormitory 

building located in Istanbul, Turkey. Studies regarding student residents are limited in the 

literature, and researchers mainly analyzed other building types with smaller spaces with 
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fewer occupants. Unlike other building types, occupancy schedules are completely irregular 

in student residents, and occupants have different daily activities, making the situation more 

complex. In addition to developing a prediction model, this thesis also has the following 

objectives. 

 

The first objective of the thesis is to propose a simple yet robust model to study and 

to understand the differences between the energy behaviors of male and female students and 

observe how much each behavior influences the total consumption. The third objective is to 

build a reproducible model for other researchers and explain the necessary steps for 

constructing it. Finally, the last objective is that the proposed model should be relatively 

simple, adjustable, and useable in other similar student residents.  

 

1.4.  Research Methodology 

 

Information about the building and its occupants is always required before developing 

a proper building energy performance model; therefore, two datasets are gathered. The first 

dataset provides basic information about occupancy schedules and energy use behaviors, and 

it was collected through questionnaires. The second dataset includes the actual electricity 

consumption that was monitored for some dormitory rooms. The purpose of the developed 

model is to simulate occupancy schedules in rooms and calculate electricity consumption 

based on the predicted indoor hours. The chosen method is an agent-based simulation, and 

for this reason, agents represent dormitory students. Agents are divided into two groups, 

male and female. All agents have similar interactions with the building, but their daily 

behaviors and decisions are different. In the model, consumptions values of male and female 

students are calculated separately to study how each group affects the total consumption. 

NetLogo, an open-source programming language, is selected as the agent-based simulation 

tool. The overall concepts of agent-based modeling and all the necessary details for 

constructing computerized agents are explained in this study. Initially, collected survey data 

are used for building agents and their energy-related behaviors. On the other hand, the 

monitored consumption values are first used to calibrate the model and then validate the final 

simulation results. After achieving acceptable accuracy in simulation results, the model is 
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utilized for some occupant-related experiments. This step analyzes several energy-saving 

scenarios and their subsequent effectiveness in potential savings. 

 

1.5.  Scope and Limitations 

 

The current study analyzes only the electricity consumption of occupants in a student 

resident in Istanbul, Turkey, and does not consider other energy forms related to heating or 

water consumption. Also, the location and weather conditions of the area affect the time 

students choose to stay in their rooms. Although the proposed can be utilized for other 

student dormitories with some modifications, the overall data for constructing the model 

came from a single building and its occupants. It is recommended to conduct a new survey 

for each n

behaviors. All occupants in the monitored building are newly admitted university students 

and only have English preparatory lessons. Unlike senior students, they do not know each 

other before arriving there, and students with different lifestyles stay together in rooms. The 

situation adds to the diversity and complexity of occupant behavior and may be different 

from other dormitories. Moreover, the actual measurements used for model validation cover 

only three months. Hence, if used to predict consumption values in the spring semester, the 

model may predict results with an increased error rate. However, if additional data can be 

collected during the spring semester in future works, the model can be easily modified, 

 

 

1.6.  Thesis Organization 

 

The structure of the thesis is as follows: 

 

 Chapter 2 provides the background knowledge for understanding the rest of the thesis. 

It starts with reviewing the concept of energy efficiency and how energy consumption 

is measured in buildings. Next, it reviews the works in the literature regarding the gaps 

 Lastly, it 

provides information about modeling and simulation and reviews the models proposed 

in the literature about occupancy prediction. 
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 Chapter 3 explains the methodology of the thesis and covers data collection, model 

development, and model calibration. 

 Chapter 4 first presents the results and illustrates the outputs of the simulation, then 

explores the validity of the model. In the last section of the chapter, some energy-

saving scenarios are investigated using the proposed model. 

 Chapter 5 discusses the quality of collected data and simulated results in greater detail. 

Also, the study's limitations and recommendations for future work are mentioned in 

its last section. 

 Chapter 6 provides a summary of the thesis and concludes the study. 
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2.  BACKGROUND 

 

 

There is a growing worldwide interest in energy efficiency and sustainability due to 

climate change and the limitation of natural resources. Climate change has been 

acknowledged as an urgent global issue, especially after the steps taken by United Nations 

in 1992 and Kyoto Protocol in 1997. In recent years, the Paris Agreement was another 

milestone to prevent the continuation of global warming and mitigate GHG emissions [16, 

17]. Therefore, developing and implementing novel ways of production and operation has 

become a necessity in every industrial sector. However, despite its significant influence on 

the economy and environment, the construction and building sector still has not opted to use 

the most efficient practices in the industry. The building sector has a considerable effect on 

the environment. It holds about 40% of total energy consumption and releases around 30% 

of GHG emissions worldwide [4 6]. In addition, population growth demands even more 

space for living and working, resulting in more construction and energy consumption. 

Therefore, it is necessary to understand the reasons behind the huge share of the building 

industry in energy consumption and to provide practical solutions for reducing the 

consumption rate and consequent environmental effects. 

 

2.1.  Energy Efficiency in Buildings 

 

After acknowledging the role of buildings in energy consumption and their impact on 

global carbon footprint, it is essential to understand the meaning of efficiency in the building 

industry. Three general characteristics in buildings can be taken into account to consider it 

as energy-efficient: (1) sustainable design, (2) use of energy-efficient material and smart 

devices, and (3) cost-effective and optimal building service system. Sustainable design 

mainly deals with steps taken during the design phase of the building lifecycle before the 

construction begins. The second factor considers measures regarding implementing new 

materials and tools in all three phases of design, construction, and operation. The last 

characteristic mainly applies during the operation phase with systematic management 

approaches and optimized control of HVAC and lighting systems of the whole building. In 

this regard, several agencies and organizations developed certifications to assess the level of 

efficiency in buildings. BREEAM, Energy Star, and LEED are some examples, to name a 
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few. In recent years, however, new targets for sustainability have gained interest, especially 

in the academic world, to achieve Zero Energy Buildings (ZEB) and Net-Positive Buildings 

(NPB). The overall idea is to have self-sufficient buildings in terms of energy. Although the 

definitions and standards are not fully completed yet, the ideas are regarded as realistic 

approaches and not concepts of the distant future [18]. 

 

On the other hand, various actions result in waste of energy and prevent the industry 

from becoming a sustainable sector. It is necessary to examine and find the roots of 

inefficiency in the construction sector. To provide a general overview, actions such as 

implementing old practices in the industry, ineffective technical control systems, and using 

inefficient material and appliances are the primary examples of energy waste, which lead to 

inefficiency [16]. In order to prevent energy loss and achieve energy efficiency, several 

approaches have been proposed as Energy Efficiency Measures (EEMs) [19, 20]. For 

example, space heating and cooling demand can be reduced with modern glazing solutions, 

thermal insulation, and the utilization of efficient HVAC systems [4, 21]. In general, these 

measures can be divided into two approaches: passive and active.  

 

Passive methods include optimal use of thermal mass and optimized space design to 

provide comfort with natural ventilation and good lighting; thus, resulting in less energy 

demand [21, 22]. Researchers have studied different elements of design such as orientation 

and shading [23, 24] and envelop design [4, 25] to develop more efficient designs and 

analyze their effects on energy savings. Active building system controls, such as lighting 

and HVAC management, take place during the operation phase of the building. The building 

is in service, and occupants are present during this time; therefore, modifications can result 

in significant energy preservation. Changing old electrical devices to smart and energy-

friendly ones, for example, electric appliances with an A+ energy class or LED bulbs, are 

also simple steps in applying active measures. Another active measure that has gained 

attention in recent years is informing occupants of buildings about their energy consumption 

through feedback. By reminding their usage patterns and consumption rates, it is possible to 

-efficient behaviors [26]. In 

another similar yet more complex system, consumption rates can be adjusted automatically 

with the help of sensors. For example, the system minimizes or even stops the energy 

consumption while the occupants are outside the building or when some spaces are vacant.  
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2.2.  Energy Performance Monitoring 

 

Evaluating the energy performance of a building is an essential step in understanding 

the saving potentials of energy consumption. Before going into details, it is important to 

have a general look at the main sources of consumption in buildings. Without knowing the 

source of the problem, any resolution to overcome the efficiency obstacles would be in vain. 

Furthermore, researchers and professionals in the domain of energy inspection have 

expressed their concern regarding the evident gap between the estimated energy use, usually 

in the design phase, and the actual amounts monitored during the operation phase of 

buildings. In the following sections (Section 2.2.2), the gap and related causes are reviewed 

only after gaining some ideas about the major sources of energy consumption in buildings. 

 

2.2.1.  Main Sources of Energy Consumption 

 

By reviewing the literature and governmental reports, it can be easily understood that 

air conditioning, space heating, and water heating are the most dominant source of energy 

consumption [1, 27, 28]. Figure 2.1 shows the shares of major energy sources in both 

residential and commercial buildings.  

 

 

 

Figure 2.1. Shares of Major Energy Sources. 

 

As the primary energy source in buildings, electricity holds a significant share and is 

utilized for various purposes. According to Figure 2.2, which illustrates the energy 
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consumption by end-use, HVAC systems of residential buildings consume more than 50% 

of the total building energy use. Lighting and electrical appliances can be considered the 

second most dominant sources of end-use consumption in buildings, with roughly 30% of 

total energy in the United States and about 20% in EU countries [1, 28]. 

 

 

 

Figure 2.2. Energy Consumption by End-use. 

 

For heating purposes, fuel (natural gas) has a significant role in many areas of the 

world, but electricity is also consumed for space and water heating. As a secondary source 

of energy, electricity automatically holds the account of fuels regarding carbon footprint and 

total energy use in the sector as a vast amount of electricity is generated from fuels. 

Electricity is consumed in various ways in buildings, from air conditioning and space heating 

to kitchen appliances and personal electronic devices. Air conditioning and heating have the 

most shares of electricity use, nearly 17% and 15%, respectively [1]. However, according to 

especially applies to the Middle Eastern regions, where space cooling can represent 70% of 

total electricity use in a building on hot summer days and single-handedly cause 

environmental and financial impact [29]. Considering the environmental aspects, Fenner 

[11] states that the operational phase has the most contribution to emissions. The continuous 
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operational GHG release represents 70% of total emissions per unit compared with 

embodied emissions. 

 

2.2.2.  The gap between theoretical and actual consumption data 

 

As mentioned earlier, experts stated many times that there is an energy performance 

gap between theoretical (calculated) and actual (measured) consumption data [30, 31]. The 

the measured data are values gathered through the operation phase of the building, with 

in many countries, it is an essential topic that needs to be analyzed thoroughly for 

transforming the building sector into an efficient and carbon-zero industry [32]. The gap can 

be divided into two kinds. The first gap is the difference between simulated performance, 

usually set as a target by owner and designer, and the actual (measured) values. The second 

kind stems from the difference between actual monitored values and a target set by 

governments in the forms of policies and standards [33]. The second gap is more lenient and 

automatically will be resolved if the first one is filled. Figure 2.1 demonstrates the gaps more 

clearly.  

 

 

 

Figure 2.3. Gaps Between Actual and Predicted Energy Consumptions, Reprinted From 

[33], with Permission from Elsevier [Appendix F]. 

 

Researchers have expressed many causes and reasons for the root of gaps. The causes 

can be separated into three different categories by taking the building lifecycle into account; 
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causes arising from design, construction, and operation stages [34]. Most of the explanations 

in the literature attribute the problems to unrealistic assumptions and how the energy 

modeling is performed [32, 35]. Therefore, the reliability of assumptions, assessment tools, 

and methods is crucial.  

 

In the design stage, inappropriate assumptions due to lack of experience and 

inadequate data are the leading causes of the energy performance gap. Another cause of the 

gap in design is associated with the modeling and simulation process as it turns the complex 

reality into a simplified representation [33]. In addition to the causes mentioned above, 

another interesting source of the gap is related to complex design and excessive use of 

technology. According to a study by [36], 28-35% of LEED-certified buildings consumed 

more energy than their conventional similitudes. The miscalculations in these certified 

buildings arise mainly because of overestimation of equipment performance, unpredicted 

occupant behavior, and lack of knowledge on controlling and operating energy systems [34, 

36, 37].  

 

During the construction period, negligence or low-quality work of the contractor can 

be the source of the energy performance gap. Poor workmanship or lack of experience, 

unconscientious work or cheating to reduce the cost, and multiple change orders are some 

other examples that can influence the final energy performance [34, 35, 38]. 

 

The critical stage of building operation plays a big part in the building energy 

performance gap. Up to a considerable degree, occupants are responsible for the appearance 

of this gap. Occupants and 

consumption as they control home appliances, lighting systems, as well as temperature and 

ventilation to provide a comfortable space for themselves. Lots of studies in the literature 

analyzed the role of occupants in the energy performance of a building, and each study has 

focused on a different aspect(s) of occupant behavior. The following section explains 
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2.3.   

