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ABSTRACT

OPTIMAL SERVER PLACEMENT, SERVICE
DEPLOYMENT, AND RESOURCE ALLOCATION IN
NEXT-GENERATION COMPUTER NETWORKS

With the expansion of mobile devices and new trends in mobile communication
technologies, there is an increasing demand for diversified services. To accommodate
a large number of services on a common network, it becomes crucial for an operator
to optimize resource allocation decisions to satisfy the service requirements in an eco-
nomical way. In this thesis, the computation architecture design problem is considered
first where server placement, service deployment, and task assignment decisions are
optimized to maximize the revenue of the operator. The problem is modeled as a
mixed-integer linear programming (MILP) formulation and a Lagrangian relaxation-
based heuristic algorithm is proposed. Then, the concept of network slicing, which
partitions a single physical network into multiple isolated slices, is examined. In the
deterministic network slicing problem, the capacities of the computational resources
are partitioned into slices each of which is customized for a particular service type. An
MILP formulation is presented that takes the delay requirements of services into ac-
count. Additionally, two algorithms based on Benders decomposition are devised along
with some valid inequalities and cut generation techniques. The problem definition is
also extended to consider the stochastic behavior of the service requests. A two-stage
stochastic integer programming model is constructed which is then converted into a
large-scale MILP model by defining a set of scenarios for the random parameters. A
similar decomposition approach is also applied to the stochastic network slicing prob-
lem. In our computational study on randomly generated test instances, the validity
of our models is assessed and the effectiveness of the proposed solution approaches is

demonstrated.



OZET

YENI NESIL BILGISAYAR AGLARINDA SUNUCU
YERLESTIRME, SERVIS DAGITIMI VE KAYNAK
TAHSISI ENIYILEMESI

Tasimabilir aygitlarin yayginlagmasi ve taginabilir iletigim teknolojilerindeki yeni
egilimler nedeniyle, cesitlendirilmis hizmetlere yonelik artan bir istem bulunmaktadir.
Cok sayida hizmeti ortak bir ag iizerinde barindirmak ic¢in, bir isletmenin hizmet
gereksinimlerini ekonomik bir gekilde kargilamaya yonelik kaynak ayrilmasi kararlarini
eniyilemesi ¢ok onemli hale gelmistir. Bu tezde ilk olarak, igletmen gelirini enbiiytikle-
mek i¢in sunucu yerlestirme, hizmet dagitimi ve istem atama kararlarinin eniyilendigi
hesaplama mimarisi tasarim problemi tanitilmaktadir. Problem, karma tamsayili dogru-
sal programlama (KTDP) olarak modellenmistir. Ek olarak, Lagrange gevsetmesi ta-
banl sezgisel algoritma oOnerilmistir. Ardindan, tek bir fiziksel agi birden ¢ok ayrik
dilime ayiran ag dilimleme kavrami incelenmigtir. Deterministik ag dilimleme prob-
lemi, hesaplama kaynaklarinin sigalarinin belirli bir hizmet tipi i¢in 6zellestirilmis di-
limlere boliinmesi olarak tanimlanir. Hizmetlerin gecikme gereksinimlerini dikkate alan
bir KTDP formiilasyonu sunulmaktadir. Ek olarak, bazi gegerli esitsizlikler ve kesi
olugturma teknikleri ile birlikte Benders ayrigtirmasina dayali iki algoritma gelistirilmis-
tir. Problem tanimi, hizmet istemlerinin rassal davranisini da dikkate alacak sekilde
genigletilmistir. Tki asamali bir rassal tamsayili programlama modeli olugturulmustur.
Bu model, rassal parametreler i¢in bir dizi senaryo tanimlanarak biiyiik olgekli bir
KTDP modeline doniigtiiriilmiistiir. Benzer ayrigtirma yaklagimi rassal ag dilimleme
problemine de uygulanmistir. Rasgele olusturulmug sinam ornekleri iizerindeki hesapla-
maya dayali calismamizda, modellerimizin gegerliligi incelenmis ve onerilen ¢oziim

yaklagimlarinin etkinligi gosterilmistir.
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1. INTRODUCTION

The mobile communication industry has recently been subject to rapid evolution
and innovations on mobile networking technologies. During the last decade, we have
witnessed an exponential growth in mobile computing. The use of smartphones have
spread to all aspects of our daily lives. In addition to smartphones, sensors and wearable
gadgets such as smart glasses, watches, and bracelets are now commercially available
in the market. This change has considerably enhanced our day-to-day experiences and

dramatically transformed a wide-range of industries.

With recent innovations and emerging technologies in mobile communication in-
dustry, the number of smart devices and gadgets requiring connectivity to the internet
has increased significantly. According to Cisco, global data traffic is expected to reach
396 exabytes (EB) per month by 2023. The number of connected devices, such as
sensors and wearable gadgets will increase to 29.3 billion in 2023 and 45% of those will
be mobile. Nearly 66% of the global population will have an access to the internet and
there will be 5.3 billion active internet users worldwide [1]. According to world-leading
operators, a growth on a tremendous scale is expected in the coming decade, i.e. 1,000

times higher traffic volume and 100 times more throughput [2].

This growth in mobile data traffic may push the network bandwidth requirements
to the limit, cause a burden on the underlying network infrastructure, which can re-
sult in increased load and congestion, and significant latency throughout the network.
Hence, the owner of the physical telecommunication infrastructure, called the operator,
may face increased capital and operational expenses. Because of this massive growth in
data volume, it is vital for the operators to optimize their resources in an economically

sustainable way.

Meanwhile, the emerging fifth generation (5G) networks are designed to connect

virtually everyone and everything together including machines, objects, and devices.



They are expected to provide higher performance and improved efficiency by delivering
higher data speeds, massive machine-type communications, improved network capac-
ity, ultra-low latency, higher reliability, and increased availability. With these improve-
ments it is able to create never-before-seen opportunities for people and businesses [3].
According to Qualcomm, the overall global economic output of 5G is estimated to reach
$13.1 trillion and it will support up to 22.8 million jobs worldwide through a thriving

value chain by 2035 [4].

Recently, the term Internet of Things (IoT) has received increasing attention from
researchers and practitioners. It refers to the physical objects, such as home appliances,
machines, or transportation vehicles equipped with sensors, processing ability, software,
and other technologies. These objects are usually interconnected, can exchange data
with other devices over the internet, and act based on the information they get from
one another without any human assistance. This brings a new form of communication
between people and devices. It enables smarter environments and real-time control
over devices. High speed, low latency, and massive communication capacity of 5G

networks enable the [oT on a truly massive scale [5,6].

The higher connectivity provided by 5G networks along with IoT devices are
expected to allow more efficient businesses and provide consumers access to more in-
formation in a faster way than ever before. Hence, they are envisioned to open up new
innovation opportunities and offer a wide range of services with a diversified set of per-
formance and service requirements from a diverse set of verticals to achieve substantial
improvement on the quality of service (QoS). These verticals include manufacturing,
automotive, healthcare, energy, and entertainment. In addition, mobile gadgets are
now capable of providing novel user-centric services that can enhance the quality of life
such as autonomous driving, drone-based delivery systems, smart cities, smart trans-
portation, cloud-connected traffic control, smart grid, augmented reality, and mobile

gaming [7].



In contrast to the traditional mobile broadband services, the novel services may
have differentiated and potentially conflicting QoS requirements in terms of reliability,
latency, mobility, data traffic volume, power efficiency, security, and privacy protection.
For example, in a scenario of autonomous cars, latency and reliability are very criti-
cal and real-time interaction has to be ensured. On the other hand, IoT applications
may require massive connectivity among lots of devices [8]. Applications such as face
recognition, augmented reality, and smart home generate high amounts of data, require
massive connectivity among devices, ultra-low end-to-end latency, real-time communi-
cation, high reliability, and more energy efficient networking [2,9]. These services are
expected to be active concurrently and share the same underlying physical network.
In addition, most of these services require real-time interaction with the end-users.
This requires a high degree of flexibility and scalability of the network to support dif-
ferent use-cases as each of them has its own set of performance and computational

requirements defined in their service level agreements (SLAs).

The proliferation of novel services have led to the development of a new net-
work design concept. The growth in mobile data traffic and stringent requirements
of diversified services necessitates the optimization of network operations and resource
utilization to maintain quality of experience (QoE) and generate revenue for the op-
erators [8]. With billions of smart devices demanding a wide range of services in a
heterogeneous network environment, users’ expectations are getting more diverse and
they differ in usage patterns of data-intensive mobile applications. Moreover, networks
become increasingly dynamic as they support ever-growing demand for diversified ser-
vices with stringent QoS requirements. The demand for these services can be time
varying and may change over time due to user mobility. Hence, the existing networks
that work on “one-size-fits-all” basis are not economically feasible to handle the chal-
lenges of the deployment of services with a broad range of requirements as a result of
increased cost of energy and higher capital investment requirement [10]. Management
of a next-generation network requires having a scalable and adaptive models suitable
for large-scale problem instances and dynamic fluctuations. The network needs to

be well designed to meet the requirements of differentiated services. To provide cost



and energy-efficient solutions, the network architecture and technologies need to be
revisited, a flexible and scalable mobile network has to be designed. The decisions
on the architecture design, network deployment, and network management are highly

challenging for the operators [11,12].

An operator who wants to invest in the next-generation mobile networks has to
design the computing architecture to optimize its operations in an efficient manner to
ensure the satisfaction of the end-to-end delay restrictions of service instances defined
in their SLAs. In this thesis, we consider a computing architecture where discrete ca-
pacity levels of servers can be synchronized with numerous services having diversified
characteristics as shown in Figure 1. We assume that the networking resources are
already deployed and functional, and their capacities are known. In this achitecture,
various capacity levels of servers can co-exist in the same network to meet the user
expectations. In this way, the service requests requiring very low end-to-end delay
can be processed in the vicinity of the end-users while resource-hungry, but latency-

tolerant services can be offloaded to a remote and powerful server whenever needed [13].
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Figure 1.1. An example network architecture with diversified services.



At the initial investment phase of designing a next-generation mobile computing
architecture, the following decisions are among key factors having an effect on the

profitability of an operator:

e Server placement: To identify the locations and capacity levels of the computa-
tional resources among a given set of potential sites

e Service deployment: To decide the set of services that will be deployed on each
server

e Resource allocation: To determine the partitioning of the capacities of computa-
tional resources among different service types

e Task offloading: To identify which server will execute the service request gener-

ated at an end-user location.

These decisions are interrelated, and thus should be considered in an integrated man-
ner. In this thesis, we study three problem variants combining these decisions under
different scenarios; namely the computation architecture design problem, the determin-
istic network slicing problem, and the stochastic network slicing problem. The main
goal of the thesis is to create a decision making tool and optimize the network design
process for an operator by taking service requirements and investment restrictions into

account.

In the computation architecture design problem, the objective is to maximize the
revenue of the operator that will be collected through successful task assignments. The
main focus is to determine the server placement decisions as they are the most cru-
cial components of the planning activities for the efficient design and operation of the
network infrastructure that can prevent potential revenue loss in the future due to un-
satisfied service requests or under-utilization of servers. Although these decisions are at
a strategic level, they have a long-term impact on the profitability of the operator since
they affect the tactical and operational level decisions, namely service deployment and
task assignment operations. This implies that the problem has to be considered in an

integrated manner. With a limited initial investment budget, the operator should op-



timize the server placement and service deployment decisions so that task assignments

can be handled to meet the service requirements and user expectations.

While designing the computation architecture, the actual demand for service re-
quests is usually unknown at the initial investment phase. In this problem, we do
not assume any prior distribution over service demand. Even though the service of-
fload requests arrive in a stochastic manner, the operator can maximize its expected
revenue in the future by considering the expected demand. Hence, we use a static ap-
proach based on steady-state demand rates rather than considering transient behavior.
To optimize server placement, service deployment, and task assignment decisions in
a comprehensive way, an MILP model is developed in which numerous service types
having diversified characteristics can be accommodated. Additionally, this model is
capable of satisfying additional QoS specifications such as the maximum allowed delay
limit. In addition to the MILP formulation, a Lagrangian relaxation-based heuris-
tic algorithm is designed to find near-optimal solutions for large instances where the
MILP model becomes insufficient to provide a feasible solution. Then, we extend the
problem and assume that service demand can fluctuate over time and networking and
computational resource requirements of different services can be random. To formulate
the extended problem, we propose a two-stage stochastic integer programming model
to optimize the server placement, service deployment, and task assignment decisions
given an initial investment budget restriction. We apply the Sample Average Approxi-
mation (SAA) method described by Kleywegt et al. [14] to find good-quality solutions

for different network topologies.

In the network slicing problem, service instances do not share the common ca-
pacity of the computational resources. Instead, the capacity of a server is partitioned
among different service types, called as slices. In this architecture, each slice is cus-
tomized and provides a dedicated capacity for a particular service type. With the
help of isolation between slices, any changes or failure in a service has no impact on
the performance of other services. Within this structure, the operator needs to opti-

mize the deployment of the computational resources, the capacity allocation of service



instances, and task assignment operations while satisfying the stringent delay require-

ments of services with diversified characteristics.

In the deterministic network slicing problem, the aim is to introduce an optimal
network slicing design algorithm for a capacitated environment where numerous service
types having various characteristics and requirements can be accommodated by meeting
the QoS specifications. We focus on the optimization of server placement, resource
allocation, and task assignment decisions to maximize the revenue of the operator. We
bring all these subproblems together and address them within a unified framework in
an integrated MILP model. As in the case of computation architecture design problem,
steady-state demand rates are used to formulate a mathematical optimization problem.
In addition, we assume that the operator has a limited investment budget that can be
spent to place computational resources. Our model also takes into account the upper
bound for the service end-to-end delay restriction. In addition to the MILP formulation,
two exact algorithms which are based on Benders decomposition and exploiting the
special structure of the proposed formulation are presented for solving large instances
where the MILP model becomes insufficient to obtain even a feasible solution within
an acceptable time limit. We also introduce valid inequalities and problem-specific cut

generation techniques to improve the efficiency of the suggested solution approach.

In the stochastic network slicing problem, we extend the scope of the previous
problem to cover the stochasticity in the service request demands and propose an in-
tegrated solution approach under time-varying data traffic. We focus on the optimal
placement and capacity allocation of computational resources by operators where dy-
namic changes in the service request patterns are also taken into consideration. To
formulate the problem, we let the number of service requests be stochastic, but assume
that it can be described by a finite random vector whose probability distribution is
known in advance based on some historical data. By allowing changes in the service
request patterns, the highly dynamic environment in the next-generation networks is

taken into account.



In this problem, we aim to provide a network design scheme with delay-sensitive
services to determine server placement and capacity allocation decisions in an optimal
way for a new entrant operator. For this reason, we construct a two-stage stochas-
tic integer programming model. The main objective of the problem is to minimize
the capital cost of server placement decisions and the expected cost incurred by un-
satisfied service requests within the specified delay limit. In addition, by defining a
set of scenarios with known probability of occurrence to capture the uncertainty in
the number of service requests, we develop a deterministic equivalent MILP model of
the associated stochastic programming model. However, since the number of decision
variables and constraints in this model is highly affected by the number of scenarios,
it becomes unable to provide good-quality solutions in a reasonable amount of time
when the number of scenarios is increased. Thus, we propose a Benders decomposi-
tion algorithm to solve larger instances where the MILP model becomes insufficient to
obtain a feasible solution within an acceptable time limit. Moreover, we derive valid
inequalities and simplify the subproblem to enhance the original formulations that can
significantly improve the performance of our solution method. We also study a more
realistic counterpart of the same problem where the capacity allocation of a server to
different service instances can only occur at discrete levels. We apply a similar de-
composition architecture to this problem and derive additional cuts to strengthen the

formulation.

In order to validate the applicability of the proposed solution approaches and
observe their performances, computational experiments are conducted using randomly
generated topologies and test instances. While designing the experiments, some real-
life aspects of computational architectures and the characteristics of next-generation
services are incorporated in the data generation process as much as possible. Experi-
mental results show that the proposed formulations are valid, and the developed solu-
tion methods significantly improve the solution quality and yield near-optimal results
for even very large instances within the allocated time limit. Hence, we can conclude
that the suggested algorithms can successfully address all the key components in a

comprehensive way.



The content of this thesis is organized as follows: In Chapter 2, some terminology
that is used throughout the thesis is introduced. Chapter 3 presents related works in
the literature and summarizes the contribution of the thesis. The input parameters
and decision variables along with their definitions are given in Chapter 4. In Chapter
5, we introduce the computation architecture design problem and present the MILP
formulation and Lagrangian-relaxation based heuristic algorithm. In Chapter 6, we de-
scribe the deterministic network slicing problem and propose two solution algorithms
based on Benders decomposition. Then, we continue with the stochastic version of
the problem and present the stochastic network slicing problem along with a decom-
position algorithm to efficiently solve the problem in Chapter 7. The efficacy of these
approaches is tested on a large suite of randomly generated test instances. The results
of computational experiments are summarized in Chapter 8. Finally, several open is-
sues and challenges are discussed along with potential future research directions in

Chapter 9.
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2. BACKGROUND

2.1. Cloud and Edge Computing

With the emergence of novel applications demanding high computational re-
sources, end-user devices are facing many challenges in terms of computational power,
storage, and battery life since they have limited storage capacity and rather limited
processing capability. Although current devices appearing in the market have higher
resource capacity than before, they may not be able to handle the applications requiring
considerable processing power in a short time. In addition, high battery consumption
also restricts the users to run highly demanding applications on their own devices.
Hence, it is not a straightforward solution to execute these services on the end-user

devices with a high performance [15].

One potential solution to these challenges is to shift data processing and storage
operations from the mobile device to powerful computing resources located in the cloud
to enhance the computational capabilities required for these operations. Cloud data
centers are capable of handling storage and processing of large scales of data. Thus,
cloud computing can provide extended battery life, improved data storage, processing
power, reliability, and scalability [16]. It allows users to utilize infrastructure, platforms
and software provided by cloud providers (e.g., Google, Amazon, Facebook, Apple, and
Microsoft) at low cost on a pay-as-you-go basis. It supports elasticity of computing,

storage, and networking resources [17].

Nevertheless, cloud servers are often remotely located and far from the end-users.
Although computing power and data processing capabilities are higher, the bandwidth
of the network has been the bottleneck for the cloud-based network architecture because
of the growing quantity of data generated by mobile devices. The increased data
traffic destined to the cloud servers may impose huge additional load and create a

burden on the already-congested network. Hence, it results in a significant Wide Area
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Network (WAN) delay while accessing the cloud computing infrastructures. It makes
the real-time interaction challenging to be achieved for the latency-intolerant services
and weakens the user experience. For example, [oT applications may produce large
amount of data that can create a heavy load on the network, may require very short
response time and data privacy. Cloud computing is not solely sufficient enough to

address these challenges and support next-generation services [18].

To overcome the aforementioned delay problem, an emerging concept called edge
computing is proposed in recent years. It is considered as an enabling technology that
allows computation to be performed at the edge of the network at the proximity of
the end-user. The term “edge” is defined as any resource along the path between
data sources and cloud data centers. While cloud computing is a centralized approach
with highly powerful resources located at a single or few locations, edge computing is
deployed in a fully distributed manner. It has the ability to extend cloud capabilities
at the edge of the network by performing computationally-intensive tasks and storing
massive amount of data at close proximity to end-user devices. With this approach,
computing operations can be handled at the proximity of resources and large amount
of data can be processed before sending to the cloud. Compared to the traditional
cloud-based computation architecture, edge computing has the potential to improve the
overall end-to-end latency, enable real-time interaction, and reduce energy consumption

3,18, 19].

Edge computing is considered as a promising solution that can address the la-
tency requirements, battery life limitations, high bandwidth demand, data security,
and privacy issues [18]. By bringing the computational resources closer to the end-
user, it creates a convenient environment to leverage the practical use of novel services.
By keeping the network traffic at the edge and executing the demanded tasks without
contributing to the congestion, WAN delay can be eliminated and user experience and
the overall performance can be improved. It is more efficient to process the data at the
edge of the network where the data is produced. Next-generation applications, such as

augmented reality, autonomous driving, or healthcare applications, require real-time
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interaction with the end-users. Moreover, these highly interactive applications are
resource-hungry and have stringent QoS requirements like ultra-low latency and high
reliability. Due to the limited capabilities of the end-user devices, edge computing
appears as a solution to process and store massive amount of data without causing

additional load on the network [3].

Even though the edge technology can deal with the excessive delay problem and
is considered a remedy for real-time interaction, cloud servers may still be favorable
in some cases to meet the diversified requirements. To combine the benefits of both
approaches, edge and cloud servers may also co-exist on the same network to meet the
user expectations and QoS requirements of differentiated services. By complementing
the centralized cloud data centers with a pool of resources at the edge of the network,
it can be possible to improve the user experience for computationally-intensive and
delay-sensitive applications. This architecture can be further improved by integrating
intermediary layers of computational resources with various capacity levels. With a
smooth integration of multiple layers with different levels of computational capabilities,
stringent requirements of services can be addressed in a single multi-level computing

structure [13].

2.2. Network Slicing

In addition to traditional voice and broadband communication, 5G systems are
expected to enable new innovation opportunities in different vertical industries. They
have three main characteristics that are not provided in previous generation networks:
high speed data transmission, lower latency, and the ability to connect a lot more
devices. They are anticipated to be the cornerstone for numerous novel services, ranging
from remote surgery to smart cities [11]. Most of these applications and services require
high reliability, ultra-low latency, and real-time user interaction. These novel services
with stringent requirements and IoT applications lead to tremendous increase in data
traffic volume and computation demands. Traditional networks designed to provide

voice and broadband services cannot cope with the exponential growth in the demand
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of services that generates massive amount of data and require large computation power

120].

