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ABSTRACT

ANALYSING THE EFFICACY OF FEATURE

ELIMINATION AND ADAPTIVE SAMPLING IN

META-MODEL BASED EXPLORATION OF

AGENT-BASED SIMULATION MODELS

In this thesis, an advanced procedure is constructed to investigate agent-based

simulation models. A meta-modeling approach, that utilizes adaptive sampling and

feature elimination methods is used in the proposed procedure. The procedure aims

to build a machine learning model that replicates the input-output relationships of

the original agent-based simulation model and accurately predicts the output of inter-

est. Thanks to feature importance measurements, the proposed procedure also enables

researchers to analyse the relationships between the agent-based simulation model pa-

rameters and the output of interest. The Random Forest algorithm is used for building

the meta-model. The adaptive sampling method is utilized to create a high-quality

data set to train the meta-model. The feature elimination process is applied to enable

meta-model to prevent the curse of dimensionality and keep the focus on important fea-

tures regarding the output of interest. The proposed procedure is applied to a complex

agent-based meta-model to evaluate its performance. A recent agent-based simulation

model, that is analyzing socio-dynamic systems, is selected for application considering

its probabilistic nature and wide range of parameters. Moreover, previously proposed

meta-modeling approaches in the literature are reviewed and performance comparisons

are assessed with the proposed procedure. Both the accuracy of output predictions and

the validation of feature elimination decisions are analysed in detail. The conducted

experiments and analysis showed that the proposed advanced procedure estimates the

output of the original simulation model in an accurate and efficient way, and it out-

performed the previously proposed meta-modeling approach in terms of accuracy.
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ÖZET

ETMEN-TABANLI BENZETİM MODELLERİNİN META

MODELLEME YOLUYLA İNCELENMESİNDE DEĞİŞKEN

SEÇİMİ VE UYARLANABİLİR ÖRNEKLEME

YÖNTEMLERİNİN FAYDA ANALİZİ

Bu tezde, etmen-tabanlı simülasyon modellerini incelemek için gelişmiş bir prose-

dür tasarlanmıştır. Bu prosedürde, değişken seçimi ve uyarlanabilir örnekleme teknikle-

rinden faydalanan bir meta-modelleme yöntemi kullanılmıştır. Prosedürün amacı,

özgün etmen-tabanlı simülasyon modelini taklit edip çıktılarını doğru bir şekilde tahmin

edebilecek bir makine öğrenmesi modeli oluşturmaktır. Tasarlanan prosedür, meta-

model değişkenlerine ait önem değerlerinin hesaplanması sayesinde, etmen-tabanlı model

para-metrelerinin çıktı üzerindeki etkilerinin analiz edilebilmesini de sağlar. Meta-

modelin oluşturulmasında Rastsal Orman algoritması kullanılmıştır. Meta-modeli eğit-

mekte kullanılacak yüksek kaliteli veri setinin oluşturulması için uyarlanabilir örnekleme

yön-teminden faydalanılmıştır. Boyutsallığın yarattığı sorunları önlemek ve meta-

modelin odağını çıktı açısından önemli değişkenler üzerinde tutmak amacıyla değişken

eleme yöntemi uygulanmıştır. Önerilen prosedür, performans değerlendirmesi için,

karmaşık bir etmen-tabanlı simülasyon modeli üzerinde uygulanmıştır. Uygulama

için, olasılıksal doğası ve geniş parametre yelpazesi göz önünde bulundurularak, sosyo-

dinamik sistemleri analiz eden güncel bir etmen-tabanlı simülasyon modeli seçilmiştir.

Ayrıca tasarlanan prosedürün performansı, literatürde daha önce önerilen meta-model-

leme yöntemleriyle karşılaştırmalı olarak değerlendirilmiştir. Çalışmada hem öngörülen

çıktı değerlerinin hem de yapılan değişken seçimlerinin doğruluğu detaylı bir şekilde

analiz edilmiştir. Deney ve analizler, önerilen prosedürün orijinal simülasyon modeline

ait çıktıları doğru ve verimli bir şekilde tahmin ederken daha önce önerilmiş meta-

modelleme yöntemine göre daha doğru sonuçlar ürettiğini göstermiştir.
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1. INTRODUCTION

Agent-based models (i.e., ABMs) are used for simulating and analyzing complex

systems which contain interacting individuals making decisions and determining their

own behaviors. Autonomous individuals, named agents, interact with other individuals

and the environment in the agent-based models. Agents follow certain rules which de-

termine their behavior routines. Thus, ABM is a very powerful approach while studying

systems with emerging behaviors according to individual decisions and interactions.

Agents have specific properties such as states, perceptions of the environment,

level of resources, and locations. The ability to put that diversity, which arises due to

those distinctive properties, among agents into the model enables researchers to simu-

late systems with heterogeneous interacting individuals who make decisions about their

behaviors. Thus, problems containing social interactions under biophysical constraints

can be simulated [1] and complex dynamics, which can be easily overseen with other

modeling approaches can be captured using ABMs.

As a result of those benefits, ABMs are chosen as an appropriate tool by modelers

to work on problems from a wide range of areas from water use to traffic simulation

and can be applied to modeling proteins as agents to modeling interactions among

nation-states [2].

Agent-based modeling is accepted as a powerful tool to explore the dynamics of

social systems and nonlinear relationships within them. That is because ABMs can

represent these kinds of systems better than mathematical models like linear program-

ming models or statistical forecasters. A previous study states that the ABM approach

has its greatest power in situations with unpredictable future scenarios [3]. That study

also suggests that, despite the power of ABM in unpredictable situations, when the

uncertainty increases the effectiveness of analytical methods decreases, and decision-

making gets difficult using analytical methods. In order to represent the complexity of

real systems, models get larger by including lots of variables. In that case, construct-
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ing and understanding the model becomes an exhaustive task. Moreover, the size and

complication of the output increase with the increasing size of the model. Output

becomes harder to understand and analyse, thus ABMs’ interpretability gets limited

by the complexity of real-life problems. In that manner, researchers suggest utilizing

analytical approaches together with ABMs to improve decision-making abilities and to

get the maximum benefit from ABMs [3].

Previous studies are conducted on building a meta-modeling procedure combin-

ing an analytical approach with ABMs to analyse relationships between the parameters

and the output of simulation models [4]. A procedure incorporating adaptive sampling

with feature elimination is proposed to figure out relationships between the parameters

and the output of simulation models. Results of the developed procedure are applied

to an agent-based segregation model. Initial results of the procedure are evaluated

in that study. Despite showing promising results, many aspects of the proposed ap-

proach remain unevaluated as it is not applied to a large-scale simulation model in

that study. Increasing scale is expected to lead to efficiency and accuracy problems.

This study aims to search for improvement opportunities in the suggested procedure

and then analyse the behavior and performance of the improved procedure on a more

complex model. The efficiency and accuracy of the meta-model that is generated via

the proposed procedure to replicate the original ABM are examined considering a more

complex simulation model with a larger set of parameters.
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2. LITERATURE REVIEW

In the literature, studies combining analytical and statistical tools with ABMs

are mainly focused on two topics. One is the estimation or tuning of parameters

that are used in the simulation. Another focus is to use the analytical and statistical

tools to explore the dynamics of the emerged model behavior of the system during the

simulation in a more efficient way. In this manner, machine learning and sampling

techniques are used with ABMs.

Supervised machine learning and intelligent sampling are combined in the design

of a surrogate meta-model in a previous study for agent-based model calibration and

parameter space exploration [5]. An approach is developed and evaluated to explore

the parameter space of the agent-based model, using a non-parametric machine learn-

ing surrogate in the study. In that approach, an iterative sampling algorithm is used

which intelligently searches the response surface taking limiting conditions (i.e., model

constraints) into account. The approach is constructed as an iterative algorithm that

searches for a good approximate of a surrogate model that can be used for different

agent-based models using a predefined number of agent-based model runs. The ap-

proach starts with creating an unlabeled sample pool from the parameter space. Then

a sample is drawn from the pool, the initial surrogate learning algorithm is trained

and labels of the sample predicted over the pool. If the predefined iteration budget is

not reached yet, the predicted labels are added to the pool. The method stops and

records the last predictive model as a good surrogate when the predefined iteration

budget is reached. To apply the algorithm, preliminary decisions need to be taken.

Firstly, the machine learning algorithm should be selected to be used as a surrogate

of the original agent-based model. Secondly, a sampling method should be selected to

work on parameter space to create the training set for the selected machine learning

algorithm. Thirdly, a performance metric should be selected to evaluate the surrogate

machine learning model’s performance. After taking these three decisions, the algo-

rithm can be applied iteratively. In that study, researchers report that the machine

learning surrogate provides a good representation of the original agent-based model in
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terms of accuracy while reducing the parameter space exploration time.

As stated before, meta-models are also used to explore the emergent dynamics of

complex systems. Emergent behaviors are caused by the interaction of variables within

the system. Interactions between variables are embedded in models as complex and

nonlinear relationships. Meta-models are used to imitate agent-based models and find

out how these relationships affect the emerging behavior. A good meta-model can be

used as a representation of an agent-based model, and it can collaborate with the agent-

based model for helping to explore the behavior space [6]. Moreover, a meta-model

that is balancing accuracy and interpretability would be very useful to understand the

input-output dynamics of models with lots of parameters and nonlinear relationships. If

the meta-model is proven to be accurate, it is a good way of validation and verification

of ABMs to observe the effects of inputs on output. In a previous study [7], Random

Forest is used as a meta-modeling approach imitating an agent-based model. The

meta-model is used to predict the output of different combinations of variable values,

and a simple procedure is constructed for investigating the behavior space of the agent-

based model and estimating the model outputs. A crucial step for that procedure is

the selection of training data to train the meta-model. The study aims to work in the

least computationally costly way without loss of accuracy. To train the meta-models

effectively and to speed up the fitting process, active learning techniques are proposed

instead of random sampling. An adaptive sampling strategy is utilized to achieve a

good level of prediction accuracy with a lower number of simulation runs in the study.

Despite many examples using meta-models on agent-based models together with

analytical and statistical tools, that approach becomes inapplicable for lots of examples

in case of the existence of a large number of parameters. Agent-based model parameters

are used as features in the representative meta-models. Feature selection is choosing

the most relevant features from the entire feature set according to a feature selection

criterion and removing the irrelevant features to improve accuracy, reduce time, and

simplify results [8]. Feature selection is utilized in ABMs together with the meta-

modeling approach in a previous study to select the most relevant features to keep in

the model [4]. Simplification of the model and avoiding the curse of dimensionality are
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the main aims while using the feature selection in that study. A procedure is suggested

using Random Forest meta-modeling to represent the agent-based model. The meta-

modeling approach is used incorporating adaptive sampling with feature elimination to

figure out the relationships between parameters and the output of simulation models

in case of insignificant parameters. In that study, the proposed procedure is applied to

an agent-based segregation model and analyses are made on the output. Results show

that the suggested procedure can be used as an efficient way to construct meta-models

which give insights about the dynamics embedded in the simulation model.

The segregation model has many benefits for the purpose of testing the approach

thanks to its simplicity. Yet, it did not enable researchers to explore all elements of

the proposed procedure, because it has a small number of parameters that can be

separated easily in terms of their effects on output. Thus, evaluating that procedure

on a large-scale, more complex model would provide very useful insights about the

procedure. Potential improvement areas can be pointed out after the application of

that procedure on a more complex model.
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3. PROBLEM DEFINITION

Agent-based models are mostly used to model complex systems which contain

dynamic and non-linear relationships like real-life problems. Thus, large numbers of

parameters are included in agent-based models to represent the real problem context.

However, many drawbacks arise when more parameters are included in an agent-based

simulation model. With an increasing number of parameters, the computational cost of

running the ABM increases. Simulation run duration also increases with the increasing

number of parameters. Larger and more complex models result in high dimensional

outputs which require sophisticated analytical approaches for analyzing and reporting

[9].

Agent-based model parameters are used as machine learning model features in the

approach of representing agent-based models with meta-models. Not all agent-based

model parameters would have a significant effect on the output of interest. Machine

learning models tend to overfit and become less comprehensive in case of including

irrelevant features [10]. Moreover, the analysis of meta-model results gets complicated

as well with the increasing number of features. Thus, keeping a fewer number of

features in the meta-model has great importance from the computational efficiency and

interpretability point of view. Features that are significant regarding to the output

should be selected carefully to be kept in the meta-model. It should be noted that

the significant meta-model features correspond to the ABM parameters that have a

significant effect on the output in the simulation model.

In a former study, the abovementioned improvement areas are discussed, and

an advanced meta-modeling procedure is defined using adaptive sampling and feature

elimination [4]. A meta-model is used to imitate the original agent-based model. The

Random Forest technique is applied for meta-modeling. The adaptive sampling method

is used to create a good quality dataset to train the meta-model. That method enables

researchers to select valuable samples which bring important information about the

dynamics of emergent behavior. It is well known that a high number of parameters
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and nonlinear interactions between variables make interpretation of complex systems

harder. An increasing number of parameters increases the dimensionality of parameter

space and size of output thus, it contributes to the curse of dimensionality. To reach

a simpler meta-model, insignificant parameters are removed with feature elimination

in that former study [4]. The elimination process provides dimensionality reduction

preserving meta-model accuracy and promoting interpretability. After eliminating re-

dundant features, adaptive sampling works on a lower dimension space. That improves

the performance of the meta-model by enabling adaptive sampling to focus more on

significant parameters.

Despite providing a very promising approach, the procedure is not applied to a

large-scale and complex model in the previous study. Thus, downsides and improve-

ment areas could not be searched in detail. Some elements of the procedure could not

be examined due to the small number of model parameters which have easily been

observed with their different effects on output. It is expected that efficiency and ac-

curacy problems will arise with application to a larger scale and more complex model.

Multimodality and continuous output may also lead to an unsuccessful approxima-

tion of the simulation model. Prediction performance is expected to deteriorate when

the procedure is applied to a simulation model with categorical variables and class

imbalance.

Application of previously constructed meta-modeling procedures to a larger scale,

more complex agent-based model and make performance analysis is the primary pur-

pose of this study. The approaches discussed in the literature review are very promising

and have many advantages, yet they have many points to discuss and improve. After

application to a large-scale model, this thesis focuses on findings and improvement

opportunities that are already expected. Moreover, the predictive power and efficiency

performance of the previously proposed procedure in the literature highly depend on

user-defined parameters. Technical knowledge is required to comprehend these user-

defined parameters, and the design of experiments is needed to assign proper values to

them. Herewith, this thesis aims to develop a simplified approach by removing these

complex user-defined parameters of the previously proposed procedure.
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Simulation models which are constructed to investigate socio-dynamic systems are

a good candidate to implement the previously defined meta-modeling approach with

feature elimination, as they usually have high complexity and a wide range of param-

eters. Therefore, a literature review is conducted for current studies on socio-dynamic

systems including agent-based simulation models. During the literature review, it is

remarked that investigating the spreading of misinformation is an interesting topic for

researchers. That topic got more popular over the past decade since social media be-

came much more preferable to mass media. Social media platforms provide space to

people for connecting others who think like themselves. People share their ideas via

posts and content with like-minded others. As a result, people are inclined to form

clusters around common interests, worldviews, and narratives. Users tend to spread

information that is taken from friends having a similar profile and that creates polar-

ization which results in the formation of homogeneous clusters [11]. Those homogenous

and polarized communities are also known as echo chambers. An echo chamber can

also be defined as an environment in which a person can only come across ideas and in-

formation which reflect and reinforce their own. People’s tendency to give more credit

to information that is in favor of their existing opinion creates a confirmation bias,

and that also feeds the construction of echo chambers. In case of confirmation bias,

people pass over fact-checking and choose immediately to accept the given information.