 

 life cycle has 

a significant role in its energy performance. According to estimates, more than 80% of total 

energy is consumed during this period [39, 40]. The reason behind this significant value is 

the close connection between the building and its occupants. People spend most of their time 

working, doing daily practices, relaxing, and sleeping inside buildings. Generally, it does 

not matter where someone is during the day. During work time, as individuals, they consume 

energy at the workplace. If they come back home or go to another facility, they directly or 

indirectly influence consumption at that place. In all situations, electricity is continuously 

consumed, and HVAC systems operate to provide comfort for occupants. An exhaustive 

literature review by Chen et al. [41] revealed that studies mainly focused on occupant 

behavior in office and residential buildings, holding a share of 45% and 29% of the literature, 

commercial and university buildings; however, both these buildings represent less than 25% 

of the literature together. In addition to analyzing a specific building type, the location and 

region of a building must be taken into account. Occupants expect various comfort levels in 

each building type and region, and the operation interfaces are noticeably different in homes 

and workplaces [42]. However, in the past 

to the Covid-19 pandemic. Many people have started to work remotely, and the energy 

consumption of residential buildings and private houses has increased compared to previous 

years. Besides the energy performance of the building, the comfort and health of occupants 

are also vital factors. Considering both energy efficiency and occupant comfort, researchers 

may shift their focus on residential buildings and study it more than before now that 

occupants spend excessive time in their houses.  

 

Understanding occupant behavior is no simple task, and most of the studies in the 

literature have focused on a single behavior to analyze the human-building interaction 

deeply. Studies that have taken into account multiple behaviors and various actions are 

limited because analyzing every action occupants perform requires a tremendous amount of 

data. Besides, the consequent model for analysis becomes more complex and needs greater 

expertise. Many researchers have analyzed the role of occupants and acknowledged its 

influence on building energy performance [41, 43 47]. According to Chen et al. [41], 
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occupants affect the building energy performance in three general steps: (1) acknowledging 

and including their presence in the energy models, (2) understanding the interaction between 

occupants and buildings, (3) invoking behavioral efficiency by increasing usage awareness. 

The following sections review these steps in greater detail. 

 

2.3.1.  Presence of Occupants 

 

 The presence of occupants has been regarded as a significant parameter in building 

energy consumption, but it is not enough to consider only the number of occupants, and more 

detailed occupancy information is needed for energy estimates [35, 48]. In reality, the 

number of occupants is not fixed and changes with time. There are several ways to represent 

occupancy information; prototype schedules suggested by governmental agencies, surveys, 

probabilistic methods, and with the help of smart devices. Fixed and basic schedules may 

lead to considerable discrepancies in some cases. There can be a 36-51% variance between 

fixed and actual schedules [49]. In addition, a study by Ehuaraz-Martinez et al. [50] shows 

that including the actual behavior of occupants results in considerable differences of up to 

30% in building energy simulations. Occupant presence information is generally divided 

into two major dimensions: spatial and temporal [41]. The occupants can also have various 

statuses in each spatial and temporal dimension. A three-dimensional model, having 

occupancy (e.g., status, number, activity) as a separate dimension, is also suggested by some 

researchers [44].  For example, at a residential building, occupants can have states such as 

 floors is 

regarded as a change in spatial information. The time that an occupant is involved in an 

activity is stored as temporal information. It can also refer to the duration of being in a 

specific state or being inside a space. 

 

2.3.2.  Human-Building Interaction 

 

The interaction of occupants with buildings is another subject of study by researchers 

to achieve energy efficiency. Occupants have great control over energy consumption in the 

buildings they live in or work. Adjusting HVAC system to reach a comfortable temperature 

[51], turning on and off the lighting systems [52], use of electrical appliances [53, 54], 

window and curtain openings [55], and demand for hot water [56] are some examples of 
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occupant interactions with buildings. Research also focuses on the differences between 

manual and automated adjustments in smart buildings. In some cases, automatic control of 

the mentioned interactions can lead to noticeable reductions in energy consumption 

compared to manual control by occupants [45, 57]. Another method is to benefit from user 

feedback in order to understand the energy demand and the comfort level of occupants. 

Providing feedback to facility managers results in more optimized control and supply of 

HVAC systems, thus leading to energy savings in the whole building. Moreover, the 

occupant behavior. In offices and commercial buildings, where several people occupy public 

spaces, individ

highlighted the differences in preferred lighting and temperature options in commercial and 

residential buildings. For example, individuals prefer different illumination intensities, 

ranging from 230 to 1000 lux, in their workplace. In residential buildings, discrepancies of 

 [14, 44, 58]. External factors such 

ons can stimulate 

occupants to open and close windows. On cold days of the year, occupants usually open the 

windows to let fresh air come into the buildings. On warmer days, the motivation can be 

slightly different because it is not just for ventilation but also, in some cases, to reduce the 

outside noise. 

not be neglected, although they may not have noticeable effects. For example, psychological 

factors such as privacy concerns may lead to closing shades (blinds) and dimming lights 

[59].  

 

2.4.  Modeling and Simulation 

 

 A model is a less simple representation of a real-world system. A model is created to 

analyze and predict the effects of changes in a system when, in real life, the system is 

complicated, or it is impossible to conduct the necessary experiments. An ideal model should 

neither be too simple nor too complex as simplicity will cause the model to miss the essential 

elements of the system, and complexity will make it hard to analyze and understand the 

ongoing phenomena in the system. Simulation, however, is what puts a model into operation 

[60]. The two terms are sometimes used interchangeably. In a simulation, the model can be 

modified and experimented on to analyze the effects of changes in the system and understand 
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o tests in the 

real world because of time, financial, or physical constraints. In a computerized simulation, 

it is possible to visualize and practically understand how the system works. It can also inform 

us whether a system works correctly or needs further modifications. In addition, simulations 

can test various changes and different scenarios if modifications are required in an actual 

physical system. After analyzing simulation results, researchers can choose the most 

appropriate way to implement it in the real system [61, 62]. 

 

It is necessary to have some general ideas about scientific models before understanding 

the process behind the design of a building energy simulation. An energy system model 

consists of three main parts; inputs, outputs, and system structure. These three parts are 

always linked together, and the purpose is to understand the underlying connection between 

the parts of a system.  Input variables can be grouped into controllable and uncontrollable 

variables. Temperature setpoints, for example, are controllable values that can be changed 

either by the system manager or occupants in the buildings. In contrast, weather data 

(radiation, temperature, wind, etc.) are uncontrollable variables, although they influence the 

model output. Output variables are directly related to energy consumption. They can include 

room temperature, humidity, and illuminance. The system structure of the model connects 

the inputs to outputs and describes the relationship. Mathematical equations and physics 

formulas can be utilized to build the modeling structure [63]. 

 

2.4.1.  Approaches to Building Energy Modeling  

 

The models can be categorized depending on their purpose and built. Considering 

purpose, models of energy simulations can be either Diagnostic or Prognostic [64]. A 

diagnostic approach is utilized if an analyst wants to perceive how the system works and 

discover the roots of a phenomenon. In prognostic models, however, researchers and analysts 

do not focus on the underlying laws of the system; they use the governing laws to predict 

the outcomes. The other categorization depends on how a model is built, and it can be put 

into two distinctive approaches: Law-Driven or Data-Driven.  

 

2.4.1.1.  Law-Driven (forward) Approach.  A law-driven approach works according to a 

given set of system laws and predicts the system outcome depending on the specified 
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conditions (input variables). Simulations based on this model produce accurate results 

because many sophisticated system structures have been developed to do the process. Some 

widely-used building simulation programs like TRNSYS and EnergyPlus operate under the 

same approach [63, 65]. This modeling approach is also called White-Box modeling. The 

first step in developing this kind of model is to get as much information as possible from the 

building layout, although it may not be possible to get every detail of the building in real 

life. Then, the modeling expert must set some parameters based on the gathered information 

and geometries so that the energy simulation programs mentioned above can use it. Lastly, 

to tune the parameters, the simulated outputs must be matched against actual (measured) 

data from the building. Employing this approach can be cost and time prohibitive and not 

really suitable for diagnostic purposes. However, forward approach modeling can be utilized 

for prognostic approaches if well-defined laws and inputs are provided [63 65] 

 

2.4.1.2.  Data-Driven (inverse) Approach.  In a data-driven approach, the goal is not to 

predict the outputs but to understand system properties and behaviors. In order to develop 

the inverse model, both input and output data must be available through measurements. In 

contrast to the forward approach, where it requires excessive input data for greater detail, 

data-driven models can be constructed with minimal inputs. This method can be divided into 

two general categories: Grey-Box and Black-Box modeling. 

 

 Grey-box modeling is in some aspects similar to White-box modeling, although they 

have fundamental differences. Firstly, there is no need for detailed building layouts, and 

aggregated physical parameters are used instead. This method is relatively more complicated 

as it requires the development of a mathematical structure of the building based on formulas 

and laws of physics such as thermodynamic equations. Also, to tune the parameters, 

variables and inputs need to be adjusted with measured data [64]. Constructing a Grey-box 

model is not an easy job; it needs expertise and a sufficient amount of time to build the 

model. Another problem with this method is that a new model must be developed for each 

building. In addition, if the operational function of the building changes during its lifecycle, 

lots of parameters should be modified [65]. This modeling, however, is appropriate for 

diagnostic approaches but may not be the best choice for the whole building energy modeling 

due to its complexity mentioned above [63]. 
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 Lastly, the Black-box modeling is an approach that only relies on data and does not 

deal with physic principles. The idea is that gathered data are used to learn a predictive model 

for energy consumption of the buildings [63]. Accordingly, implementing this method is not 

suggested for diagnostic approaches, HVAC system control, and understanding how the 

system works. Black-box models use relatively simple mathematical and statistical 

techniques to understand the connection between inputs (e.g., occupancy, solar, and wind 

data) and outputs (measured consumption). Regression analysis methods and some artificial 

intelligence techniques such as neural networks are widely used in this approach [63, 64]. 

Here, data quality is an essential factor for developing a proper model; therefore, time and 

money must be served to accumulate accurate data. An excellent example of this method is 

Golestan et al. [66] work, where they applied it to estimate occupancy information. They 

only used a data-driven method, using some sensors to gather the required data, and applied 

particle filtering and time series neural networks without the need for building complex 

physics-based models. The performance of their black-box models was promising and 

resulted in accurate estimates. 

 

2.4.2.  Occupancy models 

 

 After acknowledging the two facts from previous sections, the gap between actual 

and predicted consumption in buildings and the role occupants play in energy consumption, 

the next step is to understand how researchers have adopted various models to analyze the 

connection between people and buildings in greater detail. Several empirical and simulation 

models have been proposed to predict energy use, but the older models sometimes had 

differences up to 30% from actual values [48]. Turner and Frankel [38] also stated that in 

some extreme cases where high electrical activities are utilized, the difference could even 

reach 100%. This discrepancy is mainly attributed to ignoring occupants or underestimating 

their effect. Energy models, nowadays, take into account the importance of occupant 

behaviors. However, admitting their presence in a building is not enough; therefore, their 

interactions with the building should also be considered. 

 

It should be noted that occupants do not have a fixed behavior or characteristics; their 

patterns of actions alter over time. Additionally, Sorrel et al. [67] highlight an interesting 

fact regarding variations in behaviors due to changes in surroundings. They mentioned that 
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some bad habits could arise after energy-saving retrofits in buildings. For example, 

substituting old light bulbs with energy-friendly LEDs results in energy saving; however, 

occupants may end up using more energy due to the notion that their lighting usage is no 

each other with verbal communication. By observing, talking, and learning from each other, 

occupants may change their consumption behaviors [48]. 

 

To address the mentioned complexities, researchers have utilized different methods to 

estimate occupant presence and their respective behaviors. The models vary in required data, 

complexity, and implementation levels [68]. Occupant movement and behavior patterns can 

be generally categorized into static and stochastic schedules. Static schedules are commonly 

used in the industry as many established energy simulation engines and software programs 

utilize this method. EnergyPlus, DOE-2, Green Building Studio, and Design Builder are 

some examples of tools that perceive occupant presence and behavior based on a fixed 

routine. The schedule data is usually gathered through surveys and observations. Although 

fixed occupancy pattern is the dominant method used in industry, it has been reported that 

occupancy presence and number estimates have substantial errors compared with actual 

monitored data [69, 70]. On the other hand, stochastic models do not presume that occupants 

have completely fixed schedules; therefore, the proposed models are more sophisticated than 

static ones. Diverse stochastic models can be found in the literature, and each utilizes a 

different statistical and mathematical method, including logistic regression, survival 

analysis, Markov chains (especially discrete-time version), data mining, and agent-based 

modeling.  

 

2.4.2.1.  Statistical Analysis.  Statistical analysis is not a single method but some quantitative 

tools to determine relationships among variables influencing each other. It is still the 

simplest and most used tool in various science and engineering domains. In occupancy 

indoor and outdoor parameters. For example, Haldi and Robinson [71] used logistic 

(e.g., opening doors, windows, and turning on fans). In another study, researchers found out 

that occupant behavior has more correlation with personal needs rather than just with 
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external factors [72]. They used random functions in general but also used S-curve method 

for activities that heavily rely on the time passed since last happened. Multi-factor analysis 

of variance (ANOVA) is another method that can be found in many studies. It is utilized to 

understand the significance of the relationship between various factors and a specific human 

activity such as window opening or lighting system use. Li et al. [73], used this method to 

analyze the connection between window opening and various indoor and outdoor 

parameters. After finding the most significant factor (in this case, outdoor temperature), they 

came up with a model to show the probability of window opening and the mentioned factor. 

