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ABSTRACT

MULTIPLE QUEUES WITH SIMULTANEOUS ARRIVALS

Queuing theory problems have been the topic of deep research owing to the fact
that so many difficulties are in existence and their significance in real life cases can not
be ignored. Those problems can be observed in numerous sectors such as telecommu-
nications, airlines, logistics, hospitals, computing, production and inventory. Besides,
speed is the key word in today’s world because population is almost at the peak, thus
demands or requests must be met as much as possible. However, our world has limited
sources that is why there has to be some delays and queues. Additionally, game theory
is one of the most important topics and it comes into prominence due to increasing
competition in the world. There are lots of organizations which dwell in aforemen-
tioned sectors and they need to compete with each other to maximize their benefits.
Just as in queuing theory, application of game theory spans the huge part of real life
problems involving so much burden. So, there are abundance of works which dive into
the distinct branches of game theory. In this study, both queueing theory and game
theory are taken into consideration. We include the concept of game analysis, server
rate optimization, multiple queues, loss systems and simultaneous arrivals at the same
time whereas the studies in literature just focus on some of them. In our first case, we
apply a game theoretic approach to two loss queuing systems under specific assump-
tions. With the deployment of server rate optimization we reach Nash equilibrium
points. We also provide some analytical derivations and validate them using simula-
tions. In our second case, we deal with one loss system with an uncapacitated queue
involving quasi birth death process. We find the steady state probabilities employing
two different computation techniques and calculate the expected profit for each queue

in the system.



OZET

AYNI ANDA VARISLARLA BIRDEN FAZLA KUYRUK

Kuyruk teorisi problemleri, sahip olduklar1 zorluklar sebebiyle ve gergek hayat
durumlarindaki oneminin goéz ardi edilememesi nedeniyle derin arastirmalara konu
olmustur. Bu sorunlar telekomiinikasyon, havayollari, lojistik, hastaneler, bilgisa-
yar, lUretim ve envanter gibi ¢ok sayida sektorde gozlemlenebilir. Ayrica giiniimiiz
diinyasinda hiz anahtar kelimedir ¢linkii niifus neredeyse zirvededir, bu nedenle tale-
pler miimkiin oldugunca hizla ve kayipsiz sekilde kargilanmalidir. Ancak diinyamizin
sinirh kaynaklari var, bu ytizden bazi gecikmeler ve kuyruklar olmasi kaginilmaz olmak-
tadir. Ek olarak oyun teorisi en onemli konulardan biridir ve diinyada artan rekabet
nedeniyle 6n plana ¢ikmaktadir. Bahsedilen sektorlerde yasayan ve faydalarini en st
diizeye cikarmak icin birbirleriyle rekabet etmeleri gereken bir¢ok kurulug var. Kuyruk
teorisinde oldugu gibi, oyun teorisinin uygulanmasi, ¢ok fazla yiik iceren gercek hayat
problemlerinin biiyiik bir boliimiinii kapsar. Dolayisiyla oyun teorisinin farkl dallarina
odaklanan cok sayida caligma var. Bu calisgmada hem kuyruk teorisi hem de oyun
teorisi ele alinmigtir. Calisgmamizda oyun analizi, sunucu orani optimizasyonu, ¢oklu
kuyruklar, kayip sistemleri ve eszamanli varig kavramlarini ayni anda dahil ediyoruz
ancak literatiirdeki caligmalar su ana kadar sadece bazilarina odaklanmis vaziyettedir.
Tk durumumuzda, belirli varsayimlar altinda iki kayip sira sistemine oyun teorik bir
yaklagim uyguluyoruz. Sunucu hizi optimizasyonunun konuglandirilmasiyla Nash denge
noktalarina ulagiyoruz. Ayrica bazi analitik tiirevler sagliyor ve simiilasyonlar: kulla-
narak bunlar1 dogruluyoruz. Ikinci vakamizda, yarl dogum Oliim siirecini iceren, kapa-
sitesi olmayan bir kuyruga sahip bir kayip sistemi ile ilgileniyoruz. Iki farkh hesaplama
teknigi kullanarak kararli durum olasiliklarini buluyoruz ve sistemdeki her kuyruk icin

beklenen kari hesapliyoruz.
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1. INTRODUCTION

As a general description, queuing theory refers to the mathematical calculations
that belong to waiting lines and queues. In this environment there are always requests
to try to get services as well as servers that provide the relevant services. Unfortunately,
our world has limited sources and capacity, therefore it is almost impossible to serve
the needs at the same time and somebody or something has to wait while others
do not. Employing queuing theory, we are capable of investigating the system of
lines and finding the essential values of that system such as the expected number of
customers, optimal number of servers, optimal number of capacity, expected waiting
time of customers. Also, different queuing disciplines can be included such as first-in
first-out, prioritized, preemptive or non-preemptive. Owing to the fact that queuing
systems can be applied to numerous areas like telecommunications, airlines, logistics,
hospitals, computing, production, inventory there is an abundance of work handling the
subject. Because of the wide range of queuing systems they are demonstrated in terms
of Kendall notation which was first proposed by D.G.Kendall [1]. Kendall notation
is written as A/S/c/K/N/D where A is arrival process, S is the distribution of the
service time, ¢ is number of servers, K is the capacity of the queue, N is the number
of customers, and D is the queue discipline. For some queuing systems like M/M/c,
where there is a poisson arrival process and exponential distributed service times with
¢ servers, precise results may be achieved analytically. However, we have to employ
approximation techniques or upper/lower bounds for the systems like G/G/c queues.
Additionally, it is possible to obtain a queuing network where there are multiple waiting
lines that customers, jobs or items can depart from a queue and arrive at another
queue. Undoubtedly, queuing networks are harder, therefore pose more analytical and
computational difficulties. Due to the fact that analytical solutions are extremely hard
for those networks, computational methods which involve algorithms for product form

or non-product form solutions are favoured over analytical methods.



Although queuing theory is a powerful study to derive significant results in real life
problems, it may be insufficient to explain some interdependencies in systems in which
competitors are in existence. Therefore, it may be better to merge queuing theory
and game theory together in such circumstances. Game theory is capable of ensuring
a quantitative approach for strategic decision making in a competitive environment
where one player’s payoff is dependent on other players’ payoffs. As queuing theory,
game theory also permeates lots of fields such as energy, operations research, economics,
finance, wireless networks, psychology and business. Because of the fact that numerous
types of competitions take place in real life cases, game theory also has a wide range of
variety. Mostly, cooperative and non-cooperative games are examined where there is
a competition between groups of players and no allowance for agreement respectively.
Certainly, application of game theory to problems may require huge effort as in queue
theory due to the fact that some problems may not have an explicit cost function
for players, therefore appropriate cost functions need to be determined. Equilibrium
point in a game is a candidate to be an optimal point with respect to payoffs, but those
points may not exist, so employing randomized strategies those points may be acquired.
However, the nature of the original game may change significantly. Furthermore, there
may be multiple equilibrium points and in this case players may not be sure about
which one to focus, but there are some methods to approach promising points. In
short, both queuing theory and game theory are great tools to solve problems in real
life. When there are some decision makers or there is some kind of competition in
queuing systems/networks it is beneficial to combine those theories so as to attain

satisfactory results.

In our thesis, we divide our investigation into two parts where the former one is
mostly related to game theoretic view of multiple queues including two loss systems
consisting of two M/M/1/1 queues whereas the latter one is considerably pertinent to
quasi birth death processes involving one loss system which is comprised of M/M/1/1
and M/M/1 queues. In the first case, we have simultaneous arrivals with the Poisson
process while servers’ rates are exponentially distributed. Arrivals come towards the

two loss systems as a couple and only join those systems if both queues are not at



full capacity, otherwise both arrivals are lost. In addition, there is a competition
between two M/M/1/1 queues because each of the queues is determined to maximize
their profits and one of those queues tries to set its optimal server rate against the
other queue’s server rate. In the second case, we have again simultaneous arrivals
with Poisson process whereas exponentially distributed servers’ rates are in existence.
Due to the fact that one of the queues is not capacitated, stability analysis needs
to be taken into account in order to prevent the system explosion. Additionally, in
order to find the expected profits for each queues stationary probabilities are needed
to be analysed. Thus, quasi birth death processes are taken into consideration to
reach those probabilities and two different solution techniques are used to derive them.
Those models and assumptions actually suit real life problems such as in health care
management or assemble to order systems. During the maintenance and production
of big vehicles which require a large space such as ships or planes one loss system
with M/M/1 queue model can be employed where big vehicles are located in M/M/1/1
queue while orders of their specific component create a M/M/1 queue. Also, during
surgeries patients are under some operations in surgery rooms which can be deemed as
an M/M/1/1 queue while patients’ relatives or acquaintances are in M/M/1 queue for
payments. In fact, it is possible to give numerous real case problems and deployment

of those models presents a great potential to yield promising results.

As a remaining part of our thesis, we start out presenting our literature review
in Chapter 2 in which there are plenty of significant works with respect to simulta-
neous/correlated demands-arrivals, service rate optimization and loss systems. After-
wards in Chapter 3 and Chapter 4, we initially introduce our two loss systems consist-
ing of two M/M/1/1 queues and one loss system which is comprised of M/M/1/1 and
M/M/1 queues respectively. Subsequently, we provide propositions with their proofs
and validate those analytical demonstrations with some numerical results. Finally, we

end up with our conclusion part summarizing our study in Chapter 5.



