
STATISTICAL POSTPROCESSING OF LOCAL NUMERICAL WEATHER

PREDICTION MODEL FORECASTS USING DEEP LEARNING

by

Yaşar Harun Kıvrıl

B.S., Industrial Engineering, Boğaziçi University, 2020

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor

Mustafa Gökçe Baydoğan for his invaluable guidance, support, understanding, and

patience. Without his continuous effort, it would be impossible to complete such a

study.

My gratitude extends to the Algopoly team for their support. Especially I owe

special thanks to my colleagues Burak Tabak, and Uğur Parkın for their friendship,

motivation, and generous help.

I would like to thank my partner Ceren Cinek for always being there. Her endless

support was precious in this course and more.

I also would like to thank my close friends Mustafa, Salih, and Haki for their

motivation and help. Their support helped me a lot to go through stressful days.

Last but not least, I would like to thank my family for their indispensable love,

support, and understanding. I appreciate their encouragement and their confidence in

me. My sister, Betül deserves special thanks for cheering me up with Azu photos every

day.

iv

ABSTRACT

STATISTICAL POSTPROCESSING OF LOCAL

NUMERICAL WEATHER PREDICTION MODEL

FORECASTS USING DEEP LEARNING

Accurate weather forecasts play a crucial role in many decision-making processes.

Currently, the main supply of weather forecasts is numerical weather prediction (NWP)

which solves physical equations to predict future states of the atmosphere. However,

the NWP models are prone to rapidly growing errors from the initial states, boundary

conditions, and model structures. In order to fix these systematic errors in the fore-

casts, statistical postprocessing methods are used. In this study, three alternative deep

learning architectures are proposed to statistically postprocess Global Ensemble Fore-

casting System (GEFS) forecasts of the Aegean Region of Turkey. The postprocessing

is done to multiple weather variables at multiple pressure levels. The input and output

structure of the models also introduced an extrapolation capability. The models are

trained with sixteen years of data, and the hyperparameters are tuned with one-year

validation data and tested over the last three years. The results are investigated from

the variable, pressure level, and location aspects. Fully convolutional and its U-Shaped

extension present promising results in every aspect. The U-Shaped architecture is cho-

sen over the others considering its lower mean, and lower variance in error distributions.

Also, the error distribution of extrapolated values validates the extrapolation capabil-

ity of the model. Finally, a case study on wind power forecasting of 19 power plants

shows that the method obtains better forecasts in a real-world application.

v

ÖZET

BÖLGESEL SAYISAL HAVA DURUMU TAHMİN

MODELLERİNİN TAHMİNLERİNİN DERİN ÖĞRENME

KULLANARAK İSTATİSTİKSEL ARDİŞLEMESİ

Doğru hava tahminleri, birçok karar verme sürecinde çok önemli bir rol oy-

namaktadır. Şu anda hava tahminlerinin ana kaynağı, atmosferin gelecekteki du-

rumlarını tahmin etmek için fiziksel denklemleri çözen sayısal hava tahmin (NWP)

modelleridir. NWP modelleri, başlangıç durumlarından, sınır koşullarından ve model

yapılarından kaynaklı hızla büyüyen hatalara sebebiyet verebilmektedir. İstatistiksel

ardişleme yöntemleri tahminlerdeki bu sistematik hataları düzeltmek için kullanılan

yöntemlerden biridir. Bu çalışmada, Türkiye’nin Ege Bölgesi’nin Global Ensemble

Forecasting System (GEFS) tahminlerini istatistiksel olarak ardişlemek için üç alter-

natif derin öğrenme mimarisi önerilmiştir. Ardişleme, çoklu basınç seviyelerinde çoklu

hava değişkenlerine yapılmıştır. Ayrıca, modellerde kullanılan veri yapısı modellere

bir ekstrapolasyon yeteneği vermiştir. Modeller on altı yıllık verilerle eğitilmiş, hiper-

parametreler bir yıllık doğrulama verileriyle ayarlanmış ve son üç yılda test edilmiştir.

Sonuçlar hava durumu değişkeni, basınç seviyesi ve konum yönlerinden incelenmiştir.

Tamamen evrişimli model ve onun U-Şekilli uzantısı, analizlerde umut verici sonuçlar

sunmuştur. U-Şekilli mimari, hata dağılımlarında daha düşük ortalama ve daha düşük

varyans içermesi sebebiyle diğer modellere tercih edilmiştir. Ayrıca, tahmin edilen

değerlerin hata dağılımı, modelin ekstrapolasyon kapasitesinin etkisini göstermiştir.

