NOISE ROBUST REAL-TIME FOCUS DETECTION WITH DEEP LEARNING
FOR ULTRA-FAST LASER MICROMACHINING

by
Can Polat

B.S., Physics Engineering, Hacettepe University, 2019

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Physics
Bogazici University

2022

il

ACKNOWLEDGEMENTS

I would like to start by thanking Assistant Professor Parviz Elahi, who was my
supervisor during this research. His guidance and expertise enabled me to establish
both confidence and the scientific thinking required to make this research reality. I

cannot thank him enough for his contributions to my scientific development.

Furthermore, I would like to thank Gizem Nuran Yapici, Sepehr Elahi, and Aysu
Ay for their fellowships and collaborations during this research. I thank my dear friend
Esat Erdem Eygi for his fellowship and Dr. Onur Kiilge for his advice and guidance.
Additionally, I sincerely thank all of the optical-and-optomechanical design team of
Aselsan A.S. and the hardware design team of Arcelik Electronics Plant for their
support and friendship.

Last but not least, I would like to thank my beloved sister Canan, my mother
Nazmiye, my father Abdullah, my brother Ahmet Eren Sirmaci, and my love Elif
Nisa Giiler for their unyielding and unconditional support during this process and the

beyond.

v

ABSTRACT

NOISE ROBUST REAL-TIME FOCUS DETECTION WITH
DEEP LEARNING FOR ULTRA-FAST LASER
MICROMACHINING

In this thesis, different types of machine learning models are provided for ultra-
fast laser micromachining system to actively control the focusing of light on the process-
ing material by detecting the reflected light. These different types of models are tested
for both experimental and theoretical approaches. For the experimental approach, four
different machine learning models are explored. These models were tested for mirror,
silicon, steel, and copper samples. The proposed machine learning models offer real-
time control with over 90% accuracy. For the simulation, noise at the material surface
and the detection system are considered. The noise simulation, including the laser mi-
cromachining system, is done using Fourier optics and signal processing. Noise levels
at the material surface are determined by laser scanning microscope measurements of
experimental samples, and the commercial detection camera noises are considered for
the detection noise. Convolutional neural network models are used for focus control in
the simulation. Depending on the noise level, the proposed model achieves above 95%

accuracy.

OZET

ULTRA-HIZLI LASER MIKROISLEME ICIN DERIN
OGRENMEYE DAYALI GURULTUYE DAYANIKLI
GERCEK ZAMANLI ODAK BELIRLEME SISTEMI

Bu tezde, ultra-hizh laser kaynaginin tirettigi laser 1igiminini materyal iizerinden
yansimasl dedekte edilerek 1smin ilgili malzemenin iizerine dogru bir sekilde odaklan-
abilmesi i¢in birden fazla makine 6grenmesi metodu gelistirilmigtir. Gelistirilen bu
modeller hem deneysel hem de kuramsal olarak test edilmistir. Deneysel olarak ayna,
silikon, bakir ve demir ornekleri kullanilip gelistirilen modeller teste tabii tutulmustur.
Onerilen bu modeller anhk kontrol saglayip %90 iizerinde tahmin basarisina sahip-
tir. Kuramsal ¢aligma i¢in hem materyal yiizeyinde olan giiriiltii hem de dedektor sis-
temi tizerinde olan giiriiltii degerlendirmeye tutulmustur. Kuramsal ¢caligmada bulunan
gliriiltiilerin simiilasyonu icin Fourier optigi ve sinyal igleme teknikleri kullanilmigtar.
Materyal iizerindeki giiriiltii seviyelerini belirlemek i¢in lazer taramali mikroskop kul-
lanilip, dedektor sistemi iizerindeki giirtiltii i¢in de piyasadaki dedektor giirtiltiileri baz
alinmigtir. Evrigimsel Sinir Aglar1 modeliyle odak kontrolii yapilmigtir. Bu kontrol,

guriiltii seviyesine gore %95 tizerinde tahmin bagarisina sahiptir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT . . . e iv
OZET . .o v
LIST OF FIGURES viii
LIST OF TABLES e xii
LIST OF SYMBOLS xiii
LIST OF ACRONYMS/ABBREVIATIONS Xiv
1. INTRODUCTION e 1
2. FOCUS DETECTION 4
2.1. Focus Detection and Control 4
2.1.1. Mechanical Focus Control 4

2.1.2. Contrast Based Focus Controlling 7

2.1.3. Distance Measurement for Focus Detection 8

2.1.4. Convolutional Neural Networks for Focus Detection 9

3. LASER MICROMACHINING EXPERIMENT 10
3.1. Experimental Setup 10
3.1.1. Data Acquisition 13

3.1.2. LSM Measurements 14

4. SIMULATION OF A SIMILAR LASER MACHINING SETUP 18
4.1. Laser Machining Simulation 18
4.1.1. Fourier Integrals 18

4.1.2. Theory of Diffraction of Light 19

4.1.3. Helmholtz Equation and Approximations 20

4.1.4. Fresnel Approximation 21

4.1.5. Gaussian Beam and its Propagation. 23

4.1.6. Focusingofa Wave L. 25

4.1.7. Laser Machining Simulation 28

4.2. Surface Roughness Simulation 30

4.3. Detector Noise Simulation 32

vil

4.4. Data Generation for Simulation 0L 33

5. MACHINE LEARNING FOR FOCUS DETECTION 35
5.1. Machine Learning 35
5.2. Machine Learning Models for Experiment 36
5.2.1. Data Structure 36

5.2.2. Non-CNN Models oo o . 36

5.2.3. CNN Models o 37

5.2.4. Results of Machine Learning Models for Experiment 38

5.3. Deep Learning Model for Focus Prediction in Simulation 40
5.3.1. Data Structure 41

5.3.2. Model Parameters 41

5.3.3. Prediction Resultso oL 42

6. CONCLUSION e e 44
REFERENCES o 47
APPENDIX A: CALCULATION OF LSM MEASUREMENS 54
APPENDIX B: IMPLEMENTATION ON EXPERIMENTAL DATA o7
B.1. Required Python Libraries 57
B.2. Code for Turning Experimental Videos Into Datasets 57
B.3. Machine Learning Models Used for Experimental Data 58
B.4. Training of CNN Model on Experimental Data 65
B.5. Training of Non-CNN Models on Experimental Data 67
B.6. Testing of CNN Model on Experimental Data 69
B.7. Testing of Non-CNN Models on Experimental Data 73
APPENDIX C: SIMULATION OF LASER MACHINING SETUP 77
APPENDIX D: IMPLEMENTATION ON SIMULATED DATA 82
D.1. Train and Test Splitting of Generated Data 82
D.2. Machine Learning Models for Simulation 83
D.3. Training of CNN Model for Simulation 90
D.4. Testing of CNN Model for Simulation 93

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 3.1.

Figure 3.4.

LIST OF FIGURES

Three different focal length configurations are given. While the
objective group stays still, the variator group changes the system’s
focal length. The compensator group corrects the blurring caused
by the change of focal length, and the relay group corrects toler-

ancing and thermal effects. L.

Scenes with two different focus measures. (a) When the car is

focused properly. (b) is when the car is blurred.

Range-finder schematic. A source beam goes to a target and reflects
from it. Once the receiver detects the source beam, the flight time

can be calculated.

Experimental setup illustration consisting of a 0.976 pm laser, a
non-polarizing 50/50 beam splitter, an aspheric lens with f; = 11
mm (denoted as L) on a stage with a resolution of 1 pm, a sample,
a plano-convex lens with fo = 35 mm (denoted as Ly), and a USB
camera. The distance from the beam splitter to L; is given as Dy,
and to Ly is given as Dy,. The incoming beam to L; and the names
of the corresponding defocus positions are given in the upper left

image with an exaggeration of the distance.

Observed diffraction patterns for different defocus positions. (I) p-
defocus position at z = 150 pm, (II) focus position (IIT) n-defocus
position at z = —150 pm for (a) mirror sample, (b) silicon, (c)

steel, (d) copper sample. Adapted from [1].

viil

Figure 3.5.

Figure 3.2.

Figure 3.3.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

1X

LSM measurements. (a) Silicon sample with roughness height std.
about 0.050 pm and correlation length about 120pm. (b) Steel
sample with roughness height std. about 0.300 pm and correlation
length about 120 pm. (c¢) Copper sample with roughness height std.
about 150 pm and correlation length about 85pm. 15

Experimental setup consisting of a laser source, 50/50 beam split-
ter, an aspheric lens on an adjustable stage, a sample holder, mirror

as a sample, a plano-convex lens, and a USB camera. 16

Sample holder with copper, silicon, and steel. The holder rotates

on the z-axis without losing the alignment. 17
Electric field distribution E(xz/,y/,0) at z = 0 which illuminates the
plane at z = z. Therefore creating an electric field distribution at
z==zas B(r,y,2). 20

Gaussian beam intensity plot with respect to its position. 23

Gaussian beam phase (top) and intensity (bottom) plots with re-

spect to its position in z. 24

Gaussian beam phase (top) and intensity (bottom) plot with re-

spect to its position in 2z when the beam passed through a plane at

2z = —25 pm with a refractive index of 1.5. 25
An illustration of focusing of a plane wave with a thin lens. 26
Intensity distribution of a plane wave. 26
An intensity plot of a plane wave focused by an 11 mm lens. . . . 27

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 5.1.

Figure 5.2.

Figure 5.3.

An intensity plot of a plane wave defocused. Observed intensity
10 mm before the focus position (left). Observed intensity 10 mm

after the focus position (right).

[lustration of the simulation consists of two lenses for wave mod-
ulation, three parts for wave propagation, and a detector. The
source beam, Uy, propagates three times and gets modulated by

each lens before reaching the detector.

Phase values of roughness simulation for different noise stds and

correlation lengths. oo

Simulated images when different noise types applied to the in-focus
position (a): (I) Only input noise with constant correlation length
applied for (b) 250 nm std, (¢) 500 nm std, (d) 750 nm std. (II)
Only output noise applied for (b) 0.01 std, (c) 0.03 std, (d) 0.05
std, (IT1T) when both of the noises above applied.

Histogram of the testing prediction errors for each material. The
correct classification zone indicates the tolerable range of prediction

error in which a prediction results in correct classification.

Box and whisker plots of testing prediction errors for each mate-
rial. Each plot’s lower and upper fences represent the minimum
and maximum prediction error with outliers excluded. The correct
classification zone indicates the tolerable range of prediction error

in which a prediction results in correct classification.

Confusion matrices of CNN-P when tested on the testing datasets

of copper, silicon, and steel, respectively. Adapted from [1].

Figure 5.4.

Figure 5.5.

Plots of the testing accuracy for changing correlation length, in-
ternal noise std, and external noise std. In each plot, the model is
tested on simulated images whose parameters match the parameter

on the x-axis.

Heatmap of the average testing accuracy. A cell of a heatmap with
internal and external noise std ¢ and j, and correlation length &
represents the classification accuracy of the predictor model when
classifying testing data that have internal noise std, external noise

std, and correlation length ¢, j, and k, respectively.

x1

Table 3.1.

Table 3.2.

Table 4.1.

Table 5.1.

Table 5.2.

X1

LIST OF TABLES

Important parameters of the laser and the optical elements in the

experiment. Adapted from [1]. 10

Standard deviation values for different LSM measurements of dif-

ferent samples. All have O mean. 15

Parameters and their values used in Python code for simulation of

a similar laser machining setup with noise included. 34

The architecture of the CNN is used for classification and prediction,

excluding the final layer. Adapted from [1]. 38

Accuracy and CPU inference speed of each model when tested on

the testing dataset. Adapted from [1]. 38

Wo

LIST OF SYMBOLS

Distance from the beam splitter to the focusing lens
Focusing lens focal length

Detection lens focal length

F-number of an optical system

Focusing lens

Detection lens

Rayleigh length

Wavelength
Half of the beam waist

xiil

1D
2D
AVG
Al
BB
BS
CNN
CPU

FFT
FOV
LSM
LSTM
ML
NA
ROI
SLR
STD
UsSB

LIST OF ACRONYMS/ABBREVIATIONS

One Dimension

Two Dimensions

Average

Artificial Intelligence

Beam Blocker

Beam Splitter
Convolutional Neural Network
Central Processing Unit
Diameter of the Beam

Fast Fourier Transformation
Field of View

Laser Scanning Microscope
Long Short-Term Memory
Machine Learning
Numerical Aperture

Region of Interest
Single-lens Reflex

Standard Deviation

Universal Serial Bus

Xiv

1. INTRODUCTION

Lasers have found many different places since the time of their invention. These
places include many different applications such as cutting [2], cleaning [3], welding [4],
engraving [5], ablation [6], and material processing [7]. It is being applied to many
materials in material processing, and the applications span from automotive to medical

industries [8].

All these possible applications and high practicality come with a price, which is in
the form of focusing the laser light onto the processing material. When an unfocused
beam is sent onto the material, there can be two possible results. The first is that
the light does not affect the sample at all, and the second, which is highly unwanted,
damages the sample. Both of these situations would cause excess time and money for
the user. Moreover, properly focusing the light onto the sample is no ordinary problem

to solve. This problem is mainly due to the non-linear interaction of light and atoms.

Previously, many different solutions have been offered regarding this crucial prob-
lem. These approaches include scanning the distance of the material from the focusing

lens [9]. a lens group that is cylindrical [10], or with a contrast-detection algorithm [11].

At first, these existing methods for focus detection might seem enough; however,
they are limited by different parameters of their system. The limitations can be in the
resolution of the detection camera, algorithms, the non-linear interaction between the
light and atom, the surface roughness of the processed material, and the aberrations in
the optical system. Different approaches can solve some problems, like a camera with
higher resolution or low aberration optical elements. Nonetheless, this would increase
the cost of the system and will turn the system specifications only to the processing of
a specific material. On the other hand, most of these approaches do not offer real-time
control, and not having real-time control would slow the processing, which would turn

into low production.

Recently, Xu et al. [12] used a machine-vision-based approach for focus detection.
This approach records the light reflected from the sample. The reflected light has
different patterns depending on the position of the sample. These different positions
are the result of the diffraction patterns. This approach offers a Gaussian curve fitting
method for detecting proper focus. Their method relies on an objective with a high

numerical aperture and does not offer real-time system control.

Furthermore, the effect of surface roughness is being ignored. Since every material
has its own surface topology, one must consider the surface roughness of the material
for precise focusing. In addition, researchers also ignore the effect of detection camera
noise. These noise effects would cause a lousy accuracy and lower the precision of the
micromachining. This low precision again would have turned into a time and money-

consuming effect.

In this thesis, the power of machine learning is being used for focus detection.
As they are being used in many different areas of natural science such as biology [13],
condensed-matter physics [14], and microscopy [15]. Convolutional neural networks
(CNN) [16] have shown huge success in classification and prediction problem rang-
ing from object recognition [17] to agriculture [18]. They also have found place in
focus detection [19-23]. CNNs are already used for digital microscopy, cameras, and

holography and are optimized for accuracy and speed.

With a machine learning approach, this thesis goes beyond what is achieved in [12]
and offers a real-time focus detection approach for a sample with a rough surface and
a detection camera with noise. The approach presented in this thesis also excels in
terms of cost with a low numerical aperture aspherical lens with a long focal length

and a simple USB camera attached to a cheap computer.

First, this thesis will discuss previously done focusing methods for different ap-
plications. This will be followed by explaining the experimental setup used in this
thesis, data acquisition, and surface roughness measurements using a laser scanning

microscope (LSM). Then will progress onto a simulation of a similar laser machining

setup with surface roughness and detection camera noise. Lastly, this work will explain
the machine learning models used in this thesis and give details of machine learning
models, structure, and training methods. After this step, work results will be shared

and concluded.

The codes required for the calculation of LSM standard deviations (std) and
averages (avg) are given in Appendix A. The code required for machine learning models
applied to the experimental data is given in Appendix B and the codes required for a
similar laser micromachining setup and the related machine learning model are given

in Appendix C and Appendix D, respectively.

The experimental part, experimental setup specifications in Table 3.1, machine
learning model given in Table 5.1, machine learning results of experimental data, which
is given in Table 5.2, experimentally observed diffraction patterns for different materials
in Figure 3.4, and the confusion matrices in Figure 5.3 are adapted and used from a
work [1] previously published by the author of this thesis as the first author. This
re-usage is satisfied by the guidance of the publisher’s reproducibility and re-usage of
the author’s work. Further information about the re-usage can be obtained from the

publisher’s website. These figures and tables are cited accordingly.

2. FOCUS DETECTION

In this chapter, conventional focus detection methods will be discussed with a
few examples then it will be followed by the focus detection experiment done in this

thesis.