2. LITERATURE REVIEW

In queuing theory problems there are either queuing systems or queuing networks
and they are fundamental ways of handling the calculations regarding flow of customers,
jobs, items, objects while the scarcity of resources for providing services takes place.
Nowadays, queues almost infiltrate our lives entirely due to the fact that we live in
a rather complex world where the needs of people or customers are at the peak and
those should be satisfied within a short time as much as possible. That is why there
are a significant number of studies encompassing distinct aspects of queues and the
number of those works are increasing gradually. Additionally, competitive structures
are rising in a dramatic way owing to the fact that the number of organizations which
strive for providing similar services to their customers are increasing and they always
pursue to maximize their own benefits as much as possible with or without coalitions.
Therefore, an organization needs to take action according to its rivals’ position and

game theoretic approach to such cases tends to result in sensible solutions.

In our study we examine two distinct cases. The first one consists of two M/M/1/1
queues each of which has arrivals according to Poisson process and server rate with
exponential distribution. However, they are not totally independent queues because
there are simultaneous arrivals, that means if there is an arrival for a M/M/1/1 queue,
then there is also an arrival for the other M/M/1/1 queue. Also, those arrivals can
join the queues only if the both queues are not at the full size. Each of those queues
aims to maximize their own profits and always tend to obtain optimal server rate
value against the other queue’s server rate. The second one has one loss system with
M/M/1 queue where the simultaneous arrivals take place as in the first case while
servers’ rates are exponentially distributed. Calculations related to quasi birth death
processes are applied to the second case in order to acquire the stationary proba-
bilities deploying two different methods, and to find the expected profits of each of
the queues subsequently. Therefore, in this chapter we split our discussion into three

parts where the first one includes simultaneous/correlated demands-arrivals involving



queuing-production-inventory systems, quasi birth death processes, the second one is
related to service rate optimisation of those systems and the final one involves the loss

systems.

2.1. Simultaneous/Correlated Demands-Arrivals

The first stream of literature presents the studies related to simultaneous/correlated
demands-arrivals that have arisen to point out the problems such as in assemble-to-
order systems, multi-item inventory systems, make-to-order systems and other similar
systems. Song, Liu and Xu [2] acquired performance measures for ATO systems where
capacity, Poisson arrivals and exponential lead times exist. Matrix geometric method is
employed in order to attain those measures. Also, they express that when ATO systems
are large this method becomes computationally expensive, so the need for an efficient
heuristic method is better to approximate those measures. Swaminathan and Tayur (3]
investigated the case where final products are assembled using semi finished products
according to arrival of orders, also all products are stored as semi finished base. They
take the single-period model into consideration where production times are distributed
generally and demands occur at the beginning of the period. They managed to solve
the problem on a small scale but the real case which is actually a motivation for their
study is hard to analyse. Cheung and Hausmann [4] analysed the multi-item spare
inventory problem in which combination of items that need to be processed is linked
with job type. Poisson process assumption is employed for jobs arrivals whereas expo-
nentially or deterministically distributed infinite servers assumption to process relevant
jobs takes place. For the process of jobs, a set of items according to job type need to be
assembled as in assemble to order systems. They use approximations so as to calculate
the expected number of jobs in the system. As an assumption, approximations involve
independence across items for the number of items being processed. Additionally, they
realise that the more items increase, the harder calculations become to compute. The
work of Glasserman and Wang [5] includes trade-offs between lead-time and inventory
in assemble to order systems. Poisson arrivals of demand and diverse distribution in

servers are included in their work. They demonstrate a linear relationship between



delivery lead time and inventory for a fixed service level. They provide us with ex-
amples involving a small number of items where the relationship strongly holds when
the fill rate is so high. Zhang [6] investigates the expected time delay for systems
which includes continuous review base-stock inventory policy according to assumption
of independency for item delays. In those systems customers may entail several items.
Additionally, Zhang shows that total time delay may be overestimated in consequence
of correlated items if the assumption of independency among items is made. Also, in-
clusion of correlations for large systems makes problem hard to solve, therefore Zhang
offers an algorithm which works well in fast service level case. Improvement of al-
gorithm can be clearly seen if there is a decrease in demand entailing multiple items
and utilisation of individual facilities. Xu and Li [7] dive into the correlated stochastic
queues in order to investigate the problem of correlation between performance mea-
sures of items. In their work, the notion of “majorization” is introduced as a new tool
to analyse the dependency in multivariate stochastic systems where correlated arrivals
exist. They manage to apply their tool to assemble to order systems and demonstrate
that adjusting input processes may boost system performance under pertinent condi-
tions. With respect to assemble to order systems with partial order servers employing
Markovian distributions, the number of performance bounds are analysed in the work
of Dayanik, Song and Xu [8]. If the arriving order lacks some components, then the
order just takes existing components according to partial order servers, which means
orders are met partially. Also, their work includes an algorithm that can deal with
non Markovian component production lead times and customer switching. Iravani et
al. [9] examine the queuing system with correlated arrivals where parallel queue with
bulk service exist. In order to obtain performance measures matrix geometric method
is employed. In addition, extension of the principles of decomposition algorithm to
examine various parallel queueing systems with correlated arrivals is presented. Li
and Xu [10] examines the parallel queuing systems with correlated arrival processes to
distinct queues where dependence structure and bounds are considered significantly.
Aim of work is to obtain better knowledge about dependency and to derive various
upper and lower bounds for the statistics of joint performance measures. Application

of their results to synchronised queues shows how performance of measures may be



changed according to different types of dependencies. Elhafsi et al. [11] investigates a
single product assemble to order system which serves the demands of the final prod-
uct which are assumed to have independent Poisson process with distinct rates and
individual items based on relevant demand. If demand related to end product and
items are not met, then this situation incurs cost for the system due to the lost de-
mands and items. Additionally, production lead times are non identical and have an
independent exponential distribution where produced items are held in stock. In this
paper, they aim to determine optimal policy for inventory allocation and item pro-
duction. Employing lots of numerical experiments they also propose three heuristic
methods performing well due to the fact that numerically optimal policy is burden-
some to acquire stemming from the curse of dimensionality of dynamic programming.
Kushner [12] investigates a heavy traffic case of optimal control for assemble to order
systems where demands consist of multiple end products each of which may require
various components. Components are produced according to random production times
whereas demand intervals are random and may occur in batches. As long as demands
can be satisfied, assembly takes place otherwise demands are lost. Using numerical
methods they achieve to present a reasonable optimal control policy. Lu et al. [13]
analyse the optimal budget allocation among inventories in order to minimise weighted
average of backorders for product types where each product order has a batch Poisson
process and lead time for replenishment of components’ inventory is stochastic includ-
ing assemble to order systems. So as to construct surrogate optimization problems
they come up with bound and approximations related to expected number of backo-
rders, thus numerical examples are provided to show the effectiveness of bounds and
approximations. Van Houdt [14] studies a broad class of semi Markovian queues intro-
duced by Sengupta. The class on which his work is based includes many queues such
as G/M/1, SM/MAP/1 as well as queues involving correlated inter-arrival and service
times. In order to have attainable results in his work, the matrix geometric method
pertains to quasi birth death process is deployed considerably. Deploying a stochastic
programming formulation, Jaarsveld and Wolf [15] create an algorithm for inventory
control in unequivocally efficient and scalable assemble to order systems. Considering

a continuous time model they aim to find stock levels for components so as to minimise



holding costs as well as backorder costs for products. Nevertheless, they analyse the
effectiveness of underestimating stock out cases and derive an computable upper bound

for the ease of optimal allocation.

Gao et al. [16] investigate a multi item, multiple classes of demand, assemble
to order system where each item’s inventory is based on item level and controlled by
the base stock policy including finite capacity. Requiring a subset of items, arrivals of
demands follow the Poisson process whereas replenishment of each item has exponen-
tial distribution. If the existence of unsatisfied demands takes place, then total order
service and partial order service occur as stockout cases. Modelling the system as a
queuing network, they actually obtain a quasi birth death process in which a matrix ge-
ometric solution method is employed to reach joint steady state distribution. They also
display numerical examples to draw attention to how system performance changes with
varying system parameters emphasizing the significance of involving machine failures.
DeCroix et al. [17] dive into analysis of multi product assemble to order systems where
inventory is based on component level and the finished products are obtained accord-
ing to stochastic customer demands. Additionally, the system is exposed to stochastic
returns of subsets of components as well as stochastic demand. They accomplish to
identify various ways where returns complicate the behaviour of the system showing
how to undermine or wipe out these complexities during the calculation of important
performance metrics such as the immediate fill rate, the fill rate within time window
and average backorders. Nevertheless, they display a method so as to compute near

optimal base stock policy.

2.2. Service Rate Optimization

The second stream of literature encompasses the articles which are aimed at
analyzing the service rate optimisation both in single queues and multiple queues. We
also divide the part of multiple queues into two subparts one of which is a game theoretic
approach which examines the relationships among people or organizations that have

conflicted /different goals or partially compete and the other one is centralised decision



making. Cooperative and non cooperative structures are taken into account revealing
solution procedures in those articles that involve queuing, inventory and production

systems.

2.2.1. Single Queue Server Rate Optimization

Yang et al. [18] studies M/M/2 queue with heterogeneous servers with multiple
vacations and working breakdowns as a steady state analysis. They achieve to convert
the problem into an quasi birth death process and employ matrix geometric method so
as to calculate joint steady state probabilities. Additionally, they use heuristic method
for the minimisation of cost approximating optimal service rates for two servers. As
a result, they display some numerical results demonstrating the effects of distinct ap-
proximated optimal service rates and presents a practical example for an application of
model. In the study of Yang et al. [19], they examine M/M/1 queue with secondary op-
tional service that means when customer arrives, first he is served by a necessary server
but some of customers may also be served by a second optional server as their wish.
During the breakdown of servers, service is not ceased entirely, instead server rate is just
reduced. In order to obtain steady state probabilities and compute some performance
measures matrix geometric method is deployed. In addition, application of genetic
algorithm is aimed at optimising the cost of problem heuristically approximating the
optimal service rates. Lax and Indira [20] examine a queue with finite buffer multiple
working vacations including balking, reneging and Bernoulli schedule vacation inter-
ruption under N policy. In this queue customer may prefer to join or balk, afterwards
he may renege whereas server leaves the system for vacation. But the server may return
to the system interrupting his vacation if there are at least N customers waiting in the
queue. Under those circumstances, length of the system in steady state conditions is
obtained employing recursive analysis. Also, using ant colony optimisation some per-
formance measures and cost objective that is in terms of service rate and reneging rate
is obtained heuristically. Hamasha et al. [21] suggest a Markov based service delivery
model involving single server single queue and multiple server single queue structures.

