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ABSTRACT

ANALYTIC SOLUTIONS OF SCALAR FIELD

COSMOLOGY WITH MINIMAL AND NONMINIMAL

COUPLING AND DEFORMED DISCRETE AND FINITE

QUANTUM SYSTEMS

In this thesis first, we study analytic solutions of cosmology. We investigate

the most general cosmological model with real scalar field which is minimally coupled

to gravity and Brans-Dicke cosmology. Field equations consist of three differential

equations. We switch independent variable from time to scale factor by change of

variable ȧ/a = H(a). Thus a new set of differential equations are analytically solvable

with known methods. a(t) can be explicitly found as long as methods of integration

techniques are available. We investigate the dynamics of the universe at early times

as well as at late times in light of these formulas. We find mathematical machinery

which turns on and turns off early accelerated expansion. On the other hand late time

accelerated expansion is explained by cosmic domain walls. φ4 potential is studied

in Brans-Dicke Cosmology. In this thesis we also study discrete and finite quantum

systems. We define a deformed kinetic energy operator for a discrete position space

with a finite number of points. The structure may be either periodic or nonperiodic

with well-defined end points. It is shown that for the nonperiodic case the translation

operator becomes nonunitary due to the end points. This uniquely defines an algebra

which has the desired unique representation. Energy eigenvalues and energy wave

functions for both cases are found. In addition, we uncover the mathematical structure

of the Schwinger algebra and introduce almost unitary Schwinger operators which are

derived by considering translation operators on a finite lattice.
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ÖZET

SKALAR ALANLA MİNİMAL VE MİNİMAL OLMAYAN

BAĞLANTIDAKİ KOZMOLOJİNİN ANALİTİK

ÇÖZÜMLERİ VE DEFORME AYRIK VE SONLU

KUANTUM SİSTEMLERİ

Bu tezde öncelikle kozmolojinin analitik çözümlerini inceliyoruz. Gerçek skalar

alanla yerçekimi arasında minimal bağlantının olduğu en genel kozmolojik modeli ve

Brans-Dicke kozmolojisi araştırıyoruz. Alan denklemleri üç diferansiyel denklemden

oluşur. ȧ/a = H(a) dönüşümü ile bağımsız değişkeni zamandan ölçek faktörüne

değiştiririz. Böylece yeni diferansiyel denklem seti, bilinen yöntemlerle analitik olarak

çözülebilir. Entegrasyon teknikleri yöntemleri mevcut olduğu sürece, a(t) açıkça bulun-

abilir. Evrenin dinamiklerini bu formüller ışığında hem erken hem de geç zamanlar için

inceliyoruz. Erken ivmelenen genişlemeyi açan ve kapatan matematiksel mekanizma

buluyoruz. Öte yandan, geç zamandaki ivmelenen genişlemeyi, kozmik alan duvarları

ile açıkladık. φ4 potansiyeli Brans-Dicke Kozmolojisinde incelendi. Bu tezde ayrıca

ayrık ve sonlu kuantum sistemlerini de inceliyoruz. Sonlu sayıda noktaya sahip ayrık

bir konum uzayı için deforme olmuş bir kinetik enerji operatörü tanımlıyoruz. Yapı,

iyi tanımlanmış uç noktaları olan periyodik veya periyodik olmayan olabilir. Periyo-

dik olmayan durum için, öteleme operatörünün bitiş noktalarından dolayı üniter ol-

mayan hale geldiği gösterilmiştir. Bu, istenen tek temsile sahip bir cebiri tek şekilde

tanımlar. Her iki durum için de enerji özdeğerleri ve enerji öz vektörleri bulunur. Ek

olarak, Schwinger cebirinin matematiksel yapısını ortaya çıkardık ve sonlu bir kafes

üzerindeki öteleme operatörlerini dikkate alarak türetilen neredeyse üniter Schwinger

operatörlerini tanıttık.
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1. INTRODUCTION

This thesis consists of two main parts: cosmology and deformed quantum me-

chanical finite systems. In the first part we aim to find exact solutions of field equations

both in the most general cosmological model with real scalar field which is minimally

coupled to gravity and in Brans-Dicke cosmology. Early epoch and late-time era of

the universe are investigated. In the second part we focus on a discrete position space

with a finite number of points. We study momentum and translation operators both on

periodic and nonperiodic structures. We construct a relation between these translation

operators and Schwinger operators.

1.1. Analytic Solutions of Cosmology

The scalar field plays an important role in many parts of modern physics. Its us-

age in cosmology was seen firstly in Nordstrom’s studies after Newton’s gravity which

has a scalar potential field. Although he introduced scalar theory of gravity [1–4] in

1912-1913, none of them have been verified by observation [5]. Then in 1916 Einstein’s

theory of general gravity was established. This is a purely tensor theory. Seeds of some

alternative theories which incorporates a scalar field were conceived by Jordan [6] and

Dirac [7].

Since Einstein’s General Theory of Relativity, many new modified theories have

been introduced to extend it. Dirac proposed that Newton’s constant may be varying

with time [7], after influential ideas were developed by Weyl [8,9] and Eddington [10].

Spacetime dependent gravitational constant can be described according to Jordan’s

study in [6]. Thus his work has been accepted as the origin of the scalar-tensor theory.

Scalar fields appear through a nonminimal coupling term. This term arises with the

idea of the space-time dependent gravitational constant which was conceived by Jor-

dan [6] and Dirac [7].
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A general form of the Lagrangian density for scalar-tensor theory [11–14] can

be written as

L =
1

16π

√
−g[f(Φ)R− g(Φ)∇µΦ∇µΦ− 2Λ(Φ)] + Lm(ψ, h(Φ)gµν), (1.1)

where f, g, h and Λ are arbitrary functions of the scalar field Φ and Lm is the La-

grangian density of the matter fields ψ.

Two different revolutionary steps have been taken in cosmology since 1980. First

one was the construction of inflationary cosmology by A.H. Guth and A.D.Linde. It

had been proposed as a solution for problems of the standard model of cosmology which

are the flatness problem, the horizon problem and the monopole problem [15, 16]. In

these studies it has been shown that one or more scalar fields drive the early phase

of accelerated expansion. Second one was the observational evidence of accelerated

expansion of the present universe [17–19]. Standard cosmology explains this behaviour

by contribution of dark energy (∼ 68%), dark matter (∼ 27%) and baryonic matter

(∼ 5%) to the total density parameter. A Simple explanation of dark energy just as

a cosmological constant in standard model of cosmology is problematic [20]. Hence to

explain dark energy many different studies have been developed by using scalar fields

similar to early inflationary theories. All these models are widely explained in the

review article [21]. The second main part of the universe consists of dark matter. This

still keeps its secrets. It has not been explained properly yet. A scalar field is again a

candidate to reveal its nature [22].

In 1961 Brans and Dicke [23] developed a new approach to general relativity based

on Mach’s principle. Their main idea was to replace the effective gravitational constant

with the reciprocal of a scalar field. The so called Jordan-Brans-Dicke Lagrangian has

given inspiration to many scientists. For example the same Lagrangian with spon-

taneous symmetry breaking potential has been studied by Zee [24] and Smolin [25].

Induced-gravity inflation models have been constructed by using these ideas [26–31].

Moreover in extended inflation, a simple potential causes accelerated expansion [32–34].
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On the other hand, more complicated nonminimal coupling terms have been studied

in [35–43]. Finally, one should also remember multifield inflationary scenarios which

have been developed in the last decade [44–50]. These theories include multiple non-

minimally coupled fields.

1.1.1. Problems of Cosmology

Inflationary cosmology was established to solve the problems of Hot Big Bang

scenario. Two main problems can be explained as briefly;

1.1.1.1. Flatness Problem. Einstein’s equations which will be introduced in Section 2

state that

H2 +
k

a2
=

8πG

3

∑
i

ρi(t). (1.2)

The critical energy density is defined for a flat universe as ρc =
3H2

8πG
. Then one can

arrange (1.2) as

| ρtotal(t)− ρc |
ρc

=| Ωk |, Ωk = − k

a2H2
. (1.3)

Present observations indicate that the ratio Ω =
ρ

ρc
is very close to one [51, 52]. One

can show that at the Planck time t ∼ 5× 10−44s, | ΩP − 1 |. 10−60. The coincidence

of this fine tuning initial condition is known as the flatness problem.

1.1.1.2. Horizon Problem. Cosmic microwave background radiation implies homo-

geneity and isotropy of our universe while it has temperature variation
δT

T
' 10−5

. However if one takes two opposite points which are separated by 1800 on the last

scattering surface a proper distance between them is 1.96dhor(t0) [53]. Thus there is

the problem how causally disconnected regions can be in thermal equilibrium.
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1.1.1.3. Inflationary Cosmology. To solve these two basic problems it was shown that

there should be inflationary era preceding the radiation dominated epoch. An acceler-

ation of the scale factor ä > 0 or − Ḣ

H2
< 1 are konown as the condition for inflation.

The usual assumption states that the Hubble function was constant during this period

of time. Thus an exponential expansion a ∼ eHi(t−ti) of the universe exists [54, 55].

Then at the end of the inflation

| Ωf − 1 | = e−2N | Ωi − 1 |, (1.4)

| Ωkf | = e−2N | Ωki |, (1.5)

N = (tf − ti)Hi, (1.6)

where i and f denote beginning and end of the inflation. Calculations in [54] indi-

cate that N > 62. If at the beginning of inflation the universe was curved such that

| Ωκ |∼ 1 exponential expansion prevents flatness problem.

When we trace back the exponential or accelerated expansion of the universe,

today’s casually disconnected patches of the cosmic sky have a chance to communicate

with each other. Hence inflationary solution also explain the horizon problem.

Inflationary period is assumed to be driven by the scalar field called the inflaton.

Thus cosmic fluid is dominated by the scalar field. Field equations are solved by two

main assumptions,

φ̇2 � V (φ), | φ̈ |� H | φ̇ | . (1.7)

These are called the slow-roll approximations [54, 55].

1.1.1.4. Cosmological Constant Problem. Vacuum energy or cosmological constant is

known as the term which causes accelerated expansion of the universe although it was
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initially introduced to obtain static universe. Einstein field equations were written as

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (1.8)

after adding cosmological constant Λ where metric sign is (−,+,+,+). Hence it

contributes to the right side of (1.2) as ρvac =
Λ

8πG
. By using observational evi-

dence ΩΛ0 = 0.7 ± 0.1 where ΩΛ =
8πG

3H2
ρΛ and H0 = 70kms−1Mpc−1, we found

ρΛ ≈ 10−29g/cm3 ≈ 3× 10−47GeV 4 which is consistent with [56].

In quantum field theory the vacuum corresponds to the lowest energy state. Spon-

taneous virtual particle creation and annihilation occurs in this empty space. These

quantum fluctuations contribute to the total energy density of the vacuum. Zero-point

energies of the field with mass m is;
~w
2

and w =
√
m2 + k2 where k is the wave num-

ber. Summation of all modes with wave number cutoff gives ρvac ∼ 1072GeV 4 [20, 56].

There is 119 order of magnitude difference between theoretical prediction and obser-

vational results. If one is gudied by calculations in quantum chromodynamics which

indicate that ρvac ∼ 10−6GeV 4 [20] the gap is at the order of magnitude 41.

1.1.2. Dark Matter and Mond Theory

According to Keplerian behavior, rotation speed of stars at a radius r in a galaxy

is found as

v(r) =

√
Gm(r)

r
, (1.9)

where m(r) is the total mass contained in a volume with radius r. Since luminous

mass is concentrated at the center of the galaxy we expect to see decrease in velocity

of the rotating object. However according to observational data velocities of the stars

increase as their distance from the center increase. Thus it has been concluded that

there must be nonluminous mass such that as r increases m(r) increases [57]. This

missing matter is known as the dark matter.
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MOND(Modified Newtonian Dynamics) was established as an alternative to hid-

den mass [58]. In this theory instead of a Newtonian force acting on a mass m, ~F = m~a

Milgrom introduced

~F = mµ(
a

a0

)~a, (1.10)

µ(x� 1) ≈ 1, µ(x� 1) ≈ x, (1.11)

where a0 ≈ 2×10−8cms−2. After performing some fundamental physics one shows that

v = (GMa0)1/4 for distant stars of galaxies where accelerations of stars are very small.

Although MOND was successful when fitting rotation curves of galaxies, none of the

relativistic versions of MOND (RMOND) were compatible with data when CMB and

MPS (matter power spectra) were computed. However in 2021 the first RMOND theory

which achieved to yield CMB and MPS in agremment with data was established [59].

In addition in 2020 EFE (external field effect) in MOND which was proposed as an

alternative to dark matter was investigated and observational evidence was found [60].

1.1.3. Cosmic Domain Walls

In a grand unified theory [61] strong, weak and electromagnetic forces are com-

bined into a single force at extremely high temperatures. As the universe cools phase

transitions occur. As a result symmetries between interactions are broken. During this

phenomena topological defects may occur [62]. For example the following Lagrangian

L =
1

2
(∂µφ)2 − V (φ), (1.12)

V (φ) = −1

2
m2φ2 +

1

4
λφ4, (1.13)
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is invariant under reflection (φ→ −φ) symmetry. The potential has two stable minima

at φ = ±
√
m2

λ
, since

V (±
√
m2

λ
) = −m

4

4λ
, V

′′
(±
√
m2

λ
) = 2m2. (1.14)

The case φ = 0 corresponds to an unstable extremum since V
′′
(0) < 0. One can add

a constant term to the potential without affecting equations of motion. Thus we can

write

V (φ) =
λ

4
(φ2 − η2)2, η2 =

m2

λ
. (1.15)

Hence vacuum energy becomes zero. If we choose one of the vacuum state and set

φ = η + ψ our Lagrangian is written as

L =
1

2
(∂µψ)2 − 1

2
m2
ψψ

2 −
√
λ

2
mψψ

3 − 1

4
λψ4, (1.16)

where mψ =
√

2m. Then the symmetry of the Lagrangian is spontaneously broken.

Now space has two ground states. One can visualize a universe consisting of different

parts; one has φground = +η, other part has φground = −η. At the smooth transition of

φ from one part to other part there is a region where φ = 0 and V (φ) 6= 0. Domain

walls are interpreted as this interpolation region. They are two-dimensional defetcs

while cosmic-strings are one-dimensional defects and magnetic monopoles are zero-

dimensional defects [63–65]. To include them in cosmology is very appealing because

they appear in a field theory which has spontaneously broken discrete symmetries [65].

Domain walls differentiate among various candidates for dark energy. They sup-

ply the required accelerated expansion with negative pressure p = −(2/3)ρ. Altough

cosmic fluids with a negative equation of state have an imaginary sound speed there

have been several studies indicating that cosmic walls are not ruled out in cosmol-

ogy [66–71].
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1.1.4. Field Equations

In the last decades cosmologists established several modified theories of gravity

to investigate all these concepts [55, 72–80]. All of these theories have different field

equations which govern the dynamics of the universe. Thus all these theories have

different physical conclusions.

In this thesis we study the most general cosmological model with scalar field

which is minimally coupled to gravity and the Brans-Dicke cosmology where there ex-

ists non-minimal coupling to gravity.

The field equations which govern the universe are ordinary differential equations.

To be able to solve them many different approaches have been developed. For the

case of minimal coupling we can briefly sumarize these studies as follows. One of them

is the dynamical systems methods in which stabiliy analysis of systems of nonlinear

differential equations are investigated. Detailed studies have been performed by this

method in [81–84] . Other methods are based on assumptions or approximations. The

”slow-roll approximation” is the most common one which is applied in scenarios of the

inflationary universe [85, 86]. Lastly, the generating function method is proposed as a

method which gives exact solution of the field equations in [87]. Some of the searches

for exact solutions of the field equations where the scalar field is minimally cooupled

to gravity have been presented in [88–91].

In recent years searching for exact solutions of the field equations of scalar tensor

theories also has taken more attention [89–94]. In addition in 1990 it has been shown

that there are potentials V (φ) leading to desired behaviour for the scale factor without

the use of ’slow-roll approximation’ usually assumed in inflationary models [95].

Up to now, for Brans-Dicke cosmology some exact solutions for specific cases

have been presented. While for a radiation filled universe exact solution was given

in [96], parametric solution for the case p = ερ was given in [97]. For Bianchi type
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universes with arbitrary barotropic perfect fluid exact solution were found [98]. Para-

metric exact solutions for potential free universe filled with ordinary matter were given

in [99]. On the other hand Noether’s theorem was used to determine conservation laws

in Brans-Dicke cosmology which includes two scalar fields and exact solutions were

found [100]. An exact solution of modified Brans-Dicke theory was studied in [101].

We have three main goals in our cosmological studies. The first is solving field

equations analytically. The second is finding mathematical machinery which causes to

turn on and turn of accelerated expansion in early universe. Last is explaining late time

accelerated expansion without dark energy. We study the most general cosmological

model with scalar field which is minimally coupled to gravity in the second chapter.

Brans-Dicke cosmology is investigated in the chapter 3 and its complementary part is

given in chapter 4.

1.2. Deformed Discrete and Finite Quantum Systems

The conventional formulation [102] of quantum mechanics starts with a position

space which is the set of real numbers. This leads to physical states which are vectors

of a separable Hilbert space. The observables are then described by Hermitian opera-

tors on this Hilbert space. Angular momentum and spin one half are the well known

systems in which observables have finite and discrete values. Furthermore, quantum

information theory, quantum optics and the lattice models are all realized in a finite

dimensional Hilbert space. One can find a guide to the literature on the applications in

Vourdas’ work [103], where quantum systems with finite Hilbert space are considered

and phase-space methods are discussed.

Our motivation is to construct new operators so that one can calculate the en-

ergy spectrum. In chapter 5 we define a deformed momentum operator and nonunitary

translation operators. Eigenvalues and eigenfunctions of the Hamiltonian for periodic

and nonperiodic cases are calculated.
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On the other hand quantum mechanics on a finite periodic lattice is a well known

subject which has been studied repeatedly since Schwinger’s famous 1960 paper [104].

He developed the generators of a complete unitary operator basis. Applications of

Schwinger approach have been used in quantum optics, quantum communications,

quantum probability and Galois quantum systems [105–115]. In addition one can find

the review of the literature on quantum systems with finite Hilbert space and the link

between this theory and the other research fields in Vourdas [116].

In chapter 6 we recognize that when the lattice is not periodic the end points

give rise to almost unitary Schwinger operator. We construct the projection opera-

tors in terms of the almost unitary translation operators and in terms of the unitary

Schwinger operators. Since projection operators play the key role in relations between

these two algebras we investigate their properties. Then we are able to write each alge-

bra in terms of the other one. We also find two new representations where the standard

basis of MN(C) is constructed in terms of the projection operators in each algebra. Fi-

nally, we formulate an algebra which is related to representing a multi-dimensional

lattice in terms of one-dimensional lattices in each direction.
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2. ANALYTIC SOLUTIONS OF SCALAR FIELD

COSMOLOGY WITH MINIMAL COUPLING

In this chapter we have three main purposes. The first is solving field equations

analytically. The second is finding a mathematical machinery which causes to turn on

and to turn of accelerated expansion in early universe. Last is explaining late time

accelerated expansion without dark energy. In Section 2.1 we use a mathematical tool

which is a change of independent variable. Thus the field equations are converted to

a new set of differential equations. In Section 2.2 we exactly solve this new set of

equations and present solutions in four different forms. In Section 2.3 we investigate

single-component universes. In Section 2.4 we examine two-component universes and

we find a new exotic matter which causes mathematical mechanisms which turns on

and turns off accelerated expansion in an early universe. In Section 2.5 we show that

a universe which contains matter and cosmic walls results in accelerated expansion.

Furthermore we compare our results with supernova Ia data. Results are quite satis-

factory. Then we examine dark energy dominated universe with the same procedure.

Our discussion is given in Section 2.6.

2.1. Field Equations

2.1.1. Original Form

Action of general relativity with scalar field and the cosmological constant is given

by

S =

∫
d4x
√
−g[

1

2κ
(R− 2Λ)− 1

2
gµν∂µφ∂νφ− V (φ) + LM ], (2.1)
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where R is the Ricci scalar and κ = 8πGc−4. We will use FLWR metric with space

dominant metric sign (−,+,+,+) and units with ~ = 1, c = 1

ds2 = −dt2 + a2(t)[
dr2

1− k r
2

L2

+ r2(dθ2 + sin2 θdϕ2)], (2.2)

where k = −1, 0, 1 and a(t) =
R(t)

R(t0)
is normalized scale factor, with the convention

a(t0) = 1, L = R(t0) and r has dimension of lenght.

Energy-momentum tensor for the field is defined as

Tµν =
−2√
−g

δSφ
δgµν

, (2.3)

where T µν = {ρ, p, p, p}.

In standard cosmology field equations have been found as

ȧ2

a2
=

8πG

3
ρ+

Λ

3
− k

L2a2
, (2.4)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (2.5)

where ρ = ρord + ρφ and p = pord + pφ are known as Einstein equations. ord stands

for ordinary and represents matter-energy distribution placed in Einstein equations by

hand as a function the scale size of the universe.

In addition, variation of the Lagrangian density with respect to the field φ gives another

equation

φ̈+ 3Hφ̇+
dV

dφ
= 0. (2.6)



13

For scalar field dominated universe we have

ρ =
φ̇2

2
+ V (φ), (2.7)

p =
φ̇2

2
− V (φ), (2.8)

where we assume that φ is a function only of t. Then Equation (2.6) is equivalent to

continuity equation which is given by

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.9)

For the details of the continuity equation and evolution of cosmological fluid see the

Appendix A.8.

We name our potential as an effective potential in the sense that it may reflect

another more basic physical theory. We will call Equation (2.4) as the first Einstein

equation, Equation (2.5) as the second Einstein equation and the Equation (2.6) as the

φ equation.

2.1.2. New Form of Field Equations

If independent variable does not appear explicitly in the differential equation one

can define a new variable in terms of dependent variables so that the order of the

differential equation can be reduced by one [117]. In our field equations independent

variable is ”t”. We define our new dependent variable as Hubble function

H(a) =
ȧ

a
. (2.10)
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Thus our new independent variable becomes the scale factor a. For this reason we

write all other variables in terms of the new variable;

φ = φ(a) and V (φ) = V (a). (2.11)

Expressions for derivatives of a and φ with respect to time in terms of derivatives with

respect to new independent variable a are given in Appendix A.3. In addition Λ can

be included in V (φ) so we will not carry it anymore.

One can easily write the field equations, energy density of the scalar field and the

pressure of the scalar field as

H
2

=
8πG

3
ρ− k

L2a2
, (2.12)

H
′
Ha+H2 = −4πG

3
(ρ+ 3p), (2.13)

φ
′′
a2H2 + 4φ

′
aH2 + φ

′
a2HH

′
+ V

′ 1

φ′
= 0, (2.14)

ρ(a) =
1

2
(φ
′
aH)2 + V (a), (2.15)

p(a) =
1

2
(φ
′
aH)2 − V (a), (2.16)

where prime denotes
d

da
.

When this set of differential equations is solved exactly we will obtain all un-

known functions; H(a), φ(a), V (a), ρ(a), p(a) and the deceleration parameter q(a) as

a function of scale factor, a. Thus it will be possible to track the dynamical history of

the universe backward and forward in time. Indeed in some cases it will be possible to

formulate some of these functions as a function of time.
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2.2. Solution for Field Equations

When solving this differential equation set one should be careful. By taking time

derivative of first Einstein equation and using the continuity equation we reach the

second Einstein equation. Thus by taking time derivative of first Einstein equation

and using the second Einstein equation we reach the continuity equation. In addition

by substitution ρ(t) and and p(t) in the continuity equation one can reach φ equation.

One of the field equations can be derivable from other two of them. One can combine

these 3 equations in 3 different pairs such that when their solutions are plugged in the

remaining differential equation it will be satisfied automatically.

First combination is the easiest one. We take the first Einstein equation and

the φ equation. Then we multiply the φ equation by φ
′

and obtain

a2φ
′
φ
′′
H2 + 4aφ

′2H2 + a2φ
′2HH

′
+ V

′
(a) = 0. (2.17)

We define

γ(a) =
φ
′2H2a2

2
, (2.18)

to be able to solve the last differential equation. Therefore this equation is converted

to

γ
′
+

6

a
γ = −V ′ . (2.19)

This is a first order linear differential equation and it’s solution can be found easily as

γ(a) =
1

a6
[

∫ a

ain

(−a′6V ′(a′))da′ + a6
inγ(ain)]. (2.20)
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Hence by rewriting Equation (2.18) we obtain

φ
′2H2a2

2
= γ(a),

φ
′2H2a2 =

2

a6
[

∫ a

ain

(−a′6V ′(a′))da′ + a6
inγ(ain)]. (2.21)

It is apparent that to be able to solve this field equation one needs the knowledge of

one of the following functions; V (a), H(a), φ(a). There is one more function which can

be used as a starting point of calculations. This is the energy density. The relation

between ρ(a) and Equation (2.21) will be studied in Section 2.2.4.

We have gone further by plugging energy density into the first Einstein equa-

tion

H2 =
8πG

3
[
1

2
φ
′2H2a2 + V (a)]− k

L2a2
, (2.22)

H2 =

8πG

3
V (a)− k

L2a2

1− 4πG

3
φ′2a2

. (2.23)

We will refer the last equation as our Friedmann equation.

2.2.1. Solution for Given V (a)

In this section we start our calculations by using our Friedmann equation. Sub-

stituting (2.23) in (2.21) we obtain

φ
′2[

8πG

3
V (a)− k

L2a2

1− 4πG

3
φ′2a2

]a2 = 2γ(a). (2.24)
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Then one can reach the following results

φ
′2 =

2γ(a)

a2[
8πG

3
(V (a) + γ(a))− k

L2a2
]

, (2.25)

φ(a) = ±
∫ a

ain

√√√√√ 2γ(a
′
)

a′2[
8πG

3
(V (a′) + γ(a′))− k

L2a′2

da
′
+ φain . (2.26)

One should decide to pick one of the ± sign in front of the right side of φ(a) such that

the value of the scalar field increase or decrease as the universe expands. H(a) has

been found by using the formula of the scalar field in our Friedmann equation as

H(a) =

√
8πG

3
(V (a) + γ(a))− k

L2a2
, (2.27)

where

γ(a) =
1

a6
[

∫ a

ain

(−a′6V ′(a′))da′ + a6
inγ(ain)]. (2.28)

It is apparent that knowledge of the potential energy function V (a) is sufficient

to formulate the scalar field φ(a) and the Hubble function H(a) as an exact solution

of the field equations.

We would like to mention that the results of this subsection are similar to re-

sults of [118]. They have reduced the differential equations to quadrature problems

by writing V (a) in a complicated way. Then exponential potentials and hyperbolic

potentials were focused in their examples.

2.2.2. Solution for Given φ(a)

In some cases one may need to solve the field equations for a specific scalar field.

In this calculation V (a) becomes the unknown dependent variable in (2.24). To be able
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to go further first we write the solution of the φ equation as

γ(a) = −V (a) +
1

a6
[6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inγ̃(ain)], γ̃(ain) = γ(ain) + V (ain),

(2.29)

where we have applied integration by parts to Equation (2.20). Details of this calcula-

tion are given in the Appendix A.4.

2.2.2.1. Singular Case. Firstly we will investigate the special form of the scalar field

which causes this singularity in the denominator of right side of the equation. From

(2.23) we have

1− 4πG

3
φ
′2a2 = 0. (2.30)

Therefore

∫ φ

φin

dφ
′
= ±

√
3

4πG

∫ a

ain

da′

a′
, (2.31)

and

φ =


√

3

4πG
ln(

a

ain
) + φin,

−
√

3

4πG
ln(

a

ain
) + φin.

(2.32)

Since ain ≤ a, ” + ” sign indicates that the scalar field always increases. On the other

hand minus sign implies that one will have positive and decreasing scalar field when

φin big enough.

One easily obtains the potential by plugging the field into (2.22)

V (a) =
3

8πG
(
k

L2a2
). (2.33)
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Then the Hubble function is formulated just by substitution of φ(a) and V (a) into the

solution of the φ equation which is given by the (2.21)

H2(a) =
2

a6
{
∫ a

ain

k

L2
a
′3da

′
+

4πG

3
a6
inγ(ain)}, (2.34)

H(a) =

√
k

2L2a2
+

8πG

3

a6
inγ̃(ain)

a6
, γ(ain) =

3k

16πGL2a2
in

+ γ̃(ain). (2.35)

At first sight one can say that the spatially flat universe is static by choosing γ̃(ain) = 0.

However this statement is incorrect because it is incomplete. Firstly we would like to

remind that our choice at the change of variable
ȧ

a
= H(a) works only for the dynamic

universes where H(a) 6= 0. Secondly by using the first Einstein equation one can easily

deduce that the static and spatially flat universe must be empty. Therefore complete

and correct interpretation says that the spatially flat and dynamic universes have time

varying energy density.

Considering the solution for k = 0, it is seen from the Equation (2.33), V = 0 for

spatially flat universe. Thus we jump back to Equation (2.19) and it turns to

γ
′
+

6

a
γ = 0, (2.36)∫ γ

γin

dγ
′

γ′
= −6

∫ a

ain

da
′

a′
,

and

lnγ − lnγin = −6(lna− lnain),

γ(a) =
γ̃(ain)

a6
and γ̃(ain) = γ(ain)a6

in. (2.37)

Hence by plugging γ and φ in (2.18) we have obtain the Hubble function as

H =

√
8πG

3

γ̃(ain)

a6
. (2.38)
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2.2.2.2. Non-Singular Case. In this case we investigate general form of the scalar field

where φ(a) 6=
√

3

4πG
ln(a). We have start this case by using (2.29) in (2.25)

φ
′2 =

2{−V (a) +
1

a6
[6
∫ a
ain
V (a

′
)a
′5da

′
+ a6

inγ̃(ain)]}

a2{8πG

3a6
[6
∫ a
ain
V (a′)a′5da′ + a6

inγ̃(ain)]− k

L2a2
}
. (2.39)

To be able to calculate the potential V (a), one should define a new function

α(a) = 6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inγ̃(ain), V (a) =
α
′

6a5
, (2.40)

where α(ain) = a6
inγ̃in. Then (2.39) turns into a first order linear differential equation

which is obtained as

α
′
+ (8πGaφ

′2 − 6

a
)α = (

3ka5

L2
)φ
′2. (2.41)

The solution is found as

α(a) = exp[

∫ a

ain

(
6

a′
− 8πGa

′
φ
′2)da

′
]

×
{
α(ain) +

∫ a

ain

exp[

∫ a
′

ain

(− 6

a′′
+ 8πGa

′′
φ
′2)da

′′
](

3ka
′5φ
′2

L2
)da

′
}
. (2.42)

Then according to relation (2.40) the potential V (a) is found as

V (a) =
α
′

6a5
,

V (a) = (1− 4πG

3
a2φ

′2)eλ(a)β(a) +
kφ
′2

2L2
, (2.43)

λ(a) = −
∫ a

ain

8πGa
′
φ
′2da

′
, (2.44)

β(a) = α(ain) +

∫ a

ain

e−λ(a
′
) 3ka6

inφ
′2

L2a′
da
′
]. (2.45)
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H(a) has been found by substituting this potential and the specific scalar field into our

Friedmann equation

H2 =

8πG

3
V (a)− k

L2a2

1− 4πG

3
φ′2a2

,

H(a) =

√
8πG

3a6
in

eλ(a)β(a)− k

L2a2
, (2.46)

where λ(a) and β(a) are given by (2.44) and (2.45). Hence for a specific scalar field

exact solution of the field equations are given by the last two equations.

Both these two cases have a common physical result. If there is only scalar

field without any kinds of matter except the dark energy this universe has dynamic

behaviour as a result of it being curved by the scalar field.

For k = 0 the solution changes. Equation (2.41) is solved as

α
′
= (

6

a
− 8πGaφ

′2)α, (2.47)∫ α

αin

dα
′

α′
=

∫ a

ain

(
6

a′
− 8πGa

′
φ
′2(a

′
))da

′
,

lnα− lnαin = (lna6 − lna6
in)−

∫ a

ain

8πGa
′
φ
′2(a

′
)da

′
,

α

αin
=

a6

a6
in

exp[−
∫ a

ain

8πGa
′
φ
′2(a

′
)da

′
],

α =
αina

6

a6
in

exp[−
∫ a

ain

8πGa
′
φ
′2(a

′
)da

′
]. (2.48)

Then we formulate the potential by using Equation (2.40)

V (a) =
α
′

6a5
,

V (a) =
αin
a6
in

[1− 4πG

3
a2φ

′2(a)]eλ(a), (2.49)
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where λ(a) is given by Equation (2.44). The Hubble function is found just by substuting

the potential and the scalar field into our Friedmann equation

H(a) =

√
8πG

3

αin
a6
in

eλ(a), (2.50)

where λ(a) is given in (2.44).