2.1. Focus Detection and Control

Focus detection is not a unique problem for laser material processing alone. Usu-
ally, whenever there is light and its detection, a precise focus detection and correction

system is required.

One of the most fundamental imaging systems is the eye. Light comes towards
the eye and gets focused on photoreceptors by a lens. This lens’s focal length can
be changed by the movements of muscles in the eye. Therefore different light source
positions can be focused on with the eye. The scene or image will be blurred if the
light is not focused well enough. If the muscle movements of the eyes are not enough
for this correction of blurring, one can use glasses to help the lens in the eye to focus

better.

However, it might seem easy to solve when compared to the eye but having a
focal length changing lens and a high processing power (the brain) is not cheap and

easy to get. So alternate and similar approaches are needed.

2.1.1. Mechanical Focus Control

Most of the current optical systems used in mobile phones or single-lens reflex
(SLR) cameras are zoom-based [24] systems. This is due to the need for different fields
of view in a constant aperture. Zoom-based camera systems usually consists of three or
four elements. Objective group, variator, compensator, and a relay group. Objective

groups are usually fixed in position; however, variator and compensator groups move

[@x}

and cause the change of the system’s focal length. This change of the focal length
affects the F-number (f/#) of the system and therefore changes the field of view. A

schematic of a zoom-based optical system is given in Figure 2.1.

F-number of an optical system can be given as

gy Js
fl#=%5p

where f is the system’s focal length and EPD is the entrance pupil diameter. When

(2.1)

the focal length increases for a constant EPD, f/# also increases, decreasing the field

of view and vice versa.

In Figure 2.1, the system’s focal length changes if the variator changes its position.
This change would cause the focus on the detector to be changed, and one would observe
a blurred image. In order to correct this blurring, the compensator moves as well. This
movement of the two elements can be done with either an electric motor or by the hand

of the user.

In addition, there is also defocusing on the detector by the thermal expansions
and the tolerancing of the optical elements. Another group, the relay group, can solve
this blurring. In modern systems, relay groups can be moved like the compensator and
variator groups. The movement is usually done with the help of an electrical motor.
All of the changes in FOV are done by the meaning of mechanical control. The moving
lens groups have predetermined positions and are moved into these positions depending
on the FOV setting. However, if one increases the configurations on the optical system,
this zoom-based system can be called a continuous zoom-based system. However, this
time the precise location of the lenses cannot be easily predetermined due to low step
sizes and the high number of configurations. Therefore, the help of software is needed

for precise control.

Configuration One

Optical Axis /]\ I
\l/ Detector

Relay Group
\4 Compansator Group
Variator Group
YV
Objective Group
Configuration Two
N

Optical Axis /I\ I
\l/ Detector

Relay Group
) v Compansator Group
Variator Group
\2
Objective Group
N Configuration Three

Optical Axis /]\ I
\l/ Detector

Relay Group

) v Compansator Group
Variator Group

\2
Objective Group

Figure 2.1. Three different focal length configurations are given. While the objective
group stays still, the variator group changes the system’s focal length. The
compensator group corrects the blurring caused by the change of focal length, and

the relay group corrects tolerancing and thermal effects.

2.1.2. Contrast Based Focus Controlling

One of the most common ways to control focus in continuous zoom cameras is
contrast-based focus controlling. In this method, an algorithm tries to find the correct
positions of the moving lenses. This type of algorithm is based on a maximizing of a

focus measure [25] for a given region of interest (ROI).

Let f(z,y) be the grayscale at pixel (z,y) of an image with the size M x N. The

squared gradient focus measure, @(p), for an image detected can be given as
M—-1N-2

B(p)=>_ > [fwy+1)— f(z,9) (22)

=0 y=0
where the lens position is p. Depending on the image taken, this focus measure would

have different values. If the scene is in-focus the value would be high since the pixels
have a high difference between their values, i.e., sharper image. But in a blurred scene,
pixels would have values close to each other so that the @(p) would be lower. A scene

with different &(p) values can be seen in Figure 2.2.

Figure 2.2. Scenes with two different focus measures. (a) When the car is focused

properly. (b) is when the car is blurred.

There is a point that needs to be mentioned here. The ROI is also a problem to

be determined. Focusing is done depending on ROI. For example, in Figure 2.2, ROI
is the car. This ROI can be the whole scene or can be determined manually, just like

tapping on the object on a smartphone screen.

2.1.3. Distance Measurement for Focus Detection

Another possible method to determine the focus is by measuring the distance of
the object which needs to be focused. A simple range-finder can be used to determine
this distance. However, using other hardware makes the system more expensive and

open to threats from outside, such as getting damaged.

Range-finders benefit from time-of-flight [26] measurements. When the range-
finder is pointed to a target at a distance, the source beam produced by the range-finder
hits the target and returns to the range-finder. By calculating the time of flight of the

source beam, the distance to the targets can be found. A schematic of this method

can be found in Figure 2.3.

Source

Range-finder

Reciever Target

Figure 2.3. Range-finder schematic. A source beam goes to a target and reflects from

it. Once the receiver detects the source beam, the flight time can be calculated.

This application can help eliminate the processing time of contrast-based algo-
rithms and yield precise focusing distance to move the lenses. Nonetheless, when the
object is not flat, the system performs poorly in focusing the object properly. The car

in Figure 2.2 is not a smooth object, but if the ROI is the platform on which the car

stays, the range-finder is a good but expensive choice to use.

2.1.4. Convolutional Neural Networks for Focus Detection

After the massive success of machine learning in most scientific fields, they have
also started to be used for focus detection and control. Depending on the nature of

the application, different models are proposed for detection and control of focus.

As discussed in previous chapters, for an optical system with a high number of
FOVs, a contrast-based algorithm was used to determine the position of lenses in order
to have the correct focus of the scene. However, as mentioned, this method also has
problems such as computation requirements and the fact that continuously moving

lenses for focusing and computing for each position is time-consuming and confusing.

In order to solve these problems, a deep learning approach [27] has been offered.
In this approach, for each position of the lens, an ROI was captured for a focused
position. Once this scene capturing for different lens locations is done, data is fed to a
convolutional neural network model. The model consists of six convolution layers and
long short-term memory (LSTM) [28] layer. This model then predicts by looking at a

scene to determine the step size of the lens to have the ROI in focus.

With this method, both computational requirements, extra hardware, and time-
consuming problems are solved. Furthermore, this approach is applied to a whole
scene instead of just an ROI. Details of both machine learning and its tool are given

in Chapter 5.

The approaches mentioned above are merely the tip of the iceberg for focus
detection. Many approaches are specific to a single problem and cannot be easily
generalized. However, the machine learning models can be applied to many problems
with minor changes. Therefore, applying these models to many different problems is

convenient and goes beyond what has been achieved with conventional models.

10

3. LASER MICROMACHINING EXPERIMENT

This chapter will start by explaining the experimental setup. Once this explana-
tion is done, it will be followed by the data acquisition method and LSM measurements

done for the surface roughness std and avg values of the samples.

3.1. Experimental Setup

The experimental setup consists of many different optical elements. A laser
source, a 50/50 beam splitter (BS), two lenses with different focal lengths, a beam
blocker (BB), an adjustable stage, a sample holder, samples, and a detection cam-
era. The experimental setup is illustrated in Figure 3.1. An overview of the element’s
specifications can be found in Table 3.1. A picture of the optical setup consisting of
elements in the experiment with a mirror as the sample is given in Figure 3.2 and a

version of the sample holder with copper, silicon, and steel is given in Figure 3.3.

Table 3.1. Important parameters of the laser and the optical elements in the

experiment. Adapted from [1].

Element Specification

Laser source 0.976 pm
Beam diameter (D) 1 mm
Beam waist 6.84 pm

Beam splitter 50/50 at 45 degrees

Focusing lens focal length 11 mm
Detection lens focal length 35 mm
Detection camera pixel size 3.6 pm

11

-~

-
«u S n-defocus

1

> .
—==ll (I in-focus

A
" o g QD p-defocus
4
Sample

Beam
Splitter

D, Dy
Figure 3.1. Experimental setup illustration consisting of a 0.976 pm laser, a
non-polarizing 50/50 beam splitter, an aspheric lens with f; = 11 mm (denoted as
L1) on a stage with a resolution of 1 um, a sample, a plano-convex lens with fo = 35
mm (denoted as Ly), and a USB camera. The distance from the beam splitter to L; is
given as Dy and to Ly is given as Dy,. The incoming beam to L; and the names of the
corresponding defocus positions are given in the upper left image with an

exaggeration of the distance.

As it is a must in optical setups, the alignment of the elements is also essential

for laser micromachining, which is as follows:

e First, the BS should be aligned with the laser source. This alignment can be done
by putting a mirror in the place of the sample holder. The mirror will reflect the
light. The reflected light at the place of the detection camera should be in the
same direction with equal intensity compared to the incoming one. Once the
beams are equal, this would ensure the BS is at a 45-degree angle with respect
to the laser source and operating correctly.

e Second, L; can be put in its place and match the incoming and reflected beam
by fine-tuning the distance between the mirror and the focusing lens.

e Third, L; and the camera can be put in their place. Fine-tuning of the distance

can be done until the highest intensity to area ratio beam can be observed.

12

e Lastly, the mirror can be changed with the sample when the steps are done
correctly.

e Therefore, the machining setup is well aligned with the sample in-focus position.

Now that the alignment is done, one can trace the path of the light until it reaches

the detection camera as follows:

A Laser source with a 976 nm wavelength emits a coherent light towards a 50/50

beam splitter.

e The BS splits the light in two. One goes to the beam blocker, and the other
propagates to the focusing lens L.

e [; focuses the light onto sample.

e A part of the light gets reflected by the sample and returns to L;.

e This time, L; collimates the reflected light and passes it over to BS.

e The BS again splits the beam. One goes back to the source, and another propa-

gates toward detection lens L.

e [, focuses the beam onto the detection camera.

If the sample is in-focus position, which is when the sample is at the focus position
of L1, a Gaussian-shaped beam can be observed with the highest intensity to area ratio.
This beam has the shape of Gaussian since the laser is a Gaussian source. Co-centric
diffraction rings can be observed if the sample is between L;’s focus position and the
lens itself. This position will be called n-defocus. Furthermore, suppose the sample is
away from the focus position of L; in the opposite direction of L;, a Gaussian spread
beam with lower intensity to area ratio is observed. This position will be named p-

defocus.

Once the laser micromachining system is properly aligned and the expected de-
focus positions are observed, data acquisition can be made in order to train and test

the machine learning models.

13

3.1.1. Data Acquisition

Acquisition of the experimental data in order to train and test proposed machine
learning models consists of a few critical parameters. The first is being Rayleigh length
[29] of the laser micromachining setup. This length is an essential parameter since it
defines the depth of focus. Therefore, the range for data acquisition will be based on

the experimental setup’s Rayleigh length.

Rayleigh length can be calculated using the specifications of the laser source and
L;. The Rayleigh length calculation starts by calculating the beam waist. Beam waist

for a focused light by a lens can be given as

4\ f1
Wy = —= 3.1
0 T D (3.1)

where 2W is the beam waist, and D is the diameter of the beam. Given that 2W is

the beam waist, Rayleigh length Zp can be obtained as
TWg

Putting the values given in Table 3.1, the Rayleigh length of the designed microma-

chining system in this work can be calculated as 150 pm.

Now that the Rayleigh length for the experimental setup is found, data acquisition
can start. In this work, 10 pm step sizes are chosen in the both n-defocus and p-
defocus directions in the range of +150 pm. This step size corresponds to about 7%
of the Rayleigh length which is enough for having a comparable resolution for the
machining. If the step size is too small, the detected image cannot be distinguished
from a consecutive position due to random noise in the system. This random noise in

the experiment will be discussed in the following chapter.

Thanks to the alignment process, the laser starts at the in-focus position when
the images are wanted to be taken. For the training of machine learning models, 4000
frames videos are taken for each sample with defocus ranging from -150 pm to +150
pm with an increment of 10 pm. This would correspond to having 31 videos for each

sample. Experimentally detected defocus at £150 pm and in-focus positions for the

14

mirror, silicon, steel, and copper can be found in Figure 3.4.

(2) (b) (c) (d)
(I) ----

8 un

Figure 3.4. Observed diffraction patterns for different defocus positions. p-defocus
position at z = 150 pm, (II) focus position (III) n-defocus position at z = —150 pm

for (a) mirror sample, (b) silicon, (c) steel, (d) copper sample. Adapted from [1].

Detected experimental positions in Figure 3.4 opens up a new discussion: the
surface roughness of the material. Materials with different surface roughness cause
detected light to lose its circular symmetry in different amounts. As it can be seen
from the figure, going from column (a) to (d) in the same row, the circularity of the
beam changes. After a certain amount of roughness level, it is even hard to say there
is symmetry after all. To model this surface roughness within a reasonable range, LSM

measurements of the samples are taken.

3.1.2. LSM Measurements

Since the shape of the detected light is highly governed by surface roughness, LSM
measurement of the samples is required to correctly model the effect. Three different
measurements are done for silicon, steel, and copper. Measurements are given in the

format of heatmaps and values of height with respect to the position in Figure 3.5.

g um g um
4 N =¥ 25
: 2.0
- 4.0 s
=1 3.0 ’
20 1.0
. o . . 1.0 0.5
100 A 0 100 200 pm 00 00
pm um

i

2 0.5
0 M 0
-2 -0.5
50 100 150 200 um 0 50 100 150 200 pm 0 50 100 150 200 um

(a) (b) (©)

Figure 3.5. LSM measurements. (a) Silicon sample with roughness height std. about
0.050 pm and correlation length about 120 pm. (b) Steel sample with roughness
height std. about 0.300 pm and correlation length about 120 pm. (c¢) Copper sample
with roughness height std. about 150 pm and correlation length about 85 pm.

In order to obtain the std and avg values of the roughness, an easy Python imple-
mentation can be made to calculate the values. Calculated standard deviation values

are given in Table 3.2. The code required for this calculation is given in Appendix A.

Table 3.2. Standard deviation values for different LSM measurements of different

samples. All have 0 mean.

Measurement | Standard Deviation Values

Copper 1 150 nm
Copper 2 219 nm
Copper 3 177 nm

Silicon 1 202 nm

Silicon 2 49.3 nm

Silicon 3 41.5 nm

Steel 1 338 nm

Steel 2 304 nm

Steel 3 558 nm

Now that all the experimental data and the LSM measurements are obtained,

Fourier optics and signal processing tools can simulate a similar setup.

16

Detector Lens

. - | Detector Camera

ik
Laser Source

O?)

=
Adjustable Stage

®
& @

® e

: ® < 'y
Qs &
| _Sae Holdef o % %
‘. 2. . 7

e w“

O %
- “
w

Figure 3.2. Experimental setup consisting of a laser source, 50/50 beam splitter, an
aspheric lens on an adjustable stage, a sample holder, mirror as a sample, a

plano-convex lens, and a USB camera.

17

av

Sample Holder|

(\]

v 1 NanoMax-TS

a
ﬂ‘fw!nuﬁulll\ﬁ\m

gl o

Figure 3.3. Sample holder with copper, silicon, and steel. The holder rotates on the

z-axis without losing the alignment.

18

4. SIMULATION OF A SIMILAR LASER MACHINING
SETUP

This chapter will start by explaining the theoretical background and then simu-
lating a similar machining setup using Fourier optics [30] and signal processing. Lastly,
it will explain the methods to simulate the surface roughness and the detection camera
noise. Simulations will be made in Python. Scientific libraries of it will be used such
as NumPy [31], scikit-learn [32], diffractio [33], Matplotlib [34], and SciPy [35]. The

related code is given in Appendix C.

4.1. Laser Machining Simulation

The laser micromachining system simulation is built around wave propagation
and modulation. These operations are fundamental elements of Fourier optics. In
order to simulate the effect of wave propagation, Fourier integrals are needed. For that
matter, a brief explanation of Fourier integrals will be given, and it will be followed by

the simulation of a similar laser micromachining system.

4.1.1. Fourier Integrals

In one dimension (1D), a Fourier integral of an arbitrary function f(¢) can be

written [36] as

F(w) = % / F(t)ertdt (4.1)

which holds for every ¢. The function f(¢) in Equation (4.1) can be given as

oo

f(t) = /F(w)e_j“’tdw. (4.2)

—0o0

The Equation (4.1) is named as Fourier transform of f(¢) and the Equation (4.2) named

as inverse Fourier transform. These equations above can also be expanded into two

19

dimensions (2D), and the Fourier transform of function g, a function of two independent

variables, can be written [30] as

+00
Flg} = / / g(x,y)e PP IxT I dgdy (4.3)

and the inverse Fourier transformation can be given as
+o00
FHG) = // G(fx, fy el Uxeti g df,, (4.4)

The function g(x,y) can be real or complex valued function. The function G(fy, fy)
is the Fourier transform of the function g(z,y) and in order to have the existence of

g(z,y) following three conditions (Dirichlet) [37] are sufficient and must hold.

e |g| integrable over infinite (x,y) plane.
e g has a finite number of extrema and discontinuities in any finite rectangle.

e g has no infinite discontinuity.