They aim to maximise the profit of the system acquiring the pertinent optimal param-
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eters and also demonstrate that profit is so vulnerable to optimal service and arrival
rates among other parameters. Ke et al. [22] focus on M/M/c balking retrial queue
with vacation where single and multiple vacations are examined. They turn the prob-
lem into a quasi birth death process in which a matrix geometric method is used to get
the steady state probabilities and performance measures. They also aim to minimise
the cost objective in stationary conditions obtaining the optimal number of servers
and optimal rates for servers employing Quasi Newton method, Nelder Mead method
and heuristic methods such as simulated annealing. As a conclusion, they present nu-
merical results derived from optimisation processes and provide us with an example
for an application. Elijah et al. [23] study the part of the mining operations involv-
ing loading of material from the pit and hauling them to the processing plants which
constitutes the half of the total operation costs of mine. Optimisation of productivity
based on the application of shovel truck haulage system in limestone open pit mine is
ensured using queuing theory methods. Their study includes multichannel queueing
approach and so as to compute optimal interarrival rate and service rate for different
numbers of trucks in system they construct a model. Liou et al. [24] examine a Marko-
vian queue with a single unreliable server and infinite capacity where customers may
not enter the system and leave the queue after entrance. Using the matrix geometric
method stationary probabilities and stability conditions are calculated. Nevertheless,
as a heuristic optimisation tool particle swarm optimisation is favoured so as to obtain
optimal parameters that belong to the queue system according to cost minimization.
Chiang et al. [25] display a systematic approach of nonlinear optimisation of queuing
systems in an economic way. Demonstrating some convex structures of various queuing
systems they apply convex optimisation methods to both single queues and networks.
They also accomplish to show results that are pertinent to blocking probability min-
imisation with suitable service rate and arrival rate. Rapoport et al. [26] analyse a
class of queuing problems in which endogenous arrival times based on non cooperative
n-person games in normal form and single server exist. Employing multiple equilibria
in pure strategies, some problems related to tacit coordination may arise. Their results
acquired by deploying a Markov Chain algorithm to calculate symmetric mixed strat-

egy equilibrium point presents that consistent and replicable patterns of arrival which
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leads to a concrete structure for mixed strategy equilibrium exists on aggregate level
instead of individual level. Harrison and George [27] aims to minimise average cost
per unit time over an infinite horizon including single server queue in which holding
costs are a nondecreasing function in terms of queue length that is changed according
to birth death process. They find the optimal service rates’ equations that are non-
decreasing as a function of queue length using the optimality equation of average cost
dynamic programming as well as optimal service rates are bounded when holding cost
function is bounded. Providing numerical examples they compare minimum average
cost assuming state dependent service rates with that minimum average cost assuming
fixed service rate. Moura et al. [28] suggest a model so as to study the interactions
between hospitals and Original Equipment Manfacturer which ensures maintenance
services for the advanced technology equipment used in healthcare institutions. In
their work, maintenance services are provided for two distinct classes of hospitals one
of which prefers to hire extended warranty whereas the other class prefers to pay for
each maintenance intervention on demand regardless of priority. They assume that fail-
ures and repairs take place in a two class G/M/1 priority queuing system and Original
Equipment Manfacturer tries to maximise its profits. Thus, they adopt a Stackelberg
game where the Original Equipment Manfacturer is the leader and the customer is
the follower. Xia et al. [29] examine the single server queue with Markovian arrival
process and exponential service rate which depends on state of system such as queue
length and phase of Markovian arrival process. Main goal is to minimise average total
cost in the long run optimising service rates deploying matrix analytic methods and
sensitivity based optimisation theory. In conclusion, they provide numerical examples
to show the main results and try to observe the effect of the phase of the Markovian
arrival process in the MAP/M/1 queuing system. Acharya and Rodriguez [30] investi-
gate a M/M/1/m queuing system estimating maximum likelihood of the change point
of arrival rate where the change occurs after a constant unknown number of finished
services. They show that the estimators of maximum likelihood function are weakly
consistent as well as compute the estimators of the traffic intensities after and before
the change point. Dave and Shah [31] aim to obtain the unknown parameters of a

stationary M/M/2 queuing system with heterogeneous servers employing maximum
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likelihood function in their paper. Observing the relevant queuing system for a fixed
amount of time, they construct their log likelihood function using observations and op-
timise the log likelihood function under stability conditions. Wang et al. [32] analyse
the maximum likelihood estimates of M/M/c queue with heterogeneous servers under
stability conditions. After they give an example for M/M/3 case, they carry over the
results to an M/M/c queue structure. Additionally, they provide confidence intervals
of estimates and the expected number of customers in the system and the probability
of empty system of M/M/c queue. Benes [33] studies a telephone exchange model that
has an infinite number of trunks and traffic over the phone hinges on calling rate and
mean holding time. Observations that are pertinent to the calling time and hang up
time are noted during a finite interval to estimate the parameters employing likelihood
function. As a result, he compares various estimators for relevant parameters of the

model displaying their means, variances and distributions.



13

2.3. Multi Queue Server Rate Optimization

2.3.1. Game Theoretic Model

Due to the fact that according to some empirical works in health care and call
centres pooling queues may induce operational inefficiencies compared to dedicated
queues, Armony et al. [34] discuss that this situation may occurs when servers are
strategic and display customer ownership which can be splitted into two parts whereas
the first one is a point of service which is the case that servers internalise the holding
cost of only their customers in service and the second one is the whole system which is
the case that they internalise the holding costs of their customers in service and those
in queue. They reveal that servers in a pooled queueing system prefer a lower capacity
in equilibrium than in a dedicated queueing system utilising the model in which servers’
choice of capacity is a non cooperative game. Sivaselvan [35] presents a game theo-
retic perspective pertaining to stream control mechanisms in multi class networks and
provides us with a suitable framework for analysis of control mechanisms. Involving
min max routing problem, control mechanism is aimed at deciding over which queue
should be selected for the recently arrived customers ensuring the best performance
under worst service conditions where service rate in each queue changes with the state
of system and unknown to control mechanism Thus, zero sum Markov game is em-
ployed. Using value iterations technique, properties related to value of the game can
be found. Timmer and Scheinhardt [36] analyze the queuing networks where there are
different operators belonging to each queue who may cooperate so as to decrease the
amount of waiting time. To get some insight into the case, they start out focusing on
the Jackson tandem network where total capacity can be distributed over all queues.
They pursue the answer to the question of whether or not the operators of queues will
cooperate and how the costs will be shared while cooperation exists. Thus, they also
examine networks consisting of two or three nodes. As we mentioned above, Timmer
and Scheinhardt [36] incorporate tandem network with two or three nodes and deduce
that cooperation is useful, but due to the fact that previous work is devoid of larger

tandem networks and general Jackson networks analysis Timmer and Scheinhardt [37]
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mainly aims to give explicit cost allocation which is suitable for all operators involved
in any Jackson network. Wee and Iyer [38] have a game theoretic approach to queuing
models with holding costs where consolidation structure for queues exists or not. They
deploy two server queuing systems where the choice of service rate, which is based
on demand and holding cost allocation scheme arranged by the demand generating
entity, is at the discretion of servers. In order to ensure maximum service rate for
each of a pooled system where arriving demands are sent to the servers based on the
current state of the system and a split system where arriving demands are assigned to
one of the two servers based on their capacities, they obtain an optimal holding cost
allocation scheme. Gonzalez and Herrero [39] dive into the cost sharing problem in
which queues exist while sharing a medical service. They achieve to show that sharing
the operating-theatre to treat patients who belong to distinct medical disciplines may
result in cost reduction. Therefore, after they manage to calculate optimal fee per
procedure related to usage of operating-theatre, they build the conditions under which

cooperation among treatments decrease the post-operative costs.