2.2.3. Solution for Given H(a)

In this section we will start our calculations by rewriting our Friedmann equation

in the form

H2 =
8πG

3
(
1

2
φ
′2H2a2 + V (a))− k

L2a2
.

This equation is easily converted to

φ
′2a2H2

2
=

3

8πG
(H2 +

k

L2a2
)− V (a). (2.51)

Therefore one can recognize the first term on the left side of Equation (2.51) as γ(a)

which is the variable found as a solution of the φ equation at the beginning of the

Section 2.2. Hence (2.51) turns into the following form

γ(a) =
3

8πG
(H2 +

k

L2a2
)− V (a). (2.52)

By using the last form of γ(a) which is formulated in (2.29)

γ(a) = −V (a) +
1

a6
[6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inγ̃(ain)].
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So we have obtained

−V (a) +
1

a6
[6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inγ̃(ain)] = [
3

8πG
(H2 +

k

L2a2
)− V (a)]. (2.53)

As we have done in the previous section we now find the potential energy. The

last equation can be easily solved so that α(a)

α(a) = 6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inγ̃(ain) so V (a) =
α
′

6a5
.

Therefore α(a) is found algebraically from Equation (2.53) as

α(a) =
3a6

8πG
(H2 +

k

L2a2
). (2.54)

As a result the potential energy is calculated as

V (a) =
3

8πG
[(H2 +

k

L2a2
) +

a

3
(HH

′ − k

L2a3
)]. (2.55)

The scalar field is found by substituting the potential into Equation (2.51) as

φ(a) = ±
∫ a

ain

√
1

4πGaH2
(−HH ′ + k

L2a′3
)da

′
+ φ(ain). (2.56)

Therefore last equations can be used to construct the scalar field and the potential for

a given Hubble function.

2.2.4. Solution for Given ρ(a)

When one starts the calculations with one of the following functions V (a), φ(a),

H(a) one can end up with some unusual forms of the energy density. To avoid this

possibility one should start the calculations for desired energy density. It is written in
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terms of our new independent variable ”a” as

ρ(a) =
1

2
(φ
′
aH)2 + V (a).

One can recognize the first term on the right side of this equation as γ(a). Hence we

obtain

V (a) = ρ(a)− γ(a) and γ(a) =
(φ
′
aH)2

2
. (2.57)

Then we substitute this into the φ equation

γ
′
+

6

a
γ = −V ′ ,

and we obtain

γ(a) = −a
6
ρ′. (2.58)

By using the definition of γ(a) we also obtain

φ
′2 =

2γ(a)

a2H2
. (2.59)

The Hubble function is known just by inserting the energy density into the original

form of the first Einstein equation

H(a) =

√
8πG

3
ρ− k

L2a2
. (2.60)

Therefore the scalar field is formulated as

φ(a) = ±
∫ a

ain

√√√√√√ −a
′

3
ρ′

a′2[
8πG

3
ρ− k

L2a′
]

da
′
+ φ(ain). (2.61)
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The potential energy is written by substitution of (2.58) into (2.57) as

V (a) = ρ(a) +
a

6
ρ′. (2.62)

Exact solution of the field equations for a desired energy density are given by the

formulas in (2.60-2.62).

2.3. Single Component Universes

We present some general solutions for a universe which has a single component.

This purpose is easily achieved for a given ρ(a) in Section 2.3.1 and for a given V (a) in

Section 2.3.2. In addition we have performed calculations for both a curved universe

and a spatially flat universe. Therefore one can see the effect of curvature term in

dynamics of the universe.

2.3.1. General Solution for ρ(a) =
ρn
an

To satisfy the weak energy condition ρ ≥ 0 and ρ + p ≥ 0 one should start

calculations with a given energy density.

2.3.1.1. k 6= 0. We begin this subsection by taking the energy density as in the form

of perfect fluid

ρ =
ρn
an
. (2.63)
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Then by applying the procedure which is explained in Section 2.2.4 we immediately

obtain H(a), V (a), φ(a), p(a), q(a) as

H(a) =

√
8πGρn

3an
− k

a2
, (2.64)

V (a) =
(6− n)

6

ρn
an
, (2.65)

φ(a) = ±
√

n

8πG
{ln(

a

ain
) +

1

1− n/2
ln[

1

b
(1 +

√
1− 3kan−2

8πGρn
)]}+ φ(ain), (2.66)

b = (1 +

√
1− 3kan−2

in

8πGρn
),

p(a) = (
n− 3

3
)
ρn
an
, (2.67)

q(a) =
4(n− 2)πGρn

8πGρn − 3kan−2
. (2.68)

First, we interpret these formulas generally. When we apply the boundaries on equation

of state ν =
p

ρ
we obtain

−1 ≤ ν ≤ 1, −1 ≤ n− 3

3
≤ 1, 0 ≤ n ≤ 6. (2.69)

Therefore all exotic fluids with energy density in the form of
ρn
an

have 0 ≤ n ≤ 6. This

condition also makes the potential non-negative. Then special cases pops up imme-

diately for n = 0, 2, 6. Furthermore we would like to add one more comment. The

second term on the right side of (2.66) is always real. This is easily recognized when

one writes the related components in terms of cosmological density parameters.

Case n = 0 corresponds to constant energy density ρ = ρ0. One presents re-

lated functions for more comments,

H(a) =

√
8πGρ0

3
− k

a2
, (2.70)

V (a) = ρ0, (2.71)

φ(a) = 0, (2.72)
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p(a) = −ρ0, (2.73)

q(a) = −1 +
3k

3k − 8πGρ0a2
. (2.74)

Furthermore a(t) can be formulated by the following steps

∫ t

0

dt
′
=

∫ a

ain

da
′

a′H(a′)
, (2.75)

a(t) = (
ain
2

+

√
µ2a2

in − k
2µ

)eµt + (
ain
2
−
√
µ2a2

in − k
2µ

)e−µt, µ =

√
8πGρ0

3
. (2.76)

Since the scalar field is zero in this case, our solutions reduce to solutions of standard

cosmology with dark energy. According to results given in (2.70) and (2.76), to have a

dynamic universe with real Hubble function and real scale factor cosmological constant

must be big enough to overcome the smallness of the universe;

8πGρ0

3
>

k

a2
in

. (2.77)

This is the mathematical reason which explains the big value of the cosmological con-

stant in the early universe according to the standard model.

Case n = 2 creates a singularity in the scalar field as seen in (2.66). Thus

we have calculated φ(a) separately and we have found it as

φ(a) = ±
√

2ρ2

8πGρ2 − 3k
ln(

a

ain
) + φ(ain). (2.78)

Furthermore a(t) is

a(t) = τt+ ain, τ =

√
8πGρ2

3
− k, (2.79)

which is consistent with (2.68) which tells us that for n = 2, the universe expands with

constant speed.
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Case n = 6 requires special attention. Potential becomes V = 0 and equation of

state becomes ν =
p

ρ
= 1. This case corresponds to a massless scalar field.

2.3.1.2. k = 0. When we study the spatially flat universe, nature of the scalar field

changes. As a result of this change we can formulate the potential as a function of the

scalar field. The field is written as

φ(a) = ±
√

n

8πG
ln(

a

ain
) + φ(ain). (2.80)

Therefore one can formulate the scale factor and hence the potential as a function of

the scalar field as

a = ainexp[±
√

8πG

n
(φ− φ(ain))], (2.81)

V (a) = (
6− n

6
)
ρn
anin

exp[∓
√

8πnG(φ− φ(ain))]. (2.82)

Furthermore we can find a(t) by

∫ t

0

dt
′
=

∫ a

ain

da
′

a′H(a′)
,

a(t) = (n

√
2πGρn

3
t+ a

n/2
in )2/n, (2.83)

where there is a singularity in the case n = 0. This case corresponds to the standard

model with cosmological constant. Hence

∫ t

0

dt
′
=

∫ a

ain

da
′

a′H(a′)
,

a(t) = aine
µt, µ =

√
8πGρ0

3
. (2.84)

As it is seen there is no constraint on this constant energy density. It can be big as

well as it can be small.
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2.3.2. General Solution for V (a) =
Vn
an

To start calculations with given V (a) is more fundamental. After getting intuition

about the form of the potential which is required for the perfect fluid, we continue our

work by choosing the potential. Results are important because they are surprisingly

different than Section 2.3.1.

2.3.2.1. k 6= 0. We have plugged in V (a) =
Vn
an

in the formulas given by (2.26-2.28)

and we have obtained

γ(a) =
1

a6
[
nVn

6− n
a6−n + a6

inγ̃(ain)], γ̃(ain) = − nVn
6− n

a−nin + γ(ain), (2.85)

H(a) =

√
16πGVn

(6− n)an
+

8πGa6
inγ̃(ain)

3a6
− k

L2a2
, (2.86)

φ(a) = ±
√

6

∫ a

ain

√
nVna

′6 + (6− n)a6
inγ̃(ain)a

′n

48πGVna
′8 + (n− 6)(3ka′4 − 8πGa6

inγ̃(ain))a′n+2
da
′
+ φ(ain),

(2.87)

ρ(a) =
6Vn

(6− n)an
+
a6
inγ̃(ain)

a6
, (2.88)

p(a) =
2(n− 3)Vn
(6− n)an

+
a6
inγ̃(ain)

a6
, (2.89)

q(a) =
8πG[2(6− n)a6

inγ̃(ain)an + 3(n− 2)Vna
6]

48πGVna6 + (n− 6)(3ka4 − 8πGa6
inγ̃(ain))an

. (2.90)

For all n there is the term proportional to a−6 in energy density. Therefore not only

for zero potential but also for each potential, universe contains the stiff fluid.

For case n = 0 one should perform the calculations by starting from Equation

(2.19),

∫ γ

γ(ain)

dγ

γ
= −

∫ a

ain

6

a′
da
′
, (2.91)

γ(a) =
γ(ain)a6

in

a6
. (2.92)
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Thus we have

H(a) =

√
8πG

3
(
γ(ain)a6

in

a6
+ V0)− k

L2a2
, (2.93)

φ(a) = ±
√

6

∫ a

ain

√
γ(ain)a6

in

8πG(γ(ain)a6
in + V0a

′6)a′2 − 3ka′6
da
′
+ φ(ain), (2.94)

ρ(a) =
γ(ain)a6

in

a6
+ V0, (2.95)

p(a) =
γ(ain)a6

in

a6
− V0, (2.96)

q(a) =
8πG[2γ(ain)a6

in − V0a
6]

8πG[γ(ain)a6
in + V0a6]− 3ka4

. (2.97)

In contrast to constant energy density case, constant potential differs from cosmologi-

cal constant case.

As it is seen from formulas there is a singularity for n = 6. Thus we have

investigated this case separately:

γ(a) =
1

a6
[6V6ln(

a

ain
) + a6

inγ(ain)], (2.98)

H(a) =

√√√√8πG

3
[
V6 + a6

inγ(ain)

a6
+

6V6ln(
a

ain
)

a6
]− k

L2a2
, (2.99)

φ(a) = ±
√

6

∫ a

ain

√√√√√√√ a6
inγ(ain) + 6V6ln(

a
′

ain
)

[48πGV6ln(
a
′

ain
) + 8πG(V6 + a6

inγ(ain))− 3ka′4]a′2
da
′
+ φ(ain),

(2.100)

ρ(a) =
a6
inγ(ain) + V6

a6
+

6V6ln(
a

ain
)

a6
, (2.101)

p(a) =
a6
inγ(ain)− V6

a6
+

6V6ln(
a

ain
)

a6
, (2.102)

q(a) =
8πG[2a6

inγ(ain)− V6 + 12V6ln(
a

ain
)]

48πGV6ln(
a

ain
) + 8πG(a6

inγ(ain) + V6)− 3ka4
. (2.103)
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Energy density and pressure should be written in the following form

ρ(a) = ρ1(a) + ρ2(a), (2.104)

ρ1(a) =
a6
inγ(ain)

a6
, ρ2(a) =

V6

a6
ln[e(

a

ain
)6], (2.105)

p(a) = p1(a) + p2(a), (2.106)

p1(a) =
a6
inγ(ain)

a6
, p2(a) =

V6

a6
ln[

1

e
(
a

ain
)6]. (2.107)

Thus each component satisfies the continuity equation which is given by (2.9) accord-

ing to perfect fluid theorem.

Furthermore investigation of equation of state for the second part of the fluid is im-

portant. First we write the pressure in the following form:

p2(a) =
V6

a6
ln[

1

e
(
ain
a

)6(
a

ain
)12], (2.108)

p2(a) =
V6

a6
{ln[

1

e
(
ain
a

)6] + ln(
a

ain
)12}. (2.109)

Then equation of state turns into

ν2 =
p2

ρ2

, (2.110)

ν2 =
ln[

1

e
(
ain
a

)6] + ln(
a

ain
)12

ln[e(
a

ain
)6]

, (2.111)

ν2 = −1 +
12ln(

a

ain
)

1 + 6ln(
a

ain
)
. (2.112)

In addition

lim
a→ain

ν2 = −1, lim
a→∞

ν2 = 1. (2.113)



32

This phenomenon says that at the beginning of the universe there was a negative

pressure. This pressure was huge because it is proportional to
1

a6
. As the universe

expands this pressure and the related energy density becomes negligible since both of

them proportional to
1

a6
.

2.3.2.2. k=0. First simplification occurs in the relation between cosmological time and

the scale factor of the universe as

t =

∫ a

ain

da
′

a′H(a′)
,

t =

∫ a

ain

da
′

a′

√
8πG

3
(
a6
inγ̃(ain)

a′6
+

6vn
(6− n)a′n

)

, (2.114)

t =

√
1

24πGa6
inγ̃(ain)

[
a
′3

2F1(
1

2
,

3

6− n
;

3

6− n
+ 1;− 6vn

(6− n)a6
inγ̃(ain)

a
′(6−n))

]a
ain
.

(2.115)

2F1 is the hypergeometric function

2F1(1/2, b; b+ 1;u) =
∞∑
n=0

(1/2)n(b)n
(b+ 1)n

un

n!
, (2.116)

where (b)n is the Pochhammer symbol which is defined as

(b)n =

1 if n = 0,

b(b+ 1)(b+ 2)...(b+ n− 1), if n = 1, 2 . . . .

(2.117)

Details of this calculation is given in Appendix A.6 Our condition, n < 6 for positivity

of energy density avoids the singularity of the hypergeometric function given in (2.115).



33

One can go further by choosing initial condition a6
inγ̃(ain) = 0. Results are very

similar to what we have obtained in Section 2.3.1.2. The scale factor is found as

a(t) = (2n

√
πGvn

(6− n)
t+ a

n/2
in )2/n. (2.118)

Positivity condition n < 6 for energy density makes a(t) real. The scalar field is found

as

φ(a) = ±
√

n

8πG
ln(

a

ain
) + φ(ain). (2.119)

Then

a = ainexp(±µψ), ψ = φ(a)− φ(ain) and µ = 2

√
2πG

n
. (2.120)

Therefore

V (ψ) = Vna
−n
in exp(∓nµψ) or V (φ) = Vna

−n
in exp{∓nµ[φ(a)− φ(ain)]}. (2.121)

In constant potential case where n = 0 one can obtain explicit form of the scalar

field as

φ(a) = ∓1

2

√
1

3πG
ln[

1

ba3
(1 +

√
1 +

V0a
6

γ(ain)a6
in

)] + φ(ain), (2.122)

b =
1

a3
in

(1 +

√
1 +

V0

γ(ain)
).

Formulation of a(t) is also possible

t =

∫ a

ain

da
′

a′
√

8πG

3
(V0 +

γ(ain)a6
in

a′6
)

, (2.123)
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a(t) = [
b2V0e

2µt − γ(ain)a6
ine
−2µt

2bV0

]1/3, (2.124)

b = a3
in +

√
a6
in +

γ(ain)a6
in

V0

and µ =
√

6πGV0.

This case will be investigated in more detail in Section 2.4.3.

The case n = 6 has two simplification for a spatially flat universe. The scalar

field has been found as

φ(a) = ± 1

12

√
3

πG

1

V6

I(a) + φ(ain), (2.125)

I(a
′
) = x(a

′
)

√
1− V6

x(a′)
+
V6

2
ln[−2x(a

′
)

V6

+ 1 +
2x(a

′
)

V6

√
1− V6

x(a′)
], (2.126)

x(a
′
) = a6

inγ(ain) + V6[1 + 6ln(
a
′

ain
)]. (2.127)

Expression of a(t) is

a(t) = ainexp
{1

6
[2
(
erfi−1(µt+ b)

)2

− 1− a6
inγ(ain)

V6

]
}
, (2.128)

µ =

√
8πG

3

1

a3
in

exp[
1

2
+
a6
inγ(ain)

2V6

], b = erfi[
1

2

(
1 +

a6
inγ(ain)

V6

)
], (2.129)

erfi(θ) =
2√
π

∫ θ

0

exp(z2)dz, (2.130)

where erfi(θ) is the imaginary error function. Details of this calculation is given in

Appendix A.7. When θ is real erfi(θ) is real [119]. Therefore it’s inverse function

erfi−1(θ) becomes real for real θ.

2.4. Early Epoch of the Universe

There have been many studies which show that the early universe should expand

with exponential expansion to be able to reach its size today. Thus our purpose in

this section is to explore the mathematical turn on and turn of mechanism to start
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and to end up exponential expansion. For this reason we have studied three different

combinations for curved and spatially flat universes.

2.4.1. Dark Energy

We will search for the universe with energy density in the following form

ρ(a) =
ρn
an

+ ρ0. (2.131)

2.4.1.1. k 6= 0. Firstly we take nonzero curvature. We have found H(a), V (a), φ(a),

p(a) and q(a) as

H(a) =

√
8πG

3
(
ρn
an

+ ρ0)− k

a2
, (2.132)

V (a) =
(6− n)

6

ρn
an

+ ρ0, (2.133)

φ(a) = ±
∫ a

ain

√
nρn

8πG(ρna
′2 + ρ0a

′2+n)− 3ka′n
da
′
+ φ(ain), (2.134)

p(a) =
(n− 3)

3

ρn
an
− ρ0, (2.135)

q(a) =
4πG[−2ρ0a

n + (n− 2)ρn]a2

8πG[ρna2 + ρ0a2+n]− 3kan
. (2.136)

We continue to investigate the dynamics of the early universe for small a as

lim
a→0

q(a) =
4πG[(n− 2)ρn]a2

8πGρna2 − 3kan
, (2.137)

lim
a→0

q(a) =


−1 +

n

2
if 2 < n ≤ 6,

0 if 0 ≤ n ≤ 2.

(2.138)
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One should check the roots of q(a). Since the denominator of the q(a) ∼ H2(a) and

H2(a) > 0 we are only interested in numerator of q(a).

q(a) = 0 ⇒ a = [
(n− 2)ρn

2ρ0

]1/n, (2.139)

where there is no real and positive root for n ≤ 2. Hence for 2 < n ≤ 6 the universe

starts to expand with deceleration and then expansion turns to acceleration. For

0 < n ≤ 2 the universe starts with constant velocity and it immediately accelerates. In

both cases although there are mathematical turn on mechanism to initiate acceleration

there is no mathematical turn of mechanism to end acceleration in the this model.

2.4.1.2. k = 0. For k = 0, behaviour of the deceleration parameter changes as follows

lim
a→0

q(a) = −1 +
n

2
if 0 ≤ n ≤ 6. (2.140)

Root of q(a) is still given by (2.139). The difference between spatially flat and curved

universe occurs just at the beginning of the universe for n < 2. The universe starts to

expand with acceleration.

The scalar field can be simplified as

φ(a) = ∓ 1√
2πGn

ln[

a−n/2 +

√
a−n +

ρ0

ρn

a
−n/2
in +

√
a−nin +

ρ0

ρn

] + φ(ain). (2.141)

Then one can derive V (φ) as follows

a−n/2 +

√
a−n +

ρ0

ρn

a
−n/2
in +

√
a−nin +

ρ0

ρn

= exp(−
√
nψ), ψ = ±

√
2πG[φ(a)− φ(ain)]. (2.142)
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Thus for some specific values of n one obtains

V (ψ) =



ρ0 if n = 6,

1

3

ρ4

a4(ψ)
+ ρ0 if n = 4,

1

2

ρ3

a3(ψ)
+ ρ0 if n = 3,

(2.143)

where

a(ψ) =



√
2{
−a2

ine
2ψ[1−

√
1 + a4

in

ρ0

ρ4

+ (1 +

√
1 + a4

in

ρ0

ρ4

)e4ψ]

a4
in

ρ0

ρ4

(1 + e8ψ)− 2(2 + a4
in

ρ0

ρ4

)e4ψ
}1/2 if n = 4,

22/3{
a

3/2
in e

√
3ψ[−1 +

√
1 + a3

in

ρ0

ρ3

− (1 +

√
1 + a3

in

ρ0

ρ3

)e2
√

3ψ]

a3
in

ρ0

ρ3

(1 + e4
√

3ψ)− 2(2 + a3
in

ρ0

ρ3

)e2
√

3ψ
}2/3 if n = 3.

(2.144)

Formulation of a(t) is possible for k = 0 as

t =

∫ a

ain

da
′

a′H(a′)
, (2.145)

t =

√
3

8πGρ0

2

n
ln[

an/2 +

√
an +

ρn
ρ0

a
n/2
in +

√
anin +

ρn
ρ0

]. (2.146)

For some specific n

a(t) = [

(a3
in +

√
a6
in +

ρn
ρ0

)e3µt + (a3
in −

√
a6
in +

ρn
ρ0

)e−3µt

2
]1/3, if n = 6, (2.147)
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a(t) = [

(a2
in +

√
a4
in +

ρn
ρ0

)e2µt + (a2
in −

√
a4
in +

ρn
ρ0

)e−2µt

2
]1/2, if n = 4, (2.148)

a(t) = [

(a
3/2
in +

√
a3
in +

ρn
ρ0

)e3µt/2 + (a
3/2
in −

√
a3
in +

ρn
ρ0

)e−3µt/2

2
]2/3, if n = 3,

(2.149)

where µ =

√
8πGρ0

3
. If one chooses ain = 0, for t � 1 a(t) can be approximately

written as

a(t) =



31/3(
ρ6

ρ0

)1/6(µt)1/3 if n = 6,

21/2(
ρ4

ρ0

)1/4(µt)1/2 if n = 4,

(
3

2
)2/3(

ρ3

ρ0

)1/3(µt)2/3 if n = 3.

(2.150)

2.4.2. Cosmic Domain Walls

Cosmic domain walls are known with their contribution to energy density with

term ρ ∼ 1/a. Their equation of state parameter is given by ν = −2/3. Dynamics of

the universe with two components where one of them is a domain wall are very similar

to dynamics of universes with two components where one of them is dark energy. We

have taken the energy density in the following form

ρ(a) =
ρw
a

+
ρn
an
. (2.151)

2.4.2.1. k 6= 0. For a curved space results are found as

H(a) =

√
8πG

3
(
ρw
a

+
ρn
an

)− k

L2a2
, (2.152)
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V (a) =
5ρw
6a

+
(6− n)

6

ρn
an
, (2.153)

φ(a) = ±
∫ a

ain

√
nρna

′
+ ρwa

′n

8πG[ρwa
′2+n + ρna

′3]− 3ka′1+n
da
′
+ φ(ain), (2.154)

p(a) =
−2ρw

3a
+

(n− 3)

3

ρn
an
, (2.155)

q(a) =
4πG[−ρwan + (n− 2)ρna]a

8πG(ρwan + ρna)a− 3kan
. (2.156)

Behaviour of the deceleration parameter at the beginning is obtained as

lim
a→0

q(a) =


−1 +

n

2
if 2 < n ≤ 6,

0 if 0 < n ≤ 2.

(2.157)

Furthermore since denominator of q(a) ∼ H2(a) as stated before, numerator of q(a)

determines dynamics of the universe. Roots of the deceleration parameter is found as

a = [(n− 2)
ρn
ρw

]1/(n−1). (2.158)

Therefore the universe start to expand with deceleration and then turns to accelerate

for 2 < n ≤ 6. On the other hand for 0 ≤ n ≤ 2 at the beginning of universe its

velocity was constant and thus the universe starts to its expansion with acceleration.

2.4.2.2. k = 0. Behaviour of q(a) changes as

lim
a→0

q(a) =


−1 +

n

2
if 1 < n ≤ 6,

−1

2
if 0 ≤ n ≤ 1.

(2.159)

Therefore the differences in dynamics of the universe when it is spatially flat is seen

when 0 ≤ n < 1. In this case at the beginning its velocity is not constant and the

universe starts its expansion with acceleration.
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φ(a) has been simplified for three cases: for domain walls and stiff fluid as

φ(a) = ± 1

5
√

2πG
{−
√

6ln[
(
√

6
√
ρs + ρwa5 +

√
6ρs + ρwa5)a

5/2
in

(
√

6
√
ρs + ρwa5

in +
√

6ρs + ρwa5
in)a5/2

]}

+ ln[

√
ρs + ρwa5 +

√
6ρs + ρwa5√

ρs + ρwa5
in +

√
6ρs + ρwa5

in

] + φ(ain) where n = 6, (2.160)

for domain walls and radiation as

φ(a) = ± 1

3
√

2πG
{−2ln[

(2
√
ρr + ρwa3 +

√
4ρr + ρwa3)a

3/2
in

(2
√
ρr + ρwa3

in +
√

4ρr + ρwa3
in)a3/2

]

+ ln[

√
ρr + ρwa3 +

√
4ρr + ρwa3√

ρr + ρwa3
in +

√
4ρr + ρwa3

in

]}+ φ(ain) where n = 4, (2.161)

for domain walls and matter as

φ(a) = ± 1

2
√

2πG
{−
√

3ln[
(
√

3
√
ρm + ρwa2 +

√
3ρm + ρwa2)ain

(
√

3
√
ρm + ρwa2

in +
√

3ρm + ρwa2
in)a

]

+ ln[

√
ρm + ρwa2 +

√
3ρm + ρwa2√

ρm + ρwa2
in +

√
3ρm + ρwa2

in

]}+ φ(ain) where n = 3. (2.162)

It is possible to simply the relation between time and the scale factor as

t =

∫ a

ain

da
′

a′H(a′)
,

t =

∫ a

ain

da
′

a′
√

8πG

3
(
ρw
a′

+
ρn
a′n

)

, (2.163)

t =

√
3

2πGρw

[√
a′2F1(

1

2
,

1

2− 2n
;

1

2− 2n
+ 1;−ρn

ρw
a
′(1−n))

]a
ain
, (2.164)

where 2F1 is the hypergeometric function which was introduced in Section 2.3.2.2.

Details of this calculation is given in Appendix A.6. To avoid singularities in the

hypergeometric function in (2.164) n should be chosen such that 3/2 < n.
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2.4.3. Dark Energy Revisited

We have already examined the case V = V0 in Section 2.3.2. For spatially flat

universe we have obtained

a(t) = [
b2V0e

2µt − γ(ain)a6
ine
−2µt

2bV0

]1/3,

b = a3
in +

√
a6
in +

γ(ain)a6
in

V0

and µ =
√

6πGV0.

Then we formulate the Hubble function and the deceleration parameter as a function

of t as

H(t) =
2µ

3
(1− 2f

f − b2V0e4µt
), f = γ(ain)a6

in, (2.165)

q(t) = −1 +
12b2fV0e

4µt

(1 + b2V0e4µt)2
. (2.166)

First constraint on our parameters comes from positivity of the Hubble function

H(t) > 0 ⇒ f < b2V0. (2.167)

On the other hand q(t) has only one real root

q(t) = 0 ⇒ t =
1

4µ
ln[

(5 + 2
√

6)f

b2V0

]. (2.168)

We choose

t > 0 ⇒ f >
b2V0

τ
, τ = (5 + 2

√
6). (2.169)

One can write

f = (
1

τ
+ ε)b2V0, 0 < ε < 1− 1

τ
⇒ b2V0

τ
< f < b2V0. (2.170)
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Now we will find the condition which results in acceleration at the beginning of the

universe

lim
t−>0

q(t) = −1 +
12b2fV0

(f + b2V0)2
< 0. (2.171)

Thus

5− 1

τ
−
√

24 < ε < 1− 1

τ
, (2.172)

4.3× 10−16 < ε < 0.90. (2.173)

With these initial conditions universe starts to expand with acceleration and then turns

into deceleration.

2.4.4. Combination Containing Exotic Matter

We have already explored the case of exotic matter in Section 2.3.2. Now we

will study combination of this kind of matter and some ordinary matters in the early

universe. We have taken the most general form of the potential as

V (a) =
Vs
a6

+
Vn
an
. (2.174)

Related cosmological functions have been found as

γ(a) =
1

a6
[
nVn

6− n
a6−n + 6Vsln(

a

ain
) + a6

inγ̃(ain)], γ̃(ain) = γ(ain)− nVn
(6− n)anin

,

(2.175)

H(a) =

√√√√8πG

3
[

6Vn
(6− n)an

+
a6
inγ̃(ain) + Vs[1 + 6ln(

a

ain
)]

a6
]− k

a2
, (2.176)
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φ(a) = ±
√

6

∫ a

ain

{[
(6− n)[a6

inγ̃(ain) + 6Vsln(
a
′

ain
)] + nVna

′6
]

/
[
(6− n){8πG[a6

inγ̃(ain) + Vs(1 + 6ln(
a
′

ain
))]− 3ka

′4}a′2+n + 48πGVna
′8
]}1/2

da
′

+φ(ain), (2.177)

ρ(a) =
6Vn

(6− n)an
+
Vs
a6
ln[e(

a

ain
)6] +

a6
inγ̃(ain)

a6
, (2.178)

p(a) =
2(n− 3)Vn
(6− n)an

+
Vs
a6
ln[

1

e
(
a

ain
)6] +

a6
inγ̃(ain)

a6
, (2.179)

q(a) =
8πG{(6− n)[2a6

inγ̃(ain) + Vs(−1 + 12ln(
a

ain
))]an + 3(n− 2)Vna

6}

(6− n){8πG[a6
inγ̃(ain) + Vs(1 + 6ln(

a

ain
))]− 3ka4}an + 48πGVna6

. (2.180)

2.4.4.1. Combination with Radiation. When the exotic matter is accompanied with

radiation its dynamics in spatially flat universe is governed by the following deceleration

parameter

q(a) =
2a6

inγ̃(ain) + Vs[−1 + 12ln(
a

ain
)] + 3Vra

2

a6
inγ̃(ain) + Vs[1 + 6ln(

a

ain
)] + 3Vra2

, γ̃(ain) = γ(ain)− 2Vr
a4
in

. (2.181)

One can trace its behaviour back into time as

q(ain) =
2a6

inγ(ain)− Vra2
in − Vs

a6
inγ(ain) + Vra2

in + Vs
. (2.182)

The following condition

Vs + Vra
2
in > 2a6

inγ(ain). (2.183)

causes accelerated beginning for the universe. Moreover this choice also results in

negative total pressure in the beginning as

p(ain) =
γ(ain)a6

in − Vra2
in − Vs

a6
in

< 0, (2.184)
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while energy density remains positive. Thus negative pressure results in accelerated

motion for a while. Then this behaviour changes as pressure becomes positive and the

universe decelerates. Therefore this exotic matter and radiation with initial condition

which satisfies (2.183) also has mathematical turn on and turn off mechanism for

accelerated motion in the early universe.

2.4.4.2. Combination with Domain Walls. In spatially flat universe the deceleration

parameter becomes

q(a) =
10a6

inγ̃(ain)− 3vwa
5 + 5vs[−1 + 12ln(

a

ain
)]

5a6
inγ̃(ain) + 6vwa5 + 5vs[1 + 6ln(

a

ain
)]

. (2.185)

Although this universe may start to expand with acceleration or deceleration, after a

while it will accelerate because the leading term a5 in the numerator has a negative

coefficient.

2.4.4.3. Combination with Dark Energy. In spatially flat universe the deceleration pa-

rameter becomes

q(a) =
2a6

inγ̃(ain)− v0a
6 + vs[−1 + 12ln(

a

ain
)]

a6
inγ̃(ain) + v0a6 + vs[1 + 6ln(

a

ain
)]

. (2.186)

Although this universe may start to expand with acceleration or deceleration, after a

while it will accelerate because the leading term a6 in the numerator has a negative

coefficient.

2.5. Late Time Expansion of the Universe

We try to understand the present era which is usually described by dark matter

and dark energy. However we consider different forms of energy components. Thus in

the first subsection we model a universe with domain walls and matter. After obtaining
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formulas for functions we compare our results with supernova type Ia data just by curve

fitting. In the second subsection we study dark energy dominated universe with the

same steps.

2.5.1. Cosmic Walls

The hypothesis that the scalar field is the dark matter and the dark energy was

investigated for flat universe in [120]. The results were compared with observations

of type Ia supernovae which were available in 2000. In that study, matter part of the

universe was neglected and it was found that ρφ ∼ a−1.09 and q0 = −0.45. Different

from them we include matter component of the universe and we solve field equations

analytically. Then we compare our results with the type Ia supernovae data released

in 2018 [121]. Furthermore in this comparision we extract the value of Hubble con-

stant H0 and the value of absolute magnitude M with cosmological density parameters.