Now that an essential tool in Fourier optics is stated, further discussion of wave prop-

agation can be made by starting from the diffraction theory.
4.1.2. Theory of Diffraction of Light

Consider an aperture at z = 0, illuminated by the electric field distribution
E(2',y', 2 = 0) within the aperture itself. For a point lying in another plane such that
2z > 0, the net field at this point is the contribution of each point emitting wavelets from
the aperture. An illustration of this is given in Figure 4.1. Given that each wavelet is
spherical, the mathematical formulation [38] of the net ﬁeld can be given as

E(x,y,2) :——// :cyz-O)R 'dy’ (4.5)

aperture

where A\ is the wavelength of the light and R = \/ 24+ (y — ') 4+ 2. The Equa-

tion (4.5) is called as Huygens-Fresnel diffraction formula. This equation can be solved
for the light =,y = 0. This light is called on-axis. However, a numerical approach is

needed for the off-axis calculation. Nonetheless, this is the usual case for most wave

20

propagation applications. Now it is time to discuss of propagation of light in free space.

Ex"y’, 0)
E(x.y, 2)
R
xy)=(0,0) (x,y)=(0,0)
7=z
z=0

Figure 4.1. Electric field distribution E(xz/,y/,0) at z = 0 which illuminates the plane

at z = z. Therefore creating an electric field distribution at z = z as E(x,y, 2).

4.1.3. Helmholtz Equation and Approximations

A light field can be written as
E(rt) = E(r)e ™" (4.6)

where w is the frequency. This light field is a solution to the equation

O’E
VQE - 60@ = 0. (47)

Taking the derivatives of the light field in Equation (4.6) and putting it in Equa-

tion (4.7), one can obtain

V2E(r) + K*E(r) = 0. (4.8)

21

Equation (4.8) is called Helmholtz equation. This equation is a special case, single fre-
quency, for the wave equation. Now, the next step is to make the scalar approximation
and assume E(r) is a scalar as E(r). With this approximation, the Helmholtz equation

becomes
V2E(r) + kK*E(r) =0 (4.9)
which can also be written as
V2 + kY E(r) = 0. (4.10)

This is a valid approximation for spherical waves under the condition of kr > 1.
The Helmholtz equation became time-independent by using the light field given in
Equation (4.6) and the light field can be written as

E(r) = A(r)e . (4.11)

One last approximation is needed for the wave propagation simulation to be easily

calculated with numerical methods.
4.1.4. Fresnel Approximation

The Fresnel approximation is when the R in the denominator is approximated
by z and expanded under the assumption of z? > (x — 2/)? 4+ (y — /). This is a valid

approximation when restricted to small angles. The approximation can be given as

Y — 2 N2 Y
R:Z\/H(fﬂ VP =y) L [oy —y)
22 222

If one puts the approximation into the Equation (4.5), will obtain the following ap-

vl 412

proximation equation as

e e 2

Az

- ikz i A (22 4y?)

E(r.y,z) = - / / (2, y,0)e'z ") =it @) gy qy/ - (4.13)

aperture

This integral in Equation (4.13) somewhat is easier to solve analytically compared
to the Equation (4.5). Solving this integral will yield the propagated light field at a

distance z for the light source given in Equation (4.11).

22

One crucial point here needed to be mentioned. A Gaussian beam is not a solution
to Equation (4.5). However, it is a solution to the paraxial Helmholtz equation. The
paraxial Helmholtz equation is another approximation for the source light in Equa-
tion (4.11). Assuming the amplitude of the light source in Equation (4.11) changes

slowly in z compared to the wavelength, which can be written as

0A = g—féz < A, where 6z ~ A (4.14)
which means
0A A
=~ KA. 4.15
0z A ()

This would make the second derivative of the amplitude of the light source in Equa-

tion (4.15) equal to

D?A DA
a0 $hoo < E*A. (4.16)

Therefore, Laplacian in Equation (4.10) can be expanded as its longitudinal and trans-

verse (:()Inp()nents as

V2 =[V3 +07. (4.17)

Now, Laplacian in the Equation (4.10) can be applied to the light source in the Equa-
tion (4.11) and the equation

V2 [A(r)e ™) 4+ [02A(r) — 2ik0, A(r) — K2 A(r)]e™™ + K2 A(r)e ™ =0 (4.18)

is obtained. When the terms are canceled, one can obtain the paraxial Helmholtz

equation as
V3 A(r) — 2ik0, A(r) = 0. (4.19)
Before going into the simulation of a similar laser micromachining setup, a few funda-

mental simulation examples can be given. Therefore, the next section will consist of

the propagation and focusing of waves.

23

4.1.5. Gaussian Beam and its Propagation

A Gaussian beam [39], which is at z = 0 can be written as
2

r

E(z,y,2=0) = Ege o (4.20)

where Wy is the half of beam waist and r = \/x? + y? 4+ 02. The beam can be plotted
for its intensity in 1D. The plot is given in Figure 4.2.

The beam’s phase and intensity with respect to z can be given in Figure 4.3. If
the beam passes through a plane with a refractive index of 1.5 which lies at z = —25
pm, the position of the beam waist would change. Therefore, the beam’s new intensity
and phase plots can be found in Figure 4.4. Changes in the phase and the position of

the beam waist can be easily seen when Figure 4.4 compared to Figure 4.3.

0.175 A

0.150 -

0.125 A

0.100 -

intensity

o

o

3

u
1

0.050 -

0.025 ~

0.000 - . .
—100 =50 0 50 100

X (um)

Figure 4.2. Gaussian beam intensity plot with respect to its position.

24

X (um)

—100 =20 0 50 100

X (um)

—100 -50 0 50 100
z (um)

Figure 4.3. Gaussian beam phase (top) and intensity (bottom) plots with respect to

its position in z.

X (um)

—100 -50 0 50 100

X (um)

-100 =50 0 50 100
z (um)
Figure 4.4. Gaussian beam phase (top) and intensity (bottom) plot with respect to
its position in z when the beam passed through a plane at z = —25 pm with a

refractive index of 1.5.

4.1.6. Focusing of a Wave

In order to simulate the focusing of a wave, it would be more informative to
show it with a plane wave. A simple illustration of focusing a plane wave is shown in
Figure 4.5. The intensity distribution of a plane wave, F'(x,t), with respect to position

is given in Figure 4.6.

26

Optical Axis
Focus Position

E—
kK V

Lens

Figure 4.5. An illustration of focusing of a plane wave with a thin lens.

1.0

0.8 A

e
(o)}
1

intensity

o
EaY
1

0.2

0.0 I Ll I
—100 -50 0 50 100

x (um)

Figure 4.6. Intensity distribution of a plane wave.

If this plane wave supposes to pass through a thin lens with a focal length of

fo =11 mm, the beam would be modulated by the following function
%)

i (T
Lo(z) = ¢ ™70 . (4.21)

Therefore, the wave after the lens would have the form of

Fy = FL,. (4.22)

27

If this wave would be propagated distance of 11 mm using Equation (4.13) with the
parameters related to this propagation and observed its intensity, one would obtain the

result given in Figure 4.7.

0.07 -

0.06 A

intensity

©c o 9

O © O

w & U
1 | |

0.02

0.01 -

0.00 A

—-100 —50 0 50 100
x (um)

Figure 4.7. An intensity plot of a plane wave focused by an 11 mm lens.

One exciting investigation can be made by checking the positions different than
the focus. This is particularly interesting since it governs the physics in this thesis to
make focus detection. The observed intensities when the detection made +10 mm of

the focus position are given in Figure 4.8.

28

0.05
0.05 -
0.04 4
0.04 1
> 0.03 4
g 0.03 -
2
2
=
0.02 4
0.02 -
0.01 4 0.01
—100 =50 0 50 100 -100 -50 0 50 100
x (um) x (um)

Figure 4.8. An intensity plot of a plane wave defocused. Observed intensity 10 mm
before the focus position (left). Observed intensity 10 mm after the focus position

(right).

In Figure 4.8, the effect of defocusing can be seen easily. When the detection is
made before the focus position of the lens, diffraction ring patterns appear. Moreover,
if the detection is made after the focus position, a wide wave compared to the focus
position will appear. This result is used for the focus detection in the experiment and

the simulation.
4.1.7. Laser Machining Simulation

A similar approach of Xu et al. [12] is used in this work with a vital difference. The
reflecting light in this simulation is considered a Gaussian wave instead of a spherical

wave. This is mainly due to having a Gaussian laser beam source.

A Gaussian beam, which is the solution to the paraxial Helmholtz equation in

3D, can be written as

2

Up(z,y,2=0) = Epe “3. (4.23)

The wave’s propagation can be calculated using the Fresnel approximation in Equa-

29

tion (4.13) for L instead of z. The propagation of Equation (4.23) for L distance can

be given as

oo ik(@?4y?)

Uy(z,y, L) = —i—" " Us(', 4/, 0
1(z,y, L) N7 // o(2’,9',0) (4.24)
etk = etk et dx'dy'.

2L
After this propagation, the reflected wave arrives at the front surface of L;. The

modulation [40] of the incoming wave by a lens with focal length f; can be given as

—ik (22 44?)

Liz,y)=e 2h . (4.25)
Therefore, the wave just after the L; in the form of

Us(z,y) = Ui(z,y)li (2, y). (4.26)
Another wave propagation is needed towards L,. This propagating can be obtained
by changing L to D in Equation (4.24) and Ej to Us. The calculated wave just before
Ly is Us. Again, modulate the wave with Ly. Since Ly have focal length of f5. So,
changing f; into fy in the Equation (4.25) and call this lens modulation l,. Now, the

initial wave is in the form of

Us(z,y) = Us(x, y)la(2, y). (4.27)
One more propagation is needed to make the wave reach the detection camera by
propagating it in the free space for fy distance using Equation (4.24) and naming
it Us. To obtain the images on the detector screen, pixel values are needed to be
calculated. This would correspond to the intensity of the wave. Hence, the intensity

distribution at the camera is as

I(z.y) = |Us|*. (4.28)
Designed simulation’s length for two consecutive data points corresponds to 0.909 pm.
For this setup, the simulation has less than a A for each consecutive data point. Fur-

thermore, the generated images include more than 99% of the beam’s energy. An

illustration of these propagations and lens modulations is given in Figure 4.9.

30

Uo UiAU: UsAUs Us
=
Source = Detector
Loy P \4
| L2

Figure 4.9. Ilustration of the simulation consists of two lenses for wave modulation,
three parts for wave propagation, and a detector. The source beam, Uy, propagates

three times and gets modulated by each lens before reaching the detector.

4.2. Surface Roughness Simulation

There are two essential parameters for defining a rough surface: standard devi-
ation and correlation length [41,42]. Surface roughness (input noise) with these two
parameters can be modeled with many different approaches, including the fast Fourier
Transform (FFT) method [43], Mandelbrot-Weierstrass Function [44], and neural net-
works with single or multiple inputs [45]. These approaches are mainly based on adding
random heights to the material’s surface. In this thesis, moving average processes [46]
will be used to simulate the surface roughness. This way, the effect of surface roughness

can be observed for the simulation of a similar laser machining setup.

The method of moving average processes starts by generating a random Gaus-
sian noise with zero-mean and root-mean-square (RMS) value o height distribution
ho(z,y). The height distribution hy does not have any correlation between the points.
To correlate the points, one needs to multiply this distribution with a weight func-
tion to obtain a Gaussian distribution having the same mean and RMS value but now
correlated points. Therefore, the process can continue by defining the autocorrelation

function, which is a Gaussian, as

c(r) = Phlr £ R)) % (4.29)

o2

1

The correlation length is when the autocorrelation function falls to its e value which

is A\g. Now, the Fourier transform of Equation (4.29) needs to be taken to obtain the

31

power spectrum function. This calculation is given as

1 [==,
P(k) / e *RIR. (4.30)

" or

If the inverse Fourier transform of square rooted Equation (4.30) is taken, one obtains
the weight distribution, w(x,y), to turn our uncorrelated Gaussian distribution into a
correlated one. Therefore, multiplying uncorrelated distribution hg(x,y) with w(x,y)

yields the new distribution equation

h(z,y) = ho(z,y)w(z,y). (4.31)
As a result, a Gaussian distributed surface roughness with the std of o, zero-mean, and
the correlation length Ao, A(x,y), in Equation (4.31) is obtained. Now that the surface
roughness function is found, one can weight the initial beam in Equation (4.23) with

Equation (4.31) and obtain the initial beam as
Us(z,y) = Uo(z, y)h(z,y). (4.32)

The effect of surface roughness can be assumed as retarding the wave in phase [47,48].

So the phase of surface roughness simulations can be found in Figure 4.10.

The phase distributions in Figure 4.10 also clearly explains the importance of cor-
relation length. An increase of the std has a similar effect as the decrease in correlation
length. So one must consider the surface roughness not just by its std but also by its
correlation length for this application. A further discussion will be made in conclusion

with the results of machine learning models.

For this simulation, surface roughness standard deviation levels are based on the
LSM measurements of our copper, steel, and silicon samples. LSM Measurement can
be seen in Figure 3.5. The effect of correlation length can be observed experimentally
as well from Figure 3.4. Even though the copper sample has a lower std than the steel,

it still has the worse form of the recorded light.

32

Correlation length (pm)

50 125 200 275
I? I I T
0050, 'S

o
—_
[\
W
.

Internal noise std (um)

Figure 4.10. Phase values of roughness simulation for different noise stds and

correlation lengths.

4.3. Detector Noise Simulation

Since the machining setup is not isolated from outside effects and the detector
itself consists of noise, it is necessary to consider the possible effects of those noises on
the detection system. These noises can be considered Gaussian [49], and the output
(detection) noise level can be compatible with a cheap camera’s detection noise. Thus,
given that I(z,y) is the image intensity at point (x,y), the noisy image intensity is

given by

I'(,y) = 1(,y) + Nout (4.33)

33

2

o). Generated images that include both input and output noise

where 7oy ~ N (0, 0

for focus position can be found in Figure 4.11.

(a) (b) () (d)

)

(In) L] L] L]

1

14 um 14 um 4 pm 4 um
B = = TE

1

(111

Figure 4.11. Simulated images when different noise types applied to the in-focus
position (a): (I) Only input noise with constant correlation length applied for (b) 250
nm std, (¢) 500 nm std, (d) 750 nm std. (II) Only output noise applied for (b) 0.01
std, (c¢) 0.03 std, (d) 0.05 std, (III) when both of the noises above applied.

4.4. Data Generation for Simulation

Details of simulation parameters can be found in Table 4.1. Using the parameters
in Table 4.1, one can generate images for each sample position with surface roughness
and detector noise. Images are generated in .hb format for flexibility, organization, and

practicality for carrying extensive complex data.

The number of images generated is 200 per defocus position with a specific value
in both surface roughness value and detector noise. Eleven different defocus positions,
ten different surface roughness standard deviations, ten different surface roughness

correlation lengths, and ten different detector noise standard deviations.

34

For example, in defocus position —150 pm there are 200 images with surface
roughness correlation length 50 pm, surface roughness standard deviation 0 pm, and
detection camera noise standard deviation 0. Two hundred more for detection camera
noise standard deviation 0.006 and the rest is the same. This goes on for each value of
detection camera noise standard deviations, surface roughness correlation lengths, and
standard deviations for one defocus position. Then this process is repeated for each
defocus position. In total, two million two hundred thousand images are generated to
be used by the machine learning model. Each image is square and has a size of (50,
50) pixels. The generation of the images is time-consuming due to wave propagation
and correlation length generation. However, using the power of multiprocessing with

a decent computer drastically reduces the computation time.

Table 4.1. Parameters and their values used in Python code for simulation of a

similar laser machining setup with noise included.

Simulation Parameters Values
Laser wavelength 0.976 pm
Rayleigh length of the system 150 pm
Beam waist 13.7 pm
Focusing lens focal length 11 mm
Detection lens focal length 150 mm
Distance between the lenses 300 cm
Defocus distances {-150, —140,...,0,...,140,150} pm
Detection camera noise std. 10 equally spaced numbers from 0 to 0.05
Surface roughness correlation length | 10 equally spaced numbers from 50 pm to 500 pm
Surface roughness height std. 10 equally spaced numbers from 0 pm to 0.5 pm
Generated image size (50, 50) pixels

5. MACHINE LEARNING FOR FOCUS DETECTION

This chapter will start by broadly explaining machine learning methods and then
share the results of four different machine learning methods for the experimental data.
Finally, will apply the machine learning model with the best result to the simulated

data and share the prediction outcome.