2.3.2. Centralised Decision Making

Caryle et al. [40] deal with developing models which ease the burden of how to
design systems modelled as parallel M/M/1 queues and how to assign service capacity
optimally among the queues to increase the endurance of whole system for the worst
case disruptions. They construct the problem as a three level sequential game of
information between defender( that is a designated centralised planner to design parallel
queues with the knowledge) and attacker(that is worst case disruptions). Cachon and
Zhang [41] investigate a queueing model where capacities, processing rates are chosen
by servers that are strategic and faster service has more cost. There is a buyer who is
at discretion of demand allocation according to servers’ performance and more demand
is assigned to faster server. Thus, the buyer aims to minimise the average lead time
received from the servers. As a result of study, performance-based allocation may be an
efficient supply strategy for buyer if the buyer takes the servers’ strategic behaviour into

consideration. Gilbert and Weng [42] investigate a service network where an agency
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is just in charge of adjusting constraints on the expected waiting and service time of
customers that means agency does not provide customers with actual service but it
manages independently operated facilities. Agency should obtain a optimal strategy
for the allocation of customers to the self interested operators minimising its own
costs. In their paper two different customer allocations is compared, where there is a
common queue in the former one and separate queue in the latter one. Lodree et al. [43]
investigate a queuing system involving heterogeneous teams that work together to serve
queues including three distinct prioritisation levels during a mass casualty event. In the
paper they consider that the health condition of patients or casualties worsens as time
goes on so minimisation of total loss is crucial in the system. Also there is a controller
who is in charge of assigning doctors and nurses to relevant queues. Therefore, they aim
to optimise the overall service rate of patient queues by assigning an optimal number of
assignments of doctors and nurses to the queues. In order to optimise the model they
apply heuristic methods and find an efficient method in their simulation studies. Weber
and Stidham [44] study the optimal service rate control in some queuing networks where
holding cost for a queue is a function of number of customers in that queue, service rate
for a queue are function of queue length and arrival rate may or may not be controlled.
They obtain a policy which is aimed at minimising the expected total discounted cost
and extending their results to an average cost measure they present an example that
the optimal policy may not be monotone if choice of server rates at each queue does
not include zero. Rosberg et al. [45] study tandem queues including two M/M/1
queues where server rate of first queue is a function of both number of customers in
first queue and second queue. Main goal in their paper is to find an optimal policy
so as to minimise the expected total or average cost in the system. In the paper of
Stidham and Weber [46], a large number of models and their results that are pertinent
to control of queuing networks are examined under categories consisting of service rate
control, admission control, routing and scheduling. They also pay attention to usage
of Markov decision models to analyse the structure of optimal control rules. Ahn et
al. [47] invenstigate the optimal control of two flexible parallel servers located in a two
stage tandem queuing network where new arrivals first enter into first station and leave

the system after second station. They split up the system into two where the former
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is called collaborative work forcing servers to be busy with the same job and the latter
is non collaborative work forcing servers to be busy with unique jobs. Main problem
is how to assign the servers over time to jobs considering both server stations so as
to minimise the cost objective. They present sufficient conditions to obtain optimal
policy in the both collaborative and non collaborative case. Nevertheless, Markov
decision process formulation related to the problem is provided under the average cost
optimality criterion demonstrating the existence of solution as well. As a result, some
examples are displayed to test the optimal policies. Azaron and Ghomi [48] study the
Jackson network ensuring the optimal control of arrival and server rates developing
a new model in which the expected value of shortest path and total operating costs
of the network are minimised. The queue nodes involved in Jackson network are not
generalised, instead only M/M/1 and M/M /infinite queueing systems are included as
nodes of the network whereas all other specifications of Jackson network structure are
preserved. Converting the problem into a bicriteria optimal control problem, they use
goal programming methods to acquire the optimal values. Finally some numerical

examples are included in order to test their optimal policies.

2.4. Loss Systems

The final stream of literature involves the articles which are pertinent to loss sys-
tems that are widespread particularly in healthcare, queuing, production, inventory,
telecommunications, banking, wireless, circuit-switched systems. Blocking behaviour
in similar kinds of those systems are examined in a detailed form by various stud-
ies. Kobayashi and Mark [49] aim to construct some relationships between queuing
networks and loss networks where stationary distributions can be written in terms of
product form in both networks demonstrating how some properties derived for queuing
networks can be shifted to the loss networks’ studies thoroughly. Vinarskiy [50] studies
a queuing network structure where there are multi class customers and nodes have
M/M/1 queuing system sharing a capacitated waiting space. If an arrival finds a node
at its full capacity, then that arrival is lost. Assuming each class input to a node is

a Poisson process they obtain approximate analysis based on solving a system of non-
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linear equations iteratively. Nevertheless, the existence and uniqueness of the solution
found by the iterative algorithm is examined and proven thoroughly. In the paper of
Bronschtein and Gertsbakh [51] exponential open queuing network is examined where
various exponential servers exist in each node whose waiting space capacity is limited.
Thus, arrival to a node is lost when that node is at its full capacity. Assuming total
inflow to a node is superposition of external and internal Poisson flow, iterative solution
technique based on a system of nonlinear equations constructed in terms of unknown
nodal flow rates. They display a Markov chain based technique to obtain an approxi-
mate value of average conditional sojourn times both for customers who are done with
their service process in the network and for those who are lost ultimately. Fernandez et
al. [52] studies the economic impact of filtering policies in two stationary loss queuing
network location model assuming arrival of requests for service is independent homo-
geneous Poisson process and service centres consist of finite number of service units.
In their model, queue is not allowed and if there is not an idle server upon the recent
arrival of request then arrival is lost, also even there is an idle servers system may
reject some proportion of requests. Thus, they aim to minimise the overall operating
costs finding the coverage of request as well as the locations of service centers. Song
and Wu [53] analyse the referral incentive policy in two level healthcare delivery system
which is aimed at leading more patients to prefer community health centres during their
first treatment. In their study, they answer the questions about that referral incentive
policy such as “Does the referral incentive policy really work in the sense of guiding
more patients to community health centres?” and “Does the blocking phenomenon in
general hospital have an impact on the effectiveness of referral incentive policy and
how?” Thus, introducing a utility loss function they construct a queuing network that
includes blocking. As a result, they find out that the proportion of patients who are
steered to community health centres in the long run reaches a steady level and blocking
situation has a significant effect on the proportion. Naumov and Samuilov [54] study
the queue network that consists of resource multi server queuing systems having some
losses where the occupation of serving of the accepted customer for resource amount is
random according to a given distribution function that hinges on customer class and

type of necessary servicing. Nevertheless, an arrival of a signal whose distribution is
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exponential as of the start of servicing may cease the customer servicing in a node
and it may be ceased more than once during the customer sojourn in the network.
Analytical derivations and equations are obtained so as to compute the joint distribu-
tion functions of the number of customers in the nodes and the volumes of resources
occupied. Alnowibet and Perros [55] study the blocking probability in a non station-
ary queuing network involving multi rate loss queues and numerical computation of
time varied mean number of customers in that network constructing a scheme of fixed
point approximation technique. After they achieve to present how their model can be
employed so as to investigate a single or multi class with multi rate loss queues, they
extend their method to the investigation of non stationary queuing networks of multi
rate loss queue. In conclusion, they make comparisons between exact and simulation
results to prove the consistency of their work. In the paper of Ku and Jordan [56], the
access control in a target multi server loss queue whose arrival stream consists of both
upstream parallel multi server loss queue and stream of new customers. These systems
mostly occur in computer and telecommunication networks where continued service
to internal customers is favourable to acceptance of new customers. They achieve to
maximise total discounted revenue in the system as well as to prove some properties
which include monotonicity regarding system parameters. Lam [57] studies the class of
queuing networks with state dependent lost arrivals and triggered arrivals that means
new customers may enter into the network instantaneously. That class of network is
particularly beneficial to model systems with population size constraints. He also finds
sufficient conditions to ensure the stationary probability distribution for the network
having product form, thus he enlarges the known classes of queuing networks whose

stationary probabilities have product form.

Even though we have some common points with the papers mentioned above in

our study, some applications we include differ from those papers considerably:

e Simultaneous/Correlated Demands-Arrivals:
(i) We include simultaneous arrivals in two different queuing systems where the

latter encompasses M/M/1/1 and M/M/1 queues, and the former involves
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two M/M/1/1 queues.

(ii) Also, in the system where we have M/M/1/1 and M/M/1 queues, we employ
the recursive operations for R matrix as well as the special case of R matrix
during the calculation of matrix geometric method.

e Server Rate Optimisation:

(i) We have two M/M/1/1 queues with simultaneous arrivals where each of
those queues aim to maximize their profits according to a given server rate
that belongs to another queue.

(ii) In addition to analysis for the existence of Nash equilibrium, we also prove
the concavity and slope of response functions under some assumptions.

e Loss System:

(i) We study both one loss system consisting of M/M/1/1 and M/M/1 queues
and two loss systems consisting of two M/M/1/1 queues.

(ii) If any capacitated queue is not idle in the queuing system upon arrivals,

then simultaneous arrivals are lost.

Table 2.1. Classification of Some Related Works with Chosen Features.

[3] | [9] | [31] | [36] | [46] | [52] | [54] | Ours
Game Analysis - - - X - - - X
Server Rate Optimization | - - X X X X - X
Multiple Queues - | X - X X - X X
Loss Systems - | X - - - X X X
Simultaneous Arrivals X | X - - - - - X
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3. TWO LOSS SYSTEMS WITH SIMULTANEOUS
ARRIVALS

3.1. Summary of Chapter

In this chapter, we focus on two loss systems consisting of two M/M/1/1 queues
where simultaneous arrivals exist with poisson process and servers are exponential
distributed. If one of the capacitated queue is not idle in the queuing system upon an
arrival to that system, then simultaneous arrivals are lost immediately. We examine
the Nash equilibrium of that system where the maximization of profits are aimed for
each queue in existence of the fixed arrival rate as well as the slope and concavity of

response functions based on server rates under some assumptions.

3.2. Model and Analysis

Modelling the system with Markovian structure we obtain the Figure 3.1 where
the state space is (Y7, Y2) while Y; and Y3 can only have 0 or 1. We define that Y; is the
number of customers in the first M/M/1/1 queue while Y5 is the number of customers
in the second M/M/1/1 queue. Thus, we have four different cases in total and we are

going to dive into the details of those states in further.
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Figure 3.1. Model of Two Loss Systems.

In the model of two loss systems, arrival process is poisson with rate A whereas
server rates are exponential distributed with rate p; and ps. Additionally, all states are
communicating with each other and due to the fact that we have also a finite number

of states stability is automatically ensured. According to Figure 3.1 we also deploy the

(0,0) (0,1) (1,0) (1,1)

0,00 [/ =X 0 0 A
0= OO p =m0 0

(LO)| 0 — 0

(L1 \ 0 th pa =+ po)

as a generator matrix which enables us to compute the stationary probabilities of
states. In order to calculate the stationary probabilities we deduce the equations below
according to generator matrix ). Define that Py, Fy1, Pig, P11 are the stationary

probabilities of states (0,0), (0,1), (1,0), (1,1) respectively. Let’s write the balance
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equations:

APy = poPo1 + p1 P
paPor = p1 Py
p1Pro = poPry

(2 + p1) Pi1 = APoo.