In addition, they also compared their result with window activity probability distribution, 

which was produced from another method, Monte Carlo simulation. 

 

2.4.2.2.  Markov Chains.  When talking about random behaviors and stochastic modeling, 

Markov Chains can be regarded as the most dominant method in the literature. Markov chain 

process is also one of the most established methods used for occupancy prediction due to its 

high accuracy and great implementation. The idea behind this method is that the history of 

transitions among states does not really matter, and the probability of the current state solely 

depends on the previous step (one step back in time). In a study by Erickson et al. [74], they 

utilized the Markov chain method to save more than 40% energy consumption in the HVAC 

system by accurately predicting occupancy patterns. Researchers have also benefitted from 

various algorithms to increase the accuracy of transitional probabilities in Markov chains. 

Therefore, some optimized Markov chains could outperform agent-based models and other 

well-known methods [47] . 

 

2.4.2.3.  Data-mining.  It is possible to state that electricity usage or energy consumption 

data mining and finding patterns of behavior through consumption values, especially when 

there is no scarcity of data. In this method, consumption values are gathered from various 

electrical appliances. Researchers train the data with appropriate algorithms and then test it. 

This method is used by various experts and results in good predictions of occupancy and 

device use schedules [49, 75]. Baptista et al. [76] showed that implanting this method into 

an agent-based simulation can outperform a Markov chain model. 
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2.4.2.4.  Agent-based Modeling.  A proper model for occupant occupancy and behavior 

needs to simulate human interactions as individuals and groups. Agent-based modeling 

(ABM) is another well-known technique capable of representing most human behaviors in 

a simplistic form. In such a model, agents behave based on a set of rules and states assigned 

to them. Although ABM is used in the literature for occupancy presence prediction [45, 77], 

it can be seen that researchers applied this method for analyzing human-human or human-

building interactions. Azar and Menassa [78] 

wanted to see what 

happens if occupants influence each other and alter into lower or higher energy consumers. 

Their ABM model combined with eQuest energy simulation software resulted in more than 

20% energy saving. Zhang et al. [79] constructed an agent-based simulation to compare 

automatic lighting management with manual (staff-controlled) lighting strategy in an office 

building. Lee and Malkawi [80] 

how an agent considers among five different behaviors to achieve comfort based on a 

conditions how an agent adapts to the dynamic thermal changes. Langevin et al. [81] 

appropriate method for building agents. The theory works based on negative feedback due 

to discomfort and choosing the most immediate and unconstrained action to return to a 

satisfying comfort level. Besides, the researchers benefitted from a one-year field study to 

validate their final results. Azar et al. [82] used a surrogate regression model to analyze an 

consumption without 

interesting methods for each part of their study as there were no field data at hand for analysis 

and validation. Therefore, they generated the whole data required for the analysis, including 

occupancy characteristics and their respective consumption values, both for training and 

testing the dataset for surrogate models. Their energy management framework resulted in 

. [39] built 

-saving awareness levels and explored 

model. 
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However, until recent years, the energy analysis was conducted without considering the role 

occupants can play in the energy performance. It is not the building itself that consumes 

energy but the people residing in it. As a result, researchers have started to include occupants 

consumption. Accordingly, several types of buildings were st

were analyzed with various methods. ABM is shown to be a proper method to study the 

complexities of occupant behavior. In most studies, small rooms such as offices or 

classrooms with a limited number of people were studied. Generally, the occupants have a 

relatively fixed movement schedule and limited actions in these spaces. Nevertheless, in 

buildings like dormitories, complexity increases as each individual has their own schedule. 

The number of studies regarding student residents is limited, and this study aims to fulfill 

differences in consumption behaviors of male and female students are separately analyzed 

to gain a better understanding of each group s impact on energy performance. Thus, a robust 

yet straightforward ABM model is proposed, which does not take the geometry of the 

building into account. The model uses ABM in its simplest form; therefore, it can be easily 

understood, modified, and efficiently utilized for other buildings.  
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3.  RESEARCH METHODOLOGY 

 

 

As mentioned previously (Section 2.3), occupants significantly impact the energy 

consumption in buildings. In office buildings, most employees arrive and leave the building 

on fixed hours; therefore, making it easier to model their occupancy schedule. However, in 

the case of student residents, the situation gets more complex because of their various class 

schedules and flexible lifestyles in general. This complexity explains the noticeable 

discrepancies reported between predicted and actual energy consumption in dormitory 

buildings. The gap in energy values stems from neglecting the role occupants (students) play 

in buildings  energy consumption. Many university students live in dormitories, and these 

buildings consume a great amount of energy. The 3rd Kilyos Dormitory of Bogazici 

University is selected to study the relationship between building energy consumption and 

occupant behavior. For this purpose, an agent-based simulation is developed to model the 

students  daily actions and energy use habits. The following sections explain the data 

collection, modeling, simulation, and validation processes. 

 

3.1.  Data Collection 

   

Data acquisition is the first step in studying the energy performance of a building and 

how occupants can impact it. There are many ways to gather data about the presence and 

activities of occupants. A standard method to understand occupant behavior is conducting a 

survey, especially if smart devices are not available or the budget for research is limited. 

More advanced tools can also be utilized to gather accurate data, such as cameras, sensors, 

and smartphones [45, 83, 84]. However, in this research, devices are not used for occupancy 

detection, but smart meters are installed in rooms for energy monitoring. It is important to 

note that a more profound understanding of occupant behavior can be achieved by using both 

surveys and energy monitoring devices. The main downside of using an advanced 

monitoring tool is the cost and time of implementation and operation, which can sometimes 

exceed the duration and budget of research. If there are no limits regarding the mentioned 

obstacles, utilizing smart tools for the whole data gathering process is the best option. The 

survey was conducted to gather the preliminary information for developing the occupant 
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behavior model in this research. On the other hand, the monitored energy data is used for 

validating the proposed model s outputs. 

 

3.1.1.  3rd Kilyos Dormitory 

 

The whole data of this study came from the 3rd Kilyos Dormitory of Bogazici 

University. The dormitory is in the university s Saritepe campus. It is located in Kilyos, an 

area in the north of the European side of Istanbul, Turkey. Figure 3.1 and Figure 3.2 show 

where the Kilyos area and the dormitory building are located. The campus is adjacent to the 

Black Sea and houses different facilities such as dormitories, research labs, a hotel, and the 

foreign language school of the university. Maps are downloaded from OpenStreetMap, 

which provides data under the Open Database License [85, 86]. 

 

 

 

Figure 3.1. Location of Kilyos Area on Map of Istanbul. 
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Figure 3.2. Location of 3rd Kilyos Dormitory on Map of Saritepe Campus. 

 

Most of the residents on the campus are newly accepted students studying English 

preparatory courses. Students from other cities are not the only ones who stay in dormitories. 

Due to the campus location, which is far away from the city center, even some students who 

live in Istanbul with their families prefer to stay at dormitories during the week. The campus 

has various social facilities so that students can interact with each other after their classes 

and get familiar with university life. The campus location may create some difficulties for 

the students in terms of weather as it is built near the sea. In cold months of the year, the 

weather can get freezing and windy in Kilyos. Therefore, students spend most of their time 

in rooms or inside buildings. It is worth mentioning that the university has benefited from 

the strong winds in the area and installed a wind power plant to generate its own electricity, 

adopting sustainability in energy management.  

 

The 3rd Kilyos dormitory is not the only dormitory on Saritepe campus. However, it is 

the main dormitory due to its capacity to house more than 400 students. Both male and 

female students reside in it, although they stay on different floors. The building has five 

floors with an attic. Each floor has several flat-type rooms, and each flat contains a bathroom, 

toilet, and kitchen shared by some students. All flats do not have the same number of 

bedrooms. There are different types of flats with two to ten beds. Rooms and flats have 
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several pieces of furniture and some appliances, including a wardrobe, table, chair, and bed 

in each room and a kettle, refrigerator, and electric stove in each flat.  

 

3.1.2.  Energy consumption data 

 

Bogazici University has installed energy monitoring devices in the 3rd Kilyos 

dormitory for research purposes. Smart electricity meters in rooms collect and store 

consumption data in a cloud-based IoT system. The service was provided by a private energy 

monitoring company, Reengen, and allows users to access and download their data. The 

electricity measurements are gathered from 20 different rooms and stored as kilowatt-hours 

(kWh) in 5 minutes intervals. Although the cloud service and IoT platform have made it 

easier to store and access data, two issues were encountered during the electricity monitoring 

process.  

 

The main issue that completely changed the course of the study was the emergence of 

Covid-19 pandemic. Due to the pandemic, universities worldwide had to cancel their face-

to-face lessons and limit access to university campuses to control the spread of the virus. 

Many dormitories had to close and asked students to return to their hometowns and stay with 

their families. The residents of the 3rd Kilyos Dormitory were English prep students, and as 

the education system turned online, they had no reason to stay in dormitories. Rooms became 

empty, and the real-time energy monitoring process stopped. The restrictions continued for 

more than a year, and the measured electricity data turned out to be futile. In order to cover 

the damage and resume the study, another dataset was selected. Unfortunately, a dataset 

covering an entire year was not available in the servers, and the only useful and consistent 

electricity data belonged to 2016. The substitute data was collected for another study related 

to energy efficiency and covered the first semester of the 2016-2017 academic year, starting 

from the 21st of September to the 8th of January 

 

The second issue is related to the quality of the data. The devices, which meter 

electricity use, sometimes fail to measure consumption or, in some cases, fail to send and 

store the data in the servers. Because of this issue, there are some missing values in the 

downloaded data from the servers. The connection problem occurred multiple times between 

devices and the server during the mentioned days. In some cases, the problem lasted only 
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for some hours, and in others, it took several days to get fixed. Data covers 112 days; 

however, only 93 days had consistent measurements for an effective analysis. In general, the 

inconsistency in measurements reduces the quality of the data at hand and may lead to slight 

deviations in the validation process.  

 

3.1.3.  Survey 

 

Energy consumption in the dormitory building is directly related to students  daily 

routines. Therefore, the first step is to gather enough information regarding their schedules 

and lifestyles. For this purpose, a completed survey that belonged to the study mentioned in 

the previous section was selected. The reason for not conducting a fresh survey, as stated 

before, was the pandemic. Also, the collected electricity measurements and the survey must 

belong to the same semester and student body. Researchers distributed paper-based 

questionnaires to 100 randomly chosen students in the 3rd Kilyos dormitory. They got 

permission from the university officials and dormitory management to hand out the 

questionnaires to students in person. Students were informed about the research theme and 

then requested to answer the questions without entering personal information. Questions 

were all in a 5-point Likert Scale format; therefore, making it easier to decide and answer. 

As a result, most of the questions were answered entirely and had no inconsistencies. The 

first part collects basic information about students, their rooms, and the number of 

roommates. The second part asks questions about the time students spend in their rooms. In 

the third section, questions are designed in a way to understand students  usage behaviors of 

electrical devices and kitchen appliances. The questionnaire used in this study is part of an 

exhaustive survey that was conducted during the same year and semester when previously 

mentioned real-time electricity consumption data were being collected. It was designed to 

collect various information about their detailed activities, comfort levels, and energy 

awareness in addition to the sections mentioned above. As the current study analyzes the 

electricity consumption behaviors, only the relevant sections are used to develop the model. 

The survey form containing pertinent questions is shown in Appendix A. 
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3.2.  Model Development 

 

In the next step, a model is developed depending on the collected information about 

students  daily routines through questionnaires and their actual energy consumption with the 

help of measurement devices. Utilizing both survey and smart monitoring methods helps to 

understand occupant behavior better and results in a more profound model. The survey 

results are used as a preliminary step in modeling the occupant behavior and their energy 

consumption rates. The actual electricity data is used for adjusting the model and its final 

validation. The model proposed in this study is an ABM. The following sections explain the 

fundamentals of ABM and how the model is built. 

 

3.2.1.  What is ABM? 

 

The philosophy behind agent-based modeling is that real-world phenomena can be 

modeled via agents and an environment in which they can interact. Interactions occur in the 

forms of agent-agent and agent-environment [87]. How agents perform the interactions 

depends on how they are formulated. Agents are just autonomous individuals or objects with 

specific properties and actions coded into them. The method has been used in the literature 

with two different names; sometimes as agent-based modeling (ABM) and other times as 

agent-based simulation (ABS). These different terms should not confuse the reader as both 

mean the same method, but each can be used depending on the context. Besides, the general 

difference between modeling and simulations was mentioned in the background chapter 

(Section 2.4), and the same applies here. An agent-based simulation depicts a model of 

dynamic agent interactions, which is simulated repeatedly over time.  