5.1. Machine Learning

Computer systems or machines must make a decision depending on their situa-
tion or the process they are used in. In order to make decisions, they are equipped
with artificial intelligence, a simulation of human intelligence in machines or systems.
This intelligence can be embodied by just using hard-coded if statements or a more

computational approach, machine learning [50].

Machine learning consists of many approaches, such as supervised, unsupervised,
and reinforcement learning. Depending on the problem at hand, different methods can

be chosen.

In supervised learning models, a learner receives training data, which are labeled,
and makes a prediction depending on what it learned from the data. This learning
process depends on the data and the problem. There are many different supervised
learning models in the literature, and each can be better than the others depending
on the problem that needs to be solved. For example, for image processing problems,
CNNs are the state-of-the-art model. However, another approach, like a simple linear

regression [51] can be much more helpful for a time series problem.

The use of machine learning models has found application in many different areas
of physical sciences [52]. This is due to their vast potential and power in solving complex
problems. These methods also found a place in laser material processing to improve

the process accuracy and speed [53]. Furthermore, researchers [54] used the application

36

of CNN for single-axis beam translation detection for the monitoring of the machining

process.

Machine learning can solve the problem addressed in this thesis efficiently and
accurately. Since the data are labeled, i.e., defocus distances, the focusing problem
is solvable with supervised learning. First, four supervised learning models will be
considered for the data obtained by the experiment. These models can be split into
two groups: non-CNN-based and CNN-based models. Non-CNN-based approaches
are logistic regression and multi-class support vector machines. CNN-based are CNN
classifier and CNN predictor. The best-performing model, the CNN predictor, will

then be used for the simulated data.

5.2. Machine Learning Models for Experiment

This section will explain the structure of experimental data and ML models used

for the data.

5.2.1. Data Structure

Two recordings with 4000 frames for each material (copper, steel, silicon) and
defocus distances in the range of 150 pm with 10 pm step sizes as an 8-bit grayscale
image with a 40 by 32 pixels resolution. One of the recordings is saved for testing,
and the other one is used for training and validation. Split of 85 — 15% used for train-
ing/validation. This would correspond to 3400 images per material for each defocus

distance for training and 600 images for testing.

5.2.2. Non-CNN Models

Processing starts by flattening each grayscale 40x32 image to a vector. This
is followed by principal component analysis [55] (PCA) to the splitted training and
validation data. This process reduces the vector’s correlated components into its un-

correlated principal components. PCA assumes linear separability and works well while

37

using it to reduce dimensionality. This process also conserves the essential features.
Once the principal components are obtained from the training data, validation data is
projected to a subspace of the principal components. The library scikit-learn is used

for the implementation of PCA and the machine learning models.

First, logistic regression is used to classify each frame’s focus distance. The input
to the logistic regression classifier is the PCA projected vector. This model used Lo

regularization with the strength of 1.0.

Then, one-versus-rest multi-class support vector machine (SVM) is used. The

kernel is RBF and again L, regularization with the strength of 1.0.

5.2.3. CNN Models

Two different CNN models are trained. One is for classification and the other
for predicting the defocus distance. Both models hold the same architecture, while
the final layer is the only difference. These networks are coded with PyTorch [56] and

trained with the batch size of 16. The architecture model are given in Table 5.1.

CNN pretictor model tries to predict a real number from the image it is fed in
the [0, 1] range. This would mean that 0 is —150 pm and 1 is +150 pm. Each predicted
output is mapped to the closest defocus distance class for accuracy computing. For
example, 126 is being mapped into 130. For the robustness of the model, the training
was done for 20 pm step sizes. So the training defocus distance range is {-150, -130,...,
-10, 0, +10,..., +130, +150} pm. However, the model is tested and validated on all
of the data.

CNN classifier tries to classify the image it is fed. The model is trained for
10 epochs. The weights of epoch with the highest validation accuracy are saved for

classifying.

38

Table 5.1. The architecture of the CNN is used for classification and prediction,

5.2.4. Results of Machine Learning Models for Experiment

excluding the final layer. Adapted from [1].

Layer

Parameters

Input

Size: 1x40x32

Conv

Out channels: 32
Kernel size: (3,3)

Max-pool

Kernel size: (2,2)
Stride: (2,2)

Conv

Out channels: 64
Kernel size: (3,3)

Max-pool

Kernel size: (2,2)
Stride: (2,2)

Flatten

Output size: 1x3072

Dense

Output size: 512

Dense

Output size: 256

Four designed models are tested on previously unseen data, and the results are

given in Table 5.2. These results also include the inference speed of each model since

the speed is essential for real-time applications.

Table 5.2. Accuracy and CPU inference speed of each model when tested on the

testing dataset. Adapted from [1].

Inference speed

ML Model | Accuracy of Copper (%) | Accuracy of Silicon (%) | Accuracy of Steel (%)
on CPU (Hz)
SVM 94 92 95 47
LogReg 98 98 99 7580
CNN-P 99 96 91 1408
CNN-C 100 100 100 1170

39

As mentioned before, CNNs are the state-of-the-art architecture for image classi-
fication problems. Therefore, it is not surprising to see the best performance came from
CNN models. CNN-C (CNN for classification) performs best among the two designed
CNN models. The result for CNN-P (CNN for prediction) is impressive because it only
trained on half of the defocus training data. CNN-P outperformed the SVM model,

which trained on all the defocus training data.

020 020 020 ; ‘
Z 015 015} 015 |
2 o0 010 010 |
g Nk
2 005 005 005 | |

0.00

0.00 0.00 :
-15-10 -5 0 5 10 15 -15-10 -5 0 5 10 15 -15-10 -5 0 5 10 15
Prediction error (um) Prediction error (um) Prediction error (um)

M Copper M Silicon [7] Steel Correct classification zone

Figure 5.1. Histogram of the testing prediction errors for each material. The correct
classification zone indicates the tolerable range of prediction error in which a

prediction results in correct classification.

When it comes to processing speed, the logistic regression model is the best. This
is an expected result since it is a smaller neural network model compared to CNN-C
and CNN-P. SVM is the worst, this is due to testing of 31 different SVM models for
each given image with a one-versus-rest strategy. Moreover, CNN models perform
similarly to each other when it comes to speed. Testing on GPU does not increase the
inference speed significantly. This means the models are already well equipped with a

CPU (Central Process Unit) and do not require expensive processing power.

The performance of CNN-P requires more close look. The close look starts with its
confusion matrices for three different surfaces. These matrices are given in Figure 5.3.
The predictor model outperforms logistic regression and SVM models and only loses
to CNN-C just by 1% for copper. The confusion appears on 0pm, where around 30%
of images were incorrectly classified to be at —10pm. It performs similarly to silicon

and only incorrect classification for 140 pm. Steel is the worse performing among the

40

three. Defocus distances of 0 pm and —20 pm were never correctly classified.

£ 15 15 15

2 10 10 10-

e 5 i I 1 5 3 5 I

= I1T ll T IE 7 h T

@ .z T 3 ,Llill'r T £2f2,3% l +l g HE L]] gl Il
0=zt %li TTTT $1L P 0 % l %l T O #2°° *Hq17l Ty (Te2dts

c T T i Ll ! 4 u 111 [T F 54T

% | T# TTTT%T Frglt s ++T%T TTT% 5l] T 1] Jl gt

E -10¢ -10 -10+ l

E _15 [elelolololololsleleololololole] _15 [ele]lolololoolslelololololole] -15 OOOOOOOéOOOOOOO

INSBEFATNTEBENT INSBOFAN NI BN INSBEFNONISBSNT
Defocus distance (um) Defocus distance (um) Defocus distance (um)

m Copper mSilicon = Steel Correct classification zone

Figure 5.2. Box and whisker plots of testing prediction errors for each material. Each
plot’s lower and upper fences represent the minimum and maximum prediction error
with outliers excluded. The correct classification zone indicates the tolerable range of

prediction error in which a prediction results in correct classification.

Furthermore, box and whisker plots, which are given in Figure 5.2, can be inves-
tigated for each material. The similar behavior of Copper and silicon prediction can
be observed again. Maximum prediction error is about 10 nm. However, steel has a

higher prediction error band compared to the other two materials.

One last investigation can be made by obtaining the probability distribution of
each possible prediction error. This investigation is given in Figure 5.1. Copper and
silicon do not have a bigger prediction error probability than steel. The peak probability

of making a prediction error is lower for the copper sample.

5.3. Deep Learning Model for Focus Prediction in Simulation

Now that the results of different models are seen, the performance of CNN models
is better than SVM and logistic regression. Therefore, in this section, CNN models will
be used to determine the position of the sample for correct focusing. More specifically,

CNN-P will be used due to its ability to predict unseen defocus distances.

41

150 mg 1.0 150 mg 1.0 150 m 1.0
130 omy 130 | my 130 (°m
110 L -110 u 110 L
90 L 0.8 .90 L 0.8 90 u 0.8
70 L -70 L 70 m
50 u -50 u 50 "
5 -30 " 06 T -30 " 06 B -30 " 06
& .10 *u & .10 " s 10 H
g 10 u 2 10 "a @ 10 "
= 30 L 04 F 30 L 04~ 30 L 0.4
50 L 50 " 50 L
70 n 70 n 70 L5
90 - 0.2 90 LS -0.2 90 - -0.2
110 n 110 n 110 n
130 L 130 n 130 L
150 " oo 150 () 150 " Tloo

oo

Figure 5.3. Confusion matrices of CNN-P when tested on the testing datasets of

copper, silicon, and steel, respectively. Adapted from [1].

5.3.1. Data Structure

200 images per defocus position ranging from £150 pm with 10 pm increments
and with a specific value for surface roughness values and detection camera noise. The
data structure is as explained in Section 4.4 when the generation of the images is made,

and the parameters to simulate this data are given in Table 4.1.

However, as mentioned before only defocus distances {-150, -130, ..., 0, ...,

+130, +150} pm used for training and the testing and validation are made on all the

data generated.

5.3.2. Model Parameters

The same CNN-P model was used for syntactic images as well. The network

structure is given in Table 5.1. The model is trained with a batch size of 16.

Model is predicting a real number in the range of [0, 1] which corresponds to
defocus distances from —150 to 150 pm. The predicted outputs are mapped to the

nearest defocus distance class. For example, 112.2 is mapped to 110.

42

5.3.3. Prediction Results

Once the training is done, the model performance testing can start. First, the
model’s prediction accuracy can be investigated when keeping two of the three param-
eters fixed and while changing the third. The result of this investigation can be given

in Figure 5.4.

When the correlation length and external noise are constant, prediction accuracy
decreases while the internal noise std increases. This is an expected result also due to

higher noise std causing the surface to be rougher.

100F ‘ ‘ ‘ ‘ 9 100F ‘ ‘ ‘ ‘ 9 100F

g 90¢] 90’._.—‘*'-‘\._.\“; i

>

e 80f | 80f 1 8o}

3

g 70F | 70t 1 70}
60E.

‘ ‘ ‘ ‘ 4 60k ‘ ‘ ‘ ‘ d 60k ‘ ‘ ‘ ‘ d
0 100 200 300 400 500 00 01 02 03 04 05 0.00 0.01 0.02 0.03 0.04 0.05
Correlation length (um) Internal noise std (um) External noise std

W Changing correlation length Bl Changing internal noise std [71 Changing external noise std

Figure 5.4. Plots of the testing accuracy for changing correlation length, internal
noise std, and external noise std. In each plot, the model is tested on simulated

images whose parameters match the parameter on the r-axis.

When the internal noise std and external noise std is constant, the accuracy
increases as the correlation length increase. This is an expected result since the higher
the correlation length, the smoother the surface. Therefore, minor deformation of the

reflected light.

Lastly, when the parameters of surface roughness are constant, the accuracy gets
worse and worse with the increase of external noise std. This is mainly due to having
massive noise in the detection system and making the observed light too noisy to

determine a reasonable outcome.

43

In order to further investigate the effect of the noises on prediction accuracy, one

can check the results of the accuracy heatmap given in Figure 5.5. The model performs

exceptionally well for high correlation length and low external and internal noise std

values. The prediction values go above 90% for this case.

However, the model performs poorly as expected for high external and internal

noise std and low correlation length. Even if the result may seem low and unsatisfying,

the values used for the noise are way beyond what is experimentally measured with

LSM. Therefore, it is reasonable to say the model is making reasonable decisions. The

predictions it make are still have higher success, more than ten times, than just random

guessing.
Correlation Length: 50 (um) Correlation Length: 100 (pm) Correlation Length: 150 (um) Correlation Length: 200 (um)
51 50 43 48 40 3 . 5 0.5 EERCERCH [0y 100 99 98 97
= 48 55 45 100 97 97 100 99 98 97
2 49 51 46 X R:§100 99 97 8 [0X7Y 100 100 100 98
g 100 100 98 9 100100 99 99
4 [oRe] 100 100 99 8 [o)e] 100 100 100 99
g 100 99 9 8 100 100 100 98 8 100 100 100 99
= WA 100 100 100 97 [e}4 100 100 100 99 8 [e}4 100 100 100 100 98
g 97 96 89 82 B 100 100 100 98 100 100 100 100 98 9 100 100 100 99 98
E 100 100 100 99 97 92 87 80 RN 100 100 100 100 97 0,1 100 100 100 99 97 Bl 100 100 100 100 98
- 100100 100 99 99 95 87 87 100 100 100 100 97 100 100 100 99 98 100100 100 99 98 9
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
External noise std External noise std External noise std External noise std
Accuracy (%)
| .
40 60 80 100

Figure 5.5. Heatmap of the average testing accuracy. A cell of a heatmap with

internal and external noise std ¢ and j, and correlation length & represents the

classification accuracy of the predictor model when classifying testing data that have

internal noise std, external noise std, and correlation length 7, 7, and k, respectively.

44

6. CONCLUSION

This thesis offers four possible machine learning models for real-time focus de-
tection and controlling of ultra-fast laser micromachining in a cheap, affordable, and

easily applicable way.

First, an experimental setup is built for detecting reflected light from the pro-
cessing material. This experimental setup is given in Figure 3.1. Depending on the
material’s position compared to focusing lens focus, a tight Gaussian beam, a wide
Gaussian beam, or diffraction rings appeared. These positions are called in-focus, p-
defocus, and n-defocus, respectively. This setup consists of a long focal length aspheric
lens and a cheap camera, making the setup cheaper and easily buildable compared to

previous works.

Once the experimental setup is established, recordings are taken for different
defocus positions ranging from +150 pm with 10 pum step size. Then these recordings

are used to train, validate, and test four different machine learning models.

These four machine learning models are logistic regression, support vector ma-
chines, a convolutional neural network for classification, and a convolutional neural

network for prediction. All of these models

The prediction accuracy and inference speed of all four models are given in Ta-
ble 5.2. SVM has the worse performance overall. It is both slow and has terrible
prediction accuracy compared to other models. A change in the one-versus-rest strat-
egy might increase its performance. Among the others, logistic regression is best with

speed since it is a shrunk version of CNN-C and CNN-P architectures.

If the comparison is made just by looking at the accuracy numbers between the
CNN models, CNN-C takes the crown. Nonetheless, it only does classification and can

only classify the defocus distances it has trained on. However, CNN-P is trained on

fewer data and can predict the defocus distances it has not trained on. This situation
puts the CNN-P in a unique position. The fact that it can perform at a similar
level and beyond with fewer data suggest that the prediction model is better than the

classification for this type of problem.

Furthermore, the inference speed of CNN-P also makes it applicable for real-
time use. This is a necessary trait to have if the focusing time is high, then the

micromachining speed is reduced therefore costing time and money.

The machine learning approach’s efficiency can also be realized by comparing the
beam waist and detector pixel size, which is given in Table 3.1. This comparison of
6.84 pm beam waist and 3.6 pm detector pixel size shows the low-resolution setting
and machine learning methods can efficiently make focus detection in small step sizes.

This trait also allows for having a cheap setup with high performance.

When micromachining is considered, the material which is to be processed in-
cludes surface roughness. For this matter it should be considered as well. Moreover,
since this experiment consists of a detection camera, one must also consider the noise

in the detection camera as well.

In order to consider the surface roughness, Fourier optics simulation is done for
a similar laser micromachining setup. The moving average process is used to generate
surface roughness, and a simple Gaussian noise model is used for the detection of

camera noise.