The one-size-fits-all type of architecture in the past telecommunication networks
(2G, 3G, and 4G), where the same pipeline is utilized with almost no service cus-
tomization, is no longer suitable to accommodate so many services and address their
diverging performance requirements. The satisfaction of diversified service require-
ments can be achieved by partitioning a single physical network infrastructure into a
set of isolated logical networks on a per-service basis. Recent advances in communica-
tion environment, such as Software-Defined Networking (SDN) and Network Function
Virtualization (NFV), enable multiple services to coexist on top of a common under-
lying physical infrastructure [10]. SDN plays the role of cloud servers on the network
by providing a centralized control mechanism to manage traffic flow and orchestrate
network resource allocation to achieve high performance. On the other hand, NFV
decouples the network functions such as firewall or load balancing from the underly-
ing hardware and runs them as virtual network functions (VNFs) on virtual machines
(VMs). With these technologies, isolated logical networks can be deployed over a single
physical infrastructure [11,20].

The network slicing concept has emerged as an enabling technology in which
virtualized and independent logical networks can be deployed on the same physical
network infrastructure. It is considered a promising technology for 5G networks to
simultaneously accommodate on-demand vertical-specific services by sharing the same
physical network resources in a sustainable way. The fundamental idea of network
slicing is to divide the common physical network architecture into multiple logical and
isolated networks that are configured to fulfill the needs of a particular use-case. Each
slice can offer a customized service for a specific application scenario. Hence, each
network slice is an isolated, self-contained end-to-end network designed to satisfy the

requirements of a specific service [2,21].
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Network slicing plays a crucial role to meet the differentiated service require-
ments. Instead of a dedicated end-to-end network for each service, various services
can share the networking and computational resources on a common physical infras-
tructure. Numerous service types having various characteristics and requirements can
be accommodated simultaneously. By slicing a single physical network into multiple
isolated logical networks, the networking resources can be efficiently allocated to cus-
tomized services according to their particular QoS requirements. It enables to offer
tailored solutions to different verticals and to use the network resources in a more
efficient manner by creating specialized slices for each service type. Hence, capital
and operational expenses can be reduced while providing customized service through

limited resources [21].

The advantages of network slicing are multifold. Network slicing can improve the
flexibility of network resource allocation [21]. It also assures isolation between slices
which requires that the performance of a slice has no impact on the performance of
another slice. In this way, the performance of a slice is not affected by the adjacent slice
in case of a network failure, overload, or security attacks. In addition, privacy between
slices is ensured since no private data is shared among different slices [2]. Each slice
can be customized and dedicated to satisfy the requirements of the particular service
instance. Hence, service differentiation can be achieved and SLA requirements can be
guaranteed [22]. It allows service-specific resource allocation, which makes the network
management more flexible and efficient. This service-oriented approach enables to
design the network to meet the requirements of diversified services in a simplified and

cost-efficient way [10].

Network slicing enables the network-as-a-service framework so that computing,
storage, and networking resources are shared based on various service demands. In
this architecture, it is known that optimal allocation of resources is crucial for the
owner of the physical telecommunication infrastructure in terms of resource utilization
and networking performance [10]. Operators can utilize network slicing to create cus-

tomized virtual networks on top of a common physical infrastructure for a wide range
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of use-cases demanding various and often conflicting requirements in terms of mobility,
latency, and reliability [9]. An operator who wants to invest in this business needs to
optimize its long-term strategic investment planning decisions arising in deployment
of network slicing concept such that capital and operational expenses are minimized

while the SLA-specified service requirements are fulfilled.
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3. RELATED WORKS

In this chapter, the related works in the literature are discussed. The scope of
the problems and proposed solution methodologies in these studies are summarized.

Finally, the original contributions of the thesis are highlighted.

3.1. Studies on Computation Architecture Design Problem

Several studies that address the server placement, service deployment, and task
assignment decisions with various objectives under different scenarios exist in the liter-
ature. Nevertheless, they still appear as popular research topics due to the expansion
of novel use-cases and the development of computation methodologies [23—-26]. In this
section, recently published studies focusing on the computation architecture design
problem are presented to reveal their scope and methodology and to highlight the
original contributions of this study. The summary of a comprehensive literature re-
view that briefly presents the objectives, content and methodology of related works is

shown in Table 3.1.

Most of the existing studies formulate a mathematical optimization model and
use operations research tools for the solution methodology. Saavedra et al. [27] study
optimization of edge computing architectures and Radio Access Networks (RANSs) to
minimize RAN costs while maximizing the edge computing performance under net-
work capacity constraints. They propose a mathematical optimization model that
determines the function splits, the deployment of edge servers, and the routing of data
between radio units and central unit. They use a weighted objective function that
combines network expenditures and the end-to-end delay. They apply Benders decom-
position to their proposed formulation to separate the problem into two subproblems:
the routing problem and the network configuration problem. They show that their
proposed method is reasonable as it provides good-quality solution for large problem

instances.
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Due to the high complexity of the problems under consideration, instead of exact
solution methods, heuristic algorithms are also popular as an alternative approach to
provide near-optimal solutions. Ceselli et al. [28] study edge cloud network design
problem for mobile access networks. This problem requires to decide where to install
cloudlets among potential sites and assignment of access points to those cloudlets in an
optimal manner while satisfying the SLA definitions. A link-path MILP formulation
with an exponential number of routing variables is introduced. A heuristic algorithm
that combines local search, iterative rounding, and column generation techniques is
utilized to achieve high-quality solutions in a reasonable amount of time. They show
that the developed solution method also supports virtual machine orchestration with

partial user mobility information.

Mondal et al. [29] focus on the static cloudlet network planning problem that aims
to optimize the placements of cloudlets over existing optical access networks. The ob-
jective of this problem is to minimize the overall installation cost while satisfying the
resource capacity restrictions and latency requirements. A mixed-integer nonlinear
programming (MINLP) model is proposed to minimize the total installation expendi-
tures. An open-source solver Couenne [30] is used to evaluate the performance of the
proposed cloudlet placement framework over urban, suburban, and rural deployment

scenarios.

Wang et al. [31] study the edge server placement problem in a large-scale en-
vironment to determine the placement of servers and task offload operations. They
assume that servers are identical and have limited computational capacity. The ob-
jective of the problem is to minimize the access latency between end-users and edge
servers while ensuring balance in terms of the workload among servers. They formulate
an MILP model and use IBM CPLEX [32] as the solver. They perform computational
experiments on a real dataset provided by Shanghai Telecom. They compare the so-
lution quality obtained by solving the suggested formulation against several heuristic

algorithms.
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Li et al. [33] study the VNF placement problem considering service function chains
in NFV and edge computing enabled networks. They formulate an MILP model that
combines hierarchical structure and heterogeneous latency constraints to minimize the
total resource consumption. This problem is a combination of facility location and
multi-commodity flow problems, hence it is an NP-hard problem. Due to the high
complexity of the problem, they also present a priority-based heuristic algorithm to
solve it in a polynomial time. They show that this algorithm is able to find near-

optimal solutions.

Zeng et al. [34] investigate the deployment of edge servers effectively and eco-
nomically in wireless metropolitan area networks (MANs). They aim to minimize the
number and the overall installation cost of edge servers while satisfying QoS require-
ments such as maximum acceptable delay limit. The experimental results obtained
by simulation show that the proposed greedy heuristic and simulated annealing based

algorithm provide promising solutions.

In a study by Li et al. [35], a dynamic resource management strategy is proposed
to minimize the cost of the nodes rented from cloud providers while satisfying bal-
ance among the workloads of the edge cloud. The authors also investigate a dynamic
replica allocation strategy that satisfies the user experience while reducing the storage
overheads. A heuristic algorithm based on tabu-search is devised. The experimental
results show that their proposed algorithm provide more effective solutions than the

benchmark algorithms.

Farhadi et al. [36] optimize service deployment and request scheduling decisions
in an integrated manner to serve data-intensive applications from the edge. They con-
struct an MILP formulation that maximizes the expected number of requests served
per slot subject to storage, communication, computation, and budget constraints. A
polynomial-time heuristic algorithm that provides a constant approximation ratio un-
der certain conditions is devised and its performance is evaluated through extensive

simulations.
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Sun et al. [37] study the replica server placement problem in an NFV environment
which is modeled as a clustering problem. They aim to minimize the total traffic cost
by reducing the response delay and bandwidth consumption by bringing the replica
servers closer to the users while guaranteeing QoS requirements of services. An efficient
heuristic algorithm based on spectral clustering called SC_CDN is designed and its
performance is tested through simulation experiments having different traffic demand

conditions.

Santoyo and Cervello [38] examine the fog node placement problem in an NFV
environment. They formulate the problem as a capacitated facility location problem
augmented with coverage constraints and present an MILP model by taking resource
capacity and service latency restrictions into account. They also propose a hybrid
simulated annealing algorithm. By computational experiments, they show that the
suggested heuristic algorithm is able to provide promising results compared to the

traditional simulated annealing algorithm.

Xu et al. [39] combine replica server placement, content caching, and request
load assignment problems in content delivery networks (CDNs). They assume that
computational and networking resources have a limited capacity. They develop an
MILP model to minimize the ratio of unserved content request load. They decompose
this model into three subproblems and suggest heuristic algorithms to solve each sub-
problem. They examine the effect of number of replica servers, link capacities, server
processing capacities, and server storage capacities on the performance of the CDN.
Their proposed algorithm is both advantageous in terms of time-complexity and gives

near-optimum results.

In Baktir et al. [13], the computing infrastructure and the deployments of the
services are assumed to be known in advance. They aim to introduce a task assign-
ment scheme that guarantees SLA requirements of services in a multi-level computing
architecture. They also consider fairness issues among different service types by im-

posing a minimum satisfaction ratio. The proposed formulations address the various
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requirements of a service-oriented approach through an optimal task offloading scheme
by considering the SLA of the service types. A heuristic implementation based on the

nearest-fit algorithm is developed to obtain quick results.

To sum up, many studies in the literature investigate the server placement prob-
lem with the objective of minimizing the installation costs [28,29,37,38,40,41], as can
be seen in Table 3.1. Others try to minimize the service latency and the total energy
consumption of the system and balance the workload among the servers [31,42-46].
However, these studies do not consider an architecture where different capacity levels
of servers work in harmony. Moreover, the requirements of the differentiated services
are not taken into account. While each phase of the computation architecture design
problem is dealt in a separate problem in the literature, an operator should consider

them together to achieve revenue maximization.
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3.2. Studies on Network Slicing

The network slicing concept has been recently gaining momentum among re-
searchers and attracted a lot of interest from both academia and industry, especially
from the communities of operations research, networking, and computer science. In
recent years, the network slicing design problem has extensively been studied under
different objective functions and sets of constraints. An extensive literature survey on
mathematical optimization models for network slicing in 5G networks can be found
in [10]. In this section, we briefly mention some relevant studies in the literature with
an emphasis on mathematical optimization formulations and techniques available in

operations research.

Although there exist many studies that formulate different aspects of the network
slicing problem using mathematical optimization techniques, these models can be hard
to solve in polynomial time. Thus, instead of exact solution methods, heuristic ap-
proaches are commonly used to provide near-optimal solutions in a short amount of
time due to high complexity of the problem. Vassilaras et al. [22] present the algo-
rithmic challenges that one may encounter in efficient network slicing and state that
these challenges can be handled and practical solutions can be obtained by operations
research tools. They present an MILP model to choose the locations of network func-
tions among a set of candidate locations and to decide the capacities of the connections
between them to minimize the overall resource utilization cost, which is shown to be
an NP-hard problem. They also introduce additional constraints to deal with some
extensions of the problem such as survivability constraints, QoS constraints, optical
network constraints, etc. However, their model requires immense computational ca-
pabilities, hence solving the model using a standard MILP solver is impractical for

real-life network scenarios.

Destounis et al. [54] suggest an integer programming (IP) formulation to maximize
the number of accepted slices and minimize the cost of embedding virtual networks.

This model also takes QoS requirements and high reliability constraints into account.
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Due to large number of binary variables in the model, in large problem sizes, the run-
time grows exponentially if it is solved as a pure IP problem. Hence, as an alternative
solution methodology, they relax the integrality constraints and propose a solution
algorithm based on column generation that starts with a heuristic solution. At the
end of the algorithm, the fractional solution is converted into an integral solution using

rounding techniques.

Leconte et al. [55] provide an efficient and robust resource provisioning and auto-
scaling scheme for network slices with respect to different stakeholders, namely the slice
owners, cloud and network providers. They formulate the resource allocation problem
where network bandwidth and cloud processing power capacities are limited. Their
model allocates network resources to slices while the satisfaction of delay constraints is
guaranteed. They also propose an iterative heuristic algorithm based on the alternat-
ing direction method of multipliers that provides quick and efficient solutions. They
perform extensive numerical simulations to show the effectiveness and the flexibility of

their approach.

De Domenico et al. [56] focus on the deployment of VNFs and computational
resource allocation in a hybrid environment with multiple edge clouds and one central
cloud. They formulate an MILP model where the heterogeneous characteristics and
latency requirements of differentiated services are taken into account to achieve high
resource utilization efficiency. The objective function of this model is to minimize the
total computational resources required to run VNF chains. As the resulting model
is similar to the bin-packing problem, the computational complexity of the model
with large number of variables and constraints is handled by defining a simple, low-
complexity heuristic algorithm using the best-fit-decreasing strategy that generates
near-optimal solutions to find feasible VNF deployments with a limited number of

functional splits.

Zhang et al. [21] study the network slicing problem in an environment where a

number of service requests can be processed and routed through the network simulta-
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neously. They formulate an MILP model by allowing the traffic flows to be transferred
on multiple paths and introduced some practical constraints. They also show that
the problem is NP-hard in general. As it is computationally expensive to solve it to
optimality, they suggest a heuristic algorithm called penalty successive upper bound
minimization by relaxing the binary variables of the model and adding penalty terms
into the objective function to obtain feasible solutions. They test the performance
of their proposed approach through a set of computational experiments on simulated

mstances.

Xiang et al. [57] examine joint slicing of computational resources in a mobile
network architecture with multiple service types having a maximum end-to-end latency
limit. In this problem, the capacities of the networking nodes, links, and servers are
assumed to be limited and it is ensured that all service requests are satisfied within
the boundaries of their delay requirements. They suggest an MINLP formulation to
minimize the overall latency that consists of transmitting, outsourcing, and processing
of service requests subject to QoS requirements. Then, they equivalently reformulate
it into a mixed-integer quadratically constrained programming problem. To deal with
the complexity of the model, they use two heuristic algorithms: sequential fixing and
a greedy heuristic to achieve good-quality solutions for large-scale scenarios in a short

amount of time.

Fossati et al. [58] address multi-resource allocation problem by assuming that
all service requests within the system do not have to be satisfied. They study how
to share the network resources between slices in a fair manner on a network with
limited computational capability to avoid excessive capacity allocation of resources.
Their objective is to maximize the overall system efficiency while ensuring fairness
and user satisfaction. They suggest a resource allocation framework by defining a set
of resource allocation rules and ordered weighted average utility function to ensure
fairness between slices. They test the efficiency and fairness of their solution approach

by extensive simulations.
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Lee et al. [59] propose a two-level dynamic resource allocation scheme includ-
ing admission control, user association, baseband resource allocation, and transmission
power allocation decisions to allocate network resources to different tenants. The objec-
tive of their proposed model is to maximize the weighted network throughput across all
network slices considering priority, baseband resources, fronthaul and backhaul capac-
ities, QoS requirements, and interference. They utilize dynamic programming, greedy
heuristic algorithm, and Lagrangian dual method to solve different components of the
problem. They test the performance of their approach in terms of throughput, fairness,

and QoS performance against the baseline schemes.

Jiang et al. [60] aim to maximize the QoE while the satisfaction of the service
requirements is guaranteed in 5G networks. They introduce a heuristic algorithm
which takes inter-slice and intra-slice priority order into consideration and allocates
network resources to slices dynamically. The performance of the proposed algorithm is
tested through simulations and they show that the algorithm provides increased user

experience and better utilization of network resources.

Bega et al. [61] introduce a mathematical optimization model for the allocation
of network slices in order to maximize the infrastructure provider’s revenue while sat-
isfying the service requirements imposed by their SLAs. They design an adaptive
algorithm based on Q-learning designed as a decision support mechanism for the in-
frastructure provider to decide whether to admit or reject a new network slice request.
They demonstrate that this approach provides practical solutions with a near-optimal

performance.

Sattar and Matrawy [62] focus on intra-slice virtual function isolation problem in
core networks while satisfying end-to-end latency limits of differentiated service types.
The goal of their study is to assign the incoming slice request to the least utilized
server and to find a a path with minimum delay between the slice components. They
formulate an MILP model that provides isolation between different components of a

slice to ensure reliability. They evaluate the solution method by simulating a virtualized
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mobile core.

Chen et al. [63] study the network slicing problem in terms of system energy
efficiency. They aim to minimize the total power consumption of the whole network by
minimizing the total number of activated cloud nodes while considering the resource
budget, functional instantiation, flow routing, and end-to-end latency requirements
of services. Their proposed MILP model allows the traffic flows to be transmitted
through multiple paths. Service function chain constraints and the capacities of nodes
and links in the network architecture are also taken into account in this model. They
demonstrate the advantages of their formulation over the existing studies by conducting

computational experiments.

As can be observed, there has already been a huge effort spent on the network
slicing problem in recent years. Many authors also investigate the resource allocation
problem for network slicing ( [64-67]). In addition, different aspects of network slicing
such as mobility, security, robustness, flexibility, and security issues have been exten-
sively taken into account ( [68-76]). A more detailed survey on the existing studies in

network slicing can be found in [2, 10,20, 21].

While optimization of the server placement and resource allocation decisions in
deterministic network slicing problem has attracted a lot of interest in the literature,
there are a limited number of research studies on its stochastic counterpart. In fact,
the stochastic approach is able to design a more flexible network in terms of resource
management, can provide better utilization of resources, and can deal with time-varying

changes within the network.

Baumgartner et al. [77] propose a mathematical optimization model for cost-
effective deterministic network slice design problem where the objective is to minimize
the sum of capacity installation and consumption costs. Then, they extend their formu-
lation to deal with the uncertainties in the service demand and consider the stochastic

nature of the demand in a dynamic environment. They assume that the distribu-
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tion of the service demand is symmetric and bounded, hence they can model chance
constraints by employing an appropriate robust uncertainty set. They also provide a
protection mechanism for network slices against single network element failure, such
as node or link failures, to obtain a robust and survivable network slice design model.
They use Gurobi [78] optimizer to solve the integrated model. However, due to large
complexity of their proposed model, they are only able to test their approach on very
small networks containing 12, 14, and 17 vertices in their computational experiments.
In addition, they do not consider any SLA-specified service requirements such as max-

imum delay limit.

Sharma et al. [79] address the dynamic network slicing problem considering
growth, provisioning, capacity sizing, and deletion operations of network slices based
on a utility model. They introduce an algorithm that gives a framework for virtual
topology of VNFs in data-centers to share and better utilize network resources among
different slices. They also present a two-stage stochastic optimization model to handle
uncertainty in the number of service requests by assuming that the random demand
vector can be defined by a finite number scenarios based on some historical information.
The objective of this model is to minimize the number of active slice instances within
the network. They compare the performances of both approaches on a test instance
with a network topology having 11 vertices and 34 links. In addition, they define 6
scenarios to obtain the second-stage decisions by assuming that the service demand

has a known probability distribution.

Zhang and Wong [80] examine two-timescale resource management problem in
network slicing and assume that the service demand can vary over time with known
probability distribution. They formulate it as a two-stage stochastic integer program-
ming model that aims to maximize the total profit of a tenant while satisfying the QoS
requirements of services. In the first stage, before the actual realization of service de-
mand, long-term resource reservation decisions are optimized. Then, the second-stage
model determines the short-term intra-slice resource allocation decisions given the de-

cisions of the previous stage. They transform the proposed stochastic programming
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model into a deterministic equivalent MILP model by introducing a maximum interfer-
ence threshold and applying semi-definite relaxation. To obtain sub-optimal solutions,

they also utilize branch-and-bound and primal-relaxed dual techniques.

3.3. Studies in the Field of Operations Research

Recent advances in mobile communication industry have also led to novel research
perspectives where operations research tools are utilized to obtain practical solutions
to challenging problems arising in this domain. Bektag et al. [81] focus on the joint
object placement and request routing problem for a CDN from an operational point
of view by assuming that commercial content providers already have established a
number of proxy servers. They formulate a nonlinear integer programming model to
minimize the total distribution cost by replicating the content on the proxy servers
and assigning the client requests to an appropriate server in a CDN architecture. They
also set an upper bound on end-to-end object transfer time to guarantee the QoS
requirements. They linearize the proposed model and design two algorithms based on
Benders decomposition and Lagrangian relaxation by exploiting the structural property
of the model to solve the integrated problem. They generate random internet topologies
to demonstrate the effectiveness of their proposed approaches compared to the state-

of-the-art integer programming solver.