Today our universe is believed to be almost flat and contribution of radiation

to the energy density is very tiny. For this reason we investigate the case in which

ρ(a) =
ρm
a3

+
ρw
a
. (2.187)

Domain wall dominated universes have been already studied in Section 2.4.2. Just

plugging n = 3 in Section 2.4.2.2 we obtain the Hubble function, the scalar field and

the potential as

H(a) =

√
8πG

3
(
ρw
a

+
ρm
a3

), (2.188)

φ(a) = ± 1

2
√

2πG
{−
√

3ln
[(
√

3
√
ρm + ρwa2 +

√
3ρm + ρwa2)ain

(
√

3
√
ρm + ρwa2

in +
√

3ρm + ρwa2
in)a

]
+ ln

[ √ρm + ρwa2 +
√

3ρm + ρwa2√
ρm + ρwa2

in +
√

3ρm + ρwa2
in

]
}+ φ(ain), (2.189)
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V (a) =
5ρw
6a

+
ρm
2a3

, (2.190)

p(a) = −2ρw
3a

, (2.191)

q(a) = −1

2
+

ρm
ρm + ρwa2

, (2.192)

t =

√
3

2πGρw

[√
a′2F1(

1

2
,−1

4
;
3

4
;− ρm

ρwa
′2

)
]a
ain
. (2.193)

The last relation is obtained by substituting n = 3 in (2.164). Investigation of the

deceleration parameter tells us

lim
a→0

q(a) =
1

2
, lim

a→∞
q(a) = −1

2
, (2.194)

q(a) = 0 ⇒ a =

√
ρm
ρw
. (2.195)

Hence if ρm < ρw this model of the universe accelerates.

To test the reliability of the theoretical model we will use supernovae data. Lu-

minosity distance-redshift (For definition see the Appendix A.9.) relation had been

already constructed as [122]

dL = (1 + z)R0S(χ(z)). (2.196)

The comoving coordinate χ is given as

χ(z) =
c

R0

∫ z

0

dz
′

H(z′)
. (2.197)
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The function r = S(χ) is given by

S(χ) =


Sin(χ) if k = 1,

χ if k = 0,

Sinh(χ) if k = −1.

Thus

R0S(χ(z)) =
c

H0

|Ωk,0|−1/2 S(
√
|Ωk,0|E(z)) for Ωk 6= 0,

E(z) for Ωk = 0,

where E(z) =
R0H0

c
χ(z).

For spatially flat universe with matter and domain walls it reduces to the fol-

lowing form

dL =
c(1 + z)

H0

∫ z

0

dz
′

[Ωm(1 + z′)3 + Ωw(1 + z′)]1/2
(2.198)

where Ωm = 1−Ωw. The relation between observational measurements and the theory

are established as

m = 5log10(
dL

1Mpc
) + 25 +M, (2.199)

where m and M are the apparent and the absolute magnitudes respectively. Then the

distance modulus is defined as µ = m−M .

Before going further we would like to remind the Hubble tension and supernova

absolute magnitude tension. Both of them are fundamental cosmological parameters.

Their values must be presented precisely.
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To determine the value of H0 different methods have been applied. According

to the Planck measurement of the cosmic microwave background (CMB) anisotropies,

assuming the base-ΛCDM model [51] H0 = 67.36 ± 0.54kms−1Mpc−1. On the other

hand Hubble Space Telescope (HST) observations of Cepheids have been used to cal-

ibrate the measurements using type Ia supernovae in [123] and it has been declared

H0 = 74.13± 1.42kms−1Mpc−1.

In last years it has been pointed out that the absolute peak magnitude MB of

Type Ia supernovae is converted into a value of H0 [124–127]. It’s value has been stated

as MB = −19.401± 0.027 mag [128] in 2020 and MB = −19.244± 0.037 mag [125] in

2021 by application of different methods.

The most recent data set for type Ia supernova observation wchich is called as

Pantheon dataset was released in [121]. 1048 data points are presented as (m, z) pairs

where z < 2.3. Since there is a debate on values of H0 and M we include their values

as parameters which are to be derived from curve fitting. Therefore we have to extract

values of ρw, H0 and M from data. To be able to see effects of these numbers on each

other separately we applied the curve fitting method for three combinations of two

parameter sets.

Then we applied the χ2 test to measure the goodness of these fits. χ2 per degrees

of freedom, χ2
ν is calculated according to following formula

χ2 =
N∑
i

(µdatai − µmodeli )2

σ2
i

, (2.200)

χ2
ν =

χ2

ν
, ν = N − k, (2.201)

where k is the number of parameters that will be extracted from the N number of data

points.
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First, we assign trial number for Ωw and results are shown in Table 2.1. The best

fit which is obtained for Ωw = 0.90 gives H0 = 72.1563± 0.0001, M = −19.269± 0.004

and χ2/ν = 1.009.

Table 2.1. Values of H0 and M for Given Ωw.

Ωw H0 M χ2/ν

0.70 72.0756 ± 0.0001 -19.213 ± 0.004 1.124

0.75 72.0945 ± 0.0001 -19.227 ± 0.004 1.075

0.80 72.1142 ± 0.0001 -19.240 ± 0.004 1.038

0.85 72.1347 ± 0.0001 -19.255 ± 0.004 1.014

0.90 72.1563 ± 0.0001 -19.269 ± 0.004 1.009

0.95 72.1789 ± 0.0001 -19.285 ± 0.004 1.026

0.9999 72.2028 ± 0.0001 -19.301 ± 0.004 1.073

Table 2.2. Values of M and Ωw for Given H0.

H0 M Ωw χ2/ν

74 -19.211 ± 0.006 0.888 ± 0.015 1.008

73 -19.240 ± 0.006 0.888 ± 0.015 1.008

72 -19.270 ± 0.006 0.888 ± 0.015 1.008

71 -19.301 ± 0.006 0.888 ± 0.015 1.008

70 -19.332 ± 0.006 0.888 ± 0.015 1.008

69 -19.363 ± 0.006 0.888 ± 0.015 1.008

68 -19.395 ± 0.006 0.888 ± 0.015 1.008

67 -19.427 ± 0.006 0.888 ± 0.015 1.008

After getting intuition about parameters we perform curve fitting for trial H0 val-

ues. Results are given in Table 2.2. Numbers in Table 2.2 tell us that the hundredths

digit of M is sensitively depended on the ones digit of H0. In addition, more accurate

result for Ωw is obtained. All of the results have the same χ2/ν value. Thus we choose
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3rd line: H = 72, M = −19.270± 0.006, Ωw = 0.888± 0.015 and χ2/ν = 1.008. These

numbers are compatible with best fit of the table 2.1

Effect of trial values of M on H0 and Ωw are presented in Table 2.3. It is apparent

that the value of the ones digit of H0 is sensitively depended on the hundredths digit

of M . Our choice is the 5th line: M = 19.25, H0 = 72.68 ± 0.21, Ωw = 0.889 ± 0.015

and χ2/ν = 1.008. These numbers are in agreement with best fit of the table 2.1.

Table 2.3. Values of H0 and Ωw for Given M .

M H0 Ωw χ2/ν

-19.45 66.29 ± 0.19 0.889 ± 0.015 1.008

-19.40 67.83 ± 0.20 0.889 ± 0.015 1.008

-19.35 69.41 ± 0.20 0.889 ± 0.015 1.008

-19.30 71.03 ± 0.20 0.889 ± 0.015 1.008

-19.25 72.68 ± 0.21 0.889 ± 0.015 1.008

-19.20 74.38 ± 0.22 0.889 ± 0.015 1.008

-19.15 76.11 ± 0.22 0.889 ± 0.015 1.008

Assuming base ΛCDM cosmology, late universe parameters were found as H0 =

67.27 ± 0.60, Ωm = 0.3166 ± 0.0084 and ΩΛ = 0.6834 ± 0.0084 in [51]. It is known

that Ωm = Ωbm + Ωdm where Ωbm ' 0.05 and Ωdm ' 0.27. However our results in-

dicate that late universe parameters as H0 = 72.68 ± 0.21, Ωw = 0.889 ± 0.015 and

Ωm = 0.111± 0.015. Since Ωbm ' 0.05, Ωdm ' 0.06. Therefore domain wall dominated

universe is a candidate to explain 94 percentage of the structures in the present uni-

verse while still 6 percentage of the universe remains as unknown.

To compare our results with Pantheon-data graphically we draw distance modu-

lus µ vs redshift z plot. In Figure 2.1 we use results given in 5th line of Table 2.3 where

M = −19.25, H0 = 72.68± 0.21, ρw = 0.889± 0.015 and ρm = 0.111± 0.015.
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Figure 2.1. Distance Modulus vs Redshift Plot for Domain Wall Dominated Universe.

Dots represent observation of Pantheon data while green line represents domain wall

dominated universe.

We obtain q0 = −0.389 by using values of cosmological density parameters in

(2.192).

2.5.2. Dark Energy

Now we will present exact solutions for energy density given as

ρ = ρ0 +
ρm
a3
. (2.202)

Actually this case corresponds to n = 3 in Section 2.4.1. For k = 0 we have already

obtained the scalar factor as

a(t) = [

(a
3/2
in +

√
a3
in +

ρm
ρ0

)e3µt/2 + (a
3/2
in −

√
a3
in +

ρm
ρ0

)e−3µt/2

2
]2/3, (2.203)
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where µ =

√
8πGρ0

3
. In addition potential is formulated as

V (ψ) =
1

2

ρm
a3(ψ)

+ ρ0, (2.204)

a(ψ) = 22/3{
a

3/2
in e

√
3ψ[−1 +

√
1 + a3

in

ρ0

ρm
− (1 +

√
1 + a3

in

ρ0

ρm
)e2
√

3ψ]

a3
in

ρ0

ρm
(1 + e4

√
3ψ)− 2(2 + a3

in

ρ0

ρm
)e2
√

3ψ
}2/3, (2.205)

ψ = ±
√

2πG[φ(a)− φ(ain)]. (2.206)

Behaviour of the deceleration parameter is shown by

q(a) =
−2ρ0a

3 + ρm
2(ρ0a3 + ρm)

, (2.207)

lim
a→∞

q(a) = −1. (2.208)

To extract cosmological parameters from Pantheon data we apply the procedure as

explained in the previous subsection with modification

dL =
c(1 + z)

H0

∫ z

0

dz
′

[Ωm(1 + z′)3 + Ω0]1/2
, (2.209)

where Ωm = 1− Ω0.

Table 2.4. Values of H0 and M for Given Ω0.

Ω0 H0 M χ2/ν

0.50 72.0674 ± 0.0001 -19.208 ± 0.004 1.199

0.60 72.1183 ± 0.0001 -19.243 ± 0.004 1.059

0.70 72.1749 ± 0.0001 -19.282 ± 0.004 0.992

0.80 72.2384 ± 0.0001 -19.324 ± 0.004 1.041

0.90 72.3116 ± 0.0001 -19.372 ± 0.005 1.296
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First, we perform curve fitting for trial values of Ω0. Results are shown in Ta-

ble 2.4. The best fit occurs for Ω0 = 0.70. Thus H0 = 72.1749 ± 0.0001, M =

−19.282± 0.004 and χ2/ν = 0.992.

Then we perform curve fitting for trial H0 values. Results are given in Ta-

ble 2.5. Results in the third line are compatible with the best fit of Table 2.4.

M = −19.294 ± 0.007, Ω0 = 0.715 ± 0.012 and χ2/ν = 0.990 are obtained for a

given H0 = 72.

Table 2.5. Values of M and Ω0 for Given H0.

H0 M Ω0 χ2/ν

74 -19.234 ± 0.007 0.715 ± 0.012 0.990

73 -19.264 ± 0.007 0.715 ± 0.012 0.990

72 -19.294 ± 0.007 0.715 ± 0.012 0.990

71 -19.324 ± 0.007 0.715 ± 0.012 0.990

70 -19.355 ± 0.007 0.715 ± 0.012 0.990

69 -19.386 ± 0.007 0.715 ± 0.012 0.990

68 -19.418 ± 0.007 0.715 ± 0.012 0.990

67 -19.450 ± 0.007 0.715 ± 0.012 0.990

Finally we test the effect of M on H0 and Ω0. Results are presented in Ta-

ble 2.6. Numbers in the fourth line are compatible with the best fit of Table 2.4.

H0 = 71.80 ± 0.22, Ω0 = 0.715 ± 0.012 and χ2/ν = 0.990 are found for a given

M = −19.30.

All the tables in this section have a common interpretation: The number in

ones digit of the Hubble constant H0 is sensitively depended on the number in the

hundredths digit of the absolute magnitude M in both models. In addition as the

value of H0 increases, the value of M decreases. We will stop to dig more about this

argument here since it is beyond the scope of our aims. Cosmologists will continue to
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reveal the relation between H0 and M more clearly on further studies.

Now we would like to compare our results for a domain wall dominated uni-

verse and a dark energy dominated universe in the same plot. However this goal can

not be achieved accurately, because best fit values of M are different for both models.

For this reason we plot two figures.

Table 2.6. Values of H0 and Ω0 for Given M .

M H0 Ω0 χ2/ν

-19.45 67.00 ± 0.21 0.715 ± 0.012 0.990

-19.40 68.57 ± 0.21 0.715 ± 0.012 0.990

-19.35 70.16 ± 0.22 0.715 ± 0.012 0.990

-19.30 71.80 ± 0.22 0.715 ± 0.012 0.990

-19.25 73.47 ± 0.23 0.715 ± 0.012 0.990

-19.20 75.18 ± 0.23 0.715 ± 0.012 0.990

-19.15 76.93 ± 0.24 0.715 ± 0.012 0.990
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Figure 2.2. Distance Modulus vs Redshift

Plot for M = −19.25.

Dots represent observations, green line

represents domain wall dominated

universe and red line represents dark

energy dominated universe.
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Figure 2.3. Distance Modulus vs Redshift

Plot for M = −19.30.

Dots represent observations, green line

represents domain wall dominated

universe and red line represents dark

energy dominated universe.
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We draw our Figure 2.2 by taking M = −19.25 for which one of the best fits of

the domain wall dominated universe is obtained with parameters H0 = 72.68 ± 0.21,

Ωw = 0.889 ± 0.015 and Ωm = 0.111 ± 0.015. On the other hand we have obtained

H0 = 73.47 ± 0.23, Ω0 = 0.715 ± 0.012, Ωm = 0.285 ± 0.12 and χ2/ν = 0.990 for

M = −19.25.

In Figure 2.3 we choose one of the best fits of the dark energy dominated universe

for which M = −19.30, H0 = 71.80±0.22, Ω0 = 0.715±0.012 and Ωm = 0.285±0.012.

In the first model we have obtained H0 = 71.03 ± 0.20, Ωw = 0.889 ± 0.015, Ωm =

0.111± 0.015 and χ2/ν = 0.990 = 1.008 for M = −19.30

Two figures are almost the same because χ2/ν for both models are very close

the 1. We need more data for bigger redshift values to decide whether one of the

models is superior to the other one. We obtain q0 = −0.572 by using these values of

cosmological parameters in (2.207).

2.6. Discussion

We studied FLRW cosmology with real scalar field which is minimally coupled to

gravity. Our main motivation in this chapter has been to assign the effective scalar field

a source of all components of energy density. We applied a change of variable twice

which is a more powerful method in the set of differential equations which represent

dynamics of the universe. In the first one, we have replaced the independent variable

”t” with ”a”. In the second one, we have changed the dependent variable of the φ

equation so that it became a first order linear differential equation. We presented ex-

act solutions in four different forms; solutions for given V (a), solutions for given φ(a)
′
,

solutions for given H(a), and solutions for given ρ(a).

Then we have examined single component universes and two component uni-

verses for a given energy density and for a given potential. In these solutions we have

searched for mathematical mechanisms which create turn on and turn off for early
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inflationary expansion. We have explored mathematical structure of a new exotic mat-

ter. Equation of state for this component changes with the scale factor or equivalently

changes with time. A universe which consists of radiation and this exotic matter, has

mathematical machinery to turn on and to turn off inflationary expansion in early

epoch.

We have investigated the present era of the universe. Domain wall dominated

universe and dark energy dominated universe have been studied. We have extracted nu-

merical values of cosmological parameters from the most recent type Ia supernova data

by taking care of the Hubble tension and the absolute magnitude tension. For domain

wall dominated universe we have found that Ωw = 0.889± 0.015, Ωm = 0.111± 0.015

and H0 = 72.68± 0.21 for M = −19.25. This universe accelerates with q0 = −0.389.

On the other hand for dark energy dominated universe cosmological parame-

ters have been found as Ω0 = 0.715± 0.012, Ωm = 0.285± 0.012 and H0 = 71.80± 0.22

for M = −19.30. Deceleration parameter of this universe is q = −0.572. Detailed

analysis for the relation between distance modulus and redshift have shown that the

number in ones digit of the Hubble constant H0 is sensitively depended on the number

in the hundredths digit of the absolute magnitude M in both models.

These two analyses indicate that both models equivalently explains dynamics

of late time accelerated expansion of the universe. The difference between these mod-

els most probably will be seen when bigger redshift data are available. One can also

reach our calculations which are presented in this chapter in [129].
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3. ANALYTIC SOLUTIONS OF BRANS-DICKE

COSMOLOGY

The major purpose of this chapter is to solve field equations of Brans-Dicke

cosmology analytically. First, we present field equations in Section 3.1. Then we

introduce our mathematical techniques in Section 3.2 and we rewrite the field equations

with the scale size ”a” as the new independent variable. This set of equations can be

reduced to a constraint equation and a first order differential equation. Exact solutions

are found in Section 3.3 for given φ(a) and ρ(a), in Section 3.4 for given φ(a) and V (a),

in Section 3.5 for given φ(a) and H(a). A universe consisting of single component

energy-matter density is investigated in Section 3.6. The early epoch of the universe is

studied in Section 3.7. We present a solution for a universe which contains dark energy

and matter in Section 3.8.1 and we present a solution for a universe which consists of

cosmic domain walls and matter in Section 3.8.2. Comparison of both models with

observation is illustrated by a plot. Discussion and summary are given in Section 3.9.

In this study we choose Brans-Dicke parameter ω > 4 × 104 to be compatible with

results of Einstein telescope [130] and time delay experiments [131].

3.1. Field Equations

In this study we will use FLWR metric given by,

ds2 = dt2 − a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)]. (3.1)

where k is the curvature parameter, a(t) =
R(t)

R(t0)
is the normalized scale factor of the

universe. Here r has dimension of lenght, a(t) is dimensionless and k has diemsion of
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lenght−2. In BDJT the Lagrange density can be written as [23,132–135]

L =

[
−ΦR + ω

1

Φ
gµν∂µΦ∂νΦ− V (Φ) + LM

]√
−g, (3.2)

=

[
− 1

8ω
φ2R +

1

2
gµν∂µφ∂νφ− V (φ) + LM

]√
−g, (3.3)

where we will call φ as the Jordan scalar field and Φ as the Brans-Dicke scalar field,

the two being related by

Φ =
1

8ω
φ2, (3.4)

where ω is the dimensionless Brans-Dicke parameter, R is the Ricci scalar and LM rep-

resents the contribution due to matter fields. We use the metric signature (+,−,−,−)

and units with ~ = 1, c = 1. We prefer to use the Jordan scalar for the scalar field

since in flat spacetime the Lagrangian then becomes the standard Lagrangian for a

scalar field

L =
1

2
∂µφ∂

µφ− V (φ). (3.5)

The homogeneous and isotropic cosmological field equations obtained from this

Lagrangian density have already been calculated for a potential V (φ) =
1

2
m2φ2 by

Arik, Calik and Sheftel in [136–138]. Thus their general form for a potential V (φ) are

given by,

3

4ω
φ2

(
ȧ2

a2
+
k

a2

)
− 1

2
φ̇2 − V (φ) +

3

2ω

ȧ

a
φ̇φ = ρm, (3.6)

−1

4ω
φ2

(
2
ä

a
+
ȧ2

a2
+
k

a2

)
− 1

ω

ȧ

a
φ̇φ− 1

2ω
φ̈φ−

(
1

2
+

1

2ω

)
φ̇2 + V (φ) = pm, (3.7)

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

dφ
− 3

2ω

(
ä

a
+
ȧ2

a2
+
k

a2

)
φ = 0. (3.8)
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3.2. Mathematical Techniques

It is apparent that the independent variable time t is not seen explicitly in our

set of differential equations given by (3.6-3.8). For this reason one can choose a new

variable in terms of old dependent variables. Hence the order of differential equation can

be reduced by one [117]. Our choice is ȧ = aH(a). Then a becomes new independent

variable and field equations transform into the following form

3

4ω
φ2

(
H2 +

k

a2

)
− 1

2

(
φ
′
Ha
)2

− V (a) +
3

2ω
φφ
′
H2a = ρm,

(3.9)

− 1

4ω
φ2

(
3H2 + 2H

′
Ha+

k

a2

)
− 3

2ω
φ
′
φH2a− 1

2ω

(
φ
′′
H2a2 + φ

′
H
′
Ha2

)
φ

−
(

1

2
+

1

2ω

)(
φ
′
Ha
)2

+ V (a) = pm,

(3.10)

φ
′′
H2a2 + φ

′
H
′
Ha2 + 4φ

′
H2a+

V
′

φ′
− 3

2ω

(
2H2 +H

′
Ha+

k

a2

)
φ = 0,

(3.11)

where the prime denotes
d

da
(For details of the transformation see Appendix A.3.). We

will name (3.9) as the energy density equation, (3.10) as the pressure equation and

(3.11) as the φ equation.

These three equations are connected by the perfect fluid continuity equation,

ρ̇(a) + 3
ȧ

a
(ρ(a) + p(a)) = 0, (3.12)

[ρ
′
(a)a+ 3(ρ(a) + p(a))]H(a) = 0. (3.13)

In other words when we plug energy density and pressure which are given by (3.9-3.10)

in (3.13) we end up with −aφ′(a)H(a) × (3.11). This shows that we have two inde-

pendent equations and four unknown functions: H(a), V (a), φ(a) and ρ(a) (one can

choose p(a) instead of ρ(a)).
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In our calculations we will use the energy density equation and the φ equation.

When we plug solutions in to the pressure equation, ρ(a) and the resulting p(a) will

satisfy the perfect fluid equation of state.

It is seen that energy density equation is a first order variable coefficient and

nonlinear differential equation for φ(a). In addition this is not a type of Bernoulli

equation which is analytically solvable. In addition (3.11) is second order variable co-

efficient nonlinear differential equation for φ(a). Analytic solutions for both of them

have not been established yet. To be able to solve them, φ(a) should be given. Then

we will be left with ρ(a), V (a) and H(a). Since (3.9) does not contain any derivative of

last three functions it is just a constraint. On the other hand first derivatives of H(a)

and V (a) are seen in (3.11). Thus our system consist of a constraint equation and a

first order differential equation. One of the following functions; H(a), V (a) and φ(a)

is still free. One of them should be accompanied with φ(a) as a given function. Three

combinations exist; ρ(a) and φ(a), V (a) and φ(a), H(a) and φ(a). We will solve our

system for these three sets separately.

3.3. Solution for Given ρ(a) and φ(a)

One can solve the constraint Equation (3.9) and the first order differential Equa-

tion (3.11) by different methods:

• Method 1) First, find V (a) from the constraint equation then substitute it in the

differential equation and solve it for H(a).

• Method 2) First, solve the differential equation for V (a) then substitute it in the

constraint equation and solve it for H(a).

• Method 3) First, find H(a) from the constraint equation then substitute it in the

differential equation and solve it for V (a).

• Mehod 4) First, solve the differential equation for H(a) then substitute it in the

constraint equation and solve it for V (a).
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Results are different representations of the same solution. However they may have

different singular cases which require special attention. To reach complete set of solu-

tions we perform all four methods. Moreover, most of the solutions include integrals

of different functions and sometimes integration techniques can be inadequate . For

this reason one of the form of solutions can be superior to others. We would like to

remind that the ρ equation is equivalent to the constraint equation and the first order

differential equation is equivalent to the φ equation. We will use both names.

3.3.1. Method 1

3.3.1.1. Non-Singular Case. Firstly we find V (a) from the constraint equation

V (a) =
3

4ω
φ2(a)(H2(a) +

k

a2
)− 1

2
(φ
′
(a)H(a)a)2 +

3

2ω
φφ
′
H2a+ ρ(a). (3.14)

Then the φ equation becomes

H
′
(a) +

a[(1 + 2ω)φ
′2(a) + φ(a)φ

′′
(a)]

φ(a)(φ(a) + aφ′(a))
H(a) =

2ωρ
′
a3 + 3kφ2(a)

3a3φ(a)(φ(a) + aφ′(a))H(a)
, (3.15)

which is the Bernoulli equation. Thus we apply change of variable γ(a) = H2(a) and

we obtain

γ
′
(a) +

2a[(1 + 2ω)φ
′2(a) + φ(a)φ

′′
(a)]

φ(a)(φ(a) + aφ′(a))
γ(a) =

2(2ωρ
′
a3 + 3kφ2(a))

3a3φ(a)(φ(a) + aφ′(a))
. (3.16)

Its solution is found as

γ(a) =
exp
[
−
∫ a
ain
P (a

′
)da

′
]

[
φ(φ+ aφ′)

]2

{∫ a

ain

exp
[ ∫ a

′

ain

P (a
′′
)da

′′
]
Q(a

′
)da

′
+ γ̃(ain)

}
, (3.17)

P (a) =
2[2ωaφ

′2(a)− 3φ(a)φ
′
(a)]

φ(a)(φ(a) + aφ′(a))
, Q(a) =

2(2ωρ
′
a3 + 3kφ2(a))

[
φ(a)(φ(a) + aφ

′
(a))

]
3a3

,

(3.18)

γ̃(ain) = γ(ain)
[
φ(ain)

(
φ(ain) + ainφ

′
(ain)

)]2

. (3.19)
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Hence

H(a) =
√
γ(a), (3.20)

where γ(a) is given by (3.17) (Details of this calculation is given in the Appendix B.3.).

One should choose φ(a) such that γ(a) is positive. Thus H(a) will be a real function.

However if one goes further by assigning specific form to the Hubble function and

tries to solve (3.17) for φ(a), she will end up with a second order, variable coefficient,

nonlinear differential equation for whose solution there is no known method. For this

reason we will continue with trial φ(a) functions in our examples.

3.3.1.2. Singular Case. The denominator of the function P (a) which is used to formu-

late the Hubble function becomes singular when φ(a) = F/a. Hence this case needs

special attention. V (a) is obtained form the ρ equation,

V (a) = −ρ(a) +
F 2
[
3k − (3 + 2ω)a2H2(a)

]
4ωa4

. (3.21)

Then the φ equation turns into the following form

3F 2
[
k − (3 + 2ω)a2H2(a)

]
+ 2ωa5ρ

′
(a)

2Fωa3
= 0. (3.22)

The Hubble function is found as

H(a) =

√
3F 2k + 2ωa5ρ

′
(a)

3(3 + 2ω)F 2a2
. (3.23)

Hence the final form of potential is given by

V (a) = −ρ(a)− a

6
ρ
′
(a) +

kF 2

2ωa4
. (3.24)
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If one inserts the energy density of an ordinary matters which is proportional to 1/an

results are

H(a) =

√
3F 2k − 2nωρna

4−n

3(3 + 2ω)F 2a2
, (3.25)

V (a) =
F 2k

2ωa4
+

(n− 6)ρn
an

, (3.26)

V (φ) =
F 2k

2ω
φ4 + (n− 6)ρnφ

n. (3.27)

Except the radiation dominated universe and dark energy dominated universe all these

matters results in an imaginary form of the Hubble function and negative potential

values as easily recognized from (3.25-3.26). In addition radiation dominated universe

corresponds to V = λφ4/4 which will be studied in chapter 3 of this thesis.

3.3.2. Method 2

3.3.2.1. Non-Singular Case. In the second method we start with the φ equation. By

using it V (a) is found as

V (a) = −
∫ a

ain

φ
′
{
− 3φ

[
k + a

′2H(2H + a
′
H
′
)
]

+ 2a
′3ωH

[
(4H + a

′
H
′
)φ
′
+ a

′
Hφ

′′
]}

2a′2ω
da
′

+V (ain). (3.28)

Then we insert V (a) in ρ equation and we take the derivative of both sides with respect

to a. We obtain the following equation

H
′
(a) +

a[(1 + 2ω)φ
′2(a) + φ(a)φ

′′
(a)]

φ(a)(φ(a) + aφ′(a))
H(a) =

2ωρ
′
(a)a3 + 3kφ2(a)

3a3φ(a)(φ(a) + aφ′(a))H(a)
. (3.29)

This equation is equivalent to (3.15). Its solution has been already presented in (3.17-

3.20). Although forms of potentials which are given by (3.24) and (3.28) are different,

one can show that they are equal to each other up to a constant.
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We have just shown that results of method 1 and method 2 are the same, thus

there is no need to repeat calculations for singular case. In this method we end up

with two integration constants. One of them should be chosen such that when final

forms of formulas are inserted in the constraint equation it must be satisfied.

3.3.3. Method 3

3.3.3.1. Non-Singular Case. First we find H(a) from the ρ equation

H(a) =

√√√√√ −3kφ2(a) + 4ωa2
[
ρ(a) + V (a)

]
a2
[
3φ2(a) + 6aφ(a)φ′(a)− 2ωa2φ′2

] . (3.30)

Then the φ equation turns into the following form

V
′
(a) + P (a)V (a) = Q(a), (3.31)

where

P (a) =
{

2φ
′
(a)
[
− 6φ3(a) + (3 + 14ω)a2φ(a)φ

′2(a)− 2ω(1 + 2ω)a3φ
′3(a)

+ aφ2(a)((−6 + 8ω)φ
′
(a) + (3 + 2ω)aφ

′′
(a))

]}
/
{
φ(a)(φ(a) + aφ

′
(a))

[
3φ2(a) + 6aφ(a)φ

′
(a)− 2ωa2φ

′2(a)
]}
, (3.32)
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and

Q(a) = −
{
φ
′
(a)
[
− 36ω2a4φ(a)ρ

′
(a)φ

′2(a) + 8ω3a5ρ
′
(a)φ

′3(a)

− 12ωa2φ2(a)φ
′
(a)((−3 + ω)aρ

′
(a) + k(3 + 2ω)φ

′2(a)) + 9aφ3(a)(2ωaρ
′
(a)

+ 3k(3 + 2ω)φ
′2(a)) + 9k(3 + 2ω)φ4(a)(3φ

′
(a) + aφ

′′
) + 12ωaρ(a)(6φ3(a)

− (3 + 14ω)a2φ(a)φ
′2(a) + 2ω(1 + 2ω)a3φ

′3(a)− aφ2(a)((−6 + 8ω)φ
′
(a)

+ (3 + 2ω)aφ
′′
(a)))

]}
/
{

6ωaφ(a)(φ(a) + aφ
′
(a))

[
− 3φ2(a)− 6aφ(a)φ

′
(a) + 2ωa2φ

′2(a)
]}
. (3.33)

Hence potential is

V (a) = exp
(
−
∫ a

ain

P (a
′
)da

′
){∫ a

ain

exp
(∫ a

′

ain

P (a
′′
)da

′′
)
Q(a

′
)da

′
+ V (ain)

}
. (3.34)

3.3.3.2. Singular Cases. The solution for method 3 has three singular cases;

I) φ(a) = 0,

II)φ(a) + aφ
′
(a) = 0,

III)−3φ2(a)− 6aφ(a)φ
′
(a) + 2ωa2φ

′2(a) = 0.

For all of them both functions, P (a) and Q(a) which are used to formulate the poten-

tial become undefined.

First case is not acceptable because Brans-Dicke theory collapses for φ(a) = 0.

Second case has been already investigated in Method 1. We are left with the last one.