Using the equations above, we find the probabilities as:

pa o (e + fi2)

POO =
AN+ B3N+ (3 o + p3p + M pio
. i
01 —
AN+ 5N+ 3 g + p3pn + A pie
. A3
10 —
AN+ 3N+ 3 g + p3pn + A phe
A
Py, Hift2

A BN e+ 3+ Mg

Defining 7 is the profit amount coming from first queue whereas m, is coming
from second queue. Nevertheless while r; and r, are revenues per unit of time generated
by first and second queue respectively, ¢; and ¢, are the costs incurred per unit of time,

thus we can write profit functions as

m = rip (P + Puo) — cipnn

Ty = Tapte (P11 + Por) — capta.
Here, we assume that ©* < 1 and employing some algebraic manipulation we write
1

T = 11 APy — ¢t
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where
B
Pypy=1-
00 BiC
while
B = M + A3 + A pio
and

C = pips + pa .

Proposition 3.1. Define Py = then Pyoer 15 strictly convexr in puy and mp s

_B_
B+C”

strictly concave in iy for each given pgy > 0.

Proof. Taking the derivative of Py, what we have is:

OPyock  B1C — BC)
o (B+C)?

where
b OB
Eml
and
oC
i = —.
' O
Also define

D = B,C — BCy = =2\ i3 — Mij.
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Thus we have:

0? Pyjock: _ D,
ot (B+C)3

(—=(B+C) + (B1 + C1) (211 + p2))

where
oD
Dy = =2\ = —
1 Ho 8[1,1
So,
0% Pyoe
b12 L
opy
that means
0?r
—— <0.
opy
Therefore we can deduce that there is a unique solution to g—;i = ( for each given
to > 0. Additionally, using similar operations it can be shown that 8;;2 is also strictly
2

concave for each given p; > 0. O

Proposition 3.2. Steady state probabilities of system consisting of two independent
M/M/1/1 queues including same parameters may differ from the stationary probabili-

ties we calculate for our current system.

Proof. Let’s examine the case of Fy; where the first queue is idle while second queue

is at full capacity. Remember for our current system

_ At
PN A+ A A 3 g A pd g 4 A pio

Py

and now recalling the formulas for stationary probabilities belong to M/M/c/K queues
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we can infer that

)\[Ll
A+ 1) (A + p1a)

Py =

for the system consisting of two independent M/M/1/1 queues. Now assume that those

two Py, values are equal to each other having same parameters. Thus we obtain

At Wi

A+ )N+ p2) 3N+ 3N + pdpg + pdpn + Maapia

that means

Ny — pa\ — pgpn =0

after some operations. We can observe that for a given p; and ps we have a second
degree polynomial with respect to A\. Thus, using the root formulas belong to second
order polynomial A must have a positive root for given positive y; and ps. This situation
implies that just one A value ensure the equivalence between two Fy; probabilities
mentioned above. In short, if we have an two independent M/M/1/1 queues in our
system, then stationary probabilities may differ from the probabilities belong to our

current system. O

3.3. A Capacity Game

During the capacity game we consider that there is a fixed A but servers’ rates
can change due to the fact that each queue aims to maximise their profits. Also, in

our decentralised system parameters of a player such as cost, revenue and server rate
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are known by another player. Let’s set

A2 = @
Mz = b
a_y
1
a_y,
1

where hy and hy are strictly less than 1, in order to reduce some complex appearances.

Now because of the maximization of profits we need to have g—gi =0 and g—zz = 0.

After some operations, what we obtain is

8
a—Zl =0 = (A4 2 + 20u) Bt + (202 + 203 + 2Xa + 2ap) by i+

1

(113 4 a® 4 2\b + 2bpy + 2ap2)hy 2+
2012 4 2ba)h — 2balpy — b* 4+ hb* =0
2

0
0—22 =0 = (A\*+ pi + 201 hopiy + (2Ap] + 2Xa + 2465 + 2p1a) hopis+

2

(i} + a® 4 2a\ + 2ap1 + 2ap?)hopi+
(2012 + 2ab)hy — 2ab]ps + b*hy — b* = 0.

In short what we have is

(N2 3+ 20 )l iy + (20t + 245 + 20a + 2apig) o i+
(13 + a2 + 20D + 2bpg + 2a2) by 2+ (3.1)

(2042 + 2ba)hy — 2ba)py — b* + hib* =0
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(N2 i 42X ) hopty + (M + 2Xa + 2417 + 2p0) hopi+
(1] + a® + 2a\ + 2apy + 2ap?) hopi+ (3.2)
[(2bpF + 2ab)hy — 2ablus + b*hy — b* = 0.

We can observe that if gy = 0, then p; must be 0 in the Equation (3.1) and if py > 0,
then zero value of p; can not satisfy the Equation (3.1) but there is only one positive
value root for p; by Descartes rule of sign. Thus we actually have a function such
as p1(p2) which indicates an optimal value of uy for a given psy in our system. The
same operations can also be applied for the Equation (3.2) and we can obtain (1)
structure.

Now let’s focus on m; case. We know that p; can be written as a smooth function of
1o again by Descartes rule of sign where the smoothness comes from the fact that for
each given positive ps we derive iy values from the unique positive root of polynomial
in the Equation (3.1). While we have a fixed A and are approaching to any positive ps
from both left and right, we are actually approaching to same value of the coefficients
belong to the Equation (3.1) that means during the limitation with respect to ps on
both sides we reach same polynomial structure and we obtain same unique positive
root for p; satisfying the Equation (3.1). Thus we can infer that polynomial structure

ensure the smoothness of 1 (u9) where py > 0.

Proposition 3.3. % 15 always positive while g > 0 if

ﬁ is positive in the vicinity

of zero and at zero point.

Proof. Let’s assume that Z% be positive in the vicinity of zero and at zero point, now

dpa
dpz

is negative at some point while yy > 0, then %X must be

we can express that if i

equal to zero at some point while s > 0. Now examine whether or not %}’j—; is zero. So,
first assume that % is zero. Also employing implicit differentiation we can write
0%m;

i _ _ Budre (3.3)

d 0211
2 o2
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So, if % is zero at some point of py > 0, then

8271'1

Op10ps B

According to the fact that 823;2 is zero what we have is

(2112 + 20 )Py puf + (4Apao + 65 + 2% + A ) by i+
(44t + 222 g + AN p1g + 120p15) h g1+ (3.4)

[(8\p + 6A°u?)hy — 6% 3]y — 4N ps(1 — hy) = 0.

Now multiply the Equation (3.1) with 3 and multiply the Equation (3.4) with us both

on sides and subtraction of the Equation (3.1) from the Equation (3.4) yields

(=3N? — i3 — dAp2) hapiy + (=43 — AN p2)hapri + (3.5)
(Hy = 3N i + 2 s ha iy — A pap(1 = ) = 0.

Recall that we only consider pus > 0, so coefficients of the Equation (3.5) can only
be (-,-,4,+,-) or (-,--,+,-) or (-,-,0,4,-) that means total sign change is always 2 and
according to Descartes sign rule for a fixed ps > 0 the Equation (3.5) either have no

positive root or two positive roots. Let’s examine those two different cases:

e Case 1 (no positive root): Recall that if ps > 0, then satisfying the Equation
(3.1) 1 must be a unique positive root of it, but according to the Case 1 we
should not have positive root, so there is a contradiction and Case 1 is wrong.

e Case 2 (two positive root): Recall that if uy > 0, then satisfying the the Equation
(3.1) w1 must be a unique positive root of it because Descartes sign rule does not
allow multiple positive roots, but according to the Case 2 we should have multiple

positive roots, so there is again a contradiction and Case 2 is wrong.

To sum up, it is wrong to assume that % is equal to zero at some point while s > 0,

therefore Z_Z; only have positive values for all ps > 0 if we assume that % be positive
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in the vicinity of zero and at zero point. Now let’s check that % is positive in the

vicinity of zero and at zero point.

dp

Proposition 3.4. dn

18 positive when po is zero or o is in the vicinity of zero.

Proof. Taking limit on both sides of the Equation (3.3) whereas pus — 0, we have

82

. ™

-~ _dm B lim,,, 0 I
T 02m;

p2—0 d[llg hmu2_>() B_,u%

During the limitation we can consider the taylor series expansion of p; and employ

diuy
Nl(/’@)’m:(w = Ml(ﬂ?)‘ﬂzzo + d_ug - (;Lg — 0)
We know
p1(p2 = 0) = 0.

]

So, take p; as 94 fo during the limitation. In order to reduce the complex visu-
=0

duo 1o
alisation, take

_dm

xr = .
d:u2 p2=0

Thus we have

lim Cdp 2N hapsa® + 6N haat s + (1= ha) (= (4N + 60 p3)
w20 dpy  6AZhyapd + 6XA2hyr2pud + ANZhyadpd + (1 — hy)(=202u3)

d

Now observe that —%L is actually limiting to —x while us is approaching to zero. If x

dyio
equals to zero, then we have:

1 — h)(—4N%
lim — % = =) A2“§)=2
A2 ap T T k(2
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We can easily see that there is a contradiction because we have

0=2
assuming
di
2 p2=0
So, this assumption is wrong. Also we can not have a negative value of Z—Z; because
p2=0

this would imply that when us increases starting at zero then p; has a negative value,
but we know (g2 > 0) must be positive due to Descartes rule of sign satisfying the

Equation (3.1). In short, %}’j—; can only be a positive number. Now let us examine
o

2=0
as we have done for % above. O

d?p
d,u%

the behaviour of

Proposition 3.5. When we have puy — +00, py has an asymptotic positive value.