Thus, polarization and confirmation bias have a significant impact on misinformation

spreading on online social media [12].

A recent study investigates the emergence of echo chambers in social networks us-

ing an agent-based simulation model [13]. Researchers develop a model which considers

the probabilistic nature of social media users’ belief updating mechanism. The model

takes into account that the communicating user’s perceived credibility and trustwor-

thiness level on other users have an effect while convincing them. In order to point out

sufficient causes of echo chamber formation with a robust and realistic model, a wide

range of parameters are included in the model. As a result, the model is chosen as a

good candidate to implement the previously constructed meta-modeling procedure in

terms of topic, scale, and complexity manners.
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4. BACKGROUND

Agent-based models are widely used in problems that contain non-linear and

complex interactions between their parameters and outputs. Interactions between pa-

rameters and outputs are analysed through many simulations which are designed with

changing parameter values. These parameters include not only policy parameters that

can be determined by policymakers but also model parameters that are defined by the

model’s nature and taken as constant by policymakers. Thus, the design of experiments

for investigating relationships between parameters and outputs is a challenging task

all by itself. Besides this, making detailed analysis and finding out the interactions

is much more compelling than designing experiments. In such a straightforward way,

the design of experiments and result interpretations depend on the researcher’s level

of expertise.

As time goes by agent-based modeling becomes used more in various new areas

which have complicated problems with large parameter sets. Thus, models get more

complex, including more parameters interacting with each other, and understanding the

dynamics of the models becomes harder for even models’ own developers. Sometimes

it is not clear whether a significant result emerged due to the effects of parameters and

assumptions or simply because of errors and artifacts in the model design [14]. As a

result, conducting manual analysis and interpreting results become an exhaustive task.

That problem is addressed in a former study “Analysis of Agent-Based Simulation

Models Through Meta-modeling” [6]. An advanced analysis procedure is proposed

utilizing machine learning tools and sampling methods in that study.

4.1. Agent-Based Simulation and Meta-modeling Approach

When an agent improves its performance after making observations on some

tasks, that means the agent is learning. The concept of machine learning comes into

the picture when the agent becomes a computer (or model). When a computer observes

data, constructs a model based on the observed data, and uses it to interpret and solve
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a problem, that concept is called machine learning [15]. Machine learning methods are

overperforming the human researchers to foresee and evaluate possible future situations

as those models are trained using massive datasets that no human can analyse and

learn in detail. Moreover, the design of a solution is way harder than constructing

the problem most of the time. For example, recognizing faces is a task that is solved

subconsciously in the human mind, and it cannot be expressed as a computer program

except in machine learning algorithms. Machine learning models search for meaningful

relationships and patterns within a problem using examples and observations [16].

These algorithms are applied iteratively to the training data to learn and improve their

performances. During that process, models find out the hidden insights and meaningful

patterns without being programmed by developers [17]. Thus, these algorithms are

good alternatives to be utilized for investigating complex interactions between inputs

and outputs of agent-based simulation models.

Edali proposed that a machine learning model can be used as a representation

of the original agent-based simulation model, and investigations can be made through

that model [6]. That approximate representation of the agent-based simulation model

is a meta-model. The meta-modeling approach shortens the modeling cycle and anal-

ysis time as researchers work on estimated outputs found by a meta-model, instead

of the real simulated output of each parameter combination. In addition to shorter

modeling and execution times, an interpretable meta-model can bring advantages to

a better understanding of input-output relationships as researchers suggest. However,

the meta-model should be built carefully to maintain the balance between accuracy

and interpretability as a simple model may miss out on some relations between in-

puts and outputs. On that concern, Edali conducted a comprehensive discussion on

alternative representations of agent-based simulation models that can capture input

and output relationships in a simple yet accurate way [6]. They also compare different

data selection methods to train meta-models. By doing so, researchers come up with a

comprehensive approach to represent and analyse agent-based simulation models with

a well-trained meta-model in an effective way.
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4.1.1. Random Forest Meta-modeling

Different machine learning models may yield different outputs with the same

input as their prediction processes are different from each other. Ensemble Learning

is using multiple models together as a single one to increase the predictive power by

reducing variance and bias [18]. Decision tree learning is a predictive method that is

easy to implement and interpret, but not so competitive as other learning approaches

in terms of accuracy. The Random Forest method is built to increase the decision

tree learning method’s predictive performance by aggregating many decision trees as

an ensemble model [19]. The decision trees, constructing the forest, are grown with

two random moves. The first one is that each tree is trained using a bagging method.

Bagging (bootstrap aggregation) makes each tree be trained with different data sets

which are created from the original training sets by random sampling with replacement.

The second one is that the feature set is selected randomly at each node for splitting.

Random Forest models are applicable to both classification and regression problems.

In Random Forest classification, majority voting is applied to select the most frequent

class to return as the predicted label. In Random Forest regression, the average output

of each tree is defined as the predicted result [19].

Edali discussed the selection of meta-modeling techniques according to research

objectives [6]. As a result of their detailed analysis and comparisons with other meth-

ods, they suggested that Random Forest stands as a good technique when the aim is to

grasp the input-output relationships of agent-based models with acceptable accuracy

performances. Despite the minimal loss of accuracy, the Random Forest meta-modeling

technique presents interpretable results for investigating the inner dynamics of agent-

based simulation models.

4.1.2. Meta-model Training with Active Learning

Machine learning models learn from a training data. Models discover relationships

between inputs, gain understanding, make predictions, and evaluate the confidence of

these predictions based on the provided training data. Therefore, machine learning
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model performance depends on the quality and quantity of training data as much as the

algorithm used. To imitate an agent-based model with a representative meta-model,

the meta-model should be trained with the output of many agent-based simulation

runs. That requires running the agent-based model many times which takes a long

time in most cases. Thus, selecting a proper sampling method for training data set

construction would be very beneficial for training the meta-model efficiently.

Different methods can be selected to take samples from parameter space according

to computational power constraints. Latin hypercube sampling is one of these methods

that can give an improved coverage of parameter space in case of a fixed number of

samples which is independent of the dimension of the space [20]. Latin hypercube

sampling is a preferred method in model fitting thanks to its advantages in cases

when dominant components exist. The method ensures that each of the components

is represented regardless of being one of the most important ones [21].

Despite having many advantages, even the improved Latin hypercube sampling

methods are categorized as one-shot sampling techniques. The reason is that, those

samples are generated with a specific number of input parameter combinations which is

decided before training the meta-model [6]. Thus, Edali states that there is no known

way to determine a sufficient sample size to ensure the desired accuracy level before

fitting the meta-model according to their literature review. In the literature, they

see sequential sampling techniques, which are also known as adaptive sampling and

active learning, are used as an alternative to one-shot sampling. Sequential sampling

techniques are chosen as powerful alternatives as they have the advantage of starting

with smaller sample set sizes and expanding them iteratively to increase model accuracy

by using the knowledge that is gained in earlier iterations.

As a result of previously stated interpretations, Edali chooses to start their meta-

modeling approach with the generation of several training instances (parameter combi-

nations of agent-based models) having a specific size by using Latin hypercube sampling

and finding their outputs (labels of training data sets) via simulation runs [6]. After

checking the modality of distribution within the output of the training data set they
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apply sequential sampling to each training data set independently. They explained the

sequential sampling method in detail as expanding the initial training data in a certain

number of iterations by taking a certain number of instances (parameter combinations

of the agent-based model) from the unlabeled pool (that is previously generated using

the Latin hypercube sampling technique) at each iteration and finding their output by

using the simulation model. Depending on the modality of the output, their procedure

continues with adding either the numerical results or class labels to the training set.

At the end of each iteration, the training dataset is expanded, the meta-model is re-

trained, and the accuracy of the meta-model is reported. The procedure returns the

latest trained meta-model.

4.2. Feature Selection

Selecting the most informative features is crucial for building a successful pre-

dictive machine learning model. The model analyses how the output changes with

changing values of features and learns the hidden relationships through selected fea-

tures, thus it is very important to build the model with the best features. Constructing

a machine learning model with features that significantly impact the output helps re-

searchers solve dimensionality problems by removing irrelevant and redundant features

[8]. As a result of that, computation time reduces, learning accuracy increases, and

interpretability of the machine learning model (itself and its output) increases.

Previous research state that feature selection can be applied to find the impor-

tant meta-model model features regarding a specific meta-model output variable in

the context of meta-modeling of a simulation model [4]. As the meta-model features

represent the relative ABM parameters, the feature selection also gives insight into the

importances of the ABM parameters regarding the simulation model output variable.

The advantages of feature selection are discussed thoroughly in that study. At first,

the computational efficiency of the meta-model, thanks to less memory and analy-

sis requirements with faster meta-model training and utilization, is discussed. More-

over, prediction power improvement with mitigation of the curse of dimensionality

is remarked as insignificant simulation model parameters are being eliminated and
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meta-model focuses more on the significant simulation model parameters through fea-

ture selection. Furthermore, it is indicated that understanding embedded relationships

within data and making visualizations becomes easier when including fewer and more

meaningful meta-model features.

Yurdadön proposes an extension to the “Analysis of Agent-Based Simulation

Models Through Meta-modeling.” [6] study by using feature selection to find the sim-

ulation parameters that significantly affect the agent-based model behavior [4]. That

study aims to reach the stated advantages of feature selection by training the meta-

model using those selected simulation parameters as meta-model features. An approach

is developed combining adaptive sampling and feature selection to achieve a sufficiently

comprehensive and accurate meta-model of an agent-based simulation model. In that

approach, the meta-model is used to find out the hidden relationships between agent-

based model parameters and outputs, adaptive sampling provides good quality training

data, and feature selection prevents the complexity in meta-model training by elimi-

nating insignificant meta-model features regarding the output variable.

The proposed procedure has two sub-procedures which are stated in Yurdadön’s

study as adaptive sampling procedure and feature elimination procedure. The adaptive

sampling procedure selects informative instances to feed the meta-model and ensure

the quality of the training data. The feature elimination procedure keeps the meta-

model to be focused on its significant features and allows adaptive sampling to work in

a lower-dimensional space. The procedure starts with the data generation phase uti-

lizing the Latin hypercube sampling method. A relatively small (sufficient to cover the

parameter space, but small enough to benefit from the adaptive sampling approach)

set of agent-based simulation model parameter value combinations is generated in that

step. The procedure continues to obtain the outputs (to be used as labels of the train-

ing data) of these agent-based simulation parameter combinations via simulation runs.

The meta-model is trained after creating the initial training set. Afterward, the adap-

tive sampling procedure works iteratively for up to a specific number of iterations (i.e.,

Elimination Start Iteration) during the meta-modeling procedure. By doing so, both

the size and quality of the training data set are improved thanks to added instances,
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so that the training set becomes good enough to estimate feature importance scores

successfully. After completing the predefined number of iterations with the adaptive

sampling procedure and reaching Elimination Start Iteration, the feature elimination

procedure starts. From that iteration, the feature elimination procedure applies to-

gether with the adaptive sampling as long as the model finds features that can be

eliminated. In order to end the overall process, researchers define an Iteration Budget,

and the process is terminated when that number of iterations is completed. The flow

is summarized in Figure 4.1 which is provided in Yurdadön [4].

Researchers conduct experiments with the segregation model [22], which is a well-

known agent-based simulation model. That model is a very simple and interpretable

one, and it has only two parameters. That selection provides a good insight into the

procedure’s performance, but the requirement for application on a larger and more

complex system remains. As both parameters of the segregation model are already

known to be significant, four new insignificant parameters are added to the model

to test whether the procedure is able to eliminate them. Researchers investigate the

performance of the proposed procedure in detail and show its power of eliminating

the insignificant feature and improving the meta-model accuracy (by eliminating the

negative effects of insignificant meta-model features and focusing on the important

ones). However, that application does not provide insights into the procedure’s ability

to retain the features that have a slight impact on the output.
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Figure 4.1. Flowchart of the previously proposed meta-modeling procedure.

4.3. Formation of Echo Chambers: Sample Agent-Based Model

As stated in the previous section Fränken and Pilditch’s agent-based model, inves-

tigating the construction of echo chambers in social networks, is selected to evaluate

the meta-modeling procedure with feature elimination [13]. Using that agent-based

simulation model, their research investigates a system with an idealized social net-

work user population. The findings show that social media users’ ability to instantly

share information with each other through a single cascade can be enough to create
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echo chambers when that ability is combined with positive credibility perceptions of

a communicating source. Moreover, the effects of psychological justifications like bias

and individual distinctions are examined in that study, and it is stated that they have

no significant impact on echo chamber formation. Besides psychological justifications,

researchers also remarked that repeated actions are not required for echo chamber

formation as well.

In the agent-based model, the echo chamber formation as a result of a single

interaction between generations of network users is analysed. The term “generation”

can be explained with an example social network where every member has a specific

number of friends (connections) who have no connection with other members’ friends.

Assume that a member shares an opinion with their friends and friends of them also

share the opinion with their own friends. The second-level connections of the initial

member are named “second-generation”. So, even with a single interaction opinion of

the initial member spreads to more members than their friends in the social network.

The model considers the social media users’ selective acceptance of information from a

communicating source according to the source’s perceived credibility. A belief update

mechanism is introduced in the model to take the trustworthiness of the communicator

(source) according to the communicatee (target) into account during the belief for-

mation process. The source credibility is introduced into the agent-based model with

a Bayesian perspective. According to that perspective, when an agent encounters a

claim that is opposite to her belief, her subjective reliability to that source decreases,

but her consideration of the truth of that claim (opposite to her prior opinion) is also

revised with that new information; especially in the positive side if she thinks that the

source is reliable [23]. So, the target agent’s belief and the source agent’s perceived

credibility are updated with the statement in that process if the source’s credibility is

not known in advance (by the target agent). Furthermore, alteration of the perceived

credibility of the communicating source (according to the target agent) and the belief

in the communicated claim (on the target agent’s side) depends on the prior statuses

of those values according to the target agent, and both of them are uncertain.
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The Bayesian source credibility model used in the agent-based model is summa-

rized in Figure 4.2. By using the Bayesian source credibility model in the agent-based

simulation model, a cognitive aspect is added to the belief update mechanism. That

aspect allows agents to use the combination of credibility perceptions of others during

the belief formation process instead of only personal perceptions.

P(e)

P(t)

P(h|rep) P(h)

Figure 4.2. Bayesian Source Credibility Model.

In the agent-based model, a social network is simulated with a predefined number

of agents. During the initialization of each run, those agents are assigned to random

coordinates in a two-dimensional environment and those locations are preserved during

the run. After defining the locations, static links (which are not changing during the

simulation run) are formed between agents. The links are formed with the nearest

neighbors, represent the social network connections, and are used for the intercom-

munication of opinions between agents. The distances between agents are defined by

Euclidean distance. The prior beliefs of agents are sampled from a univariate Gaussian

distribution of N( = 0.5, σ2 = 0.2). In a similar vein, subjective expertise and trust-

worthiness values of agents are sampled with the same distribution. Those values are

used for finding estimations of perceived expertise and trustworthiness of a communi-

cating source during the belief update process. An example setup and the distributions

of prior belief, subjective expertise, and subjective trustworthiness are shown in Figure

4.3.
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Figure 4.3. An example environment setup with prior belief, subjective expertise, and

subjective trustworthiness distributions at the beginning of the run.

Agents of the model have the same behavior routines and they follow the same

cognitive processes during the simulation runs. Target (communicatee) agents receive

and check messages coming from source (communicator) agents at each time step.

There must be a social link formed at the beginning of the simulation run between

target and source agents to allow their communication. The incoming message can

be either supporting or rejecting the target agent’s prior belief. Source agents share

messages (supporting or rejecting the target’s opinion) according to their own be-

lief declaration in the previous time step. As stated previously, the Bayesian source

credibility model is introduced in the model for the belief update mechanism. Corre-

spondingly, target agents update their initial beliefs considering the incoming message

according to the Bayesian source credibility model.