We write φ(a) = Fexp(
∫
α(a)da). Then singularity III becomes

2ωa2α2 − 6aα− 3 = 0. (3.35)
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Thus

α(a) =
3±
√

9 + 6ω

2ωa
, φ(a) = Fa(3±

√
9+6ω)/(2ω). (3.36)

Then the potential is found from the ρ equation

V (a) =
3F 2k

4ω
a(3−2ω±

√
9+6ω)/ω − ρ(a). (3.37)

After writing H(a) =
√
γ(a), φ equation becomes

γ
′
(a) + P (a)γ(a) = Q(a). (3.38)

For α(a) =
3 +
√

9 + 6ω

2ωa
,

P (a) =
2(3 + 3ω +

√
9 + 6ω)

ωa
, (3.39)

Q(a) =
4ωa−(3+3ω+

√
9+6ω)/ω

3F 2(3 + 2ω +
√

9 + 6ω)

[
3F 2ka(3+

√
9+6ω)/ω + 2ωa3ρ

′
(a)
]
. (3.40)

Then

γ(a) =
1

a2(3+3ω+
√

9+6ω)/ω

{
b

∫ a

ain

a
′(3+3ω+

√
9+6ω)/ω

[
3F 2ka

′(3+
√

9+6ω)/ω + 2ωa
′3ρ
′
]
da
′

+ γ̃(ain)
}
, (3.41)

b =
4ω

3F 2(3 + 2ω +
√

9 + 6ω)
, γ̃(ain) = a

2(3+3ω+
√

9+6ω)/ω
in γ(ain). (3.42)

For α(a) =
3−
√

9 + 6ω

2ωa
,

P (a) =
2(3 + 3ω −

√
9 + 6ω)

ωa
, (3.43)

Q(a) =
4ωa−3(1+ω)/ω

3F 2(3 + 2ω −
√

9 + 6ω)

[
3F 2ka3/ω + 2ωa(3ω+

√
9+6ω)/ωρ

′
(a)
]
. (3.44)
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Then

γ(a) =
1

a2(3+3ω−
√

9+6ω)/ω

{
b

∫ a

ain

a
′(3+3ω−2

√
9+6ω)/ω

[
3F 2ka

′3/ω + 2ωa
′(3ω+

√
9+6ω)/ωρ

′
]
da
′

+ γ̃(ain)
}
, (3.45)

b =
4ω

3F 2(3 + 2ω −
√

9 + 6ω)
, γ̃(ain) = a

2(3+3ω−
√

9+6ω)/ω
in γ(ain). (3.46)

At the next step we examine nature of the Hubble function. First, we take

φ(a) = Fa(3+
√

9+6ω)/(2ω), ρ =
ρn
an
. (3.47)

Hubble function and the potential are found as

H(a) =
1

a(3+3ω+
√

9+6ω)/ω

{ 2ω2a(3−(n−4)ω+
√

9+6ω)/ω

3F 2(3 + 2ω +
√

9 + 6ω)2[3 + (6− n)ω +
√

9 + 6ω]

×
[
− 4(3 + 2ω +

√
9 + 6ω)nωρna

2

+ 3F 2k
(

3 + (6− n)ω +
√

9 + 6ω
)
a(3+nω+

√
9+6ω)/ω

]
+ γ̃(ain)

}1/2

, (3.48)

γ̃(ain) = a
2(3+3ω+

√
9+6ω)/ω

in γ(ain)−
{ 2ω2a

(3−(n−4)ω+
√

9+6ω)/ω
in

3F 2(3 + 2ω +
√

9 + 6ω)2[3 + (6− n)ω +
√

9 + 6ω]

×
[
− 4(3 + 2ω +

√
9 + 6ω)nωρna

2
in

+ 3F 2k
(

3 + (6− n)ω +
√

9 + 6ω
)
a

(3+nω+
√

9+6ω)/ω
in

]}
, (3.49)

V (a) = −ρn
an

+
3F 2k

4ωa(2ω−3−
√

9+6ω)/ω
. (3.50)

The term containing energy density in H(a) has a negative coefficient for 0 < n < 6

and ω � 1.

Then we take

φ(a) = Fa(3−
√

9+6ω)/(2ω), ρ =
ρn
an
. (3.51)
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Hubble function and the potential are found as

H(a) =
1

a(3+3ω−
√

9+6ω)/ω

{ 2ω2a(3−(n−4)ω−2
√

9+6ω)/ω

3F 2(−3− 2ω +
√

9 + 6ω)2[−3 + (n− 6)ω +
√

9 + 6ω]

×
[
4(3 + 2ω −

√
9 + 6ω)nωρna

(2ω+
√

9+6ω)/ω

+ 3F 2k
(
− 3 + (n− 6)ω +

√
9 + 6ω

)
a3/ω+n

]
+ γ̃(ain)

}1/2

, (3.52)

γ̃(ain) = a
2(3+3ω−

√
9+6ω)/ω

in γ(ain)−{ 2ω2a
(3−(n−4)ω−2

√
9+6ω)/ω

in

3F 2(−3− 2ω +
√

9 + 6ω)2[−3 + (n− 6)ω +
√

9 + 6ω]

×
[
4(3 + 2ω −

√
9 + 6ω)nωρna

(2ω+
√

9+6ω)/ω
in

+ 3F 2k
(
− 3 + (n− 6)ω +

√
9 + 6ω

)
a

3/ω+n
in

]}
, (3.53)

V (a) = −ρn
an

+
3F 2k

4ωa(2ω−3+
√

9+6ω)/ω
. (3.54)

The term containing energy density in H(a) has a negative coefficient for 0 < n < 6

and ω � 1.

3.3.4. Method 4

3.3.4.1. Non-Singular Case. Substitution of H(a) =
√
γ(a) into φ equation results in

the following form,

γ
′
(a) + P̃ (a)γ = Q̃(a), (3.55)

P̃ (a) =
4
[
− 3φ(a) + ωa(4φ

′
(a) + aφ

′′
(a))

]
a(−3φ(a) + 2ωaφ′(a))

,

Q̃(a) =
−4ωa2V

′
(a) + 6kφ(a)φ

′
(a)

a3φ′(a)(−3φ(a) + 2ωaφ′(a))
. (3.56)
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Hence

γ(a) = exp
(
−
∫ a

ain

P̃ (a
′
)da

′
){∫ a

ain

exp
(∫ a

′

ain

P̃ (a
′′
)da

′′
)
Q̃(a

′
)da

′
+ γ(ain)

}
, (3.57)

H(a) =
√
γ(a). (3.58)

After plugging H(a) into ρ equation we multiply both sides by

exp
( ∫ a

ain
P̃ (a

′
)da

′
)

3φ2(a) + 6aφ(a)φ′(a)− 2ωa2φ′2
. (3.59)

Then we take derivative of both sides with respect a. The resulting equation is equiv-

alent to

V
′
(a) + P (a)V (a) = Q(a), (3.60)

where coefficients P (a) and Q(a) are given by (3.32) and (3.33) respectively. Thus

solution is given by (3.34). In this method we end up with two integration constants.

One of them should be chosen such that when final forms of formulas are inserted in

the constraint equation it must be satisfied.

3.3.4.2. Singular Cases. This method has five singularities in its formulation. Three

of them are the same singularities given in Method 3. Other two of them are seen in

functions P̃ (a) and Q̃(a)

I)φ
′
(a) = 0,

II)−3φ(a) + 2ωaφ
′
(a) = 0.

First one makes Brans-Dicke cosmology equivalent to Einstein cosmology which have

been studied in chapter 2. The second one implies

φ(a) = Fa3/(2ω). (3.61)
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Then φ equation becomes

a−3/ω−2

12Fω2

{
− 9F 2a3/ω

[
2kω − (3 + 2ω)a2H2(a)

]
+ 8ω3a3V

′
(a)
}

= 0. (3.62)

The Hubble function is found easily

H(a) =

√
18F 2kωa3/ω − 8ω3a3V ′(a)

3
√

(3 + 2ω)F 2a3/ω+2
. (3.63)

Hence the ρ equation turns into the following form

V
′
(a) + P (a)V (a) = Q(a), (3.64)

P (a) =
3

ωa
,

Q(a) =
3(3F 2ka3/ω − 2ωa2ρ(a))

2ω2a3
. (3.65)

Its solution is

V (a) =
1

a3/ω

{∫ a

ain

a
′3/ωQ(a

′
)da

′
+ Ṽ (ain)

}
, (3.66)

Ṽ (ain) = a
3/ω
in V (ain).

To investigate the nature of the Hubble function and the potential for usual forms of

energy-matters we plug ρ = ρn/a
n. Thus we have

H(a) = ω
{ 2

3(3 + 2ω)

[4a
3/ω
in V (ain)

F 2a6/ω
− 3k

(ω − 3)a2
+

4nωρn
(nω − 3)F 2a3/ω+n

]}1/2

, (3.67)

V (a) =
Ṽ (ain)

a3/ω
+

3ρn
(nω − 3)an

+
9F 2k

4ω(3− ω)a−3/ω+2
, (3.68)

Ṽ (ain) = a
3/ω
in V (ain)− 3ρn

(nω − 3)anin
− 9F 2k

4ω(3− ω)a
−3/ω+2
in

. (3.69)

Energy density related term in H(a) has a positive coefficient therefore the Hubble

function is always real.
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3.4. Solution for Given V (a) and φ(a)

Special case of potential in the scalar-tensor theory is important. For this reason

formulation of this case is significant. We establish the solution for our set of the

constraint equation and the first order differential equation by two following different

methods:

• Method 1) First, solve the φ equation for H(a) then plug it into the constraint

equation to obtain ρ(a).

• Method 2) First, find H(a) from the constraint equation then plug it in to the φ

equation and solve it for ρ(a).

3.4.1. Method1

3.4.1.1. Non-Singular Case. We start our calculations by changing the dependent vari-

able as H(a) =
√
γ(a) in φ equation. Hence it turns into the following form

γ
′
(a) + P (a)γ(a) = Q(a), (3.70)

P (a) =
4
[
− 3φ(a) + ωa(4φ

′
(a) + aφ

′′
(a))

]
a(−3φ(a) + 2ωaφ′(a))

, (3.71)

Q(a) =
−4ωa2V

′
(a) + 6kφ(a)φ

′
(a)

a3φ′(a)(−3φ(a) + 2ωaφ′(a))
. (3.72)

Its solution is given by

γ(a) = exp
(
−
∫ a

ain

P (a
′
)da

′
){∫ a

ain

exp
(∫ a

′

ain

P (a
′′
)da

′′
)
Q(a

′
)da

′
+ γ(ain)

}
. (3.73)

Energy density is obtained by inserting H(a) =
√
γ(a) and V (a) in the ρ equation.
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3.4.1.2. Singular Case. When −3φ(a) + 2ωaφ
′
(a) = 0, previous solution becomes sin-

gular. This is the singularity of Section 3.3.4. Thus φ(a) = Fa3/(2ω) and φ equation is

equal to (3.62) so H(a) is found in (3.63). Then energy density is found as

ρ(a) =
3F 2ka3/ω−2

2ω
− V (a)− ωaV

′
(a)

3
. (3.74)

When we inspect the results for V =
Vn
an

we obtain

H(a) =
1

3
√

3 + 2ω

√
18kω

a2
+

8nω3Vn
F 2a3/ω+n

, (3.75)

ρ(a) =
3F 2ka3/ω−2

2ω
+

(nω − 3)Vn
3an

. (3.76)

3.4.2. Method 2

3.4.2.1. Non-Singular Case. First we find H(a) from the ρ equation

H(a) =

√√√√√ −3kφ2(a) + 4ωa2
[
ρ(a) + V (a)

]
a2
[
3φ2(a) + 6aφ(a)φ′(a)− 2ωa2φ′2

] . (3.77)

Then φ equation turns into the following form

ρ
′
(a) + P (a)ρ(a) = Q(a), (3.78)

where

P (a) =
{

6
[
6φ3(a)− (3 + 14ω)a2φ(a)φ

′2(a) + 2(1 + 2ω)ωa3φ
′3(a)

− aφ2(a)((−6 + 8ω)φ
′
(a) + (3 + 2ω)aφ

′′
(a))

]}
/
{
a(−3φ(a) + 2ωaφ

′
(a))

[
− 3φ2(a)− 6aφ(a)φ

′
(a) + 2ωa2φ

′2(a)
]}
, (3.79)
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Q(a) = −
{

3
[
4ωa3φ(a)(−(3 + 14ω)V (a) + ωaV

′
(a))φ

′3(a) + 8ω2(1 + 2ω)a4V (a)φ
′4(a)

+ 3aφ3(a)φ
′
(a)(8ωV (a)− 6ωaV

′
(a) + 3k(3 + 2ω)φ

′2(a))

+ 4ωa2φ2(a)φ
′
(a)
(
φ
′
(a)((6− 8ω)V (a) + (−3 + ω)aV

′
(a)− k(3 + 2ω)φ

′2(a))

− (3 + 2ω)aV (a)φ
′′
(a)
)

+ 3φ4(a)
(
− 2ωaV

′
(a) + k(3 + 2ω)φ

′
(a)(3φ

′
(a) + aφ

′′
(a))

)]}
/
{

2ωa2φ
′
(a)(−3φ(a) + 2ωaφ

′
(a))

[
− 3φ2(a)− 6aφ(a)φ

′
(a) + 2ωa2φ

′2(a)
]}
.

(3.80)

Hence energy density is found as

ρ(a) = exp
(
−
∫ a

ain

P (a
′
)da

′
){∫ a

ain

exp
(∫ a

′

ain

P (a
′′
)da

′′
)
Q(a

′
)da

′
+ ρ(ain)

}
. (3.81)

3.4.2.2. Singular Cases. This method has two singular cases for non-constant scalar

field.

I)−3φ(a) + 2ωaφ
′
(a) = 0,

II)−3φ2(a)− 6aφ(a)φ
′
(a) + 2ωa2φ

′2(a) = 0.

First case implies φ(a) = Fa3/(2ω). Thus the ρ equation becomes

3F 2a3/ω−2
[
2kω + (3 + 2ω)a2H2(a)

]
8ω2

− V (a) = ρ(a). (3.82)

The Hubble function is found as

H(a) =

√
ω

3 + 2ω

√
−2k

a2
+

8ω

3F 2a3/ω
(ρ(a) + V (a)). (3.83)

Then the φ equation becomes

−3Fk

ω
a3/(2ω)−2 +

2a−3/(2ω)

3F

[
3(ρ(a) + V (a)) + ωaV

′
(a)
]
, (3.84)
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and energy density is found as

ρ(a) =
3F 2k

2ω
a3/ω−2 − V (a)− ωaV

′
(a)

3
. (3.85)

Examination of this singularity with V (a) =
Vn
an

gives us

H(a) =

√
ω

3 + 2ω

√
2k

a2
+

8nω2Vn
9F 2a3/ω+n

, (3.86)

ρ(a) =
3F 2k

2ω
a3/ω−2 +

(nω − 3)Vn
3an

. (3.87)

Thus we have the energy density in usual form.

Second singularity has been already seen in Section 3.3.3.2. It implies φ(a) =

Fa(3±
√

9+6ω)/(2ω).

Then the ρ equation has the following form

3F 2k

4ω
a(3−2ω±

√
9+6ω)/ω − V (a) = ρ(a). (3.88)

After writing H(a) =
√
γ(a), φ equation becomes

γ
′
(a) + P (a)γ(a) = Q(a). (3.89)

For φ(a) = a(3+
√

9+6ω)/(2ω),

P (a) =
2(3 + 3ω +

√
9 + 6ω)

ωa
, (3.90)

Q(a) =
a−(3+3ω+

√
9+6ω)/ω

3
√

3 + 2ωF 2

[
6
√

3F 2ka(3+
√

9+6ω)/ω + 4ω(
√

3−
√

3 + 2ω)a3V
′
(a)
]
. (3.91)
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Then

γ(a) =
1

a2(3+3ω+
√

9+6ω)/ω

{
b

∫ a

ain

a
′(3+3ω+

√
9+6ω)/ω

[
6
√

3F 2ka
′(3+
√

9+6ω)/ω

+ 4ω(
√

3−
√

3 + 2ω)a
′3V

′
(a
′
)
]
da
′
+ γ̃(ain)

}
, (3.92)

b =
1

3
√

3 + 2ωF 2
, γ̃(ain) = a

2(3+3ω+
√

9+6ω)/ω
in γ(ain). (3.93)

For φ(a) = a(3−
√

9+6ω)/(2ω),

P (a) =
2(3 + 3ω −

√
9 + 6ω)

ωa
, (3.94)

Q(a) =
a−3(1+ω)/ω

3F 2(3 + 2ω −
√

9 + 6ω)

[
6F 2k(3−

√
9 + 6ω)a3/ω − 8ω2a(3ω+

√
9+6ω)/ωV

′
(a)
]
.

(3.95)

Then

γ(a) =
1

a2(3+3ω−
√

9+6ω)/ω

{
b

∫ a

ain

a
′(3+3ω−2

√
9+6ω)/ω

[
6F 2k(3−

√
9 + 6ω)a

′3/ω

+ 8ω2a
′(3ω+

√
9+6ω)/ωV

′
(a
′
)
]
da
′
+ γ̃(ain)

}
, (3.96)

b =
1

3(3 + 2ω −
√

9 + 6ω)F 2
, γ̃(ain) = a

2(3+3ω−
√

9+6ω)/ω
in γ(ain). (3.97)

At the next step we examine nature of the Hubble function. First, we take

φ(a) = Fa(3+
√

9+6ω)/(2ω), V (a) =
Vn
an
. (3.98)

The Hubble function and the energy density are found as

H(a) =
{√3k(

√
3 + 2ω −

√
3)

2(3 + 2ω)a2
+

8nω3Vna
−(3+nω+

√
9+6ω)/ω

3(3 + 2ω +
√

9 + 6ω)
[
3 + (6− n)ω +

√
9 + 6ω

]
F 2

+ γ̃(ain)a−2(3+3ω+
√

9+6ω)/ω
}1/2

, (3.99)
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γ̃(ain) =
{
γ(ain)−

√
3k(
√

3 + 2ω −
√

3)

2(3 + 2ω)a2
in

− 8nω3Vna
−(3+nω+

√
9+6ω)/ω

in

3(3 + 2ω +
√

9 + 6ω)
[
3 + (6− n)ω +

√
9 + 6ω

]
F 2

}
a

2(3+3ω+
√

9+6ω)/ω
in ,

(3.100)

ρ(a) =
3F 2k

4ωa(2ω−3−
√

9+6ω)/ω
− Vn
an
. (3.101)

Although the Hubble function is real for 0 < n < 6 and ω � 1, the energy density

always has a negative component.

Then we take

φ(a) = Fa(3−
√

9+6ω)/(2ω), V (a) =
Vn
an
. (3.102)

The Hubble function and the energy density are found as

H(a) =
{
−
√

3k(
√

3 + 2ω +
√

3)

2(3 + 2ω)a2
+

8nω3Vna
−(3+nω−

√
9+6ω)/ω

3(3 + 2ω −
√

9 + 6ω)
[
3 + (6− n)ω −

√
9 + 6ω

]
F 2

+ γ̃(ain)a−2(3+3ω−
√

9+6ω)/ω
}1/2

, (3.103)

γ̃(ain) =
{
γ(ain) +

√
3k(
√

3 + 2ω +
√

3)

2(3 + 2ω)a2
in

− 8nω3Vna
−(3+nω−

√
9+6ω)/ω

in

3(3 + 2ω −
√

9 + 6ω)
[
3 + (6− n)ω −

√
9 + 6ω

]
F 2

}
a

2(3+3ω−
√

9+6ω)/ω
in ,

(3.104)

ρ(a) =
3F 2k

4ωa(2ω−3+
√

9+6ω)/ω
− Vn
an
. (3.105)

Although the Hubble function is real for 0 < n < 6 and ω � 1, the energy density

always has a negative component.
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3.5. Solution for Given H(a) and φ(a)

The solution for specific form of the Hubble function can be crucial. To construct

the solution one can follow two different paths:

• Method 1) First, find V (a) from the constraint equation then insert it into the φ

equation and solve it for ρ(a).

• Method 2) First, solve the φ equation for the V (a) then insert it into the constraint

equation and obtain ρ(a).

3.5.1. Method1

We find V (a) from the ρ equation

V (a) = −ρ(a) +
3kφ2(a)

4ωa2
+
[
3φ2(a) + 6aφ(a)φ

′
(a)− 2ωa2φ

′2(a)
]H2(a)

4ω
. (3.106)

Then the φ equation turns into the following form

ρ
′
(a) = Q(a), (3.107)

Q(a) =
−3φ2(k − a3HH

′
) + a3[3(1 + 2ω)aH2φ

′2] + 3a4Hφ(H
′
φ
′
+Hφ

′′
)

2ωa3
. (3.108)

Thus

ρ(a) =

∫ a

ain

Q(a
′
)da

′
+ ρ(ain), (3.109)

V (a) = −
[ ∫ a

ain

Q(a
′
)da

′
+ ρ(ain)

]
+

3kφ2(a)

4ωa2
+
[
3φ2(a) + 6aφ(a)φ

′
(a)− 2ωa2φ

′2(a)
]H2(a)

4ω
. (3.110)
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3.5.2. Method2

We solve the φ equation for the potential,

V (a) = −
∫ a

ain

φ
′
{
− 3φ

[
k + a

′2H(2H + a
′
H
′
)
]

+ 2ωa
′3H
[
(4H + a

′
H
′
)φ
′
+ a

′
Hφ

′′
]}
da
′

+V (ain). (3.111)

We obtain energy density by substituting V (a) into the ρ equation

ρ(a) =

∫ a

ain

φ
′
{
− 3φ

[
k + a

′2H(2H + a
′
H
′
)
]

+ 2ωa
′3H
[
(4H + a

′
H
′
)φ
′
+ a

′
Hφ

′′
]}
da
′

− V (ain) +
3kφ2(a)

4ωa2
+
[
3φ2(a) + 6aφ(a)φ

′
(a)− 2ωa2φ

′2(a)
]H2(a)

4ω
. (3.112)

3.6. Single Component Universe

We investigate the universe with given energy density and the scalar field which

are in the following form

ρ(a) =
ρn
an
, φ(a) =

F

ad
. (3.113)

We have obtained the Hubble function and the potential function by applying the

procedure explained in Section 3.3.1, we obtain the following formulas

H(a) =

√
k

Ba2
− 4nρnωa

2d−n

3CF 2
+ γ̃(ain)aµ, (3.114)

V (a) =
d2(3 + 2ω)F 2k

2Bωa2+2d
+
Aρna−n

3C
+
F γ̃(ain)F 2a−2d+µ

4ω
, (3.115)

γ̃(ain) = a−µin H
2(ain)− ka−2−µ

in

B
+

4nρnωa
2d−n−µ
in

3CF 2
, (3.116)
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µ =
2d[1 + 2d(1 + ω)]

−1 + d
, (3.117)

A = d{3(−4 + n) + 2d[−3 + (−6 + n)ω]}, (3.118)

B = [−1 + 2d(1 + d+ dω)], (3.119)

C = {−n+ d[4 + n+ d(2 + 4ω)]}, (3.120)

F = [−3 + 2d(3 + dω)], (3.121)

p(a) =
(n− 3)ρn

3an
. (3.122)

We should choose d such that B < 0 and C < 0. Then we have real Hubble function.

In addition if we also satisfy µ = 0 at the same time this will have important physical

implications which will be discussed soon. Thus

µ = 0 ⇒ d = − 1

2(1 + ω)
, (3.123)

B = −1− 1

2(1 + ω)
, C = −(3 + 2ω)(1 + n+ nω)

2(1 + ω)2
. (3.124)

Then the Hubble function and potential are simplified to the following forms

H(a) =

√
− 2(1 + ω)k

(3 + 2ω)a2
+

8n(1 + ω)2ωρna
−1/(1+ω)−n

3(3 + 2ω)[1 + n(1 + ω)]F 2
+ γ̃(ain), (3.125)

V (a) =
(−3 + n)ρna

−n

3(1 + n(1 + ω))
− kF 2a1/(1+ω)−2

4ω(1 + ω)
+

(3 + 2ω)(4 + 3ω)F 2

8ω(1 + ω)2
γ̃(ain)a1/(1+ω),

(3.126)

γ̃(ain) = H2(ain) +
2(1 + ω)k

(3 + 2ω)a2
in

− 8n(1 + ω)2ωρna
−1/(1+ω)−n
in

3(3 + 2ω)[1 + n(1 + ω)]F 2
. (3.127)

The deceleration parameter is found by applying the chain rule

q(t) =
d

dt
(

1

H(t)
)− 1, (3.128)

q(a) =
d

da
(

1

H(a)
)aH(a)− 1, (3.129)
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q(a) = −1 + {2(1 + ω)[1 + n(1 + ω)][−3F 2ka1/(1+ω)+n + 2nωρna
2]}

/{8nω(1 + ω)2ρna
2 + 3[1 + n(1 + ω)]F 2[−2k(1 + ω) + (3 + 2ω)γ̃(ain)a2]a1/(1+ω)+n}.

(3.130)

When finding q(ain) one should plug γ̃(ain) which is given by (3.127)

q(ain) = −1 +
2(1 + ω)[−3F 2ka

1/(1+ω)+n
in + 2nωρna

2
in]

3(3 + 2ω)F 2H2(ain)a2
in

. (3.131)

Since ain � 1, q(ain) is simplified further

lim
a→ain

q(a) =



−1 +
4(1 + ω)nωρn

3(3 + 2ω)F 2H2(ain)
, if n+

1

1 + ω
> 2,

−1 +
2(1 + ω)[−3F 2k + 2nωρn]

3(3 + 2ω)F 2H2(ain)
if n+

1

1 + ω
= 2,

−1− 2(1 + ω)k

(3 + 2ω)H2(ain)a
−1/(1+ω)−n+2
in

, if 0 < n+
1

1 + ω
< 2.

When we set today values of the scale factor a = 1, ρn and F become today’s values

of the energy density and the scalar field respectively. Thus dynamics of the early

universe depends on not only initial value of the Hubble function and the scale factor

but also today’s values of the energy density and scalar field. In addition behaviour of

the universe also depends on the curvature parameter k for 0 < n+
1

1 + ω
≤ 2.

The fate of the universe can be described by the following number

lim
a→∞

q(a) = −1. (3.132)

Now, we formulate a(t) for a spatially flat universe as

t =

∫ a

ain

da
′

a′H(a′)
, (3.133)

H(a) =
√
δa−1/(1+ω)−n + α, δ =

8n(1 + ω)2ωρn
3(3 + 2ω)[1 + n(1 + ω)]F 2

, α = γ̃(ain).

(3.134)
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Thus

t =
1

κ
√
α
ln
[ aκ +

√
a2κ +

δ

α

aκin +

√
a2κ
in +

δ

α

]
, κ =

1

2

[1 + n(1 + ω)

1 + ω

]
. (3.135)

Hence

a(t) =
[(aκin +

√
a2κ
in +

δ

α
)eκ
√
αt + (aκin −

√
a2κ
in +

δ

α
)e−κ

√
αt

2

]1/κ

, (3.136)

where δ, α and κ are given in (3.134-3.135). This formula indicates a very significant

interpretation. When there is no constant energy density, the universe still expands

exponentially because of nonzero initial conditions. We will investigate this phenomena

in depth by adding constant term to the energy density in Sections 3.7 and 3.8

As we said at the beginning of Section 3.1 we have obtained perfect fluid equation

of state

ν =
p(a)

ρ(a)
=

(n− 3)

3
. (3.137)

Potential formula as a function of the scalar field are written as

V (φ) =
(−3 + n)ρn

3(1 + n(1 + ω))
(
φ

F
)−2n(1+ω) − kF 2

4ω(1 + ω)
(
φ

F
)−2−4ω

+
(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
γ̃(ain)φ2. (3.138)

Most probably φ2 term in the potential is responsible for late time accelerated expan-

sion. This formula is simpler than the corresponding formula V (φ) in our previous

study [129].
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3.7. Early Universe, Dark Energy and Radiation

In this section the scalar field and the energy density is taken as

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρr
a4

+ Λ. (3.139)

To see whether Λ contributes to H(a) we have performed calculations in all four dif-

ferent methods. Results are found in the following form

H(a) =

√
− 2(1 + ω)k

(3 + 2ω)a2
+

32(1 + ω)2ωρra
−1/(1+ω)−4

3(3 + 2ω)(5 + 4ω)F 2
+ α, (3.140)

V (a) = −F
2ka1/(1+ω)−2

4ω(1 + ω)
+ βa1/(1+ω) +

ρr
3(5 + 4ω)a4

− Λ. (3.141)

In method-1 we find

α1 = H2(ain) +
2(1 + ω)k

(3 + 2ω)a2
in

− 32(1 + ω)2ωρra
−1/(1+ω)−4
in

3(3 + 2ω)(5 + 4ω)F 2
, (3.142)

β1 =
(3 + 2ω)(4 + 3ω)F 2

8ω(1 + ω)2
α1. (3.143)

In method-2 we find

α2 = α1, β2 = β1. (3.144)

In this method to be able to satisfy the constraint equation with final formulas of V (a)

and H(a) initial conditions must satisfy the following equation

V (ain) = −F
2ka

1/(1+ω)−2
in

4ω(1 + ω)
+ β2a

1/(1+ω)
in +

ρr
3(5 + 4ω)a4

in

− Λ, (3.145)

which is consistent with the formula of V (a).
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In method-3 we find

α3 =
8ω(1 + ω)2Ṽ (ain)

(3 + 2ω)(4 + 3ω)F 2
, (3.146)

Ṽ (ain) = V (ain)a
−1/(1+ω)
in − ρra

−1/(1+ω)−4
in

3(5 + 4ω)
+

F 2k

4ω(1 + ω)a2
in

+ Λa
−1/(1+ω)
in , (3.147)

β3 =
(3 + 2ω)(4 + 3ω)F 2

8ω(1 + ω)2
α3. (3.148)

Although at first sight it seems that α1 6= α3, one can show that they are equal to each

other by substituting ain in H(a) and solving the equation for V (ain).

In method-4 we find

α4 = α3, β4 = β3. (3.149)

By the same reasoning in method-2, constraint equation implies the following condition

on initial values

a
1/(1+ω)+3
in H2(ain)− 32ω(1 + ω)2ρr

3(3 + 2ω)(5 + 4ω)F 2ain
− 8ω(1 + ω)2Ṽ (ain)a

1/(1+ω)+3
in

(3 + 2ω)(4 + 3ω)F 2

+
2(1 + ω)ka

1/(1+ω)+1
in

3 + 2ω
= 0. (3.150)

V (ain) which is obtained by solving this equation is consistent with the formula of V (a).

The deceleration parameter is found as

q(a) = −1 +
2(1 + ω)(5 + 4ω)[−3F 2ka1/(1+ω)+2 + 8ωρr]

32ω(1 + ω)2ρr + 3(5 + 4ω)F 2[−2k(1 + ω) + (3 + 2ω)α1a2]a1/(1+ω)+2
,

(3.151)

α1 = H2(ain) +
2(1 + ω)k

(3 + 2ω)a2
in

− 32(1 + ω)2ωρra
−1/(1+ω)−4
in

3(3 + 2ω)(5 + 4ω)F 2
. (3.152)
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Thus initial value of the deceleration parameter is found

q(ain) = −1 +
2(1 + ω)[−3F 2ka

1/(1+ω)+2
in + 8ωρr]

3(3 + 2ω)F 2H2(ain)
. (3.153)

The deceleration parameter which is given in (3.151) is same as the deceleration

parameter found in single component universe without constant term, since α1 given

in (3.152) is equal to γ̃(ain) given in (3.127) with n = 4.

The scale factor as a function of time is written as

a(t) =
[(aκin +

√
a2κ
in +

δ

α
)eκ
√
αt + (aκin −

√
a2κ
in +

δ

α
)e−κ

√
αt

2

]1/κ

, (3.154)

κ =
1

2

(5 + 4ω

1 + ω

)
, δ =

32(1 + ω)2ωρr
3(3 + 2ω)(5 + 4ω)F 2

, (3.155)

where α = α1 and α1 is given by (3.142).

Formula of the potential as function of the scalar field is found as

V (φ) = − F 2k

4ω(1 + ω)
(
φ

F
)−2−4ω + β(

φ

F
)2 +

ρr
3(5 + 4ω)

(
φ

F
)−8(1+4ω) − Λ, (3.156)

where β = β1 which is given by (3.143). Pressure is found as in expected form

p(a) =
ρr
3a4
− Λ. (3.157)
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3.8. Late Time Expansion of the Universe

3.8.1. Dark Energy Dominated Universe

We study in spatially flat universe where

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρm
a3

+ Λ. (3.158)

Then related function is formulated as

H(a) =

√
8ω(1 + ω)2ρm

(3 + 2ω)(4 + 3ω)F 2a1/(1+ω)+3
+ γ̃(ain), (3.159)

V (a) =
(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
F 2γ̃(ain)a1/(1+ω) − Λ, (3.160)

q(a) = −1 +
4ω(1 + ω)(4 + 3ω)ρm

8ω(1 + ω)2ρm + (3 + 2ω)(4 + 3ω)F 2γ̃(ain)a1/(1+ω)+3
, (3.161)

γ̃(ain) = H2(ain)− 8(1 + ω)2ωρma
−1/(1+ω)−3
in

(3 + 2ω)(4 + 3ω)F 2
, (3.162)

p(a) = −Λ. (3.163)

The scale factor as function of time is found as

a(t) =
[(aκin +

√
a2κ
in +

δ

α
)eκ
√
αt + (aκin −

√
a2κ
in +

δ

α
)e−κ

√
αt

2

]1/κ

, (3.164)

κ =
1

2

(4 + 3ω

1 + ω

)
, δ =

8(1 + ω)2ωρm
(3 + 2ω)(4 + 3ω)F 2

. (3.165)

where α = γ̃(ain) and γ̃(ain) is given by (3.162).