Similarly, Sen et al. [82] deal with the static data segment allocation problem in
an information network where access patterns do not change over time. The goal of
the study is to locate very large database of files in a cost-efficient manner to optimize
the locations of servers, file placement, and user assignment. Instead of presenting a
large-scale integrated model, they construct a two-phased approach: in the first phase,
files are clustered into a pre-specified number of segments and then in the second phase,
these segments are located and the requests are assigned to segments. They suggest
a Benders decomposition algorithm to solve large instances where the subproblems
are equivalent to the p-median problem. They also utilize various performance-tuning

strategies to improve the efficacy of their proposed algorithm.
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Gendron et al. [83] study the location design problem of green wireless local area
networks (WLANSs) that aims to reduce the overall power consumption cost of the
access points when the load is scarce. They integrate the decisions on powering-on
a set of access points, power level assignment and user terminal assignment into a
single model. To formulate the problem, they consider a bipartite network architecture
containing a set of access points and user terminals. They try to satisfy the user
demand by taking the capacity restrictions of the connections between these two sets.
For each access point, discrete power levels are defined that can be used when it is
powered-on. They develop an exact algorithm inspired by Benders decomposition and
use branch-and-Benders cut method that can provide high-quality and robust solutions

even on large instances.

Li and Aneja [84] study fault management in optical networks where a failure
can cause large data loss or interrupt communication services. They examine the
fault tolerant regenerator location problem to guarantee signal transmission and com-
munication under link failures. The goal is to minimize the number of regenerator
deployments such that each node pair can still communicate in case of a single-link
failure. They also suggest a branch-and-Benders-cut framework where the subproblem
is used to check the feasibility of the master problem variables. Instead of the classical
linear programming (LP) duality-based Benders cuts, they derive combinatorial Ben-
ders cuts in each iteration. They demonstrate that their proposed approach can find

high-quality solutions even for the large instances through computational experiments.

3.4. Studies on the Capacitated Facility Location Problem

A significant amount of research has been carried out on various extensions of the
capacitated facility location problem assuming that the demand is known. However,
the real demand is often random in nature. Hence, although the facility can deal with
the average demand, it may not cope in case of a peak demand. Then, this facility
is said to be congested [85]. In fact, the network facility location problem, where

congestion arises and delay functions are used to approximate the queuing process at
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facilities, has been studied extensively by the operations research community. This
problem has applications ranging from emergency service systems (fire, ambulance,

police) to networks of public and private facilities.

Berman and Mandowsky [86] address the location-allocation decisions on con-
gested networks where some of the arriving demand cannot be served immediately due
to server unavailability when a call for service arrives. Hence, such a demand must ei-
ther wait in the queue or be lost. The authors propose an algorithm to simultaneously
optimize the locations of facilities and the partitioning policy. Descrochers et al. [87]
model the congested facility location problem in which the objective is to minimize the
sum of customers’ transportation and waiting times, and facilities’ fixed and variable
costs. They propose a nonlinear, convex integer programming formulation and use col-
umn generation technique within a branch-and-bound scheme to solve their proposed

model.

A comprehensive review of congestion models in facility location problems is
discussed in [85]. In addition, Berman and Krass [88] describe the main components,
present the terminology, and discuss main streams of research, solution approaches,
and challenges in facility location problems on networks in case of stochastic customer

demand and potential congestion at the facilities.

3.5. Thesis Contributions

In this thesis, we focus on optimizing the strategic level decisions having long-
term effect on the profitability of an operator. We assume that networking nodes
and links are already deployed. We aim to suggest a decision making tool for invest-
ment planning of a new entrant operator in an environment with numerous service
types having diversified characteristics. Most of these services are latency-intolerant,
so their SLA impose a maximum limit on the end-to-end delay for successful task of-
fload operations. In addition, they are differentiated in terms of their networking and

computational resource requirements. The operator needs to determine the placement
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and discrete capacity levels of computational resources to meet the user expectations

in an economical way.

The server placement decisions also affect tactical and operational level deci-
sions such as service deployment, resource allocation, and task assignment operations.
Therefore, optimization of these decisions has to be considered in an integrated man-
ner. In this thesis, three different problem instances that combines strategic, tactical,

and operational level decisions are introduced under different assumptions:

e Computation architecture design problem,
e Deterministic network slicing problem,

e Stochastic network slicing problem.

In the computation architecture design problem, the primary aim is to optimize
server placement, service deployment, and task assignment decisions to maximize the
revenue of the operator. We assume that the distribution of future service demand is
unknown, hence the expected service demand is utilized. Given that the operator has a
limited investment budget, we formulate an MILP model that takes the computational
requirements and end-to-end delay restrictions of services into account. Then, we
design a Lagrangian relaxation-based heuristic algorithm to find good-quality solutions

for large instances.

As can be observed through the literature review given in Table 3.1, our work
differs from the existing studies in terms of the following original contributions: In
our problem, the multi-level computation system with potential server placement sites
and service deployments play a vital role in optimal computation environment design.
Based on the deployment schemes, task assignment operations are optimized so that the
operators can maximize their revenue while satisfying the latency restrictions. There-
fore, three different subproblems, each of which turns out to be complex on its own, are
considered together. We provide an efficient and comprehensive solution methodology

to address all the phases in an integrated fashion.
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Then, we examine the network slicing concept which is proposed as a key enabling
technology in the design of next-generation wireless networks. In this system, the
overall capacity of the computational resources is partitioned into slices. These slices
are then offer dedicated capacity for distinct service types. It allows service-specific
resource allocation, enables to accommodate various service types simultaneously by
sharing a common physical network in a sustainable way, and ensures service isolation

among slices.

The optimal network slicing problem in next-generation mobile networks requires
optimization of server placement, resource allocation, and task assignment decisions
while satisfying the QoS specifications of services. We study two variants of this prob-
lem. In the deterministic network slicing problem, we assume that the distribution of
service demand is unknown. Hence, steady-state demand rates are utilized. An MILP
model is formulated where the objective is to maximize the revenue of the operator
while satisfying the delay requirements. On the other hand, in the stochastic network
slicing problem, the scope of the problem is extended to take the stochastic behavior
of service demand into account. In this problem, the probability distribution of the
number of service requests is assumed to be given in advance. It is formulated as
a two-stage stochastic integer programming model that aims to minimize the cost of
server placement decisions and the expected cost of unsatisfied service requests. For
both problems, exact solution algorithms based on Benders decomposition is developed

to improve the solution quality.

Our study differs from the existing studies due to the fact that it integrates
server placement, resource allocation, and task assignment decisions in a single model
and provides an efficient solution methodology for large instances. To the best of our
knowledge, these components of the optimal network slicing problem have not been
sufficiently studied and considered simultaneously in the existing literature. In addi-
tion, as shown in Section 3.2, most of the existing studies suggest heuristic algorithms
to find near-optimal solutions instead of exact solution methods because of the high

complexity of the problem. Thus, they are unable provide an efficient and integrated so-
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lution methodology for the decisions arising in deployment of computational resources

to serve differentiated services on the same network architecture.
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4. NOTATION

While formulating the problems considered in this thesis, it is assumed that
a network topology (V, E), where V is the set of vertices and E is the set of links
connecting vertex pairs, is given in advance. Each vertex v € V and each link e €
have a networking capacity represented by 1, and w,, respectively, in terms of Megabits
per second (Mbps). It is assumed that these networking devices are already deployed

on the network.

A number of end-users exist throughout the network requesting different services.
These end-users with smart devices continuously generate service requests at each
physical location. We assume that each end-user is connected to and access the service
through the closest vertex on the network. Instead of dealing with each service request
individually, the requests triggered by the end-users connecting to the same access
point (AP) on a vertex are aggregated as a single point of demand. These aggregated
demand points are referred to end-user locations and represented by the set U. Hence,
it is assumed that there are multiple smart devices generating service requests at each

end-user location.

The set of services with different characteristics and requirements is denoted by ).
Each service ¢ € () has a unit revenue of r, that the operator gains for each successfully
handled task assignment operation. Similarly, o, represents the unit penalty cost that
the operator needs to pay for an unsatisfied service request of type ¢ € Q. The
service requests triggered by the end-users generate load on both computational and
networking resources depending on the service type. The parameter m, represents the
expected load on servers for a type ¢ service request in terms of millions of instructions
(MI) to be executed. For a type ¢ service request and its corresponding response, the
expected networking load on vertices and links of the network are denoted by 7y and
hy®®, respectively, in megabits (Mbits). As most of the services, such as augmented

reality and healthcare applications, provided by the operators in the next-generation
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wireless networks require real-time interaction, they are latency-intolerant. This is
assured by imposing a maximum acceptable delay for a successful task assignment
in their SLAs. Thus, for a type ¢ service request, an upper limit for the end-to-end
delay, which consists of transmitting the request and the response between end-user
and server locations and executing the code on servers, is denoted by «,, in seconds.
The total number of service requests of type ¢ generated per second at the end-user

location w is denoted as d,q.

A set of potential locations where servers can be placed is assumed to be given
in advance and denoted by the set S. A server can be at different capacity levels. The
set L represents the discrete capacity levels of the servers. The processing capacity of
a level [ server is represented by n; in millions of instructions per second (MIPS) and
the capital cost for placing a level [ server is denoted by a;. In addition, the number
of cores on a server at capacity level [ is denoted by y; and the processing capacity
of a single core is shown by B. The capacity of a server can be allocated to different
services to satisfy their SLA requirements. To proliferate efficient resource utilization
of a server, the maximum number of service instances that can be hosted on a server
is restricted depending on the server capacity level. For a server at capacity level [, at
most g; different service instances can be deployed. It is assumed that the operator has
a limited budget of b that can be spent for the total capital cost of server placement
decisions. Note that all revenue/cost components are assumed to be on an annualized

basis. A scaling factor v is used to standardize different revenue/cost components.

In this thesis, we also let some parameters to be stochastic, but we assume that
their joint probability distribution can be expressed using historical data or predictions.
The random data vector & represents the set of stochastic parameters with a finite
probability distribution and £ represents the actual realizations of the random data.
Let K denote the set of possible realizations of &, also called scenarios. In addition,

let pp represent the corresponding probabilities of each scenario £ € K such that

Zkerk =1
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When a task assignment process is inspected from the beginning to the end, it can

be observed that the following operations contribute to the overall end-to-end delay:

e Routing the service request from the end-user location to the destination server
through networking resources, i.e. vertices and links,

e Execution of the service code on the destination server,

e Routing the service response from the server location back to the end-user loca-

tion.

For each task assignment operation, all of these three components are taken into ac-
count while calculating the end-to-end delay. To eliminate the possibility of excessive
delay on computational and networking resources, a maximum utilization limit is set

as p and o, respectively.

In computer networks, to transmit a service request and its corresponding re-
sponse between the end-user and server locations, the conventional approach is to
transmit them via the shortest path with minimum hops [89]. Therefore, we assume
that while routing the service request as well as the response between the end-user
and server locations, they follow the shortest path in terms of the number of hops. In
our models, a shortest path between each end-user and potential server location pair
is found by breaking ties arbitrarily in the preprocessing step. The set of vertices and
links on the min-hop route from end-user location u to potential server location s are

represented by Vs and E,,, respectively.

Each service generates a different amount of load on the networking resources.
It is assumed that the amount of time required to transmit the request and the corre-
sponding response between end-user and server locations through the min-hop route,
also called the transmission delay, depends on the expected networking load require-
ment of that particular service type and the networking capacities of the vertices and
the links. The effect of congestion on the networking resources is ignored [90]. Then,

the overall transmission delay in seconds for a type ¢ service request generated at the
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end-user location v and assigned to a server at location s, denoted as (3,45, can be

calculated using the equality

h;eq + hzes
Yy

h;eq + hges

+ ) - (4.1)

ecEys

ﬁuqs - Z

vEVys

For convenience, all index sets and parameters used in the formulations are sum-

marized below:

Sets
Vv Vertices
) Links
U End-user locations
Q Services
S Potential server locations
L Capacity levels of servers
K Scenarios
Vs Vertices on the min-hop route between end-user location u and potential
server location s
E.s : Links on the min-hop route between end-user location v and potential
server location s
Parameters:
(N Networking capacity of vertex v (Mbps)
We - Networking capacity of link e (Mbps)
Tq : Unit revenue obtained by satisfying a service request of type ¢
Oq : Unit penalty cost incurred by unsatisfied service request of type ¢
mg Computation load for a type ¢ service request (MI)

heet Network load for a type ¢ service request (Mbits)
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Network load for a type ¢ service response (Mbits)

Maximum allowed delay limit for service type ¢ (s)

Total number of type g service requests per second generated at the
end-user location u

Capital cost of a server at capacity level [

Processing capacity of server at capacity level [ (MIPS)

Number of cores on a server at capacity level [

Maximum number of service deployments on a server at capacity level
l

Total budget of the operator for server placement decisions
Processing capacity of a single core (MIPS)

Scaling factor

Probability of scenario k

Random data vector representing the set of stochastic parameters
Actual realizations of &

Maximum allowed utilization for computational resources

Maximum allowed utilization for networking resources

Overall transmission delay for a type ¢ service request generated at

the end-user location u and assigned to a server at location s (s)

The problems examined in this thesis focus on optimizing the strategic and tac-

tical level decisions including server placement, service deployment, and capacity al-

location decisions as well as operational level decisions on task offload operations of

an operator that will enter the market. To formulate a mathematical model for these

problems, the following decision variables are defined:

Decision Variables:

Xsl
Yys

1 if a server of capacity level [ is placed at server location s; 0 otherwise

1 if type ¢ service is deployed on a server at location s; 0 otherwise
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Capacity per second of type q service deployed on potential server loca-
tion s (MIPS)

Fraction of type ¢ service requests that are generated at end-user loca-
tion u and assigned to a server at location s (0 < 0,4 < 1)

1 if type ¢ service requests at end-user location u are ever assigned to a

server at location s; 0 otherwise
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5. COMPUTATION ARCHITECTURE DESIGN
PROBLEM

5.1. Problem Definition

In an environment where different capacity levels of servers can potentially co-
operate, an operator can maximize its revenue in the future by optimally placing the
computational resources, distributing the services within the network, and assigning
the tasks generated by the end-users in an optimal way with a limited initial invest-
ment budget while meeting the end-users’ expectations. The problem considered in
this chapter focuses on finding an optimal server placement and service deployment
scheme within the given budget limit of the operator. The overall aim is to maximize
the revenue of the operator obtained by successfully handling the offloaded tasks while

strict latency constraints are satisfied.

Our primary motivation is to optimize the computational resource deployments,
the distribution of the service instances, and task assignment operations by addressing
all these issues with a single and comprehensive solution methodology. Since this is a
long-term strategic investment planning problem rather than being a real-time opera-
tional one, changes in the user behavior or operations within the network are not taken
into account. In fact, at the initial investment phase, the actual distribution of the
service requests is usually unknown. Hence, the operator needs to take action based on
the average demand to maximize its expected revenue through the optimal deployment
of computational resources. Although the service offload requests are time-varying, the
operator can maximize its expected revenue by designing the system considering the

steady-state demand rates.
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5.2. Problem Formulation

Let Fy denote the total load per second on server location s generated by all
service requests in terms of MIPS. Then, using the notation given in Chapter 4, an

MILP formulation of the problem can be written as

max » Y Y rodugbugs (5.1)
3 X es 62
zl: Y aXy<b (5.3)
ZY; <> aXa ses (54

.
ijeuqsg 1 wuelUqgeQ  (5.5)

Ougs < Yos uelU,qeQ,seS (5.6)

Fo=> " mydugbugs s€S (5.7
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F, < panXsl sesS  (5.8)
Z > (Wt 1) dygbugs < Tty veV (59
(u,8):vEV,s
anxsl —Fz - 6 L Tas welUqge@,seS (5.10)
uqs
Ougs < Zugs uel,qge@Q,seS (5.11)
Quq57F320 uelU,qge@,seS (512)
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Constraints (5.2) enforce that at most one capacity level can be placed at each
potential server location. In constraint (5.3), the total expenditure is restricted so that
the total capital cost of server placement decisions cannot exceed the given budget
of the operator. On the other hand, to operate effectively, the maximum number of

service deployments on a server is restricted based on the capacity level of the server.
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Constraints (5.4) state that the total number of services hosted at each potential server
location cannot exceed the maximum allowed number of service instances depending

on the server capacity level decisions.

Any solution (X,Y) satisfying constraints (5.2)—(5.4) provides a feasible server
placement and service deployment scheme. However, the quality of these solutions can
only be evaluated based on the total revenue obtained when the task assignments are
realized. Therefore, the task assignment decisions are also integrated into this model,
and the output of this part is used to assess the quality of the server placement and

service deployment decisions.

The objective function can be defined as to maximize the overall revenue of the
operator collected by the successfully handled service executions, as formulated in
(5.1). Note that the revenue of the operator is affected directly by the task assignment
decisions and indirectly by the server placement and service deployment decisions.
Constraints (5.5) specify that for each service request generated at each end-user lo-
cation, the sum of all task assignment fractions considering all potential destinations
within the structure should be at most one. A service request can be assigned to a
server if and only if there exists an instance of the corresponding service type on that
server, which is guaranteed by constraints (5.6). The total load per second on each
server location can be equivalently expressed as in constraints (5.7) in terms of MIPS.
In order to avoid an indefinite amount of delay on computational resources, a maxi-
mum utilization bound is set for each potential server location, which is ensured by
constraints (5.8). Similarly, a maximum utilization limit is guaranteed for each vertex
of the network in constraints (5.9). Here, we assume that the service requests and the
corresponding responses are always propagated through the shortest path in terms of
the number of hops between each end-user and server location pairs. Then, the left
hand side of the constraints (5.9) represents the total load per second on each vertex
generated by all service requests and their corresponding responses on the network in

terms of Mbps, and the utilization of each vertex is restricted by the parameter o.
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Enforcing a maximum utilization limit on the computational and networking
resources to avoid excessive delay is not solely enough to provide real-time interaction
and satisfy the maximum latency values imposed by the SLA definitions of the services.
Besides, the overall service delay, from the instant of request generation until the
reception of the response, should not exceed the maximum acceptable delay of the
corresponding service type. To guarantee the satisfaction of the delay requirements of
the services, the overall transmission delay between every end-user and server location

pair is calculated in the preprocessing step using the equality (4.1) for each service

type.

After calculating the time spent on the networking resources while routing the
request and its response between the end-user and the target server locations, the
remaining part of the end-to-end delay is the time required to execute the service code
on the server. Thus, the maximum end-to-end delay requirement for a successful task
assignment can be reduced to a maximum code execution delay requirement at the
server location. As suggested by Jia et al. [91], we use the analytical formula for the
expected time spent in an M/M/1 queuing system to represent the expected time for
the code execution on a server by taking the congestion effect into account. Then,
the maximum end-to-end delay requirement for a task assignment operation can be

equivalently written as

# < g — Bugs- (5.14)
]
Please notice that both sides of the inequality are in seconds. This inequality must be
satisfied to have a successful task assignment, i.e. if 6,55 > 0. As the transmission delay
is relatively smaller than the time required to execute the service code on the server,
we assume that the transmission delay between any end-user and server location for
each service type is strictly less than the maximum allowed delay limit [92]. Hence,
we have oy — Bugs > 0 for v € U,q € @), s € S. By introducing an indicator binary
variable Z,,s, which takes value 1 if type ¢ service requests from end-user location u

are ever assigned to a server at location s, and 0 otherwise, the maximum end-to-end
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delay requirement given in (5.14) can be converted into a set of linear constraints as

in (5.10) and (5.11).

The proposed model (5.1)—(5.13) is capable of finding an optimal server placement
and service deployment scheme in a service-oriented environment. It is achieved by
evaluating the revenue gain of the operator collected through the successfully handled
task offload operations satisfying the maximum delay requirements of the services.
However, the number of decision variables and the number of constraints in the MILP
model depend on the cardinalities of the index sets, which can be very large for a real-
size architecture. On the other hand, our model extends the edge server placement
problem, which is already proven to be an NP-hard problem [31], by accommodating
the additional service deployment and task assignment decisions along with different
capacity level options for servers. Moreover, the problem considered in the chapter has
the p-median problem, a well-known NP-hard problem in discrete location theory [93],
as a special case. Hence, the optimal solution to the overall problem cannot be obtained
efficiently in polynomial time and it may require a prohibitively long amount of time
to obtain an exact solution especially when the problem size gets larger. Therefore, a
novel heuristic algorithm based on the Lagrangian relaxation of the proposed model is

presented in the following section.

5.3. Lagrangian Relaxation-Based Heuristic Algorithm

As the numbers of end-user locations, service types, and potential server locations
increase, the MILP model (5.1)—(5.13) may become incapable of finding a good-quality
feasible solution within the allowed time limit. In this section, we present a Lagrangian
heuristic algorithm as an alternative solution method to obtain a high-quality solution

in a reasonable amount of time.

Lagrangian relaxation (LR) is a technique commonly used to find an upper bound
for an MILP model with a maximization objective function. The main rationale of

LR is based on the idea that in an MILP, there are some constraints that make the
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problem difficult to solve, and the removal of these “complicating” constraints from
the constraint set results in a problem which can be solved relatively easier compared

to the original problem.

When the original problem is a pure IP problem P given as {max cx : Ax <
b,Dx < d,x € {0, 1}} with optimal objective value z*, then the Lagrangian relax-
ation of problem P with respect to the constraint set Dx < d is defined by intro-
ducing a non-negative Lagrange multiplier vector A > 0, attaching each component
of this vector to one of these constraints and bringing them into the objective func-
tion to obtain the Lagrangian upper bound program (LUBP), which can be expressed
as {zLR()\) = maxcx + A(d — Dx) : Ax < b,x € {0,1} } Note that for any A > 0,
21,r(A) becomes an upper bound for 2* ie., zpr(A) > z*. It is also worthwhile to
mention that solving the LUBP turns out to be easier than the original problem P. In

some cases, it can be even solved by inspection.