In order to take the effect of the source expertise level into account, the Expertise-

Influence parameter is defined in the agent-based simulation. That parameter is used

to determine how does the expertise level of the source influences opinion formation on

the target’s side. Simply, a source with stronger expertise has higher persuasive power

on the target than a source with a lower expertise level.
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Perceived expertise and perceived trustworthiness values of source agents are also

updated for target agents during the simulation run. To calculate these values, target

agents check the incoming messages from the sources and compare them with the

opinions of their neighbors (the ones that have social links with the target agents).

The target agent then checks the subjective expertise and trustworthiness values of its

neighbors related to the source agent. According to the ratio of subjective expertise

(and trustworthiness) value of the neighbors that have the same opinion of the source to

the total subjective expertise (and trustworthiness) value of all neighbors, a perceived

expertise (and trustworthiness) value of the target is calculated.

The probability of opinion declaration is also considered in the agent-based simu-

lation model with the Prop-Likelihood parameter. That parameter is used to describe

the population’s tendency to share their opinions. Each agent has a probability of

making its opinion public as much as the Prop-Likelihood parameter of the agent-

based model. For example, the Prop-Likelihood parameter of 0.1 means that each

agent has a 10% probability of making its opinion public.

The agent-based simulation run is initiated with an agent that is placed in the

middle of the environment and shares a random opinion (support or reject) with her

neighbors (agents having social links with her). Besides other agents are shown as neu-

tral ones as they did not express any opinion yet, a prior opinion is assigned to them at

the initialization according to the belief distribution which is defined by ABM parame-

ters. After receiving a message from the initial agent, its neighbors make their opinion

public according to the predefined opinion declaration probability. These agents are

described as the first generation as they are the first group that receives messages

and makes opinion declarations. Then target agents of the first generation follow the

same belief update and declaration process with the messages they received. Agents

cannot become targets once again after declaring their beliefs. The message trans-

mission (communication between linked agents) continues between generations until

either all agents have declared their beliefs or the number of agents that are believing

(or rejecting) did not change for two periods.
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The agent-based model has two main outputs that are analysed in Fränken and

Pilditch’s research study. The first one is the global proportions of belief within the

network. The second one is the average proportion of agents having the same opinion

within neighborhoods (linked agents). A complex agent-based model is constructed

with many parameters (and relations between them) to analyse these outputs. For ex-

ample, the value of Prop-Likelihood parameter influences the effect of other parameters

as it defines the opinion declaration tendency of the individuals. If the Prop-Likelihood

value is so low, then the effect of Expertise-Influence decreases as individuals does not

share their opinions. Similarly, as the parameters that control the number of agents

and maximum number of links defines the network connectivity density, they influence

the effect of other parameters on the outputs as well. Moreover, several probabilis-

tic processes and interactions between these processes are added to the agent-based

model to simulate real-world social networks. Therefore, the agent-based model stands

as a good candidate to apply the previously mentioned meta-modeling with a feature

elimination procedure. A large number of parameters and model complexity enable

analyzing the performance of meta-modeling with a feature elimination procedure and

point out the possible improvement areas.
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5. PROPOSED APPROACH

As stated in the previous sections, collaboratively using meta-modeling, adaptive

sampling, and feature selection are claimed to be efficient for investigating agent-based

models [4]. In that context, the data is generated through simulation runs. Good

quality training and test data sets are created using the adaptive sampling method. The

machine learning meta-model is used to indicate embedded dynamics and input-output

relationships within the original agent-based model. Feature selection helps to reduce

the complexity and prevent the curse of dimensionality by keeping the most significant

agent-based model parameters which have an impact on the output of interest. The

framework of Yurdadön’s approach is defined in the background section and the flow

is shown in Figure 4.1. That approach contains several user-defined parameters which

directly affect the feature elimination decisions and so the predictive power of the meta-

model that is built to represent the ABM. Moreover, these procedure parameters require

technical knowledge and the design of experiments to be defined for the application

of the procedure to different ABMs. In this thesis, an improved approach is aimed to

be constructed in a more user-friendly way, it is applied with a complex ABM and a

comparative analysis is made against the previously proposed procedure.

5.1. Previously Proposed Feature Elimination Process

In the previously proposed procedure, before starting the feature elimination pro-

cess, the training data is enlarged by applying adaptive sampling iteratively. The aim

of that design is to reach a data set that enables a better importance score calculation

for meta-model features (the model parameters of the original agent-based simulation

model) before starting the feature elimination and by doing so, prevent the elimination

of important features. In order to enable that design, a user parameter of Elimination

Start Iteration is introduced to the procedure which represents the iteration number

that the feature elimination starts. The selection of Elimination Start Iteration value

is discussed in detail with the experiments in the previous study of “Adaptive sampling

with feature elimination for agent-based models” [4]. Before reaching Elimination Start
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Iteration, only adaptive sampling is applied, and more samples are added to training

data. After reaching Elimination Start Iteration, the feature elimination process is ap-

plied as long as there exists enough number of features. The feature elimination process

stops the elimination when all of the remaining features are significant. The feature

elimination process is designed to find out the insignificant features in an iterative way

and eliminate them from the meta-model as long as there is a satisfactory change in

the meta-model’s predictive power.

For measuring the meta-model performance Out of Bag (OOB) score is used.

OOB score enables users to assess the predictive power of the model without using any

external validation methods. Random Forest model is constructed as an ensemble of

a specific number (ntree) many decision trees. When the training set of each tree is

constructed by sampling with replacement, roughly one-third of the data is left out of

the sample. That portion is named OOB data and used as a test data set to calculate

the error. In this process, the same number of OOB data sets as decision trees are

created as well. The predictions of OOB data are made by the trained tree, and the

mean prediction error is calculated (Mean Squared Error for regression, Classification

Error for classification problems) as an estimated test error.

Feature importance scores are obtained by using the variable importance calcu-

lation method of Random Forest itself as it is a more efficient and interpretable way

than using external variable importance measures. The permutation-based importance

measure (Mean Decrease in Accuracy) of Random Forest is used. Mean Decrease in

Accuracy is the preferred importance method for regression problems. It is also named

as the Percent Increase in MSE (Mean Squared Error). That method uses OOB data

to evaluate the importance of features on the accuracy level of the Random Forest

model. The calculation starts with computing the MSE using the OOB for each tree.

The calculated MSE is stored as a reference value. Afterward, the method continues

by permuting each feature value randomly and calculating the new MSE values which

are also stored for comparison. Then, the percent increase of MSE is calculated for
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each feature as 5.1;

100× (MSEmin −MSEi)

MSEmin

. (5.1)

In this calculation (5.1) MSEmin represents the initial accuracy level calculated before

the permutation, and MSEi represents the accuracy level after the permutation of the

respective feature for a single tree. In the end, the average percent increase of MSE

level is calculated using the values computed from all trees. It is expected that the

accuracy level decreases more when the significant features are permuted. Thus, the

average percent increase of MSE is used as an estimator of the feature importance.

There are two main user parameters introduced to the procedure to make elimina-

tion decisions. First of all, the proportion of features that are evaluated for elimination

is defined by the user. Based on the calculated importance scores the candidate fea-

tures for elimination are determined and the OOB error of the meta-model is evaluated

assuming these features are eliminated. If that assumed elimination does not lead to an

adequate change in the OOB error of the Random Forest model a smaller set of the fea-

tures are evaluated as candidates for elimination at the next iteration. The acceptable

change amount of OOB error is defined by a user parameter of the procedure, which

is introduced as the OOB Allowance. The procedure is designed so that the number

of features reviewed for elimination is decreased at each iteration exponentially until a

satisfactory change is reached according to (5.2);

OOBerroriter < OOBerroriter−1 × (1 + o) . (5.2)

In (5.2) OOBerroriter−1 is the OOB error that is calculated at the previous iteration

and OOBerroriter is the OOB error of the previous iteration. The user-defined param-

eter o represents the acceptable increase rate of OOB error for applying the elimination

(i.e., OOB Allowance).

The elimination speed of the procedure is determined by another user-defined

parameter which is Elimination Proportion. As mentioned before, that parameter con-

trols the number of features that are considered for elimination. With an increasing
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Elimination Proportion, a larger number of parameters are reviewed for elimination,

so the procedure works more aggressively. On the other hand, the procedure termi-

nates quickly without eliminating all insignificant features with a small Elimination

Proportion value. At each iteration, the number of features that are candidates for

elimination decreases exponentially and the calculation of that number is explained

in Figure 5.1 in step 5. Let us assume that the procedure works for an agent-based

model with 10 parameters, which means the initial random forest meta-model has 10

features at the beginning. Different Elimination Proportion values lead to elimination

considerations as Table 5.1.

Table 5.1. Number of features that are reviewed for elimination at each iteration with

10 features at the beginning and different Elimination Proportion values.

Elimination Iteration Number

1 2 3 4 5 6

Elimination

Proportion

0.2 2 0 0 0 0 0

0.5 5 2 1 0 0 0

0.8 8 6 4 3 2 1

In Figure 5.1 feature elimination process of the previously proposed procedure is

summarized. While the speed of feature elimination is controlled by the Elimination

Proportion, the decision of elimination is determined by the OOB Allowance value.

Thus, for the procedure to work efficiently and effectively, the selection of these values

is crucial. That makes usage of the procedure harder as it needs lots of prework and

experiments to define these values. To prevent this requirement, a simplified approach

is designed in this study.

5.2. Improved Feature Elimination Process

In this study, the previously proposed feature elimination procedure is aimed to

be revised in a more user-friendly way. Instead of defining the Elimination Propor-
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tion at the beginning and selecting a subset of the meta-model features as elimination

candidates, all of the features are evaluated upon their own feature importance val-

ues in the improved version of the feature elimination process. Meta-model features

that are under a predefined importance value are eliminated, and the meta-model is

trained without the eliminated features in the next iteration. The importance values

are calculated by Random Forest itself (as mentioned in the previous section) and so

no external importance calculation is introduced into the procedure. In the following

iterations, the meta-model is trained without the eliminated features and feature im-

portance values are recalculated. Elimination and training continue until the number

of iterations reaches the Iteration Budget if the number of remaining features is enough

for elimination (greater than or equal to 2).
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5.3

5.4

5.3

5.4

5.2

Figure 5.1. Feature elimination process adapted from the previously proposed

procedure where iter*= Elimination Start Iteration.
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The improved design removes the need to re-evaluate the meta-model’s OOB

error rate after possible elimination. As a result, the requirement for the OOB Al-

lowance user parameter of the procedure is removed as well. The feature elimination

decisions are made upon features’ own importance values within the existing version

of the meta-model at the current iteration. The comparison is made between the cur-

rent importance values and the pre-defined importance threshold, and the features are

chosen for elimination according to that comparison. Moreover, in the previous feature

elimination process design, the meta-model is retrained unnecessarily within iterations

even if no features are eliminated. The process is designed in that way to enable OOB

error comparison. In the improved version, the unnecessary training operations are

also eliminated.

In Figure 5.2 feature elimination process of the improved procedure is summa-

rized. The new elimination process is easier to apply than the previous version as

two user-defined procedure parameters are removed. Moreover, the newly introduced

parameter of Feature Importance Threshold is much more interpretable than the re-

moved parameters of Elimination Proportion and OOB Allowance. Users can easily

understand that the procedure tends to eliminate more meta-model features if the Fea-

ture Importance Threshold is set to higher values and keep only the features having

very high importance on the meta-model output. Whereas if the Feature Importance

Threshold is set to lower values, it will be harder to eliminate meta-model features

for the procedure, and only the least important meta-model features will be elimi-

nated from the feature set. As a result, that change makes parameter tuning easier for

the elimination process as the number of parameters is decreased and the introduced

parameter is so straightforward.



29

Figure 5.2. Feature elimination process of the improved procedure.

5.3. Improvement Opportunities on the Proposed Approach

The efficiency and accuracy of the proposed approach are highly dependent on

Elimination Start Iteration where the feature elimination procedure starts and the

Iteration Budget until which the features are re-evaluated for elimination decisions and

the meta-model continues to be trained. The adaptive sampling process continues

until Elimination Start Iteration to expand the training data set and to enable the

improvement of the meta-model. Selecting the right Elimination Start Iteration is

important for efficiency because starting the elimination later in the procedure means

taking less advantage of the simpler meta-model and tackling more with the high

dimensional meta-model. However, starting to feature the elimination process too
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early means to take elimination decisions with a less saturated model and a narrower

training data set. Thus, a comparison between different values of Elimination Start

Iteration is made in this section.

After starting the feature elimination process, the meta-model continues to be

trained without the eliminated features (which also means with only the important

features). Thus, the Iteration Budget directly affects the predictive power of the final

meta-model. The Iteration Budget should be selected large enough to advance the

meta-model with lowered dimensions and the expanded training data set. However, it

should be small enough to prevent lingering at the same accuracy level without any

improvements despite training to ensure efficiency. In order to manage that trade-

off, the user of the procedure is expected to make experiments to define the proper

Iteration Budget. To reduce the dependency of the proposed approach’s performance

on the user-defined parameters, alternative designs that eliminate the Iteration Budget

parameter are considered in this section.

As stated before, Elimination Start Iteration is a user-defined procedure parame-

ter that should be selected according to the selected ABM. To assess feature elimination

starting points against the sample ABM that is used in this thesis, 7 alternative val-

ues are selected, and 10 distinct repetitions of the procedure are generated by using

these values (Selected values are 2,3,4,5,6,7,8). For each repetition of the procedure,

the final meta-model RMSE values for different Elimination Start Iteration values are

compared. The minimum RMSE value and the Elimination Start Iteration values pro-

viding the minimum RMSE value are recorded. The RMSE value comparisons can be

found in Table 5.2.
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Table 5.2. RMSE values of the final meta-models using different Elimination Start

Iteration values.

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 3 4 5 6 7 8 RMSE Start Point

1 6.35 6.44 6 6.26 6.37 6.32 6.2 6 4

2 6.2 6.02 6.21 6.14 6.1 6.17 5.94 5.94 8

3 5.91 5.95 6.02 6.02 6.07 6.11 5.96 5.91 2

4 5.96 6.01 6.12 6.05 6.03 6.02 6.16 5.96 2

5 6.31 6.42 6.19 6.2 6.27 6.58 6.47 6.19 4

6 6.41 6.15 6.3 6.15 6.46 6.34 6.36 6.15 3

7 6.39 6.08 6.23 6.54 6.53 6.52 6.41 6.08 3

8 6.08 6.3 6.19 6.31 6.21 6.26 5.89 5.89 8

9 6.1 6.18 6.38 6.34 6.25 5.88 5.84 5.84 8

10 6.3 6.39 6.17 6.33 5.91 5.97 6.32 5.91 6

In order to determine the best Elimination Start Iteration, it is examined how

many times each Elimination Start Iteration value gives the lowest RMSE value during

the repetitions. Moreover, to see if there exists any completion time improvement, the

average duration of the procedure (which is estimated at 10 repetitions) is compared

for each Elimination Start Iteration value. These comparisons can be found in Table

5.3.
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Table 5.3. Comparison of Elimination Start Iteration values for providing the best

RMSE and procedure completion times for 10 repetitions.

Elimination Start Iteration

2 3 4 5 6 7 8

How Many Times

It’s the Best?