In Brans-Dicke theory effective gravitational constant is defined as Geff =
ω

2πφ2
.

Thus it’s present value becomes G0 =
ω

2πF 2
where F = φ(t0). In addition when we take
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observational value of Brans-Dicke parameter ω � 1, the Hubble function becomes

H(a) =

√
8πG0ρm

3a3
+ γ̃(ain). (3.166)

By using following definitions of cosmological parameters

Ωm,0 =
8πG

3H2
0

ρm, Ωγ̃,0 =
8πG

3H2
0

ργ̃, ργ̃ =
3γ̃(ain)

8πG
, (3.167)

the Hubble function is written as

H(a) = H0

√
Ωm,0

a3
+ Ωγ̃,0. (3.168)

When one replace Ωγ̃,0 with ΩΛ,0 in (3.166) we will have the Hubble function for the

late epoch of the universe in standard cosmology where dark energy dominates.

We have already compared this model with observation of type Ia supernovae

data in chapter 2. In our previous study we have obtained H0 = 71.80 ± 0.22,

ΩΛ,0 = 0.715 ± 0.012, Ωm = 0.285 ± 0.012 and χ2/ν = 0.990 for absolute magnitude

M = −19.30. Present value of deceleration parameter has been found as q0 = −0.572

with this cosmological parameters.

On the other hand potential can be rewritten as

V (φ) =
(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
γ̃(ain)φ2 − Λ. (3.169)

Most probably φ2 potential is responsible from the accelerated expansion.
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3.8.2. Domain Wall Dominated Universe

In this section we study in spatially flat universe with scalar field and the energy

density is given as

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρm
a3

+
ρw
a
. (3.170)

The Hubble function, potential, deceleration parameter and the pressure is formulated

as

H(a) =

√
8ω(1 + ω)2

3(3 + 2ω)F 2

[ 3ρm
(4 + 3ω)a3

+
ρw

(2 + ω)a

]
a−1/(1+ω) + γ̃(ain), (3.171)

V (a) =
(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
γ̃(ain)F 2a1/(1+ω) − 2ρw

3(2 + ω)a
, (3.172)

q(a) = −1 + {4ω(1 + ω)(2 + ω)(4 + 3ω)(3ρm + ρwa
2)}

/{3(2 + ω)(3 + 2ω)(4 + 3ω)γ̃(ain)F 2a1/(1+ω)+3 + 8ω(1 + ω)2[3(2 + ω)ρm

+ (4 + 3ω)ρwa
2]}, (3.173)

γ̃(ain) = H2(ain)− 8ω(1 + ω)2

3(3 + 2ω)F 2

[ 3ρm
(4 + 3ω)a3

in

+
ρw

(2 + ω)ain

]
a
−1/(1+ω)
in , (3.174)

p(a) = −2ρw
3a

. (3.175)

Now we take γ̃(ain) = 0, to investigate whether cosmic domain walls cause accel-

erated expansion of the universe or not. We again apply the fundamental idea of the

Brans-Dicke theory as we did in Section 3.7. Thus we take G0 =
ω

2πF 2
and we take

ω � 1. Then the Hubble function is simplified to

H(a) =

√
8πG0

3
(
ρm
a3

+
ρw
a

). (3.176)
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The relation between the scale factor and time is found as

t =

∫ a

ain

da
′

a′H(a′)
,

t =

∫ a

ain

da
′

a′
√

8πG

3
(
ρm
a′3

+
ρw
a′

)

, (3.177)

t =

√
3

2πGρw

[√
a′2F1(

1

2
,−1

4
;
3

4
;− ρm

ρwa
′2

)
]a
ain
. (3.178)

2F1 is the hypergeometric function

2F1(1/2, b; b+ 1;u) =
∞∑
n=0

(1/2)n(b)n
(b+ 1)n

un

n!
, (3.179)

where (b)n is the Pochhammer symbol which is defined as

(b)n =

1 if n = 0,

b(b+ 1)(b+ 2)...(b+ n− 1), if n = 1, 2 . . . .

(3.180)

The result presented in (3.178) corresponds to the result given in (2.164) with n = 3.

Type Ia supernovaes are known as standard candles since their measurements

makes comparison of theory and observations is possible. This is done by the following

relation

m = 5log10(
dL

1Mpc
) + 25 +M, (3.181)

where m and M are the apparent and the absolute magnitudes respectively. Then the

distance modulus is defined as µ = m−M .

Now we borrow one of our plots from chapter 2. In our previous study we

have already performed curve fitting with type Ia supernovae data. We have found
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H0 = 71.03 ± 0.20, Ωw,0 = 0.889 ± 0.015, Ωm,0 = 0.111 ± 0.015 and χ2/ν = 1.008

for M = −19.30 in domain wall dominated universe. We obtain q0 = −0.389 with

these values of cosmological density parameters. On the other hand for dark en-

ergy dominated universe we have found H0 = 71.80 ± 0.22, ΩΛ,0 = 0.715 ± 0.012,

Ωm,0 = 0.285± 0.012 and χ2/ν = 0.990 for M = −19.30. We obtain q0 = −0.572. All

these results are shown in Figure 3.1.
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Figure 3.1. Distance Modulus vs Redshift Plot for M = −19.30 Reproduced

Dots represent observations of Pantheon data while green line represents domain wall

dominated universe and red line represents dark energy dominated universe.

In addition

lim
a→∞

q(a) = −0.5. (3.182)
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V (φ) is formulated as

V (φ) = − 2ρw
3(2 + ω)

(
φ

F
)−2(1+ω). (3.183)

Although power of φ in the potential is different from 2 it causes accelerated expansion

of the universe.

3.9. Discussion

We have revealed three major points of cosmology in this study. These are the

answers for the following questions:

(i) Is there any corresponding energy for the cosmological constant?

(ii) Is it possible to have accelerated universe without cosmological constant?

(iii) Is ratio of dark matter to baryonic mater smaller than
0.27

0.05
?

It is known that constant energy density contributes to the Hubble function. We have

examined this phenomena in Section 3.7 and in Section 3.8.1. Firstly we have solved

our system of equations for early universe by taking

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρr
a4

+ Λ. (3.184)

Then H(a) is found in the form of (3.140) where there is a constant term α. At first

sight there is no contribution of Λ in α1 given by (3.142). However one can also claim

that Λ contributes in α3 by substituting (3.147) in (3.146). This dilemma can be
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explained as follows. One can write

V (ain) =
3F 2ka

1/(1+ω)−2
in

4ω
+

(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
F 2H2(ain)a1/(1+ω)(ain)− ρr

a4
in

− Λ.

(3.185)

Then one can rewrite H(ain) in terms of V (ain) and Λ.

We have also examined the spatially flat late universe in Section 3.8.1 by supply-

ing the following functions

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρm
a3

+ Λ. (3.186)

The Hubble function has been found in the form given in (3.159) which has a constant

term. At first sight this constant term which is given by (3.162) does not contain Λ.

One can apply the same trick and one can write

V (ain) =
(3 + 2ω)(4 + 3ω)

8ω(1 + ω)2
F 2H2(ain)a

1/(1+ω)
in − ρm

a3
in

− Λ. (3.187)

Again, one can rewrite H(ain) in terms of V (ain) and Λ and one can claim that H(a)

contains Λ.

There are two possible interpretations:

(i) Constant energy density does not contribute to the Hubble function, it only

modifies value of potential at the beginning of the universe.

(ii) Initial value of the Hubble function H(ain), can be rewritten in terms of V (ain)

and Λ so constant energy density contributes to the Hubble function.

Both of them can be reasonable according to one’s perspective. Although if one chooses

second explanation which is in agreement with common trend, one can still ask the

question in another way: Is it possible to have a constant term in the Hubble function
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when there is no constant energy density and no constant potential in the universe?

To answer this question we have investigated single component universe in Section 3.6

by giving following functions

φ(a) =
F

ad
, d = − 1

2(1 + ω)
, ρ(a) =

ρn
an
. (3.188)

Then H(a) is found in the form given by (3.125). The Hubble function has a constant

term although there is no constant energy density. This constant is given in (3.127).

Now V (ain) does not contain Λ. In addition, expected exponential expansion of a(t)

is given in (3.136). Thus there is one possible explanation. When there is no constant

energy density, the Hubble function still has a constant term which causes exponential

expansion.

We have shown that universe has an accelerated expansion when one introduces

cosmic domain walls with matter in the energy density in Section 3.8.2. We had studied

this case with Friedmann cosmology in chapter 2, and we have compared our model

with the latest supernovae data. It is seen that both dark energy dominated and do-

main wall dominated universe have perfect fit with data. The differences between these

two models most probably will be seen when bigger redshift data are available.

While comparison of dark energy dominated universe with observation has re-

sulted in ΩΛ = 0.715 ± 0.012 and Ωm = 0.285 ± 0.012, comparison of domain wall

dominated universe with observation has resulted in Ωw = 0.889 ± 0.015 and Ωm =

0.111 ± 0.015. Hence a new question appears; is the ratio of dark matter to baryonic

matter less than
0.27

0.05
?

In 1980s Modified theories of Newtonian Dynamics or MOND, were proposed

[58, 139]. It mainly claims that observational aspects of galaxies can be understood

without dark matter. Recent observational evidence for the external field effect in

MOND which was proposed as an alternative to dark matter is presented in [60]. A

new relativistic MOND theory [59] successfully reproduces cosmic microwave back-
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ground power spectra. These theories may explain non-baryonic part of domain wall

dominated universe which covers six percent of the energy-matter content of the uni-

verse.

In this chapter we have applied change of variable a = ȧH(a) to field equa-

tions of Brans-Dicke theory and have written all equations in terms of independent

variable ”a”. Then we have ended up with a constraint equation and a Bernoulli type

differential equation which can be linearized. We have presented analytic solutions for

supplied pairs of functions; (φ(a) and ρ(a)) , (φ(a) and V (a)), or (φ(a) and H(a)).

Investigation of single component universe has shown that one will have a con-

stant term in the Hubble function although there is no constant energy density. Early

epoch of the universe with dark energy and radiation have been studied, and exponen-

tial expansion is seen in a(t). Late-time acceleration is obtained for both dark energy

dominated universe and domain wall dominated universe. When Brans-Dicke parame-

ter ω � 1, the Hubble function reduces to H(a) of the Einstein cosmology. In all cases

potential is found as combination of power law potentials.

We would like to emphasize that so-called dark energy term may be just a number

without corresponding constant energy-matter density. Details of this subject has been

presented in the discussion. Hopefully astronomers and cosmologists will pay more at-

tention for searches of cosmic domain walls. One can also reach our calculations which

are presented in this chapter in [140].
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4. INFLATION AND LINEAR EXPANSION IN THE

RADIATION DOMINATED ERA IN BRANS-DICKE

COSMOLOGY

In this chapter we study φ4 potential in Brans-Dicke cosmology. This potential

has been already recognized in Section 3.3.1.2. It results in real Hubble function and

positive energy density. Our systematic studies have shown that choice of other power

law potentials can not satisfy positivity of energy density together with real Hubble

function. Here instead of presenting details of these parts, we just focus on φ4 potential.

Now we will pick time as a independent variable different than our choices in chapter

2 and chapter 3.

In this chapter we will use FLWR metric given by,

ds2 = dt2 − a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)]. (4.1)

where k is the curvature parameter with k = −1, 0, 1 corresponding to open, flat, closed

universes respectively, a(t) is the scale factor of the universe. Here r is dimensionless

and a(t) has the dimension of lenght. We use the Lagrangian which has been introduced

in chapter 3. We choose

V (φ) =
1

4
λφ4, (4.2)

which in flat spacetime leads to a renormalizable quantum field theory. Due to the

choice of scale-invariant potential, the coupling constant λ is dimensionless, so that

there are no dimensional parameters in the BDJT part of the Lagrangian density in

(3.2) and (3.3).
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We would like to remind the reader the field equations which have been derived

in previous chapter,

3

4ω
φ2

(
ȧ2

a2
+
k

a2

)
− 1

2
φ̇2 − V (φ) +

3

2ω

ȧ

a
φ̇φ = ρm, (4.3)

−1

4ω
φ2

(
2
ä

a
+
ȧ2

a2
+
k

a2

)
− 1

ω

ȧ

a
φ̇φ− 1

2ω
φ̈φ−

(
1

2
+

1

2ω

)
φ̇2 + V (φ) = pm, (4.4)

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

φ
− 3

2ω

(
ä

a
+
ȧ2

a2
+
k

a2

)
φ = 0. (4.5)

We will name (4.3) as the energy density equation, (4.4) as the pressure equation and

(4.5) as the φ equation.

Sen and Seshadri [141] have investigated the nature of a potential relevant to

the power law expansion in BD cosmology. In [136–138] a perturbation technique was

applied to the above equations with V (φ) =
1

2
m2φ2. In addition, exact solutions of

modified BD cosmological equations have been found by using symmetry analysis [142].

On the other hand the quartic potential, V (φ) =
1

4
λφ4 has been studied in [143] where

solutions are comparable with the observed cosmological data only for small negative

values of ω for spatially flat FRW geometry. Chubaryan et al. have studied the quartic

potential with barotropic equation of state in [144]. This potential has also been stud-

ied in [145] in the presence of a generalized Brans-Dicke parameter ωGBD(φ). Santos

and Gregory have found linearly and exponentially expanding solutions for vacuum

cosmologies [146].

Although to investigate role of stiff matter in cosmology was not the main pur-

pose of this work, it appears in our results. An exocit fluid with an equation of state

ν = p/ρ = 1 was first introduced by Zeldovich [147]. This fluid is also called as the stiff

fluid or Zeldovich fluid and gives energy density proportional to 1/a6. Many scientists

have produced cosmological models with stiff matter [148–156]. In addition there exist

studies on stiff matter in Brans-Dicke Theory [157–159]. In an another work a com-

plex scalar field description of Bose-Einstein condensate dark matter was studied [160].

It has been found that the early universe evolves from stiff (p = ρ) to radiationlike
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(p = ρ/3). We have obtained a similar result in our calculations.

In this chapter we present exact solutions of (4.3-4.5) with V (φ) =
1

4
λφ4 in a

k = 1 closed universe. We choose ω > 4 × 104 to be comfortable compatible with

results of Einstein telescope [130] and time delay experiments [131]. Our starting point

is to introduce a scale invariant solution in Section 4.1. Once we find the Jordan scalar

field as a function of time, we calculate the scale-factor of the universe for different eras

by tracking the behaviour of the field forward and backward in time. Therefore we will

have three different φ(t), we will solve the φ equation for each case and we will obtain

the scale factor as a function of time for each era. These solutions result in inflation

in the early radiation dominated era, linear expansion in the late radiation dominated

era and scale invariant solution with stiff fluid between these two eras.

Here we should take attention of the reader to the important remark. In classical

cosmology the basic information obtained from observation is the value of the Hubble

function. It is related with the theory by one of the Friedmann-Lemaitre equation

ȧ2(t) =
8πG

3
ρa2(t) +

1

3
Λc2a2(t)− c2k. (4.6)

In addition the followings are definitions of the Hubble function, total energy density,

density parameters and the curvature density parameter

H ≡ ȧ

a
, ρ(t) ≡ ρm,0[

a0

a(t)
]3 + ρr,0[

a0

a(t)
]4 + ρΛ,0, (4.7)

Ωi(t) ≡
8πG

3H2(t)
ρi(t), Ωk(t) = − c2k

H2(t)a2(t)
, (4.8)

where the label i includes matter, radiation, and the vacuum. Comparison with obser-

vation is usually made by writing last equation in the form

H2 = H2
0{Ωm,0[

a0

a(t)
]3 + Ωr,0[

a0

a(t)
]4 + ΩΛ,0 + Ωk,0[

a0

a(t)
]2}, (4.9)
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where 0 denotes present values of the related function. However in our model right

hand side of the equation is different,

H2 =
ρ+ 1

2
φ̇2 + V (φ)− 3

2ω
ȧ
a
φ̇φ

3
4ω
φ2

− k

a2
. (4.10)

Thus our model should be compared with (4.9) after expressing φ and φ̇ as functions

of a. The only mathematical constraint on the above equation is positivity of right

side. For this reason one can obtain interesting negative energy density contributions

by providing right hand side is positive as a whole. At first sight, negative energy

density seems unreasonable. However in the literature there are many physical cases

which contain negative energy. It was firsly discovered by Casimir in quantum field

theory [161]. In 1975, Hawking found the negative energy density across the event

horizon [162]. In the following years the negtaive energy fluxes in radiation from mov-

ing mirrors were reported [163, 164]. In different fields there are many studies which

give rise to comments on negative energy [165–170].

We also show that introducing matter in the linearly expanding radiation era

can give a decelerating universe with positive energy density perturbation or an accel-

erating universe with negative energy density perturbation depending on the choice of

one of the constants in our model in Section 4.1. Then early inflation is investigated

in Section 4.2. We find the Hubble function and the deceleration parameter for each

era. Then we calculate temperature-time relations for each era we investigate in Sec-

tion 4.3. We study the passage from big bang to the scale invariant solution and the

passage from the scale invariant solution to the linearly expanding solution in Section

4.4. Finally we extrapolate our results to the present day and show that this model

gives acceleration for the present universe, albeit with a deceleration parameter which

is not as big as observed in Section 4.5.
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4.1. Radiation Dominated Era

4.1.1. The Scale Invariant Solution

One important property of potential in (4.2) is that it does not introduce any

dimensional parameters into the Lagrangian density so that the action and the resulting

equations are scale invariant. In this part we have assumed that the relation between

φ(t) and a(t) preserves the scale invariance and is given by

φ(t) =
A

a(t)
, (4.11)

where A is a positive dimensionless constant. With this constraint, the φ equation

becomes a second order nonlinear differential equation.

A[−3 + 2A2ωλ− (3 + 2ω)ȧ2 − (3 + 2ω)aä]

2ωa3
= 0, (4.12)

where dot denotes derivative with respect to time. To be able to solve this equation

we introduce new variable θ(t) = a2(t). Then the differential equation reduces to

θ̈ =
4ωλA2 − 6

3 + 2ω
. (4.13)

One can easily find θ and with appropriate choice of integration constants b1 and b2

the solution for the scale factor can be written as

a(t) =

√(
2A2ωλ− 3

3 + 2ω

)
t2 + b1t+ b2. (4.14)
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Behaviour of energy density and pressure are found to be

ρ = A2

[
6− 3A2ωλ

4a4ω
+
−(3 + 2ω)b2

1 + 4(−3 + 2A2ωλ)b2

16a6ω

]
, (4.15)

p = A2

[
2− A2ωλ

4a4ω
+
−(3 + 2ω)b2

1 + 4(−3 + 2A2ωλ)b2

16a6ω

]
. (4.16)

The term proportional to 1/a6 is the stiff matter term [147]. By using the usual conti-

nuity equation which is satisfied by (4.3-4.5) the terms proportional to a−4 are readily

recognized as radiation whereas the a−6 stiff fluid are related to maximal pressure p = ρ

without violation of positivity of energy. Positivity of both terms and real scale factor

requires 3/2 < A2ωλ < 2 and b2 > (3 + 2ω)b2
1/4(2A2ωλ − 3). We should note that

constants b1 and b2 are important and they must not be chosen zero. Solutions before

and after this era will be matched by adjusting b1 and b2. We will call this phase of

the universe as the scale invariant phase.

As the universe expands the second term becomes negligible Then the equation

of state becomes,

ν =
p

ρ
=

1

3
, (4.17)

as it should be in the radiation dominated era.

There are two more important cosmological parameters we should calculate are

the Hubble function and the deceleration parameter;

H(t) =
ȧ

a
, q(t) =

d

dt
(

1

H
)− 1 = −aä

ȧ2
. (4.18)
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For this era these parameters are found as

H(t) =
2(

2A2ωλ− 3

3 + 2ω
)t+ b1

2[(
2A2ωλ− 3

3 + 2ω
)t2 + b1t+ b2]

, (4.19)

q(t) =
(3 + 2ω)[(3 + 2ω)b2

1 + 4(3− 2A2ωλ)b2]

[2 + (2A2ωλ− 3) + (3 + 2ω)b1]2
. (4.20)

This era takes place after early inflation. Thus time is always greater than the value of

t1 which is found in Section 4.4 by (4.78). Therefore one can easily conclude that the

Hubble parameter is always positive. Our condition on b1 and b2 which makes energy

density positive, makes deceleration parameter negative. Thus we have an accelerated

era.

4.1.2. Linearly Expanding Radiation Dominated Universe

As time increases its effect in (4.14) becomes larger so we can make the assumption

φ(t) =
B

t
. (4.21)

Then φ equation becomes

4ωBa2 − 6ωBtaȧ+ 2ωλB3a2 − 3Bt2(aä+ ȧ2 + 1)

2ωt3a2
= 0. (4.22)

Firstly we set a2 = θ in the above equation and we obtain

t2θ̈ + 2ωtθ̇ − 4ω

3
(2 + λB2)θ = −2t2. (4.23)
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Last equation is easily recognized as non-homogeneous Cauchy-Euler equation and its

solution is found as

θ(t) = c1t
m+ + c2t

m− +
3t2

2ω(λB2 − 1)− 3
, (4.24)

m± =
1

2
− ω ±

√
ω2 − ω +

1

4
+

4ω

3
(2 + λB2), (4.25)

where c1 and c2 are integration constants (Details of this calculation is given in Ap-

pendix C). Unless one choose c1 = c2 = 0, it is impossible to obtain pressure and the

density in the form c/an with constant c and rational n. Therefore we obtain the scale

factor and the Jordan field as

a(t) =

√
3

2B2ωλ− (2ω + 3)
t, φ(t) =

√
3

2B2ωλ− (2ω + 3)

B

a(t)
. (4.26)

This choice satisfies the φ equation which is always equal to zero. By using the gravi-

tational field equations one can easily calculate energy, pressure and equation of state

as

ρ =
9B2[B2ωλ− 2(2ω + 3)]

[2B2ωλ− (2ω + 3)]2
1

4ωa4
, (4.27)

p =
9B2[B2ωλ− 2(2ω + 3)]

[2B2ωλ− (2ω + 3)]2
1

12ωa4
, (4.28)

ν =
p

ρ
=

1

3
. (4.29)

Note that in this era although we have not imposed the ansatz φ(t) = A
′
/a(t),

we have ended up with it.

After this point we will continue with results of Section 4.4 where we match

solutions for each era. Continuity of φ(t) and a(t) at the passage from scale invariant
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phase to linearly expanding era gives

a(t) =

√
2A2ωλ− 3

2ω + 3
t, B = A

√
2ω + 3

2A2ωλ− 3
. (4.30)

Now let us calculate the Hubble function and the deceleration parameter for this

era,

H(t) =
1

t
, q(t) = 0. (4.31)

Thus universe expands with constant velocity.

4.1.3. Creation of Matter in the Late Radiation Dominated Era

When the temperature is much smaller than me = 0.51MeV electrons and baryons

can be considered non-relativistic. Pressure as compared to matter energy density can

be neglected for a gas of non-relativistic particles. For this reason it can be accepted

that at this stage of the universe non-relativistic matter starts to be created and even-

tually dominates radiation. We assume that creation of matter in radiation dominated

era causes small changes in the Jordan field and in the scale factor. Thus we start the

ansatz,

φ̃(t) =
A

Bt
+ ψ(t) with ψ(t) = utm, (4.32)

ã(t) = Bt+ α(t) with α(t) = vtn, (4.33)

B =

√
2A2ωλ− 3

2ω + 3
, (4.34)

and ψ and α are small. First we write all three equations in terms of new functions.

In addition we neglect second and higher order terms (α2, ψ2, αψ, ...) in the corrections

in the perturbations of α and ψ. We easily obtain the constant v ∼ t2+m−n from the φ

equation. It follows that we must choose m = n− 2 to keep v constant. Then energy
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density becomes

ρ =
C1

t4
+

C2

t5−n
, (4.35)

with C1 and C2 are constants. Thus we choose n = 2 to have two component energy

density which is composed of a radiation part and a matter part

ρ =
Cr
a4

+
Cm
a3
, (4.36)

where

Cr = −3A2(−2 + A2ωλ)

4ω
, (4.37)

Cm = −Au[27 + 2ω(6 + A2λ(−12− 5ω + 2A2ωλ(2 + ω)))]

2ω[−9− 5ω + 2A2ωλ(2 + ω)]
. (4.38)

Then pressure is found as,

p =
Cr/3

a4
+
Pm
a3
, (4.39)

Pm =
Au(−2 + A2wλ)[−w + 2A2wλ(1 + w)]

w[−9− 5ω + 2A2ωλ(2 + ω)]
. (4.40)

The constant v which is part of the scale factor, is found as

v =
u(−3 + 2A2ωλ)[−ω + 2A2ωλ(1 + ω)]

A(3 + 2ω)[−9− 5ω + 2A2ωλ(2 + ω)]
. (4.41)

We have already found 3/2 < A2ωλ < 2 at the end of the discussion of Section 4.1.1.

In addition A, λ, ω are all positive parameters. In this scope one can easily find the

following results by inspection,

sign(Cm) ≡ sign(Pm) ≡ sign(u) and sign(v) ≡ −sign(u). (4.42)
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In addition it is also obvious that

lim
A2ωλ→2−

pperturbation
ρperturbation

= lim
A2ωλ→2−

Pm
Cm
→ 0+ � 1, (4.43)

as it should be in the matter dominated era. Thus we can neglect the perturbation in

pressure. In addition this result shows that we should take the value of A2ωλ as 2−

that is a little less than 2. Other effects of this result on our model will be explained

in the following sections.

The Hubble function and the deceleration parameter for this era are found as

H(t) =

√
2A2ωλ−3

3+2ω
+ 2vt√

2A2ωλ−3
3+2ω

t+ vt2
, q(t) = −

2tv(tv +
√

2A2ωλ−3
3+2ω

)

(
√

2A2ωλ−3
3+2ω

+ 2tv)2
. (4.44)

By using v � 1 which is the condition to write the perturbation in the field equations,

we obtain

H(t) ' 1

t
+

v√
2A2ωλ−3

3+2ω

, q(t) ' −2vt√
2A2ωλ−3

3+2ω

. (4.45)

Now one should develop a solid argument to determine the sign of the constant

v. Firstly let us start with positivity of energy density. In this scope the parameter

u must be chosen as a positive number to ensure positivity of perturbation term in

energy density. Thus v is found to be negative. This tell us that the Hubble function

can be negative and the universe can decelerate. This means creation of matter can

cause a big crunch depending on the values of the constants in our model.

But since the universe has expanded during this era it has the positive Hub-

ble function. This makes the constant v positive and thus the constant u negative. At

this moment one can immediately say that matter energy density is negative. However

baryonic matter has positive energy density. Therefore one should write the matter

perturbation to radiation energy density with two components where one of them is
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positive and the other one is negative for example,

Cm = − Au[2ωA2λ(−12− 5ω)]

2ω[−9− 5ω + 2A2ωλ(2 + ω)]
− Au[27 + 2ω(6 + A2λ(2A2ωλ(2 + ω)))]

2ω[−9− 5ω + 2A2ωλ(2 + ω)]
.

(4.46)

Thus we conclude that universe can accelerate in this era by using positivity of v. This

result can be interpreted as baryonic matter being created together with matter of

negative energy density. This causes acceleration which in the standard model would

be described as dark matter. At this point we should once again mention that because

of the dependence of Jordan scalar field φ(t) on the scale size a(t) the contribution

of this negative energy density term to observation will be different from Einstein’s

gravity as indicated in (4.9) and (4.10).

4.2. Early Inflation in the Radiation Dominated Era

Here we relax our constraint φ(t) =
A

a(t)
. However we will keep matching our

solution for the Jordan field which was found to be

φ(t) =
A√(

2A2ωλ−3
3+2ω

)
t2 + b1t+ b2

. (4.47)

We see that as t goes to zero, φ becomes constant and to investigate this behaviour we

look for a solution

φ(t) = F. (4.48)

φ equation becomes

F 3λ− 3F

2wa2
(1 + ȧ2 + aä) = 0. (4.49)
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We have again used the change of variable method to solve the differential equation by

introducing θ(t) = a2(t). Then the equation immediately reduces to

θ̈ − 4ωλF 2θ

3
= −2, (4.50)

and the positive solution for the scale factor of the universe is

a(t) =

√
c1eαt + c2e−αt +

3

2ωλF 2
, α = 2F

√
ωλ

3
. (4.51)

For this solution φ(t) can be interpreted as an effective cosmological constant. Energy

density and pressure are easily calculated by substitution of a(t) and φ(t) in Equations

(4.3) and (4.4) as

p =
9− 16c1c2F

4ω2λ2

48ω2λa4
, (4.52)

ρ =
9− 16c1c2F

4ω2λ2

16ω2λa4
, (4.53)

ν =
p

ρ
=

1

3
. (4.54)

To have ρ > 0 we must satisfy the condition 9− 16c1c2F
4ω2λ2 > 0.

To simplify our result let us choose c1 = d1/α
2 and c2 = d2/α

2 where d1 > 0.

Then we have

a(t) =
1

α

√
d1eαt + d2e−αt + 2. (4.55)

Choosing the integration constant d1 and d2 such that a(t) is minimum at t = 0 gives

us d1 = d2 and a(t) must approach a positive non-zero value at t = 0. Therefore our
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results become

a(t) =

√
2

α

√
d1 cosh(αt) + 1, (4.56)

ρ(t) =
9(1− d2

1)

16ω2λa4
, p =

ρ

3
, (4.57)

where 0 < d1 < 1.

For this solution the Hubble function and the deceleration parameter are found

as

H(t) =
d1α sinh(αt)

2(d1 cosh(αt) + 1)
, (4.58)

q(t) = 1− 2 coth2(αt)− 2

d1

coth(αt)csch(αt). (4.59)

It is obvious that the Hubble function takes positive values. Let us make a change of

variable x = cosh(αt) to see the behaviour of the deceleration parameter

q(x) = 1− 2(
x2 + x/d1

x2 − 1
), x ≥ 1. (4.60)

Since x ≥ 1, the value of q(x) is always smaller than zero. Hence we have an acceler-

ated expansion. In addition t = 0 corresponds x = 1 which creates singularity in the

function q(x). This negative infinite value of the deceleration parameter can explain

the big bang.

We can also choose a(t) = 0 when t = 0 with d2 = −2− d1. Then we obtain

a(t) =

√
2

α

√
d1 sinh(αt) + 1− e−αt, (4.61)

ρ(t) =
9(1 + d1)2

16ω2λa4
, p =

ρ

3
. (4.62)

with 0 < d1.
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For this solution the Hubble function and the deceleration parameter are found

as

H(t) =
α[1 + d1e

αt cosh(αt)]

(eαt − 1)(2 + d1 + d1eαt)
, (4.63)

q(t) = −1 +
8eαt[1 + d1e

αt(2 + d1 − sinh(αt))]

(2 + d1 + d1e2αt)2
. (4.64)

Again let us make a change of variable x = eαt to understand the behaviour of the last

functions. Thus we have

H(x) =
α[1 + d1(x2 + 1)/2]

(x− 1)(2 + d1 + d1x)
, (4.65)

q(x) = −1 +
8x[1 + d1x(2 + d1 − (x− x−1)/2)]

(2 + d1 + d1x2)2
, x ≥ 1. (4.66)

Because x ≥ 1 the Hubble function is always positive. In this kind of big bang the

Hubble function becomes infinite when x = 1 (t = 0). Besides, at this moment q(1) = 1

and as x increases (as time increases) q(x) becomes negative. Therefore expansion al-

ways starts with deceleration then acceleration occurs.

These results may indicate that early inflation took place in the radiation domi-

nated era under the effect of the Brans-Dicke-Jordan field.

4.3. Temperature Calculations

The relation between energy density, pressure and temperature had already been

derived as

dp(T )

dT
=

1

T
[ρ(T ) + p(T )]. (4.67)
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In our calculations pressure and energy density is a function of time. Thus we apply

chain rule and obtain the temperature as

T = T0exp

∫ t

t0

dp(t
′
)

dt′

ρ(t′) + p(t′)
dt
′

 , (4.68)

where T0 is the reference temperature of the universe when it evolves with the scale

factor a(t0). For the early universe, both choices of the scale factor gives the same

temperature-time relation which is found as

T = T0
a(t0)

a(t)
. (4.69)

For the scale-invariant phase we have

T = T0
ã2(t)a3(t0)

ã2(t0)a3(t)
, (4.70)

ã(t) =

√(
2A2ωλ− 3

3 + 2ω

)
t2 + b1t+

(3 + 2ω)b2
1 − 4b2

8(2− A2ωλ)
. (4.71)

In the Section 4.1.3 we found that A2ωλ is a little less than 2. Therefore temperature

becomes T0
a3(t0)
a3(t)

.