Effect of each noise is seen clearly in Figure 5.4. When the correlation length
increases, the surface becomes smoother, and the CNN-P model can make better pre-
dictions. However, after a certain level of increase, the accuracy does not get the benefit
too much, and the accuracy saturates. The model already starts from a good accuracy
level. and it increases more than 20% when the surface roughness correlation length is

increased about 10 times.

46

The surface roughness std negatively affects the accuracy when the std is in-
creased. The surface becomes rougher with higher maximum and lower minimum.

However, increasing from 0 to 500 nm, the accuracy stays still above 80%.

External noise has to most impact on the accuracy. This is an expected outcome,

as discussed before. However, the noise level is about 5% the accuracy is still above

70%.

Finally, heatmaps in Figure 5.5 adds another layer of information to this work.
Depending on the noise levels, the model can make prediction accuracies differentiating
from 100% to 36%. Nonetheless, the prediction is below 70% when the noise levels are

above what is measured in real life by LSM.

In this thesis, a cheap and effective focus detection system based on machine
learning models has been offered for ultra-fast laser micromachining in real-time ap-
plication. The model offered tested in both experiment and simulation and achieved
high accuracy and robustness to noise in the system. The model can be applicable to
many materials such as copper, steel, and silicon with the same architecture and can

run on a cheap computer without a GPU.

The preliminary results of this thesis have been presented and published. For the
experimental part, please refer to Polat et al. [1] and please refer to Elahi et al. [57]

and Polat et al. [58] for the simulation part.

AT

REFERENCES

. Polat, C., G. N. Yapici, S. Elahi and P. Elahi, “Machine Learning-Based High-
Precision and Real-Time Focus Detection for Laser Material Processing Systems”,
Optics, Photonics and Digital Technologies for Imaging Applications VII, Vol.
12138, pp. 7-13, Strasbourg, 2022.

. Choudhury, I. A. and S. Shirley, “Laser Cutting of Polymeric Materials: An Ex-
perimental Investigation”, Optics € Laser Technology. Vol. 42, No. 3, pp. 503-508,
2010.

. Rauh, B., S. Kreling, M. Kolb, M. Geistbeck, S. Boujenfa, M. Suess and K. Dilger,
“UV-Laser Cleaning and Surface Characterization of an Aerospace Carbon Fibre
Reinforced Polymer”, International Journal of Adhesion and Adhesives, Vol. 82,

No. 1, pp. 50-59, 2018.

. Akman, E., A. Demir, T. Canel and T. Sinmazcelik, “Laser Welding of Ti6Al4V
Titanium Alloys”, Journal of Materials Processing Technology, Vol. 209, No. 8, pp.
3705-3713, 2009.

. Lahoz, R., G. F. de la Fuente, J. M. Pedra and J. B. Carda, “Laser Engraving
of Ceramic Tiles”, International Journal of Applied Ceramic Technology, Vol. 8,
No. 5, pp. 1208-1217, 2011.

5. Ravi-Kumar, S., B. Lies, X. Zhang, H. Lyu and H. Qin, “Laser Ablation of Poly-

mers: A Review”, Polymer International, Vol. 68, No. 8, pp. 1391-1401, 2019.

. Hung, O.-N. and C.-W. Kan, “Effect of CO2 Laser Treatment on the Fabric Hand
of Cotton and Cotton/Polyester Blended Fabric”, Polymers, Vol. 9, No. 11, p. 609,
2017.

. Padmanabham, G. and R. Bathe, “Laser Materials Processing for Industrial Ap-

10.

11.

12.

13.

14.

15.

16.

48

plications”, Proceedings of the National Academy of Sciences, India Section A:

Physical Sciences, Vol. 88, No. 1, pp. 359-374, 2018.

Chen, T.-H., R. Fardel and C. B. Arnold, “Ultrafast Z-Scanning for High-Efficiency
Laser Micro-Machining”, Light: Science € Applications, Vol. 7, No. 4, pp. 17181—
17181, 2018.

Bai, Z. and J. Wei, “Focusing Error Detection Based on Astigmatic Method with
a Double Cylindrical Lens Group”, Optics & Laser Technology, Vol. 106, No. 1,
pp. 145-151, 2018.

Subbarao, M., T.-S. Choi and A. Nikzad, “Focusing Techniques”, Optical Engi-
neering, Vol. 32, No. 11, pp. 2824-2836, 1993.

Xu, S.-J., Y.-Z. Duan, Y.-H. Yu, Z.-N. Tian and Q.-D. Chen, “Machine Vision-
Based High-Precision and Robust Focus Detection for Femtosecond Laser Machin-

ing”, Optics Express, Vol. 29, No. 19, pp. 30952-30960, 2021.

Tarca, A. L., V. J. Carey, X.-w. Chen, R. Romero and S. Draghici, “Machine
Learning and its Applications to Biology”, PLoS Computational Biology, Vol. 3,
No. 6, p. el16, 2007.

Bedolla, E., L. C. Padierna and R. Castanieda-Priego, “Machine Learning for Con-
densed Matter Physics”, Journal of Physics: Condensed Matter, Vol. 33, No. 5, p.
53001, 2020.

Xing, F., Y. Xie, H. Su, F. Liu and L. Yang, “Deep Learning in Microscopy Im-
age Analysis: A Survey”, IEEE Transactions on Neural Networks and Learning

Systems, Vol. 29, No. 10, pp. 4550—4568, 2017.

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-Based Learning Ap-
plied to Document Recognition”, Proceedings of the IEEE, Vol. 86, No. 11, pp.
2278-2324, 1998.

17.

18.

19.

20.

21.

22.

23.

24.

49

Gandarias, J. M., A. J. Garcia-Cerezo and J. M. Gomez-de Gabriel, “CNN-Based
Methods for Object Recognition with High-Resolution Tactile Sensors”, IEFFE Sen-
sors Journal, Vol. 19, No. 16, pp. 6872—6882, 2019.

Al-Amin, M., D. Z. Karim and T. A. Bushra, “Prediction of Rice Disease from
Leaves Using Deep Convolution Neural Network Towards a Digital Agricultural

System”, 2019 22nd International Conference on Computer and Information Tech-

nology (ICCIT), pp. 1-5, Dhaka, 2019.

Ren, Z., 7. Xu and E. Y. Lam, “Autofocusing in Digital Holography Using Deep
Learning”, Three-Dimensional and Multidimensional Microscopy: Image Acquisi-

tion and Processing XXV, Vol. 10499, p. 104991V, San Francisco, 2018.

Pinkard, H., Z. Phillips, A. Babakhani, D. A. Fletcher and L. Waller, “Deep Learn-
ing for Single-Shot Autofocus Microscopy”, Optica, Vol. 6, No. 6, pp. 794-797,
2019.

Nguyen, T., A. Thai, P. Adwani and G. Nehmetallah, “Autofocusing of Fluores-
cent Microscopic Images through Deep Learning Convolutional Neural Networks”,

Digital Holography and Three-Dimensional Imaging, pp. W3A-32, Bordeaux, 2019.

Wang, C., Q. Huang, M. Cheng, Z. Ma and D. J. Brady, “Deep Learning for
Camera Autofocus”, IEEE Transactions on Computational Imaging, Vol. 7, No. 1,

pp. 258-271, 2021.

Li, F. and H. Jin, “A Fast Auto Focusing Method for Digital Still Camera”, 2005
International Conference on Machine Learning and Cybernetics, Vol. 8, pp. 5001—
5005, Guangzhou, 2005.

Youngworth, R. N. and E. I. Betensky, “Fundamental Considerations for Zoom
Lens Design (Tutorial)”, Zoom Lenses IV, Vol. 8488, pp. 63 — 71, San Diego, 2012.

. Santos, A., C. Ortiz de Solorzano, J. J. Vaquero, J. M. Pena, N. Malpica and F. del

26.

27.

28.

29.

30.

31.

32.

Pozo, “Evaluation of Autofocus Functions in Molecular Cytogenetic Analysis”,

Journal of Microscopy, Vol. 188, No. 3, pp. 264—272, 1997.

Hansard, M., S. Lee, O. Choi and R. P. Horaud, Time-of-Flight Cameras: Prin-
ciples, Methods and Applications, Springer Science & Business Media, London,
2012.

Wang, C., Q. Huang, M. Cheng, Z. Ma and D. J. Brady, “Deep Learning for
Camera Autofocus”, IEFEE Transactions on Computational Imaging, Vol. 7, pp.

258-271, 2021.

Hochreiter, S. and J. Schmidhuber, “Long Short-Term Memory”, Neural Compu-
tation, Vol. 9, No. 8, p. 1735-1780, 1997.

Siegman, A., Lasers, University Science Books, Sausalito, 1986.

Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, San Francisco,
1968.

Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke
and T. E. Oliphant, “Array Programming with NumPy”, Nature, Vol. 585, No.
7825, pp. 357-362, 2020.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, “Scikit-Learn: Machine
Learning in Python”, Journal of Machine Learning Research, Vol. 12, No. 85, pp.

2825-2830, 2011.

Brea, L. S., “Diffractio, Python Module for Diffraction and Interference Optics”,

34.

35.

36.

37.

38.

39.

40.

41.

42.

2019, https://pypi.org/project/diffractio/, accessed on July 21, 2022.

Hunter, J. D., “Matplotlib: A 2D Graphics Environment”, Computing in Science
& Engineering, Vol. 9, No. 3, pp. 90-95, 2007.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contrib-
utors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”,
Nature Methods, Vol. 17, No. 3, pp. 261-272, 2020.

Papoulis, A., The Fourier Integral and its Applications, McGraw-Hill, New York,
1962.

Weber, H. J. and G. B. Arfken, Essential Mathematical Methods for Physicists,
ISE, Elsevier, San Diego, 2003.

Peatross, J. and M. Ware, Physics of Light and Optics, Brigham Young University,
Department of Physics Brigham, Provo, 2011.

Yariv, A. and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New York,
1984.

Saleh, B. E. and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons,
New York, 1991.

Ogilvy, J. A., “Wave Scattering from Rough Surfaces”, Reports on Progress in
Physics, Vol. 50, No. 12, pp. 1553-1608, 1987.

Ogilvy, J. and J. Foster, “Rough Surfaces: Gaussian or Exponential Statistics?”,

Journal of Physics D: Applied Physics, Vol. 22, No. 9, p. 1243, 1989.

43.

44.

45.

46.

47.

48.

49.

ol.

52.

93.

Wu, J.-J., “Simulation of Rough Surfaces with FFT”, Tribology International,
Vol. 33, No. 1, pp. 47-58, 2000.

Lai, L. and E. Irene, “Area Evaluation of Microscopically Rough Surfaces”, Journal
of Vacuum Science & Technology B: Microelectronics and Nanometer Structures

Processing, Measurement, and Phenomena, Vol. 17, No. 1, pp. 33-39, 1999.

Patrikar, R. M., “Modeling and Simulation of Surface Roughness”, Applied Surface
Science, Vol. 228, No. 1, pp. 213220, 2004.

Ogilvy, J., “Computer Simulation of Acoustic Wave Scattering from Rough Sur-

faces”, Journal of Physics D: Applied Physics, Vol. 21, No. 2, p. 260, 1988.

Thornton, B., “Effect of Surface Roughness on the Phase Change at Reflection in
Interferometers”, JOSA, Vol. 49, No. 5, pp. 476479, 1959.

Pinel, N., C. Bourlier and J. Saillard, “Degree of Roughness of Rough Layers:
Extensions of the Rayleigh Roughness Criterion and Some Applications”, Progress

in Electromagnetics Research B, Vol. 19, pp. 41-63, 2010.

Gonzalez, R. C., Digital Image Processing, Addison-Wesley, Reading, 1992.

. Mohri, M., A. Rostamizadeh and A. Talwalkar, Foundations of Machine Learning,

MIT Press, 2012.

McCullagh, P. and J. A. Nelder, Generalized Linear Models, Chapman & Hall,
London, 1983.

Carleo, G., I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-
Maranto and L. Zdeborova, “Machine Learning and the Physical Sciences”, Re-

views of Modern Physics, Vol. 91, No. 4, p. 045002, 2019.

Mills, B. and J. A. Grant-Jacob, “Lasers that Learn: The Interface of Laser Ma-
chining and Machine Learning”, IET Optoelectronics, Vol. 15, No. b, pp. 207-224,

54.

99.

6.

8.

2021.

Xie, Y., D. J. Heath, J. A. Grant-Jacob, B. S. Mackay, M. D. McDonnell,
M. Praeger, R. W. Eason and B. Mills, “Deep Learning for the Monitoring and

Process Control of Femtosecond Laser Machining”, Journal of Physics: Photonics,

Vol. 1, No. 3, p. 035002, 2019.

Pearson, K., “LIII. On lines and Planes of Closest Fit to Systems of Points in
Space”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, Vol. 2, No. 11, pp. 559-572, 1901.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chin-
tala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,
Advances in Neural Information Processing Systems, pp. 8024-8035, Vancouver,

2019.

. Elahi, S., C. Polat, O. Safarzadeh and P. Elahi, “Noise Robust Focal Distance De-

tection in Laser Material Processing Using CNNs and Gaussian Processes”, Optics,
Photonics and Digital Technologies for Imaging Applications VII, Vol. 12138, p.
1213802, Strasbourg, 2022.

Polat, C., G. N. Yapici, S. Elahi and P. Elahi, “Noise Robust High Precision and
Real-Time Focus Detection for Laser Micromanaging”, CLEQ: Applications and

Technology, pp. AM3I-4, San Jose, 2022.

APPENDIX A: CALCULATION OF STANDARD
DEVIATION CALCULATIONS FOR LSM
MEASUREMENS

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

data = pd.read_csv(’Copper 1.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
copperl = datal["value"]

copperl=copperl.dropna()

copper1Std= copperl.std()
copperlstdValue = str(round(copperiStd,3))
copperimean= copperl.mean ()

copperlimeanValue = str(round(copperimean,3))

data = pd.read_csv(’Copper 2.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
copper2 = datal["value"]

copper2=copper2.dropna ()

copper2Std= copper2.std()
copper2stdValue = str(round(copper2Std,3))
copper2mean= copper2.mean ()

copper2meanValue = str(round(copper2mean,3))

data = pd.read_csv(’Copper 3.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
copper3 = datal["value"]

copper3=copper3.dropna ()

copper3Std= copper3.std()
copper3stdValue = str(round(copper3Std,3))
copper3mean= copper3.mean ()

copper3meanValue = str(round(copper3mean,3))

ot
<t

data = pd.read_csv(’Silicon 1.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
siliconl = data["value"]

siliconl=siliconl.dropna()

siliconl1Std= siliconl.std()
siliconlstdValue = str(round(siliconiStd,3))

siliconlmean= siliconl.mean ()

siliconlmeanValue = str(round(siliconlimean,3))

data = pd.read_csv(’Silicon 2.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]

silicon2 = datal["value"]

silicon2=silicon2.dropna()

silicon2Std= silicon2.std()
silicon2stdValue = str(round(silicon2Std,3))

silicon2mean= silicon2.mean ()

silicon2meanValue = str(round(silicon2mean ,3))

data = pd.read_csv(’Silicon 3.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]

silicon3 = datal["value"]

silicon3=silicon3.dropna ()

silicon3Std= silicon3.std()
silicon3stdValue = str(round(silicon3Std,3))

silicon3mean= silicon3.mean ()

silicon3meanValue = str(round(silicon3mean,3))
data = pd.read_csv(’stainlessSteel 1.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]

steell = datal["value"]

steell=steell.dropna ()

steellStd= steell.std()

steellstdValue = str(round(steellStd,3))

steelimean= steell.mean ()

steelimeanValue = str(round(steelimean,3))

data = pd.read_csv(’stainlessSteel 2.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
steel2 = data["value"]

steel2=steel2.dropna ()

steel2Std= steel2.std ()
steel2stdValue = str(round(steel2Std,3))
steel2mean= steel2.mean ()

steel2meanValue = str(round(steel2mean,3))

data = pd.read_csv(’stainlessSteel 3.txt’, sep="\t", header=None)
data.columns = ["distance", "value"]
steel3 = datal["value"]

steel3=steel3.dropna ()

steel3Std= steel3.std ()
steel3stdValue = str(round(steel3Std,3))
steel3mean= steel3.mean ()

steel3meanValue = str(round(steel3mean,3))

APPENDIX B: IMPLEMENTATION ON
EXPERIMENTAL DATA

B.1. Required Python Libraries

numpy = 1.20.2

onnx = 1.11.0

torch = 1.10.2
torchvision = 0.11.3
onnx2pytorch = 0.4.1
torchinfo = 1.6.3
tqdm = 4.62.3
2.5.