In order to obtain the best (smallest) upper bound (UB) which is as close as
possible to z*, one has to solve the Lagrangian Dual Program (LDP) given as z;p =
1§1>1£1 2r,r(A), which requires finding the optimal values of Lagrange multipliers. This
can be achieved by different techniques such as subgradient optimization and multiplier
adjustment. Subgradient optimization is by far the dominant method used in the
literature. It can be shown that for any IP or MILP formulation, the best UB that can
be obtained by LR is at least as good as zpp which is provided by the LP relaxation
of P where the binary restriction of each component of the decision variable vector
x is relaxed to the interval [0,1]. Namely, z;,p < zpp. A formal proof can be found

in [94,95].

A nice property of LR is that it can also be used to develop a heuristic algorithm,
known as Lagrangian heuristic (LH), to generate feasible solutions for problem P. The
objective value corresponding to each of these feasible solutions provides a lower bound
(LB) on z*, and when the algorithm terminates, the best lower bound becomes the

output of the LH. At each iteration of this heuristic, the LUBP is solved to generate
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an upper bound. In order to produce the smallest (best) UB, the LDP is solved by
subgradient optimization, which requires the update of the Lagrange multiplier vector
A according to the violations in the relaxed constraints using a step size parameter.
This is achieved by generating a feasible solution to the original problem P from the
optimal solution of the LUBP. The objective value of the feasible solution becomes a
lower bound on z*, and it is utilized at the same time to update AX. This process is
repeated until a stopping criterion is reached. The most widely used criteria are the
gap between the best LB and best UB, the maximum number of iterations, and the
allowed time limit. When the LH terminates, the best feasible solution found so far is
a heuristic solution, and the objective value obtained is a lower bound on z*. In fact,

this lower bound is usually quite tight, even though the upper bound may be weak.

As mentioned earlier, the solution of the LUBP turns out to be much easier since
one or more sets of constraints from the original problem P are relaxed. Sometimes,
the LUBP can even be solved by inspection, which means that there is no need to
solve a mathematical programming model, and it suffices to use a greedy mechanism
to determine the optimal values of the decision variables in LUBP. In other cases like
ours, as will be explained shortly, it becomes possible to decompose the LUBP into two
or more subproblems so that each subproblem can be solved independently by spending
a smaller computational effort. This significantly reduces the time complexity of solving
the LUBP compared to the computation time required to solve P. Unfortunately, as is
the case with metaheuristic algorithms, no performance guarantee can be given based
on a theoretical analysis for the LH. The only way to show its effectiveness is to use it
on benchmark instances for which optimal or best-known objective values are known or
to apply it on randomly generated instances and compare the performance with other

methods.

5.3.1. Lagrangian Relaxation

When our formulation given in the previous section is examined, it can be ob-

served that the overall process of designing a computation infrastructure can be de-
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composed into two separate but interrelated subproblems: (1) server placement and
service deployment problem (2) task assignment problem. The constraints (5.6), (5.8)
and (5.10) combine the decision variables of both subproblems, so they are considered
the complicating constraints that increase the complexity of the problem. To obtain a
Lagrangian relaxation of the proposed MILP model (5.1)—(5.13), these constraints are
relaxed in a Lagrangian fashion by associating non-negative Lagrange multipliers 0,s.
€s, and Cyqs, Tespectively. Then, the resulting Lagrangian relaxation problem can be

expressed as

max Z Z Z [rqd“qews + 5uq5 (Y;]S - Quqs) + € <,OZ nXg — Fs)
u q S .

Mg

+<us|: ansl_Fs_—Zus:|
/ ; 05(1 - ﬂuqs I

st. (5.2) — (5.5), (5.7), (5.9), (5.11) — (5.13).

Note that for given values of multipliers 0,45, €5, and (4, this formulation can be
decomposed into two easier-to-solve subproblems. The first subproblem includes only
binary X and Y decision variables, and the solution for this problem provides a feasible
server placement and service deployment scheme. The second problem is expressed
in terms of the remaining task assignment-related decision variables. However, the
capacity levels of the deployed servers and the service distribution decisions obtained
by the first subproblem are ignored while solving the task assignment part due to the

relaxed constraints.

5.3.2. Subgradient Optimization

One of the challenging aspects of applying the LR approach is to determine the
appropriate values for the Lagrange multipliers. In order to achieve this objective, the
traditional subgradient optimization scheme suggested by Fisher [94] is utilized where
Lagrange multipliers are updated at each iteration of the procedure until a termination

criterion is satisfied.
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In this iterative process, initially, the parameter 7 is set to a value within the
set (0,2] and Lagrangian multipliers d,4s, €5, and (s are initialized as zero. At each
iteration of the algorithm, the LUBP is solved to optimality with the optimal objective
value denoted as Zp,, and the best UB, namely UB*, is updated if necessary. The
solution of the LUBP is then used to find a feasible solution for the original problem
and the best LB, LB*, is updated. Subgradient vectors GG; are evaluated at the current
solution for each relaxed constraint. A step size T is defined, which depends on the
parameter 7, the gap between the objective value of the best known solution (LB*) and
that of the current solution (Z.y), and the squared norm of the subgradient vectors.
Finally, the multipliers are updated using the step size and the subgradient vectors.
The step size is a critical factor for the convergence of the solution. To speed up
the convergence, if UB* has failed to decrease for a specified number of iterations, m
is halved. After the termination condition is satisfied, LB* is reported as the best
feasible objective value for the original problem. All steps of the solution algorithm

are summarized in Figure 5.1.

At any step of the algorithm, the optimal solution of the relaxed problem does
not necessarily satisfy the constraints (5.6), (5.8), and (5.10). Therefore, this solution
needs to be converted into a feasible solution, denoted as Zpqqs, With respect to the
original problem to obtain a lower bound. Let (X' , f’) be the optimal server placement
and service deployment decisions obtained by solving the relaxed problem. Then, the
following problem is solved to obtain the optimal task assignments for the current

solution:

maxz Z Zfrqdquuqs (5.15)
u q s

S6.)  Ougs < 1 uel,qeq (5.16)

euqsg qs UGU,QEQ,SGS (517)

Fo=> " mgdugbugs s€S (5.18)

u q
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I, < panXsl se S (5.19)
1
SN (Bt by )dugBugs < oty veV  (5.20)
q (u,8):wEVys
F, + - mqﬁ Zugs < anXsl uclU,qgeQ,scS (5.21)
q — Mugs [
euqs < Zuqs uelU,qe@,seS (522)
Ougs: Fs > 0 uelUqgeQ,se S (5.23)
Zygs €40,1} uelUqgeQ,ses. (5.24)

In this way, the feasibility of the resulting solution with respect to the original
problem is ensured. Although this approach requires higher computational effort than
using a simple, fast heuristic algorithm to obtain feasibility for the original problem,

it is shown to be useful in obtaining good quality solutions.

5.4. Stochastic Variant of the Problem

In this section, we extend the problem definition and investigate computation
architecture design where dynamic changes in the number of service requests are taken
into account and the resource consumption of different services is uncertain. The
aim is to maximize the expected revenue of successfully handled service requests by
optimally allocating computational resources within a limited budget. We assume that
the number of service requests from an end-user location may vary in time. Similarly,
two different requests from the same service type may require different load on the
network and computational resources. So, we let the number of service requests and
service load requirements be stochastic, but assume that their probability distribution

is known.

5.4.1. Problem Formulation

Let & = (d, m, h) represent the random data vector corresponding to the number

of service requests, computation and network load requirements with known distribu-
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tion. Also let the parameters & = (d, m, h) be actual realizations of the random data.

Using this notation, two-stage stochastic integer programming formulation of the prob-

lem can be written as follows:

max E[Q(X, Y, §)]
S.t.ZXslgl seS

ZZG’ZXSZ <b
s 1

Zqu < Z!]ZXSJ se S
q 1

Xsl,que{O,l} qEstesleL

where Q(X,Y,¢) is the optimal value of the second-stage problem

max Z Z Z T¢CugBugs
u q s

s.t.ZQuqsgl uelU,qgeQ
euqSSYZJ.s uelU,qge@,seS
Fo=> " mydugbugs s€S
u q
Fsgpzansl seS
DT> (W by )dugbugs < Tty veV
q  (u,8):vEVys
an a—Fs > ——————Zugs uelU,qge@,seSs
/Buqs
euqSSZuqs UGU,QEQ7SES
euqmFszO uelU,qe@,seSs

Zygs €40,1} uel,qgeQ,seS.

(5.25)
(5.26)

(5.27)
(5.28)

(5.29)

(5.30)
(5.31)

(5.32)

(5.33)
(5.34)

(5.35)

(5.36)

(5.37)

(5.38)
(5.39)
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Note that Q(X,Y,¢) is a function of the first-stage decision variables X and
Y, and a realization £ = (d,m, h) of the random parameters. E[Q(X,Y,&)] denotes
the expected revenue obtained by the satisfaction of the service requests. In the first
stage, we determine the server placement and service deployment decisions before the
realization of the uncertain data. In the second stage, after a realization of £ becomes
available, we optimize the task assignments for the given server placement and service

deployment decisions.

The objective function of the first stage problem (5.25) tries to maximize the
expected revenue collected by successfully offloaded service requests. Constraints (5.26)
enforce that at most one capacity level of server can be placed at every potential server
location. Constraint (5.27) guarantees that the total capital expenditures for server
placement decisions cannot exceed the given budget limit of the operator. Constraints
(5.28) state that the total number of service deployments cannot exceed the maximum

number depending on the server level decisions at each potential server location.

In the second stage, when the server placement and service deployment decisions
are made and the uncertain data is revealed, the model optimizes the task assignment
decisions to maximize the revenue of the operator while satisfying the delay require-
ments. The objective function (5.30) aims to maximize the total revenue obtained by
successfully handled task assignments. Constraints (5.31) state that a service request
from an end-user location can be assigned to at most one server. A task assignment
is valid only if the corresponding service instance is deployed on that particular server
location. This is guaranteed by constraints (5.32). The total flow on computational
and network resources generated by all service requests are calculated in constraints
(5.33) and (5.35), respectively. To prevent excessive delay on both resources, the maxi-
mum utilization is bounded, which is ensured by constraints (5.34) and (5.35). Finally,
as most of the services in such an environment are latency-intolerant and their SLA
definitions may impose maximum latency values to enhance the user experience, the
end-to-end delay for each successful service request should not exceed the maximum

delay limit of that service. The maximum allowed delay requirement is expressed in
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constraints (5.36) and (5.37).

5.4.2. Sample Average Approximation (SAA) Method

It is difficult to solve the stochastic program (5.25)—(5.39) since E[Q(X,Y,&)]
cannot be written in a closed-form expression. However, the function Q(X,Y, &) can
be computed for the given first-stage decision variables X and Y. Therefore, we imple-
ment SAA scheme described by Kleywegt et al. [14]. In this method, a random sample
of realizations (§) are generated and the expected value for the objective function of
the stochastic program is approximated by the sample average function. After that,
deterministic optimization techniques are used to solve the sample average approxi-
mating problem. This procedure is repeated until a stopping criterion is satisfied. At

the end of the algorithm, we obtain an estimate for the optimality gap.

The SAA algorithm consists of three phases: In the first phase, we generate M
independent samples of size N and solve the SAA problem. Then, we calculate an
upper statistical bound for the optimal value of the true problem. In the second phase,
by fixing each optimal solution obtained in the first phase of the SAA method, we
solve the same problem with a sample size of N’. The solution providing the largest
estimated objective value is used to obtain an estimate of a lower bound for the true
optimal value by solving N” independent second-stage problems in the third phase.
Finally, we compute an estimate of the optimality gap and its estimated standard

deviation.
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1: Initialize multipliers 0, €, and ( as zero vectors.
2: k=1, LB*=—o0, UB* =

3: Initialize m € (0, 2].

4: while Time limit has not been reached do

5:  Solve the relaxed problem. Let the objective value of the relaxed problem be

ZLag-
6: if Zp,y <UB* then
7: UB* = Zpag
8 end if

9:  Modify the solution of the relaxed problem into a feasible solution. Let Zgqqs
denote the objective value of this solution.

10:  if Zpeqs > LB* then

11: LB* = Zpeas

12:  end if

13:  if UB* has not improved for w iterations then

14: T=m/2

15:  end if

16:  Define subgradients vectors:

170 (G1)ugs = Ygs — Ougs

18 (Ga)s=pY_;muXyg — F

190 (G3)ugs = Dy uXg — Fs — —4—Zqs

og—Pugs
T(LB* — Z144)
> ||Gill?

20:  Define a step size T' =

21:  Update the multipliers:
22: 6 = maz{0,6" + TG, }
23: " = max{0, " + TGy}
24: CFM = max{0,¢* + TG3}
25 k=k+1

26: end while

27: Output LB* as the best feasible objective

Figure 5.1. Lagrangian relaxation-based heuristic algorithm.
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6. DETERMINISTIC NETWORK SLICING PROBLEM

6.1. Problem Definition

In this chapter, we consider a computation architecture design where numerous
service types having various characteristics and requirements can be accommodated
by meeting the QoS specifications. We focus on the network slicing problem in which
the operator determines the deployment of the computational resources, the capacity
allocation of service instances, and task assignment operations. The capacity of the
computational resources is not shared among different services as in the case of com-
putation architecture design problem. Alternatively, the overall capacity of a server
is divided into slices that correspond to a particular service instance. These slices
are customized and dedicated to satisfy the requirements defined in the SLA of that

particular service type.

The deterministic network slicing problem focuses on optimizing server place-
ment and capacity allocation decisions so that the revenue obtained by successful task
offloading operations is maximized. We combine all these subproblems together in
a single integrated MILP model. We use steady-state demand rates to formulate the
problem. Our model also takes into account the upper bound for the overall end-to-end
delay restriction. We assume that the operator has a limited initial investment budget

that can be spent on capital cost expenditures of computational resources.

6.2. Problem Formulation

To formulate the problem, let Fj, denote the total load per second on server

location s generated by type ¢ service requests in terms of MIPS. Then, using the

notation given in Chapter 4, a mathematical model for the deterministic network slicing
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problem can be written as

max Z Z Z Tq@uqOugs (6.1)
U q s

sty Xg<1 s€S (6.2)
l

DY X< (6.3)
s l

Z Cqs < anXsl seS (64)
q l

ZGuqsgl uelUqeQ (6.5)

Fre =Y myygugs g€Q,s€8S (6.6)

Cps— Fpg > —9 M1 = Zugs) wel,geQ,seS (6.7
Qg — Buqs

euqs < Zuqs u e U,q € Q,S es (68)

Coss Fysy Ougs > 0 uelUqge@,se S (6.9)

X, Zugs € {0,1} seSlelLiuelU,qeQ (6.10)

where M is a sufficiently large constant. The objective function (6.1) maximizes the
overall revenue obtained by the successfully handled task assignment decisions. Con-
straints (6.2) ensure that at most one capacity level of server can be placed at any
potential server location. The overall capital cost for server placement decisions is
restricted by the budget of the operator, which is guaranteed by constraint (6.3). Con-
straints (6.4) imply that the total capacity allocated for all services should not exceed
the capacity level of the deployed server for each server location in terms of MIPS.
Constraints (6.5) state that the sum of all task assignment fractions originating at
each end-user location for each service type should be at most one. Using the notation
given above, the total load per second on server location s generated by type q service

requests can be expressed as in equality (6.6) in terms of MIPS.

To satisfy the SLA requirements of differentiated services, we need to ensure

that the overall end-to-end delay do not exceed the maximum allowed delay limit of



o8

that particular service. As explained in Chapter 4, the potential transmission delay,
denoted as (3,45, indicating the time required to transmit the service request from
the originating end-user location to the destination server location and to transmit its
response back in the reverse direction through the vertices and the links on the network,
is calculated using the equality (4.1) for each service type in the preprocessing step.
Then, the overall end-to-end delay restriction of a service can be equivalently stated
as a maximum execution delay on the server. Here, we also use the formula for the
average time spent in an M/M/1 queuing system to represent the expected time for
the code execution on a server. Then, the maximum delay requirement of a type ¢
service request generated at end-user location u and assigned to a server at location s

can be expressed as

my

—— 9 <, — Bues 6.11
Cqs_Fqs_aq [jq ( )

where Fj, and C,s denote the total load and the capacity of type ¢ service on server
location s in terms of MIPS, respectively. Note that both sides of the inequality (6.11)
are in seconds. In addition, similar to the computation architecture design problem,

we assume that a; — Bugs > 0 foruec U, ge Q,s € S.

To represent the latency requirement given in (6.11) as a set of linear constraints,
we define an indicator binary variable Z,,, that takes value 1 if type g service requests
at user location u are ever assigned to server location s (i.e. 0,45 > 0) and 0 otherwise.
This is ensured by constraints (6.8). Then, the maximum delay requirement given in

(6.11) can be expressed as constraints (6.7).

Proposition 6.1. A tighter version of constraints (6.7) can be obtained by replacing

M= ™

og—Pugs

Mgq
Qgq _Buqs ’

Proof. By replacing M = constraints (6.7) become

UL uelUqgeQ,seS. (6.12)

Oéq - ﬁuqs e

Cqs_FqSZ
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If Ougs > 0, it implies Z,4s = 1. In that case, both constraints (6.7) and (6.12) state
that Cyps — Fys > #, which is equivalent to (6.11), and the delay requirement is
satisfied. On the other hand, if Z,, = 0, it implies 6,45 = 0 and constraints (6.7)
become redundant. Meanwhile, constraints (6.12) become Cys — Fjs > 0, which are

still valid since the total load per second on each server for each service type cannot

exceed the allocated capacity. (I

By replacing constraints (6.7) with (6.12), the big-M structure in the MILP
model can be eliminated. In this way, numerical problems that may arise with the use
of big-M can be prevented, and a better linear programming (LP) relaxation bound
can be obtained. Therefore, constraints (6.7) are replaced with (6.12) in the sequel of

the thesis.

6.3. Decomposition Approaches

In the MILP model given in Section 6.2, the number of decision variables and
the number of constraints are O(|U||Q||S||L|). Therefore, it may be computationally
difficult to solve this problem for real-sized networks with a large number of end-user
and potential server locations. In this section, we present two exact solution algorithms

based on Benders decomposition to efficiently solve the problem.

6.3.1. Decomposition based on Server Placement and Binary Task Assign-

ment Decisions

Our first decomposition approach determines the server placement and binary
task assignment decisions by solving a master problem, which contains decision vari-
ables X and Z only. In the subproblem, given these decisions, the optimal capacity
allocation and fractional task assignment decisions are determined, and the revenue
of the corresponding solution is obtained by solving an LP problem. To decompose
the MILP model given in Section 6.2, we first observe that it can be reformulated in

terms of only binary variables and an additional continuous variable ¢, which estimates
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the maximum revenue of the operator corresponding to the current solution, given as

follows:

Master Problem 1:

max t (6.13)
sty Xg<1 s€S (6.14)
I
DD wXa<h (6.15)
s l
0<t<tys (6.16)
X, Zugs € {0,1} ueclUqeQ,seS.lel (6.17)

where ¢t denotes an upper bound for the revenue obtained by the task assignment
decisions. As the variable ¢ predicts the maximum revenue of the operator, we can set
tup = > > rqdyy by assuming that all service requests are assigned. Note that this
model cgntqains significantly fewer decision variables and constraints than the original

MILP model, which is advantageous from a computational point of view.

By solving this master problem, we obtain server placement decisions, denoted
as X, satisfying the initial investment budget. In addition, the model identifies a set
of service requests from each end-user location that can be ever assigned to a server
location through the binary task assignment decisions, denoted as Z. Given these
decisions, the optimal capacity allocation and fractional task assignment decisions,
and the revenue of the operator gained by successfully handled service requests can be

found by solving the following subproblem:

Subproblem 1 (X, Z) :

max Y > " rydugBugs (6.18)
u q s
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s.t. ZCqs S anXsl seS (019)
q l

Zeuqs <1 u € U,q € Q (620)

Fqs - quduqeuqs =0 qec Qv s€S (621)

Cys — Fys > _Ma ~uq8 uel,ge@Q,seS (6.22)
qu - ﬁuqs

euqs S Zuqs u € U, q < Q, se S (623)

‘guq37Cqs>Fqs >0 uelU,qgeQ,seS. (624)

This formulation contains only continuous decision variables, hence it is an LP problem.
Thus, it is easy to solve the subproblem and we can use its dual formulation to generate

Benders cuts based on duality theory.

It can be noted that this formulation for the subproblem can be further simplified.
First, let us assume that we are given a master problem solution (5(, Z) Then, in the
subproblem, for each service type ¢ € Q and potential server location s € S, it can be
observed that one of the constraints (6.22) corresponding to u = argmax {#Zuqs}
is always tighter than the others since it has the largest right—h;rfc(ij side. To remove

the remaining constraints and have a simpler formulation for the subproblem, we can

replace (6.22) with
my ~
Cys — Fys > max{ ———— 1 Zygs = 1 qgeQ,seSs. (6.25)
u Qg — /Buqs
Another key observation is that if Zuqs = 1 for some v € U,qg € Q,s € S,
constraints (6.23) are redundant since constraints (6.20) are tighter. Otherwise, they
imply 6,,s = 0. In that case, we can also remove the 0, variable from the formulation.