For the linearly expanding radiation dominated era we have obtained

T = T0
a(t0)

a(t)
or T =

T̃0

t
, (4.72)

which is the standard time-temperature relation in the radiation dominated era.
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For the era where we introduce matter into radiation temperature is more com-

plicated than the other cases and we find the temperature to be given by

T =
(c1 + uc2t)

r

t
with

1

4
< r < 1, (4.73)

where c1 and c2 are constant. Note that the constant perturbation term u� 1. Hence

by using a series expansion the temperature can be written as

T = T∞

(
1 +

t1
t

)
, (4.74)

where T∞ and t1 are constant. Physically T∞ will denote the approximate temperature

at the end of the radiation dominated era provided that t1 can be chosen small compared

to the time elapsed from big bang to the end of the radiation dominated era.

4.4. Matching the Solutions

In this section we will try to match solutions of the scale factor, the Jordan field

and the energy density for different eras which follow each other in time. We will not

be interested in pressure and temperature because microscopic events can affect them.

Let us call the scale factor of the universe a1(t) for the early inflation era, a2(t) for the

scale invariant era, and a3(t) for the late radiation dominated era. Similarly we name

the Jordan field solutions as φ1(t), φ2(t) and φ3(t) and the energy densities as ρ1(t),

ρ2(t), ρ3(t) respectively. Initially we have tried to match φ1(t) with φ2(t) smoothly at a

certain time. Then we try to match a1(t) with a2(t) smoothly at the same certain time.

Thus we obtain four equations for continuity of φ(t), φ̇(t), a(t) and ȧ(t). However it

is only possible to have three equations satisfied at the same boundary. We eliminate
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continuity of ȧ(t). Consequently we end up with the following equations

φ1(t) = φ2(t) at t = t1, (4.75)

φ̇1(t) = φ̇2(t) at t = t1, (4.76)

a1(t) = a2(t) at t = t1. (4.77)

The passage from early inflation to scale invariant phase occurs at time t1 where

t1 = − 3 + 2ω

2(2A2ωλ− 3)
b1, (4.78)

thus b1 < 0. When we use a1(t) =
√

2
α

√
d1 cosh(αt) + 1 we obtain

d1 =
2A2ωλ− 3

3 cosh(αt1)
, (4.79)

so that the condition 0 < d1 < 1 satisfied. When we have a1(t) =
√

2
α

√
d1 sinh(αt) + 1− e−αt

d1 =
2A2ωλ− 3

3 sinh(αt1)
+

e−αt1

sinh(αt1)
, (4.80)

so that the condition 0 < d1 satisfied.

By using the information obtained above and 3/2 < A2ωλ < 2 one can eas-

ily compare energy densities for the early universe and the scale-invariant phase. It

is seen that there is a loss in energy density at the passage. In Section 4.1.3 we have

concluded that the value of 3/2 < A2ωλ < 2 is a little less than 2. This makes scale

invariant era stiff fluid dominated and in this limit there is still a loss in energy density

at the passage.

Now we will study matching the scale-invariant phase with the linearly expanding

radiation dominated era. We can satisfy only continuity of a(t) and φ(t). This gives
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the following results

t2 =
−b2

b1

, B = A

√
2ω + 3

2A2ωλ− 3
. (4.81)

Therefore when we combine the outcomes of the two matching procedure, scale factors

for second and third eras can be written as

a2(t) =

√
(
2A2ωλ− 3

2ω + 3
)[t2 + 2t1(t2 − t)], (4.82)

a3(t) =

√
2A2ωλ− 3

2ω + 3
t. (4.83)

Again it is found that there is a loss in the energy density at the passage.

4.5. Discussion

There are three gravitational field equations given by (4.3-4.5). A standard math-

ematical procedure to solve such a set of differential equations which has nonlinear

terms with variable coefficients has not been invented yet. Usually one chooses an ap-

propriate energy density to find the solution for the desired era. However our approach

to the problem is different. We have used the scale invariant ansatz φ(t) = A/a(t)

and obtained an exact solution for the Jordan field and the scale factor which evolves

from radiation and stiff fluid combined phase to a radiation phase. Similar results have

been found in the standard model [160]. We have named this combined phase as the

scale invariant phase and by investigating the behaviour of the Jordan field backward

in time, we have found a universe which starts to expand exponentially at big bang

with pure radiation. Similarly, investigating the behaviour of the Jordan field by ex-

trapolating forward in time we again obtain a pure radiation dominated phase which

expands linearly. We have found that introducing matter in this linearly expanding late

radiation era may cause deceleration or acceleration. Furthermore we have presented

the time-temperature relations for each era. As a result we have not only found the

scale factor and the Jordan field for each era but also we have found the order of the
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relevant eras in time. In the last part of the calculations we have matched solutions

for φ(t) and a(t) at the boundaries of the eras.

Importantly, we have formulated two different scale factors which cause infla-

tion at the beginning of time. One of them always has an accelerated expansion and

the other one starts with decelerated expansion and then turns into accelerated ex-

pansion. Acceleration of the universe continues in stiff fluid dominated phase. This

acceleration decreases and the universe expands linearly. Introducing matter in this

era may cause big crunch or may cause acceleration of the universe depending on our

choice of one of the parameters in the perturbation. Thus the three important features

of closed space-like section, radiation domination and primordial inflation can be ex-

plained by the JBDT model.

In our model we have not formulated a solution for behaviour of the present

universe. However by using field equations one can approximately find the Jordan

scalar field φ(t) near the present era. For this purpose effective gravitational constant

is defined as G−1
eff = 2π

ω
φ2. We take the Friedmann equation for our model given by

(4.10) and the definitions given by (4.7) and (4.8) which are used in standard cosmol-

ogy. Then we set Gpresent = ω
2πφ2(t0)

and put time t = t0 to both sides of the equation

where 0 denotes today. Here we should remind that the cosmological constant Λ in our

model is zero. We obtain the following equation

Ωm,0 + Ωr,0 + Ωk,0 +
4ω

3H2
0

[
φ̇(t0)

φ(t0)
]2 +

λω

3H2
0

φ2(t0)− 2

H0

[
φ̇(t0)

φ(t0)
] = 1. (4.84)

We borrow the following equation

Ωm,0 + Ωr,0 + Ωk,0 + ΩΛ,0 = 1, (4.85)
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from the standard model of the cosmology. In addition we make a change of variable

θ = φ̇(t0)
φ(t0)

and rearrange the terms for simplifications,

θ2 − 3H0

2ω
θ +

λω

8πGpresent

− 3H2
0

4ω
ΩΛ,0 = 0. (4.86)

One can produce another useful formula by using today’s value of pressure which is zero

in the field equations. First we find (−1/3)(LHS of (4.3))+(LHS of (4.4))= (−1/3)ρ.

Then we use the φ equation to get

(
1

3
+

1

2ω
)[φ̈(t)φ(t) + φ̇2(t)] + (1 +

3

2ω
)
ȧ(t)

a(t)
φ̇(t)φ(t) = −ρ

3
. (4.87)

We use the same tricks which have been used to find (4.86) with change of variable

β = φ2. The result is

β̈(t0) =
−H2

0

4πGpresent

(Ωm,0 + Ωr,0)

(1
3

+ 1
2ω

)
− 3H0β̇(t0). (4.88)

First one should solve (4.86) and obtain θ. Then φ̇(t0) = φ(t0)θ with φ(t0) =
√

ω
2πGpresent

.

Secondly one should use this information to find β̇(t0) = 2φ̇(t0)φ(t0). Then one should

solve (4.88) and obtain β̈. Finally one should find φ̈(t0) = β̈−2φ̇2(t0)
2φ(t0)

. In conclusion one

can approximately formulate the Jordan scalar field as

φ(t) = φ(t0) + φ̇(t0)(t− t0) +
1

2
φ̈(t0)(t− t0)2, (4.89)

by using the Taylor expansion up to second order.

For clarification one can substitute numerical values. We takeH0 = 73.52(km/s)/Mpc,

ΩΛ,0 = 0.68, Ωk ' 0, Ωm,0 + Ωr,0 = 0.32, G = 6.67× 10−11m3kg−1s−2 and ω = 4× 104.

After writing all components in terms of eV we have found that λ must be at most
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1.3199× 10−130 to have real solutions. At this value of λ,

φ̇(t0) = 2.86× 10−8eV 2 and φ̈(t0) = −1.48× 10−40eV 3. (4.90)

At the value of λ = 10−131 (4.86) gives two roots and our results are

φ̇(t0) = −5.20× 10−6eV 2 and φ̈(t0) = 2.44× 10−38eV 3, (4.91)

or

φ̇(t0) = 5.26× 10−6eV 2 and φ̈(t0) = −2.48× 10−38eV 3. (4.92)

One can calculate the value of Geff 1.37 × 1010 years ago. When we use the high-

est allowed value of λ we find that Geff was then 6.7243 × 10−57eV −2 and now it is

6.7236× 10−57eV −2. We thus see that the expansion (4.89) can be extended to almost

the end of the radiation dominated era.

Moreover one can calculate the deceleration parameter q(t0) = −a(t0)ä(t0)
ȧ2(t0)

after

finding φ̇(t0) and φ̈(t0). First we find 2(LHS of (4.3))+(LHS of (4.5))= 2ρ. Secondly

we write ä(t)
a(t)

= −q(t)H2(t). Then we set Gpresent = ω
2πφ2(t0)

and put time t = t0 to both

sides of the equation. As a result we obtain

q(t0) = Ωm,0 + Ωr,0 −
2ω

3H2
0

[
φ̈(t0)

φ(t0)
− (

φ̇(t0)

φ(t0)
)2 + 3(1 +

1

ω
)H0

φ̇(t0)

φ(t0)
+ λ

φ2(t0)

2
]. (4.93)

Numeric results are as follows. When λ has the highest allowed value q(t0) = −0.2

which indicates present-universe is in a phase of accelerated expansion. As the value

of λ decreases, the value of q(t0) approaches zero. On the other hand observational

results were found as q(t0) = −1.0±0.4 [17]. One can also reach our calculations which

are presented in this chapter in [171,172].
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5. QUANTUM MECHANICS IN A SPACE WITH A

FINITE NUMBER OF POINTS

In this chapter we would like to investigate what happens when the position space

or the momentum space consists of a finite number of points so that the Hilbert space

associated with the quantum mechanics is finite dimensional. Schwinger [104] has given

a most instructive example where the position space and the momentum space each

consist of d points and are both periodic. The starting point for this consideration is the

well-known simple quantum mechanics on the circle S1. In this case the position space

is continuous whereas the momenta are given by pn =
~
r
n, (n = 0,±1,±2, ...) where r

is the radius of the circle. Now restricting the position space S1 to integer multiples of

angle 2π/d, the position eigenvectors can be denoted by |n〉 , n = 0, 1, 2, ..., d− 1 such

that

X |n〉 =
2πr

d
n |n〉 . (5.1)

Note that this equation is not well-defined because the operator X is defined modulo

2πr. A well defined operator is obtained by putting V = eiX/r, which satisfies

V |n〉 = e
i2π
d
n |n〉 = qn |n〉 , where q = e

2πi
d . (5.2)

By the standard interpretation of quantum mechanics, V can be regarded as the

unitary translation operator in momentum space. On the other hand, the translation

operator in position space should be defined by

U |n〉 = |n+ 1〉 , n = 0, 1, 2, ..., d− 2, (5.3)

U |d− 1〉 = |0〉 . (5.4)
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It follows that U and V satisfy [104]

Ud = V d = 1, (5.5)

V U = qUV, where q = e
2πi
d , (5.6)

U † = U−1, V † = V −1, (5.7)

which can be taken as the defining relations of quantum mechanics with d points in

periodic position space and periodic momentum space. Equation (5.6) is usually taken

as the starting point of quantum mechanics in a space with a finite number of points.

It can be shown that by taking the limit where the number of points is infinite, the

Heisenberg commutation relation for P and X is obtained [173]. Thus one can intu-

itively think that the correct choice of the Hamiltonian at the corresponding continuum

limit will result in our calculations in this chapter. However, until now, the formulation

of the Hamiltonian has not been considered.

Taking Equation (5.6) as the starting point necessarily leads to periodicity in

position space and momentum space. In this chapter we will show that it is also pos-

sible to have quantum mechanics in a space with a finite number of points where the

space is not periodic.

In standard quantum mechanics both the translation operator in position space

denoted by U and the translation operator in momentum space denoted by V are

unitary. In terms of the momentum operator P and the position operator X,

U(a) = e
−iaP

~ , (5.8)

V (b) = e
ibX
~ , (5.9)

V (b)U(a) = e
iab
~ U(a)V (b), (5.10)

where P and X are well-defined Hermitian operators. However for the discrete finite

case only U and V are well-defined.
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Bonatsos et al. [174] have considered the position and momentum operators for

the q-deformed oscillator with q being a root of unity. They have shown that the phase

space of this oscillator has a lattice structure, which is a non-uniformly distributed

grid. In contrast, in this chapter we assume that the grid is uniform.

We define a deformed momentum operator

P̃ =
2π~
ad

U−1/2 − U1/2

q1/2 − q−1/2
, where q = e

2πi
d , U = e

−iaP
~ , (5.11)

where in the last equation P is not well-defined since momentum is periodic. As a→ 0

and d→∞ so that ad = finite

P̃ = P +O(P 3). (5.12)

Although the half integer power in the exponent may look problematic, for the choice

of the free particle Hamiltonian the half integer power is irrelevant. Thus our choice

of the Hamiltonian is given by

H =
1

2M
P̃ 2 =

π2~2

(ad)2M

[2− (U + U †)]

2sin2(π/d)
, (5.13)

where M is the mass of the particle.

For a Hamiltonian to be acceptable it should reduce to p2

2m
in the continuum

limit. Our choice of the Hamiltonian is not unique. However, it is the simplest Hamil-

tonian which gives p2

2m
in the continuum limit because it contains the first power of U

and U †.

5.1. Nonunitary Translation Operators

We would also like to address the quantum mechanics when the position space

is not periodic. We consider a position space of d points where a particle located at
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position X = na is described by the ket vector |n〉 , n = 0, 1, ..., d− 1 where

X |n〉 = na |n〉 . (5.14)

We regard the points x = 0 and x = (d− 1)a as the end points of this discrete position

space. We have to decide how the translation operator acts at the end points. For the

right translation we define an operator u+ whose action on the position eigenstates |n〉

is given by

u+ |n〉 = |n+ 1〉 , n = 0, 1, ..., d− 2, (5.15)

u+ |d− 1〉 = 0. (5.16)

Similarly, the left translation operator will be denoted u− which satisfies

u− |n〉 = |n− 1〉 , n = 1, ..., d− 1, (5.17)

u− |0〉 = 0. (5.18)

Note that this is the simplest kind of generalized oscillator which has a finite num-

ber of states. The most well-known of these generalized oscillators is the Biedenharn-

Macfarlane oscillator [175,176] with the spectrum

a†a =
qN − q−N

q − q−1
, (5.19)

with real q. The spectrum also becomes well defined when q is a root of unity. The

representations of the q-deformed oscillator algebra [177] with q a root of unity are

discussed in [178].
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Taking the position eigenstates as orthonormal, the translation operators u+ and

u−, instead of being unitary, satisfy the algebra

ud+ = ud− = 0, (5.20)

u†+ = u−, (5.21)

u−u+ = 1− ud−1
+ ud−1

− , (5.22)

u+u− = 1− ud−1
− ud−1

+ . (5.23)

Because our space has a finite number of points with 0 ≤ n ≤ d− 1,

ud+ |n〉 = ud− |n〉 = 0. (5.24)

Thus Equation (5.20) is satisfied. One can easily define u+ and u− in terms of posi-

tion eigenstates and can arrive at Equation (5.21) because these states are orthonormal.

Then we check the unitarity of the operators

u+u
†
+ |n〉 = u+u− |n〉 6= |n〉 , only when |n〉 = |0〉 , (5.25)

u−u
†
− |n〉 = u−u+ |n〉 6= |n〉 , only when |n〉 = |d− 1〉 , (5.26)

otherwise

u+u
†
+ |n〉 = u+u− |n〉 = |n〉 , n = 1, 2, ...d− 1, (5.27)

u−u
†
− |n〉 = u−u+ |n〉 = |n〉 , n = 0, 1, ...d− 2. (5.28)

This means that we should have an additional term that breaks unitarity. This is the

second term on the right hand side of Equations (5.22) and (5.23). One can easily

show that Equations (5.22) and (5.23) are not only satisfied at the end states but also

satisfied at intermediate states. The minimal set of relations which define the algebra
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generated by u and u† is given by

uu† = 1− u†d−1ud−1, and ud = 0,

where u+ = u† and u− = u.

Now we will show that these relations imply a unique representation with the

desired properties and lead to a set of relations satisfied by u and u†. We define two

useful operators

P0 = 1, (5.29)

Pn = u†nun. (5.30)

If we can show that

PnPm = Pm, m ≥ n, (5.31)

we will have the inclusion relation

P 2
n = Pn. (5.32)

Thus we can consider them as the projection operators. We will prove Equations (5.31)

by induction. For n = 1, we write

P1Pm = u†uu†mum,

= u†(uu†)u†m−1um, (5.33)

using (5.22)

P1Pm = u†(1− Pd−1)u†m−1um, (5.34)
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and using (5.20)

P1Pm = u†mum = Pm. (5.35)

For n = l + 1, we have

Pl+1Pm = u†Pl(uu
†)Pm−1u,

= u†Pl(1− Pd−1)Pm−1u,

= u†PlPm−1u− u†PlPd−1Pm−1u, where l + 1 ≤ m. (5.36)

Assuming (5.31) holds for n = l and remembering l + 1 ≤ m implies l ≤ m− 1

Pl+1Pm = u†Pm−1u− u†Pd−1Pm−1u, (5.37)

using u†Pd−1 = 0,

Pl+1Pm = u†Pm−1u = Pm. (5.38)

Thus the proof is complete.

Before going further, we will supply two more useful equations

Pmu
† = u†mum−1(uu†),

= u†Pm−1(1− Pd−1),

= u†Pm−1 − u†Pd−1,

= u†Pm−1, (5.39)
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and

uPm = (uu†)Pm−1u,

= (1− Pd−1)Pm−1u,

= Pm−1u− Pd−1u,

= Pm−1u. (5.40)

By replacing m with m+ 1, we obtain

Pmu = uPm+1. (5.41)

Now we will prove

unu†n = 1− Pd−n, (5.42)

which implies the last part of our algebra (5.23) when n = d− 1

ud−1u†d−1 = 1− u†u.

Our method is proof by induction. For n = 1

uu† = 1− Pd−1, (5.43)

which is (5.22).

For n = k + 1, we have

uk+1u†k+1 = u(uku†k)u†. (5.44)
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For n = k we assume uku†k = 1−Pd−k. By substituting this into the last equation,

we obtain

uk+1u†k+1 = u(1− Pd−k)u†,

= uu† − uPd−ku†. (5.45)

Using (5.22) for the first term on the RHS and (5.41) for the second term on the RHS,

we get

uk+1u†k+1 = 1− Pd−1 − Pd−k−1uu
†, (5.46)

using (5.22) once more for the term uu†,

uk+1u†k+1 = 1− Pd−1 − Pd−k−1(1− Pd−1), (5.47)

remembering PnPm = Pm for m ≥ n, which was our first proved equation

uk+1u†k+1 = 1− Pd−1 − Pd−k−1 + Pd−1,

uk+1u†k+1 = 1− Pd−(k+1) Q.E.D.. (5.48)

5.2. Eigenvalues and Eigenfunctions of the Hamiltonian for the

Nonperiodic Space

In a manner similar to (5.13), we choose the Hamiltonian for the non-periodic

case

H =
π2~2

(ad)2M

[2− (u+ u†)]

2sin2(π/d)
. (5.49)
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We now calculate the eigenvalues and eigenvectors of (u+ u†)

|λ〉 =
d−1∑
n=0

λn |n〉 , (5.50)

(u+ u†) |λ〉 =
d−1∑
n=0

(λn |n− 1〉+ λn |n+ 1〉) =
d−1∑
n=0

λλn |n〉 , (5.51)

so

λn+1 + λn−1 = λλn, with λ−1 = 0, and λd = 0. (5.52)

We obtain the general solution λn = Aeinθ + Be−inθ, where cosθ = λ/2. Using the

boundary conditions λ−1 = 0 and λd = 0, we get B = −Ae−2iθ and θ =
π m

d+ 1
where

m = 1, 2, ..., d. m = 0 is excluded because it does not yield a non-zero eigenvector.

Thus for each value of n, we obtain m different eigenvalues, given by

λ(m)
n = Am(eiαnm − e−2iαme−iαnm) where α = π/(d+ 1), (5.53)

= Am2ie
−imπ
1+d sin[

m(1 + n)π

1 + d
]. (5.54)

If we normalize
∣∣λ(m)

〉
, we obtain

Am =

√
1

2(d+ 1)
. (5.55)

As a result the eigenvectors are written as

∣∣λ(m)
〉

=
2ie

−imπ
1+d√

2(d+ 1)

d−1∑
n=0

sin[
m(1 + n)π

1 + d
] |n〉 , (5.56)

and the corresponding eigenvalues are given by

λ(m) = 2cosθ = 2cos(
πm

d+ 1
) with m = 1, 2, ...d. (5.57)
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Now, it is time to compare what we have found with the usual quantum par-

ticle in an infinite one-dimensional square well. We calculate the eigenvalues of the

Hamiltonian, by applying (5.49) to eigenvectors given by (5.56). We find

Em =
2π2~2

(ad)2M

sin2[ πm
2(d+1)

]

sin2(π
d
)

where m = 1, 2, ..., d. (5.58)

In the continuum limit a → 0, d → ∞ and a(d − 1) = L, these energy eigenvalues

become

Em =
π2~2m2

2ML2
, (5.59)

which are the same energy eigenvalues in the case of a particle confined in an infinite

one dimensional square well of width L. The wave functions are given by

ψm(n) = C(m)
n

〈
n
∣∣ λ(m)

〉
= C(m)

n

√
2

d+ 1
sin[

m(1 + n)π

d+ 1
]. (5.60)

We can easily find C
(m)
n by normalization of the wave function,

d−1∑
n=0

|ψm(n)|2 a = 1, C(m)
n =

1√
a
. (5.61)

Thus the wave functions can be written as

ψm(n) =

√
2

(d+ 1)a
sin[

m(1 + n)π

d+ 1
] where m = 1, 2, ..., d. (5.62)

In the continuum limit the wave function becomes

ψm(x) =

√
2

L
sin[

mπx

L
], (5.63)

which agrees with the wave functions of a square well in the interval 0 ≤ x ≤ L .
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5.3. Eigenvalues and Eigenfunctions of the Hamiltonian for the Periodic

Space

For the periodic case, we need to find eigenvalues of (U + U †) using the position

basis. Our choice is the same as (5.50). If we apply (U + U †) to this eigenvector, we

will have

λn+1 + λn−1 = λλn with λ0 = λd. (5.64)

Since the equation is linear, we can superpose linearly independent solutions to find

the general solution. Since we desire the linearly independent solutions to be real in

order to be able to plot the wave function, we choose λn as

λn = Ccos(nθ) +Dsin(nθ), (5.65)

which satisfies (5.64) with λ = 2cosθ. If we impose the boundary condition λn = λd+n,

we obtain θ =
2πm

d
with m = 0, 1, ..., d− 1 and

∣∣λ(m)
〉

=
d−1∑
n=0

[Ccos(
2πnm

d
) +Dsin(

2πnm

d
)] |n〉 . (5.66)

At this point there are options regarding the choice of C and D. By introducing a

phase angle we can write this equation as

∣∣λ(m)
〉

=
d−1∑
n=0

Cmcos(
2πnm

d
− γm) |n〉 where γm =

2πn0m

d
. (5.67)

By selecting n0 and n = −d−1
2
,−d−1

2
+1, ..., d−1

2
, the solutions become parity eigenstates.

Thus parity corresponds to n → −n. As a result, n0 = d−1
2

and for normalized
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eigenvectors we get

Cm =


√

1

d
if m = 0,√

2

d
if m 6= 0.

(5.68)

The final form of eigenvectors is given by

∣∣λ(m)
〉

= Cm

d−1∑
n=0

cos[
2πnm

d
− 2π(d− 1)m

2d
] |n〉 , (5.69)

and the eigenvalues are given by

λ(m) = 2cosθ,

= 2cos(
2πm

d
) where m =


0, 1, ..., int(

d− 1

2
) for positive parity states,

1, 2, ..., int(
d

2
) for negative parity states.

(5.70)

Hence we find the energy eigenvalues as

Em =
2π2~2

(ad)2M

sin2[mπ
d

]

sin2(π
d
)
. (5.71)

In the continuum limit, we set ad = L and find

Em =
2π2~2m2

ML2
, (5.72)

which are the same as energy eigenvalues in the case of particle in a box with periodic

boundary conditions.
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We continue by obtaining the wave functions. Applying the same method that

we used for the nonperiodic case, we find that the ground state is unique and given by

ψ0(n) =

√
1

da
. (5.73)

For odd d the excited states are doubly degenerate, whereas for even d the excited

states are doubly degenerate except the highest energy state. The eigenvalues of the

position operator are given by

X |n〉 = an |n〉 , n = −d− 1

2
,−d− 1

2
+ 1, ...,

d− 1

2
. (5.74)

Then the positive parity excited states are given by the wave functions

ψ+
m(n) =

√
2

da
cos(

2πmn

d
), m = 1, 2, ..., int(

d− 1

2
), (5.75)

and the negative parity excited states are given by the wave functions

ψ−m(n) =

√
2

da
sin(

2πmn

d
), m = 1, 2, ..., int(

d

2
). (5.76)

If one plots the wave functions, it is observed that the wave functions of the

omitted m values are the same as the wave functions of the indicated m values. The

total number of states, including the ground state, is d.

At the continuum limit, the ground state wave function, the even parity wave

functions and the odd parity wave functions become, respectively,

ψ+
0 (x) =

√
1

L
, (5.77)

ψ+
m(x) =

√
2

L
cos[

2mπx

L
], (5.78)

ψ−m(x) =

√
2

L
sin[

2mπx

L
], (5.79)
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which are the even parity solutions and the odd parity solutions for a particle in a box

in an interval −L/2 ≤ x ≤ L/2 with periodic boundary conditions.

5.4. Discussion

The d = 2 case gives the fermionic oscillator. For this case u† and u correspond to

the creation and annihilation operators for a single fermionic degree of freedoom. For

the periodic case Schwinger [179] has shown that for d = 2, U and V in fact generate

the Pauli algebra. Our work shows that even for the non-periodic case, d = 2 leads to

Pauli-matrices through the relations,

σ1 = u† + u, (5.80)

σ2 = i(u† − u), (5.81)

σ3 = uu† − u†u, (5.82)

(For details of these equations see Appendix D) .

We should also note that a universe with a finite number of points may be a

physical reality. The size of the visible universe is 1027 m, whereas the smallest classi-

cal length is the Planck length, 10−35 m. This means that the physical space continuum

can be regarded as consisting of duniverse/lplanck = 1062 points lying along one dimen-

sion. Thus, it may be that what we call the space continuum can be described by

quantum mechanics with d = 1062 points along one dimension. Another possibility is

that in a Klauza-Klein like theory [180] the internal space can consist of a finite num-

ber of points. One can also reach our calculations which are presented in this chapter

in [181].
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6. QUANTUM MECHANICS ON PERIODIC AND

NON-PERIODIC LATTICES AND ALMOST UNITARY

SCHWINGER OPERATORS

Schwinger considered a periodic lattice on which the translation operator U is

unitary due to the periodicity of the lattice. On such a lattice the position can be

again expressed by a unitary operator V such that

V U = qUV where q = e
2πi
d , (6.1)

V d = Ud = 1 and V V † = UU † = 1,

where d is the number of points on the periodic lattice. Schwinger chose the integer

d to be prime and in this case the relation q = e
2πi
d can be omitted since it is already

implied by the other equations.

In the previous chapter and in [181] it has been shown that a finite lattice has an

almost unitary quasi-translation operator a which satisfies

aa† = 1− a†d−1ad−1, and a†d = 0, (6.2)

a†a = 1− ad−1a†d−1, and ad = 0. (6.3)

The operators a† and a in the above relations can be respectively regarded as the right

quasi-translation operator and the left quasi-translation operator since an end point

can be translated only in one direction. A point which lies at the right end of the finite

lattice can only be translated left end vice versa. Equation (6.2) gives the minimal

set of relations that define the algebra generated by a and a†. The second set of the

relations written in equation (6.3) can be derived using (6.2). Although the algebras

defined by Equation (6.1) and by equation (6.2) look very different, physically they

accomplish basically the same concept. Therefore the exact mathematical relation be-
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tween them should be unveiled.

It is obvious that the translation operators U and U † of the Schwinger alge-

bra commute. On the other hand quasi-translation operators a and a† do not commute

as can be seen from equations (6.2) and (6.3). In this sense discrete non-periodic space

is a deformation of discrete cyclic space. Deformation emerges as a result of having

the end points.

6.1. Mathematical Structure of the Almost Unitary Translation Operators

In the previous chapter [181] projection operators Pn were defined as,

Pn = a†nan, where P0 = 1, (6.4)

and it was shown that

ana†n = 1− Pd−n. (6.5)

Thus we can also define another projection operator such as,

Rn = ana†n, where R0 = 1. (6.6)

Therefore one can easily see the following relations between the projection operators

Pn and Rn

Pn = 1−Rd−n and Rn = 1− Pd−n. (6.7)
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Their properties which are calculated in the Appendix E are summarized as,

Pn = a†nan, P0 = 1, Pma
† = a†Pm−1, aPm = Pm−1a, (6.8)

PnPm = Pj where j = max(n,m),

Pma
n = a†nPm = 0 for n+m ≥ d,

and

Rn = ana†n, R0 = 1, Rma
† = a†Rm+1, aRm = Rm+1a, (6.9)

RnRm = Rj where j = max(n,m),

anRm = Rma
†n = 0 for n+m ≥ d.

In the previous chapter and also in [181] we have already considered a position

space of d points where a particle located at position X = βn is described by the ket

vector |n〉 , n = 0, 1, ..., d− 1 where

X |n〉 = βn |n〉 , (6.10)

with β as the grid spacing. We can define the position operator as

X = β
d−1∑
m=1

Pm, (6.11)

X = β{a†a+ ...+ a†nan + ...+ a†d−1ad−1}.

Applying this to |n〉 one gets the desired result.
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6.2. The Schwinger Algebra in Terms of the Almost Unitary Translation

Operators

We define unitary operators U and V that cyclically permute the vectors of a

given system in terms of almost unitary operators a and a†

U = a† + ad−1, (6.12)

V =
d−1∑
n=0

qn(Pn − Pn+1). (6.13)

Then we will show that these definitions satisfy the Schwinger algebra given by Equa-

tion (6.1). The first relation we will prove is

V V k =
d−1∑
n=0

q(k+1)n(Pn − Pn+1), (6.14)

which has the inclusion relation

V d = V V d−1 =
d−1∑
n=0

qdn(Pn − Pn+1) (6.15)

=
d−1∑
n=0

(Pn − Pn+1)

= (1 + a†a+ a†2a2 + · · ·+ a†d−1ad−1)− (a†a+ a†2a2 + · · ·+ a†d−1ad−1 + a†dad)

= 1,

where we used the algebra relation a†d = 0.

We will prove the equation (6.14) using the method of proof by induction.
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For k = 1 we have

V V =
d−1∑
n,m=0

qn+m(Pn − Pn+1)(Pm − Pm+1), (6.16)

=
d−1∑
n,m=0

qn+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

=
d−1∑
n,m=0
n≥m+1

qn+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

+
d−1∑
n,m=0
n=m

qn+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

+
d−1∑
n,m=0
n<m

qn+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1).

Using the property PnPm = Pj where j =max(n,m), we obtain

V V = 0 +
d−1∑
n,m=0
n=m

qn+m(Pn − Pm+1) + 0, (6.17)

=
d−1∑
n=0

q2n(Pn − Pn+1).

We assume that for k = l

V V l =
d−1∑
n=0

q(l+1)n(Pn − Pn+1). (6.18)

For k = l + 1,

V V l+1 = (V V l)V, (6.19)

=
d−1∑
n=0

q(l+1)n(Pn − Pn+1)
d−1∑
m=0

qm(Pm − Pm+1),
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=
d−1∑
n,m=0

q(l+1)n+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

=
d−1∑
n,m=0
n≥m+1

q(l+1)n+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

+
d−1∑
n,m=0
n=m

q(l+1)n+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1),

+
d−1∑
n,m=0
n<m

q(l+1)n+m(PnPm − PnPm+1 − Pn+1Pm + Pn+1Pm+1).