Proof. Tf pig — +00, then the queue with second server behaves like a M/M/1/1 queue,

so 1 becomes 711 ( — ¢y 1 using M/M/c/K formulas for stationary probabilities.

A
A-p1 )

Let’s take the first and second derivatives of m; as

d7I'1 )\7"1 )\7"1#1

= — —C
dpn A+m A+m)?
d27T1 —2/\7"1 2)\7”1,&1

= + :
dupi A+ m)? (A4 m)?

We can observe that m; has an concave function with respect to p; when o is at

infinite, so we already know p;(pue2 > 0) must be positive by Descartes rule of sign

regarding (3.1) and we have just found that p; take a unique positive value when s

is at infinite that means whereas ps is going to infinite x; must converge to a positive

value. O
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&

must be
d,u,%

Proposition 3.6. If d;:; s positive at some point while py > 0, then
2

positive for all s > 0, or [f% is negative at some point while py > 0, then % must

be negative for all ps > 0.

Proof. Let’s recall that 117 can be written as a smooth function of us again by Descartes
rule of sign where the smoothness comes from the fact that for each given positive us
we derive pp values from the unique positive root of polynomial in the Equation (3.1).
While we have a fixed A and are approaching to any positive py from both left and right,
we are actually approaching to same value of the coefficients belong to the Equation
(3.1) that means during the limitation with respect to us on both sides we reach same
polynomial structure and we obtain same unique positive root for mu; satisfying the
Equation (3.1). Thus we can infer that polynomial structure ensure the smoothness
of p1(p2) where s > 0, that is why we can include the first and second derivative of
p1(po). Now let’s glance at the Equation (3.3) and take ordinary derivative on both

sides regarding po, what we obtain is

5 0%my /827r1 0%my 827r1/
O _ (Dm0 o Gl it
2 827T1 2 8271'1 2

O ( 3 ) ( o3 )

2 . . . 2
If we assume that %ﬂ’é—l can be negative at some point for gy > 0 while %}% can also
2 2

d?p
3

be positive at other point for us, > 0, then must be equal to zero at some point

to > 0. Define

8277'1

- Op10ps

8271'1

y="°2"1
I

_dm
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Thus, we have

X
2 _ 7
Y
and due to our assumption
XY -XY' =0
must be satisfied. So we can write
X X g dX
Yy oy 4 gy
2

Using separation of variables technique (here we take the constant as zero as an example

but whatever the constant is the division of X and Y is always positive) we find

<

log, X =log,Y = log.(=)=0

and this situation requires

but this implies that

L —z=1

X
Y
that is not meaningful because we have already proven that Z is always positive for s >
0 in the Proposition 3.3 and the Proposition 3.4. In short we have a contradiction, and

d?py
d,u,%

can not be zero for any uy, > 0, thus we have proven our current proposition. [J
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2
d,u%

Proposition 3.7. s negative for all ps > 0.

d?p

L can not be zero
dps

Proof. Depending on the proof in the Proposition 3.6 we know

d?p
d,u%

while o > 0, so if we assume that is positive for ps > 0 then py(pe — +inf)

has an infinite value due to convexity which contradicts with the Proposition (3.5).

Therefore CZiQ must be negative for all py > 0. O
2
In short, we have proven that j—ﬁ; is positive whereas % is negative for all
2

fo > 0. Now it is time to examine the Nash equilibrium for our system.

Proposition 3.8. We have at least one Nash equilibrium point in our system.

Proof. We already know that:

m1(p1, o) and oy, u2) are concave functions with respect to py and po respectively
as proved in the Proposition 3.1. Also, u1 € [0, 1 (4+00)] and p2[0, pa(400)]. Therefore
we can conclude that there is at least one Nash equilibrium by standard theorem [58]

in game theory. O]

We can also see that (0,0) point satisfies the Nash equilibrium condition in our

system due to the fact that

7T1(M1,M2 = 0) = —C1l1

and

To(p1, e = 0) = —cafio

equations has optimal profits for (u; = 0, us = 0) point, so we have
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and

p2(p1 = 0) = 0.

But we wonder if there may be multiple Nash equilibrium points?

Proposition 3.9. In a symmetric game where r1 =ry =1 and ¢; = ¢ = ¢,
(a(p2 = 0),pu2(pr = 0)) = (0,0) is the only non-negative equilibrium if r < 3c.
Otherwise, the only other non-negative equilibrium point that is given by (u*, px) where

pr = 2(/= = 1).

Proof. We know that the two following equations must be satisfied which are

8W1(M1,M2) —0
o)

aﬂz(ﬂlalﬁz) —0
e '

Two equations above yield

2Nl 13 — A
- 1ty Mo —©c

(M2 + M3+ Mo + 3o + 130)?

2\papi} — M

rA =c

(A? + Mg+ N + i + pi5p0)?

Due to symmetry at optimality we have

M1 = M2

I
=
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therefore we get

rA 22t = At =c
(A? + Au® + A + p? + p?)?

We can write the equation above as:
dep® + 12 ep + 3N (3¢ — 1) = 0.

According to second order polynomial with respect to u, roots are: ’Tg”\ + A/ % and

=22 — X/ For pi > 0 we have

___3)\4_)\ 3_T
=73 V 4c’

But for r < 3¢ we have u < 0 as a solution. O

Additionally, we can encompass similar works in above propositions so as to
analyse T, g}’j—f and %% whereas we have (1) in contrast to py(pe). In a nutshell,
we can infer that we may have multiple or only one Nash equilibrium point for our
system where there is always a strict concavity and positive slope for response functions

demonstrating an asymptotic convergence at infinity.
3.4. The Centralised Model

In this section we aim to provide some explicit explanations and demonstrate
why centralised model has a great potential to be better and more profitable than
decentralised model by Nash equilibrium. Now let us give the model pertinent to

centralised structure where r; = ro = r and ¢; = ¢ = ¢. We know our initial model is

max(my + m2)

st g, e > 0.
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However, using equal revenues and costs we can convert the model into

max(2rAPyy — 1€ — jiac)

st : M, 2 Z 0.

According to model, there are some resemblances with symmetric game we have dis-
cussed in the Proposition 3.9 but in spite of the fact that both the centralised and
decentralised models have same objectives, their feasible regions are different because
in the centralised model p; > 0 and s > 0 are independent on each other but in the
decentralised model we need have some connection between p; > 0 and gy > 0 on a
functional basis recalling that u is a unique positive root of the Equation (3.1) by
Descartes rule while ps > 0. Therefore the feasible space of the centralised model is
larger than the decentralised game and optimal point of the centralised model is larger

than or equal to the decentralised model.

Now examine the hessian matrix of objective function in centralised model setting

2rAPyy — pic — poc = M and what we have is

o, H
V2N — 1,1 1,2
Hyy Hio
= 2r N2\ (—=3pi g — 3} — 3papis — 3\papig — f13)
’ (Mg + Mg+ A pao + pipe + p5p)?
Heo— Ho o — 2r N2\ 3 a3 (pa iz + Ay + 3\ pto)
1,2 — 2,1 — A\ 2 A\ 2 A 2 2 3
(Apd + Apz + Apapis + pips + pzpn)
Y 2r N2 (= — 3pdpg — 3papd — 3y pa — 3Mu3)

(A? + A+ N + pipia + pi5p)?

Proposition 3.10. Hessian matriz of M is a negative semi definite matriz while p; >

0 and ps >0 .
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Proof. 1f hessian matrix of M is a negative semi definite matrix, then we have a concave
objective function in the centralised model. Therefore we need to analyse i’ M i where

(i is an arbitrary vector whose dimensions are p; and .

. . H1 H1,1 H1,2
it Mji = (,Ul ,Mz)
M2 Hy, Hys

= (i Hy + 2papoHy o + pi3Ho

where we have

PEH 1 = 28N (=6 — 6N iy — Aty — X1y — 2M\pu3p0)
21 pioHy o = 2r NANp g + 1222 g + 12071 i)

pHs o = 2r N2 g — ATy — 6Ap iy — 6A i — 6X° 1 pas).

As we can see that while p; > 0 and py > 0, it M i is lower than or equal to zero that

means concavity. O

Proposition 3.11. For the centralised model above, the optimal value may be strictly
greater than the optimal value of the decentralised model with symmetric game in the

Proposition 3.9 where r > 3c.

Proof. We can write an equivalent model for our centralised model as

min(—2rAPy + p1c + pac)

st : M1, 2 Z 0.

Initially, let’s reduce the feasible region of our centralised model adding = p1 = o >

0. Thus, by adding a little bit manipulation we can convert our centralised model into

min(2cp — 2rAPyo)

st —p < 0.
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Also observe that the objective function of the centralised model above is convex in
feasible region. In addition, our constraint is linear that means Slater condition is

satisfied, so construct the Lagrange dual function with the Lagrange multiplier § where

32

L = 2cp — 2Nl — —28

) — 6.

We can express that the optimal value of the Lagrange dual function is equal to the
optimal value of model above due to the fact that both the convex structure of model
and Slater condition are satisfied. Now let’s write the optimal conditions of model

using the Lagrange dual function

4

%ZQC—QTAM%—
=0
O =20
0>0
p = 0.

Applying some operations we can have

8cu® + 24 cp 4 18M%c — 6M%r — 9N%0 = 0.