 

There are several reasons why ABM has become an established and widely used 

method in various domains of science [87, 88]. First of all, the world we live in is getting 

more complex every day, and analyzing it with conventional methods may not be possible 

anymore. Second, some systems have intrinsic complexity; therefore, many assumptions are 

made to simplify the modeling process. These assumptions include homogenous agents or 

modeling only at macro levels. However, ABM grants us the ability to model phenomena at 

the micro level with heterogeneous individuals and study the consequences at the macro 

level. Lastly, computational power was much lower in the past, and simulations were time-
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consuming. In addition, data collection was also costly, and access to a detailed database 

was limited. Nowadays, various types of data can be constantly collected in great detail and 

at lesser costs. The two expressed changes in technology make ABM a useful tool to quickly 

build agents and observe their behavior in multiple simulations. ABM is also an appropriate 

method for incorporating randomness into a model as an agent makes decisions and acts 

upon them based on random numbers or specified probabilities. Besides occupancy 

is, mentioned in the background chapter (Section 

2.4.2), researchers have applied ABM in various fields of science, including healthcare and 

epidemiology, social sciences, transportation, supply chain, and planning [87, 89]. 

 

In the real world, occupants are heterogeneous individuals with various goals and 

behaviors. They may change behavior depending on the situation and act differently over 

time. Behavior is a complex system influenced by consciousness and environment [39]. All 

the occupy models mentioned in section 2.4.2 have some advantages and limitations, and 

each can be used according to the objective of the study; thus, it cannot be concluded that 

one method is more effective than the others. For example, Markov chains is a suitable 

method for long-term occupancy schedule prediction or classification, while for modeling 

the number of present occupants in the building and their detailed behaviors, ABM is 

recommended as the proper method. ABM is a bottom-up modeling method that considers 

each -level actions to reflect 

the system and demonstrate its macro-level conditions and consequences [47]. The 

foundation of building occupant behavior simulation is the assigned rules for the agents and 

-

and change behaviors in each simulation cycle. 

 

It should be noted that actual data is needed instead of assumptions to have a 

dependable model and get the best result from an ABM. Building models based on 

assumptions can be regarded as a limitation of ABM as assumptions cannot be removed 

entirely, but it is possible to minimize them by providing the model with actual data as much 

as possible. Researchers are sometimes unable to successfully validate their results using 

ABM due to a lack of actual observational data. Jia et al. [47] reviewed various studies and 

different methods for building energy modeling and the connection occupants have with it. 

They expressed that ABM is a suitable method for real-time modeling for various building 
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types, but the studies usually lack actual data to support their results.This study, however, 

utilizes the previously explained survey data and electricity measurements to achieve an 

acceptable model. 

 

3.2.2.  Understanding the Model 

 

Since each student has a different lifestyle and daily routines, ABM is selected as a 

suitable tool for the modeling process as this method is most useful when agents are not 

homogenous. For this purpose, NetLogo software program was selected to construct the 

agents and their environment. NetLogo is an open-source programming language and 

modeling environment designed by Uri Wilensky in 1999 [90]. It was initially developed for 

educational purposes and used as a teaching material. Nowadays, it is acknowledged and 

used by many students, scientists, and researchers worldwide. Unlike AnyLogic, a multi-

method simulation tool primarily used in the industry, NetLogo is not a professional program 

and has kept its user interface simple and easy to understand. Therefore, it may not be 

suitable for industry-level problems. However, NetLogo has improved a lot in the last two 

decades, and once in a while, developers add new functionalities and extensions to it. There 

is no need to have a strong programming background to work with NetLogo, and due to its 

similarity to natural human language, the coding language can be learned within some weeks 

of training.  

 

Before constructing the model, it should be noted that every ABM must have three 

components defined; agents, environment, and interactions [87]. Agents are representatives 

of students in this study. Agents have classes (types) and attributes. Here, we have two types 

of agents: male and female. However, several attributes were defined for each class. Agents 

have five attributes coded into them. Each student agent keeps track of the energy they 

consume and records it in the attribute variable named e-cons . Two different attributes 

indicate their sleeping status and location. Each of these attributes has two alternatives; the 

former can be either sleeping  or awake  and the latter, indoor  or outdoor . Agents 

also decide how long they will stay inside their rooms based on the data collected from the 

survey. M-in-hour  and N-in-hour  attributes are introduced to save indoor hour values 

for daytime and nighttime, respectively. M-in-hour  indicates the maximum time an agent 

spends inside a room in the morning when they do not have a class on a specific day. N-in-
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hour  shows the maximum hours an agent chooses to spend in his or her room after finishing 

their classes up to 2 all agents are assumed to be asleep. 

This assumption had to be made to simplify the model as there was no data related to the 

time students go to bed. Even if such data were gathered with questionnaires, it would be 

unreliable since newly admitted university students have flexible and eccentric lifestyles and 

do not have a fixed sleep time. The values for the two mentioned time attributes are not 

imported directly from the questionnaires. Agents in Netlogo choose the required values 

from a pool of numbers that were generated with Python programming language. The 

questions in the 2016 survey were mainly in a 5-point Likert Scale format. Answer choices 

for the questions about time spent indoors could not be directly used in NetLogo. Thus, new 

useable values for the model are created.  

 

In order to come up with more practical indoor hour data, answers from the 

questionnaires were taken in 5-point format, and their distributions were calculated and 

plotted. Figure 3.3 is a sample plot showing the distribution of answer choices for the first 

question regarding the time spent inside rooms during the week. The plot below shows that, 

for example, around 33% of respondents in the main questionnaire chose the first answer 

(1), and 4% chose the last answer (5).  It must be noted that values 1 to 5 are not considered 

as hours here; therefore, they need to be modified.  

 

 

 

Figure 3.3. Distribution of Answers for a Sample Question from the Questionnaire. 

 

Specific values in terms of hours are needed for agents in NetLogo. Generating 

completely random hours is a possible method; however, it would neglect the survey results.  
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Hence, the percentages in Figure 3.3 are used as weights to produce random numbers, and 

the generated numbers indicate the hours an agent may choose to spend in their room. In 

addition, NetLogo has a limited number of random functions and does not include weighted 

random distribution. Thus, Python is used to generate 1000 random values based on the 

weighted probabilities. The generated values (as hours) have a similar distribution to the 

survey data but have a different range. Figure 3.4 shows a sample plot created based on 

Figure 3.3 and represents the numbers required for NetLogo agents. The plot shows that each 

answer choice, except the first one, is turned into two discrete hours, but the summation of 

their distributions is kept close to the original value. In this example, values 0  and 1  

have a total probability of 35% for being selected, compared with 33% of the first answer 

choice in Figure 3.3. Similarly, the chances of being indoors for seven or eight hours are 2% 

and 3%, respectively. Their summation is 5%, which is very close to the original distribution 

of the answer in Figure 3.3.  

 

 

 

Figure 3.4. Distribution of Generated Answers Based on the Values from Figure 3.3. 

 

It is not mandatory to plot the hourly values for all the questions, but visualization 

makes it easier to check whether the resulting values follow the original data or there is a 

mistake in the codes. The produced hours are saved into a text file because NetLogo has a 

built-in function to read and import data from text files and use them in the model.  

 

After building the agents and identifying their attributes, the next step is to design an 

environment. Agents act and interact in the environment surrounding them. Agents and the 
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environment are always connected as each can affect the other. In general, there are two 

kinds of environments in NetLogo; spatial and network-based [87].  

 

Spatial environments represent physical areas such as a building, a farm, or a country. 

Network-based environments, however, do not model physical distances. It provides an 

environment where agents are linked and share information without being present in a 

specific location. For example, a network-based environment is utilized to model how 

rumors spread in a given society. There is no need for agents to be in specific geographical 

positions in order to communicate, as in real life, information exchange can be done via 

telecommunication devices. In our case, however, the modeled area is a dormitory building, 

and the positioning of students is important, and only a spatial environment is built. Figure 

3.5 shows the graphical environment built for this study. The white section represents the 

outdoor area. The indoor area here is divided into two parts since the energy consumptions 

of male and female students are analyzed separately. 

 

 

 

Figure 3.5. NetLogo Environment of the Proposed Model. 

 

The level of detail is another essential factor in building the environment, and it 

depends on the purpose of the study. It is possible to model the whole building as a single 

solid environment or even increase the complexity and build each room and hallway 

separately. Since being indoors (inside rooms) triggers electricity consumption in our model, 

constructing only two different areas would be enough. Besides, unlike some studies where 

only a single office was modeled and analyzed, it is neither logical nor practical to build 
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many separate rooms when there is no knowledge of the relationship and interaction among 

their occupants.  

 

Next, the electrical devices that students use in the dormitory flats need to be added to 

the model. The power demand (wattage) of kitchen appliances, personal devices, and 

lighting bulbs were gathered from various sources on the internet, and an average wattage 

was used [91, 92]. Energy demand for all the electrical devices used in the study is listed in 

Table 3.1. 

 

Table 3.1. Energy Use of Appliances Used in the Dormitory Rooms. 

 

Equipment 
Energy use 

(watts) 
Laptop (male students) 125 

Laptop (female students) 75 

Cellphone charger 5 

A personal electrical device charger  
(e.g., Tablet, Ebook reader, Bluetooth 

headphones) 
15 

Lighting bulbs 50 

Coffee maker (or electric kettle) 1200 

Electric cooker 1500 

Beard trimmer (or shaver) 15 

Hairdryer 1250 
 

It should be noted that different values are considered for  

laptop power load. Using a laptop for studying and doing course assignments is similar for 

both groups. However, based on experience, male students spend long hours playing 

computer games in their free time. Although no question about this behavior was asked in 

the questionnaire, this assumption seemed reliable and sound after a friendly chat with some 

random students. Female students, however, spend time on their laptops for other purposes 

such as browsing or watching movies. The difference had to be noted in the modeling process 

since playing video games, especially on laptops with good graphic cards, demands more 

energy. The power demand of laptops depends entirely on their model and hardware 

configuration, yet laptops for daily use consume between 60-80W on average. However, 

most gaming laptops consume more than 100W and even up to 200W while overclocking 
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[93]. Not all male students have gaming laptops, but every laptop changes its power load 

depending on the ongoing process. Gaming is always a power-consuming process; therefore, 

considering a higher wattage for the laptop use of all male students is rational.  

 

3.2.3.  Building the Simulation 

 

In general, almost all NetLogo simulations have two major procedures: to setup  and 

to go , although both can consist of several minor procedures [61].  In the first procedure, 

agents and the environment are created, and it can be regarded as an initialization step that 

prepares the simulation. The to go  procedure includes all the codes and functions that tell 

agents what to do in each time step. Time in NetLogo is divided into discrete steps called 

ticks . NetLogo has a built-in tick counter and records every action taken in each tick (step). 

It is up to the model builder to specify what each tick represents. In our model, each tick 

represents one hour in real life. If the measured electricity consumption had covered a full 

academic year, assigning each tick to a day would also be possible. On the other hand, if 

ticks were linked to minutes in real life, more computation power would be required. Besides 

making the process time-consuming, the detailed simulated data would not be beneficial, 

and it can even result in noisy output data. Our data covers about three months; therefore, 

choosing ticks as hours seems sufficient for simulating the necessary behaviors and 

simulating daily actions. 

 

The general structure of a NetLogo model is shown in Figure 3.6. It should be noted 

that the tick command must be inside the to go  procedure. This command alerts NetLogo 

that one timestep in a simulation is finished and prepares the program for the next tick. 

NetLogo runs all procedures one by one by referring to their functions, and when no 

procedure is left, it runs the tick command and adds one unit to it. In minor procedures, the 

process is repeated depending on the number of agents if the function contains the command 

ask turtles . In NetLogo, we refer to agents as turtles, and each turtle represents a distinct 

agent. So, if the model includes 100 turtles, the procedure with ask turtles  will run 100 

times, and it will end when all turtles complete their actions.  
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Figure 3.6. General Structure of a NetLogo Code. 

 

-

previous run and prepares the simulation for a fresh start. The next three sub-procedures 

create the environment, agents, and electrical equipment. The spatial environment in 

NetLogo is a two-dimensional world made of patches. Patches are square pieces, like pixels, 

in a blank plane, and each patch is positioned in a Cartesian coordinate system.  Therefore, 

the middle patch is located at (0, 0). Patches have built-in attributes such as coordinates and 

colors. In our model, patches with an X-coordinate of less than zero are given blue color to 

represent the male dormitory, and the ones on the right of the Y-axis are turned to pink to 

represent rooms. All patches with a Y-coordinate of less than zero are 

-turt ure simply creates male and 

female agents and gives them different colors to be distinguishable in the validation process. 

The simulation user specifies the number of agents as inputs. Finally, the third sub-procedure 

setup-appliances ge demand values to each device based on Table 3.1. 

 

Our model s to go  procedure consists of four primary sub-procedures. The first 

procedure ( check-sleep ) tells agents to go to bed after a specific hour. In the second 

procedure ( check-location ), each agent picks up a time value and, based on it, decides 

whether to go out or stay in the room. The following procedure ( move-turtles ) gives orders 

to agents to change their location depending on their decision in the previous step. The last 

important sub-procedure ( consume-energy ) informs agents to start using electrical devices 

if they have decided to stay indoors.  The other sub-procedures in to setup  and to go  
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procedures are added only for control and validation purposes and do not affect the 

simulation process. The codes for the whole process can be found in Appendix B. 

 

t the final 

command; a simple command and two procedures come after it. The command creates a 

-

he remaining procedure, 

-

between days and weeks.  