Using the same property PnPm = Pj where j =max(n,m), we obtain

V V l+1 = 0 +
d−1∑
n,m=0
n=m

q(l+1)n+m(Pn − Pm+1) + 0, (6.20)

=
d−1∑
n=0

q(l+2)n(Pn − Pn+1) Q.E.D..

Then we will show that V V † = 1 by using definition of V .

Since Pn = P †n and q†n = qd−n, we have

V V † =
d−1∑
m=0

d−1∑
n=0

qmqd−n(Pm − Pm+1)(Pn − Pn+1), (6.21)

=
d−1∑
m,n=0

qmqd−n(PmPn − PmPn+1 − Pm+1Pn + Pm+1Pn+1),

=
d−1∑
m,n=0
m≥n+1

qm+d−n(PmPn − PmPn+1 − Pm+1Pn + Pm+1Pn+1),

+
d−1∑
m,n=0
m=n

qm+d−n(PmPn − PmPn+1 − Pm+1Pn + Pm+1Pn+1),
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+
d−1∑
m,n=0
m<n

qm+d−n(PmPn − PmPn+1 − Pm+1Pn + Pm+1Pn+1),

= 0 +
d−1∑
m=0

qd(Pm − Pm+1) + 0,

= (1 + a†a+ a†2a2 + · · ·+ a†d−1ad−1)− (a†a+ a†2a2 + · · ·+ a†d−1ad−1 + a†dad),

= 1 Q.E.D..

Next, we will show that

UUn = a†n+1 + ad−(n+1) with n = 0, 1, · · · , d− 1, (6.22)

which implies

Ud = UUd−1, (6.23)

= a†d + ad−d,

= 1.

Our method is proof by induction. For n = 1, we have

UU = (a† + ad−1)(a† + ad−1), (6.24)

= a†a† + a†ad−1 + ad−1a† + ad−1ad−1,

= a†2 + (a†a)ad−2 + ad−2(aa†),

= a†2 + P1a
d−2 + ad−2R1,

= a†2 + ad−2P1+d−2 + ad−2(1− Pd−1),

= a†2 + ad−2Pd−1 + ad−2 − ad−2Pd−1, = a†2 + ad−2.

For n = l, we assume that

UU l = a†l+1 + ad−(l+1). (6.25)
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For n = l + 1, we obtain

UU l+1 = (UU l)U, (6.26)

= (a†l+1 + ad−(l+1))(a† + ad−1),

= a†l+2 + a†l+1ad−1 + ad−(l+1)a† + a2d−(l+2),

= a†l+2 + (a†l+1al+1)ad−1−(l+1) + ad−(l+2)(aa†),

= a†l+2 + Pl+1a
d−1−(l+1) + ad−(l+2)R1 use (8),

= a†l+2 + ad−(l+2)Pl+1+d−l−2 + ad−(l+2)(1− Pd−1),

= a†l+2 + ad−(l+2)Pd−1 + ad−(l+2) − ad−(l+2)Pd−1,

= a†l+2 + ad−(l+2) Q.E.D..

The last term in the third line is zero because at most l = d− 2 according to equation

(6.22).

We will obtain UU † = 1 just by substitution

UU † = (a† + ad−1)(a+ a†d−1), (6.27)

= a†a+ a†d + ad + ad−1a†d−1,

= P1 +Rd−1,

= 1 Q.E.D..

where we have used (6.2), (6.3) and (6.7).

We have the formula for U and V , so we will show that V U = qUV just by

substitution. Thus left hand side of the formula is equal to

V U =
d−1∑
n=0

qn(Pn − Pn+1)(a† + ad−1), (6.28)

=
d−1∑
n=0

qn(Pna
† + Pna

d−1 − Pn+1a
† − Pn+1a

d−1).
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Since Pn = a†a and P0 = 1, Pna
d−1 = 0 except for n = 0 and Pn+1a

d−1 = 0 for

all n. Therefore we obtain

V U =
d−1∑
n=0

qn(Pna
† − Pn+1a

†) + q0ad−1, (6.29)

= P0a
† − P1a

† +
d−1∑
n=1

qn(a†Pn−1 − a†Pn) + ad−1,

= a† − a†P0 +
d−1∑
n=1

qn(a†Pn−1 − a†Pn) + ad−1,

=
d−1∑
n=1

qna†(Pn−1 − Pn) + ad−1,

where we have used (6.8). To obtain right hand side of the formula V U = qUV we

calculate,

UV = (a† + ad−1)
d−1∑
n=0

qn(Pn − Pn+1), (6.30)

=
d−1∑
n=0

qn(a†(Pn − Pn+1) + ad−1(Pn − Pn+1)),

=
d−1∑
n=0

qna†(Pn − Pn+1) +
d−1∑
n=0

qnad−1(Pn − Pn+1),

=
d−1∑
n=0

qna†(Pn − Pn+1) +
d−1∑
n=0

qnad−1(1−Rd−n − (1−Rd−n−1)),

=
d−1∑
n=0

qna†(Pn − Pn+1) +
d−1∑
n=0

qnad−1(Rd−n−1 −Rd−n).
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Since Rm = ama†m, ad−1Rm = 0 except m = 0. The element Rd−n−1 = R0 = 1

for n = d− 1 so we have,

UV =
d−1∑
n=0

qna†(Pn − Pn+1) + qd−1ad−1, (6.31)

qUV =
d−1∑
n=0

qn+1a†(Pn − Pn+1) + qdad−1,

=
d∑

n=1

qna†(Pn−1 − Pn) + ad−1,

=
d−1∑
n=1

qna†(Pn−1 − Pn) + ad−1,

where we have used the facts that qd = 1, Pd = 0 and a†Pd−1 = 0. which is the same

result given by equation (6.29).

6.3. Almost Unitary Operators in Terms of the Schwinger Algebra

It is also possible to write the almost unitary operators a and a† in terms of U

and V

a† = U − (
1 + V + V 2 + · · ·+ V d−1

d
)U. (6.32)

The expression in the parentheses is called P0. It is shown that P0 is a projection

operator (see Appendix E). We have found that more general projection operators Pn

are written as

Pn =
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
. (6.33)

From the definition, it is easily seen that

Pd−l = P−l and Pd+l = Pl and Pd = P0. (6.34)
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The relationships between unitary operators and projection operators are found as

PnU
m = UmPn+m, (6.35)

U †mPn = Pn+mU
†m,

in the Appendix E. In addition, multiplication of Pn and Pm is found in the Appendix

E as

PnPm = 0 for m 6= n, (6.36)

PnPn = Pn.

We will show that

a†a†l = U l+1(1−P1 −P2 − · · · −Pl+1), (6.37)

which implies the following relation

a†d = a†a†d−1, (6.38)

= Ud[1− (P1 + P2 + · · ·+ Pd)],

= Ud[1− (P0 + P1 + · · ·+ Pd−1)],

= 1(1− 1),

= 0,

where we have used (6.34) and (E.23). The equation (6.38) is the second equation of

the unitary algebra defined in (6.2). We will prove the equation (6.37) by the method
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of proof by induction. For n = 1 we have

a†a† = (U −P0U)(U −P0U), (6.39)

= U(1−P1)U(1−P1),

= U2(1−P2)(1−P1),

= U2(1−P1 −P2),

where we have used (6.35) and (6.36). For n = l we assume that

a†a†l = U l+1(1−P1 −P2 − · · · −Pl+1). (6.40)

Therefore for n = l + 1 we obtain

a†a†l+1 = (a†a†l)a†, (6.41)

= U l+1(1−P1 −P2 − · · · −Pl+1)U(1−P1),

= U l+2(1−P2 −P3 − · · · −Pl+2)(1−P1),

= U l+2(1−P1 −P2 + P2P1 − · · · −Pl+2 + Pl+2P1),

= U l+2(1−P1 −P2 − · · · −Pl+2).�

Now we will show that aa† = 1− a†d−1ad−1 in terms of U and V , at the left hand

side we have,

aa† = U †(1−P0)(1−P0)U, (6.42)

= U †(1−P0 −P0 + P0P0)U,

= U †(1−P0)U,

= U †U(1−P1),

= 1−P1,
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where we have used (6.35) and (1). By using (6.37) we easily obtain

a†d−1 = Ud−1(1−P1 − · · · −Pd−1), (6.43)

= Ud−1(1− (P1 + P2 + · · ·+ Pd−1)),

= Ud−1(1− (1−P0)),

= Ud−1P0,

where we have used (E.23). Taking Hermitian conjugate of this equation and using

hermicity property of the projection operators which is shown by (E.21) we get

ad−1 = P0U
†d−1. (6.44)

Then for the right hand side of aa† = 1− a†d−1ad−1 we have

1− a†d−1ad−1 = 1− Ud−1P0P0U
†d−1, (6.45)

= 1− Ud−1P0U
†d−1,

= 1− Ud−1U †d−1P1,

= 1−P1,

= aa†,

at the second line we used the relations given by (6.36) and at the last line we have

used (6.42). This is the first equation defining the almost unitary algebra given by

(6.2).

6.4. New Representations for Basis of MN(C)

The eij satisfying (6.46) form the standard basis of MN(C)

eijekl = δjkeil e†ij = eji. (6.46)
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In this section, we give two new representations of the basis matrices. One of them is

written in terms of the almost unitary algebra as

emn = a†mRd−1a
n where Rn = ana†n and m,n = 0, 1, · · · , d− 1. (6.47)

The other one is written in terms of Schwinger U and V operators

emn =


Um−nPd−n for m > n,

Pd−n for m = n,

U †n−mPd−n for m < n,

(6.48)

with

Pn =
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
.

We prove these representations satisfy (6.46) in the last part of the Appendix E.

6.5. Multi-Dimensional Lattice in Terms of Lower Dimensional Lattices

Denoting a linear lattice with d elements by Ld, we can show the Cartesian

product Ld1×Ld2 by the dots in the following figure. Corresponding to this Cartesian

product of the lattices, we have the tensor product of the algebra Ad2 ⊗Ad1 . On the

Cartesian product shown in the figure, the right translation operator corresponds to

a† ⊗ 1 and the up translation operator corresponds to 1 ⊗ a†. We denote the (right)

translation operator on Ad1 , Ad2 , Ad respectively by a†d1 , a
†
d2

, a†d where d = d1 × d2

and consider Ld1 , Ld2 as a one one-dimensional lattice as shown by the arrows in the

figure. This satisfies an isomorphism

Ad
4−→ Ad2 ⊗Ad1 , (6.49)
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and one can write

4(a†d) = 1d2 ⊗ a
†
d1

+ a†d2 ⊗ a
d1−1
d1

. (6.50)

One immediately can check that the action of a†d is given by the arrows in the figure

and satisfies the correct algebraic relations.

Figure 6.1. d1×d2 Lattice for d1 = 4 and d2 = 3

Similarly, we can express the translation operator for a d1× d2 dimensional peri-

odic lattice by

4(Ud) = 1d2 ⊗ a
†
d1

+ a†d2 ⊗ a
d1−1
d1

+ ad2−1
d2
⊗ ad1−1

d1
. (6.51)

6.6. Discussion

We have shown that the Schwinger algebra can also be given by almost unitary

operators which are physically related to the shift operators on a finite lattice. We

have named these operators as almost unitary operators because relations

UU † = 1, V V † = 1 and V U = qUV where q = e
2πi
d , (6.52)
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are replaced by

aa† = 1− a†d−1ad−1 and a†a = 1− ad−1a†d−1, (6.53)

and the terms a†d−1ad−1, ad−1a†d−1 reflect violation of unitarity for a and a†. For U

we have the relation U † = U−1 due to the periodic nature of the lattice. Similarly a

and a† can be considered as inverse of each other except at the end points. Note that

a and a† play the role of U and U † where as V can be defined in terms of a and a†. It

takes quite an effort to construct V which is given by (6.13) in terms of a and a†

In usual quantum mechanics where the position and the angular momentum

operators have continuous eigenvalues the following equations are equivalent to each

other

V (p0)U(x0) = e
ix0p0

~ U(x0)V (p0), (6.54)

[X,P ] = i~, (6.55)

[X,U(x0)] = x0U(x0), (6.56)

here U(x0) = exp(
−ix0P

~
), V (p0) = exp(

ip0X

~
). (6.57)

For the discrete periodic case X is defined only modulo 2πr. However U and V are

well defined. Thus we have only one corresponding equation

V U = qUV where q = e
2πi
d . (6.58)

On the other hand for the discrete non-periodic case, the position operator X, the right

quasi-translation operator a† and the left quasi-translation operator a are well defined.

Therefore we have only one equation corresponding to (6.56)

[X, a†] = βa†, (6.59)
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where β is the grid spacing.

We have shown how to construct almost unitary translation operators a, a† in

terms of U , V and vice versa. In addition we have found the relation between basis

matrices of MN(C) and the almost unitary operators and the relation between basis

matrices of MN(C) and the Schwinger algebra. Furthermore we established an isomor-

phism between a multi-dimensional and periodic or non periodic linear lattices. One

can also reach our calculations which are presented in this chapter in [182].
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7. CONCLUSION

Studies in chapter 2 and chapter 3 differ from what has been done up to now

by its mathematical techniques and their wide content. Field equations which govern

the dynamics of the universe form a set of differential equations. In the original form

they are nonlinear with independent variable time. We switch independent variable

from time to scale factor ”a”. Then in the second chapter field equations of scalar

field cosmology with minimal coupling can be reduced to linear first order differential

equations. We have succeed to solve all of them simultaneously. We have constructed

the most general solution in four different forms: solution for a given V (a), solution

for a given φ(a), solution for a given H(a) and solution for a given ρ(a). We would like

to emphasize that our results are the most general. The scalar field has been taken as

an effective field which averagely represents the underlying, more basic theories. Both

single component universes and double component universes have been studied. We

have explored mathematical structure for exotic matter which has time varying equa-

tion of state. Combination of this exotic matter and radiation in the early universe

has a mathematical turn on and turn of structure for accelerated expansion. More

importantly we have explained the late time accelerated expansion of the universe by

cosmic domain walls. Results have been compared with observations of type Ia super-

novae by taking care of the Hubble tension and the absolute magnitude tension. We

have found Ωω = 0.889 and Ωm = 0.111 where ω denotes cosmic domain walls and m

denotes matter.

On the other hand in the third chapter a change of independent variable turns

the field equations of Brans-Dicke cosmology into a constraint equation and a Bernoulli

type differential equation which can be linearized. We have constructed the most gen-

eral solutions for supplied pairs of functions; (φ(a) and ρ(a)), (φ(a) and V (a)) and

(φ(a) and H(a)). Early epoch of the universe and late-time era of the universe have

been investigated. Both dark energy and domain wall dominated universe have been

studied. It has been seen that the Hubble function shrinks to H(a) of the Einstein cos-
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mology when ω � 1. The most significant result of this part comes from the question:

Does the cosmological constant need to correspond to a constant energy density or a

constant potential? We have asked the question in another way Is it possible to have

a constant term in the Hubble function when there is no constant energy density and

no constant potential in the universe? We have found that it is possible to formulate

the constant term in the Hubble function as a combination of initial values of the uni-

verse in Brans-Dicke cosmology which DOES NOT contain a constant energy density

and a constant potential term. Furthermore we have found a(t) in an exponential form.

In the fourth chapter we have studied φ4 potential in Brans-Dicke cosmology.

We have taken time as an independent variable and we have proceeded by using the

ansatz φ(t) =
A

a(t)
. The exact solution results in radiation and stiff fluid mixed uni-

verse. Then we have studied early epoch of the universe by extrapolating our result in

time. Two different exponential solutions have been found. We have also studied cre-

ation of matter in the late radiation dominated era. We have derived the today’s value

of the deceleration parameter by a new numerical method which has been introduced

in Section 4.5.

In chapter 5 we have defined a deformed kinetic energy operator for a discrete

position space with a finite number of points. Eigenvalues and eigenfunctions of the

Hamiltonian for the periodic space and nonperiodic space have been calculated. As

expected, in the continuum limit the solution for the nonperiodic case becomes the

same as the solution of an infinite one dimensional square well and the periodic case

solution becomes the same as the solution of a particle in a box with periodic boundary

conditions.

In chapter 6 we have presented properties of the almost unitary Schwinger op-

erators and properties of the unitary Schwinger operators. We have found relations

between them. The famous Schwinger algebra has many applications in quantum op-

tics, quantum communications, quantum probability and Galois quantum systems. We

have not discussed these in detail, however we believe that our study will contribute to
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these branches of physics. Our results are interesting and can be useful as they allow

potential transformations between different existing systems. We hope that our work

will motivate scientists to apply the differences and the relations between these two

sets of operators to their research fields.



151

REFERENCES

1. Nordström, G., Relativitätsprinzip und Gravitation, S. Hirzel, 1912.

2. Nordström, G., “Zur theorie der Gravitation vom Standpunkt des Rela-

tivitätsprinzips”, Annalen der Physik , Vol. 347, No. 13, pp. 533–554, 1913.

3. Nordström, G., “Träge und Schwere Masse in der Relativitätsmechanik”, Annalen
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APPENDIX A: APPENDIX FOR CHAPTER 2

A.1. Einstein Tensor

Since derivation of the field equations is independent of the sign of the metric we

continue with the metric sign {+,−,−,−}. Thus

ds2 = dt2 − a2(t)[
dr2

1− k r
2

L2

+ r2(dθ2 + sin2 θdϕ2)]. (A.1)

First, we would like remind the relation between coordinate basis vectors
∂

∂xα
and

coordinate basis one-forms dxα

<
∂

∂xα
, dxβ >= δβα. (A.2)

On the other hand orthonormal basis 1-forms are defined as

ea = eaµdx
µ, (A.3)

obey the similar rule

< ~ea, e
b >= δba, (A.4)

where ~eα = Eν
α

∂

∂xν
. Thus we obtain

e0 = dt, e1 =
iadr√
1− kr2

L2

, (A.5)

e2 = iardθ, e3 = iarSinθdϕ. (A.6)
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Then we apply Cartan’s first structure equation with no torsion;

dea + ωab ∧ eb = 0. (A.7)

The connection 1-form has following properties

ωij = ωij = ωij, ωij = −ωji. (A.8)

By using these features non-zero connection 1-forms are found as

ω01 = − ȧ
a
e1, ω12 =

i
√

1− kr2/L2

ar
e2, (A.9)

ω02 = − ȧ
a
e2, ω13 =

i
√

1− kr2/L2

ar
e3,

ω03 = − ȧ
a
e3, ω23 =

icotθ

ar
e3.

Now we can calculate curvature two-forms by applying Cartan’s second structure

equation;

Ωa
b = dωab + ωac ∧ ωcb. (A.10)

Hence we obtain

Ω0
1 = − ä

a
e0 ∧ e1, Ω1

2 = −(
k

L2a2
+
ȧ2

a2
)e1 ∧ e2, (A.11)

Ω0
2 = − ä

a
e0 ∧ e2, Ω1

3 = −(
k

L2a2
+
ȧ2

a2
)e1 ∧ e3,

Ω0
3 = − ä

a
e0 ∧ e3, Ω2

3 = −(
k

L2a2
+
ȧ2

a2
)e2 ∧ e3. (A.12)

The relation between the Riemann curvature tensor and curvature two-forms is

given by

Ωa
b =

1

2
Ra
bcde

c ∧ ed =
∑
c<d

Ra
bcde

c ∧ ed. (A.13)
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Hence related terms are

R0
101 = R0

202 = R0
303 = − ä

a
, (A.14)

R1
212 = R1

313 = R2
323 = −(

k

L2a2
+
ȧ2

a2
).

Symmetry properties of the Riemann tensor according to it’s indices are

Ra
bcd = −Ra

bdc = −Rb
acd. (A.15)

Thus

R1
010 = R2

020 = R3
030 = − ä

a
, (A.16)

R2
121 = R3

131 = R3
232 = −(

k

L2a2
+
ȧ2

a2
).

The Ricci tensor is defined as

Rab = Rc
acb. (A.17)

Then for orthonormal basis we find

R00 = R0
000 +R1

010 +R2
020 +R3

030 = −3
ä

a
, (A.18)

R11 = R0
101 +R1

111 +R2
121 +R3

131 = − ä
a
− 2(

k

L2a2
+
ȧ2

a2
),

R22 = R0
202 +R1

212 +R2
222 +R3

232 = − ä
a
− 2(

k

L2a2
+
ȧ2

a2
),

R33 = R0
303 +R1

313 +R2
323 +R3

333 = − ä
a
− 2(

k

L2a2
+
ȧ2

a2
), (A.19)

where R0
000 = R1

111 = R2
222 = R3

333 = 0.
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To find the Ricci tensor in coordinate basis we use the following relation

Rabe
a ⊗ eb = Rµνe

µ ⊗ eν , (A.20)

where ea are presented in (A.5-A.6). Therefore Ricci tensor in coordinate basis are

R00 = −3
ä

a
, Rii = −

[ ä
a

+ 2(
k

L2a2
+
ȧ2

a2
)
]
gii. (A.21)

Then the Ricci scalar is found as

R = Rµ
µ = gµνRµν = −6(

k

L2a2
+
ȧ2

a2
+
ä

a
). (A.22)

Einstein tensor is defined as

Gµν = Rµν −
1

2
gµνR. (A.23)

Thus components of the Einstein tensor is found as

G00 = 3(
ȧ2

a2
+

k

L2a2
), (A.24)

Gii = (
k

L2a2
+
ȧ2

a2
+ 2

ä

a
)gii. (A.25)

A.2. Action Variation for Non-minimal Coupling

A.2.1. Action Variation with Respect to Metric

Since we flip the sign of the metric to {+,−,−,−} we flip the sign in front of the

related terms in the action. According to (A.34) and (A.35) the Riemann tensor does

not change sign when we change sign of the metric. Thus the Ricci tensor Rµν = Rλ µλν

remains the same. However the Ricci scalar R = gµνRµν changes sign. Thus for the
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case of minimal coupling action is given by

S =

∫
d4x
√
−g[− 1

2κ
(R + 2Λ) +

1

2
gµν∂µφ∂νφ− V (φ) + LM ], (A.26)

where R is the Ricci scalar and κ = 8πG.

We would like to present some useful formulas before going further. If one starts

from

gµλgλν = δµν , (A.27)

one can obtain

δgµν = −gµαgλν(δgαλ). (A.28)

By using

ln(detM) = Tr(lnM), (A.29)

1

detM
δ(detM) = Tr(M−1δM), (A.30)

with M = gµν one can show that

δg = −ggµνδgµν . (A.31)

Here g = detgµν < 0 so
√
−g =

√
|g|. Thus

δ
√
−g = −1

2

√
−ggµνδgµν . (A.32)
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On the other hand we also have

δR = δ(gµνRµν) = δ(gµν)Rµν + gµνδ(Rµν). (A.33)

To calculate δRµν we follow the Palatini approach. The Riemann tensor has been

defined as

Rµ
νσρ = ∂σΓµνρ − ∂ρΓµσν + ΓµσλΓ

λ
ρν − ΓµλρΓ

λ
σν , (A.34)

where connection coefficients are given as

Γµνσ =
1

2
gµλ(∂νgλσ + ∂σgνλ − ∂λgσν). (A.35)

Thus we have

δRµν = δRλ
µλν = ∇λδΓ

λ
µν −∇νδΓ

λ
µλ. (A.36)

In this formalism connection coefficients and metric are accepted as two independent

fields [183, 184]. Therefore we should vary the action with respect to inverse of the

metric and connection coefficients. It is obvious that variation of Rµν with respect to

gµν is zero while variation of Rµν with respect to connection coefficients imply (A.35).

One can write the action sum of the following parts

SEHΛ =

∫
d4x
√
−g[− 1

2κ
(R + 2Λ)], (A.37)

Sφ =

∫
d4x
√
−g[

1

2
gµν∂µφ∂νφ− V (φ)], (A.38)

SM =

∫
d4x
√
−gLM . (A.39)
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Then

δSEHΛ =

∫
d4x
{
δ(
√
−g)[− 1

2κ
(R + 2Λ)]−

√
−g(

1

κ
δR)

}
. (A.40)

By using (A.32-A.36) we obtain

δSEHΛ =

∫
d4x
{1

2
(
√
−g)gµνδg

µν [
1

2κ
(R + 2Λ)]−

√
−g[

1

κ
δ(gµν)Rµν ]

}
. (A.41)

Then variation with respect to gµν leads to

δSEHΛ√
−gδgµν

=
1

2κ

[
−Rµν +

1

2
gµν(R + 2Λ)

]
+

1√
−g

δSM
δgµν

= 0. (A.42)

The last term is zero and this will be shown later. We use the energy momentum tensor

which is defined as

Tµν =
2√
−g

δSM
δgµν

, (A.43)

where

Tµν = gµλT
λ ν, T µν = diag{ρ,−p,−p− p}. (A.44)

Hence we obtain

Rµν −
1

2
gµνR− Λgµν = 8πGNTµν , (A.45)

where we have used κ = 8πGN . By using definition of the Einstein tensor which is

given by (A.23) the last equation becomes

Gµν − Λgµν = 8πGNTµν . (A.46)
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By using (A.24), (A.25) and (A.44) we end up with Einstein field equations

ȧ2

a2
=

8πG

3
ρ+

Λ

3
− k

L2a2
, (A.47)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (A.48)

Now we take care of the remaining term according to the action principle

δSφ =

∫
d4x
{
δ(
√
−g)[

1

2
gµν∂µφ∂νφ− V (φ)] +

√
−g[

1

2
(δgµν)∂µφ∂νφ]

}
, (A.49)

δSφ =

∫
d4x
{
− 1

2

√
−ggµν(δgµν)[

1

2
gαβ∂αφ∂βφ− V (φ)] +

√
−g[

1

2
(δgµν)∂µφ∂νφ]

}
,

(A.50)

By comparing the last equation with (A.57) we have

T φµν = 2
δSφ√
−gδgµν

, (A.51)

= ∂µφ∂νφ− gµν [
1

2
∂αφ∂

αφ− V (φ)].

By using perfect fluid energy momentum tensor for a scalar field

Tµν = (ρ+ p)uµuν − pgµν , (A.52)

we obtain

ρφ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2, (A.53)

pφ =
1

2
φ̇2 − V (φ) +

1

2
(∇φ)2. (A.54)

A.2.1.1. Action Principle. According to action principle SM is invariant under coordi-

nate transformations [54]. By adding infinitesimal vector field εµ(x) to our coordinates
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we have

x
′µ = xµ + εµ(x). (A.55)

One can show that [122]

δgµν = −(∇µεν +∇νεµ). (A.56)

On the other hand by using definition given (A.43) one can write

δSM ≡
∫
R

δLM
δgµν

δgµνd4x =
1

2

∫
R
Tµνδg

µν
√
−gd4x = −1

2

∫
R
T µνδgµν

√
−gd4x, (A.57)

where we have used δgµλgλν = −gµλδgλν . By using (A.56) and remembering T µν is

symmetric we obtain

δSM =

∫
R
T µν(∇µεν)

√
−gd4x = 0. (A.58)

By applying integration by parts, one can write

δSM =

∫
R
∇µ(T µνεν)

√
−gd4x−

∫
R
∇µ(T µν)εν

√
−gd4x = 0. (A.59)

By using divergence theorem

δSM =

∫
∂R
nµT

µνεν
√
|γ|d3x−

∫
R
∇µ(T µν)εν

√
−gd4x = 0, (A.60)

where γ is determinant of the induced metric and nµ is the unit normal to the boundary.

Since surface integral vanishes we end up with

∇µ(T µν) = 0. (A.61)
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A.2.2. Action Variation with Respect to the Scalar Field

In general the action is written as

S =

∫
L(φa,∇µφ

a)
√
−gd4x. (A.62)

Under variation of the scalar field

∇µφ
a → ∇µφ

a +∇µ(δφa), (A.63)

∇µ(δφa) = δ(∇µφ
a). (A.64)

Then

δS =

∫
δL
√
−gd4x, (A.65)

=

∫ [ ∂L
∂φa

δφa +
∂L

∂(∇µφa)
δ(∇µφ

a)
]√
−gd4x. (A.66)

By applying (A.64) and by applying integration by parts respectively, the second term

on the right side becomes

∫
∂L

∂(∇µφa)
∇µ(δφa)

√
−gd4x =

∫
∇µ[

∂L
∂(∇µφa)

δφa]
√
−gd4x (A.67)

−
∫
∇µ[

∂L
∂(∇µφa)

]δφa
√
−gd4x,

where the first term vanishes at the boundaries. Thus we are left with

δS =

∫ { ∂L
∂φa
−∇µ[

∂L
∂(∇µφa)]

}
δφa
√
−gd4x, (A.68)

=

∫
δL
δφa

δφa
√
−gd4x. (A.69)



182

where

δL
δφa

=
∂L
∂φa
−∇µ[

∂L
∂(∇µφa)]

= 0. (A.70)

Thus we have shown that variation of the action with respect to the scalar field results

in Euler-Lagrange equations.

Now we have

Sφ =

∫
d4x
√
−g[

1

2
gµν∂µφ∂νφ− V (φ)]. (A.71)

Since for scalars, the covariant derivative equals to a partial derivative we can write

Sφ =

∫
d4x
√
−g[

1

2
gµν∇µφ∇νφ− V (φ)]. (A.72)

Then

∂L
∂φ

= −dV (φ)

dφ
, (A.73)

∂L
∂(∇µφ)

=
∂

∂(∇µφ)
[
1

2
gρσ∇ρφ∇σφ] = gµν∇νφ. (A.74)

Hence the Euler-Lagrange equation becomes

dV (φ)

dφ
+ gµν∇νφ = 0. (A.75)

Since ∇ug
µν = 0, we can write

�φ+
dV (φ)

dφ
= 0, (A.76)
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where � ≡ gµν∇µ∇ν . Then by using the following property

∇i∇jφ = ∇i∂jφ, (A.77)

= ∂i∂jφ− ∂kφΓkij,

one can show that

�φ = φ̈+ 3
ȧ

a
φ̇. (A.78)

Finally we obtain our last equation as

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

dφ
= 0. (A.79)

A.3. Change of Independent Variable

H(a) =
ȧ

a
, (A.80)

therefore our new independent variable becomes a scale factor ′a′. For this reason we

write all other variables in terms of the new variable as

φ = φ(a), V (φ(a)) = V (a), ȧ = aH(a). (A.81)
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As a result we obtain by change of variable

dφ

dt
=
dφ(a)

dt

da

dt
= φ

′
ȧ = φ

′
aH, (A.82)

φ̇ = φ
′
aH, (A.83)

d2φ

dt2
=

d

dt
(φ
′
aH) =

d

da
(φ
′
aH)

da

dt
, (A.84)

φ̈ = φ
′′
a2H2 + φ

′
aH2 + φ

′
a2HH

′
(A.85)

By the help of the chain rule

dV

dφ
=
dV

da

da

dφ
=
dV

da

1

dφ

da

, (A.86)

dV

dφ
= V

′ 1

φ′
. (A.87)

On the other hand by starting from our definition we get followings

ȧ

a
= H(a), (A.88)

ä

a
− ȧ2

a2
=
dH

da

da

dt
, (A.89)

ä

a
= H

′
aH +H2. (A.90)

A.4. Integration by Parts

By using functions u and v a theorem integration by parts is written as

∫ x

x0

u(x)dv(x) = u(x)v(x)

∣∣∣∣∣
x

x0

−
∫ x

x0

v(x)du(x.) (A.91)

When calculating the function γ(a) we choose

u = −a′6, dv = V
′
da
′
, (A.92)
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thus

du = −6a
′5da

′
, v = V (a

′
), (A.93)

results in

∫ a

ain

(−a′6V ′)da′ = −a′6V (a
′
)

∣∣∣∣∣
a

ain

+ 6

∫ a

ain

V (a
′
)a
′5da

′
,∫ a

ain

(−a′6V ′)da′ = −a6V (a) + 6

∫ a

ain

V (a
′
)a
′5da

′
+ a6

inV (ain). (A.94)

A.5. The Linear First Order Differential Equation

The initial value problem

dy

dx
+ P (x)y = Q(x), y(x0) = y0, (A.95)

has the following solution [185]

y(x) =
1

ρ(x)

[ ∫ x

x0

ρ(x
′
)Q(x

′
)dx

′
+ y0

]
, (A.96)

ρ(x) = exp
(∫ x

x0

P (x
′
)dx

′
)
.

A.6. Hypergeometric Functions

The function (1− z)s can be represented by Maclaurin series as

(1− z)s =
∞∑
k=0

[f (k)(z)]z=0

k!
zk, (A.97)

=
∞∑
k=0

(−1)ks(s− 1) . . . (s− k + 1)

k!
zk.
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By using Pochhammer symbol (b)n which is defined as

(b)n =

1 if n = 0,

b(b+ 1)(b+ 2)...(b+ n− 1), if n = 1, 2, . . . .