Actually we have a second order polynomial with respect to p as au? + by + ¢ = 0, so

in order to find the roots we need discriminant that is:

b? — dac =5T6)*c* — 4(144\°c* — 48\%cr — T2)\0)

=576\2c? — 57602 + 192)\%cr + 288\

Due to r > 3¢ we have

—BT6A2c? + 192)2¢%r > 0.
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Thus, the magnitude of the discriminant is guaranteed to be larger than b in the

polynomial, therefore we have only one positive root that is

—3A n 3N n 7200
2 4c 196¢

As we can observe that if § > 0, then fu is always strictly greater than zero, but
if # = 0 then we satisfy 8§ > 0, p > 0, fu = 0. So, we have actually reached the
optimal point and value for the centralised model where py = py = p. The positive
root we have just found is totally same with the positive root we have found in the
Proposition 3.9 that includes symmetric game. In short, even if we reduce the feasible
region of the centralised model we obtain the same optimality with the decentralised
model that includes symmetric game. Thus, the optimality of the centralised model
may be strictly larger than the decentralised model that involves Nash equilibrium

solution with symmetric game. O]

3.5. Numerical Results

In this section we aim to present our work we have done so far for capacity game
chapter on some visual basis and we actually confirm our analytical results using some

simulations.

In the Figure 3.2 we have two distinct Nash equilibrium points where there is a
symmetric game involving r; = ry = r, ¢; = ¢3 = ¢ and r > 3¢ as we have proved in the
Proposition 3.9. However, in the Figure 3.3 we have only one Nash equilibrium points
where there is a symmetric game involving r; =1, =1, ¢; = ¢ = c and r < 3¢ as we
have again proved in the Proposition 3.9. Nevertheless, in the Figure 3.4 we can observe
that we have two distinct Nash equilibrium points where there is a unsymmetric game

involving ry # ry, ¢1 # co.
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In addition, we should pay attention to the fact that pui(u2) and po(p) have
concave structures where their slopes are always positive and asymptotically converge

to a positive values as we have proven in the the Proposition 3.3, 3.4, 3.5, 3.6 and 3.7.

15
I

ul
10
]

u2

Figure 3.2. Symmetric Game with Two Nash Equilibriums.

15
I

ul
10
]

u2

Figure 3.3. Symmetric Game with One Nash Equilibrium.
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u2

Figure 3.4. Unsymmetric Game with Two Nash Equilibriums.

41
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4. ONE LOSS SYSTEM AND M/M/1 QUEUE WITH
SIMULTANEOUS ARRIVALS: PERFORMANCE
EVALUATION

4.1. Summary of Chapter

In this chapter, we focus on some notions and concepts which are not significantly
included in the third chapter. In the previous chapter we mainly dealt with optimiza-
tion processes based on service rates, but now we highly focus on some performance
measurements of our new system such as steady state probabilities and expected profits.
We analyse the system which consists of M/M/1/1 and M/M/1 queues where simul-
taneous arrivals exist with poisson process and servers are exponential distributed. If
the capacitated queue is not idle in the queuing system upon an arrival to that system,
then simultaneous arrivals are lost. We examine the system employing matrix geo-
metric method that is aimed at deriving the steady state probabilities of the system.
Additionally, we find the conditions that make the system be both irreducible and
positive recurrent so as to ensure stability that is necessary to reach the steady state
probabilities. Undoubtedly, the R matrix is so crucial to matrix geometric method and
it needs to be found to obtain the stationary probabilities. Thus, we use the recursive
technique to reach the R matrix under stability conditions. Nevertheless, we also apply
a special case of R matrix that is capable of reducing large amount of computation dur-
ing recursive operations and we compare the results of two distinct approaches during

the computation of rate matrix.
4.2. Model and Analysis

Modelling the system with Markovian structure we obtain the following figure
where the state space is (X7, Xs) while X; can have all non-negative integers and Xs
can only have 0 or 1 setting that X; is the number of customers in the first M/M/1

queue, X3 is the number of customers in the second M/M/1/1 queue. Thus, we have an
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infinite number of states. Additionally, all states are communicating with each other
and due to the fact that we have also an infinite number of states stability can only
be ensured under some conditions. Before jumping into details we need to observe the

following Figure 4.1 to imagine the process.

Figure 4.1. Model of One Loss System and M/M/1 Queue

In the Figure 4.1 we can observe that there is a quasi birth death process and
each pair of states are communicating because of irreducibility. However, we have
infinite number of states therefore, positive recurrent states must be provided satisfying
stability condition which involves A, uq, ps. Now let’s take a glance at the generator

matrix in the Figure 4.2.
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(0,0)(0,1) (1,0)(1,1) (2,0)(2,1) (3,0)(3,1)

A, A, Ay

<O’ O) BOO AO
(0,1)
(1,0) A, Ay Ao
(1,1)
Q2 =
(2’ O> AQ Al A()
(2,1)
(3,0)
(3,1)

Figure 4.2. Generator Matrix

In the Figure 4.2, the generator matrix consists of only By, Ag, A1, A5 that are

matrices with two rows and two columns. Now let’s give the entities of those matrices

as
.
By =
M2 — 2
0
Ay — M1
0 m
—(A+ 0
A, = ( f1)
142 —(p1 + pi2)
0 A
Ay =
00
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We also consider £ vector as an steady state probability vector in the following as

5T2<500 So1 S0 & S0 & )

— (& & )

actually where

sz = (fz'o §i>

indicating that &; is the stationary probability vector of i*" level of the system and &;
or & are the stationary probabilities of i level with 0" sub-level or i** level with
1*" sub-level respectively. The level indicates the number of customers who belong to
M/M/1 queue and the sub-level shows whether or not the M/M/1/1 system is idle.

The solution form of quasi birth death process can be deemed as
& =¢" R (4.1)

by G.Latouche and V.Ramaswami[58] where i > 1 and R is a matrix with two rows
and two columns which indicates the expected time of visits to level ¢ between two
visits to level ¢ — 1 whereas the states of the irreducible system are positive recurrent.

Let’s give the balance equations in the following:

¢7'Qy =0
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that implies

& B+ & A3 =0
ETA+ETAL + €54, =0
TA +E A +E6 A, =0

€8 Ag+ €5 A+ €L Ay = 0.

Merging the balance equations above and the solution form we mentioned before to-

gether what we obtain is

£ By + & Ay =0

XAy +€T(A + RAy) = 0.

Nevertheless, we need to include the normalisation equation, thus defining

what we have is

& Boo+ &1 Ay =0

& Ao+ & (A1 + RA) =0

iggs_ 1.
n=0

We can also convert the last equation above into

S+ (ER+EER* )5 =1
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which means
&GS+ (> _RMS=1.
n=0

We need to express that the elements of R matrix has to be greater than or equal to
zero by its nature [59], also recall that we have an irreducible and positive recurrent
case. Therefore, we need to have R"7%>° = 0 in order to ensure the Equation (4.1).

Let’s continue with the application of some algebric operations:

) RYR=R+R*+R*+---

n=0

= iR” - (iR")R: I
n=0 n=0

= i R*(I—-R)=1
n=0

— (I-R)'= iR”.
n=0

Thus, using the equations above we can express that
ES+EUI-R™ =1

In short, using the following system of linear equations we can reach the steady state

probabilities:

B A
(£oT €1T> Aoj (A1+;A2) :<0 0)

(& &) =1
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As we can observe that recalling the sub-levels we actually have four unknowns
with five linear equations, so we can discard one of those equations and find & and &
vectors. Afterwards, using the Equation (4.1) that is introduced by G.Latouche and
V.Ramaswami [59] we accomplish to find the other steady state probabilities belong

to other levels or sub-levels.
4.2.1. Recursive Technique

It is obvious that we need to derive what R matrix is. Therefore, initially we
apply a recursive technique to obtain that matrix using R?2A, + RA; + Ag. We need

to have a irreducible and positive recurrent system as well as have
ijAo + ijRAl + S;FRQAQ =0

with 7 > 0 which results from the balance equations with the deployment of the
Equation (4.1) for all @ > 1. So, R*A; + RA; + Ag has to be zero. The recursive
technique we deploy according to [60] is based on the following equations in the Figure

4.3.

R(0)=0;

for k =1to K do
n==k;
R(n) = —(Ay + R2(n — 1) As) A" ;
n=n+1;

end for

Figure 4.3. Recursive Algorithm for R matrix.

Proposition 4.1. Recursive algorithm in the Figure 4.3 always converges for A > 0,

>0 and py > 0.



Proof. Let’s write the recursive operations in the following:

where we have

=V — (V21 2V3W + VWHW
= -V — (V+ VW +2V3W? + VW)W

0

1
_Al—l — (A+p1)

12 1
Mp1)(pitp2)  (p1tpe)

Al A
—_V = —AoAfl — | Otp)(patpz)  (p1tpe)
0 0
H1 0
W = —A, AT = (A1)
! P12 p

(A Fpr)(patpe)  (p1tmpe)
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It can be seen that during the calculation of R(n) the power of the V and W

gradually increase, but because of the fact that the eigenvalues all of which are at the

diagonal of lower or upper triangular matrices are strictly less than 1 whereas A > 0,

p1 > 0 and po > 0 we can express that the infinite power of V' and W converge to zero

matrix. Thus R(n — 4o00) has to be a finite matrix and has to converge.

]

Proposition 4.2. All R(n) matrices has non-negative elements during the recursive

algorithm in the Figure 4.3 while A > 0, py > 0 and ps > 0.

Proof. We apply induction proof for our proposition. So, initially assume that R(n +
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1) > R(n). Thus we have

R(n+2) = —(Ag+ R*(n+1)Ay) AT
> —(Ao+ R*(n)A) A!

= R(n+1).
But we already know that
R(0) =0
and
Ap2 A
R(1) = (AMp)(pitpz2)  (B1tp2)
0 0

implying that R(1) > R(0), thus we can express that our induction is consistent. [

4.2.2. An Approach for Our Type of A, Matrices

During the usage of the recursive technique to reach the R matrix under stability
conditions we may require large amount of computation. In order to alleviate that
problem we can also apply a special case of R matrix as well as recursive operations
referring to Adan et al. [61]. Now, let’s show how to construct a special case of Ag in

our system.