 

Days are divided into weekdays and weekends in the model. Here, Saturdays and 

Sundays are considered as weekends. The amount of time that students spend in their rooms 

changes on weekends. Generally, students spend more time in their rooms on weekends if 

they decide to stay in the dormitory. However, according to dormitory management logs and 

conversations with random students, some prefer not to stay in the dormitory on weekends.  

Students who plan to spend weekends outside the dormitory usually go out on Friday 

evenings and return on Sunday evenings. In the model, for simplicity, Sunday nights 

substitute the Friday nights. Therefore, these students were assumed to spend Saturday and 

Sunday outside their rooms, resulting in zero electricity consumption on weekends. In the 

mod -

randomly assigned to this variable. Agents included in this variable are considered to be 

outside; therefore, no energy consumption is recorded for them. 

 

The measured data starts from Monday, the 19th of September. When five days pass, 

the first weekend starts; therefore, when ticks reach the number 120 (5 × 24 hours), the model 

automatically considers the date as Saturday. Similarly, after another 24 ticks, the model 

changes the current date to Sunday. Modulo function (mod) is used in the whole process to 

differentiate hours and days. Modulo is a mathematical operator that returns the remainder 

of a division. For example, when the ticks reporter reaches the value 241, the model 

understands that it is again weekend (241 mod 120 = 1) and the time reporter shows 
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Saturday, 1 A.M. The same goes with hours; the model understands each hour with the 

nter reaches 

48, the time reporter will show 00:00 (48 mod 24 = 0), meaning two days have passed. 

 

Agents are coded to use the mentioned electrical devices only when they are indoors 

and awake. Between 2 A.M. and 8 A.M., all agents status turns to sleeping , and they stop 

consuming energy. Each day at 8 , agents wake up but do nothing until 9 o clock. 

This one-hour pause in simulation is considered to mimic various actions students may do 

in real life. Some students go out to have breakfast in the dining hall, and others may take a 

shower or even stay in bed. During this time, they decide their daily activities by choosing a 

random value from a weighted distribution of numbers and setting it as their M-in-hour  

attribute. Agents start to act after 9 o clock. If an agent chooses zero hours for its time 

indoors, it will go outside and stay there until evening. In reality, it means that a student has 

lessons that day or decides to spend time on campus. If the value is greater than zero, agents 

stay inside their rooms and start to consume electricity depending on the value they have 

chosen as their M-in-hour  attribute. The exact process occurs again at 4 P.M., and agents 

choose the hours for spending time inside rooms during nighttime. Some activities occur 

only in the morning and others at night, although it does not really matter as the final 

consumption results are saved for days, not hours. For example lighting system only 

activates during nighttime. On the other hand, laptops use electricity according to hours spent 

indoors during both daytime (M-in-hour) and nighttime (N-in-hour).  

 

As mentioned before, the energy consumption function in the model only triggers 

when an agent s status changes to awake  and indoor . The function works on the concept 

of kilowatt per hour, meaning the demand wattage of an electrical device multiplies by the 

hours an agent spends in their room. It is assumed that students need only two hours each 

day to charge their mobiles and other personal devices. For laptops, however, a usage 

probability is taken into account, meaning that students only spend a specific portion of their 

time using these devices each day. Accordingly, the multiplication consists of three 

elements: the energy load of the device, the spent hours in rooms, and a randomly chosen 

value from the pool of previously generated device use probability. Like hours, the 

probabilities are also generated with Python. The python codes for assigning new values to 

the original survey results are similar to the codes used for generating new hours only with 
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minor modifications for assumptions and visualization methods. The Python codes are 

presented in Appendix C. After using all electrical equipment, the total daily consumption 

of all agents is summed and reported for plotting. NetLogo lets us export the plots and their 

associated data as a CSV file for further analysis. 

 

3.3.  Model Calibration and Verification 

 

3.3.1.  Examining the Simulation 

 

Model verification is essential to ensure the reliability of the model. For this reason, 

some extra functions are coded into the model to report the current status of the simulation. 

Several tests were performed as well before finalizing the model. Another benefit of using 

NetLogo is its graphical demonstration of the simulation. NetLogo updates the simulation 

graphics in each step. It is also possible to decrease the simulation speed and observe how 

agents perform tasks one by one in slow motion. The graphical user interface of NetLogo is 

shown in Figure3.7. Two boxes are planted to record and plot daily electricity consumption 

values;  draws a line chart for male students females. Another 

reporter box, on the upper right side of the NetLogo environment, translates the ticks into 

standard date and time format. This reporter has a vital role in simulation verification. 

Controlling agent behavior is extremely confusing in terms of ticks, but the time reporter 

helps to compare and match every action to its corresponding hours. Without knowing time 

behavior and movements do not match the time, we would realize that there is a logical 

mistake i -in- -in-

agents. In the initial steps of developing the model, only four agents were created to make 

the simulation easier to control. The values each of these agents choose are displayed in the 

reporter to check whether they really act upon these values or not. Together, the reporter and 

the graphical agents on the environment act as a control room for the simulation. 
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Figure 3.7. Graphical User Interface of NetLogo. 

 

Three additional factors related to the location and status of agents are considered in 

building the model. First, for unknown reasons, the consumption values of male students in 

the actual measurements were less than the anticipated amount in the first twelve days. By 

comparing the actual electricity consumption of the two groups, it was apparent that the 

growing consumption trend was not logical for the male dormitory. Some students might 

have moved into their rooms later than others. Another guess is that some of the monitored 

rooms were completely or partially empty on the first days. It is also usual for students to 

ask the management to change their rooms on the first days of the semester. By considering 

these possibilities, it was assumed that around 20% of students moved into the monitored 

rooms after two weeks to calibrate the model. Although, in reality, these students may have 

arrived on various days, the mentioned assumption greatly improved the model and reduced 

errors.  

 

The other modification decreases the consumption rate on the last days of the academic 

semester. As students had different lessons and final exams, they started to leave the 

dormitory one by one for the semester break after finishing their exams. For this reason, a 

set of functions are added to the check-location  procedure, which chooses some students 
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randomly and adds them to a new variable called holiday . The number of students added 

to the variable increases cumulatively during exam days, lasting about ten days. This added 

function also improved the model s output in predicting the energy consumption rate in the 

final days of the fall semester. 

 

The model includes another assumption, which is more generic. In the first two weeks, 

it is assumed that students spend less time in their rooms. As supported by actual 

consumption values, the reason behind this decision is that students usually spend more time 

hanging out outside and exploring the campus as the university workload is still low. 

 

3.3.2.  Error Statistics 

 

Moreover, the whole model needs to be validated by comparing the simulation outputs 

with the actual electricity consumption data. The results of this comparison are shared and 

explained in Chapter 4. In addition, two error metrics are utilized to test the accuracy of the 

energy consumption predictions and see how far they deviate from actual measurements. 

Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are selected 

as error metrics to evaluate the simulation results. MAPE measures the average absolute 

deviation between actual and simulation values and reports the results in percentage. MAPE 

is scale-independent; therefore, it is easier to understand and interpret the results. The 

formula for MAPE can be calculated as  

 

  
(3.1) 

 

 

where  is the actual monitored value,  is the predicted value from the simulation output, 

and  is the number of measurements (days).  

 

RMSE is another standard metric that has been used in many studies to evaluate the 

performance of a forecasting model. It calculates the standard deviation of residuals and 

reports the average distance between actual and predicted values. To put it simply, RMSE 

measures how spread-out simulation outputs are from the monitored consumption values. It 
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should be noted that RMSE has the same unit as predictions, and errors can be used to 

compare different proposed forecasting models for a specific dataset; lower RMSE values 

indicate higher accuracy and better fit. RMSE can be expressed as  

 

  
(3.2) 
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4.  RESULTS 

 

 

4.1.  Survey Results 

 

s and energy consumption was gathered by 

randomly choosing 100 students residing in the 3rd Kilyos. The participation rate of the 

survey was 94% because 94 of the received questionnaires were effective and had complete 

information. The participation rate is higher than the rates usually reported in the literature 

because the data was gathered in person by going to the dormitory. Respondents were all 

enrolled in the English preparatory lessons, and their class schedules varied depending on 

their English language level. All students were 18 to 20 years old and shared their rooms 

with at least one other person. Out of the 94 accepted questionnaires, 45 belonged to male 

and 49 to female students. Results also show that answers came from 23 different rooms, 

providing various lifestyles. As stated in Section 3.2, answer choices of questionnaires are 

similar to a 5-point Likert Scale, but they are turned into hours or probabilities depending on 

the question. The generated values, especially for hours spent in rooms, are based on values 

from the survey and assumptio

cannot be neglected because students decided their answers by looking at the hour ranges 

written in the original questionnaire. Modified hours are generated in a way to have the same 

distribution as the original values. According to the results, both male and female students 

spend relatively equal hours in their rooms. Generally, the majority of the students spend 

between two to five hours indoors. However, the situation is a bit different during the 

daytime on weekdays, when students have lessons. More than 60% of students are reported 

to spend three hours or less in their rooms. Besides, less than 10% of females spent more 

than seven hours in their rooms, but none of the males spent this much time inside rooms. 

The plots for more detailed hour distributions can be found in Appendix D. 

 

In the original survey, the question regarding computer use behavior is asked with 

ers 

adaptable for the model, they are turned into probabilities. Thus, each answer covers a 20% 

probability range, adding to 100%. The associated probabilities are presented in Appendix 

E. 
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Probability values are weighted random numbers generated based on the distribution 

of answer choices, using the distribution percentages as weights. Figure 4.1 shows the 

distributions of computer use probability for both group of students when they decide to stay 

in their rooms. It is evident that students in male dormitories spend more time using laptops 

than female dormitories. Most spend more than half of their time indoors working their 

laptops, and one in four even spend more than 80% of their time behind laptops. The situation 

is different with female students as less than 3% spend more than 80% of their indoor time 

working with laptops. The majority of females spend between 40% to 80% of their time with 

laptops. 

 

 

 

Figure 4.1. Distribution of Laptop Use Probabilities for (a) Male and (b) Female Students. 

 

The format of answer choices changes again for the questions related to using other 

electrical devices. There are five different choices, but the intervals are not consistent and 

do not have units; therefore, they cannot be imported directly into the model. Since answer 

choices were in terms  had to be converted into 

a standard time unit. Students spend significantly lesser time using electric cookers, coffee 

makers or kettles, hairdryers, and personal beard trimmers; therefore, units are not in hours 

but minutes. Some assumptions were required to transform the survey results. Tables 

presented in Appendix E clarify the considered assumptions for changing survey results into 

minute-based values. According to the resulting data shown in Figure 4.2, most students use 

electric kettles for less than 10 minutes each day. The majority of students in male dormitory 
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use kettles or coffee-makers for less than three minutes; thus, maybe once a day, but female 

students use them slightly more. Regarding the electric cooker, it seems that students do not 

prefer to prepare meals themselves. Both group of students have shown similar behaviors 

here, and more than 70% of both groups use the devices less than 10 minutes per day. 

Hairdryer or shaver use behaviors are also similar between both groups. More than 90% of 

students use these devices for less than 15 minutes each day. It is known that females use 

hairdryers for a longer time in reality, and not all males use them. Therefore, it is assumed 

that female students choose the generated minutes only for the hairdryer in the model. Male 

students, however, use both hairdryers and beard trimmers, but the usage time is divided in 

half for each device. 

 

 

 

Figure 4.2. Distribution of the Time Spent Using Appliances in (a) Male and (b) Female 

Dormitories. 
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4.2.  Model Output and Validation 

 

After building the model and entering all the modified data from the survey, it is 

possible to run some simulations and analyze their outputs. The actual electricity 

consumption came from 20 different rooms. Half of the selected rooms are on the first floor, 

and the other half are on the second floor. The monitored rooms on the first floor housed 54 

male students, and the ones on the second floor were occupied by 58 female students. The 

number of students in rooms was not equal; some rooms were shared by only two students, 

others up to eight people.  

 

The total electricity consumption was around 8708 kWh, according to the 

measurements during the fall semester of 2016-2017. Male students consumed 4364 kWh 

and the consumption was 4344 kWh for female students. Even though the number of female 

residents was slightly higher than males, they consumed lesser energy. However, both 

groups have relatively similar consumption values, and there are no significant differences. 

It must be highlighted that the consumption values came only from the selected rooms, not 

the whole building. Therefore, the electricity consumption was neglected in all public areas 

inside the dormitory building, including hallways, bathrooms, study rooms, as well as all the 

remaining rooms without measurement devices.  

 

When the exact number of monitored male and female students (in monitored rooms) 

were entered into the simulation, the s results seemed satisfactory. Figure 4.3 

shows a sample result from initial runs before the model was improved and verified. There 

are gaps in the plot since monitoring devices stopped working and did not collect data for 

some periods. The simulation outputs for those days are deleted to achieve a better 

comparison. 
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Figure 4.3. Comparison of Monitored and Simulated Electricity Consumptions. 