(A.98)

one can write

(1− z)s =
∞∑
k=0

(−s)k
k!

zk, (−s)k = (−1)k(s− k + 1)k. (A.99)

The hypergeometric function F (a, b; c; z) is defined as [186]

F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
n!(c)n

zn. (A.100)

On the other hand the generalized Hypergeometric Function is defined as

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑
n=0

(a1)n(a2)n . . . (ap)n
n!(b1)n(b2)n . . . (bq)n

zn. (A.101)

This function is also denoted as pFq(a; b; z). By comparing (A.100) and (A.101) one

can write

2F1(a, b; c; z) = F (a, b; c; z). (A.102)

Thus we can express the function (1− z)s as

(1− z)s = F (−s, b; b; z) = 1F0(−s;−; z) =
∞∑
k=0

(−s)k
k!

zk. (A.103)
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Furthermore, by using definition (A.101) one can show that

1

a
(z
d

dz
+ a)2F1(a, b; c; z) =

1

a

∞∑
n=0

(a+ n)(a)n(b)n
(c)nn!

zn, (A.104)

= 2F1(a+ 1, b; c; z).

where we have used (a+ n) = a(a+ 1)n. When we choose c = a+ 1 the last equation

reduce to

1

a
(z
d

dz
+ a)2F1(a, b; c; z) = 1F0(b;−; z), (A.105)

= (1− z)−b.

We use the following trick

1

a
(z
d

dz
+ a)f(z) =

1

a
z1−a d

dz
[zaf(z)], (A.106)

which is valid for all functions. Thus

1

a
z1−a d

dz
[za2F1(a, b; a+ 1; z)] = 1F0(b;−; z), (A.107)

where we have used (A.105). Then we obtain

d

dz
[za2F1(a, b; a+ 1; z)] = aza−1

1F0(b;−; z), (A.108)

= aza−1(1− z)−b.

where we have used second line of (A.105).
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Second trick is to replace a = k + 1 and b = −m. According to (A.100) we can

swap the places of a and b, thus we obtain

d

du
[uk+1

2F1(−m, k + 1; k + 2;u)] = (k + 1)uk(1− u)m, (A.109)

where we have changed our argument of the function form z to u since it will be useful

later. Then by taking integral of both sides we find

∫
(1− u)mukdu =

uk+1

k + 1
2F1(−m, k + 1; k + 2;u). (A.110)

A.6.1. Some Integrals Expressed as Hypergeometric Function

We have used following technique to find relation between time and the scale

factor at the integral given in Section 2.3.2.2 by the (2.114)

t =

∫ a

ain

da
′

a′H(a′)
,

t =

∫ a

ain

da
′

a′
√

8πG

3
(
f

a′6
+

6vn
(6− n)a′n

)

, (A.111)

where f = a6
inγ̃(ain). We continue our calculations as

t =

√
3

8πGf

∫ a

ain

a
′2√

1 +
6vna

′(6−n)

(6− n)f

da
′
, (A.112)

t =

√
3

8πGf

∫ a

ain

a
′2[1 +

6vna
′(6−n)

(6− n)f
]−1/2da

′
. (A.113)

Now we apply the following change of variable

u = −6vna
′(6−n)

(6− n)f
. (A.114)
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Thus

a = [−(6− n)f

6vn
u]

1
6−n , da =

1

6− n
[−(6− n)f

6vn
]

1
6−nu

1
6−n−1. (A.115)

Then we have

t =

√
3

8πGf

1

(6− n)
[−(6− n)f

6vn
]

3
6−n

∫ a

ain

u
3

6−n−1(1− u)−1/2du. (A.116)

By comparing the integral at the right side with the integral given in (A.110) we obtain

m = −1

2
, k =

3

6− n
− 1. (A.117)

Hence

t =

√
3

8πGf

1

(6− n)
[−(6− n)f

6vn
]

3
6−n

[u3/(6−n)

3

6− n

2F1(
1

2
,

3

6− n
;

3

6− n
+ 1;u)

]u(a)

u(ain)
.

(A.118)

By back substitution u = −6vna
′(6−n)

(6− n)f
we obtain

t =

√
1

24πGa6
inγ̃(ain)

[
a
′3

2F1(
1

2
,

3

6− n
;

3

6− n
+ 1;− 6vn

(6− n)a6
inγ̃(ain)

a
′(6−n))

]a
ain
.

(A.119)
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We have used the same technique to find relation between time and the scale

factor at the integral given in Section 2.4.2.2 by the (2.163)

t =

∫ a

ain

da
′

a′H(a′)
,

t =

∫ a

ain

da
′

a′
√

8πG

3
(
ρw
a′

+
ρn
a′n

)

,

t =

√
3

8πGρw

∫ a

ain

a
′−1/2(1 +

ρna
′(1−n)

ρw
)−1/2da

′
. (A.120)

We choose the following change of variable

u = −ρn
ρw
a
′(1−n). (A.121)

Thus

a = (−ρw
ρn
u)

1
1−n , da =

1

1− n
(−ρw

ρn
)

1
1−nu

1
1−n−1du. (A.122)

Then we have

t = (
1

1− n
)

√
3

8πGρw
(−ρw

ρn
)

1/2
1−n

∫ a

ain

u
1

2−2n
−1(1− u)−1/2du. (A.123)

By comparing the last integral with the integral given in (A.110) yields

m = −1

2
, k =

1

2− 2n
− 1. (A.124)

Thus

t = (
1

1− n
)

√
3

8πGρw
(−ρw

ρn
)

1/2
1−n

[u 1
2−2n

1
2−2n

2F1(
1

2
,

1

2− 2n
;

1

2− 2n
+ 1;u)

]u(a)

u(ain)
. (A.125)
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By back substitution u = −ρn
ρw
a
′(1−n) we obtain

t =

√
3

2πGρw

[√
a′2F1(

1

2
,

1

2− 2n
;

1

2− 2n
+ 1;−ρn

ρw
a
′(1−n))

]a
ain
. (A.126)

A.7. Integral Expressed as Erfi Function

We calculate the scale factor as a function of time in Section 2.3.2.2 for case n = 6

by following steps. First, we use the H(a) given in (2.99) with k=0, so we have

t =

∫ a

ain

da
′

a′H(a′)
, (A.127)

t =

∫ a

ain

da
′

a′

√
8πG

3
(
f

a′6
+
gln(a

′

c
)

a′6
)

, (A.128)

where f = V6 + a6
inγ(ain), g = 6V6 and c = ain. Then we have

t =

√
3

8πG

∫ a

ain

a
′2da

′√
f + gln(

a
′

c
)

. (A.129)

We apply the change of variable as u =
a
′

c
and du =

da
′

c
so

I =

∫
a
′2da

′√
f + gln(

a
′

c
)

, (A.130)

= c3

∫
u2√

f + gln(u)
du.

We apply the second change of variable as v = f + glnu and dv = g
u
du so

I =
c3e−3f/g

g

∫
e3v/g

√
v
dv. (A.131)
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Now we choose w =

√
3v

g
so dw =

1

2

√
3

g

1√
v
dv. Thus the integral I becomes

I =

√
g

3

c3e−3f/g

g

√
π

∫
2ew

2

√
π
dw, (A.132)

=
c3e−3f/g

√
3g

√
πerfi(w), (A.133)

where we have used the following definition

∫
exp[(αz + β)2]dz =

√
π

2α
erfi(αz + β), (A.134)

with α = 1 and β = 0 [119]. Thus when one has a definite integral this definition

becomes

erfi(θ) =
2√
π

∫ θ

0

exp(z2)dz. (A.135)

According to this definition erfi(0) = 0. Then by applying back substitutions w =√
3v

g
, v = f + glnu and u =

a
′

c
respectively we obtain

I =

√
π

3g
c3e−3f/gerfi[

√
3(f + gln(a

′

c
))

g
]. (A.136)

By writing our abbreviations in their original form f = V6 + a6
inγ(ain), g = 6V6 and

c = ain we have

t =

√
3

8πG
a3
inexp[−

1

2
− a6

inγ(ain)

2V6

]
{
erfi[

√
1

2
(1 + 6ln(

a

ain
) +

a6
inγ(ain)

2V6

)] (A.137)

− erfi[

√
1

2
(1 +

a6
inγ(ain)

2V6

)]
}
.
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As a result we have

a(t) = ainexp
{1

6
[2
(
erfi−1(µt+ b)

)2

− 1− a6
inγ(ain)

V6

]
}
, (A.138)

µ =

√
8πG

3

1

a3
in

exp[
1

2
+
a6
inγ(ain)

2V6

], b = erfi[
1

2

(
1 +

a6
inγ(ain)

V6

)
]. (A.139)

A.8. Cosmological Fluid

The energy-momentum conservation states that

∇µT
µν = 0, (A.140)

where

Tµν = (ρ+ p)uµuν − pgµν . (A.141)

Then (A.140) becomes [122]

ρ̇+ 3(
ȧ

a
)(ρ+ p) = 0. (A.142)

The last equation is also known as the continuity equation in cosmology. One can write

it in the following form

d(ρa3)

da
= −3pa2. (A.143)

In cosmology it is usually assumed that each component of the fluid obeys the equation

of state which is given by

p = νρ. (A.144)
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Then (A.143) turns into the following form

d(ρa3)

da
= −3νρa2, (A.145)

which has a solution

ρ ∼ a−3(1+ν). (A.146)

It is known that ν = −1 corresponds to cosmological constant while ν = −2/3 stands

for cosmic domain walls. Pressureless dust which is nonrelativistic matter has ν = 0

and radiation which corresponds to relativistic particles and photons has ν = 1/3. Stiff

fluid can be defined with ν = 1.

A.9. Redshift in Cosmology

Suppose we measure a wavelength of a observed distant galaxy as λob where it

emits the wavelength λem. Then redshift of this galaxy is calculated according to the

following formula

z =
λob − λem
λem

. (A.147)

In [53] it is shown that the relation between the redshift and the scale factor of the

universe is

1 + z =
a(t0)

a(tem)
=

1

a(tem)
, (A.148)

where we have used the usual agreement such that a(t0) = 1.
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APPENDIX B: APPENDIX FOR CHAPTER 3

B.1. Action Variation for Brans-Dicke Cosmology

We use the Brans-Dicke action in the following form

S =

∫
d4x
√
−g
[
− 1

8ω
φ2R +

1

2
gµν∂µφ∂νφ− V (φ) + LM

]
. (B.1)

B.1.1. Action Variation with Respect to Metric

Let us start variation of the action with respect to metric by using R = Rµνg
µν

δS =

∫
d4x
{

(δ
√
−g)

[
− 1

8ω
φ2R +

1

2
gµν∂µφ∂νφ− V (φ) + LM

]
(B.2)

+

[
− 1

8ω
φ2(δRµν)g

µν − 1

8ω
φ2Rµν(δg

µν) +
1

2
(δgµν)∂µφ∂νφ

]}
+

∫
d4x
√
−g δg

µνTµν
2

,

where we have used

Tµν =
2√
−g

δSM
δgµν

, SM =

∫
d4x
√
−gLM . (B.3)

Then we use (A.28) and (A.23) we obtain

δS =

∫
d4x
√
−gδ(gµν)

{
− 1

8ω
φ2Gµν −

1

4
gµν∂αφ∂

αφ+ gµν
V (φ)

2
(B.4)

+
1

2
∂µφ∂νφ+

Tµν
2

}
− 1

8ω

∫
d4x
√
−gφ2(δRµν)g

µν . (B.5)

In the original Brans-Dicke and Jordan variations, S was taken as a functional of

gµν and φ. We would like to notice that the palatini approach gives different field
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equations [187–189]. Thus one has [56]

∫
d4x
√
−gφ2(δRµν)g

µν =

∫
d4x
√
−gδgµν(gµν�φ2 −∇µ∇νφ

2), (B.6)

where one uses (A.36), ∇λg
µν = 0 and integration by parts. Thus we obtain

δS

δgµν
= − 1

8ω

[
Gµνφ

2 + gµν�φ
2 −∇µ∇νφ

2
]
− 1

4
gµνg

αβ∂αφ∂βφ (B.7)

+ gµν
V (φ)

2
+

1

2
∂µφ∂νφ+

Tµν
2

= 0. (B.8)

We choose µ = ν = 0 and by using (A.24), (A.44) and (B.17) we obtain

3

4ω
(
ȧ2

a2
+
k

a2
)φ2 +

3

2ω

ȧ

a
φφ̇− φ̇2

2
− V (φ) = ρm. (B.9)

Then we choose µ = ν = i and by using (A.25), (A.44) and (B.18) we obtain

− 1

4ω
φ2

(
2
ä

a
+
ȧ2

a2
+
k

a2

)
− 1

ω

ȧ

a
φ̇φ− 1

2ω
φ̈φ−

(
1

2
+

1

2ω

)
φ̇2 + V (φ) = pm. (B.10)

B.1.1.1. Some Necessary Calculations. To find (gµν�φ2 −∇µ∇νφ
2) we start with

�φ2 = gµν∇µ∇νφ
2, (B.11)

= g00∇0∇0φ
2 + gii∇i∇iφ

2. (B.12)

Before going further we write

g00 = 1, g11 = − a2

1− kr2
, g22 = −a2r2, g33 = −a2r2Sin2θ, (B.13)

g00 = 1, g11 = −(1− kr2)

a2
, g22 = − 1

a2r2
, g33 = − 1

a2r2Sin2θ
. (B.14)
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We choose µ = ν = 0

(g00�−∇0∇0)φ2 = g00(g00∇0∇0φ
2 + gii∇i∇iφ

2)−∇0∇0φ
2, (B.15)

= g00g
ii∇i∇iφ

2,

= gii∇i∇iφ
2.

Then we use the definition given in (A.77) and we obtain

gii∇i∇iφ
2 = gii(∂i∂iφ

2 − ∂kφ2Γkii), (B.16)

= −gii∂0φ
2Γ0

ii,

= −2φφ̇[g11Γ0
11 + g22Γ0

22 + g33Γ0
33],

= −2φφ̇{−(1− kr2)

a2

aȧ

(1− kr2)
− 1

a2r2
aȧr2 − 1

a2r2Sin2θ
aȧr2Sin2θ},

= 6
ȧ

a
φφ̇,

where we have assumed that scalar field depends only on the time and we have used

(B.13-B.14). Hence

(g00�−∇0∇0)φ2 = 6
ȧ

a
φφ̇. (B.17)

Now we choose µ = ν = i. By following the similar steps we obtain

(gii�−∇i∇i)φ
2 = gii(2φ̇

2 + 2φφ̈+ 4φφ̇
ȧ

a
). (B.18)
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B.1.2. Action Variation with Respect to the Scalar Field

As we explained before action variation with respect to the scalar field results in

Euler-Lagrange equations. In Brans-Dicke cosmology we have

Sφ =

∫
d4x
√
−g[− 1

8ω
φ2R +

1

2
gµν∂µφ∂νφ− V (φ)]. (B.19)

The differences between this action and the action given in (A.38) is the term − 1

8ω
φ2R.

It only modifies the following term as

∂L
∂φ

= − 1

4ω
φR− dV (φ)

φ
. (B.20)

Therefore Euler-Lagrange equation given in (A.79) becomes

φ̈+ 3
ȧ

a
φ̇+

dV (φ)

dφ
− 3

2ω

(
ä

a
+
ȧ2

a2
+
k

a2

)
φ = 0, (B.21)

where we have used R = −6(
k

L2a2
+
ȧ2

a2
+
ä

a
) which is derived in Appendix A.

B.2. The Bernoulli Equation

A first order differential equation which is in the following form

dy

dx
+ P (x)y = Q(x)yn, (B.22)

is known as a Bernoulli equation. It is linearized by a transformation

v = y1−n. (B.23)
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Thus the original nonlinear differential equation turns into the linear first order differ-

ential equation [185]

dv

dx
+ (1− n)P (x)v = (1− n)Q(x). (B.24)

B.3. Some Necessary Calculations

In Section 3.3.1.1 Equation (3.16) is given as

γ
′
(a) +

2a[(1 + 2ω)φ
′2(a) + φ(a)φ

′′
(a)]

φ(a)(φ(a) + aφ′(a))
γ(a) =

2(2ωρ
′
a3 + 3kφ2(a))

3a3φ(a)(φ(a) + aφ′(a))
. (B.25)

For simplification we choose

α = φ2 + aφφ
′
. (B.26)

Then we have

φφ
′′

=
α
′ − 3φφ

′ − aφ′2

a
. (B.27)

Therefore we can write

P̃ (a) =
2a[(1 + 2ω)φ

′2(a) + φ(a)φ
′′
(a)]

φ(a)(φ(a) + aφ′(a))
, (B.28)

= 2
α
′

α
+

2[2ωaφ
′2 − 3φφ

′
]

φ(φ+ aφ′)
,

= 2
α
′

α
+ P (a),

where

P (a) =
2[2ωaφ

′2 − 3φφ
′
]

φ(φ+ aφ′)
. (B.29)
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Thus we find

γ(a) = exp
(
−
∫ a

ain

P̃ (a
′
)da

′
){∫ a

ain

exp
(∫ a

′

ain

P̃ (a
′′
)da

′′
)

[
2(2ωρ

′
a3 + 3kφ2(a))

3a3φ(a)(φ(a) + aφ′(a))
]da

′

(B.30)

+γ(ain)
}
.

By using (B.28) we obtain

exp
(
−
∫ a

ain

P̃ (a
′
)da

′
)

= exp
(
−
∫ a

ain

[
2α
′

α
+ P (a

′
)]da

′
)
, (B.31)

=
[φ(ain)

(
φ(ain) + ainφ

′
(ain)

)
]2

[φ(a)
(
φ(a) + aφ′(a)

)
]2

exp
(
−
∫ a

ain

P (a
′
)da

′
)
.

As a result we have

γ(a) =
exp
[
−
∫ a
ain
P (a

′
)da

′
]

[
φ(φ+ aφ′)

]2

{∫ a

ain

exp
[ ∫ a

′

ain

P (a
′′
)da

′′
]
Q(a

′
)da

′
+ γ̃(ain)

}
, (B.32)

P (a) =
2[2ωaφ

′2(a)− 3φ(a)φ
′
(a)]

φ(a)(φ(a) + aφ′(a))
,

Q(a) =
2(2ωρ

′
a3 + 3kφ2(a))

[
φ(a)(φ(a) + aφ

′
(a))

]
3a3

, (B.33)

γ̃(ain) = γ(ain)
[
φ(ain)

(
φ(ain) + ainφ

′
(ain)

)]2

. (B.34)
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APPENDIX C: APPENDIX FOR CHAPTER 4

Now we will solve the differential equation which is given in (4.23)

t2θ̈ + 2ωtθ̇ − 4ω

3
(2 + λB2)θ = −2t2. (C.1)

It is recognized as non-homogeneous Cauchy-Euler equation. Thus we take

t = ex ⇒ tD = Dx, and t2D2 = Dx(Dx − 1). (C.2)

First, we take right side zero so (C.1) becomes

[D2
x + (2ω − 1)Dx −

4ω

3
(2 + λB2)]θ = 0. (C.3)

Then substitution θ = emx gives us the following auxiliary equation

m2 + (2ω − 1)m− 4ω

3
(2 + λB2) = 0. (C.4)

It’s solution yields

m± =
1

2
− ω ±

√
ω2 − ω +

1

4
+

4ω

3
(2 + λB2). (C.5)

Hence we obtain the complementary solution as

θc(t) = c1t
m+ + c2t

m− . (C.6)

where c1 and c2 are integration constants.
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By inspection the particular solution is found as

θp(t) = − 3t2

2ω(1− λB2) + 3
. (C.7)

Therefore

θ(t) = θc + θp(t), (C.8)

= c1t
m+ + c2t

m− +
3t2

2ω(λB2 − 1)− 3
.
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APPENDIX D: APPENDIX FOR CHAPTER 5

In chapter 5 we have introduced the right translation operator as u+ which sat-

isfies

u+ |n〉 = |n+ 1〉 , n = 0, 1, ..., d− 2, (D.1)

u+ |d− 1〉 = 0. (D.2)

Similarly, the left translation operator have been denoted u− which satisfies

u− |n〉 = |n− 1〉 , n = 1, ..., d− 1, (D.3)

u− |0〉 = 0. (D.4)

Then we have switched our notation as u+ = u† and u = u. By regrading rules given

in (D.1-D.4) one can easily construct the matrix form of the translation operators for

d = 2 as

u† =

0 0

1 0

 , u =

0 1

0 0

 . (D.5)

Then we obtain

u† + u =

0 1

1 0

 = σ1, (D.6)

i(u† − u) =

0 −i

i 0

 = σ2, (D.7)

uu† − u†u =

1 0

0 −1

 = σ3. (D.8)
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APPENDIX E: APPENDIX FOR CHAPTER 6

E.1. Projection Operators in Terms of a and a†

We have found two projection operators Pn and Rn;

Pn = a†nan and Rn = ana†n. (E.1)

The properties

Pma
n = a†nPm = 0 for n+m ≥ d, (E.2)

anRm = Rma
†n = 0 for n+m ≥ d,

are immediate results of definition of the projection operators and the algebra property

ad = a†d = 0.

The following properties have already been proved in chapter 5 and in [181]

PnPm = Pm where m ≥ n, (E.3)

Pma
† = a†Pm−1 and Pma = aPm+1. (E.4)

Now, we will prove RnRm = Rm where m ≥ n. Our method is proof by induction.

For n = 1,

R1Rm = (aa†)(ama†m), (E.5)

= a(a†a)am−1a†m,
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= a(1− ad−1a†d−1)am−1a†m,

= aam−1a†m,

= ama†m,

R1Rm = Rm,

where we have used ad = 0. For n = l, we assume

RlRm = Rm for m ≥ l. (E.6)

For n = l + 1, we have

Rl+1Rm = (al+1a†l+1)(ama†m), (E.7)

= a(ala†l)a†a(am−1a†m−1)a†,

= aRl(a
†a)Rm−1a

†,

= aRl(1− ad−1a†d−1)Rm−1a
†,

= aRlRm−1a
† − aRlRd−1Rm−1a

†,

= aRlRm−1a
† − aRd−1Rm−1a

†,

where we have used (6.2) and (E.6). By using aRd−1 = ada†d−1 = 0 and the assumption

for n = l with the fact that l + 1 ≤ m implies l ≤ m− 1, so we have RlRm−1 = Rm−1

and aRm−1a
† = Rm. Therefore

Rl+1Rm = Rm Q.E.D.. (E.8)

Then we will show that RmRn = Rm for m ≥ n by using the relation Rn = 1 − Pd−n
which is Equation (6.7). Thus

RmRn = (1− Pd−m)(1− Pd−n) (E.9)

= 1− Pd−n − Pd−m + Pd−mPd−n
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using PnPm = Pm where m ≥ n with the fact that m ≥ n implies d− n ≥ d−m

RmRn = 1− Pd−n − Pd−m + Pd−n (E.10)

= 1− Pd−m

= Rm Q.E.D..

By using the last two proofs, we conclude that

RnRm = Rj where j = max(n,m). (E.11)

Similarly we will show that PmPn = Pm where m ≥ n by using Pn = 1 − Rd−n which

is Equation (6.7). Thus

PmPn = (1−Rd−m)(1−Rd−n), (E.12)

= 1−Rd−m −Rd−n +Rd−mRd−n,

using RnRm = Rm where m ≥ n with the fact that m ≥ n implies d− n ≥ d−m

PmPn = 1−Rd−m −Rd−n +Rd−n, (E.13)

= 1−Rd−m,

= Pm Q.E.D..

This result and equation given by (E.3) can be expressed in one equation as

PnPm = Pj where j = max(n,m). (E.14)



207

Now, we will calculate relations between the projection operator Rm and shift operators

a and a†.

Rma = ama†ma, (E.15)

= ama†m−1(a†a),

= a(am−1a†m−1)P1,

= aRm−1(1−Rd−1),

= aRm−1 − aRm−1Rd−1,

= aRm−1 − aRd−1,

= aRm−1,

where we have used (6.7), (E.11) and the fact that aRd−1 = ada†d−1 = 0. Then

a†Rm = a†ama†m, (E.16)

= (a†a)(am−1a†m−1)a†,

= P1Rm−1a
†,

= (1−Rd−1)Rm−1a
†,

= Rm−1a
† −Rd−1Rm−1a

†,

= Rm−1a
† −Rd−1a

†,

= Rm−1a
†,

where we have used Rd−1a
† = ad−1a†d = 0. Let’s summarize what we have derived

about the projection operators Pn and Rn up to now;

Pn = a†nan, P0 = 1, Pma
† = a†Pm−1, aPm = Pm−1a,

PnPm = Pj where j = max(n,m),

Pma
n = a†nPm = 0 for n+m ≥ d,
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and

Rn = ana†n, R0 = 1, Rma
† = a†Rm+1, aRm = Rm+1a,

RnRm = Rj where j = max(n,m),

anRm = Rma
†n = 0 for n+m ≥ d,

where

Pn = 1−Rd−n and Rn = 1− Pd−n.

E.2. Projection Operators in Terms of U and V

We have found two projection operators Pn and Rn;

Pn =
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
, (E.17)

Rn = 1−Pn. (E.18)

Then

(Pn)2 =
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
(E.19)

+
(qnV + q2nV 2 + q3nV 3 + · · ·+ qdnV d)

d

+ · · · ,

+
q(d−1)nV (d−1) + qdnV d + q(d+1)nV (d+1) + · · ·+ q2(d−n)V 2(d−1)

d
,

= d
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
,

= Pn,

where we have used V d = 1 and qd = 1.
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By using definition of Pn and Schwinger equation V U = qUV , one can eas-

ily obtain

PnU
m = UmPn+m. (E.20)

Hermitian conjugate of Pn is easily calculated as,

(Pn)† =
(1 + (qn)†V † + (q2n)†(V 2)† + · · ·+ (q(d−1)n)†(V (d−1))†)

d
, (E.21)

=
(1 + qd−nV d−1 + q(d−2)nV d−2 + · · ·+ qnV )

d
,

= Pn,

where we have used the unitary property of V and properties of complex number

q = exp(2πi
d

). By using hermicity property of Pn we will calculate,

(PnU
m = UmPn+m)†, (E.22)

U †mPn = Pn+mU
†m.

The other property of Pn is found by the following steps,

P0 + P1 + P2 + · · ·+ P(d−1) =
(1 + V + V 2 + · · ·+ V (d−1))

d
(E.23)

+
(1 + qV + q2V 2 + · · ·+ q(d−1)V (d−1))

d

+
(1 + q2V + q4V 2 + · · ·+ q2(d−1)V (d−1))

d

· · ·

+
(1 + qd−1V + q2(d−1)V 2 + · · ·+ q(d−1)(d−1)V (d−1))

d
,
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= d/d+ (1 + q + q2 + · · ·+ q(d−1))V/d

+ (1 + q2 + q4 + · · ·+ q2(d−1))V 2/d

· · ·

+ (1 + q(d−1) + q2(d−1) + · · ·+ q(d−1)(d−1))V (d−1)/d.

= 1.

In the last equation we used the fact that the sum of roots of unity gives zero,

(1 + q + q2) + · · ·+ qd−1 = 0 with q = exp(
2πi

d
). (E.24)

Furthermore, when we take unity as 1 = exp(2πin) where n is a integer, its roots will

be 1, qn, q2n, · · · , qn(d−1). Thus the sum of the terms appear in parentheses in the last

lines are equal to 0.

Then sum of Rn given by Equation (E.18) is found easily,

R0 + R1 + · · ·+ Rd−1 = (1−P0) + (1−P1) + · · ·+ (1−Pd−1), (E.25)

= d− 1.

Now we will show that PnPm = 0 unless n 6= m by direct substitution of definition

of projection operators

PnPm = (1 + qnV + q2nV 2 + · · ·+ q(d−1)nV d−1)(1 + qmV + q2mV 2 + · · · (E.26)

+ q(d−1)mV d−1)/d2

= {(1 + qmV + q2mV 2 + · · ·+ q(d−1)mV d−1)

+ (qnV + qn+mV 2 + qn+2mV 3 · · ·+ q(d−1)m+nV d)

+ (q2nV 2 + q2n+mV 3 + q2n+2mV 4 · · ·+ q(d−1)m+2nV d+1)
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+ · · ·

+ (q(d−1)nV d−1 + q(d−1)n+mV d + q(d−1)n+2mV (d+1) · · ·+ q(d−1)(m+n)V 2d−2)}/d2,

= {1 + (q(d−1)m+n + q(d−2)m+2n + · · ·+ q(d−1)n+m)V d

+ (qm + qn + q(d−1)m+2n + · · ·+ q(d−1)n+2m)V

+ (q2m + qn+m + q2n + · · ·+ q(d−1)n+3m)V 2

+ · · ·

+ (q(d−1)m + q(d−2)m+n + · · ·+ q(d−1)n)V d−1}/d2,

with the help of V d+n = V n. Now replace n−m by k and use qd = 1

PnPm = {(1 + qk + q2k + · · ·+ q(d−1)k) (E.27)

+ qm(1 + qk + q2k + · · ·+ q(d−1)k)V

+ q2m(1 + qk + q2k + · · ·+ q(d−1)k)V 2

+ · · ·

+ q(d−1)m(1 + qk + q2k + · · ·+ q(d−1)k)V d−1}/d2.

Furthermore, taking unity as 1, 1 + qk + · · ·+ q(d−1)k will be equal to Equation (E.24)

in different order. Hence (1 + qk + · · · + q(d−1)k) = 0. As a result each parentheses

in the Equation (E.27) are equal to zero except k = 0 (corresponds n = m). At the

exception each paratheses sum to d. We can summarize our results as

PnPm = 0 for m 6= n, (E.28)

PnPn = d(1 + qnV + · · ·+ q(d−1)nV d−1)/d2,

= Pn.
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E.3. MN(C) in Terms of a and a†

The standard basis of MN(C) is given by the operator eij which satisfies

eijekl = δjkeil, e†ij = eji, (E.29)

emn can be expressed in terms of a and a† as,

emn = a†mRd−1a
n m,n = 0, 1, · · · , d− 1. (E.30)

Then,

eijekl = (a†iRd−1a
j)(a†kRd−1a

l), (E.31)

= (a†iajRd−1−j)(Rd−1−ka
†kal),

= a†iaj(Rd−1−jRd−1−k)a
†kal,

if j = k = a†iajRd−1−ja
†jal,

= a†iRd−1a
l,

= eil,

if j > k = a†iajRd−1−ka
†kal,

= a†iaja†kRd−1a
l,

= a†iaja†kRkRd−1a
l,

= a†iaj−kRd−1a
l,

= 0,

if j < k = a†iajRd−1−ja
†kal,
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= a†iRd−1a
ja†kal,

= a†iRd−1Rja
k−jal,

= a†iRd−1a
k−jal,

= a†iRd−1Rja
k−jal,

= 0,

where we have used (6.9). Thus eijekl = δjkeil. It is the time to check second part of

Equation (E.29)

(eij = a†iRd−1a
j)∗, (E.32)

e∗ij = a†jR∗d−1a
i,

e∗ij = a†jRd−1a
i,

e∗ij = eji Q.E.D..

E.4. MN(C) in Terms of U and V

emn can be written in terms of operators U and V as

emn =


Um−nPd−n for m > n,

Pd−n for m = n,

U †n−mPd−n for m < n,

(E.33)

with

Pn =
(1 + qnV + q2nV 2 + · · ·+ q(d−1)nV (d−1))

d
.
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For m > n

eijekl = U i−jPd−jU
k−lPd−l, (E.34)

= U i−jUk−lPd−j+k−lPd−l,

if j = k = U i−jU j−lPd−lPd−l,

= U i−lPd−l,

= eil,

if j 6= k = U i−jUk−lPd−j+k−lPd−l,

= 0.

Thus eijekl = δjkeil.

Now let us check second part of the Equation (E.29) for m > n

(emn = Um−nPd−n)†, (E.35)

e†mn = P†
d−nU

†m−n,

e†mn = Pd−nU
†m−n,

e†mn = U †m−nPd−n−(m−n),

e†mn = U †m−nPd−m,

e†mn = Un−mPd−m,

e†mn = enm,

where we have used (E.21), (E.22) and (6.1). Next for m = n we have

eiiekk = Pd−iPd−k, (E.36)

if i = k, = 1,

if i 6= k, = 0,
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where we have used (E.28). Thus eijekl = eil. Now, hermicity of property of the

projection operators given by Equation (E.21) imply the second part of the matrix

algebra given by the Equation (E.29). Finally for m < n we have

eijekl = U †j−iPd−jU
†l−kPd−l, (E.37)

= U †j−iU †l−kPd−j−l+kPd−l,

if j = k = U †j−iU †l−kPd−lPd−l,

= U †l−iPd−l,

= eil,

if j 6= k = U †j−iU †l−kPd−j−l+kPd−l,

= 0.

Thus we can conclude that eijekl = δjkeil.

Now let us check second part of the Equation (E.29) for m < n we have

(emn = U †n−mPd−n)†, (E.38)

= P†
d−nU

n−m,

= Un−mPd−n+n−m,

= Un−mPd−m,

= enm Q.E.D..