2 2 2 0 1 0 3

Total Duration of

10 Repetitions

5:58:14 5:22:53 5:48:26 5:26:08 5:45:47 6:12:22 5:33:43

Average Duration

of 1 Repetition

35:49 32:17 34:51 32:37 34:35 37:14 33:22

The change in the average duration of the procedure seems random. It can also be

seen in Figure 5.3 that; the average completion time fluctuates while starting the feature

elimination process in the later iterations. It decreases when the starting iteration is

changed to 3 from 2, but it increases back when starting to the elimination at iteration

number 4. The same fluctuation is seen in the experiments that are conducted with

higher elimination starting points. Thus, it is concluded that changing the Elimination

Start Iteration value does not have a significant effect on the procedure duration.

28:48
30:14
31:41
33:07
34:34
36:00
37:26
38:53

2 3 4 5 6 7 8
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Figure 5.3. Average duration change over changing Elimination Start Iteration.

Despite showing no specific effect on procedure duration, using different Elimina-

tion Start Iteration values affects the procedure performance in providing the minimum
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RMSE value. The lower half of the values (2,3, and 4) and the highest value (8) seem

to have outstanding performances. Thus, further experiments are designed to compare

the performances of procedures that are starting the elimination process at iterations

2, 5, and 8. In order to conduct more detailed investigations and eliminate the ran-

domness effect, the number of procedure repetitions is increased to 30 in that set of

experiments. Similar to the first set of experiments, RMSE values of the final meta-

models are compared for each of 30 repetitions. RMSE values are reported in Table

5.4.

Table 5.4. Final RMSE values using different Elimination Start Iteration values.

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

1 6.25 6.22 6.27 6.22 5

2 6.09 6.26 6.19 6.09 2

3 5.91 6.14 6.1 5.91 2

4 6.14 6.15 6.21 6.14 2

5 6.42 6.22 6.46 6.22 5

6 6.27 6.1 6.45 6.1 5

7 6.15 6.28 6.46 6.15 2

8 5.93 6.35 5.88 5.88 8

9 6.21 6.28 5.96 5.96 8

10 6.41 6.53 6.27 6.27 8

11 6.49 6.26 6.38 6.26 5

12 6.3 5.92 6.04 5.92 5

13 6.18 6.31 6.16 6.16 8

14 5.82 6.21 6.25 5.82 2

15 5.94 6.21 6.37 5.94 2

16 6.7 6.74 6.57 6.57 8

17 6.86 6.61 6.46 6.46 8

18 6.66 6.47 6 6 8
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Table 5.4: Final RMSE values using different Elimination Start Iteration values.

(cont.)

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

19 6.37 6.25 6.06 6.06 8

20 6.52 6.41 6.08 6.08 8

21 6.45 5.96 6.04 5.96 5

22 6.13 6.16 6.22 6.13 2

23 6.34 6.29 6.47 6.29 5

24 6.26 6.38 6.87 6.26 2

25 6.33 6.5 6.73 6.33 2

26 6.62 6.86 6.74 6.62 2

27 6.27 6.7 6.39 6.27 2

28 6.59 6.42 6.56 6.42 5

29 6 6.03 6.18 6 2

30 5.84 5.99 6.13 5.84 2

Similar to the analysis made for 10 repetitions, different values of Elimination

Start Iteration are compared in terms of providing the minimum RMSE value of the

repetition and average completion time of the procedure. The comparison is sum-

marized in Table 5.5. Results of the average duration are similar to the experiments

made with 10 repetitions and more alternative Elimination Start Iteration values. The

average duration value fluctuates and does not show any specific patterns. Despite

the consistency in average duration, the comparison on providing the minimum RMSE

value in the repetition results differently. Starting the feature elimination process at

the very beginning of the procedure seems to result in better final meta-models in

almost half of the repetitions.
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Table 5.5. Comparison of Elimination Start Iteration values for providing the best

RMSE and procedure completion times for 30 repetitions.

Elimination Start Iteration

2 5 8

How Many Times It’s the Best? 13 8 9

Total Duration of 30 Repetitions 18:29:51 16:17:56 17:28:26

Average Duration of 1 Repetition 50:59 37:48 44:51

That is an understandable result as the Iteration Budget is not changed between

these experiments. The meta-model is trained more times after eliminating the less

important features and considering only the significant features. Moreover, the training

data set is expanded between iterations as the adaptive sampling procedure continues.

Thus, meta-model has been improved more when starting the feature elimination pro-

cess in earlier iterations. Improvements in the meta-models through iterations can be

seen in Figure 5.4.
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Figure 5.4. Example RMSE values throughout the procedure for different Elimination

Start Iteration values.

4 examples out of 30 repetitions are chosen and RMSE changes between iterations

of these runs are drawn in Figure 5.4. The figure shows that the RMSE value fluctuates

throughout the procedure. That means the final meta-model does not necessarily have

the lowest RMSE value. A further analysis is made by selecting the meta-model having

the minimum RMSE value (within 11 iterations) in 30 repetitions for 3 different Elim-

ination Start Iteration values instead of recording only the last meta-model. Table 5.6

shows the minimum RMSE values that are reached in each repetition of the procedure

performed with different Elimination Start Iteration values. They are not necessarily

belonging to the last iteration of the procedure; they can be calculated for any iteration

after starting the elimination. The raw data of all RMSE values generated during the

experiments can be found in Figure A.1 in Appendix A.
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Table 5.6. Minimum RMSE values using different Elimination Start Iteration values.

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

1 6.25 6.1 6.17 6.1 5

2 6.09 6.26 6.18 6.09 2

3 5.78 6.09 6.1 5.78 2

4 6.01 6.15 6.21 6.01 2

5 6.28 6.22 6.38 6.22 5

6 6.24 6.1 6.37 6.1 5

7 6.07 6.28 6.36 6.07 2

8 5.93 6.34 5.87 5.87 8

9 6.16 6.27 5.92 5.92 8

10 6.4 6.46 6.27 6.27 8

11 6.37 6.03 6.26 6.03 5

12 6.22 5.92 6.04 5.92 5

13 6.18 6.25 6.16 6.16 8

14 5.82 6.14 6.25 5.82 2

15 5.92 6.09 6.34 5.92 2

16 6.4 6.48 6.4 6.4 8

17 6.6 6.49 6.39 6.39 8

18 6.41 6.35 6 6 8

19 6.37 6.18 6.06 6.06 8

20 6.39 6.21 6.08 6.08 8

21 6.18 5.96 6.04 5.96 5

22 6.13 6.09 6.22 6.09 5

23 6.25 6.29 6.47 6.25 2

24 6.18 6.38 6.74 6.18 2

25 6.33 6.38 6.59 6.33 2

26 6.56 6.54 6.7 6.54 5

27 6.27 6.64 6.39 6.27 2
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Table 5.6: Minimum RMSE values using different Elimination Start Iteration values.

(cont.)

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

28 6.37 6.42 6.37 6.37 8

29 6 6.03 6.18 6 2

30 5.84 5.99 6.13 5.84 2

Prior comparison on the number of times for providing the best RMSE is re-

peated with this scenario as well. As seen in the summary provided in Table 5.7, the

comparison result does not change much from the scenario that selects directly the

last generated meta-model. The result is consistent with the previous idea that the

procedure which starts the elimination process later has less opportunity to improve

the meta-model by training with the lower dimension space that consists of signifi-

cant features. While the procedure has nine iterations ahead to reach its minimum

RMSE value when the elimination procedure starts at the second iteration, it has only

three iterations to develop an advanced meta-model after feature elimination when the

elimination process starts at the eighth iteration.

Table 5.7. Comparison of Elimination Start Iteration values for providing the best

RMSE for 30 repetitions with the minimum RMSE value observed.

Elimination Start Iteration

2 5 8

How Many Times It’s the Best? 12 8 10

That design is not so advantageous in terms of efficiency as well, because the

Iteration Budget still needs to be defined by the user and the minimum RMSE value

is searched within the predefined number of iterations. In addition to keeping the
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Iteration Budget in procedure design, all of the iterations need to be completed to find

the minimum RMSE value. So, that change does not provide efficiency improvement.

For these reasons, an alternative design is attempted to be built. Instead of completing

a specific number of iterations to find the minimum RMSE value, the procedure stops

at the first iteration where meta-model RMSE increases and the meta-model of the

previous iteration is recorded as the final meta-model. The number of iterations, until

which the RMSE increase will be searched, is limited to a static number (11 iterations)

to gain insight quickly.

In Table 5.8 the iterations that are selected for stopping the procedure (while us-

ing different Elimination Start Iteration values) are shown. While procedures starting

to feature elimination at iterations 2 and 5 tend to stop earlier than the Iteration Bud-

get the ones which are starting to feature elimination at the 8th iteration use nearly

the whole Iteration Budget. It is reasonable because the RMSE increase is seen within

a few iterations after stating the feature elimination. In a similar way, the proce-

dures starting the elimination process at the eighth iteration tend to stop at the ninth

iteration.

Table 5.8. Stopping iterations using different Elimination Start Iteration values.

Procedure Repetitions
Elimination Start Iteration

2 5 8

1 4 7 9

2 5 7 9

3 4 8 11

4 3 6 9

5 3 6 9

6 4 7 10

7 4 11 9

8 3 7 10

9 4 6 10

10 3 6 9



40

Table 5.8: Stopping iterations using different Elimination Start Iteration values.

(cont.)

Procedure Repetitions
Elimination Start Iteration

2 5 8

11 4 6 9

12 4 8 9

13 3 6 11

14 6 6 11

15 4 6 9

16 3 9 10

17 3 8 10

18 3 7 11

19 4 8 11

20 3 6 9

21 4 7 11

22 4 6 9

23 3 6 10

24 5 6 9

25 6 10 9

26 3 7 9

27 4 6 11

28 5 6 10

29 6 7 11

30 3 6 11

The same comparison between Elimination Start Iteration values is made in the

design of the procedure with dynamic stopping conditions. Table 5.9 shows the RMSE

values recorded for the selected meta-models prior to the first RMSE increase. In the

same table, the minimum RMSE value obtained in respective repetition among three

alternative feature elimination starting points is also provided to evaluate which one
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performs better in terms of accuracy.

Table 5.9. RMSE values recorded using different Elimination Start Iteration values.

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

1 6.56 6.21 6.17 6.17 8

2 6.5 6.3 6.18 6.18 8

3 5.94 6.19 6.1 5.94 2

4 6.25 6.23 6.21 6.21 8

5 6.51 6.71 6.38 6.38 8

6 6.63 6.31 6.37 6.31 5

7 6.39 6.28 6.36 6.28 5

8 6.51 6.34 5.87 5.87 8

9 6.26 6.41 5.92 5.92 8

10 6.54 6.47 6.34 6.34 8

11 6.48 6.14 6.26 6.14 5

12 6.22 6.12 6.33 6.12 5

13 6.5 6.4 6.16 6.16 8

14 6.1 6.54 6.25 6.1 2

15 6.18 6.4 6.34 6.18 2

16 6.81 6.48 6.4 6.4 8

17 6.74 6.49 6.39 6.39 8

18 6.61 6.38 6 6 8

19 6.61 6.31 6.06 6.06 8

20 6.53 6.32 6.19 6.19 8

21 6.18 6.23 6.04 6.04 8

22 6.28 6.2 6.34 6.2 5

23 6.47 6.36 6.47 6.36 5

24 6.29 6.64 6.82 6.29 2

25 6.4 6.38 6.59 6.38 5
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Table 5.9: RMSE values recorded using different Elimination Start Iteration values.

(cont.)

Procedure

Repetitions

Elimination Start Iteration Min Selected

2 5 8 RMSE Start Point

26 6.66 6.54 6.7 6.54 5

27 6.42 6.64 6.39 6.39 8

28 6.37 6.51 6.37 6.37 8

29 6.38 6.61 6.18 6.18 8

30 6.6 6.68 6.13 6.13 8

In that procedure design, the comparison between Elimination Start Iteration

values results in a different way than completing a predefined number of iterations.

Table 5.10 shows the number of repetitions for which the respective feature elimination

starting points provide the minimum RMSE value. As the procedure stops at the first

increase of RMSE value, the procedure starting the feature elimination at the second

iteration does not have time to improve the meta-model. Nevertheless, the procedure

starting the feature elimination at the eighth iteration is already trained until the

feature elimination process and gained a better predictive power. Thus, starting the

feature elimination process later performs better in that design. However, starting

the feature elimination process in the eighth iteration results in stopping at the ninth

iteration for half of the repetitions. So, that means the advantage of the feature

elimination is not utilized well. That trade-off should be considered when the design

change is assessed. The raw data of all RMSE values recorded during the analysis and

comparisons can be found in Figure B.1 in Appendix B.
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Table 5.10. Comparison of Elimination Start Iteration values for providing the best

RMSE value when stopping at the previous iteration of RMSE increase.

Elimination Start Iteration

2 5 8

How Many Times It’s the Best? 4 8 18

To gain a comprehensive interpretation, the difference between RMSE values

obtained from three designs is evaluated. Table 5.11 shows the average differences that

are calculated from 30 distinct repetitions for three designs of the procedure that are

starting the feature elimination process at stated iterations in rows of the table. The

designs are indicated in the table as “Last Iteration”, “Minimum RMSE” and “Chosen

Iteration”. “Last Iteration” denotes the design that records the final meta-model within

the Iteration Budget. The procedure gets user-defined parameters of Elimination Start

Iteration and Iteration Budget and completes all iterations until reaching the budget.

“Minimum RMSE” denotes the design that chooses the minimum RMSE within the

Iteration Budget. The procedure gets user-defined parameters of Elimination Start

Iteration and Iteration Budget and completes all iterations until reaching the budget.

“Chosen Iteration” denotes the design that seeks the first RMSE increase and uses

the meta-model of the previous iteration as the final meta-model. The procedure gets

user-defined parameters of Elimination Start Iteration only. To compare that design

with alternatives, the number of iterations to search the RMSE increase is limited to a

specific number that is equal to the Iteration Budget value that is used in other designs.
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Table 5.11. The average RMSE differences between procedure designs.

Elimination Start It-

eration

Chosen Iteration

Compared to Last

Iteration

Minimum RMSE

Compared to Chosen

Iteration

2 2.5% -3.6%

5 1.5% -2.4%

8 -0.3% -0.3%

In Table 5.11, the column named “Chosen Iteration Compared to Last Iteration”

shows the average percent difference between Chosen Iteration design over the Last

Iteration design. It shows that the Last Iteration design performed better when starting

the elimination process earlier. However, Chosen Iteration design performed slightly

better when starting the elimination process later. Furthermore, the column named

“Minimum RMSE Compared to Chosen Iteration” shows the average percent difference

between the Minimum RMSE design over the Chosen Iteration design. It is seen

that on average 2% of RMSE improvement opportunity is missed when the procedure

stops at the first increase of RMSE value. The missed opportunity is higher for the

procedures starting the feature eliminations earlier. As a result of these analyses, to

utilize the advantages of the feature elimination process, and not miss the opportunity

to improve the predictive power of the meta-model it is preferred to continue with the

current design of the process and start the feature elimination process in the middle

of the procedure. Hereby, in this chapter, an intuitive design choice of the previous

approach is validated through detailed experimental analysis.
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6. COMPARATIVE PERFORMANCE ANALYSIS

Experiments are planned in two sets to select the improved procedure’s feature

importance parameter value and compare the performance of the improved procedure

with the previously proposed version. The first set of experiments is conducted to

find the proper Feature Importance Threshold value to be used in the improved model

with the selected agent-based model. Different values of Feature Importance Thresh-

old values are compared with each other in multiple runs. After choosing the Feature

Importance Threshold, the second set of experiments is conducted to compare the im-

proved version and the previously proposed version in terms of accuracy and completion

time.

Fränken and Pilditch’s agent-based model, “Cascades Across Networks are Suffi-

cient for the Formation of Echo Chambers” is used for the experiments [13]. Details of

the agent-based model are explained in chapter 4.3. The output of interest is selected

as the average proportion of agents having the same opinion within neighborhoods

(linked agents). NetLogo version 6.0.4 is used for the agent-based simulation runs. R

is used for meta-modeling.