 

Although the output is acceptable, it is somehow deceptive. If only daily energy use in 

male dormitory is plotted, the values will not be as satisfying as the previous one. The results 

are more acceptable for females and only need minor modifications. Figure 4.4 illustrates 

energy consumption, and the differences between real and predicted values, 

especially on the first day, can be noticed better. In Figure 4.3, values are the total energy 

consumption of both groups. At some points, extreme deviations of each group are canceled 

out by the other group due to the summation (negative errors canceling positive errors, and 

vice versa), resulting in lesser deviations from the actual readings. Also, comparing energy 

use between male and female students 

need to be analyzed separately. 

 

 

 

Figure 4.4. Comparison of Monitored and Simulated Electricity Consumptions 

(Only Male Students). 
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Figure 4.4 shows that there are noticeable errors on the first and last days. After 

considering the necessary factors mentioned in Chapter 3 (Section 3.3.1) and calibrating the 

model, results become more accurate. Figure 4.5 and Figure 4.6 show a sample run for male 

and female students, respectively. The modified model has a MAPE of 9.5% and RMSE of 

0.55 for male students. The MAPE of the previous plot (Figure 4.4) was 15.2% and had 

RMSE equal to 0.83. Reducing the number of students in the last days and excluding the 

students who checked in late in the first days have had noticeable effects. The modified 

model shows increased accuracy, especially for the male students, resulting in a 5.7% 

reduction in MAPE and 0.28 in RMSE values. Unfortunately, the modified model cannot 

represent  energy use behaviors as good as the male dormitory. The 

female rooms have a MAPE of around 11.5% and an RMSE of 

0.72. Although these error rates are for a single simulation run, different simulations also 

resulted in relatively similar errors as the mean values are considered. 

 

 

 

Figure 4.5. Comparison Between a Sample Simulation Run and Actual Measurements 

(Only Male Students). 
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Figure 4.6. Comparison Between a Sample Simulation Run and Actual Measurements 

(Only Female Students). 

 

Generally, a single simulation run is not very dependable. Stochasticity is inherent in 

ABM, and our model also utilizes several probabilistic elements; therefore, each simulation 

results in different outputs. Focusing on a single simulation run may lead to extreme outputs. 

In order to have well-grounded results, it is recommended to perform multiple simulation 

runs and take the mean values [39, 78]. It is possible to run hundreds of simulations for each 

scenario, but 20 to 50 would usually be enough in occupancy studies. Our model converges 

to the calculated mean values after the 25th run, and running more simulations does not result 

in noticeable changes. Figure 4.7 demonstrates the daily electricity consumption of all the 

monitored rooms for male students if mean values from 25 runs are considered for 

comparison.  
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Figure 4.7. Comparison of Actual Consumption Values and Average Values of 25 

Simulation Runs (Only Male Students). 

 

Although highlighting a single simulation is not recommended, utilizing average daily 

consumptions for comparison is not helpful either. As shown in Figure 4.7, consumption

rates during weekdays are very similar. Consumption values are lower only on weekends, 

but they also have similar values. Choosing average values neutralizes all extreme 

consumption behaviors and reduces randomness. For this reason, cumulative 

consumption values are taken into consideration. The model can be regarded as stable if all 

simulation runs have a similar rising trend and end in relatively close values on the last day. 

The results of 25 simulations for male students are illustrated in Figure 4.8. The total 

consumption average is 5337.62 kWh, the standard deviation is 27.8 kWh, and the 

coefficient of variation is 0.52%, indicating an acceptable and stable model. The proposed 

model for the female dormitory is the same as male dormitory, only with different inputs 

and variables; hence its stability is also validated. 
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Figure 4.8. Comparison of 25 Simulation Runs Total Electricity Consumption  

(Only Male Students). 

 

4.3.  Energy-saving Scenarios 

 

After the model is validated, it can be utilized to analyze different scenarios regarding 

energy-saving behaviors. It is possible to modify several variables such as the number of 

bserve the 

resulting variations. Here, two strategies are tested to analyze the energy-saving potentials.  

 

In the first case, the probability of laptop use for the male students is reduced by 20%  

and then by 25% to check whether these modifications will result in noticeable energy 

savings or not. Each student will choose a reduced probability to spend time behind his 

laptop. Only male students are selected for this experiment because of their long gaming 

hours, which results in high electricity consumption. Two factors influence energy 

consumption; usage time and electric power necessary for a device to function. The proposed 

model calculates the electricity consumption by simply multiplying these two elements; 

therefore, this scenario can also be interpreted as decreasing the power demand of laptops 

by 20%. Laptop power load is only an example, but some e

consumption can cause unwanted costs. However, a simple way to reduce unnecessary costs 

and save money in the long term is to change old devices with new energy-friendly ones on 
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the market. The scenario can also be tested for lighting bulbs, kitchen appliances, and any 

energy-hungry electrical device. Table 4.1 shows the energy-saving scenarios for male 

electricity consumption and compares the results with the initial model. 

 

Table 4.1. Experiments Results for the First Energy-Saving Strategy. 

 

 Agent 
type 

Original model  Scenario 1: Scenario 2:

(base case) 20% reduction  25% reduction 

Consumption 
value 

Consumption 
value 

Change 
Consumption 

value 
Change 

(kWh) (kWh) (%) (kWh) (%) 

Male  5337.62 5061.55 -5.17 4983.14 -6.64 

 

 

According to scenario results, when the probability of working with laptops is reduced 

by 20%, total consumption for decreases by 5.17%. If male students decide to spend even 

less time behind laptops (25% reduction in probabilities), they can save energy by 6.64%. 

The changes are not significant, and there may be better alternatives for energy-saving. 

 

The second case aims to check how much energy can be saved if all students spend 

less time in their rooms. This strategy encourages students to spend more time in public 

facilities rather than staying in their rooms. Students can study in the library, use the gym, 

watch movies together, or participate in whatever group activity they prefer. The scenarios 

include testing 25% and 33% less time in rooms at nighttime (evenings and nights). 

 

Table 4.2. Experiment Results for the Second Energy-Saving Strategy. 

 

Agent 
type  

Original model 
(base case) 

Scenario 1: 
25% less indoor time 

Scenario 2: 
33% less indoor time 

Consumption 
value 
(kWh) 

Consumption 
value 
(kWh) 

Change 
(%) 

Consumption 
value 
(kWh) 

Change 
(%) 

Male 5337.62 5052.86 -5.33 4853.64 -9.1 

Female 4937.36 4476.16 -9.34 4333.23 -12.24 
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As shown in Table 4.2, spending fewer hours in rooms results in noticeable energy 

savings, especially for females. It should be noted again that only nighttime values are 

reduced, and agents are assumed to spend the same hours as before during daytime. Energy-

saving potential nearly doubles if male students try to increase their out-of-room activities a 

little bit more. For female students, however, the energy consumption does not significantly 

reduce even if they spend more hours than the first scenario. Therefore, spending only 25% 

fewer hours in rooms would be enough to achieve satisfying saving potentials. 
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5.  DISCUSSION 

 

 

5.1.  Collected Data 

 

The  occupancy and 

calculate their electricity consumption based on it. Data from a questionnaire survey was 

utilized to gain an overall knowledge of the situation in the 3rd Kilyos Dormitory. Although 

conducting a survey is a standard and commonly used method, it may not be the best method 

to acquire information about occupancy schedules. Using smart sensors or cameras can be 

another alternative; however, implementing advanced monitoring tools may not always be 

feasible due to several limiting factors. Limited budget, privacy concerns, and problems in 

installation, operation, and maintenance of devices are some examples that can hinder the 

data gathering process and even lead to its termination. The initial plan was to gather updated 

data from the academic year 2020-2021. Unfortunately, due to the emergence of the Covid-

19 pandemic, dormitories were evacuated, and all . 

Hence, earlier surveys conducted in previous years were utilized to acquire information 

the survey conducted earlier for a different study did not fully provide all the necessary 

information needed to construct a computerized model. 

 

It was not possible to directly employ them as they were in the model. The choices had 

no meaning for the NetLogo model by themselves; therefore, the distribution of answer 

choices is used as primary information about student lifestyles. Some answer choices had to 

be converted into probabilities and others into a range of numbers with specific units. The 

main attempt was to preserve the original data and create new values without neglecting 

original answers. This objective was fulfilled by keeping the distribution of answer choices 

equal in both old and new datasets. The process is explained in Chapter 3, Section 3.2. Each 

assumption, though realistic, results in minor changes and deviations from the original data. 

When these deviations come together with the problems inherent in the original 

questionnaire, the two factors result in errors and reduce the chance of correctly 
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included the rea

experiences to compensate for the mentioned errors. 

 

Nevertheless, assumptions had to be made to obtain values with consistent intervals 

and proper units. Some studies had fixed assumptions about movement times, with small 

variations to add randomness, or considered probabilities for occupying various spaces 

within the buildings [39, 94]. Ding et al. [39] also studied a student residence building, and 

they asked about the probabilities of staying in the dormitory after classes and on weekends 

in their survey. They utilized the triangular distribution method for their model to generate 

random probability values for each agent based on the survey data.  

 

Another obstacle faced during the validation process was the limited amount of data 

available for comparing simulation outputs with actual data. The monitored data are precise 

and beneficial; however, measurements covered less than four months and contained gaps 

due to disruptions in the reading or uploading process. Therefore, only 93 (out of 112 total) 

daily measurement points were available to test the simulation outputs. The simulation has 

no timestep limits, and it can easily predict daily electricity consumption for many months 

and years. In contrast, collecting detailed actual consumption data is challenging and costly. 

However, having a one-year data would have significantly improved the validations. The 

amount of real-life data depends on the scale of the study. If the evaluated space were smaller 

and contained fewer people (e.g., a single floor of an office building), gathering consumption 

measurements for a few months or even weeks would be sufficient. The consumption 

behaviors that are studied also influence the required period for data collection. If the study 

focuses on a single or two behaviors, then the monitoring period can be shorter, but a 

comprehensive dataset covering a more extended period may be needed if many energy 

behaviors are considered simultaneously. Generally, energy behaviors consist of but are not 

limited to laptop use, kitchen appliances use, turning on/off the lights, and adjusting heaters, 

fans, and air conditioners to control the temperature. For example, Langevin et al. [81] 

validated their office building model by comparing the simulation results with thermal 

comfort and behavior data collected during a one-year field study. Ding et al. [39] also 

utilized data collected over an entire year from a university dormitory to construct and 

validate their model. 
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For this study, having electricity consumption measurements for an entire year would 

have helped achieve more accurate and valid prediction results for a longer period. Although 

the model predicts electricity consumption with acceptable accuracy, it is better not to be 

used for the spring semester until related data is available for necessary modifications and 

final validation. The forecasted consumption rates for the second academic half-year will 

in the spring semester due to more satisfying outdoor conditions.  

 

In general, the quality of the data at hand is vital for developing a proper model as it 

directly affects the research results; however, having more data is also beneficial. In an 

exhaustive survey, differences among individuals are more apparent. In addition, it can also 

provide a chance to perform statistical analysis and even create clusters for a more detailed 

analysis. If the monitored (observed) data do not cover an extended period, reliable 

validation will not be possible.  

 

5.2.  Model Clarification 

 

As mentioned earlier, the model uses different lists of generated values to predict the 

time of being inside rooms and then the time for using electrical devices. Each list represents 

possible answer choices for a single question from the questionnaire. Lists contain 1000 

random values, which are closely connected with the original survey results. There is no 

Each NetLogo agent requires a distinct value from a given list of values for its attributes. 

The answers of the 94 survey respondents had to be broadened, and since the dormitory 

building has the capacity to house 400 students, at least 200 values for males and 200 values 

for females are needed. As the numbers are generated by weighted probability, there is no 

difference in having 200 or 1000 values. However, if someone wants to analyze the 

consumption behavior based on entirely random hours or probabilities (or based on any form 

of distribution), then having 1000 values will better represent the diversity in hours than 

having only 200 distinct values. In addition, if the model is used for a building with a larger 

housing capacity, then already having a large pool of values will satisfy all agents. 
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As for the simulation results, the model predicts daily electricity consumption with 

acceptable accuracy, as shown in Figure 4.5 and Figure 4.6. On average, the model has a 

MAPE of 10% for all students. Some proposed models in the literature have lower error rates 

and predict more accurately. As an example, [82] model was reported to have a 

MAPE of around 2%; however, it should be noted that they did not have field data. In their 

study, occupancy and consumption data were generated and then divided into two parts: 

training surrogate models (80%) and validating the results (20%). Therefore, their validation 

is rather technical than predictive. Also, the complexity of the environment and its 

occupant  behaviors influence the precision of the model. As mentioned before, offices 

have a relatively fixed occupancy schedule, especially regarding arrival and departure times. 

The number of employees who work on weekends does not change a lot, leading to a more 

static occupancy. Therefore, proposed models for office buildings in the literature have less 

stochasticity, and they simulated occupancy movements with more confidence [79, 94]. In 

studies about energy consumption in offices, there are usually fewer occupants, thus making 

it easier to gather relevant data and analyze behaviors in greater detail. However, it should 

be highlighted that researchers studied more complex behaviors in office buildings, 

including window opening, thermostat control, and occupant comfort levels. 