w

fastai

pandas 1.2.4

scikit-learn 1.0.2
seaborn = 0.11.1
matplotlib = 3.3.4
Pillow = 9.0.1
joblib = 1.1.0

diffractio = 0.0.13

B.2. Code for Turning Experimental Videos Into Datasets

import torchvision.io

from torch.utils.data import Dataset, Dataloader

class VideoDataset (Dataset):

def __init__(self, video_path, label, is_grayscale=True):

self.label = label

self .video_path = video_path

self.video_tensor, _, = torchvision.io.read_video(video_path

if is_grayscale:

self .video_tensor = self.video_tensor|[:,

unsqueeze (1)

self.video_tensor

self.video_tensor (self.video_tensor

1.0 * self.video_tensor

self

.video_tensor.min

O) /7«

self .video_tensor .max() - self.video_tensor.min())

def __len__(self):

return len(self.video_tensor)

def __getitem__(self, item):

return self.video_tensor[item], self.label

B.3. Machine Learning Models Used for Experimental Data

import os

import numpy as np

import onnx

import torch.cuda

import torchvision.io

from onnx2pytorch import ConvertModel
from torch import nn, optim

from torchinfo import summary

from torch.utils.data import x*

from tqdm import tqdm

from VideoDataset import VideoDataset
from model import FocusClassifier, FocusPredictor

import onnxruntime as ort

device = torch.device(’cuda:0’ if torch.cuda.is_available() else ’cpu’
)

val_percentage = 0.15

test_percentage = 0.10

seed = 242344

batch_size = 16

def load_all_datasets(dataset_dir, predictor=False):
video_files = os.listdir(dataset_dir)
label_names = np.asarray([int(video_file[:video_file.find(".")])
for video_file in video_files])
if predictor:

min_label, max_label = np.min(label_names), np.max(label_names

)

sorted_indices = np.argsort(label_names)

label_names = label_names[sorted_indices]

video_files = np.asarray(video_files) [sorted_indices]
datasets = []

for video_file in video_files:

label = np.where(label_names == int(video_file[:video_file.
find(".")1)) [0].item ()

label = (label_names[label] - min_label) / (max_label -
min_label) if predictor else label

dataset = VideoDataset(os.path.join(dataset_dir, video_file),
label)

datasets.append (dataset)

return label_names, datasets

def split_train_val(datasets, label_names, training_labels=None, seed=
None) :
gen = torch.Generator () .manual_seed(seed) if seed is not None else

torch.Generator ()

for training, only keep odd distances (-15, -13, ..., 13, 15)
training_dsets = []

other_dsets = []

training_labels = label_names if training_labels is None else

training_labels
for i, label in enumerate(label_names):
if label in training_labels:
training_dsets.append(datasets[i])
else:

other_dsets.append(datasets[i])

training_dsets = ConcatDataset(training_dsets)
val_number = int(val_percentage * len(training_dsets))
test_number = int(test_percentage * len(training_dsets))

train_number = len(training_dsets) - val_number - test_number

60

train_dset, val_dset, test_dset = random_split(training_dsets, [

train_number , val_number, test_number], gen)

split other datasets into val and test

if len(other_dsets) > 0:
other_dsets = ConcatDataset (other_dsets)
valtest_percentage = val_percentage / (val_percentage +

test_percentage)

val_number = int(valtest_percentage * len(other_dsets))
test_number = len(other_dsets) - val_number
val_dset_extra, test_dset_extra = random_split(other_dsets, [

val_number, test_number], gen)
val_dset = ConcatDataset([val_dset, val_dset_extral)

test_dset = ConcatDataset([test_dset, test_dset_extral)
return train_dset, val_dset, test_dset
def get_onnx_session():
onnx_model = onnx.load("predictorNet.onnx")
onnx.checker.check_model (onnx_model)
inputs = onnx_model.graph.input

name_to_input = {}

for input in inputs:

#

#

#

#

#

#

name_to_input [input.name] = input
#

for initializer in onnx_model.graph.initializer:

if initializer .name in name_to_input:

inputs.remove (name_to_input[initializer.name])
#
#

onnx.save (onnx_model, "netPredictorV2.onnx")

ort_sess = ort.InferenceSession(’predictorNetV2.onnx’, providers=[

"CUDAExecutionProvider"])
return ort_sess

def test_mathematica_model ():

61

ort_sess = get_onnx_session ()

tensor, _, _ = torchvision.io.read_video("videos/02_03_videos/
Steel (10 micron)/0.avi")

tensor = temsor[:, :, :, O0].unsqueeze(l) * 1.0

tensor = (tensor - temsor.min()) / (temsor.max() - tensor.min())

img = tensor [0].unsqueeze (0) .numpy ()

input_name = ort_sess.get_inputs () [0].name
output = ort_sess.run(None, {input_name: imgl})

print (output)

def classifier_train():

label_names, datasets = load_all_datasets("videos/02_03_videos/

Steel (10 micron)")

training_labels = [label_names[i] for i in range(0, len(

label_names), 2)]

print (f"Training using {training_labels}")

train_dset, val_dset, test_dset = split_train_val(datasets,

label_names, label_names[0:1], seed)

train_loader = Dataloader(train_dset, batch_size=batch_size,
shuffle=True, num_workers=4)
val_loader = Dataloader (val_dset, batch_size=batch_size, shuffle=

False, num_workers=2)

criterion = nn.CrossEntropyLoss ()
net = FocusClassifier(len(training_labels)).to(device)
optimizer = optim.SGD(net.parameters(), 1lr=0.0005, momentum=0.93,

weight_decay=0.001)

num_epochs = 10
val_acc_arr = np.zeros (num_epochs)
for epoch in tqdm(range (num_epochs)):

train_model_one_epoch(net, train_loader, criterion, optimizer)

correct = 0

total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)

labels = labels.to(device)

calculate outputs by running images through the

network

outputs = net(inputs)

62

the class with the highest energy is what we choose

as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_acc_arr [epoch] = correct / total

print(val_acc_arr[epoch])

print (val_acc_arr)

def train_model_one_epoch(net, train_loader, criterion, optimizer):

for inputs, labels in train_loader:

inputs = inputs.to(device)

labels = labels.to(device)

if labels.dtype == torch.float64:
labels = labels.float()
labels = labels.unsqueeze (1)

zero the parameter gradients

optimizer.zero_grad ()

forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward ()

optimizer.step ()

J .

if __name_ == 7 __main__

63

test_mathematica_model ()

label_names, datasets = load_all_datasets("videos/02_03_videos/

Steel (10 micron)", predictor=True)

max_label = np.max(label_names)
min_label = np.min(label_names)
training_labels = [label_names[i] for i in range (0, len(

label_names), 2)]

print (f"Training using {training_labels}")

train_dset, val_dset, test_dset = split_train_val(datasets,

label_names, training_labels, seed)

train_loader = Dataloader(train_dset, batch_size=batch_size,
shuffle=True, num_workers=4)
val_loader = Dataloader(val_dset, batch_size=1, shuffle=False,

num_workers=2)

label_names = torch.from_numpy(label_names).to(device)

ort_sess = get_onnx_session()
total = correct = 0
with torch.no_grad():
for inputs, labels in tqdm(val_loader):
inputs = inputs.to(device)

labels = labels.to(device)
calculate outputs by running images through the network
outputs = torch.from_numpy(ort_sess.run(None, {"Input":

inputs.numpy (O }) [0]) .to(device)

outputs = outputs * (max_label - min_label) + min_label

pred_indices = torch.abs(outputs - label_names).argmin(dim

pred_labels = label_names[pred_indices]

labels = labels * (max_label - min_label) + min_label

the class with the highest energy is what we choose as

64

prediction
total += pred_labels.size(0)
correct += (pred_labels == labels).sum().item()
acc = correct / total

print (acc)

criterion = nn.MSELoss ()

net = FocusPredictor () .to(device)

optimizer = optim.SGD(net.parameters(), 1lr=0.0005, momentum
=0.93, weight_decay=0.001)

optimizer = optim.Adam(net.parameters(), 1r=0.0005)

num_epochs = 10
val_acc_arr = np.zeros (num_epochs)
for epoch in tqdm(range (num_epochs)):
train_model_one_epoch(net, train_loader, criterion, optimizer)
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs = inputs.to(device)

labels labels.to(device)

calculate outputs by running images through the
network

outputs = net(inputs)

rescale outputs

outputs = outputs * (max_label - min_label) +
min_label

pred_indices = torch.abs(outputs - label_names).argmin
(dim=1)

pred_labels = label_names[pred_indices]

labels = labels * (max_label - min_label) + min_label

the class with the highest energy is what we choose

as prediction

total += pred_labels.size(0)
correct += (pred_labels == labels).sum().item()
val_acc_arr[epoch] = correct / total

print(val_acc_arr[epoch])

print (val_acc_arr)

onnx_model = onnx.load("predictorNet.onnx")
pytorch_model = ConvertModel (onnx_model)

summary (pytorch_model)
#

print ("sdfds")

B.4. Training of CNN Model on Experimental Data

import argparse

import pickle

from fastai.data.core import Dataloaders

from fastai.data.load import DatalLoader

from model import FocusPredictor, FocusClassifier

from utils import *

directories = [os.path.join("training_videos", x) for x in ["Copper",
"Steel", "Silicon"]]
parser = argparse.ArgumentParser (description=’Train CNN to predict

images on different sets of videos’)

parser.add_argument (’--bs’, type=int, default=16, help=’Batch size’)

parser.add_argument (’--num_epochs’, type=int, default=5, help=’Number
of epochs’)

parser.add_argument (’--num_epochs’, type=int, default=30, help=’Number
of epochs’)

parser.add_argument (’--val_p’, type=float, default=0.15, help=’
Percentage of frames to use for validation’)

parser.add_argument (’--seed’, type=int, default=423132, help=’Seed
used for splitting frames into train/val/test’)

parser.add_argument (’--directories’, default=directories, nargs=’+’,
help=’Directories where video files are located. Each ’

directory should contain videos at different focal ’

distances and the name of each video file should be °’

66

’its

focal distance (e.g., 150.avi)’)
parser.add_argument (’--results_dir’, default="results_classifier",
help=’Directory where results will be saved’)
parser.add_argument (’--train_classifier’, action=’store_true’)
parser.set_defaults(train_classifier=True)
args = parser.parse_args ()
val_percentage = args.val_p
test_percentage = 0 # test on separate data
seed = args.seed

batch_size = args.bs

num_epochs args.num_epochs

use_predictor = not args.train_classifier
if __name__ == ’__main__":
pred_str = "predictors" if use_predictor else "classifiers"

print (f"Training different CNN {pred_str} for videos in {args.
directories}")
for directory in args.directories:

result_dir = os.path.join(args.results_dir, os.path.split(
directory) [-1])

os.makedirs (result_dir, exist_ok=True)

print (f"Loading videos in {directoryl}...")

label _names_np, datasets = 1oad_a11_datasets(directory,
predictor=use_predictor)

max_label = np.max(label_names_np)

min_label = np.min(label_names_np)

only train on every other label including beginning and end

if use_predictor:
train_label_indices = [0] + list(range(2, len(

label_names_np) - 1, 2)) + [-1]

training_labels label_names_np[train_label_indices]

else:

training_labels label_names_np
print (f"Training using videos {training_labels}...")

train_dset, val_dset, _ = split_train_val(datasets,

label_names_np, val_percentage, test_percentage, training_labels,

seed)

label_names = torch.from_numpy(label_names_np).long().to(

67

device)

train_loader = Dataloader(train_dset, batch_size=batch_size,

shuffle=True, num_workers=4, pin_memory=True)

val_loader = DatalLoader (val_dset, batch_size=512, shuffle=

False, num_workers=2, pin_memory=True)

dls = Dataloaders(train_loader, val_loader)
if use_predictor:
net = FocusPredictor ()

train_predictor(net, dls, label_names, num_epochs,

result_dir)

else:
net = FocusClassifier(len(label_names_np))
train_classifier(net, dls, num_epochs, result_dir)

pickle.dump(label_names_np, open(os.path.join(result_dir,

label_names.pkl"), "wb"))

test on testing data

test_preds, test_targets = predict_labels(net, test_loader,

label_names, use_predictor)

pickle.dump((test_preds, test_targets, label_names_np), open

(os.path.join(result_dir, "test_pred_targets.pkl"), "wb"))

B.5. Training of Non-CNN Models on Experimental Data

import argparse

import pickle

import sklearn.svm

from
from
from
from
from
from
from
from
from

from

fastai.data.core import Dataloaders
fastai.data.load import Dataloader
sklearn.decomposition import PCA

sklearn.ensemble import GradientBoostingClassifier
sklearn.linear_model import LogisticRegression
sklearn.pipeline import Pipeline
sklearn.preprocessing import StandardScaler
sklearn.svm import SVC

model import FocusPredictor, FocusClassifier

utils import x*

directories = [os.path.join("training_videos", x) for x in ["Copper",

68

"Steel", "Silicon"]]

parser = argparse.ArgumentParser (description=’Train CNN to predict
images on different sets of videos’)

parser.add_argument (’--val_p’, type=float, default=0.15, help=’
Percentage of frames to use for validation’)

parser .add_argument (’--seed’, type=int, default=423132, help=’Seed
used for splitting frames into train/val/test’)

parser.add_argument (’--pca_var_explained’, type=float, default=0.90,

help=’Percentage of variance to be explained by PCA components.’)

parser .add_argument (’--directories’, default=directories, nargs=’+’,

help=’Directories where video files are located.

Each ~
’directory should contain videos at different
focal
’distances and the name of each video file
should be ~’
’its focal distance (e.g., 150.avi)’)
parser.add_argument (’--results_dir’, default="results_scikit", help=’

Directory where results will be saved’)

models = [LogisticRegression(max_iter=1000), SVC()]

model_names = ["1lr", "svc"

args = parser.parse_args ()

val_percentage = args.val_p

test_percentage = 0 # test on separate data
seed = args.seed

if __name__ == ’__main__":

print (f"Training different {model_names} classifiers for videos in
{args.directories}")
for directory in args.directories:

result_dir = os.path.join(args.results_dir, os.path.split(
directory) [-11)

trained_models_dir = os.path.join(result_dir, "models")

os.makedirs (trained_models_dir, exist_ok=True)

69

print (f"Loading videos in {directoryl}...")

label_names, datasets = load_all_datasets(directory, predictor
=False)

max_label = np.max(label_names)

min_label = np.min(label_names)

train_dset, val_dset, _ = split_train_val(datasets,

label_names, val_percentage, test_percentage,

label_names, seed)

for model, model_name in zip(models, model_names):

print (f"Training {modell}...")

pca = PCA(n_components=args.pca_var_explained)

scaler = StandardScaler ()

pipeline = Pipeline(steps=[("scaler", scaler), ("pca", pca

), ("model", model)], memory="scikit_cache")

x_arr = np.asarray ([x[0].numpy() for x in train_dset]).
reshape(len(train_dset), -1)
y_arr = label_names[np.asarray([x[1] for x in train_dset])

pipeline.fit(x_arr, y_arr)
print (£"Using {pipeline[’pca’].n_components_} for pca")
pickle.dump(pipeline, open(os.path.join(trained_models_dir

, f"{model_namel}.pkl"), "wb"))

pickle.dump(label_names, open(os.path.join(result_dir, "

label_names.pkl"), "wb"))

B.6. Testing of CNN Model on Experimental Data

import argparse

import pickle

from glob import glob

import matplotlib.pyplot as plt
import pandas as pd

import sklearn.metrics

70

from fastai.data.block import DataBlock, RegressionBlock,
CategoryBlock

from fastai.data.core import Dataloaders

from fastai.data.load import Dataloader

from fastai.data.transforms import get_image_files, RandomSplitter,
IntToFloatTensor

from fastai.vision.core import PILImageBW

from fastai.vision.data import ImageBlock

from matplotlib.ticker import StrMethodFormatter

from sklearn.metrics import *

from model import FocusClassifier

from test_cnn import plot_cm_matrix

from utils import *

parser = argparse.ArgumentParser (description=’Plot confusion matrices
and report accuracies of trained models on test ’
’data. train_cnn_on_synth
.py must be run before’)
parser.add_argument (’--synth_imgs_dir’, default="synth_images_testing"
s

help=’Directory where generated synthetic images

for
’testing from gen_synth_images.py are located
7))
parser.add_argument (’--results_dir’, default="results_synth_classifier

, help=’Directory where results will be saved’)

args = parser.parse_args ()

def get_label_from_fname (fname):

return float (fname.parts[-2].split("_") [0])

def get_df _from_synth_img_dir(img_dir):
Returns a pandas DataFrame with containing focus and noise info of
each img folder

folder_paths = glob(os.path.join(img_dir, "*/"), recursive=False)