6.1. Data Generation

As the procedure is applied to an agent-based simulation model, the instances

of training and test data set consist of the parameter combinations of the agent-based

model and labels are the simulation model’s output values. These instances are selected

using the Latin hypercube sampling method. The details about Latin hypercube sam-

pling can be found in chapter 4.1.2. 10 different training data sets are generated with

500 instances in each to construct robust performance evaluation experiments. The

sample pool is refreshed in each iteration of the procedure, and 30 new unlabeled in-

stances are generated using the Latin hypercube sampling method. 5 instances are

selected among these 30 new instances and added to the training set to enhance the

training set through the procedure and improve the meta-model. Moreover, a test set



46

having 215 instances is generated with the same approach. Labels of the training and

test instances (outputs of agent-based simulation model parameter combinations) are

gathered through simulation runs. To consider the randomness, the simulation runs

are replicated 30 times for each instance (i.e., agent-based simulation model parameter

combinations). The outputs of 30 simulation runs are averaged and recorded as the

label of the respective instance.

Before starting the data generation phase, the agent-based simulation model is

analysed through individual runs, and it is seen that the output barely changes after

the 30th time step. Hence, simulation runs are set to 30 time steps at maximum to

ensure efficiency and prevent time loss.

The data generation approach used in this thesis is the same as the one used

in previous studies of “Analysis of Agent-Based Simulation Models Through Meta-

modeling.” [6] and “Adaptive Sampling with Feature Elimination for Agent-Based

Models.”[4]. The used data generation approach is discussed and assessed thoroughly

in those previous studies.

6.2. Performance Evaluation

As mentioned in the previous section, a test data set is generated to evaluate the

performance of the improved and previously proposed versions of the procedure. Root

Mean Squared Error (RMSE) is chosen as the performance measure as it is suitable

for the selected output of interest (which is continuous) and used in the previously

proposed procedure too.

The calculation of RMSE is as 6.1;

RMSE =

√√√√ N∑
i=1

(ŷi − yi)
2

N
. (6.1)

In this calculation (6.1) i represents the individual instances (a specific combination

of agent-based model parameters). ŷi is the predicted value of the output of interest

which is calculated by the meta-model. yi is the real value of the output of interest



47

which is obtained by the simulation runs. The prediction performance is calculated

using the square root of the mean squared difference between the real and the predicted

values where N is the number of instances in the data set.

6.3. Selection of the Feature Importance Threshold

Before starting to compare the previously proposed version with the improved

version, the most proper value of the newly introduced user-defined procedure parame-

ter is searched for the selected agent-based simulation model. The Feature Importance

Threshold defines the procedure’s tendency when taking elimination decisions (whether

to keep only the most important meta-model features or eliminate only the less impor-

tant ones). The proper value depends on the agent-based simulation model because the

meta-model features are the parameters of the original agent-based model and feature

importances are calculated according to the importance of these parameters on the

selected output of interest.

To find the value to use, 4 levels of the Feature Importance Threshold values are

evaluated. The improved version of the procedure is applied 10 times to a parame-

ter combination of 500 instances for each of those 4 levels. Other parameters of the

procedure are kept as same during the experiments.

The definitions of these parameters are;

• Agent-Based Simulation Run Repetitions : Number of agent-based simulation runs

to get the label of an instance (agent-based model parameter combination)

• Iteration Budget : Number of iterations to complete before stopping the procedure

• Number of Instances in Training Data Set : Number of the agent-based model

parameter combinations in the training data set

• Number of Instances in Test Data Set : Number of the agent-based model param-

eter combinations in the test data set

• Number of New Instances Added in Each Iteration: Number of the agent-based

model parameter combinations added to the training data set at each iteration
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• Elimination Start Iteration: The iteration number that the feature elimination

process is activated

• Feature Importance Threshold : The threshold at which features with a lower

importance value will be eliminated

Used values for these parameters are summarized in Table 6.1. Iteration Budget

and Elimination Start Iteration parameter values are used as they are in the previously

proposed procedure. These values are also discussed in Yurdadön’s study in detail [4].

Other procedure parameters, except the Feature Importance Threshold, are determined

considering the number of meta-model features (agent-based model parameters).

Table 6.1. Parameter values used in the experiments for selecting the Feature

Importance Threshold.

Parameter Value

Agent-Based Simulation Run Repetitions 30

Iteration Budget 11

Number of Instances in Training Data Set 500

Number of Instances in Test Data Set 125

Number of New Instances Added in Each Iteration 5

Elimination Start Iteration 5

Feature Importance Threshold 0.4 / 0.25 / 0.1 / 0.05

The boxplot in Figure 6.1 shows the distribution of RMSE scores at the end

of the improved procedure in the case of using different levels of Feature Importance

Threshold Values. Results of 10 repetitions are plotted in the boxplot.
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There seem no outliers and the distributions seem suitable to draw interpretation.

The experiments made with 0.25 and 0.4 have taller boxplots than 0.05 and 0.1 Feature

Importance Threshold values. It can be understood that the procedure performance is

affected by the randomness more while using the higher values. Moreover, the RMSE

distributions are set to higher (both for the median and maximum points) values for

0.25 and 0.4 values. Thus, lower Feature Importance Threshold values seem to be more

suitable for the selected agent-based simulation model.
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Figure 6.1. Boxplot of RMSE scores of final meta-models with different Feature

Importance Threshold values.

Figure 6.2 shows the change of average RMSE values for 10 replications of the

improved procedure with different Feature Importance Threshold values during the pro-

cedure iterations. The procedures with different Feature Importance Threshold values

show similar accuracy performances before starting the eliminations (5th iteration), so

the final difference is not related to the initial training set or sampling process. The
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RMSE increase after starting the elimination process indicates that two higher values

of the parameter (0.25 and 0.4) result in the less accurate performance of the proce-

dure. Similar to boxplot results, 0.05 and 0.1 values of the parameter show similar

performances.
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Figure 6.2. Average RMSE scores of meta-models with different Feature Importance

Threshold values through iterations.

Features of the meta-model (parameters of the agent-based simulation model) are

as follows;

• Max-Links : The parameter defines the size of each agent’s network by determin-

ing the number of links that an agent forms with its neighbors.

• Evidence: In the case of Reinforcement Learning method activation, that param-

eter is used to define the number of sampling processes for agents. Reinforcement

Learning is not activated in the agent-based simulation model, so that parameter
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is used as a dummy parameter in this study.

• Sc-Bel-Prop: The parameter is introduced to the agent-based simulation model

for theory validation. It is used for analyzing the individual agent sensitivity to

believe under conformity motivations.

• Prop-Likelihood : The parameter defines the probability of opinion declaration for

agents.

• N-Init-Believers : The value of the parameter is used as the number of agents

that share their beliefs at the beginning of the simulation run. Opinions spread

from that specific number of agents to the population.

• Prior-Mean: Mean value used for the distribution of prior belief, expertise, and

trustworthiness levels.

• Prior-Sd : Standard deviation value used for the distribution of prior belief, ex-

pertise, and trustworthiness levels.

• Expertise-Influence: The parameter determines how the expertise level of the

source affects opinion formation on the target’s side.

The features that are eliminated from the meta-model are summarized in Table

6.2. The table consists of the features that are eliminated at least once in any of the

10 repetitions of the procedure with respective Feature Importance Threshold values.

The procedure tends to eliminate more features when higher threshold values are used

as it keeps only the features that have higher importance values than the threshold.

However, these values result in lower accuracy levels. Besides, the procedure eliminates

the same features from the meta-model when 0.05 and 0.1 threshold values are used.
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Table 6.2. Eliminated features at different values of Feature Importance Threshold.

Feature Importance Threshold Values

0.4 0.25 0.1 0.05

E
li
m
in
a
te
d

F
e
a
tu

re
s

Evidence Evidence Evidence Evidence

Expertise-Influence Max-Links Max-Links Max-Links

Max-Links Prior-Mean Prop-Likelihood Prop-Likelihood

N-Init-Believers Prop-Likelihood Sc-Bel-Prop Sc-Bel-Prop

Prior-Mean Sc-Bel-Prop

Prop-Likelihood

Sc-Bel-Prop

To decide whether to use a 0.05 or 0.1 threshold value, the feature elimination

process is investigated in detail. For each of the 10 replications of the procedure,

both 0.05 and 0.1 thresholds eliminate the same features at the end of the process.

However, the procedure cannot eliminate all of those 4 features immediately when a

0.05 threshold value is used. That is because some features like Max-Links have an

importance value that is on the borderline. Thus, the procedure works in a more robust

way using a 0.1 Feature Importance Threshold value with that specific agent-based

simulation model. In order to ensure the elimination of these insignificant features

from the meta-model, a 0.1 Feature Importance Threshold value is used for the rest of

this study.

6.4. Validation of Feature Elimination Decisions

The eliminated and kept features of meta-model (parameters of the agent-based

model) are also investigated through behavior space experiments of NetLogo. The

output of interest is selected as cl-prop-same, and it shows the average proportion of

agents having the same opinion within linked agents. Experiments are made to see

the interaction between that output and agent-based model parameters. In order to
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eliminate the number of agent effects, 3 levels of population size are used through

experiments as 1000, 5000, and 10000. Moreover, to consider the randomness, 50

simulation runs are conducted with each agent-based parameter combination.

For the Evidence parameter of the agent-based model, 750 simulation runs are

conducted with 3 levels of population size (1000, 5000, 10000), 5 levels of Evidence

parameter (0, 25, 50, 75, 100), and 50 repetitions for each combination. Other param-

eters of the agent-based model kept as same to see the effect of the parameter on the

output. 17 runs out of 750 are ended within 4 time steps on average. The duration of

simulation runs is 23 steps for 1000 agents, 46 steps for 5000 agents, and steps 62 for

10000 agents. The average run duration is 44 steps for 750 runs. Thus, the 17 runs

that are ended within 4 steps on average are marked as outliers and removed from

the analysis. Figures 6.3 and 6.4 shows that changing the Evidence parameter has no

remarkable effect on the output of interest.
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Figure 6.3. Change of average output value at different levels of Evidence parameter

and changing population sizes (Outlier runs are eliminated.).
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Figure 6.4. Boxplot of output value at different levels of Evidence parameter and

changing population sizes (Outlier runs are eliminated.).

The effect of the Max-Links parameter on the output of interest is also inves-

tigated. 50 simulation runs are conducted for 8 levels of Max-Links. It is computa-

tionally hard to conduct simulation runs with high population size and high values

of the parameter as the agent-based model gets too complex. Thus, the experiments

are designed with a population of 1000 agents. 50 simulation runs are executed and

analysed. The average output of 50 simulation runs of each Max-Links value is seen

in Figure 6.5. The changing effect is seen with values under 150. The average output

value does not change much after that point (the average change is around 1% between

the higher values).

However, the procedure eliminates that feature from the meta-model at every

Feature Importance Threshold value level. To understand the reason behind that deci-

sion, the training data reached at the end of the procedure is investigated.
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Figure 6.5. Change of average output value at different levels of Max-Links

parameter (400 runs).

The training data is constructed with 500 initial instances. 5 new instances are

added at each iteration of the procedure except the final iteration (for 10 iterations).

Thus, at the end of a distinct run of the procedure, the training data size reaches 550

instances. The procedure is replicated 10 times, so the final training data contains

5500 instances. Table 6.3 shows that on average 70% of the training data contains

Max-Links values over 150 due to the uniform distribution of the feature values over

allowable values (from 2 to 500). As the training data contains more instances from

the values that do not affect the output much, it is understandable that the procedure

selects the feature as insignificant and decides to eliminate it.
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Table 6.3. Distribution of Max-Links parameter value within the final training data

set.

Max Links Values (M)

M<=80 80<M<=150 150<M<=220 220<M

R
e
p
li
ca

ti
o
n

N
u
m
b
e
r

1 16% 14% 14% 56%

2 16% 14% 13% 57%

3 16% 14% 13% 56%

4 16% 14% 14% 57%

5 16% 14% 13% 56%

6 16% 14% 14% 57%

7 16% 14% 14% 56%

8 15% 14% 14% 57%

9 15% 14% 14% 57%

10 15% 14% 14% 57%

To analyse the effect of the Prop-Likelihood parameter of the agent-based model,

900 simulation runs are conducted with 3 levels of population size (1000, 5000, 10000),

6 levels of Prop-Likelihood parameter (0, 0.2, 0.4, 0.6, 0.8, 1), and 50 repetitions for

each combination. It is understandable that setting the Prop-Likelihood parameter to

0 means that agents in the population do not make their opinions public. That makes

the opinion sharing and belief updating mechanism stop working.
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parameter and changing population sizes (900 runs).

That effect is seen in Figure 6.6. Other values of the parameter do not seem

to have a remarkable impact on the average output. Similar to the Max-Links pa-

rameter of the ABM, the instances with 0 Prop-Likelihood values constitute a very

small portion of uniformly distributed training data and so the procedure finds that

parameter as an insignificant one. Figure 6.7 shows the boxplot for changing levels

of the Prop-Likelihood parameter and population size excluding the 0 value of the pa-

rameter. Figure 6.7 also supports the idea that changing the value of the parameter

does not affect the output drastically as the distributions and quartiles do not change

much within the runs of the same population size. So, the procedure finds that the

importance of the related feature does not satisfy the Feature Importance Threshold

(0.1) and eliminates it from the meta-model.
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Figure 6.7. Boxplot of output value at different levels of Prop-Likelihood parameter

and changing population sizes (Simulation runs with 0 value of Prop-Likelihood are

eliminated.).

In order to evaluate the elimination decisions of the procedure comprehensively,

the features that are kept in the meta-model are also investigated. Prior-Sd is not

eliminated in any meta-model replications of any Feature Importance Threshold val-

ues. Thus, it is expected to see the changing levels of the Prior-Sd parameter have a

significant impact on the cl-prop-same value of the agent-based simulation runs. To

investigate that, 900 simulation runs are conducted with 3 levels of population size

(1000, 5000, 10000), 6 levels of Prior-Sd parameter (0, 0.2, 0.4, 0.6, 0.8, 1), and 50

repetitions for each combination. 16 of those 900 simulation runs are completed within

4 or 5 time steps. These runs are marked as outliers and removed from the analysis.
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Figure 6.8. Change of average output value at different levels of Prior-Sd parameter

and changing population sizes (Outlier runs are eliminated.).

Figure 6.8 shows that the changing levels of the Prior-Sd parameter affect the

average output for each 3 population sizes. The effect is especially remarkable for low

levels of the parameter. That is an expected result as the population lost its homo-

geneity when it is constructed with low standard deviation levels. When the standard

deviation increases, the variety of agents in terms of prior belief, trustworthiness, and

expertise increases. However, the increase in the variety does not affect the results

much after a specific level (0.6 in this case). The boxplot in Figure 6.9 also supports

the findings. Observed distributions of the output change dramatically until the 0.6

value and the change slows down after that value.

For that parameter, the value range that has no effect on the output (values

above 0.6) has a smaller portion than the value range that has a remarkable impact

(contrary to the case of Max-Links). Thus, it is understandable that the parameter is

found as a significant feature for the meta-model, and the procedure decides to keep
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Figure 6.9. Boxplot of output value at different levels of Prior-Sd parameter and

changing population sizes (Outlier runs are eliminated.).

Elimination decisions of the procedure are assessed through experiments in this

chapter. Each feature of the meta-model corresponds to a parameter of the agent-

based simulation model. So, experiments on the agent-based simulation model with

changing values of model parameters that correspond to eliminated features give insight

into the validation of elimination decisions. Besides that, a simulation parameter which

is represented by a meta-model feature that is not eliminated in any replications of the

procedure is examined to make validate the decisions from the opposite point of view.