 

In some cases, where a single office was studied, graphical simulations representing 

movements and energy behaviors were more detailed [94]. It is unlikely to graphically 

represent all rooms in buildings such as student residents, especially when no information 

about movements between spaces within a building is known. Considering extra details 

would not always result in a better model. For example, if a student gets out of a dormitory 

room where several students stay together, others will continue to use lighting, air 

conditioning, and heating systems; hence, no specific energy-saving measures can be 

considered. Therefore, movement information between different spaces in a dormitory 

should only be analyzed when each student stays in a separate room. 

 

 In our case study building, consumption values usually drop on weekends, and the 

model perfectly simulated the drops on weekends. Nevertheless, for unknown reasons, the 

consumption rate increased on some weekends in reality. Various reasons could have caused 

these irregularities, such as midterms or harsh weather conditions preventing students from 

going out. Also, for females, the model could not accurately capture variations in the last 
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days of the semester; for male students, results were more acceptable. The model includes 

another assumption, which is somehow generic. In the first two weeks, it is assumed that 

students spend less time in their rooms. As supported by actual consumption values, the 

reason behind this decision is that students usually spend more time hanging out outside and 

exploring the campus as the university workload is still low. Although the simulation result 

changes with each run, the overall accuracy stays relatively the same. Usually, there are no 

consecutive noticeable deviations from the actual measurements. Comparing the average of 

the multiple runs would give a better insight into the accuracy. However, variations in daily 

consumptions cannot be captured by taking average values from multiple runs, as illustrated 

in Figure 4.7.  

 

For a more solid validation, the average values of cumulative daily consumptions 

(Figure 4.8) were compared instead. The result shows an average electricity consumption 

value of 5337.62 kWh, with a standard deviation is 27.8 kWh. At first look, it might seem 

the final result is not very accurate as the actual measurements for male students show a total 

of 4424 kWh. It should be noted that simulation predicts daily energy consumption for every 

single day without any disruptions, but 19 days were missing in the monitored consumption 

data. When those 19 days are taken out from the simulation outputs and equal days are 

considered for the comparison, the net result will decrease to 4432.13 kWh (5337.62 × 93 / 

112). The exact result is slightly different from how it has been calculated here, but the 

difference is very small because average values are used.  This comparison considered the 

54 males whose electricity consumption was monitored, resulting in less than 2% error. 

When a similar comparison is made for the total energy consumption, 

average simulation results show a 6.6% error. All the calculated values in this study 

considered 54 males and 58 females. The proposed model can also predict the energy 

consumption for all the students residing in the dormitory; however, the results are expected 

to have slightly more errors.  

 

5.3.  Limitations and Future Research 

 

The obstacles faced in the study regarding the collected data are thoroughly discussed 

in the previous section (Section 5.1). Another limitation is the unavailability of reliable data 

tion. The university does not have any electricity 
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bills for the dormitory building as there is a single bill for the whole campus. Therefore, it 

would not be possible to test how accurately the model predicts the energy consumption if 

all students are considered. Moreover, this study only analyzed electricity consumption 

behaviors and did not consider any behavior related to heating and cooling. As the study 

covered the fall semester, no cooling device was included; however, heating plays a 

significant role during cold days of the year. Unfortunately, no detailed data were available 

for heating. In addition, the proposed model can forecast electricity consumption with a 

satisfying accuracy in daily intervals; however, the model is not practical for hourly 

forecasts. I

that can simulate behaviors for every hour. This detail is also unnecessary for the whole 

building, especially if long periods are of interest. Finally, regarding the male students who 

were assumed to arrive late, the assumption is specific to the dorm under observation in that 

year. There are always fluctuations in the first days, but, in this study, it was only considered 

for male students and not females. It is better to cancel out the included factors if the model 

is used for other dormitories unless registration logs suggest a similar situation.  

 

Future studies can collect information for the spring semester and improve the 

proposed model in order to predict the 

Also, this model did not consider holidays. In the fall semester, holidays are limited, and 

they will not noticeably change the final results. However, if the model is extended for the 

whole year, all holidays and semester breaks should be included to achieve acceptable 

results. Analyzing an automatic lighting system (instead of manually turning lights on and 

off) and its potential savings is another intriguing study, only if more accurate occupancy 

detection information is gathered for the whole building. As mentioned earlier, this study 

does not include heating and temperature values; therefore, researchers can also use this 

model for occupancy prediction and modify it to analyze heating consumption behaviors. If 

every individual judges the temperature differently. One student may feel cold, and the other 

feels warm on a specific day.  Each room houses several students, and adjusting the heaters 

to satisfy all occupants is a challenge that can be analyzed with ABM. Also, the energy 

awareness and influence each person can have on another person can be studied with ABM. 

In such a scenario, agents share information with each other, and the goal is to decrease 

energy consumption by increasing awareness. This can be achieved by benefitting from the 



60 
 

network environment capability of NetLogo and constructing links between agents in future 

works. In addition, the occupancy prediction part of the model can be coupled with more 

advanced energy analysis tools such as eQuest or EnergyPlus to calculate energy 

consumption more accurately. 
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6.  CONCLUSION 

 

 

Buildings have a significant role in energy consumption, and the operation phase of a 

energy performance and employ energy-

energy performance was analyzed without considering their 

are adjusted depending on their presence and comfort. Besides, occupants use many 

electrical devices inside building spaces, increasing the overall electricity consumption. 

Therefore, considering the occupancy schedule would result in a more detailed analysis and 

more feasible strategies to reduce energy consumption. People have regular arrival and 

departure times in many academic or office buildings, and their energy consumption 

behaviors are relatively fixed. The situation, however, gets more complex when residents 

are individuals without a fixed schedule and have erratic daily activities inside a building. 

Student residents and university dormitories are examples of buildings with this kind of 

occupants. It is not possible to consider a fixed schedule for these buildings, and proper 

methods are needed to predict occupancy and the resulting energy consumption. 

 

In this study, an agent-based model was proposed to predict electricity consumption 

in a university dormitory. Several methods can be found in the literature for building energy 

-related behaviors should also 

be included and analyzed, considering their role in the energy consumption of buildings. As 

mentioned earlier in the methodology section, ABM is a well-grounded method for 

predicting occupancy schedules and studying human-building interactions. Although ABM 

is used in various 

energy consumption, this study tries to fill the literature gap about anazlying a dormitory 

dealt with such a building is still limited. Many students who have different lifestyles reside 

in a single dormitory building, and generally, there are no restrictions regarding their 

movement schedules. Students have more freedom than people working in office buildings, 

where they have to arrive, have lunch, work again, and leave on specific hours. This freedom 
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in movements and behaviors results in greater complexity in analyzing and predicting their 

actions and cannot be compared with the conditions in office buildings. 

 

schedules and energy behavior was needed. The required data were collected from a 

previously conducted survey. Also, 20 rooms were monitored to collect actual consumption 

data. The monitored data is used to calibrate the primary models and validate the final model. 

Unfortunately, the survey data had some minor problems as it was designed for another study 

but related to the same building. Several modifications had to be made to achieve useable 

data for the model. Section 3.2.2 thoroughly explains the steps for preparing the data without 

losing the original survey results. 

 

Moreover, some assumptions had to be made for preparing the model, for example, 

the hours when students go to sleep and wake up. The final model predicts daily electricity 

consumption with acceptable accuracy. The model also separately analyzes the energy 

consumption for male and female students. Therefore, their consumption can be compared, 

and different energy-saving measures can be recommended for each group. For example, if 

students are encouraged to spend 25% less time in their rooms, the total electricity 

consumption will be reduced by about 5% for male students and 9% for female students. 

The final models of both groups have an average MAPE of around 10%, and the cumulative 

consumption prediction for the whole semester has an error of 2% compared to the actual 

measurements. Due to  for 

prediction of about four months. Specifically speaking, these four months in the monitored 

data covered September to January. Therefore, the model should be utilized for the fall 

semester of an academic year. Although the model is capable of forecasting more extended 

periods, further predictions may include more errors. 

 

In general, researchers can benefit from this study to learn how an agent-based model 

works and how it can be used in energy analysis and building-related studies. Most of the 

buildings studied in the literature are commercial and office buildings. In the case of 

university buildings, studies mainly cover classrooms and research offices, and very few 

studies can be found about student residences. This study analyzes the electricity 

consumption of rooms in a dormitory building. The model also demonstrates that it is 
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possible to achieve a satisfying energy consumption prediction model in buildings without 

the need to create a 3D model of the building as well as using complex methods and coupling 

techniques that utilize building energy simulation engines such as EnergyPlus as they are 

chiefly used for simulating HVAC system consumption. A reliable model has been achieved, 

primarily based on actual data and limited assumptions

movement decisions and their electricity use behaviors. It must be noted that Kilyos 

dormitory does not utilize electricity for heating, and rooms do not have air conditioners. 

Therefore, this model is applicable for other buildings with similar characteristics. In this 

indeed a capable method for modeling occupancy prediction and human-building 

interaction. 

 

Regarding practical contribution, the model is reproducible and can be modified for 

other student resident buildings and improved with newly gathered data. The proposed 

model is more suitable for dormitories located in regions where weather is not mild, and 

students prefer to spend more time indoors. The study can provide quantitative insight into 

how promoting energy awareness and energy-saving measures can reduce electricity 

consumption. Dormitory managers can also utilize the model to do experiments and test 

energy-efficiency strategies, like the sample scenarios proposed in this study, and choose the 

most appropriate methods for reducing electricity consumption. Also, the energy 

consumption simulation results from various dormitory buildings and student bodies can be 

used for analyzing and understanding possible energy use in future buildings. 
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APPENDIX A:  SURVEY FORM 

 

 

 

 



77 
 

APPENDIX B:  NETLOGO CODES 

 

 

extensions [time] 
 
breed [boys boy] 
breed [girls girl] 
 
boys-own [ 
  e-cons 
  room-id 
  status 
  M-in-hour 
  N-in-hour] 
 
girls-own [ 
  e-cons 
  room-id 
  status 
  M-in-hour 
  N-in-hour] 
 
globals [ 
 Start-time 
 Current-time 
 Weekend-name 
 in-out-rand 
 v-tick 
 x-tick 
 Outside 
 B-dorm 
 G-dorm 
 Laptop-B 
 Laptop-G 
 Phone-charger 
 Tablet-charger 
 Coffee-maker-Kettle 
 Light-bulb 
 Shaver 
 Hair_Dryer 
 Electric_Cooker 
 Morning-List-B 
 Morning-List-G 
 Night-List-B 
 Night-List-G 
 Morning-W-List-B 
 Morning-W-List-G 
 Night-W-List-B 
 Night-W-List-G 
 Laptop-Use-B 
 Kitchen-Use-B 
 Kettle-Use-B 
 Hair-Use-B 
 Laptop-Use-G 
 Kitchen-Use-G 
 Kettle-Use-G 
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 Hair-Use-G 
 home-sick-B 
 home-sick-G 
 ar-late-B 
 Holiday-B 
 Holiday-G 
] 
 
to setup 
  clear-all 
  setup-patches 
  setup-turtles 
  setup-appliances 
  setup-time 
  initialize-time 
  reset-ticks 
end 
 
to setup-patches 
  set B-dorm patches with [pycor > 0 AND pxcor < 0] 
  ask B-dorm [set pcolor 99] 
  set G-dorm patches with [pycor > 0 AND pxcor > 0] 
  ask G-dorm [set pcolor 139] 
  set Outside patches with [pycor < 0] 
  ask Outside  [set pcolor white] 
end 
 
to setup-turtles 
  create-boys b-number 
  ask boys [ 
    set color blue 
    set e-cons 0 
  ] 
  create-girls g-number 
    ask girls [ 
     set color pink 
     set e-cons 0 
  ] 
  ask turtles [move-to one-of Outside] 
end 
 
to setup-appliances 
  set Laptop-B 125 
  set Laptop-G 75 
  set Phone-charger 5 
  set Tablet-charger 15 
  set Coffee-maker-Kettle 1200 
  set Light-bulb 50  
  set Shaver 15 
  set Hair_Dryer 1250 
  set Electric_Cooker 1500 
end 
 
to setup-time 
  set Start-time time:create "2016-09-19 00:00:00" 
  set Current-time time:anchor-to-ticks Start-time 1 "hour" 
  file-open "Hours-B.txt" 
  set Morning-List-B file-read 
  set Night-List-B file-read 
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  set Morning-W-List-B file-read 
  set Night-W-List-B file-read 
  file-close 
  file-open "Hours-G.txt" 
  set Morning-List-G file-read 
  set Night-List-G file-read 
  set Morning-W-List-G file-read 
  set Night-W-List-G file-read 
  file-close 
  file-open "E_D-B.txt" 
  set Laptop-Use-B file-read 
  set Kitchen-Use-B file-read 
  set Kettle-Use-B file-read 
  set Hair-Use-B file-read 
  file-close 
  file-open "E_D-G.txt" 
  set Laptop-Use-G file-read 
  set Kitchen-Use-G file-read 
  set Kettle-Use-G file-read 
  set Hair-Use-G file-read 
  file-close 
  ;;Lines: 1: Computer, 2: Kitchen, 3: Kettle, 4:Hair_Dryer;; 
end 
 