71

row_list = []
for folder_path in folder_paths:
folder_name = os.path.split(folder_path) [0].split("/") [-1]
row = [float(x) for x in folder_name.split("_")[:-1]]1 + [
folder_name]

row_list.append(row)

return pd.DataFrame(row_list, columns=["focus", "int_noise", "

ext_noise", "path"])

def plot_noise_acc(acc_mat, int_noise_arr, ext_noise_arr, file_name):

if

fig = plt.figure(figsize=(6.4 * 1.1, 4.8 x 1.1))

disp.plot(include_values=False, ax=fig.gca())

int_noise_arr = np.round(int_noise_arr * 100) / 100.0 # hacky way
to format .2f

ext_noise_arr = np.round(ext_noise_arr * 100) / 100.0

df _cm = pd.DataFrame(acc_mat, index=int_noise_arr, columns=
ext_noise_arr)

sns.heatmap(df_cm, cmap="flare", linewidths=.5, square=True, vmin
=0, vmax=1, annot=True, fmt=".2f")

plt.xlabel ("Output noise std.")

plt.ylabel ("Input noise std.")

plt.tight_layout ()

if file_name is not None:

plt.savefig(file_name, bbox_inches=’tight’, pad_inches=0.02)

__name_ == ’__main__":

result_dir = args.results_dir

os.makedirs (result_dir, exist_ok=True)

df = get_df_from_synth_img_dir(args.synth_imgs_dir)

int_noise_arr np.unique (df ["int_noise"].values)

ext_noise_arr = np.unique(df["ext_noise"].values)

num_classes = len(np.unique(df["focus"].values))

net = FocusClassifier(num_classes, img_size=(48, 48)).to(device)

72

net.load_state_dict(torch.load(os.path.join(result_dir, "models/

trainedModel.pth")))

acc_mat = np.zeros((len(int_noise_arr), len(ext_noise_arr)))
for i, int_noise in enumerate(int_noise_arr):
for j, ext_noise in enumerate(ext_noise_arr):
folders = list(
df [np.logical_and(df ["int_noise"] == int_noise, df["
ext_noise"] == ext_noise)]["path"].values)
get_items_fun = lambda path: get_image_files(path, folders
=folders)
dblock = DataBlock(blocks=(ImageBlock(cls=PILImageBW),
CategoryBlock),
get_items=get_items_fun,
get_y=get_label_from_fname,
item_tfms=IntToFloatTensor (),
splitter=RandomSplitter (valid_pct=0))
test_loader = dblock.dataloaders(args.synth_imgs_dir,
batch_size=64, shuffle=True, num_workers=4,
pin_memory=True, device=
device) [0]
label _names = torch.tensor(test_loader.vocab.items) .to(
device)
label_names_np = label_names.cpu() .numpy().astype(int)
test_preds, test_targets, avg_time_taken =
predict_labels_net (net, test_loader, label_names, False)
acc = accuracy_score(test_targets, test_preds)

acc_mat[i, j] = acc

plot_noise_acc(acc_mat, int_noise_arr, ext_noise_arr, os.path.join

(result_dir, "noise_acc.pdf"))

dblock = DataBlock(blocks=(ImageBlock(cls=PILImageBW),
CategoryBlock),
get_items=get_image_files,
get_y=get_label_from_fname,
item_tfms=IntToFloatTensor (),

splitter=RandomSplitter (valid_pct=0))

73

test_loader = dblock.dataloaders(args.synth_imgs_dir, batch_size

=256, shuffle=True, num_workers=4, pin_memory=True,
device=device) [0]

label_names = torch.tensor(test_loader.vocab.items).to(device)

label_names_np = label_names.cpu().numpy () .astype(int)

print (f"Loaded focal distances (classes) are {label_names_npl}")

temp_batch = next(iter(test_loader))

net = FocusClassifier(len(test_loader.vocab), img_size=temp_batch

[0].size() [-2:]) .to(device)

net.load_state_dict(torch.load(os.path.join(result_dir, "models/

trainedModel .pth")))

test_preds, test_targets, avg_time_taken = predict_labels_net (net,
test_loader, label_names, False)

class_report_txt = classification_report(test_targets, test_preds,
target_names=label_names_np.astype(str))

print (class_report_txt)

with open(os.path.join(result_dir, "testing_report.txt"), ’w’) as
f:

f.write(class_report_txt)

class_report_dict = classification_report(test_targets, test_preds
, target_names=label_names_np.astype(str),

output_dict=True)
with open(os.path.join(result_dir, "class_report_dict.pkl"), ’wb’)
as f:

pickle.dump(class_report_dict, f)

plot_cm_matrix(test_targets, test_preds, label_names_np, os.path.
join(result_dir, "testing_cm.pdf"))

plt.show ()

B.7. Testing of Non-CNN Models on Experimental Data

import argparse
import os
import pickle

import time

74

import pandas as pd

import sklearn.metrics

from fastai.data.load import Dataloader

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,
classification_report

from utils import x*

from model import FocusClassifier, FocusPredictor

sns.set_theme(style="white")

tex_fonts = {
Use LaTeX to write all text
"text.usetex": True,
"font.serif": ’Times New Roman’,
Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": 16,
"font.size": 16,
Make the legend/label fonts a little smaller
"legend.fontsize": 11,
"legend.fontsize": 8,
"xtick.labelsize": 16,

"ytick.labelsize": 16

}

plt.rcParams.update (tex_fonts)

folder_naems = ["Copper", "Steel", "Silicon"]

directories = [os.path.join("testing_videos", x) for x in folder_naems
]

results_directories = [os.path.join("results_scikit", x) for x in

folder_naems]

parser = argparse.ArgumentParser (description=’Plot confusion matrices
and report accuracies of trained models on test ’
’data. train_cnn.py must
be run before’)
parser.add_argument (’--results_directories’, nargs=’+’, default=
results_directories,

help=’Directory where results are saved’)

parser.add_argument (’--directories’, default=directories, nargs=’+’,
help=’Directories where video files are located
for testing. Each °’

’directory should contain videos at different

focal "’
’distances and the name of each video file
should be ~’
’its focal distance (e.g., 150.avi)’)
args = parser.parse_args ()
model _names = ["1r", "svc"]

def plot_cm_matrix(targets, predictions, label_names, file_name=None):
cm = confusion_matrix(targets, predictions, labels=label_names,
normalize=’true’)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=

label_names)

fig = plt.figure(figsize=(6.4 * 1.1, 4.8 x 1.1))

disp.plot(include_values=False, ax=fig.gca())

df _cm = pd.DataFrame(cm, index=label_names, columns=label_names)
sns.heatmap (df_cm, cmap="flare", linewidths=.5, square=True)
plt.xlabel("Predicted label")

plt.ylabel ("True label")

plt.tight_layout ()

if file_name is not None:

plt.savefig(file_name, bbox_inches=’tight’, pad_inches=0.02)

if __name__ == ’__main__":
results_directories = args.results_directories
testing_directories = args.directories

for directory, result_dir in zip(testing_directories,
results_directories):
label_names = pickle.load(open(os.path.join(result_dir, "

label_names.pkl"), "rb"))

print (f"Loading videos in {directoryl}...")

label_names_testing, datasets = load_all_datasets(directory,

76

predictor=False)

assert np.all(label_names_testing == label_names)
testing_dset = ConcatDataset(datasets)
x_arr = np.asarray([x[0].numpy() for x in testing_dset]).

reshape(len(testing_dset), -1)
test_targets = label_names[np.asarray([x[1] for x in
testing_dset])]
for model_name in model_names:
print (f"\nTesting {model_name}...")

scikit_model = pickle.load(open(os.path. join(result_dir,

models", f"{model_namel}.pkl"), "rb"))

starting_time = time.time ()
test_preds = scikit_model.predict(x_arr)
time_taken = (time.time() - starting_time) / len(x_arr)

print (f"{model_name} processed {1 / time_taken:.2f} images
/sec when using {devicel}")

class_report_txt = classification_report(test_targets,
test_preds, target_names=label_names.astype(str))

print (class_report_txt)

with open(os.path. join(result_dir, f"{model_name}
_testing_report.txt"), ’w’) as f:

f.write(class_report_txt)

class_report_dict = classification_report(test_targets,
test_preds, target_names=label_names.astype(str),

output_dict=True

with open(os.path.join(result_dir, f"{model_name}
_class_report_dict.pkl"), ’wb’) as f:

pickle.dump(class_report_dict, f)

plot_cm_matrix(test_targets, test_preds, label_names,
os.path.join(result_dir, f"{model_name}

_testing_cm.pdf"))

7

APPENDIX C: SIMULATION OF LASER MACHINING

import copy

import itertools
import multiprocessing
import os.path

import sys

import PIL.Image
import numpy as np

from PIL import Image

temporarily block printing when importing diffractio

sys.stdout = open(os.devnull, °’

from diffractio import degrees,

from diffractio.scalar_masks_XY import Scalar_mask_XY

from diffractio.scalar_sources_XY import Scalar_source_XY

sys.stdout = sys.__stdout__

SETUP

w’)

mm, um

from joblib import Parallel, delayed

from tqdm import tqdm

import hbpy

This script generates images with given intermal and external noise

stds and resizes and saves them in the given

save directory. It uses multiple cores/threads in parallel to speed up

the simulations.

saved_img_size = (50, 50)
num_samples = 1100

save_dir = "synth_images_11_mm"
num_imgs_per_config = 200

num_procs_to_use = 12

x0 = np.linspace(-500 * um, 500 * um, num_samples)

yO = np.linspace(-500 * um, 500 * um,

focal = 11 * mm
focal2 = 150 * mm
diameter = 5.5 * mm
dia2 = 1 * mm

d = 300 * mm

raylen = 150 * um

num_samples)

rayleigh_arr = np.arange(-raylen, raylen + 0.00001, raylen / 5) #

Modify the stepsize by this

wavelength = 0.976 * um

og_u0 = Scalar_source_XY(x=x0, y=yo0,

wavelength=wavelength)

og_ul0.gauss_beam(A=1, r0=(0, 0), z0=0 * mm, w0O=6.85 * um, theta=0 *

degrees)

initialize lenses

t0 = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)

t0.lens (r0=(0.0, 0.0), radius=diameter / 2, focal=focal, mask=True)

tl = Scalar_mask_XY(x=x0, y=y0, wavelength=wavelength)

t1.lens (r0=(0.0, 0.0), radius=dia2 /

2, focal=focal2, mask=True)

t3 = Scalar_mask_XY(x0, yO, wavelength)

corr_len_arr = np.asarray([50, 125,

250, 500])

internal _noise_stds = np.asarray ([0, 0.25, 0.5, 0.75])

external_noise_stds = np.asarray([0, 0.01, 0.03, 0.05])

corr_len_arr = np.linspace (50, 500, 10)

internal_noise_stds = np.linspace(0,

external _noise_stds = np.linspace (0,

0.50, 10)
0.05, 10)

def get_folder_path(rayleigh, corr_len, int_noise, ext_noise):

return os.path. join(save_dir, f"{round(rayleigh,

int_noise}_{ext_noisel}_imgs")

def gen_imgs ():

Generates an ndarray containing image data after simulation for

each rayleigh length, int. noise,

correlation length,

1)} _{corr_len}_

78

{

79

and ext. noise.
:return: Image ndarray of size (len(rayleigh_arr), len(
internal_noise_stds), len(corr_len_arr), len(external_noise_stds))

+ saved_img_size

imgs_arr = np.zeros(
(len(rayleigh_arr), len(internal_noise_stds), len(corr_len_arr
), len(external_noise_stds)) + saved_img_size,
np.uint8)
for i, rayleigh in enumerate(rayleigh_arr):
for j, int_noise in enumerate(internal_noise_stds):
for k, corr_len in enumerate(corr_len_arr):
u0 = copy.deepcopy(og_u0)
t3.roughness(t=(corr_len, corr_len), s=int_noise)

u0 = u0 * t3

z0

focal + rayleigh # Initial wave moving towards

the first lens

u0 = u0.RS(z=z0, verbose=False, new_field=True)
ul = u0 * t0 # After first lens
u2 = ul.RS(z=d, verbose=False, new_field=True) #

Moving d distance

u4d u2 * t1 # After second lens
u5 = u4.RS(z=focal2, verbose=False, new_field=True) #

After being focused on the camera

intensity = np.abs(ub.u) **x 2 # Here is where we take

the abs square of the electric field (ub.u) in
for 1, ext_noise in enumerate(external_noise_stds):
ext_noise_arr = np.random.normal (0, ext_noise, (

num_samples, num_samples))

i_w_ext_noise = (intensity - intensity.min()) / (

80

intensity.max() - intensity.min()) + ext_noise_arr
img_data = ((i_w_ext_noise - i_w_ext_noise.min())
/ (
i_w_ext_noise.max() - i_w_ext_noise.min())

* 255) .astype(np.uint8)
img = Image.fromarray(img_data, "L")
img_data_resized = np.asarray(img.resize(
saved_img_size, PIL.Image.NEAREST))

imgs_arr[i, j, k, 1] = img_data_resized

return imgs_arr

if __name__ == ’__main__"’:

os .makedirs(save_dir, exist_ok=True)

info_text = (f"Focus distances: {rayleigh_arr}\n"
f"Correlation lengths: {corr_len_arr}\n"
f"Internal noises: {internal_noise_stds}\n"
f"External noises: {external_noise_stds}")

print (info_text)

with open(os.path.join(save_dir, "info.txt"), ’w’) as f:

f.write(info_text)

print ("Creating HDF5 datasets for each Rayleigh length...")
for rayleigh in tqdm(rayleigh_arr):
f_list = T[]
for rayleigh in rayleigh_arr:
f = hbpy.File(os.path.join(save_dir, f"rayleigh_{rayleigh
:.0f}.hdfs"), "w")

f_list.append(f)

create HDF5 dataset for each correlation, int. noise,
ext. noise triplet
for i, int_noise in enumerate(internal_noise_stds):
for j, corr_len in enumerate(corr_len_arr):

for k, ext_noise in enumerate(external_noise_stds)

dset = f.create_dataset (f"{i}_{jr_{k}", (

num_imgs_per_config,) + saved_img_size, np.uint8)

81

dset.attrs["rayleigh"] = rayleigh

dset.attrs["corr_len"] = corr_1len

dset.attrs["int_noise"] = int_noise

dset.attrs["ext_noise"] = ext_noise
total_num_imgs = len(rayleigh_arr) * len(internal_noise_stds) x

len(corr_len_arr) * len(external_noise_stds) \

* num_imgs_per_config

print(
f"Generating {num_imgs_per_config} images per config ({

total_num_imgs} images in total) using {num_procs_to_use} parallel

processes...")
img_idx_arr = np.arange(num_imgs_per_config)
img_idx_chunks = [img_idx_arr[i:i + num_procs_to_use] for i in

range (0, len(img_idx_arr), num_procs_to_use)]
try:
with Parallel(n_jobs=num_procs_to_use) as parallel:
with tqdm(total=num_imgs_per_config) as pbar:
for img_idx_chunk in img_idx_chunks:

use multi-processing to generate images

imgs_arr_list = parallel(delayed(gen_imgs) () for
in img_idx_chunk)

write to Hb5 dataset

for imgs_arr, img_idx in zip(imgs_arr_list,
img_idx_chunk) :

for i in range(len(rayleigh_arr)):
for j in range(len(internal_noise_stds)):
for k in range(len(corr_len_arr)):
for 1 in range(len(
external_noise_stds)):
f_list[A][£" {3} _{k}_{13"1[

img_idx] = imgs_arr[i, j, k, 1]

pbar.update(len(img_idx_chunk))
finally:

for £ in f_1list:

H

.close ()

APPENDIX D: IMPLEMENTATION ON SIMULATED

DATA

D.1. Train and Test Splitting of Generated Data

import glob

import os.path
import numpy as np
import hbpy

from tqdm import tqdm

h5_files_dir = "synth_images_11_mm"
val_split = 0.15
test_split = 0.15

seed = 542646

if __name__ == ’__main__":
rng = np.random.default_rng(seed)
train_dir = os.path.join(h5_files_dir, "train")

val_dir = os.path.join(h5_files_dir, "wval")
test_dir = os.path.join(h5_files_dir, "test")
for dir in [train_dir, val_dir, test_dir]:

os .makedirs (dir, exist_ok=True)

82

for h5_path in tqdm(glob.glob(os.path.join(h5_files_dir, "*.hdf5")