Experiment sets on eliminated features showed that the elimination decisions of the

procedure with a Feature Importance Threshold value of 0.1 are valid, and eliminated

features are insignificant ones. Moreover, the feature that is not eliminated in any

Feature Importance Threshold value and any replications is shown to have a remarkable

effect on output.
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6.5. Comparison of Procedure Versions

As mentioned before, the second set of experiments is designed to compare the

improved version and the previously proposed versions of the procedure. To make this

comparison, 10 training data sets are generated with a size of 500 instances. Moreover, a

test set with a size of 215 instances is generated. Details about data generation and new

sample selection (for expanding the training set over iterations) can be found in sections

4.1.2 and 6.1. Each version of the procedure is performed with 10 different training data

sets for 10 distinct repetitions. So, a workflow of 11 iterations (the predefined iteration

budget) is completed 100 times. The design of experiments is illustrated in Figure

C.1 in Appendix C. Throughout the iterations, new instances (agent-based simulation

model parameter combinations and observed output values for those combinations) are

added to the training data and feature elimination operations are applied to obtain an

improved meta-model. Therefore, accuracy comparisons are made on the final meta-

models of those procedure runs to evaluate the final meta-models that are generated

at the end of the procedure.

6.5.1. Elimination Decisions Comparison

Before comparing the accuracy performances of the two procedure versions, elim-

inated features are investigated to understand if those decisions are coherent. Elimi-

nation decisions of 10 distinct repetitions that are performed with 10 different training

data sets are reported for each version of the procedure. That means the elimination

decisions are investigated for 100 distinct runs for each version of the procedure. Table

6.4 shows the elimination decisions that are taken in 100 distinct runs that applied

the improved procedure. Each row shows the used training data sets. Each column

shows the feature names that are eliminated at least once within 100 distinct runs. The

number of elimination decisions that are taken within 10 repetitions of the respective

training data set is reported within the cells. To be clear, the first cell shows that the

Evidence feature of the meta-model (Evidence parameter of the agent-based simula-

tion model) is eliminated in all of the 10 repetitions of the improved procedure that

are trained with the first training data set.
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Table 6.4. Elimination decisions of the improved procedure.

Feature Names

Training Data Set evidence max links prop-

likelihood

sc-bel-prop

1 10 10 10 10

2 10 10 10 10

3 10 10 10 10

4 10 10 10 10

5 10 10 10 10

6 10 10 10 10

7 10 10 10 10

8 10 10 10 10

9 10 10 10 10

10 10 10 10 10

Total Elimination 100 100 100 100

Elimination decisions that are taken in 100 distinct runs that applied the previous

procedure are investigated in Table 6.5. Table 6.5 is also constructed with the same

logic as 6.4.
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Table 6.5. Elimination decisions of the previously proposed procedure.

Feature Names

Training Data Set evidence max links prop-

likelihood

sc-bel-prop

1 10 10 10 10

2 10 10 10 10

3 10 10 10 10

4 10 10 10 10

5 10 10 10 10

6 10 10 10 10

7 10 10 10 10

8 10 10 10 10

9 10 10 10 10

10 10 8 10 10

Total Elimination 100 98 100 100

Tables 6.4 and 6.5 firstly show that both procedures are consistent in themselves.

Features that are selected for elimination once are selected for all repetitions that

are trained with 10 different training data sets (except the Max-Links feature in the

previous version of the procedure). Moreover, the eliminated features are also the same

in both versions of the procedure. As a result, both versions are capable and consistent

in terms of eliminating the features that have less or no effect on the output of interest.

6.5.2. Accuracy Performance Comparison

RMSE values are calculated for the final meta-models that are generated at the

end of the procedure after the feature elimination decisions and training data set ex-

pansions. The boxplot in Figure 6.10 shows the average RMSE values for different

versions of the procedure. As explained before, 10 distinct repetitions of the procedure
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are performed with each training data set. The dots in the boxplot represents those

repetitions and average RMSE values are calculated for the final meta-models that are

obtained using different training data sets. So, each dot represents an average RMSE

value that is calculated for 10 distinct meta-models that are trained with 10 different

training data sets.
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Figure 6.10. Comparison of average RMSE values for different versions of the

procedure.

Figure 6.10 shows that the median RMSE for the previous procedure is higher

than the value of the upper quartile for the improved procedure. Thus, it can be

seen that there is a difference between these two versions in terms of accuracy. The

whiskers and box sizes show that the previous version of the procedure has a wider

distribution of average RMSE values for repetitions. The average RMSE values are

more scattered for the previous version than for the improved version. Despite having

a slight difference between median values, the difference between the variability of the

two versions seems significant. So, it can be said that randomness has a greater effect

on the previous version than on the improved version, and the improved version is more



66

robust in that manner.

The accuracy performances of distinct procedure repetitions trained with different

data sets are also assessed. The aim is to compare two procedure versions considering

any possible effects of training sets by comparing only runs that are trained with the

same data sets.
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Figure 6.11. Boxplots to compare individual procedure runs over different repetitions

and training data sets.

In Figure 6.11, each dot represents the RMSE value of the final meta-model

obtained from one procedure run. Colors represent the training sets that are used in

those runs. In each pane, two boxplots are drawn. Each boxplot contains 10 distinct

procedure runs that used the respective training data set. Comparisons are made

between those two boxplots containing 20 procedure runs that are trained with the

same data set.

Eight out of ten comparisons support the previous interpretations by either show-

ing lower median values for the improved procedure version or by showing wider dis-
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tributions for the previous procedure version. Moreover, some of the comparisons

(training data sets 5, 8, 9, 10) support both of those interpretations.

6.5.3. Run Time Comparison

In addition to accuracy and consistency, two procedures are compared in terms of

average completion time. Figure 6.12 shows the comparison of the average completion

time for two versions of the procedure. Each bar in the figure represents the average

completion time of 10 repetitions of the procedure that used the respective training

data sets. Each of 10 repetitions consists of meta-model training, feature elimination,

and sampling processes throughout 11 iterations. Figure 6.12 shows that there is no

evident supremacy of one version over another for the average duration comparison.
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Figure 6.12. Average completion time comparison of procedure versions trained with

different training data sets.

To investigate each repetition in detail and see if there are obvious outliers that

affect the average value, Figure 6.13 is drawn. That figure also supports that there

is no clear evidence to show that the improved version of the procedure has lower
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completion time than the previous version has.

Figure 6.13. Completion times for individual repetitions of improved and previously

proposed procedures.

6.5.4. Summary of Comparative Analysis

In the light of the analysis made in this chapter, three main results are drawn.

The first result is that; both versions of the procedure are able to eliminate the same

features from the meta-model. So, the procedure versions are consistent with each

other. Those eliminated features are the ones that have slight or no impact on the

output of interest, therefore the elimination decisions are confirmed to be valid. The

experiments about the impact of features (parameters of agent-based simulation model)

on the output can be found in chapter 6.4.

Moreover, same features are eliminated from the meta-model in all repetitions of

procedures (both versions are replicated 10 times). This shows that both procedures

are also consistent within themselves, and they are able to eliminate the insignificant

features without being affected by randomness.
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The second finding is on the accuracy performance comparison of two procedure

versions. Comparing RMSE values of the final meta-models reached at the end of the

procedures, two versions of the procedure are found to have differences. The main

difference is found between the variabilities of accuracy performances. This interpre-

tation shows that the randomness has a greater effect on the previous version than on

the improved version.

The last finding is about the completion time comparison. The experiments show

that there is no significant improvement in terms of completion time. To conclude,

through experiments it is found that the main strength of the improved procedure over

the previously proposed one is its accuracy performance and robustness.
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7. DISCUSSIONS AND CONCLUSIONS

In this thesis, an advanced procedure that utilizes meta-modeling, adaptive sam-

pling, and feature elimination methods is constructed to investigate agent-based sim-

ulation models. It is aimed to replicate the agent-based model with a meta-model by

representing the agent-based model parameters with meta-model features and to pre-

dict the agent-based simulation model output via the meta-model. That approach also

enables researchers to make interpretations of the relationships between agent-based

simulation model parameters and outputs through feature importance measurements.

In this thesis, previous studies in the literature on the concept of using meta-modeling

techniques with agent-based simulation models are reviewed. Those methods found

in the literature are applied to simple agent-based simulation models for performance

evaluation. After reviewing and analyzing the previous applications, improvement op-

portunities in the previous works are discussed and practiced in this thesis.

A literature review is conducted to find an agent-based simulation model to apply

the previously proposed procedure and evaluate performance. In order to find out

improvement opportunities, a complex agent-based model with nontrivial parameters

is sought after. Another motivation behind this search is that a complex agent-based

model that contains non-linear relationships between its paraments and output gives

more insights into the performance of the proposed procedure. For this purpose, agent-

based simulation models that are analyzing socio-dynamic systems are reviewed. A

recent agent-based simulation model that is constructed to analyse the echo chamber

formation in social networks is selected to apply the procedure. The agent-based model

is found as a good candidate in terms of complexity as it investigates the probabilistic

nature of social media users’ belief updating mechanism. Moreover, the agent-based

model is constructed with a wide range of parameters to reflect real-life well. Thus,

the agent-based model is selected to apply the procedure, conduct experiments, and

define the improvement opportunities within the previously proposed procedure.
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The previously proposed procedure consists of two sub-procedures. The first is

the adaptive sampling procedure that constructs the final training data set ensuring

the informative quality of the training instances. The second sub-procedure is fea-

ture elimination. That sub-procedure enables meta-model to focus on the significant

features and prevent the curse of dimensionality.

The main improvement opportunity is found in the feature elimination part of

the procedure as the elimination decisions depend on two procedure parameters that

must be defined by the user. User-defined parameters of the feature elimination proce-

dure are ones that need knowledge about the machine learning concepts to be defined

correctly. They are not simple parameters to choose from distinct and/or finite alter-

native values. One of these parameters is Elimination Proportion which determines the

number of features to be evaluated for elimination in each iteration and decreases that

number (of candidate features) exponentially throughout the procedure. The elimina-

tion speed of the procedure depends directly on Elimination Proportion. An aggressive

elimination approach is expected with large values of the Elimination Proportion. An-

other parameter is the OOB Allowance value which gives the final decision of feature

elimination. At each iteration OOB value of the meta-model is recalculated assuming

the features having the least importance values are eliminated (the number of elimina-

tion candidates is determined by the Elimination Proportion). Elimination is applied

if the OOB error increase after the elimination assumption does not exceed the allowed

value which is calculated by using the OOB Allowance value. So, it is expected from

the user to complete a pre-work to learn about the concept and conduct experiments

to choose the proper parameter values which fit the agent-based simulation model and

purpose of the study. Thus, it is planned to remove the two parameters from the pro-

cedure, simplify the feature elimination process and introduce one simple parameter to

control feature elimination decisions. In that manner firstly the flow of the procedure is

changed by removing the part defining the number of features for elimination. Instead

of defining a subset of the features to review for elimination, all features are evaluated

with their own importance values. A new and straightforward parameter is introduced

to the procedure which is the Feature Importance Threshold value to make the deci-

sion of elimination. Features having lower importance values than the threshold are
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directly eliminated from the meta-model with the new design. Besides removing the

OOB Allowance parameter from the procedure, that design also prevents the repetitive

calculation of the OOB error rate in case of no elimination. For further improvement

opportunities, different procedure designs are also assessed. The efficiency and accu-

racy of the procedure are affected by the overall iteration budget (total length of the

procedure) and the iteration number that the feature elimination process starts, which

are controlled by user-defined procedure parameters. The experiments are started by

keeping the Iteration Budget constant and comparing 7 different Elimination Start It-

eration values in terms of accuracy and procedure completion time. Starting feature

elimination at earlier iterations supports efficiency, but the elimination decisions are

made with a less saturated model than they can be in further iterations. On the other

side, starting feature elimination later causes an opportunity loss of training the meta-

model in a lower-dimensional space without insignificant features. So, the selection of

a proper Elimination Start Iteration is crucial for procedure performance.

After gaining the initial insights from the first set of experiments, a more detailed

investigation is designed to compare three levels of Elimination Start Iteration values.

Three alternative starting points represent starting the elimination at the beginning

of the procedure (second iteration), in the middle (fifth iteration), and at the last

iterations (eighth iteration) of the procedure keeping the Iteration Budget constant.

Experiments show consistent results with the initial interpretations that starting the

elimination at the earlier and later iterations has different advantages when the Itera-

tion Budget is constant.

Moreover, alternative designs are evaluated to see if dynamically determining

the Iteration Budget will make any evident changes. First, an analysis is made on

a scenario that the meta-model with the minimum RMSE is recorded as the final

meta-model of the procedure. In that scenario the selected meta-model should be

trained until reaching the Iteration Budget, thus that change does not simplify the

procedure design. The user still needs to determine the proper Iteration Budget and

all of the iterations need to be completed to select the meta-model with the minimum

RMSE value. For this reason, another alternative design is proposed to terminate the
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procedure at the first iteration where the RMSE value of the meta-model increases and

keep the previous meta-model as the final one.

Three designs (using the final meta-model, using the meta-model having the

minimum RMSE within the Iteration Budget, and using the meta-model of the previous

iteration to the first RMSE increase) are compared in detail. The design of using the

final meta-model at the end of the Iteration Budget performs better than the design

of using the meta-model of the previous iteration of the first RMSE increase in terms

of accuracy when starting the feature elimination at the beginning of the procedure

(at the second and fifth iterations) as the second design prevents the meta-model

to be improved further. Besides that, in the case of starting the elimination at the

eighth iteration, the second design performs slightly better. The missed opportunity

for meta-model improvement is also evaluated by comparing the second design with the

one using the meta-model having the minimum RMSE within the Iteration Budget. It

is seen that, especially for the case of starting the elimination earlier, there is a missed

opportunity for accuracy improvement when using the meta-model of the previous

iteration to the first RMSE increase. As a result of these evaluations, it is decided to

continue with the first design, to use the final meta-model that is reached at the end of

a predefined Iteration Budget and start the feature elimination process in the middle

of the procedure. In this way, it is aimed to make the best use of the advantages of the

feature elimination process and not miss the opportunity to develop the meta-model.

After designing the improved procedure, experiments are conducted to select the

proper value of the feature importance value. The selected value is important for

the performance of the improved procedure as it determines the procedure’s tendency

to make elimination decisions. 4 levels of alternative feature importance values are

compared on 10 distinct procedure repetitions. Those repetitions are trained with a

data set that contains 500 parameter value combinations for the agent-based simulation

model. The Feature Importance Threshold value which gives the most accurate and

robust meta-models for the agent-based simulation model that is used in this study is

selected (the selected value is 0.1).
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Validation of elimination decisions that are made by the improved procedure

working with the selected Feature Importance Threshold is made through behavior

space experiments of NetLogo. Experiments are repeated for 3 levels of population

sizes, which are 1000, 5000, and 10000, to eliminate the effects of the population size.

To take the randomness into consideration, simulation runs are repeated 50 times for

each agent-based parameter combination. Agent-based parameters corresponding to

the meta-model features which are eliminated by the procedure are assessed in terms

of their effects on the output. Moreover, the effect of an agent-based model parameter

which is corresponding to a meta-model feature that is considered significant (and not

eliminated) is investigated. At the end of the detailed analysis, elimination decisions

of the procedure are proven to be valid.