Hence, constraints (6.23) can be removed from the formulation by fixing 6,,s = 0 if

Zuqs = 0. Then, the subproblem can be equivalently written as
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Subproblem 1 (5(, Z) :

max Z Z Z Tq@uqOugs (6.26)
u q s

s6.) Co <> mXy sesS (6.27)
q !
D s <1 wel,geQ (6.28)
Fro = mglygfugs =0 g€Q,5€5 (6.29)
mq ~
Cys — Fpo > max{ —2—: Zypo =1 g€Q,s€S (6.30)
w aq - Buqs
Ougs =0 uEU,qu,s€S:ZuqS=O (6.31)
Ougs, Cqs, Fys > 0 uwel,qe@,seS. (6.32)

With this transformation, the number of decision variables and constraints in the sub-

problem can be reduced significantly.

In each iteration of the standard Benders decomposition procedure, the master
problem is solved to optimality. Then, given the master problem solution, the dual
of the subproblem, which is also an LP problem, is solved. In our problem, for any
given master problem solution (5(, Z), if the dual of the subproblem is feasible, the
corresponding subproblem also yields a feasible solution. Morcover, the current master
problem solution (X, Z) is also feasible with respect to the original MILP formulation
and it can be identified as a candidate solution. On the other hand, if the dual formu-
lation of the subproblem is unbounded, it means that the corresponding subproblem is
infeasible. In that case, we need to ensure that (5(, Z) is eliminated from the feasible
region of the master problem. This can be achieved by generating a Benders feasibility
cut using an extreme ray of the dual of the subproblem and adding it to the master

problem to be resolved in the next iteration [96].
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Proposition 6.2. For any given master problem solution (5(, Z), the subproblem 1is

feasible if and only if the following condition is satisfied:

Zmax{ m%uqs  Dugs = 1} an ol se S. (6.33)

q

Proof. First assume that the condition (6.33) is satisfied. Let 6,4, = 0 for all u €

UqGQ,sESanqub—max

: Zuqs = 1} for all ¢ € Q,s € S. Then, all

Qgq— Buqs
constraints (6.27)—(6.32) are satisfied, hence the subproblem is feasible. Now, assume

that the subproblem is feasible. Then, constraints (6.30) imply that

Cys > max{ m‘fg : Zgs = 1} geEQ,s€S. (6.34)
uqs

By integrating constraints (6.27), we obtain

Zmax{ ﬁ : Zuqs = 1} < ZCqS < anf(d ses (6.35)
uqs 7 7

which is equivalent to condition (6.33). Hence, condition (6.33) is satisfied if the
subproblem is feasible. O

Using Proposition 6.2, it can be seen that we do not need to solve the dual of the
subproblem to check the feasibility of the subproblem. Alternatively, the feasibility of
the subproblem can be checked using condition (6.33) for any given master problem
solution (5(, Z) With this observation, instead of classical LP duality-based Benders
feasibility cuts, it is possible to derive combinatorial feasibility cuts without solving
the dual of the subproblem. Note that for some (X, Z), if the condition (6.33) is not
satisfied for some s € S, we need to break the infeasibility of the subproblem. It follows
that the value of at least one binary variable has to be different in all feasible solutions
of the original MILP model. Then, as suggested by Codato and Fischetti [97], the

combinatorial Benders cut to ensure the feasibility of the subproblem can be written
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as

Yo Xa+ Y A=Xa)+ Y Zut Y. (1—Zyg) =1 (6.36)

1: X =0 I: Xg=1 (u,q):ZuqSZO (u,q):Zuqszl

These constraints can be generated in a cutting-plane fashion and added to the master
problem when the feasibility condition is not met by the current master problem solu-
tion. In our computational tests, we observed that if condition (6.33) is not satisfied
for some s € S” such that S’ C S, adding all potential infeasibility cuts of type (6.36)
for all s € S’ at the same time helps to generate feasible solutions during the initial
iterations of the algorithm and accelerates the algorithm compared to the case where

a single feasibility cut of type (6.36) is added in each iteration.

In any iteration of the decomposition algorithm, if the condition (6.33) is satisfied
for the current master problem solution, the subproblem as well as its dual problem
are feasible. For a candidate master problem solution (5(7 Z) satisfying the feasibility
condition, let ¢ denote the objective function value of the master problem, s, flug:
and v, be the optimal dual multipliers associated with constraints (6.27), (6.28), and
(6.30), and t* be the optimal objective function value of the subproblem (or its dual
since their objective function values are the same at optimality). If £ > ¢*, we add the
following cut to the master problem and resolve it in the next iteration to obtain a new

candidate solution:

t < ZHS(ZWXSZ) ZZNW + ZZV‘I‘“’(@ — ﬁu s Zu'qb’) (6'37)

where v = argmax{ . These constraints are derived using the optimality

Mg 7
Qg _6uqs Zuqs
uelU

condition of the subproblem and called as Benders optimality cuts.

The decomposition approach causes the master problem to lose all the information
associated with the decision variables in the subproblem. Hence, the master problem

can provide a weak approximation for the original feasible region. This can result in a
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large number of iterations and excessive solution times [98]. One way to accelerate the
decomposition procedure is to strengthen the formulation of the master problem by
introducing some valid inequalities at the beginning of the algorithm. In our problem,
a key observation is that if a service request generated at an end-user location of any
type is assigned to a server location, then there must be a server of any level located
on that potential server location. Therefore, a valid inequality for the master problem

formulation can be written as
Zugs < Xa welU,ge@,ses. (6.38)
l

Although introducing this valid inequality to the master problem at the beginning of
the decomposition algorithm increases the number of constraints in the formulation,
it can improve the solution procedure by strengthening the formulation and result
in faster convergence. Note that this inequality is also valid for the original MILP
formulation given in the previous section. However, in the original MILP formulation,
constraints (6.4) and (6.12) already imply (6.38). Hence, this inequality is redundant
for the MILP model.

The overall decomposition procedure can be summarized as follows: The first step
is to solve the master problem augmented with valid inequality (6.38) to optimality
and obtain a candidate solution (5(, Z) with the objective function value . Since
the master problem is obtained by relaxing some of the constraints from the MILP
formulation, ¢ provides a UB for the optimal objective value. Then, the feasibility of
the current master problem solution is checked using condition (6.33). If the solution
does not satisfy the feasibility condition for the subproblem, a feasibility cut (6.36) is
generated to eliminate the current solution and added to the master problem, which is
then resolved in the next iteration to obtain a new candidate solution. Otherwise, the
dual of the subproblem is solved. Let t* denote the optimal objective value for the dual
of the subproblem for the current solution (5(, Z) Then, the corresponding subproblem
solution with the same objective value is also feasible with respect to the original MILP

model. Thus, t* gives an LB for the optimal objective value of the original problem. If
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t > t*, a traditional Benders optimality cut of type (6.37) is generated using the optimal
dual multipliers of the subproblem and added to the master problem to be resolved in
the next iteration. Note that although there is no link between the objective function
and the decision variables X and Z in the master problem formulation at the beginning
of the algorithm, adding optimality cuts (6.37) provides a relationship between them
in the upcoming iterations. The solution procedure is repeated until we have t = t*.
In that case, we have LB = UB and the current solution (5(, Z) provides an optimal
server placement and binary task assignment decisions for the deterministic network

slicing problem.

6.3.2. Decomposition based on Server Placement, Capacity Allocation, and

Binary Task Assignment Decisions

The formulation of the second decomposition approach is very similar to the pre-
vious one, but it yields a special structure that enables us to decompose the subproblem
into smaller and efficiently solvable parts. In this approach, the capacity allocation de-
cisions are also determined in the master problem along with the server placement and
binary task assignment decisions. We also use a continuous decision variable ¢ in the
objective function representing the revenue of the operator obtained by successfully

handled task assignments. Thus, the master problem can be reformulated as
Master Problem 2:

max t (6.39)
sty Xg<1 seS (6.40)
l

s l
ZCqs < anXsl se S (042)
q 1

0<it<typ (6.43)

Cygs >0 geQ,sesS (6.44)
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Xty Zugs € {0, 1} wel,ge@Q,se Sl e L. (6.45)

An initial upper bound for the objective function value can be imposed by setting

tup = Y, > rqdy,. Note that this formulation still contains fewer decision variables
u g

and constraints than the original MILP model. In addition, valid inequality (6.38)

defined for the previous master problem is also valid for this model.

This master problem can be used to obtain a candidate solution that provides
server placement, capacity allocation, and binary task assignment decisions, denoted
as (5(, é, Z) Then, the optimal fractional task assignment decisions and the maximum
revenue that the operator can achieve corresponding to the candidate solution can be

found by solving the following subproblem:

Subproblem 2 (X,C,Z) :

max Z Z Z Tq@QuqOugs (6.46)
w q s

563 Ouge <1 wel,geQ (6.47)
Fqs - Z quuqeuqs =0 qe Qv s€S (648)
Fqs S C’qs - 7nq ~uq5 u 6 U, q 6 Q, S 6 S (6.49)

Qg ﬁuqs
‘guqs < Zuqs u € U,q € Q,S es (650)
euq&FquO u € U,QEQ“SGS. (651)

This subproblem formulation is still an LP problem. In addition, it can be observed that
the formulation of the subproblem does not depend on the server placement decisions,
namely X, hence it can be defined for any given (é, Z) Moreover, similar to our
analysis in the first decomposition approach, by removing redundant constraints in
(6.49) and (6.50) and fixing some decision variables, a simpler formulation for this

subproblem can be expressed as
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Subproblem 2 (C,Z) :

max Z Z Z Tq@uqOugs (6.52)
u q s

5603 Ougs < 1 wel,qge@ (6.53)
Fpe = MgtugBugs = 0 g€Q,s€ S (6.54)
~ mq ~
Fis <Cps—max ————— 1 Zygs =1 geQ,seS (6.55)
u Qg — /juqs
Ougs = 0 u€UqEQ,SES: Zys=0 (6.56)
euqsansZO UGU,QEQ,SES. (657)

Using the standard Benders decomposition procedure, the master problem is
solved to optimality and a candidate solution (5( C, Z) is obtained. Then, the dual
of the subproblem is solved for the given master problem solution. If it is unbounded,
which means that the corresponding subproblem is infeasible, a Benders feasibility cut
is generated by using an extreme ray of the dual problem to eliminate the current
solution in the upcoming iterations. For our decomposition procedure, instead of de-
riving feasibility cuts when needed, we will present an alternative approach to ensure
the feasibility of the subproblem in each iteration of the algorithm using the following

observation:

Proposition 6.3. For any given master problem solution (C,Z), the subproblem is
feasible if and only if the following condition is satisfied:
~ mq

Cys > Z uel,qgeQ,seS. (6.58)

- Oéq — 6uqs uqs

Proof. First assume that the condition (6.58) is satisfied. Let 6,4, = 0 for all u €
U, q€ Q,s € S. Then, all constraints (6.53)—(6.57) are satisfied, hence the subproblem

is feasible. Now, assume that the subproblem is feasible. Then, constraints (6.55)
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imply that

Cps > max{ Mq . Trugs = 1} geEQR,s€eS (6.59)

u aq - 6uqs

which can be equivalently expressed as (6.58). Hence, the condition (6.58) is satisfied

if the subproblem is feasible. O

Similar to the first decomposition approach, we can derive combinatorial feasi-
bility cuts whenever condition (6.58) is not satisfied for some v € U,q € @, s € S by
the candidate master problem solution without solving the dual of the subproblem.
However, it is known that feasibility cuts do not improve the upper bound for a maxi-
mization problem and we can have many iterations without any feasible solution at the
initial iterations of the algorithm. However, it can be possible to eliminate all infeasible
solutions and ensure the boundedness of the dual of the subproblem by introducing a
set of valid inequalities to the master problem. So, the undesired feasibility cut gener-
ation process can be avoided [98]. Then, the algorithm needs to generate only Benders

optimality cuts.

In our second decomposition approach, instead of generating a feasibility cut
whenever the feasibility condition (6.58) is not satisfied by the current master problem
solution, we add a set of valid inequalities to the master problem at the beginning of

the decomposition algorithm having the following form

UL uelUqgeQ,seS. (6.60)

Cqs > ugs
Qg — /6uqs

With this approach, it is ensured that for any given master problem solution (é, Z)
the feasibility condition (6.58) is met. Then, the dual subproblem is bounded and
the corresponding subproblem is feasible. Thus, we can avoid deriving feasibility cuts.
Although this approach may increase the complexity of the master problem, the fea-

sibility of the subproblem and the boundedness of its dual are always guaranteed for
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any given master problem solution.

In the classical Benders decomposition method, a single cut, either feasibility or
optimality cut, is inserted to the master problem at each iteration of the algorithm
using the dual information. However, once some variables are fixed in the master
problem, it may be possible to determine the remaining variables by solving multiple
smaller subproblems separately. Then, it is possible to add multiple cuts using the
dual formulations of each smaller subproblems. In our formulations, it can be observed
that the simplified version of the subproblem can be further decomposed into smaller

problems for each service g € @ as follows:

Subproblem 2 for q € Q (C,Z) :

max Z Z TqQugOugs (6.61)
u S

) Ouge <1 uelU  (6.62)
Fro =Y mMgughugs =0 s€S  (6.63)
~ an ~
Fis <Cps—max{ ———— 1 Zygs = 1 sesS (6.64)
w Qg — ﬁuqs
Ougs = 0 u€Us€ES: Zyys=0  (6.65)
9uqs: Fqs >0 ueU,sée S. (666)

To generate multiple optimality cuts for each subproblem, instead of a single
decision variable ¢, we need to define a set of decision variables ¢, for each service type
q € @ in the objective function of the master problem formulation. These variables
are used to predict the maximum revenue of the operator that can be obtained by
satisfied service requests of type ¢q. Then, we replace the objective function (6.39)
with ) t, and the constraints (6.43) with 0 < ¢, < ¢, yp where an inital upper bound
can bg set as tyup = Y, Tqdug- Let 7, and v, denote the optimal values of the dual

variables associated with constraints (6.62) and (6.64), respectively. Then, using the
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optimality conditions for each subproblem, the standard Benders optimality cut can

also be decomposed for every service type ¢ € @) as follows:

tq S Z Tu + Z Vs (Cqs - Lzu’qs) (667)

Qg — /Bu’qs

where u/ = argmax {#Zuqs}. Although this approach, referred to as multi-
cut reformulatig;[,] causes the size of the master problem to grow rapidly, it generally
outperforms the single-cut approach by more quickly strengthening the master problem
[98]. Therefore, we prefer to use the multi-cut reformulation and add multiple Benders

optimality cuts at each iteration.

As in the previous decomposition approach, we can introduce valid inequalities to
the master problem in order to have better upper bounds during the initial iterations

of the algorithm and accelerate the convergence.

Proposition 6.4. The following inequality is valid for the multi-cut reformulation of

the master problem:

.
< o Z Cis g€ Q. (6.68)

Proof. In the objective function of the master problem formulation, ¢, variables repre-
sent the revenue obtained by successfully handled task assignment operations for type

q service requests. Therefore, we can write

by <7 Y > duglugs g€ Q. (6.69)

In addition, the total load on each server at potential location s € S cannot exceed the

capacity allocated to any service instance ¢ € ). By integrating constraints (6.63), we
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have
Fus = 3 tugfugs < Cos gEQ,sES. (6.70)

By summing both sides of the inequality (6.70) over all potential server locations s € S,

we obtain

Mg > Y dughugs <D Cos q€Q. (6.71)

By combining (6.69) and (6.71), we can write

by <7 D> dugugs < ;—‘2 Y Cw acq. (6.72)

Thus, inequality (6.68) is valid for the multi-cut reformulation of the master problem.

O

In Chapter 8, we apply multi-cut reformulation approach and add valid inequality
(6.68) to the master problem in order to investigate the impact on the decomposition

procedure through computational experiments.
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7. STOCHASTIC NETWORK SLICING PROBLEM

7.1. Problem Definition

In this chapter, we study the stochastic network slicing problem to propose a
comprehensive solution method in an environment having time-varying service demand.
In fact, the total number of service requests at an end-user location may vary in time
and the distribution of the service requests on the network may change due to human
activity such as cultural and sports events. For example, the number of requests from
a residential area may increase in the evenings and decrease during working hours.
Hence, we let the number of service requests be stochastic, but assume that it can be
described by a finite random vector whose probability distribution is known in advance
based on some historical data. We aim to provide a network slicing scheme to optimize
the server placement and capacity allocation decisions for an operator that will enter
the market. We assume that the services are delay-sensitive and discrete capacity levels

for servers are defined.

To formulate the stochastic network slicing problem, a two-stage stochastic in-
teger programming model is constructed. The main objective of the problem is to
minimize that the total cost which consists of the capital cost for server placement
decisions and the expected cost of unsatisfied task offloading operations. In the first-
stage problem, the model tries to optimize strategic level decisions made once at the
beginning of the planning horizon including the server placement and the capacity al-
location decisions before uncertainty in the service demand is revealed. Subsequently,
given the first-stage decisions, the operational level decisions on task offload operations
are optimized in the second stage while satisfying the stringent delay requirements of
services with diversified characteristics. In this way, strategic and operational level

decisions are integrated into a single model.
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7.2. Problem Formulation

To formulate the problem, let Fj, denote the total load per second on server
location s generated by type ¢ service requests in terms of MIPS. Also let £ = d
represent the random data vector corresponding to the total number of service requests
in a second with known distribution and the parameters & = d be actual realizations
of the random data. Note that although the service requests arrive in a stochastic
manner, it is assumed that the joint probability distribution can be expressed using
historical data. By using the notation given in Chapter 4, a two-stage stochastic integer

programming formulation of the problem can be written as

min Z Z aXq+E[Q(C,E)] (7.1)
s l
sty Xg<1 ses (7.2)
l
D Cu <D Xy s€S (7.3)
q l
Cys >0 geQ,ses (7.4)
Xq €{0,1} seSlel (7.5)

where E[Q(C, £)] denotes the recourse function. In this formulation, Q(C,¢) is the

optimal value of the second-stage problem, which can be expressed as

Q(C,&) min Y > " 0gdug (1= Ougs) (7.6)

s.t. Zeuqs <1 uelU,qeQ (7.7)
Fro =Y mgdygugs 1€Q,s€S (7.8)
mg
Fis < Cps — ————Zyys uelU ge@,se S (7.9)
Og — ﬁuqs
Ougs < Zugs uelUqge@,se S (7.10)

Ougs, Fys > 0 uel, ge@,seS (7.11)
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Zugs € {0,1} uelUqge@,ses. (7.12)

Note that Q(C,&) is a function of the first-stage decision variable vector C,
and a realization £ of the random parameters. E[Q(C), &)] denotes the expected cost of
unsatisfied service requests. In this formulation, we determine the server placement and
capacity allocation decisions, denoted as (X, C) before the realization of the uncertain
data in the first-stage problem. After a realization of & becomes available, we optimize
the task assignments for the given server placement and capacity allocation decisions

in the second stage problem.

In the first-stage problem, the objective function (7.1) minimizes the sum of
server placement cost and the expected penalty cost of unsatisfied service demand.
Constraints (7.2) state that for any potential server location, at most one server having
any capacity level can be placed. The sum of allocated capacities for all service types is
restricted by the capacity level of the deployed server at every potential server location,

which is ensured by constraints (7.3).

After solving the first-stage problem, each realization of service demand & yields
a second-stage model (7.6)—(7.12). The objective function of the second-stage problem
(7.6) minimizes the penalty cost of unsatisfied task offload operations. Constraints
(7.7) state that the total task assignment fractions generated at an end-user location
can be at most one for each service type. The total load per second at potential server
location s required by type ¢ service requests can be written as equality (7.8) in terms

of MIPS.

Since the novel services considered in this thesis are delay-sensitive, the overall
latency should not exceed a pre-specified threshold. As in the deterministic network
slicing problem, the potential transmission delay, denoted as 3,45, is calculated using
the equality (4.1) for each end-user and server location pair in the preprocessing step.
The remaining execution delay on the server is formulated by using the expected time

spent in an M /M /1 queuing system. Then, the maximum end-to-end delay requirement
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of service type q requests from end-user location u and assigned to a server at location

s can be written as inequality (6.11).

An indicator binary variable Z,4 is introduced to represent the maximum delay
requirement (6.2) as a set of linear constraints. This variable takes value 1 if type ¢
service requests from end-user location u are ever assigned to potential server location
s (i.e. Bu45 > 0) and 0 otherwise, which is guaranteed by constraints (7.10). Then, the
maximum end-to-end delay requirement of services can be equivalently written as in
constraints (7.9). Note that for Z,,s = 1, both inequalities (6.11) and (7.9) are the
same. On the other hand, for Z,,s = 0, constraints (7.9) become Fy < Cs. This must
also hold as the total load on a server is restricted by the allocated capacity for the

corresponding service type in a unit time interval.