)):

h5_file_name = os.path.split(h5_path) [-1]

f = hbpy.File(h5_path, "r"

train_f = hbpy.File(os.path.join(train_dir, h5_file_name),
)

val_f = hbpy.File(os.path.join(val_dir, h5_file_name), "w")

test_f = hbpy.File(os.path.join(test_dir, h5_file_name),

for key in f:

calculate train,val,test indices

w"

llwll)

num_val, num_test = round(val_split * len(f([key])), round(

83

test_split * len(f[keyl))

num_train = len(f[key]) - num_test - num_val

indices = set(range(len(f[keyl)))

val_indices = rng.choice(len(f[key]), num_val, replace=

False)

s

test_indices = rng.choice(list(indices - set(val_indices))
num_test, replace=False)

train_indices = list(indices - set(val_indices) - set(

test_indices))

add data to train,val,test hb

train_dset = train_f.create_dataset(key, dtype=np.uint8,

data=f[key][:][train_indices])

f

val_dset = val_f.create_dataset(key, dtype=np.uint8, data=
[key][:]1[val_indices])

test_dset = test_f.create_dataset(key, dtype=np.uint8,

data=f[keyl[:][test_indices])

impo
impo
impo
impo
impo
from
from
from
from

from

for dset in [train_dset, val_dset, test_dset]:

dset.attrs.update (f[key].attrs)

for hbfile in [f, train_f, val_f, test_f]:
h5file.close ()

print ("Done")

D.2. Machine Learning Models for Simulation

rt os

rt numpy as np

rt onnx

rt torch.cuda

rt torchvision.io
onnx2pytorch import ConvertModel
torch import nn, optim
torchinfo import summary
torch.utils.data import *

tqdm import tqdm

84

from VideoDataset import VideoDataset
from model import FocusClassifier, FocusPredictor

import onnxruntime as ort

device = torch.device(’cuda:0’ if torch.cuda.is_available() else ’cpu’
)

val_percentage = 0.15

test_percentage = 0.10

seed = 242344

batch_size = 16

def load_all_datasets(dataset_dir, predictor=False):
video_files = os.listdir(dataset_dir)
label _names = np.asarray([int(video_file[:video_file.find(".")])
for video_file in video_files])
if predictor:

min_label, max_label = np.min(label_names), np.max(label_names

sorted_indices = np.argsort(label_names)

label_names label_names[sorted_indices]

video_files np.asarray(video_files) [sorted_indices]
datasets = []
for video_file in video_files:

label = np.where(label_names == int(video_file[:video_file.
find(".")1)) [0].item ()

label = (label_names[label] - min_label) / (max_label -
min_label) if predictor else label

dataset = VideoDataset (os.path.join(dataset_dir, video_file),
label)

datasets.append(dataset)

return label_names, datasets

def split_train_val(datasets, label_names, training_labels=None, seed=

None) :

gen = torch.Generator () .manual_seed(seed) if seed is not None else

torch.Generator ()

for training, only keep odd distances (-15, -13, ..., 13, 15)
training_dsets = []

other_dsets = []

training_labels = label_names if training_labels is None else

training_labels
for i, label in enumerate(label_names):
if label in training_labels:
training_dsets.append(datasets[i])
else:

other_dsets.append(datasets[i])

training_dsets = ConcatDataset(training_dsets)

val_number = int(val_percentage * len(training_dsets))
test_number = int(test_percentage * len(training_dsets))
train_number = len(training_dsets) - val_number - test_number
train_dset, val_dset, test_dset = random_split(training_dsets, [

train_number, val_number, test_number], gen)

split other datasets into val and test

if len(other_dsets) > O:
other_dsets = ConcatDataset (other_dsets)
valtest_percentage = val_percentage / (val_percentage +

test_percentage)

val_number = int(valtest_percentage * len(other_dsets))
test_number = len(other_dsets) - val_number
val_dset_extra, test_dset_extra = random_split(other_dsets, [

val_number, test_number], gen)
val_dset = ConcatDataset([val_dset, val_dset_extral)

test_dset = ConcatDataset([test_dset, test_dset_extral)

return train_dset, val_dset, test_dset

def get_onnx_session():
onnx_model = onnx.load("predictorNet.onnx")
onnx.checker.check_model (onnx_model)

#

def

def

86

inputs = onnx_model.graph.input

name_to_input = {}

for input in inputs:

name_to_input [input.name] = input

#

for initializer in onnx_model.graph.initializer:

if initializer .name in name_to_input:

inputs.remove (name_to_input[initializer.name])
#

onnx.save (onnx_model, "netPredictorV2.onnx")

ort_sess = ort.InferenceSession(’predictorNetV2.onnx’, providers=[

"CUDAExecutionProvider"])

return ort_sess

test_mathematica_model () :

ort_sess = get_onnx_session ()

tensor, s = torchvision.io.read_video("videos/02_03_videos/

Steel (10 micron)/0.avi")

tensor tensor[:, :, :, O0].unsqueeze(1l) * 1.0

(tensor - tensor.min()) / (tensor.max() - tensor.min())

tensor

img = tensor [0].unsqueeze (0) .numpy ()

input_name = ort_sess.get_inputs () [0].name
output = ort_sess.run(None, {input_name: imgl})

print (output)

classifier_train():

label_names, datasets = load_all_datasets("videos/02_03_videos/
Steel (10 micron)")

training_labels = [label_names[i] for i in range (0, len(
label_names), 2)]

print (f"Training using {training_labels}")

train_dset, val_dset, test_dset = split_train_val(datasets,

label_names, label_names[0:1], seed)

87

train_loader = Dataloader(train_dset, batch_size=batch_size,

shuffle=True, num_workers=4)

val_loader = Dataloader (val_dset, batch_size=batch_size, shuffle=

False, num_workers=2)

criterion = nn.CrossEntropyLoss ()
net = FocusClassifier(len(training_labels)).to(device)

optimizer = optim.SGD(net.parameters(), 1lr=0.0005, momentum=0.93,

weight_decay=0.001)

num_epochs = 10
val_acc_arr = np.zeros (num_epochs)
for epoch in tqdm(range (num_epochs)):

train_model_one_epoch(net, train_loader, criterion, optimizer)

correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:

inputs = inputs.to(device)

labels labels.to(device)

calculate outputs by running images through the

network

outputs = net(inputs)

the class with the highest energy is what we choose

as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size (0)
correct += (predicted == labels).sum().item()
val_acc_arr [epoch] = correct / total

print(val_acc_arr[epoch])

print (val_acc_arr)

def train_model_one_epoch(net, train_loader, criterion, optimizer):

for inputs, labels in train_loader:

inputs = inputs.to(device)

labels = labels.to(device)
if labels.dtype == torch.float64:
labels

labels.float ()
labels

labels.unsqueeze (1)

zero the parameter gradients

optimizer.zero_grad()

forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward ()

optimizer.step ()

if __name__ == ’__main__":
test_mathematica_model ()
label_names, datasets = load_all_datasets("videos/02_03_videos/
Steel (10 micron)", predictor=True)

max_label = np.max(label_names)

min_label np.min(label_names)
training_labels = [label_names[i] for i in range(0, len(
label_names), 2)]

print (f"Training using {training_labels}")

train_dset, val_dset, test_dset = split_train_val(datasets,

label_names, training_labels, seed)

train_loader = Dataloader(train_dset, batch_size=batch_size,
shuffle=True, num_workers=4)
val_loader = Dataloader (val_dset, batch_size=1, shuffle=False,

num_workers=2)

label_names = torch.from_numpy(label_names).to(device)

ort_sess = get_onnx_session()

total = correct = 0

89

with torch.no_grad():

for inputs, labels in tqdm(val_loader):
inputs = inputs.to(device)

labels = labels.to(device)

calculate outputs by running images through the network

outputs = torch.from_numpy(ort_sess.run(None, {"Input":

inputs.numpy (O }) [0]) .to(device)

=1)

outputs = outputs * (max_label - min_label) + min_label

pred_indices = torch.abs(outputs - label_names).argmin(dim

pred_labels = label_names[pred_indices]

labels = labels * (max_label - min_label) + min_label

the class with the highest energy is what we choose as

prediction

total += pred_labels.size(0)
correct += (pred_labels == labels).sum().item()

acc = correct / total

print (acc)

criterion = nn.MSELoss ()

net

= FocusPredictor () .to(device)

optimizer = optim.SGD(net.parameters(), 1lr=0.0005, momentum

=0.93, weight_decay=0.001)

optimizer = optim.Adam(net.parameters(), 1r=0.0005)

num_epochs = 10

val_acc_arr = np.zeros (num_epochs)

for epoch in tgdm(range(num_epochs)):

train_model_one_epoch(net, train_loader, criterion, optimizer)
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:

inputs = inputs.to(device)

90

labels = labels.to(device)

calculate outputs by running images through the

network

outputs = net(inputs)

rescale outputs

min_label

(dim=1)

outputs = outputs * (max_label - min_label) +
pred_indices = torch.abs(outputs - label_names).argmin
pred_labels = label_names[pred_indices]

labels = labels * (max_label - min_label) + min_label

the class with the highest energy is what we choose

as prediction

total += pred_labels.size (0)
correct += (pred_labels == labels).sum().item()
val_acc_arr[epoch] = correct / total

print(val_acc_arr[epoch])

print (val_acc_arr)

onnx_model = onnx.load("predictorNet.onnx")

pytorch_model = ConvertModel (onnx_model)

summary (pytorch_model)

print ("sdfds")

import
import
import
import

import

D.3. Training of CNN Model for Simulation

argparse
os

pickle
pandas as pd

sklearn.metrics

from fastai.data.load import DatalLoader

import

seaborn as sns

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,

91

classification_report

from utils import *

from model import FocusClassifier, FocusPredictor

folder_names = ["Copper", "Steel", "Silicon"]

directories = [os.path.join("testing_videos", x) for x in folder_names
]

results_directories = [os.path.join("results_predictor", x) for x in

folder_names]

parser = argparse.ArgumentParser (description=’Plot confusion matrices
and report accuracies of trained models on test °’
’data. train_cnn.py must
be run before’)
parser.add_argument (’--results_directories’, nargs=’+’, default=
results_directories,
help=’Directory where results are saved’)
parser.add_argument (’--directories’, default=directories, nargs=’+’,
help=’Directories where video files are located
for testing. Each ~’

’directory should contain videos at different

focal
’distances and the name of each video file
should be ~’
’its focal distance (e.g., 150.avi)’)
parser.add_argument (’--test_classifier’, action=’store_true’)
parser.add_argument (’--save_unscaled_out’, action=’store_true’)

parser .set_defaults(test_classifier=False)

parser.set_defaults (save_unscaled_out=True)

args = parser.parse_args ()

use_classifier = args.test_classifier

def plot_cm_matrix(targets, predictions, label_names, file_name=None) :

cm = confusion_matrix(targets, predictions, labels=label_names,

if

normalize=’true’)

92

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=

label_names)

fig = plt.figure(figsize=(6.4 * 1.1, 4.8 * 1.1))
disp.plot(include_values=False, ax=fig.gca())

df _cm = pd.DataFrame(cm, index=label_names, columns=label_names)

sns.heatmap(df_cm, cmap="flare", linewidths=.5, square=True, vmin

=0, vmax=1)

plt.xlabel ("Predicted label")
plt.ylabel ("True label")
plt.tight_layout ()

if file_name is not None:

plt.savefig(file_name, bbox_inches=’tight’, pad_inches=0.02)

__name__ == ’__main__":

results_directories = args.results_directories
testing_directories = args.directories
time_taken_arr = []

for directory, result_dir in zip(testing_directories,
results_directories):

label _names_np = pickle.load(open(os.path.join(result_dir, "
label_names.pkl"), "rb"))

net = FocusClassifier(len(label_names_np)).to(device) if
use_classifier else FocusPredictor().to(device)

net.load_state_dict (torch.load(os.path.join(result_dir, "

models/trainedModel.pth")))

print (f"Loading videos in {directoryl}...")
label_names_testing, datasets = load_all_datasets(directory,

predictor=not use_classifier)

assert np.all(label_names_testing == label_names_np)
label_names = torch.from_numpy(label_names_np).long().to(
device)

testing_dl = Dataloader (ConcatDataset(datasets), batch_size

=256, shuffle=False, num_workers=4, pin_memory=True)

93

if args.save_unscaled_out:
net_output, test_targets, _ = get_net_outout_and_time (net,
testing_dl, label_names)
net_output.astype(np.float32).tofile(os.path.join(
result_dir, "net_out.dat"))
test_targets.astype(int).tofile(os.path.join(result_dir, "

targets.dat"))

test_preds, test_targets, avg_time_taken = predict_labels_net(
net, testing_dl, label_names, not use_classifier)

time_taken_arr.append (avg_time_taken)

class_report_txt = classification_report(test_targets,
test_preds, target_names=label_names_np.astype(str))

print(class_report_txt)

with open(os.path. join(result_dir, "testing_report.txt"), ’w’)
as f:

f.write(class_report_txt)

class_report_dict = classification_report(test_targets,
test_preds, target_names=label_names_np.astype(str),
output_dict=True)
with open(os.path. join(result_dir, "class_report_dict.pkl"), ~’
wb’) as f:

pickle.dump(class_report_dict, f)

plot_cm_matrix(test_targets, test_preds, label_names_np, Os.

path.join(result_dir, "testing_cm.pdf"))

print (£"CNN processed {1 / np.mean(time_taken_arr):.2f} images/sec

when using {devicel}")

D.4. Testing of CNN Model for Simulation

import argparse

import pickle

94

from fastai.data.core import Dataloaders

from fastai.data.load import DatalLoader

from model import FocusPredictor, FocusClassifier

from utils import *

directories = [os.path.join("training_videos", x) for x in ["Copper",
"Steel", "Silicon"]]
parser = argparse.ArgumentParser (description=’Train CNN to predict

images on different sets of videos’)

parser .add_argument (’--bs’, type=int, default=16, help=’Batch size’)

parser.add_argument (’--num_epochs’, type=int, default=100, help=’
Number of epochs’)

parser.add_argument (’--val_p’, type=float, default=0.15, help=’
Percentage of frames to use for validation’)

parser.add_argument (’--seed’, type=int, default=423132, help=’Seed
used for splitting frames into train/val/test’)

parser.add_argument (’--directories’, default=directories, nargs=’+’,
help=’Directories where video files are located. Each ’

directory should contain videos at different focal ’

distances and the name of each video file should be
’its
focal distance (e.g., 150.avi)’)
parser.add_argument (’--results_dir’, default="results_predictor", help
=’Directory where results will be saved’)
parser.add_argument (’--train_classifier’, action=’store_true’)

parser .set_defaults(train_classifier=False)

args = parser.parse_args ()

val_percentage = args.val_p

test_percentage = 0 # test on separate data
seed = args.seed

batch_size = args.bs

num_epochs = args.num_epochs

use_predictor = not args.train_classifier
if __name__ == ’__main__":
pred_str = "predictors" if use_predictor else "classifiers"

print (f"Training different CNN {pred_str} for videos in {args.
directories}")
for directory in args.directories:

result_dir = os.path.join(args.results_dir, os.path.split(
directory) [-11)

os .makedirs (result_dir, exist_ok=True)

print (f"Loading videos in {directoryl}...")

label_names_np, datasets = load_all_datasets(directory,
predictor=use_predictor)

max_label = np.max(label_names_np)

min_label = np.min(label_names_np)

only train on every other label including beginning and end
if use_predictor:
train_label_indices = [0] + list(range(2, len(

label_names_np) - 1, 2)) + [-1]

training_labels label_names_np[train_label_indices]

else:

training_labels = label_names_np
print (f"Training using videos {training_labels}...")
train_dset, val_dset, _ = split_train_val(datasets,

label_names_np, val_percentage, test_percentage, training_labels,

seed)

label_names = torch.from_numpy(label_names_np).long().to(
device)

train_loader = Dataloader(train_dset, batch_size=batch_size,

shuffle=True, num_workers=4, pin_memory=True)
val_loader = DatalLoader (val_dset, batch_size=512, shuffle=

False, num_workers=2, pin_memory=True)

dls = Dataloaders(train_loader, val_loader)

96

if use_predictor:
net = FocusPredictor ()
train_predictor (net, dls, label_names, num_epochs,
result_dir)
else:
net = FocusClassifier(len(label_names_np))

train_classifier(net, dls, num_epochs, result_dir)

pickle.dump(label_names_np, open(os.path.join(result_dir, "

label_names.pkl"), "wb"))

test on testing data

test_preds, test_targets = predict_labels(net, test_loader,
label_names, use_predictor)

pickle.dump ((test_preds, test_targets, label_names_np), open

(os.path. join(result_dir, "test_pred_targets.pkl"), "wb"))