to go 
  check-sleep 
  check-location 
  move-turtles 
  consume-energy 
  tick 
  set x-tick ticks mod 24 
  check-day 
  show-time 
end 
 
to check-day 
  if (ticks < 169) [set v-tick ticks] 
  ifelse (ticks mod 168 = 0) [set v-tick 0] [set v-tick ticks mod 168] 
  ifelse (v-tick > 120) AND (v-tick mod 120 > 0) AND (v-tick mod 120 < 25) [set Weekend-name 
"SATURDAY"] [set Weekend-name "WEEKDAY"] 
  if (v-tick > 120) AND (v-tick mod 120 >= 25) AND (v-tick mod 120 < 49) [set Weekend-name 
"SUNDAY"] 
end 
 
to check-sleep 
  ask turtles [ 
    ifelse (x-tick >= 1) and (x-tick < 9) [set status "sleeping"] [set status "awake"] 
  ] 
end 
 
to check-location 
  ask boys [ 
    if (x-tick >= 8) and (x-tick < 16) [ 
      if (x-tick = 8) [set M-in-hour one-of Morning-List-B] 
      let until-m 9 + M-in-hour 
      ifelse (x-tick >= until-m) [set room-id "outdoor"] [set room-id "indoor"] 
    ] 
    if (x-tick >= 16) or (x-tick = 1 ) [ 
      if (x-tick = 16) [set N-in-hour one-of Night-List-B] 
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      if (ticks < 336) and (x-tick = 16) [set N-in-hour (N-in-hour * 0.8)] ;assumed that on the first weeks 
students spend more time outside; 
      let until-n 16 + N-in-hour 
      ifelse (x-tick >= until-n) [set room-id "outdoor"] [set room-id "indoor"] 
    ] 
  ] 
 
  if (Weekend-name = "SATURDAY") or (Weekend-name = "SUNDAY") [ 
    ask boys [ 
      if (x-tick >= 8) and (x-tick < 16) [ 
        if (x-tick = 8) [set M-in-hour one-of Morning-W-List-B] 
        if (ticks < 336) and (x-tick = 8) [set M-in-hour (M-in-hour * 0.8)] 
        let until-m 9 + M-in-hour 
        ifelse (x-tick >= until-m) [set room-id "outdoor"] [set room-id "indoor"] 
      ] 
      if (x-tick >= 16) or (x-tick = 1 ) [ 
        if (x-tick = 16) [set N-in-hour one-of Night-W-List-B] 
        if (ticks < 336) and (x-tick = 16) [set N-in-hour (N-in-hour * 0.8)] ;same assumption 
        let until-n 16 + N-in-hour 
        ifelse (x-tick >= until-n) [set room-id "outdoor"] [set room-id "indoor"] 
      ] 
    ] 
    if (ticks mod 121 = 0) [set home-sick-B turtle-set n-of (round(count boys * 0.2)) boys] 
    ask home-sick-B [ 
      set room-id "outdoor" 
      ;set color green 
    ] 
  ] 
  if (ticks = 0) [set ar-late-B turtle-set n-of (round(count boys * 0.2)) boys] 
  if (ticks > 288) [set ar-late-B no-turtles] 
  if (ticks >= 8) [ask ar-late-B [ 
    set room-id "outdoor" 
    set color green ;only for control and verification! 
  ]] 
 
  if (ticks < 2400) [set Holiday-B no-turtles] 
  if (ticks = 2400) [set Holiday-B turtle-set n-of (round(count boys * 0.1)) boys] 
  if (ticks = 2500) [set Holiday-B turtle-set n-of (round(count boys * 0.15)) boys] 
  if (ticks = 2600) [set Holiday-B turtle-set n-of (round(count boys * 0.2)) boys] 
  ask Holiday-B [ 
    set room-id "outdoor" 
    set color red ;only for control and verification! 
  ] 
 
  ask girls [ 
    if (x-tick >= 8) and (x-tick < 16) [ 
      if (x-tick = 8) [set M-in-hour one-of Morning-List-G] 
      let until-m 9 + M-in-hour 
      ifelse (x-tick >= until-m) [set room-id "outdoor"] [set room-id "indoor"] 
    ] 
    if (x-tick >= 16) or (x-tick = 1 ) [ 
      if (x-tick = 16) [set N-in-hour one-of Night-List-G] 
      if (ticks < 336) and (x-tick = 16) [set N-in-hour (N-in-hour * 0.8)] ;same assumption 
      let until-n 16 + N-in-hour 
      ifelse (x-tick >= until-n) [set room-id "outdoor"] [set room-id "indoor"] 
    ] 
  ] 
  if (Weekend-name = "SATURDAY") or (Weekend-name = "SUNDAY") [ 
    ask girls [ 
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      if (x-tick >= 8) and (x-tick < 16) [ 
        if (x-tick = 8) [set M-in-hour one-of Morning-W-List-G] 
        if (ticks < 288) and (x-tick = 8) [set M-in-hour (M-in-hour * 0.8)] ;same assumption 
        let until-m 9 + M-in-hour 
        ifelse (x-tick >= until-m) [set room-id "outdoor"] [set room-id "indoor"] 
      ] 
      if (x-tick >= 16) or (x-tick = 1 ) [ 
        if (x-tick = 16) [set N-in-hour one-of Night-W-List-G] 
        if (ticks < 336) and (x-tick = 16) [set N-in-hour (N-in-hour * 0.8)] ;same assumption 
        let until-n 16 + N-in-hour 
        ifelse (x-tick >= until-n) [set room-id "outdoor"] [set room-id "indoor"] 
      ] 
    ] 
    if (ticks mod 121 = 0) [set home-sick-G turtle-set n-of (round(count girls * 0.2)) girls] 
    ask home-sick-G [set room-id "outdoor"] 
  ] 
 
  if (ticks < 2400) [set Holiday-G no-turtles] 
  if (ticks = 2400) [set Holiday-G turtle-set n-of (round(count boys * 0.1)) girls] 
  if (ticks = 2500) [set Holiday-G turtle-set n-of (round(count boys * 0.15)) girls] 
  if (ticks = 2600) [set Holiday-G turtle-set n-of (round(count boys * 0.2)) girls] 
  ask Holiday-G [ 
    set room-id "outdoor" 
    set color yellow 
  ] 
end 
 
to move-turtles 
  ask boys [ 
    ifelse room-id = "outdoor" [move-to one-of Outside] [move-to one-of B-dorm] 
    if status = "sleeping" [ 
      setxy -12 16 
    ] 
  ] 
 
  ask girls [ 
    ifelse room-id = "outdoor" [move-to one-of Outside] [move-to one-of G-dorm] 
    if status = "sleeping" [ 
      setxy 12 16 
    ] 
  ] 
end 
 
to consume-energy 
  ask boys [ 
    if (status = "awake") and (room-id = "indoor") [daily-b-consume] 
  ] 
  ask girls [ 
    if (status = "awake") and (room-id = "indoor") [daily-g-consume] 
  ] 
  ask turtles [ 
    if (ticks mod 24 = 6)  [set e-cons 0] 
  ] 
end 
 
to daily-b-consume 
  if (ticks mod 24 = 9)  [ 
    set e-cons e-cons + (Coffee-maker-Kettle * (one-of Kettle-Use-B)) 
    set e-cons e-cons + (Laptop-B * (M-in-hour) * (one-of Laptop-Use-B)) 
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    set e-cons e-cons + (Electric_Cooker * (one-of Kitchen-Use-B)) 
  ] 
  if (ticks mod 24 = 16) [ 
    set e-cons e-cons + (Light-bulb * N-in-hour) 
    set e-cons e-cons + (Laptop-B * (N-in-hour) * (one-of Laptop-Use-B)) 
    set e-cons e-cons + ((Shaver + Hair_Dryer / 2) * (one-of Hair-Use-B)) 
    set e-cons e-cons + ((Phone-charger + Tablet-charger) * 2) 
  ] 
end 
 
to daily-g-consume 
  if (ticks mod 24 = 9)  [ 
    set e-cons e-cons + (Coffee-maker-Kettle * (one-of Kettle-Use-G)) 
    set e-cons e-cons + (Laptop-G * (M-in-hour) * (one-of Laptop-Use-G)) 
    set e-cons e-cons + (Electric_Cooker * (one-of Kitchen-Use-G)) 
  ] 
  if (ticks mod 24 = 16) [ 
    set e-cons e-cons + (Light-bulb * N-in-hour) 
    set e-cons e-cons + (Laptop-G * (N-in-hour) * (one-of Laptop-Use-G)) 
    set e-cons e-cons + ((Shaver + Hair_Dryer) * (one-of Hair-Use-G)) 
    set e-cons e-cons + ((Phone-charger + Tablet-charger) * 2) ;generally it takes around 2 hours each day! 
  ] 
end 
 
to-report b-consumption 
  if (ticks mod 24 = 3) [ 
    let daily-b-cons sum [e-cons] of boys 
    set daily-b-cons daily-b-cons 
    report daily-b-cons 
  ] ;It not necessary to make things hard like, but this function helps a lot when running multiple simulation 
simultaneously in BehaviorSpace 
end  
 
to-report g-consumption 
  if (ticks mod 24 = 3) [ 
    let daily-g-cons sum [e-cons] of girls 
    set daily-g-cons daily-g-cons 
    report daily-g-cons 
  ]  
end 
 
to-report location 
  report [room-id] of turtle 0 
end 
 
to-report condition 
  report [status] of turtle 0 
end 
 
to  initialize-time 
  clear-output 
  output-print Start-time 
end 
 
to  show-time ; only for control and verificatoin; disable them if fewer than 4 agents are considered or it will 
cause error! 
  clear-output 
  output-print Current-time 
  output-print Weekend-name 
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  output-type "M-in-hour: " output-type [M-in-hour] of turtle 0 output-type " " output-type [M-in-hour] of 
turtle 1 output-type " " 
  output-type [M-in-hour] of turtle 2 output-type " " output-type [M-in-hour] of turtle 3 output-type " " 
  output-type [M-in-hour] of turtle 4 output-type "---" output-type [e-cons] of turtle 1 
  output-print " " 
  output-type "N-in-hour: " output-type [N-in-hour] of turtle 0 output-type " " output-type [N-in-hour] of 
turtle 1 output-type " " 
  output-type [N-in-hour] of turtle 2 output-type " " output-type [N-in-hour] of turtle 3 output-type " " 
  output-type [N-in-hour] of turtle 4 
end 
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APPENDIX C:  SAMPLE PYTHON CODES FOR INDOOR HOURS 

 

 

import random 

import matplotlib.pyplot as plt 

random.seed(101) ###Random Seed: 101 for girls; 202 for boys### 

numberList = [1, 2, 3, 4, 5] 

a = random.choices(numberList, weights=(33, 32, 20, 5, 4), k=1000) 

HourList = [] 

for element in a: 

    if element == 1: 

        HourList.append(round(random.uniform(0, 0))) 

    if element == 2: 

        HourList.append(round(random.uniform(1, 2))) 

    if element == 3: 

        HourList.append(round(random.uniform(3, 4))) 

    if element == 4: 

        HourList.append(round(random.uniform(5, 6))) 

    if element == 5: 

        HourList.append(round(random.uniform(7, 8))) 

frequencyDict = dict() 

visited = set() 

for element in HourList: 

    if element in visited: 

        frequencyDict[element] = frequencyDict[element] + 1 

    else: 

        frequencyDict[element] = 1 

        visited.add(element) 

frequencyDict_sorted = {} 

for i in sorted(frequencyDict): 

    frequencyDict_sorted[i] = frequencyDict[i] 

print("Weighted values are: ", a) 

print("HourList: ", HourList) 



85 
 

print("Frequency of NORMAL is: ", frequencyDict_sorted) 

x2 = list(frequencyDict_sorted.keys()) 

y2 = list(frequencyDict_sorted.values()) 

plt.bar(range(len(frequencyDict_sorted)), y2, tick_label=x2) 

for i in range(len(frequencyDict_sorted)): 

    plt.text(i,y2[i]+1,str(round(y2[i]/10))+'%', ha ='center', fontsize='small') 

plt.title("Daytime_Weekday (Girls)") 

plt.xlabel('Hours (indoor)') 

plt.ylabel('Frequencies (Probabilities %)') 

plt.show() 

f = open("Daytime_Weekday-Girls.txt", "w") 

f.write(str(HourList)) 

f.close() 
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APPENDIX D:  GENEARATED VALUES FOR THE SPENT TIME IN 

ROOMS 

 

 

 

 

Figure D.1. Distribution of Indoor Hours for Male Students. 

 



87 
 

 

 

Figure D.2. Distribution of Indoor Hours for Female Students. 
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APPENDIX E:  ASSUMPTIONS FOR HOURS AND PROBABILITIES  

 

 

Table E.1. Laptop Use. 

 

 

 

Table E.2. Kettle (Coffee Maker) Use. 

 

 

 

Table E.3. Electric Cooker Use. 
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Table E.4. Hairdryer and Shaver Use. 
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APPENDIX F:  ELSEVIER LICENSE  

 

 

Table F.1. Permission from Elsevier 

 

 

 