In the stochastic network slicing problem, the random vector § that shows the
number of service requests in a second is assumed to have a finite probability distri-
bution. Let K denote the set of possible realizations of &, also called scenarios. In
addition, let p; represent the corresponding probabilities of each scenario k£ € K such
that D, pr = 1. Then, the stochastic parameter d,, can be transformed into dﬁq
to represent the total number of service requests of type ¢ generated at end-user lo-
cation u in scenario k. Similarly, the decision variables in the second-stage problem
can be replaced by Hﬁqs, F qks, and ququ to represent the decisions under different sce-
narios. Hence, we can rewrite the two-stage stochastic integer programming problem

(7.1)—(7.12) and obtain a deterministic equivalent MILP model as follows:

min ZZGIXSI +72pk ZZoqdﬁq(l - ZQﬁqs) (7.13)
s l k u q s

sty X< seS (7.14)
l

D Cu <D mXa sesS (7.15)
q l

> o<1 welqgeQ,keK (7.16)
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FE = mgd} 0k geQ.scS ke K (7.17)

OqS—FfSE%Z{qu wuelU,qeQ,s€S ke K (7.18)
q uqs

Hﬁqngqu wuelqeQ,se S ke K (7.19)

Coys, O Fiy > 0 welUqgeQ,sc S ke K (7.20)

X, Zy, € {0,1} welU,qeQ,scS ke K,leL (7.21)

Thus, by defining a set of potential scenarios, the two-stage stochastic integer program-
ming formulation of the problem (7.1)—(7.12) can be cast as a single large-scale MILP

model.

7.3. Benders Decomposition

Note that the number of decision variables and constraints in the deterministic
equivalent model (7.13)—(7.21) depend on the cardinality of the sets U, @, S, and L.
Thus, it can be computationally ineffective to solve this model as a single monolithic
MILP problem for real-sized networks. In addition, an increase in the number of
scenarios directly increases the complexity of the problem, which can deteriorate the
stochastic programming solution quality. To deal with the complexity issue, we focus on
deriving an exact solution algorithm based on Benders decomposition as an alternative

solution approach.

7.3.1. Decomposition Structure

Our decomposition algorithm first solves the master problem containing binary
variables X and Z, which denote the server placement and binary task offload deci-
sions, respectively. Although in the standard Benders decomposition algorithm, only
integer variables are contained in the master problem and continuous variables are de-
termined in the subproblem, we also include continuous capacity allocation decisions,

namely variables C', in the master problem because by fixing these decision variables,
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the subproblem can be decomposed into smaller problems. These multiple smaller
subproblems can be solved independently, which can be advantageous from a compu-
tational point of view. In addition, this structure enables adding multiple cuts in each
iteration of the algorithm instead of inserting a single cut into the master problem. By
this way, the master problem can be tightened in early iterations of the algorithm. We
discuss the details and advantages of this approach in terms of computational effort in

Section 7.3.2.

First, the deterministic equivalent model can be reformulated in terms of only
variables X, C, and Z. An additional continuous decision variable t is introduced to
represent the expected cost of unsatisfied demand penalty corresponding to the current

solution. Then, our master problem can be expressed as follows:

Master Problem:

min Z Z @ Xq + 7t (7.22)
s l

sty Xg<1 ses (7.23)
l

D Cu <D mXyg ses (7.24)
q l

t,Cys >0 ge@,se S (7.25)

Xa, Zy,s € {0,1} uelUqeqQ,s€S ke K,leL. (7.26)

With this transformation, the number of decision variables and constraints are reduced

compared to the deterministic equivalent model.

Any feasible solution to this master problem provides a candidate solution that
contains server placement, capacity allocation, and binary task assignment decisions,
denoted as X,C, and Z, respectively. Given a candidate master problem solution,
the optimal fractional task assignment decisions are obtained by solving the following

subproblem:
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Subproblem (X, C, Z):

min Zpk[zz%dﬁq(l — Z@ﬁqs)} (7.27)

s.t. Zéqus <1 uel,ge @, ke K (7.28)
Ff = mgdi 0, =0 qEQ.s€SkeK  (7.29)
Fl < Cpom — 0 7E welqeQ,seS ke K  (7.30)

aq - ﬁuqs
ok < Zh . uelUqeQ,scSkek  (7.31)
Oss Fi > 0 uelUqeQ,seS ke K. (7.32)

The objective function of this subproblem (7.27) yields the expected penalty
cost of unsatisfied service demand for the candidate master problem solution. Note
that the subproblem (7.27)—(7.32) consists of only continuous decision variables, which
makes it an LP problem. Then, its dual formulation can be utilized to generate the
Benders feasibility and optimality cuts. The details of the cut generation techniques

are presented in Section 7.3.2.

7.3.2. Algorithmic Improvements

7.3.2.1. Feasibility Cuts. In the standard Benders decomposition procedure, by solv-

ing the master problem, a candidate solution is obtained. If the dual of the subproblem
corresponding to this candidate master problem solution is unbounded, it means that
the subproblem is infeasible. In this case, this candidate solution should be removed
from the search space in the next iteration of the algorithm since it cannot yield a fea-
sible solution for the original MILP model. This is achieved by introducing a Benders
feasibility cut generated by an extreme ray of the dual formulation of the subproblem.
This feasibility cut ensures that the current solution will not be encountered in the next
iterations. However, it is known that deriving feasibility cuts do not improve the lower
bound for minimization problems, hence it is undesirable. An alternative approach can

be to introduce a set of constraints to the master problem that can exclude infeasible
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solutions at the beginning of the algorithm so that the boundedness of the dual of the

subproblem is ensured [98].

Proposition 7.1. For a given candidate master problem solution (C’, Z), the subprob-
lem is feasible if and only if

~ mq

Cys > A welUqgeQ,se S kek. (7.33)

aq - /Buqs uas

Proof. 1f condition (7.33) is satisfied, by setting Gﬁqs =0forueUqe@,se S keK,
we can find a feasible solution for the subproblem, hence the subproblem is feasible.
On the other hand, if the subproblem is feasible, constraints (7.30) and nonnegativity
of the decision variables imply (7.33). Thus, the condition (7.33) must be satisfied

when the subproblem is feasible. O

Using Proposition 7.1, we can avoid the burden of deriving feasibility cuts when-
ever the dual formulation of the subproblem is unbounded. Instead of generating
a feasibility cut whenever the dual formulation of the subproblem is unbounded, or
equivalently inequality (7.33) is not satisfied by the current master problem solution,
we introduce the following set of constraints to the master problem formulation at the

beginning of the decomposition process:

— 47k uelU,qeQ,se S keK. (7.34)

By augmenting the master problem with (7.34), we can eliminate all potential
infeasible solutions. Any candidate master problem solution (C, Z) satisfies the feasi-
bility condition given in inequality (7.33) and the boundedness of the dual formulation

of the subproblem is guaranteed.

7.3.2.2. Simplified Subproblem and Multiple Benders Optimality Cuts. The formula-

tion of the subproblem given in (7.27)—(7.32) can be further simplified by removing
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redundant constraints and fixing some decision variables. First, it can be seen that
the server placement decisions, namely X vector, does not affect the formulation of
the subproblem, it only depends on the capacity allocation and binary task assignment

decisions, C and Z , respectively.

By inspecting the subproblem formulation, it can be noted that the constraint

(7.30) corresponding to u = argmax { anguqs Z,l’qu} is tighter than the others as it has
the smallest right hand side follfeeUach service type ¢ € () and potential server location
s € Sin scenario k € K. Then, for a candidate master problem solution (C’ .Z ), we can
identify the tightest constraint of type (7.30) and eliminate the remaining redundant

constraints before solving the subproblem.

Moreover, it can be noted that constraints (7.31) are redundant if Zzlqu =1

because constraints (7.28) are tighter than (7.31). Thus, these constraints can be

eliminated from the subproblem formulaton if Z’qu = 1. On the other hand, for
Zzlqu = 0, constraints (7.31) imply 6},, = 0. Then, we can set 6} . = 0 and remove

these decision variables from the subproblem formulation. Hence, the constraints (7.30)

and (7.31) can be replaced with

Fq’ZS@qs—H@X{ﬁ:ZSqﬁl} geQ,seSkeK (7.35)
q uqs
0, =0 ueUq€eQ,s€S ke K :Z =0. (7.36)

Hence, we can decrease the number of decision variables and constraints in the sub-

problem and obtain a simpler formulation.

Another key observation is that the simplified version of the subproblem formu-
lation can be divided into smaller problems for each service type ¢ € () and scenario

k € K as follows:
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Subproblem for g € Q. k € K (C’, Z):

min ZPkquuq Z 0 ) (7.37)

s.t. Zeuqs < uelU  (7.38)
Z myds 0% = seS  (7.39)
FE <C a7k =1 S (7.40
gs = qs—mlE}X —ﬁm ugqs s € ( )

k ko _
Opgs =0 uel,seS: Zuqs 0 (7.41)
O sr Fys > 0 uelUsesS (742

By decomposing the subproblem into smaller problems, it becomes easier to solve
cach part separately. In addition, it enables to generate multiple cuts in every iteration
of the algorithm using the dual information of each smaller subproblem. To apply this
idea, nonnegative t("]“' variables are defined representing the unsatisfied demand penalty
cost for each service type ¢ € ) and scenario & € K. Then, the t-variable in the
objective function (7.22) is replaced with > > #F. Let 1, and ¢, denote the optimal
dual multipliers corresponding to constraintqs (167.38) and (7.40), respectively. Then, for
each subproblem g € ), k € K, Benders optimality cut can be written by using duality

theory as follows:

k Mg .
lg = Zu: Ny + ZS: bs <Cqs — mzu’qsk> (7.43)

Zk } Even though the the multi-cut reformulation causes

u =
where u argmax{ o Zuas

uelU
a rapid increase in the number of constraints of the master problem, it can strengthen
the formulation in the early iterations of the algorithm. The performance of this multi-

cut reformulation is tested by computational experiments as presented in 8.2.3.
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7.3.2.3. Valid Inequalities. As in the previous decomposition approach suggested for

the deterministic network slicing problem, we can introduce valid inequalities to the
master problem. Although valid inequalities increase the number of constraints in the
master problem formulation, they may be beneficial to have better lower bounds during
the initial iterations of the algorithm and accelerate the convergence by strengthening

the formulation.

It can be trivially noted that for each scenario, to assign a service request from an
end-user location to a potential server location, we must ensure that there is a server
at any capacity level on that location. Thus, the following equality is valid for the
master problem formulation:

Z{jq3§ZXS, welqgeQ.se S keK. (7.44)
l

Note that this equality is also valid for the deterministic equivalent MILP model.

By following a similar approach as in Proposition 6.4, a valid inequality for the

multi-cut reformulation of the master problem can be written as

(0]
th>phog y di, —pk# > Cp  qEQEEK. (7.45)
u q S

7.3.2.4. Combinatorial Cuts. In any iteration of the decomposition algorithm, the

master problem is solved to optimality and a candidate solution is obtained. For
a candidate solution ()Z .C.Z ), if the server placement and binary task assignment
decisions, namely variables X and Z are fixed, and the resource allocation decisions

arc moved to the subproblem, we obtain the following model:

min (7.27)
s.t. (7.28), (7.29), (7.31)
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C’qs—FfSZmax S - :Zﬁqszl} geQ,se S ke K (747)
u aq - ﬁuqs
Origs: Cass Frge > 0 wel,qeQ,seS kek. (7.48)

Note that this formulation is still an LP problem. It finds the optimal expected penalty
cost of unsatisfied service demand that can be obtained by fixing X = X and Z = Z.
Let A be the optimal objective value of this LP problem. Based on this observation, a
combinatorial cut for the multi-cut reformulation of the master problem can be written

as

q k )X =0 D)X g=1
(8,1): X 51 (8,0): X1 (7.49)
+ Z Zt]qu + Z (1 o ququ)
(u,q,s,k):Z}quzﬂ (u,q,s,k):Z{quzl

Note that the inequality (7.49) reduces to - >>¢¥ > A for the master problem solutions
q k

with X = X and Z = Z, and is redundant for the remaining feasible solutions. Thus,
inequality (7.49) is valid and can be added to the master problem in each iteration of

the algorithm.

For a candidate master problem solution, assume that ququ = 1 for some u €
Ugqge Q,s € Sk € K. In addition, assume that we have 9528 = 0 in the optimal
solution of the LP formulation given above. Then, if we set Zzlqu = 0, the current

optimal solution of LP model still remains feasible. Thus, the optimal objective value

can stay the same or improve, but cannot get worse. Using this observation, a stronger
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version of the combinatorial cut (7.49) can be written as

NN Al > o xa+ ) (1-X)

(S,Z):Xslzo (S,l):f(sl=1

(7.50)
Y e Y (-7h)
(u,q,s,k’):z{quzo (u»Q>5>k):Z~5qs:l70’tlj;S>0

To apply this idea in the decomposition approach, the master problem is solved
and a candidate solution (X’ .C, Z) is obtained at each iteration of the algorithm.
Then, the above LP model is solved. In addition to Benders cuts, inequality (7.50)
is generated and added to the master problem to be resolved in the next iteration.
Although this strategy requires to solve an additional LP model in each iteration of
the algorithm, it may be helpful to strengthen the master problem formulation and

obtain better bounds.
7.4. A Variant of the Problem with Integer Capacity Levels

In this section, we examine a more realistic counterpart of the stochastic network
slicing problem. In this variant, we assume that the total number of cores in a com-
putational resource is partitioned among different service types. Hence, the capacity
allocation of a server to different service instances can only be in discrete amounts. To
formulate this problem, let W,s be a binary variable which takes value 1 if ¢ cores are
allocated to service type ¢ at potential server location s, and 0 otherwise. Also, let the
parameter B denote the processing capacity of a single core and x; denote the number
of cores on a server at capacity level [. Using this notation, the first-stage problem can

be written as

min > Y aXa + VEQ(W,€)] (7.51)

s.t. (7.2)

DD iWi <> X sesS (7.52)
q ) l
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X, Wigs € {0,1} seSlel,iel. (7.53)

Then, the second-stage problem (7.6)—(7.12) can also be transformed by replacing

constraints (7.9) with

Ma__ 5 uelU,geQ,seS. (7.54)

Fpe < BY  iWige = ——— Ty
i g — Buas

Hence, we can formulate a two-stage stochastic programming model for the case

where the capacity allocation of a server to different service instances can only occur

at discrete levels. By defining a set of scenarios for the random data vector &, a

deterministic equivalent MILP model of the two-stage stochastic programming model

is obtained as follows:

min (7.13) (7.55)
s.t. (7.14), (7.16), (7.17), (7.19), (7.52), (7.54)

0 s i > 0 ueclUq€Q,s€S ke K (7.56)
Xt Zigyss Wigs € {0,1} welUqeQ,seS keKleLicl (7.57)

Similar to its continuous capacity counterpart, a Benders decomposition approach
can be applied to this MILP formulation as described in Section 7.3. Note that the
valid inequality (7.44) is still valid for this formulation. However, the valid inequality

(7.45) should be replaced with

0, .
th>pho, y di, —pk#B Y ) iW  geQkeEK. (7.58)
u 4 s 7

In addition to feasibility and optimality cuts, and valid inequalities introduced
in Section 7.3.2, we can also derive a combinatorial cut for a given master problem
solution (X' W.Z ). By following a similar approach as in inequality (7.50), in any

iteration of the algorithm, let A be the optimal objective value of the subproblem
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corresponding to the current master problem solution. Also, let Z{qu =land 0} =0
in the optimal solution of the subproblem for some u € U,q € ), s € S,k € K. Then, a
strengthened combinatorial cut for the multi-cut reformulation of the master problem

can be generated in the following form:

SN txall- > xa+ Y (1-X)

(S,l):XleD (S,l):Xgl:].

) Wit ) (1= W) (7.59)
(i,q,s):VV,qS:O (i,q,s,):Wi,%szl

+ Y Tt 3 (1—2z8 ).
(u,q,s,k):Z{quZO (u>qy3»k)125qs:179525>0

It can be observed that the inequality (7.59) reduces to > > tF > A for the
q k

current master problem solution (X, W, Z). We can generate inequality (7.59) along
with Benders cuts and add to the master problem in each iteration to strengthen the

formulation.
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8. COMPUTATIONAL EXPERIMENTS

We carry out a series of computational experiments on randomly generated test
instances to assess the performance of the proposed solution methods and observe their
robustness and scalability issues. In this chapter, we first outline the generation of test
instances used in the experimental design and the test environment. Then, we present
the details of the numerical results and the discussion on the performance of alternative

solution approaches for each problem.

8.1. Generation of Test Instances

To simulate realistic next-generation network environments, the use-cases en-
visioned by the European Telecommunications Standards Institute (ETSI) and 5G-
PPP [99,100], which define the specification set for the next-generation cellular net-
works, are utilized. The performances of the proposed solution approaches are assessed
on network topologies having number of vertices ranging from 100 to 1000. These
topologies are randomly generated as connected networks where the degree of each
vertex is set between 2 and 4 to mimic the characteristics of the real-life network archi-
tectures [92]. We use a Python package called NetworkX, which is used for creation of
large complex networks and provides standard graph algorithms [101]. For each prob-
lem instance, the locations of end-users and potential servers are selected randomly
among vertices of the network. For computational resources, three different capacity
levels are defined. For each problem size, five random instances are generated and some

statistics are reported.

The details of the parameters used to generate test instances are summarized
in Table 8.1. The capacities of vertices (1,) and links (w,) are set to 10k in Mbps.
For computational resources, the capital cost (a;), the processing capacity (n;), the
number of cores (;), and the maximum number of service instances to be hosted (g;)

of a server at different capacity levels are presented in the table. The processing ca-
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pacity of a single core is set to 5k in MIPS. Services with different characteristics and
requirements are generated to reflect the next-generation use-cases. The corresponding
computational and networking resource requirements (my, hy?4 and hf]es), unit revenue
(ry), unit penalty cost (0,), and the maximum acceptable delay limit (o) of these
services are generated using a uniform distribution. Similarly, the total number of
service requests at each end-user location for each service type (dy,) is assumed to fol-
low a uniform distribution. The maximum allowed utilization for computational and
networking resources (p and o) are set as 100% and 95%, respectively. For stochastic

problems; a set of scenarios are specified with equal probability.

Table 8.1. The parameters used to generate test instances.

Parameter Value

Wy 10k (Mbps)
We 10k (Mbps)

a {3k, 5k, 12k}
n {10k, 20k, 50k} (MIPS)
X1 {2,4,10}

9 {2,4,6}

B 5k (MIPS)
my U(100,200) (MI)
by U(1,10) (Mbits)
Bt U(1,10) (Mbits)
T U(1,5)

0q U(1,5)

Qg U(0.5,1.5) (s)
duq U(1,10)

p 100%

o 95%
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All mathematical programming formulations are implemented in C4++ program-
ming language, and solved using Gurobi 9.0.1, IBM CPLEX 12.9 and 20.1. The stan-
dard branch-and-bound schemes of optimization solvers are utilized to solve the MILP
formulations. We set a time limit of one hour and collect some statistics over five

instances for each problem size.

In the deterministic and stochastic network slicing problems, while implementing
Benders decomposition, instead of repeatedly generating a branch-and-bound tree in
each iteration, we use a single branch-and-bound tree that is tightened as necessary.
In the traditional Benders decomposition algorithm, the master problem is solved to
optimality by building a new branch-and-bound tree at every iteration. However,
this causes a significant computational effort to revisit a candidate solution that has
already been discarded in the early iterations. In our approach, instead of repeatedly
solving the master problem and generating a branch-and-bound tree at each iteration,
we build a single branch-and-bound tree and generate cuts violated by the current
integer solution encountered inside the tree while solving the master problem. In the
computational tests, this approach, which is often referred to as branch-and-Benders-
cut [98], consistently outperformed the approach of reoptimizing the master problem
at each iteration. The branch-and-Benders-cut method is implemented by interrupting
the standard branch-and-bound solution process and adding cuts to the master problem

using the generic callback procedures available in the Concert technology library of

CPLEX.

Furthermore, CPLEX provides an automated Benders decomposition feature
which decomposes the model into a master problem containing only integer variables
and (possibly multiple) subproblems with continuous linear variables. We use the
automated Benders decomposition feature of CPLEX by setting “Benders strategy”
parameter as three. All the remaining parameters of optimization solvers are kept at

their default values.
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8.2. Numerical Results

The performances of the proposed solution methods are compared and the results

are summarized in the following subsections. Each row of the tables shows the average

values of five randomly generated instances. The columns in the tables are explained

as follows:

n: the number of instances for which the corresponding method can find a feasible
solution within the allowed time limit

Time: the average amount of time in seconds spent by each method

Gap: the average percent optimality gap over five instances computed as 100 x
% for the problems with maximization objective and 100 x % for the
problems with minimization objective, where Zyg and Z; g denote, respectively,
the best upper bound and the best lower bound for the optimal objective function
value of the corresponding method

s: the standard deviation of the percent optimality gap for the instances for which
the corresponding method is able to find a feasible solution

LP Dev: the average percent deviation between the best objective function value
of the MILP model (Zy;1p) and the objective function value of the LP relaxation
solution (Z,p), measured as 100 x %

LR Dev: the average percent deviation between Z,;;p and the objective function
value of the Lagrangian relaxation solution (Zpg), measured as 100 x W
LB Dev: the average percent deviation between Z,;;p and Zp g, measured as

100 x ZLB—ZMILP
ZMILP

UB Dev: the average percent deviation between Zy;;p and Zyp, measured as

100 x ZuB—ZMILP
Zymip

The last row of each table provides the total number of instances for which the

corresponding method can find a feasible solution within the given time limit and the

average values for the remaining quantities.
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8.2.1. Computation Architecture Design Problem

In the computation architecture design problem, the size of the problem is deter-
mined by the number of vertices |V, the number of end-user locations |U|, the number
of potential server locations |S|, and budget level b. Five different problem instances
are generated for each problem size. In order to evaluate the behavior of differentiated
service types and observe their performance, ten different service types are generated
where the characteristics and the requirements are adapted to represent the real-world
settings. In addition, four different budget levels are generated depending on the num-

ber of potential server locations as shown in Table 8.2.