Assume that



where w and [ are non-negative two dimensional vectors whereas

ple =1
and
1
e =
1
We know that
0 A
Ay =
00
So we can set
A
/LU =
0

and

Bz(o 1).

Recalling our recursive iterations we can write
R(n) == —A()Al_l - R(n — ].)2142141_1,

where

o1
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and all

Thus,

R(1) = —AgAT = wal

where a; is a nonnegative vector. Because A; is a diagonally dominant matrix having

negative diagonals —A; " is a nonnegative matrix as in the following:

1
—AT = (A+p1) 0
H2 1

AFp1)(pr+p2)  (p1tpe)

In addition, —A,A;" is also a nonnegative matrix because of the structure of —A;"

and we have:

( M1 ) 0
-1 _ A
142 K1

(Mrpn)(patp2)  (patpe)

Therefore we can write

R(2) = wal — R*(1) Ay A7}
= wai +walwa] — Ay AT

T
:wa2,

where ay is a nonnegative vector. It can be seen that all R(n) can be written in the
form like R(2) and R(1). Then we can express that the R matrix we are looking for

can be written as R = wa’ where a is a nonnegative vector. If R = wa” is employed,
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then we can write the following:

R = wa"wa"wa"wa” - - - wa®
= w(a’w)(a’w)(aw)(a” - - w)a®
= w(a"w) " ta”

— (aTw)i—lwaT

= (a"w)" ' R.

Now, multiplying the both sides of the last equation above with the eigenvector of R

what we have is:

R'v = (a"w)" ' Ruv
= ¢' = (a'w)''q

— qz’—l — (CLTw)i_l.

So, we can write a’w = ¢ where ¢ is one of the eigenvalue of R matrix and v is the

eigenvector.

We need to state that the rank of R matrix is one because all the rows are linearly
dependent due to the wa® structure. If a matrix has one rank, then it can not have
any complex eigenvalues because of the fact that complex eigenvalues exist in pair and
this make matrix rank at least two therefore there is either only one non zero real
eigenvalue or just zero eigenvalue in this case. However, if all eigenvalues are zero this
situation makes R matrix illogical because any power of R matrix equals zero and some
steady state probabilities become exactly zero according to the Equation (4.1) but this
creates contradiction in the irreducible and positive recurrent system. Therefore we

need to focus on non-zero eigenvalue. Now recalling the equation

R?As + RA; + Ay =0
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and merging that with the equation

Ri — qi—lR

we obtain

R = _AO(qA2 + Al)_l.

It is already known that

=a’w >0

but we can observe that if ¢ < 1, then (¢As + A;) becomes a diagonally dominant
matrix which is an invertible matrix as all diagonally dominant matrices. Because q is

an eigenvalue of R we have

det(R—ql) =0
= det(—Ao(qAy + Ay) ™! — ql)
= det(—Ao(gAs + A1)~ — q(qA2 + A1) (g A2 + Ar))
= det(Ay + ¢* Ay + qA1)det(—(qAs — A)) 7Y

— d€t(A0 + q2A2 + qu) = 0.

Therefore, we need to examine whether or not the determinant of Ay + ¢?As + gA; is

zero whereas 0 < ¢ < 1.

During the operations in both the recursive method and the special case we
assume that the system is irreducible and positive recurrent, we already know the

system is irreducible but we need to find the condition of stability so as to have positive
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recurrent states. By G.Latouche and V.Ramaswami [59] we can deploy

al'4pS < o AyS

where « is the steady state probability vector derived from

alA=0
and
alS =1
while
A A
A=A+ A +A =
Ho  —H2
and
1
S —
1
Therefore we can set
1 0
Aol = ppat
0 1
alS =1.
Thus, we have
A
(AM-p2)

M2
(Ap2)
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If a”AyS < o A58, then we have

A pap Ap
<O ()\—sz)) S < ((Ajr/fz) (Aﬂiz)) 5
which implies

e < papi + Apr.

Now let’s find the expected profits according to the stationary probabilities we
have found for our quasi birth death system. Beginning with M/M/1/1 queue define
that P(X, = 1) is the stationary probability of having one customer in M/M/1/1

queue:

PXo=1)=&m+&u+&n+ -
0

0 0
o B R N R I
1 1 1

0 0 0
=& | JFtQR| | FGR| |
1 1 1

= UI+R+R+--)
1

> 0
=& (R
n=0 1

—au-r "
1
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Therefore we can write

o = MzP(X2 = 1)7‘2 — H2C2

0
= by (I — R)™! T2 — [2Ca.

Now, it is time to find the expected profits of M/M/1 queue defining P(X; = n)

is the stationary probability of having n customer in M/M/1 queue, and we have

m™ = [1,1(1 - P(Xl == 0))7"1 — U1Cq

= m(1 =& S)ry — mer.

4.3. Numerical Results

In that part, we compare both the recursive technique and the special case of Ay
during the calculation of R matrix. We present some results showing that R matrix
does not change according to those techniques whereas involvement of the stability
condition exists. We also display some results pertain to how R matrix changes with
or without the stability condition based on A, 1, o. Therefore, we created the Table
4.1 of results belong to the recursion technique in the Figure 4.3 for a given A, ul, uo.
In the Table 4.1, it can be seen that if our input values satisfy the stability condition
that is Aug < pipa + Apq, then the diagonal elements of R matrix has nonnegative
values that are strictly less than one. Because of the fact that R matrix has to be
an upper triangular matrix for our system all eigenvalues of R matrix lie along the
diagonal. Thus, the infinite power of R matrices resulted from our recursive method
involving stability condition have to converge to zero matrix and this circumstance
is totally consistent the Equation (4.1) for ¢ > 1 whereas irreducibility and positive
recurrent states exist. But the infinite power of other R matrices whose diagonals are

not strictly less than one can not converge to zero.



Table 4.1. Results of Recursive Method.

Inputs as A, ul, u2

Outputs as R Matrix

0.0517 0.1483

Experiment 1 1,5, 2
0 0
0.1566 0.6434
Experiment 2 4,5, 2
0 0
0.2590 1.0744
Experiment 3 8, 6,3
0 0
1 0.8889
Experiment 4 8, 1,9
0 0
1 24
Experiment 5 12,2, 5
0 0
1 1.2353
Experiment 6 21, 3, 17
0 0

piqt + (=207 — ppe — Min)@® + (A + Ao + 1} + pain)g® + (—Apz)g = 0.

Therefore, we can embed that root into the equation that is

R = —Ao(QAQ + Al)il

o8

Recall that for the special case of Ay we need to find whether or not the determi-
nant of Ay + ¢2As + qA; is zero whereas 0 < ¢ < 1. Here we can turn our determinant

structure into a polynomial structure regarding A, ul, u2. As a polynomial what we

We also created the Table 4.2 of results belong to the special case for A, in the Figure
4.3 for a given A, ul, pue. As we can see in the Table 4.2 possession of parameters

that ensures stability yields a root that is strictly less than one and greater than 0.
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which we derive for the special case of Ay matrix in our system and find the same R

matrices as in the recursive method.

Table 4.2. Results of Special Case for Ay.

Inputs as A, ul, 42 | Outputs as Polynomial Roots
Experiment 1 15,2 (0.0517 0 1 1.5483)
Experiment 2 4,5, 2 <0.1566 01 2.0434>
Experiment 3 8, 6,3 <0.2590 0 1 2.5744)
Experiment 4 81,9 (1 0 6 12)
Experiment 5 12, 2,5 (1 0 2 7.5>
Experiment 6 21, 3, 17 (1 0 4.1823 9.4843)
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5. CONCLUSION

In the scope of this thesis, we first focus on two loss systems consisting of two
M/M/1/1 queues where simultaneous arrivals exist with a Poisson process and servers
are exponentially distributed. Modelling and solving our case we show the potential
difference between two stationary probability vectors that belong to the case with
simultaneous and independent arrivals. We also examine the Nash equilibrium of our
system where the maximisation of profits are aimed for each queue in existence of fixed
arrival rate as well as the slope and concavity of response functions based on server
rates under some assumptions. Additionally, giving an example it is analytically shown
that the centralised model in which the independent nonnegative server rates exist may
have an optimal point strictly greater than the decentralised model. Finally, we manage
to validate our analytical results with the numerical results. We can demonstrate the
behaviour of slopes, concavity and the asymptotic structure of the response functions as

well as the fact that two Nash equilibrium may not be satisfied under some conditions.

Secondly, we examine the system which consists of M/M/1/1 and M/M/1 queues
where simultaneous arrivals exist with a Poisson process and servers are exponentially
distributed. Applying the matrix geometric method we find the steady state probability
vector as well as the expected profits in our system. Due to the fact that the R matrix
plays a crucial role during the calculations we present two distinct techniques so as to
derive the R matrix. We accomplish to prove that those techniques enable us to acquire
the R matrix as it should be under the stability condition. In addition, by employing
some experiments where we compare the outputs of those techniques for a given input
we achieve to validate that those techniques yield the same R matrix and stationary
probabilities under the stability condition. Furthermore, we obtain the expected profit

generated by each queue benefiting from those probabilities.

As a future work, one can focus on a more detailed and generalized version of the

third chapter including loss systems more than two. Thus, more complex cooperative



61

and non-cooperative games can be examined where there is a competition between
groups of players and no allowance for agreement respectively. Also, it can be assumed
that simultaneous arrivals do not always exist involving that consecutive arrivals are
correlated or there is a probability that arrivals are coming to the system simulta-
neously. Additionally, one can prefer to enlarge our system that exists in the fourth
chapter creating sublevels more than one which requires a high dimensional quasi birth
death process. The assumption of simultaneous arrivals also can be changed and more
advanced methods may be employed to reach steady state probabilities, expected prof-

its and other performance measurements such as expected waiting times.
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