After the validation phase of the procedure, comparative analysis experiments

are conducted to evaluate the performance of the improved procedure over the previ-

ously proposed one. 10 distinct repetitions of each of the two procedure versions are

performed with 10 different training data sets throughout the experiments. A complete

procedure is designed with 11 iterations, and each procedure is performed 100 times

(10 repetitions for 10 training data sets). So, for each version of the procedures, the

meta-model is trained 1100 times and the comparisons are made using the final meta-

models that are built at the end of the procedure after adaptive sampling and feature

elimination processes. As the first checkpoint, the eliminated features are compared

within and between each procedure version. Both versions of the procedure are found

to be consistent within themselves, they are able to eliminate the same features at all

repetitions. Moreover, the same features are eliminated in each procedure version, so

both versions are found to be consistent to detect the same features as insignificant.

After checking the consistency, the accuracy performances of the procedures are com-

pared. Analysis showed that the improved procedure is able to reach meta-models with

lower RMSE values at the final iteration compared to the previously proposed version.

Moreover, the comparison of average RMSE values of the final meta-models trained

with different training data sets shows that improved procedure is affected less by the

randomness. Thus, the improved version is found more robust than the previously

proposed procedure. After the consistency investigation and accuracy comparison, the
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runtimes of the procedure versions are evaluated. It is observed that there is no ev-

ident result indicating that one version of the procedure has a shorter run time than

the other.
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APPENDIX A: OBSERVED RMSE VALUES

Elimination Start Iteration Repetitions 1 2 3 4 5 6 7 8 9 10 11 Min rmse Min rmse iter
2 1 7.04 7.05 6.61 6.56 6.74 6.42 6.42 6.38 6.56 6.31 6.25 6.25 11
2 2 7.04 7.30 6.72 6.57 6.50 6.59 6.58 6.47 6.57 6.63 6.09 6.09 11
2 3 7.04 7.04 6.35 5.94 5.99 6.09 6.00 5.88 6.18 5.78 5.91 5.78 10
2 4 7.04 6.75 6.25 6.49 6.40 6.33 6.50 6.47 6.01 6.26 6.14 6.01 9
2 5 7.04 7.21 6.51 6.78 6.86 7.10 6.87 6.56 6.34 6.28 6.42 6.28 10
2 6 7.04 7.00 6.66 6.63 6.69 6.49 6.24 6.38 6.50 6.38 6.27 6.24 7
2 7 7.04 6.96 6.63 6.39 6.50 6.40 6.32 6.24 6.16 6.07 6.15 6.07 10
2 8 7.04 7.30 6.51 6.71 6.44 6.17 6.21 6.30 6.22 6.26 5.93 5.93 11
2 9 7.04 6.99 6.49 6.26 6.32 6.24 6.31 6.25 6.28 6.16 6.21 6.16 10
2 10 7.04 7.21 6.54 6.66 6.58 6.71 6.59 6.47 6.40 6.53 6.41 6.40 9
2 11 7.04 7.00 6.65 6.48 6.62 6.40 6.40 6.68 6.50 6.37 6.49 6.37 10
2 12 7.04 7.04 6.44 6.22 6.48 6.45 6.53 6.35 6.23 6.37 6.30 6.22 4
2 13 7.04 6.86 6.50 6.54 6.45 6.34 6.58 6.42 6.37 6.22 6.18 6.18 11
2 14 7.04 7.04 6.50 6.29 6.29 6.10 6.16 6.11 6.04 5.96 5.82 5.82 11
2 15 7.04 6.79 6.29 6.18 6.38 6.05 6.23 6.01 5.97 5.92 5.94 5.92 10
2 16 7.04 7.24 6.81 7.03 6.87 6.86 6.75 6.40 6.61 6.48 6.70 6.40 8
2 17 7.04 7.36 6.74 7.02 6.72 6.60 6.69 6.62 6.70 6.64 6.86 6.60 6
2 18 7.04 7.07 6.61 6.80 6.52 6.41 6.51 6.41 6.56 6.73 6.66 6.41 8
2 19 7.04 7.11 6.86 6.61 6.62 6.54 6.48 6.53 6.67 6.54 6.37 6.37 11
2 20 7.04 7.13 6.53 6.56 6.39 6.46 6.66 6.64 6.40 6.54 6.52 6.39 5
2 21 7.04 7.19 6.28 6.18 6.38 6.41 6.40 6.18 6.44 6.29 6.45 6.18 4
2 22 7.04 6.63 6.29 6.28 6.37 6.19 6.38 6.30 6.30 6.16 6.13 6.13 11
2 23 7.04 7.03 6.47 6.53 6.73 6.70 6.64 6.76 6.47 6.25 6.34 6.25 10
2 24 7.04 7.04 6.53 6.46 6.29 6.52 6.43 6.42 6.31 6.18 6.26 6.18 10
2 25 7.04 6.75 6.67 6.61 6.44 6.40 6.54 6.34 6.41 6.52 6.33 6.33 11
2 26 7.04 7.10 6.66 6.69 6.62 6.61 6.59 6.59 6.56 6.69 6.62 6.56 9
2 27 7.04 7.06 6.54 6.42 6.54 6.41 6.29 6.50 6.42 6.53 6.27 6.27 11
2 28 7.04 7.17 6.66 6.57 6.37 6.38 6.51 6.72 6.63 6.43 6.59 6.37 5
2 29 7.04 7.09 6.81 6.73 6.53 6.38 6.53 6.60 6.45 6.35 6.00 6.00 11
2 30 7.04 7.00 6.60 6.71 6.58 6.57 6.77 6.46 6.47 5.92 5.84 5.84 11
5 1 7.04 7.17 7.13 7.04 6.76 6.52 6.21 6.27 6.10 6.34 6.22 6.10 9
5 2 7.04 7.15 7.16 6.83 6.95 6.40 6.30 6.39 6.39 6.44 6.26 6.26 11
5 3 7.04 6.86 6.50 6.71 6.81 6.29 6.28 6.19 6.36 6.09 6.14 6.09 10
5 4 7.04 6.68 6.67 6.87 6.83 6.23 6.42 6.44 6.24 6.32 6.15 6.15 11
5 5 7.04 7.20 7.15 7.15 7.40 6.71 6.71 6.33 6.38 6.24 6.22 6.22 11
5 6 7.04 6.98 7.03 7.33 7.33 6.70 6.31 6.35 6.28 6.31 6.10 6.10 11
5 7 7.04 6.99 6.92 7.11 7.10 6.51 6.48 6.48 6.37 6.35 6.28 6.28 11
5 8 7.04 7.01 7.14 7.08 7.04 6.40 6.34 6.40 6.45 6.38 6.35 6.34 7
5 9 7.04 6.88 6.95 7.13 6.87 6.41 6.41 6.27 6.33 6.45 6.28 6.27 8
5 10 7.04 7.02 7.17 7.11 6.85 6.47 6.49 6.46 6.48 6.48 6.53 6.46 8
5 11 7.04 7.06 7.11 6.93 6.94 6.14 6.34 6.11 6.23 6.03 6.26 6.03 10
5 12 7.04 6.88 7.03 6.92 6.67 6.31 6.14 6.12 6.14 6.21 5.92 5.92 11
5 13 7.04 6.96 6.93 6.60 6.73 6.40 6.42 6.46 6.46 6.25 6.31 6.25 10
5 14 7.04 7.00 6.81 6.86 6.96 6.54 6.60 6.51 6.35 6.14 6.21 6.14 10
5 15 7.04 6.74 6.74 6.84 6.87 6.40 6.53 6.30 6.09 6.25 6.21 6.09 9
5 16 7.04 7.27 7.28 7.23 7.01 6.84 6.78 6.55 6.48 6.54 6.74 6.48 9
5 17 7.04 7.21 7.02 7.30 7.23 6.89 6.63 6.49 6.64 6.67 6.61 6.49 8
5 18 7.04 7.18 7.14 7.02 7.18 6.48 6.38 6.50 6.35 6.46 6.47 6.35 9
5 19 7.04 7.13 7.03 7.06 6.79 6.34 6.32 6.31 6.36 6.18 6.25 6.18 10
5 20 7.04 7.09 7.05 6.65 6.68 6.32 6.38 6.40 6.21 6.25 6.41 6.21 9
5 21 7.04 7.31 6.71 6.60 6.65 6.27 6.23 6.26 6.04 6.09 5.96 5.96 11
5 22 7.04 6.81 6.77 6.56 6.49 6.20 6.27 6.21 6.09 6.30 6.16 6.09 9
5 23 7.04 6.91 6.91 6.62 6.85 6.36 6.49 6.47 6.44 6.46 6.29 6.29 11
5 24 7.04 6.98 6.83 7.01 6.84 6.64 6.67 6.72 6.55 6.59 6.38 6.38 11
5 25 7.04 6.89 6.93 6.88 6.82 6.71 6.62 6.51 6.50 6.38 6.50 6.38 10
5 26 7.04 7.22 7.14 7.11 7.15 6.92 6.54 6.89 6.82 6.90 6.86 6.54 7
5 27 7.04 6.81 7.05 7.14 6.85 6.64 6.77 6.66 6.73 6.72 6.70 6.64 6
5 28 7.04 7.04 7.01 7.06 7.11 6.51 6.60 6.63 6.95 6.48 6.42 6.42 11
5 29 7.04 7.01 7.08 7.06 6.96 6.66 6.61 6.69 6.48 6.32 6.03 6.03 11
5 30 7.04 7.11 7.03 7.22 6.99 6.68 6.80 6.63 6.56 6.03 5.99 5.99 11
8 1 7.04 6.90 7.12 7.19 6.81 6.76 6.92 6.54 6.17 6.23 6.27 6.17 9
8 2 7.04 7.11 7.07 6.86 6.76 7.04 6.97 7.08 6.18 6.24 6.19 6.18 9
8 3 7.04 6.89 6.52 6.76 6.60 6.88 6.79 6.78 6.25 6.13 6.10 6.10 11
8 4 7.04 6.69 6.93 6.96 6.75 6.81 6.96 6.83 6.21 6.30 6.21 6.21 11
8 5 7.04 7.18 7.35 7.14 7.33 7.32 7.26 7.23 6.38 6.43 6.46 6.38 9
8 6 7.04 7.06 7.13 7.25 7.25 7.08 7.16 6.88 6.39 6.37 6.45 6.37 10
8 7 7.04 7.22 7.09 7.02 7.31 7.23 6.82 6.89 6.36 6.41 6.46 6.36 9
8 8 7.04 7.25 6.89 7.14 7.20 7.17 6.83 6.79 6.06 5.87 5.88 5.87 10
8 9 7.04 7.01 7.00 6.95 6.90 6.86 6.77 6.52 6.06 5.92 5.96 5.92 10
8 10 7.04 7.18 7.17 6.94 7.01 6.95 6.75 6.84 6.34 6.34 6.27 6.27 11
8 11 7.04 6.93 6.88 6.72 6.91 6.64 6.70 6.82 6.26 6.29 6.38 6.26 9
8 12 7.04 6.91 7.03 6.90 6.74 6.81 6.68 6.76 6.33 6.34 6.04 6.04 11
8 13 7.04 6.88 6.95 6.74 6.91 6.90 6.89 6.74 6.40 6.24 6.16 6.16 11
8 14 7.04 7.09 6.77 6.97 6.90 6.84 6.89 6.95 6.43 6.42 6.25 6.25 11
8 15 7.04 6.71 7.01 6.86 6.97 7.07 6.96 6.91 6.34 6.46 6.37 6.34 9
8 16 7.04 7.08 7.19 7.11 7.27 7.24 7.24 7.04 6.44 6.40 6.57 6.40 10
8 17 7.04 7.08 7.37 7.32 7.28 7.36 6.86 6.75 6.59 6.39 6.46 6.39 10
8 18 7.04 6.90 7.15 7.03 7.07 6.83 6.46 6.52 6.14 6.12 6.00 6.00 11
8 19 7.04 7.16 7.24 6.99 6.65 6.46 6.53 6.48 6.37 6.23 6.06 6.06 11
8 20 7.04 6.96 6.99 6.83 6.72 6.67 6.58 6.60 6.19 6.35 6.08 6.08 11
8 21 7.04 6.93 6.70 6.66 6.63 6.47 6.54 6.43 6.26 6.20 6.04 6.04 11
8 22 7.04 6.74 6.53 6.46 6.34 6.46 6.39 6.45 6.34 6.38 6.22 6.22 11
8 23 7.04 6.93 6.89 6.89 6.75 6.77 6.89 6.95 6.66 6.47 6.47 6.47 10
8 24 7.04 6.90 6.87 6.89 6.85 6.74 7.00 6.98 6.82 6.85 6.87 6.74 6
8 25 7.04 6.93 6.88 6.92 6.86 6.99 6.98 7.03 6.59 6.66 6.73 6.59 9
8 26 7.04 7.08 6.99 6.95 7.22 7.16 7.09 6.80 6.70 6.74 6.74 6.70 9
8 27 7.04 7.07 7.09 7.06 6.96 7.17 6.95 6.84 6.53 6.48 6.39 6.39 11
8 28 7.04 7.01 7.26 7.31 7.08 7.33 7.20 7.21 6.84 6.37 6.56 6.37 10
8 29 7.04 7.08 7.03 7.02 7.11 6.97 7.14 6.89 6.60 6.46 6.18 6.18 11
8 30 7.04 6.99 7.14 7.12 6.80 6.94 7.09 6.78 6.47 6.15 6.13 6.13 11

Iterations

Figure A.1. Raw data of minimum RMSE values and iterations where they were

observed.
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APPENDIX B: DESIGN COMPARISONS THROUGH