Table 8.2. The budget levels used in the test instances.

Budget level Value

High (H) S| % 8000
Mid-High (MH) | [S] x 7000
Mid-Low (ML) | |S] x 6000

Low (L) S| % 5000

As discussed in Chapter 3, there is no other study in the literature that combines
the three phases of the computation architecture design problem and proposes an inte-
grated solution approach. Besides, the approaches proposed by our study are capable
of obtaining optimal or near-optimal solutions with small optimality gaps. Hence, in
this section, only the performances of the MILP model and the Lagrangian heuris-
tic approach are compared for various network sizes. All mathematical programming
formulations are solved using Gurobi 9.0.1 running on a computer with Intel Xeon
E5-2690 2.60 GHz CPU and 64 GB main memory. The results of the experiments are

presented in Table 8.3.

For the small topology with 100 vertices, it can be observed that the MILP

model can provide feasible solutions with small optimality gaps for all of the instances
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within the given time limit. With the increase in the number of end-user locations and
potential server locations, the quality of solutions deteriorates slightly, but the solver
can still find high-quality solutions. For some instances, the solver can guarantee the
solution’s optimality before the allowed time limit; hence “Time” column can be less
than one hour. Small LP relaxation gaps shown in the “LP Dev” column reveal that the
MILP formulation is tight and provides good LP relaxation bounds. When the number
of end-user locations and potential server locations is kept constant, the increase in the
topology size does not significantly affect the optimality gap for the MILP model. For
instance, the average optimality gap for the instances with 500 vertices does not differ
much from the instances with 1,000 vertices in which case there are 100 end-user and

potential server locations.

However, the number of end-user locations and potential server locations affects
the complexity of the model since the number of decision variables and the number
of constraints mainly depend on the cardinality of the end-user and potential server
locations. Therefore, for the same topology, as the number of end-user locations and
potential server locations increases, the best feasible solutions are obtained with a
higher optimality gap at the end of the time limit. Moreover, the MILP model fails
to find a feasible solution within the given time limit for the instances with a large
number of end-user locations and potential server locations. For example, the MILP
model cannot find a feasible solution for most instances in which there are 400 end-user
and potential server locations. For those cases, the optimality gaps and LP relaxation
deviations are calculated using only the instances where the MILP model can find a
feasible solution. In addition, the LP relaxation gap increases with the increase in the
number of end-user and potential server locations. It shows that either the best feasible
solution obtained at the end of the time limit is inferior or the upper bound obtained

by the LP relaxation is not tight enough.



Table 8.3. Comparison of solution methods for computation architecture design

problem.
| MILP model | Lagrangian relaxation |
V1,10, |S| | b | n  Gap Time  LP Dev | n Gap LR Dev Time |
H | 5 002 23044 045 | 5 187  -1.81  3600.2
MH | 5 023 32372 117 |5 225 -1.98  3600.2
(100,20,20) | npr, | 5 025 20036 074 | 5 3.63  -3.25  3600.1
L |5 023 15914 138 |5 419 -3.78  3600.1
H |5 o017 21606 031 |5 136 -1.16 36013
MH | 5 046 36000 071 |5 273  -220  3609.4
(100,40,40) | npr, | 5 051 3087.6 081 | 5 315  -255 36014
L |5 058 3011.7 144 |5 350 -2.81  3602.4

H |5 056 20611 059 |5 115 -0.58  3608.5
MH | 5 1.02 36001 119 |5 18  -0.76  3605.2
(100, 80, 80) |y, 287  3600.3 3.09 |5 297 -010 36125
L |5 132 36001 171 |5 333 -1.94  3609.9

H |5 019 30243 043 |5 310 -277  3603.2
MH | 5 112 3600.1 142 |5 352 -231  3604.1
(500,100, 100) | npp, | 5 099 31913 136 | 5 584  -456  3612.6
L |5 097 36000 160 |5 450 -3.37  3603.1
H | 5 1149 36006 1151 | 5 3.02 821  3624.9
MH | 5 1115 36006 1121 |5 430 657  3639.1
(500,200, 200) | npp | 4 250 36005  2.60 | 5 516  -3.10  3643.3
L |4 779 36006 803 |5 674 034 36373
H |1 943 36026 943 | 5 344 579  3772.8
MH [ 1 970 36021 971 |5 48 460  3829.9
(500, 400, 400) | npp, | 1 1188 36024 1195 | 5 540 615  3800.5
L |1 1120 36022 1153 |5 646 454  3814.6

H 5 0.30  2186.7 1.17 5 3.80 -3.34 3604.1
MH | 5 0.92 3600.1 1.92 5 5.33 -4.17 3602.2
ML | 5 0.82 3600.1 1.72 5 5.96 -4.80 3602.5

L 5 0.87  3600.2 2.05 5 6.00 -4.77 3602.4

(1000, 100, 100)

H |5 267 33550 28 |5 516 -230  363L0
MH | 5 1006 36005 1027 |5 6.90 298 36413

(1000, 200, 200) | \ip, | 5 590 36005 609 | 5 622  -022 36103
L |5 58 36005 615 |5 819 -200  3613.1

H |1 813 36025 813 |5 665 139 37141

MH | 2 587 36022 58 |5 621 040 37304

(1000, 400, 400) | npp, | 2 1.87 36020 194 | 5 267  -078  3768.4
L |2 1755 36019 1774 | 5 822 846  3740.3
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The performance of the Lagrangian relaxation-based heuristic algorithm is tested
through the same instances. Although a time limit of one hour is set for the algorithm,
the total time spent can be slightly larger than one hour since an optimization problem
is solved at each iteration of the algorithm. During run time, the algorithm continues
to iterate until the allowed time expires, and tries to improve the objective value in
each iteration. In other words, numerous iterations, where each represents a separate
model execution, are completed by the Lagrangian relaxation-based heuristic, and the
time-complexity issue is successfully addressed. It is observed that the Lagrangian
relaxation-based algorithm can find a feasible solution for all instances within one hour
of a time limit. The average optimality gap becomes slightly higher as the topology
size increases. However, the number of end-user and potential server locations, which
is the main factor of the complexity of the MILP model, does not have a significant

effect on the optimality gap.

For analyzing the performance of both methods, the best feasible solution of the
Lagrangian heuristic obtained at the end of the time limit is compared against the
best feasible solution found for the MILP model. The average deviation between their
objective function values is reported as “LR Dev” column in Table 8.3. Even though
the average optimality gap obtained by the Lagrangian relaxation-based heuristic al-
gorithm is slightly higher than the MILP model for smaller cases, the difference is not
significant. The performance of the MILP model deteriorates with the increase in the
number of end-user and potential server locations. On the other hand, the Lagrangian
relaxation-based heuristic algorithm performs better than the MILP model and finds
better feasible solutions for large instances. For example, for the (500, 400, 400) case,
the MILP model can find a feasible solution for only one out of five instances at every
budget level. In addition, the optimality gap for those instances is high. On the other
hand, when the Lagrangian heuristic algorithm is applied to those instances, it can find
feasible solutions for all of the instances, and the average optimality gap is lower than
that of the MILP model. It can be concluded that the Lagrangian relaxation approach
is more robust for the cases studied in terms of the solution quality for larger instances,

whereas the MILP model has a lower average optimality gap for small instances.
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The budget level has some impact on the performance of the MILP model. The
average optimality gap is usually lower for the cases with a high budget level where the
feasible region is broader. However, there is no significant difference between mid-high,
mid-low, and low budget levels. Some cases do not match precisely with this inference.
For instance, the higher budget cases result in a higher average optimality gap for
the topology with 500 vertices where 200 end-user and potential server locations are
available. The main reason is that in lower-budget cases, the MILP model remains
incapable of finding a feasible solution for one of the randomly generated instances.
Since the optimality gap cannot be calculated for such instances, the statistics are

reported only for instances where a feasible solution is found.

In addition to analyzing the proposed solutions and their comparisons, the service
type behaviors are also inspected. As an exemplary case, the satisfaction ratio of each
service type for the (1000, 200, 200) instance is depicted in Figure 8.1, concerning
different budget levels. The satisfaction ratio is calculated as the ratio of successfully
handled requests to the total number of requests for a particular service type. In
general, it can be stated that the increase in the budget results in a higher service
satisfaction ratio for each service type. Besides, in lower budget cases, it is observed
that some services have a lower satisfaction ratio than the others, so fairness among
service types cannot be achieved. The diversity in the satisfaction ratio for different
service types decreases as the budget increases. It can be concluded that the model
gives higher priority to the services with higher revenue and lower resource requirement
due to the limited processing power in lower budget scenarios. As the total capacity
increases in the higher budget scenarios, more service requests can be handled; thereby,

prioritization between services is eliminated.

For example, let us consider service type 7, one of the services with the lowest
satisfaction ratio in the lowest budget case. However, we see that this particular service
type has the highest satisfaction ratio in the highest budget case. This situation can
be explained as follows: Although this type of service yields high revenue, it is not

prioritized by the optimization model in low-budget cases because of its high resource
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capacity demand and stringent latency requirement. Therefore, more resource capacity
is allocated to the service types demanding less resources and having relatively lower
unit revenue. As a result, the optimization model can find a better solution by obtain-
ing higher revenue through handling more task offload operations of these service types.
However, as more resource capacity becomes available with the increasing budget, this

service type is prioritized due to its high revenue despite its requirements.
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Figure 8.1. Satisfaction ratio of different service types with respect to various budget

limitations for (1000, 200, 200) instance.

Satisfaction Rati

Finally, the impact of optimizing the server placement and service deployment
decisions is investigated on instances with 100 vertices and the results of the experi-
ments are presented in Table 8.4. In this case, a set of servers with arbitrary capacity
levels is placed such that the total capital cost for server placements does not exceed
the given budget of the operator. Then, based on the maximum number of service
instance restriction on each server capacity level, service deployments are arbitrarily
determined. Let (X' ,f/) denote the fixed server placement and service deployment
decisions. Based on these decisions, the optimal task assignment is obtained by solv-
ing the optimization problem (5.15)—(5.24). The “Impact” column shows the average
percent deviation of five instances between Zpp and Zpjzeass, where Zpizeass denotes

the best objective value obtained for the task assignments corresponding to the fixed

ZFizedSS=ZLB

server placement and service deployment decisions, measured as e
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It can be observed that optimizing the server placement and service deployment
decisions has a significant impact on the revenue gain for all instances. It is even more
critical at low budget levels since the average performance of arbitrary server placement
and service deployment strategy is very poor when resources are scarce. The impact
becomes smaller with the increasing number of end-user and potential server locations
for the same topology. In this case, end-users and servers reside at physically closer
locations, and non-optimal server placement decisions can be partially compensated

by assigning the service requests to another nearby server.

Table 8.4. Effect of server placement and server deployment decisions for

computation architecture design problem.

VLIULIS] | b | Tmpact (%)
H -11.94
MH -13.96
(100, 20.20) | ool 1789
L -18.95
o -6.37
MH -7.68
(100, 40, 40) | o -8.67
L -12.00
H -3.82
MH -5.29
(100, 80. 80) | v | 4 6g
L -7.62
Average -9.90

For the stochastic variant of the problem, we implement the SAA algorithm
described in Section 5.4.2. The SAA method is based on generating random samples
and approximating the expected value function by the corresponding sample average

function. To implement the SAA algorithm, we set M = 20, N = 20, N’ = 50, and
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N" =1000. In our preliminary analysis, we observe that these parameters are sufficient
to obtain good results for the test instances. The proposed method is implemented in
C++ with IBM CPLEX Optimization solver 12.9 running on a computer with Intel
Xeon E5-2690 2.6 GHz CPU and 64GB main memory.

To evaluate the performance of the proposed method, three different topology
instances from Topology Zoo [102] are utilized with varying number of vertices, number
of end-user and potential server locations. For each problem, three service types are
generated along with their diversified characteristics and requirements. Similarly, we
allow three capacity levels for computational resources. For each topology, instances
with low and high number of service requests are generated. The number of service
requests from each end-user location for any service type follows a uniform distribution
U(10,50) and U(10, 100) for low and high service requests cases, respectively. Finally,
we use three different budget levels to see their effect on the optimal objective value,
optimality gap, and solution time. Note that a single problem instance is generated

for each problem size.

The results of the computational study are provided in Table 8.5. First of all,
the overall performance of the method seems to be satisfactory since small optimality
gaps are obtained. It can be observed that the SAA method requires more time as the
number of vertices on the network increases. For each problem size, as the expected
number of service requests increases, the LB and UB for the optimal objective value
increase. However, for the instances with high number of the service requests, the
standard deviation of the optimality gap is also large since the uncertainty in the input
parameters gets higher. In addition, the increase in the budget that can be spent
on server placement decisions also increases the LB and UB for the optimal objective
value. Since the feasible region of the problem becomes tighter at low budget values,

the SAA method takes longer as the budget decreases.
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Table 8.5. The results of the SAA method for the stochastic variant of the

computation architecture design problem.

(IVI,1U],1S]) | Service Requests b ZLB Zup  Gap s Time

70k | 2615.7 2628.6 0.49 13.3 202.8
Low 80k | 2647.1 2658.3 0.42 13.8 157.9

90k | 2652.1 2664.8 0.48 14.1 133.6
(11, 10, 10)

70k | 3526.4 3586.8 1.71 445 156.4
High 80k | 3880.3 3939.1 1.51 43.5 155.5
90k | 4181.2 4237.7 1.35 394 142.1

80k | 3623.0 3651.5 0.79 24.7 1542.2
Low 100k | 3907.6 3924.9 0.44 17.5 530.3

120k | 3973.8 3989.3 0.39 18.0 354.9
(18, 15, 15)

80k | 4357.1 4361.6 0.11 454 1357.8
High 100k | 5203.5 5214.1 0.20 50.9 403.7
120k | 5926.5 5962.3 0.60 50.4 409.1

100k | 4705.0 4710.8 0.12 34.0 47119
Low 120k | 5085.8 5108.6 0.45 22.0 1804.5

150k | 5282.6 5318.3 0.68 15.7 727.4
(25, 20, 20)

100k | 5408.0 5491.2 1.54 60.9 6662.2
High 120k | 6321.1 6376.4 0.87 69.6 1337.5
150k | 7504.3 7561.3 0.76 72.5 848.0

8.2.2. Deterministic Network Slicing Problem

In the deterministic network slicing problem, the size of the problem is determined
by the number of services |@|, the number of end-user locations |U|, the number of
potential server locations |S|, and budget level b. All mathematical programming
formulations are solved using IBM CPLEX Optimization solver 12.9 running on a
computer with Intel Xeon E5-2690 3.10 GHz CPU and 64 GB main memory using a

single thread. The results of the computational study are presented in the following
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tables. We set a time limit of one hour for each method. The problem instances are
large enough and thus none of the methods can prove the optimality of the best solution
within this time limit. Instead, each method utilizes the entire 3600 seconds and we
report the optimality gap reached at the end of one hour. Thus, we omit the “Time”

column in the following tables.

In Table 8.6, the performances of the MILP formulation and that of the first de-
composition approach, referred to as BD1, augmented with valid inequality (6.38) are
investigated on a rather small set of instances with 500 vertices. In addition, we inves-
tigate the solution quality obtained by the automated Benders decomposition feature
of CPLEX optimization solver. In the table, we indicate by “~” that the corresponding
method is unable to find a feasible solution for any instance within the allowed time
limit. As we discuss in Chapter 3, the existing studies do not combine the server place-
ment, resource allocation, and task assignment decisions into a single integrated model.
Hence, only the performances of the MILP model and the decomposition approaches

are compared for different problem sizes.

It can be observed that the MILP model can generally provide feasible solutions
with small optimality gaps. The standard deviation values for the optimality gap are
also low, which indicates the robustness of the solutions obtained by this method.
Since the number of decision variables and constraints is O(|U||Q||S]|L|), the solution
quality is affected by the number of end-user locations, services, and potential server
locations. Moreover, the budget level determines the size of the feasible region, hence it
also affects the solution quality. Out of 160 instances, the MILP formulation is unable

to find a feasible solution for 17 instances within the given time limit.

The columns entitled “BD1 + (6.38)” show the results for the first decomposition
method where the master problem is augmented with valid inequality (6.38). In our
preliminary analysis, we observed that adding valid inequality (6.38) into the mas-
ter problem at the beginning of the algorithm yields a significant improvement in the

decomposition procedure. Thus, we only present the results for the augmented formu-
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lation. In addition, instead of LP duality-based feasibility cuts, we use combinatorial

Benders cuts given in (6.36).

First, it can be seen that our decomposition procedure can find a feasible solution
for all of the instances. However, the average optimality gap is larger compared to
the MILP formulation. In addition, the standard deviation for the optimality gap is
higher. It means that either the best feasible solution obtained at the end of the time
limit, i.e. the best lower bound, is inferior, or the upper bound obtained is not tight
enough. To demonstrate the quality of our best feasible solutions compared to the
MILP formulation, we also report “LLB Dev” column. It shows that the decomposition
method is generally able to find good-quality feasible solutions with lower bounds
close to that of the MILP model. Thus, large optimality gaps can be explained by the
information loss associated with the decision variables in the subproblem, which results
in poor upper bound values. Hence, the overall performance of the first decomposition
method in terms of solution quality is worse than solving the MILP formulation by

CPLEX, but it is able to find feasible solutions for all of the instances.

Similarly, we compare the performance of the automated Benders decomposition
feature of CPLEX. The results of this experiment are presented in the columns “MILP
+ (6.38) Automated Benders” in Table 8.6. As in the first decomposition approach,
we observe that the usage of valid inequality (6.38) has a positive effect on the solution
quality. Therefore, we only present the results of the improved method. It can be
observed that the number of instances for which the automated Benders decomposition
method is able to find a feasible solution is quite low. In addition, there is no clear
improvement in terms of the solution quality between BD1 and automated Benders
decomposition. Thus, the usage of automated Benders decomposition of CPLEX is

not justified for the problem under consideration.
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Table 8.6. Performance comparison of MILP formulation and BD1 for deterministic
network slicing problem.
MILP | BD1  (6.38) | MILP + (6.38) Automated Benders |
(] |U| |S] b n Gap s | n Gap s LB Dev | n Gap s LB Dev |
10 50 25 25k 5 0.27 0.32 5 1.53 0.90 -0.37 5 2.10 0.78 -0.40
10 50 25 50k 5 2.37 0.37 5 7.49 5.35 -1.11 4 4.27 0.55 -0.84
10 50 25 75k 5 0.21 0.10 5 1.40 0.42 -0.99 5 2.97 0.68 -0.74
10 50 25 100k 5 0.14 0.20 5 0.82 0.53 -0.38 5 2.93 2.46 -0.27
10 50 50 25k 5 0.78 1.15 5 73.78 69.34 -3.05 5 320.77 191.21 -8.84
10 50 50 50k 5 2.69 0.29 5 7.39 9.49 -1.03 5 2.21 1.09 -0.71
10 50 50 75k 5 0.42 0.10 5 1.29 0.34 -0.91 4 1.04 0.24 -0.65
10 50 50 100k 4 0.32 0.63 5 6.40 5.03 -0.16 1 1.40 - -0.11
10 100 25 25k 5 0.24 0.20 5 1.54 1.68 -0.26 4 2.57 0.49 -0.09
10 100 25 50k 5 2.80 0.25 5 5.16 4.13 -0.72 4 3.86 0.18 -0.58
10 100 25 75k 5 0.48 0.24 5 1.27 0.30 -0.69 0 - - -
10 100 25 100k 5 1.22 0.21 5 2.73 2.26 -0.85 1 2.95 - -0.87
10 100 50 25k 5 0.16 0.06 5 49.12 50.48 -2.60 5 899.24 149.75 -24.54
10 100 50 50k 5 2.84 0.64 5 3.30 0.95 -0.75 5 4.42 1.17 -0.82
10 100 50 75k 4 6.65 6.73 5 1.39 0.32 5.47 3 1.52 0.20 7.13
10 100 50 100k 5 19.44 7.99 5 7.15 9.14 18.96 0 - — -
20 50 25 25k 5 0.14 0.10 5 1.68 1.17 -0.45 0 - - -
20 50 25 50k 5 2.68 0.23 5 3.03 0.85 -1.08 2 4.61 0.18 -1.29
20 50 25 75k 5 0.28 0.17 5 2.21 0.30 -1.59 0 - - -
20 50 25 100k 5 1.23 0.10 5 3.04 0.98 -1.57 0 - - -
20 50 50 25k 5 2.50 0.33 5 174.77 154.85 -11.83 4 1090.51 148.72 -38.21
20 50 50 50k 5 2.81 0.47 5 23.08 33.20 -2.42 4 900.26 273.22 -42.03
20 50 50 75k 5 4.28 5.55 5 2.33 0.34 0.24 2 117.54 157.91 -11.33
20 50 50 100k 4 3.27 1.34 5 5.94 3.91 -0.37 0 - - -
20 100 25 25k 5 0.10 0.05 5 2.99 1.04 -0.35 0 - - -
20 100 25 50k 5 3.21 0.23 5 3.65 0.92 -0.68 0 - - -
20 100 25 75k 5 0.79 0.37 5 1.44 0.20 -0.94 0 - — -
20 100 25 100k 5 1.40 0.07 5 2.22 0.32 -1.22 0 — - —
20 100 50 25k 5 2.58 0.20 5 524.99 281.85 -13.41 0 - - -
20 100 50 50k 1 2.41 - 5 71.76 150.05 -0.38 0 - - -
20 100 50 75k 0 - - 5 1.51 0.21 - 0 - - -
20 100 50 100k 0 - - 5 14.70 13.06 - 0 - - -
143 2.26 0.94 160 31.60 25.12 -0.91 68 212.30 55.09 -7.81

In Table 8.7, we measure the performance of the

second decomposition approach,

referred to as BD2, on the same test instances. According to our computational tests,

the decomposition approach with multi-cut reformulation of the master problem always

provides superior results compared to its single-cut version by quickly tightening the

master problem. Thus, the results of the single-cut approach is omitted.

instances within the allowed time limit using the second decomposition.

It can be noted that, similar to BD1, we can find a feasible solution for all

However,

the method itself without the addition of any valid inequalities results in very large

optimality gaps. On the other hand, when the best objective value of the MILP model
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and that of the decomposition approach are compared on the basis of “LLB Dev” values,
it can be seen that there is no significant difference in terms of the best feasible solution
quality between these two methods. The reason for the large average optimality gap is
that in the Benders decomposition method, the master problem loses all the information
associated with the decision variables in the subproblem, hence results in poor upper
bound for the optimal objective value, which can be improved by integrating valid

inequalities and strengthening the master problem formulation.

The effect of valid inequalities given in Section 6.3 on the second decomposition
approach is also investigated and the results of this experiment are summarized in
Table 8.7. It can be noted that augmenting the master problem with valid inequalities
(6.38) or (6.68) helps in improving the solution quality by reducing the average and
the standard deviation of the optimality gap. It also allows us to obtain slightly better
feasible solutions. In general, valid inequality (6.68) provides better performance than
(6.38) since it has lower average optimality gap with smaller standard deviation. In
fact, it slightly outperforms the MILP model as it can solve all of the instances and
provide robust solutions with smaller average optimality gaps. For some instances, it
can also provide better feasible solutions in terms of the objective function value than

the MILP model.

When both valid inequalities (6.38) and (6.68) are integrated into the master
problem at the same time, the number of constraints increases significantly. However,
there is no clear impact on the performance in terms of the average optimality gap. In
fact, there is a trade-off between strengthening the master problem formulation and
increasing the number of constraints in the master problem. The performance of the
decomposition method with both valid inequalities may get worse when the size of the

problem increases.
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To further evaluate the performance of the MILP model and the best implemen-
tations of the second decomposition approach, we generated new instances with 1000
vertices, which are larger than those considered before, and the results are presented in
Table 8.8. For most of these larger instances, the MILP model cannot even find a fea-
sible solution within the given time limit because of the increased complexity. On the
other hand, the improvement of the second decomposition approach integrated with
valid inequalities becomes striking. It can be noted that even though the problem sizes
get larger, we can still find feasible solutions for all of the instances with the second
decomposition approach. BD2 with only valid inequality (6.68) provides better feasible
solutions for 121 out of 180 instances compared to BD2 with both valid inequalities
(6.38) and (6.68). The increase in the problem size affects the performance of both
methods. As a result, the best decomposition method turns out to be the one with the

valid inequality (6.68).

8.2.3. Stochastic Network Slicing Problem

In the stochastic network slicing problem, the size of the problem is determined
by the number of scenarios |K |, the number of end-user locations |U|, the number of
services |@Q], and the number of potential server locations |S|. Two different values for
the scaling factor () are used as it affects the balance between different cost compo-
nents in the objective function. We use the network topologies with 500 vertices. All
mathematical programming formulations are solved using IBM CPLEX Optimization
solver 20.1 running on a computer with Intel Xeon E5-2690 3.10 GHz CPU and 64
GB main memory using a single thread. The following tables show the outcomes of
the computational study. For each problem instance, we set a time limit of one hour.
The “Time” column is omitted in the tables since each solution method uses the entire
3600 seconds and is unable to prove the optimality of the best solution within this time
limit. Instead, we compare the performances of different solution methods based on
the average optimality gap and the quality of the best feasible solution obtained at the

end of the time limit.
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Table 8.8. Performance comparison of MILP formulation and BD2 on larger instances

for deterministic network slicing problem.

| MILP | BD2+(668) | BD2 + (6.38) + (6.68) |

lQl Ul S| b | n  Gap s | n Gap s | n Gap s |
10 100 50 50k | 5 303 063 | 5 334 022| 5 343 082
10 100 50 100k | 3 621 180 | 5 178 031 | 5 184 030
10 100 100 50k | 1 259 - | 5 347 028 | 5 470 157
10 100 100 100k | 0 - ~ |5 17 o031| 5 188 020
10 200 50 50k | 2 1019 23.93 | 5 317 022 | 5 345  0.76
10 200 50 100k | 0 @ — ~ |5 172 o030| 5 155 025
10 200 100 50k | 0 - ~ |5 331 053] 5 58 215
10 200 100 100k | O - ~ |5 152 o018| 5 376 331
10 300 50 50k | 2 381 005 | 5 325 072 5 332 033
10 300 50 100k |0 - ~ |5 138 015| 5 139 021
10 300 100 50k | 0 - ~ |5 348 o071| 5 405 096
10 300 100 100k | 0 - ~ |5 123 o014| 5 532 461
20 100 50 50k | 1 316 - | 5 351 026| 5 452 131
20 100 50 100k | 0 - ~ |5 193 o008| 5 200 022
20 100 100 50k | 0 - ~ |5 340 035| 5 507 116
20 100 100 100k | 0 - ~ |5 204 o011| 5 395 405
20 200 50 50k | 0 - ~ | 5 380 093| 5 497 202
20 200 50 100k | 0 - ~ |5 431 281 | 5 531 267
20 200 100 50k | 0 - ~ |5 561 110| 5 516 327
20 200 100 100k | 0 - ~ |5 250 148| 5 578 434
20 300 50 50k | 0 - ~ |5 45 o021| 5 374 099
20 300 50 100k | 0 - ~ |5 273 246 | 5 290 145
20 300 100 50k | 0 - ~ |5 470 116| 5 474 0.3
20 300 100 100k | 0 - ~ |5 797 87| 5 853 401
30 100 50 50k | 2 1507 1771 | 5 359 016 | 5 537  1.32
30 100 50 100k | 0 - ~ |5 191 o009| 5 205 020
30 100 100 50k | 0 - ~ |5 349 038| 5 512 193
30 100 100 100k | 0 - ~ |5 211 o27| 5 401 291
30 200 50 50k | 0 - ~ |5 451 101| 5 452 078
30 200 50 100k | 0 - ~ |5 15 o018| 5 181 051
30 200 100 50k | 0 - ~ |5 443 143 5 425 123
30 200 100 100k | 0 - ~ | 5 838 223| 5 1051 955
30 300 50 50k | 0 - ~ |5 291 056| 5 322 027
30 300 50 100k | 0 - ~ |5 398 1m| 5 802 729
30 300 100 50k | 0 - ~ |5 520 o0s84| 5 700 283
30 300 100 100k | 0 - ~ | 5 1016 155 | 5 2043 266

16 723 575 | 180 357 076 | 180 482  2.03
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In Table 8.9, the performances of the deterministic equivalent MILP model (shown
by the columns titled “SP_MILP”), the performance of the decomposition approach
(shown by the columns entitled “SP_BD”), the effect of valid inequalities (7.44) and
(7.45), the effect of combinatorial cut (7.50), and the performance of the automated
Benders decomposition feature of CPLEX are compared on the instances having 10
different scenarios. The dashes show that either the corresponding method cannot
find a feasible solution for any instance within the given time limit or the statistics
cannot be computed. As discussed in Chapter 3, the existing studies do not integrate
the server placement, resource allocation, and task assignment decisions, and most of
them suggest heuristic algorithms for the subproblems arising in network slicing design
problem. Thus, we do not compare the results of our solution approaches against the

proposed methods in the existing studies.

It can be observed that by solving the deterministic equivalent model, we can ob-
tain feasible solutions with small optimality gaps. However, the increase in the problem
size heavily affects its performance and deteriorates the solution quality obtained at
the end of one hour time limit. In addition, the scaling parameter v has some impact
on the complexity of the problem as it defines the balance between strategic and opera-
tional level cost components. Out of 180 instances, the deterministic equivalent MILP
model can find a feasible solution for 139 instances within the given time limit. The
average optimality gap for the instances where the model identifies a feasible solution

turns out to be %18.9.

In our computational experiments, we observed that eliminating all potential
infeasible solutions by augmenting the master problem with inequalities (7.34) provides
better results compared to the case where a feasibility cut is generated when the dual
formulation of the subproblem turns out to be unbounded. In addition, partitioning
the subproblem into smaller problems and adding multiple Benders optimality cuts
of type (7.43) improves the solution process compared to the single-cut approach. In
this section, we only report the results of multi-cut approach where master problem is

augmented with inequalities (7.34) at the beginning of the algorithm.
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The columns titled “SP_BD” show the results for the decomposition approach
where the master problem has no valid inequality at the beginning. Since the feasibility
of the subproblem is ensured by inequalities (7.34), any candidate master problem
solution provides a feasible solution for the original problem. Hence, the method can
find a feasible solution for all of the instances within the given time limit. However, the
average optimality gap is always worse compared to the deterministic equivalent model
for the instances for which a feasible solution is obtained. The comparison of the best
objective values of both methods obtained at the end of the time limit is demonstrated
on “UB Dev” column. It can be observed that the decomposition approach without
the addition of any valid inequalities can find better feasible solutions for some of the

large instances, but its overall performance is not justified.

The performance of the decomposition approach can be improved by integrating
valid inequalities into the master problem formulation. It can be observed that by
augmenting the master problem with valid inequalities (7.44) or (7.45), we can still
find a feasible solution for all of the instances. We can also improve the solution
quality in terms of the average optimality gap obtained at the end of one hour time
limit. Moreover, both methods can find better feasible solutions compared to the
deterministic equivalent model for larger instances. In general, valid inequality (7.45)
has better performance than (7.44) as it has a smaller average optimality gap. Although
its performance is slightly worse than the deterministic equivalent MILP model for
small instances, it outperforms for large instances since it can find a feasible solution
for all of the instances with smaller average optimality gap. For those instances, it
can usually find better feasible solutions in terms of the objective value. If both valid
inequalities (7.44) and (7.45) are integrated at the same time, the number of constraints
in the master problem increases significantly. However, the solution quality is not
improved. Although we can find feasible solutions for all of the instances, the average

optimality gap is higher.

We also investigate the effect of combinatorial cuts of type (7.50) on the decom-

position approach. We first augment the master problem with valid inequality (7.45)
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as it provides the best solutions so far. Then, in each iteration of the decomposition al-
gorithm, we generate a combinatorial cut of type (7.50) in addition to regular Benders
optimality cuts. With this approach, we are still able to find a feasible solution for all
of the instances. The average optimality gap is slightly lower than the case where the

master problem is only augmented with valid inequality (7.45).

Finally, the performance of the automated Benders decomposition feature of
CPLEX is tested on the same test instances and the results of this experiment are
presented in the columns “SP_Auto Benders + (7.44)”. In the preliminary analysis,
we observed that introduction of valid inequality (7.44) performs better in terms of
the solution quality. Thus, we omit the results with no valid inequality introduced.
The number of instances for which the automated Benders feature is able to find a
feasible solution is quite low and the average optimality gap for those instances are
higher compared to other solution approaches. Hence, the usage of automated Benders

decomposition feature of CPLEX is not justified.

The performances of all solution methods are also investigated on the test in-
stances having 20 scenarios and the results are reported in Table 8.10. It can be
noted that solution quality of all methods gets worse when the number of scenarios
increases since either the number of instances for which the corresponding method is
able to find a feasible solution is smaller or the average optimality gap is higher for
all methods. One thing to note is that the decomposition approach where the master
problem is augmented with valid inequality (7.45) yields smaller average optimality gap
if combinatorial cut of type (7.50) is also added in each iteration of the algorithm. Its
effect becomes apparent especially when the number of end-user and potential server

locations is increased.
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The performances of the deterministic equivalent MILP model and the best im-
plementations of the decomposition approach are further evaluated on the instances
with 50 scenarios. In Table 8.11, it can be observed that the deterministic equiva-
lent model is unable to find a feasible solution within the given time limit for most of
these larger instances due to the high complexity of the problem with large number of
variables and constraints. On the other hand, the improvement of the decomposition
approaches integrated with valid inequality (7.45) becomes striking as they can still
find feasible solutions for all of the instances. Although introduction of combinatorial
cut (7.50) requires solving an additional LP model in each iteration of the algorithm, it
can strengthen the master problem formulation and improve the lower bound obtained
at the end of time limit. Thus, it provides smaller average optimality gap for large

mstances.

For the stochastic network slicing problem with integer capacity levels, the per-
formances of the solution methods are investigated on the same instances having 10
and 20 scenarios. The results of this experiment are given in Tables 8.12 and 8.13.
We omit the results for the automated Benders decomposition feature of CPLEX as
it is ineffective to find good-quality results within the given time limit. The perfor-
mance of the deterministic equivalent MILP model is shown by the columns entitled
“SP_MILP_int”. It can be noted that although it can find feasible solutions with small
optimality gaps for relatively smaller instances, it is unable to find a feasible solution
for large instances with high number of decision variables and constraints. The aver-
age optimality gap is also high especially when the numbers of end-user and potential

server locations are high.



Table 8.11. Performance comparison of deterministic equivalent model and

decomposition approach for stochastic network slicing problem when | K| = 50.

| SPMILP | SPBD 4 (7.45) | SPBD + (7.45) + (7.50) |

Kl Ul 1Ql IS| v | m Gap| m Gap UBGap| n Gap UBGap |
50 25 5 5 50 |5 24| 5 25 0.0 5 28 0.0
50 25 5 5 100| 5 19 | 5 25 0.5 5 29 0.7
50 50 5 5 50 | 3 454 | 5 22 444 | 5 23 445
50 50 5 5 100 | 5 269 | 5 28 245 | 5 27 245
50 100 5 5 50 |0 - |5 14 ; 5 13 ;
50 100 5 5 1000 - | 5 17 ) 5 17 ;
50 25 10 5 50 | 5 829 | 5 89 303 | 5 40 -30.3
50 25 10 5 100 | 5 801 | 5 50 259 | 5 46 -26.2
50 50 10 5 50 |0 - |5 30 ; 5 3.1 ;
50 50 10 5 10| 0 - | 5 39 ; 5 39 ;
50 100 10 5 5|0 - |5 08 ) 5 07 ;
50 100 10 5 100|0 - |5 08 ; 5 08 ;
50 25 5 10 50 | 5 161 | 5 35  -135 | 5 28 -14.2
50 25 5 10 100 | 5 250 | 5 31 231 | 5 35 -22.7
50 50 5 10 50 |0 - | 5 35 ; 5 33 ;
50 50 5 10 100| 0 - | 5 44 ) 5 45 ;
50 100 5 10 5 | 0 - | 5 132 ; 5 223 ;
50 100 5 10 100| 0 - | 5 208 ; 5 14.8 ;
50 25 10 10 5|0 - |5 53 ; 5 5.2 ;
50 25 10 10 100 | 1 86| 5 54 860 | 5 55 -85.8
50 50 10 10 50 |0 - | 5 114 ; 5 116 ;
50 50 10 10 100| 0 - | 5 442 ) 5 171 ;
50 100 10 10 5 |0 - | 5 39 ; 5 35 ;
50 100 10 10 100| 0 - | 5 46 ; 5 41 ;
50 25 5 2 50 |0 - | 5 38 ; 5 43 ;
50 25 5 20 10| 0 - | 5 63 ; 5 36 ;
50 50 5 2 50 |0 - | 5 227 ) 5 15.2 ;
50 50 5 20 100| 0 - | 5 352 ; 5 12,0 ;
50 100 5 20 50 | 0 - | 5 344 ; 5 312 ;
50 100 5 20 1000 - | 5 390 ; 5 331 ;
50 25 10 20 50 | 0 - | 5 228 ; 5 116 ;
50 25 10 2 100| 0 - | 5 149 ) 5 207 ;
50 50 10 2 50 | 0 - | 5 489 ; 5 363 ;
50 50 10 20 100| 0 - | 5 604 ; 5 332 ;
50 100 10 2 50 | 0 - | 5 686 ; 5 533 ;
50 100 10 20 100 0 - | 5 802 ; 5 585 ;

39 231|180 167 69 | 180 12.3 6.9
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The performance of the Benders decomposition approach is demonstrated by the
columns entitled “SP_BD_int”. It can be observed that the decomposition approach
can always find a feasible solution for all of the instances within the given time limit.
However, if no valid inequality is introduced into the master problem, the average
optimality gap is worse compared to the deterministic equivalent model for some of the
instances. When the best objective values of both methods obtained at the end of the
time limit are compared using “UB Dev” column, we can notice that the decomposition
approach is able to find better feasible solutions for most of the instances. Thus, its
poor performance on the average optimality gap can be explained by the poor lower

bounds, which can be avoided by introducing valid inequalities into the master problem.

In fact, the solution quality obtained by the decomposition approach can be im-
proved by augmenting the master problem with valid inequalities (7.44) or (7.58). By
this way, the average optimality gap can be reduced and we are able to find better
feasible solutions compared to the deterministic equivalent model for most of the in-
stances. It can be noticed that valid inequality (7.58) has better performance with
smaller average optimality gap. When both valid inequalities are integrated into the
master problem, the performance gets worse in terms of the average optimality gap and
the quality of the best solution because of large number of constraints in the master
problem. If combinatorial cut (7.59) is also integrated into the decomposition pro-
cess where the master problem is augmented with valid inequality (7.58), there is no

significant improvement in terms of the solution quality.

When the number of scenarios is increased to 20, the performances of all solution
methods deteriorate. However, the improvement of the decomposition approach inte-
grated with valid inequality (7.58) becomes striking. Although the problem sizes are
increased, it can still find a feasible solution for all of the instances and the average
optimality gap is smaller compared to the deterministic equivalent model. As a re-
sult, the best solution approach for the stochastic network slicing problem with integer
capacity levels turns out to be the decomposition approach with the valid inequality

(7.58).
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9. CONCLUSIONS

A wide variety of novel services have been envisioned lately due to recent inno-
vations on mobile networking technologies and increased usage of mobile devices and
wearable gadgets. This shift has significantly improved our daily lives and also trans-
formed a wide range of verticals from manufacturing to entertainment. Meanwhile, 5G
networks along with IoT devices are expected to provide a diverse set of services with
stringent QoS requirements in terms of reliability, latency, and data traffic volume to
satisfy user expectations. However, the traditional network architectures are no longer
suitable to effectively accommodate these services with diversified characteristics and
requirements. Due to the tremendous growth in mobile data traffic and SLA require-
ments of diversified services, it is critical for the operators to optimize their decisions

in an economical way.

In this thesis, we focus on long-term investment planning decisions of a new
entrant operator to design the computational architecture in an environment offering
numerous service types with diversified characteristics. We introduce three problem
instances under different assumptions. In the computation architecture design problem,
we assume that the operator has an initial investment budget and future service demand
is unknown. The objective of the problem is to maximize the revenue of the operator by
optimizing server placement, service deployment, and task assignment decisions using
the expected service demand. We formulate an MILP model that takes the latency
restrictions of services into account. We then propose a Lagrangian relaxation-based
heuristic algorithm to deal with the complexity of the problem. We also consider the
case where demand and resource requirements of services can be stochastic. For this
problem, we introduce a two-stage stochastic integer programming model and suggest

SAA method as a solution approach.

Then, we study the network slicing concept that has emerged as an enabling

technology in 5G networks to address conflicting requirements of services on a single
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physical network infrastructure by transforming it into a set of logical networks. It
helps the operators to provide customized solutions to various verticals and manage
the operations in a more efficient and sustainable way. In the deterministic network
slicing problem, we consider the optimal network slicing scheme that arises from the
design of next-generation mobile networks to satisfy the demand for diversified ser-
vices. We introduce an MILP formulation that integrates server placement, capacity
allocation, and task assignment decisions in a comprehensive model. We then develop
two exact solution methods based on branch-and-Benders-cut framework and suggest
some valid inequalities and cut generation techniques to increase the efficiency of the

decomposition strategy.

Then, we define the stochastic network slicing problem to deal with the dynamic
changes in the service request demand over time. In this problem, we assume that
the probability distribution of the number of service requests can be predicted based
on some historical data. We construct a two-stage stochastic integer programming
model where the objective is to minimize the cost of server placement decisions and
the expected cost of unsatisfied service requests within the allowed delay limit. We also
formulate a deterministic equivalent MILP model of the corresponding stochastic pro-
gramiming model by generating a set of scenarios for random parameters. In addition,
we study a variant of this problem in which the capacity allocation of computational
resources can only occur at discrete levels. For both variants, we develop a decompo-
sition algorithm to obtain good-quality solutions in a reasonable amount of time for

large instances.

The performances of the solution methods are tested on randomly generated in-
stances. The computational results obtained on a large set of realistic test instances
show that the proposed formulations address the key components of investment plan-
ning activities of an operator. We demonstrate that the suggested solution methods
are highly effective and efficient, as they can deliver high-quality and robust solutions

in a reasonable amount of computational effort.



120

The thesis opens up novel research perspectives. Since the increase in the problem
size worsens the solution quality, one can focus on alternative operations research
techniques on the suggested solution approaches, such as accelerated SAA method,
Benders dual decomposition method suggested by Rahmaniani et al. [103], etc., to
enhance the solution procedure. Alternatively, an online solution approach can be
investigated for addressing the highly dynamic environment of next-generation mobile
networks assuming that service request patterns and operations within the network

may change over time.
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