RMSE VALUES

Elimination Start Iteration Repetition 2 3 4 5 6 7 8 9 10 11 Chosen Iteration Chosen RMSE Min RMSE Iter Min RMSE Last RMSE Last vs. Chosen Chosen vs. Min
2 1 0.24% -6.22% -0.84% 2.73% -4.69% 0.04% -0.77% 2.82% -3.76% -0.94% 4 6.56 11 6.25 6.249 4.96% -4.72%
2 2 3.80% -8.02% -2.21% -1.12% 1.44% -0.21% -1.62% 1.52% 1.02% -8.20% 5 6.50 11 6.09 6.090 6.65% -6.24%
2 3 -0.01% -9.71% -6.56% 0.88% 1.67% -1.35% -2.13% 5.20% -6.59% 2.31% 4 5.94 10 5.78 5.909 0.44% -2.68%
2 4 -4.06% -7.36% 3.84% -1.45% -1.02% 2.70% -0.47% -7.14% 4.07% -1.91% 3 6.25 9 6.01 6.137 1.90% -3.86%
2 5 2.53% -9.79% 4.22% 1.15% 3.44% -3.13% -4.55% -3.41% -0.83% 2.12% 3 6.51 10 6.28 6.417 1.42% -3.44%
2 6 -0.45% -4.96% -0.37% 0.86% -2.93% -3.94% 2.26% 1.90% -1.88% -1.67% 4 6.63 7 6.24 6.271 5.76% -5.95%
2 7 -1.07% -4.73% -3.72% 1.84% -1.56% -1.33% -1.23% -1.21% -1.57% 1.40% 4 6.39 10 6.07 6.151 3.80% -4.99%
2 8 3.81% -10.85% 2.99% -3.91% -4.19% 0.51% 1.50% -1.22% 0.66% -5.38% 3 6.51 11 5.93 5.926 9.88% -8.99%
2 9 -0.60% -7.18% -3.59% 1.02% -1.38% 1.20% -0.97% 0.48% -1.89% 0.75% 4 6.26 10 6.16 6.207 0.84% -1.57%
2 10 2.48% -9.36% 1.87% -1.15% 2.02% -1.83% -1.90% -1.01% 2.10% -1.94% 3 6.54 9 6.40 6.408 1.99% -2.07%
2 11 -0.54% -4.91% -2.57% 2.12% -3.31% 0.04% 4.24% -2.60% -1.98% 1.88% 4 6.48 10 6.37 6.493 -0.14% -1.70%
2 12 0.09% -8.54% -3.44% 4.20% -0.40% 1.18% -2.70% -1.88% 2.19% -1.15% 4 6.22 4 6.22 6.299 -1.26% 0.00%
2 13 -2.56% -5.23% 0.69% -1.34% -1.79% 3.84% -2.41% -0.90% -2.31% -0.55% 3 6.50 11 6.18 6.184 5.06% -4.81%
2 14 0.00% -7.68% -3.10% -0.06% -3.04% 0.95% -0.80% -1.04% -1.39% -2.28% 6 6.10 11 5.82 5.824 4.72% -4.51%
2 15 -3.49% -7.40% -1.70% 3.26% -5.17% 2.98% -3.51% -0.78% -0.80% 0.43% 4 6.18 10 5.92 5.944 3.97% -4.23%
2 16 2.84% -5.95% 3.27% -2.18% -0.22% -1.54% -5.20% 3.25% -1.90% 3.29% 3 6.81 8 6.40 6.698 1.59% -5.92%
2 17 4.63% -8.49% 4.15% -4.18% -1.89% 1.39% -0.94% 1.13% -0.88% 3.35% 3 6.74 6 6.60 6.863 -1.84% -2.10%
2 18 0.48% -6.45% 2.86% -4.13% -1.73% 1.64% -1.68% 2.44% 2.65% -1.09% 3 6.61 8 6.41 6.662 -0.72% -3.16%
2 19 1.01% -3.45% -3.69% 0.19% -1.17% -1.03% 0.89% 2.14% -2.08% -2.60% 4 6.61 11 6.37 6.366 3.82% -3.68%
2 20 1.32% -8.38% 0.37% -2.46% 0.99% 3.06% -0.20% -3.72% 2.22% -0.24% 3 6.53 5 6.39 6.521 0.16% -2.10%
2 21 2.17% -12.64% -1.64% 3.35% 0.46% -0.27% -3.37% 4.28% -2.42% 2.50% 4 6.18 4 6.18 6.446 -4.18% 0.00%
2 22 -5.70% -5.24% -0.14% 1.45% -2.87% 3.05% -1.25% 0.13% -2.22% -0.57% 4 6.28 11 6.13 6.129 2.44% -2.38%
2 23 -0.12% -7.89% 0.92% 3.05% -0.52% -0.80% 1.82% -4.38% -3.38% 1.46% 3 6.47 10 6.25 6.341 2.08% -3.45%
2 24 0.08% -7.27% -1.03% -2.65% 3.67% -1.42% -0.10% -1.78% -2.04% 1.32% 5 6.29 10 6.18 6.261 0.47% -1.77%
2 25 -4.01% -1.20% -0.89% -2.69% -0.55% 2.21% -3.08% 1.09% 1.76% -3.00% 6 6.40 11 6.33 6.327 1.17% -1.16%
2 26 0.93% -6.17% 0.45% -1.03% -0.15% -0.37% 0.00% -0.51% 2.05% -1.08% 3 6.66 9 6.56 6.617 0.69% -1.62%
2 27 0.28% -7.35% -1.82% 1.82% -1.95% -1.79% 3.26% -1.22% 1.69% -3.88% 4 6.42 11 6.27 6.275 2.29% -2.24%
2 28 1.92% -7.11% -1.35% -3.08% 0.17% 2.02% 3.31% -1.39% -2.97% 2.42% 5 6.37 5 6.37 6.589 -3.34% 0.00%
2 29 0.81% -4.06% -1.04% -3.09% -2.17% 2.20% 1.11% -2.30% -1.54% -5.47% 6 6.38 11 6.00 6.000 6.42% -6.03%
2 30 -0.48% -5.74% 1.61% -1.86% -0.18% 2.98% -4.58% 0.18% -8.40% -1.50% 3 6.60 11 5.84 5.836 13.11% -11.59%
5 1 1.90% -0.54% -1.29% -3.94% -3.55% -4.79% 1.00% -2.67% 3.87% -1.95% 7 6.21 9 6.10 6.216 -0.11% -1.70%
5 2 1.58% 0.21% -4.66% 1.76% -7.85% -1.63% 1.47% -0.07% 0.77% -2.76% 7 6.30 11 6.26 6.259 0.64% -0.64%
5 3 -2.52% -5.19% 3.11% 1.50% -7.57% -0.18% -1.36% 2.72% -4.23% 0.85% 8 6.19 10 6.09 6.145 0.80% -1.62%
5 4 -5.00% -0.26% 2.99% -0.55% -8.73% 2.94% 0.44% -3.25% 1.31% -2.69% 6 6.23 11 6.15 6.147 1.39% -1.37%
5 5 2.33% -0.70% 0.07% 3.44% -9.30% 0.03% -5.66% 0.66% -2.14% -0.31% 6 6.71 11 6.22 6.220 7.91% -7.33%
5 6 -0.77% 0.66% 4.32% 0.04% -8.72% -5.74% 0.59% -1.15% 0.58% -3.36% 7 6.31 11 6.10 6.100 3.47% -3.35%
5 7 -0.70% -0.99% 2.74% -0.15% -8.25% -0.44% -0.10% -1.65% -0.22% -1.13% 11 6.28 11 6.28 6.282 0.00% 0.00%
5 8 -0.36% 1.90% -0.88% -0.61% -9.12% -0.87% 0.95% 0.78% -1.09% -0.55% 7 6.34 7 6.34 6.345 -0.07% 0.00%
5 9 -2.28% 1.07% 2.66% -3.74% -6.66% 0.03% -2.25% 1.03% 1.81% -2.66% 6 6.41 8 6.27 6.275 2.14% -2.22%
5 10 -0.22% 2.11% -0.87% -3.55% -5.55% 0.32% -0.48% 0.29% -0.01% 0.77% 6 6.47 8 6.46 6.532 -0.89% -0.16%
5 11 0.39% 0.65% -2.46% 0.03% -11.51% 3.36% -3.63% 1.82% -3.19% 3.81% 6 6.14 10 6.03 6.256 -1.89% -1.82%
5 12 -2.28% 2.25% -1.64% -3.59% -5.41% -2.67% -0.36% 0.39% 1.10% -4.59% 8 6.12 11 5.92 5.922 3.27% -3.17%
5 13 -1.03% -0.50% -4.75% 1.93% -4.94% 0.33% 0.63% 0.12% -3.33% 1.00% 6 6.40 10 6.25 6.311 1.34% -2.29%
5 14 -0.58% -2.60% 0.74% 1.34% -6.02% 1.02% -1.40% -2.48% -3.24% 1.12% 6 6.54 10 6.14 6.212 5.22% -6.01%
5 15 -4.17% -0.01% 1.40% 0.51% -6.91% 2.09% -3.56% -3.26% 2.55% -0.61% 6 6.40 9 6.09 6.208 3.02% -4.76%
5 16 3.26% 0.20% -0.73% -3.01% -2.43% -0.90% -3.37% -1.09% 1.00% 3.04% 9 6.48 9 6.48 6.742 -3.91% 0.00%
5 17 2.43% -2.65% 4.07% -1.01% -4.73% -3.77% -2.09% 2.33% 0.49% -0.95% 8 6.49 8 6.49 6.608 -1.82% 0.00%
5 18 2.02% -0.49% -1.73% 2.35% -9.86% -1.53% 1.90% -2.33% 1.70% 0.16% 7 6.38 9 6.35 6.465 -1.36% -0.47%
5 19 1.40% -1.46% 0.41% -3.76% -6.67% -0.39% -0.08% 0.73% -2.76% 1.13% 8 6.31 10 6.18 6.251 0.95% -2.05%
5 20 0.73% -0.56% -5.69% 0.43% -5.29% 0.94% 0.31% -2.99% 0.68% 2.50% 6 6.32 9 6.21 6.409 -1.34% -1.78%
5 21 3.84% -8.18% -1.67% 0.82% -5.76% -0.66% 0.53% -3.52% 0.83% -2.09% 7 6.23 11 5.96 5.962 4.44% -4.25%
5 22 -3.25% -0.53% -3.15% -1.10% -4.42% 1.17% -1.05% -1.80% 3.37% -2.23% 6 6.20 9 6.09 6.159 0.65% -1.69%
5 23 -1.73% -0.01% -4.27% 3.47% -7.05% 1.93% -0.34% -0.41% 0.34% -2.64% 6 6.36 11 6.29 6.290 1.19% -1.17%
5 24 -0.84% -2.15% 2.65% -2.36% -2.93% 0.49% 0.62% -2.48% 0.68% -3.20% 6 6.64 11 6.38 6.383 4.05% -3.90%
5 25 -2.14% 0.58% -0.64% -0.95% -1.53% -1.34% -1.69% -0.21% -1.80% 1.86% 10 6.38 10 6.38 6.497 -1.83% 0.00%
5 26 2.67% -1.12% -0.41% 0.48% -3.15% -5.59% 5.37% -0.92% 1.12% -0.62% 7 6.54 7 6.54 6.856 -4.67% 0.00%
5 27 -3.20% 3.58% 1.25% -4.13% -3.02% 2.00% -1.66% 1.00% -0.17% -0.32% 6 6.64 6 6.64 6.695 -0.81% 0.00%
5 28 0.02% -0.44% 0.79% 0.64% -8.42% 1.34% 0.57% 4.71% -6.70% -1.00% 6 6.51 11 6.42 6.416 1.45% -1.43%
5 29 -0.32% 0.97% -0.31% -1.43% -4.29% -0.66% 1.12% -3.16% -2.46% -4.61% 7 6.61 11 6.03 6.027 9.75% -8.88%
5 30 1.04% -1.11% 2.70% -3.13% -4.54% 1.83% -2.42% -1.06% -8.20% -0.65% 6 6.68 11 5.99 5.986 11.53% -10.34%
8 1 -1.90% 3.21% 0.92% -5.25% -0.74% 2.29% -5.45% -5.63% 0.91% 0.63% 9 6.17 9 6.17 6.267 -1.52% 0.00%
8 2 1.01% -0.54% -3.03% -1.42% 4.11% -0.93% 1.51% -12.70% 0.99% -0.74% 9 6.18 9 6.18 6.192 -0.23% 0.00%
8 3 -2.03% -5.37% 3.69% -2.36% 4.16% -1.32% -0.11% -7.76% -2.04% -0.43% 11 6.10 11 6.10 6.100 0.00% 0.00%
8 4 -4.94% 3.67% 0.37% -3.06% 0.99% 2.21% -1.93% -9.02% 1.41% -1.42% 9 6.21 11 6.21 6.212 0.02% -0.02%
8 5 2.05% 2.40% -2.94% 2.69% -0.16% -0.81% -0.45% -11.66% 0.75% 0.42% 9 6.38 9 6.38 6.457 -1.16% 0.00%
8 6 0.37% 0.94% 1.72% -0.07% -2.22% 1.07% -3.87% -7.18% -0.35% 1.29% 10 6.37 10 6.37 6.449 -1.27% 0.00%
8 7 2.61% -1.77% -0.96% 4.08% -1.05% -5.76% 1.09% -7.76% 0.75% 0.86% 9 6.36 9 6.36 6.460 -1.59% 0.00%
8 8 2.97% -4.84% 3.60% 0.79% -0.38% -4.70% -0.59% -10.81% -3.17% 0.21% 10 5.87 10 5.87 5.880 -0.21% 0.00%
8 9 -0.36% -0.21% -0.62% -0.76% -0.62% -1.25% -3.68% -7.14% -2.27% 0.77% 10 5.92 10 5.92 5.965 -0.77% 0.00%
8 10 2.05% -0.13% -3.28% 1.09% -0.84% -2.91% 1.30% -7.32% 0.09% -1.23% 9 6.34 11 6.27 6.265 1.15% -1.14%
8 11 -1.44% -0.77% -2.38% 2.94% -3.98% 0.91% 1.73% -8.13% 0.47% 1.41% 9 6.26 9 6.26 6.380 -1.86% 0.00%
8 12 -1.85% 1.82% -1.81% -2.44% 1.13% -2.00% 1.32% -6.46% 0.17% -4.64% 9 6.33 11 6.04 6.042 4.70% -4.49%
8 13 -2.18% 1.02% -3.11% 2.65% -0.22% -0.12% -2.22% -5.08% -2.39% -1.26% 11 6.16 11 6.16 6.164 0.00% 0.00%
8 14 0.75% -4.47% 2.96% -1.02% -0.88% 0.70% 0.93% -7.46% -0.22% -2.62% 11 6.25 11 6.25 6.251 0.00% 0.00%
8 15 -4.57% 4.37% -2.12% 1.62% 1.43% -1.50% -0.85% -8.24% 2.01% -1.49% 9 6.34 9 6.34 6.368 -0.48% 0.00%
8 16 0.59% 1.66% -1.20% 2.33% -0.41% -0.03% -2.82% -8.54% -0.55% 2.71% 10 6.40 10 6.40 6.575 -2.64% 0.00%
8 17 0.69% 4.09% -0.73% -0.57% 1.12% -6.84% -1.51% -2.41% -3.11% 1.17% 10 6.39 10 6.39 6.460 -1.15% 0.00%
8 18 -1.96% 3.71% -1.68% 0.55% -3.42% -5.35% 0.90% -5.82% -0.31% -2.09% 11 6.00 11 6.00 5.995 0.00% 0.00%
8 19 1.75% 1.09% -3.46% -4.79% -2.86% 1.04% -0.69% -1.75% -2.14% -2.83% 11 6.06 11 6.06 6.058 0.00% 0.00%
8 20 -1.05% 0.46% -2.34% -1.56% -0.78% -1.40% 0.31% -6.14% 2.58% -4.28% 9 6.19 11 6.08 6.081 1.84% -1.81%
8 21 -1.52% -3.24% -0.63% -0.52% -2.38% 1.05% -1.58% -2.65% -1.02% -2.61% 11 6.04 11 6.04 6.039 0.00% 0.00%
8 22 -4.15% -3.22% -1.02% -1.86% 1.86% -0.99% 0.90% -1.79% 0.64% -2.48% 9 6.34 11 6.22 6.218 1.89% -1.85%
8 23 -1.52% -0.52% -0.12% -1.91% 0.28% 1.67% 0.93% -4.22% -2.80% 0.07% 10 6.47 10 6.47 6.474 -0.07% 0.00%
8 24 -1.96% -0.46% 0.31% -0.50% -1.59% 3.85% -0.41% -2.27% 0.52% 0.22% 9 6.82 6 6.74 6.867 -0.73% -1.07%
8 25 -1.48% -0.82% 0.58% -0.76% 1.80% -0.12% 0.77% -6.33% 1.05% 1.17% 9 6.59 9 6.59 6.735 -2.19% 0.00%
8 26 0.68% -1.32% -0.59% 3.85% -0.72% -1.06% -4.10% -1.49% 0.63% 0.03% 9 6.70 9 6.70 6.741 -0.66% 0.00%
8 27 0.42% 0.28% -0.31% -1.50% 3.05% -3.00% -1.58% -4.62% -0.75% -1.44% 11 6.39 11 6.39 6.385 0.00% 0.00%
8 28 -0.41% 3.63% 0.62% -3.14% 3.53% -1.66% 0.10% -5.19% -6.86% 2.95% 10 6.37 10 6.37 6.557 -2.87% 0.00%
8 29 0.66% -0.78% -0.04% 1.28% -2.02% 2.40% -3.44% -4.23% -2.15% -4.39% 11 6.18 11 6.18 6.175 0.00% 0.00%
8 30 -0.67% 2.15% -0.32% -4.45% 2.08% 2.13% -4.29% -4.59% -4.91% -0.34% 11 6.13 11 6.13 6.134 0.00% 0.00%

Iterations

Figure B.1. RMSE changes between iterations and the selected iteration number

before the RMSE increase with the RMSE comparisons between alternative designs.
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Figure C.1. The design of experiments for comparison of procedure versions.