Son olarak, 19 enerji santralinin rüzgar enerjisi tahmini üzerine bir vaka çalışması

yapılmış ve yöntemin gerçek hayattaki bir uygulamada daha iyi sonuçlar ortaya çıkardı-

ğı görülmüştür.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xiv

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 4

3. BACKGROUND . 7

3.1. Tensors . 7

3.2. Artificial Neural Networks (ANN) . 7

3.2.1. Multi-Layer Perceptron (MLP) 11

3.2.2. Convolutional Neural Network (CNN) 11

3.2.3. Skip Connections . 13

3.3. Penalized Regression Approaches . 14

3.4. Performance Metrics . 15

3.4.1. Mean Squared Error (MSE) . 15

3.4.2. Weighted Mean Absolute Percentage Error (WMAPE) 15

4. METHODOLOGY . 16

4.1. Data . 16

4.1.1. Data Sources . 17

4.1.1.1. Global Ensemble Forecasting System (GEFS) 17

4.1.1.2. ECMWF Reanalysis 5th Generation 17

4.1.1.3. Wind Power Generation 18

4.1.2. Data Preprocessing . 18

4.1.2.1. Variable-Level Selection 18

4.1.2.2. Region Selection . 19

vii

4.1.2.3. Scaling . 20

4.1.2.4. Tensor Shaping . 20

4.2. Proposed Architectures . 21

4.2.1. Multi-Layer Perceptron (MLP) 21

4.2.2. Fully Convolutional Artificial Neural Network 22

4.2.3. U-Shaped Artificial Neural Network 23

5. EXPERIMENTS . 26

5.1. Modeling Pipeline . 26

5.2. Hyperparameter Tuning . 28

5.3. Wind Power Forecasting . 28

6. RESULTS . 31

6.1. Multi-Layer Perceptron . 31

6.1.1. Variable-Based Performance . 32

6.1.2. Variable-Pressure Level-Based Performance 33

6.1.3. Variable-Location Based Performance 36

6.1.4. Variable-Month Based Performance 38

6.2. Fully Convolutional Artificial Neural Network 41

6.2.1. Variable-Based Performance . 42

6.2.2. Variable-Pressure Level-Based Performance 42

6.2.3. Variable-Location Based Performance 45

6.2.4. Variable-Month Based Performance 47

6.3. U-Shaped Artificial Neural Network . 50

6.3.1. Variable-Based Performance . 50

6.3.2. Variable-Pressure Level-Based Performance 51

6.3.3. Variable-Location Based Performance 53

6.3.4. Variable-Month Based Performance 56

6.4. Comparing Architectures . 57

6.5. Extrapolation Capability of the Best Model 58

6.6. Wind Power Forecasting . 59

7. CONCLUSION . 62

REFERENCES . 64

viii

APPENDIX A: WIND FARMS METADATA 71

ix

LIST OF FIGURES

Figure 3.1. Illustration of scalar, vector, matrix, and tensor. 7

Figure 3.2. Demonstration of a single artificial neuron. 8

Figure 3.3. Applying dropout to a standard neural network [40]. 11

Figure 3.4. Demonstration of an example MLP [40]. 11

Figure 3.5. Demonstration of a convolution operation in 2D [40]. 12

Figure 3.6. Skip connection example. 13

Figure 4.1. Selected region. 19

Figure 4.2. Input and output schema. 21

Figure 4.3. MLP architecture. 22

Figure 4.4. Fully convolutional ANN architecture. 23

Figure 4.5. U-Shaped ANN architecture. 24

Figure 5.1. Train validation and test periods. 26

Figure 5.2. Location of the selected farms in the selected region. 30

Figure 6.1. MSE performance of MLP model for each variable. 33

x

Figure 6.2. MSE performance of MLP model for variable tmp at each pressure

level. 34

Figure 6.3. MSE performance of MLP model for variable u at each pressure level. 34

Figure 6.4. MSE performance of MLP model for variable v at each pressure level. 35

Figure 6.5. MSE performance of MLP model for variable w at each pressure

level. 35

Figure 6.6. MSE performance of MLP model for variable tmp at each location. 36

Figure 6.7. MSE performance of MLP model for variable u at each location. . 37

Figure 6.8. MSE performance of MLP model for variable v at each location. . 37

Figure 6.9. MSE performance of MLP model for variable w at each location. . 38

Figure 6.10. Month-based performance of variable tmp in MLP architecture. . . 39

Figure 6.11. Month-based performance of variable u in MLP architecture. . . . 39

Figure 6.12. Month-based performance of variable v in MLP architecture. . . . 40

Figure 6.13. Month-based performance of variable w in MLP architecture. . . . 40

Figure 6.14. MSE performance of fully convolutional model for each variable. . 42

Figure 6.15. MSE performance of fully convolutional model for variable tmp at

each pressure level. 43

xi

Figure 6.16. MSE performance of fully convolutional model for variable u at

each pressure level. 43

Figure 6.17. MSE performance of fully convolutional model for variable v at

each pressure level. 44

Figure 6.18. MSE performance of fully convolutional model for variable w at

each pressure level. 44

Figure 6.19. MSE performance of fully convolutional model for variable tmp at

each location. 45

Figure 6.20. MSE performance of fully convolutional model for variable u at

each location. 46

Figure 6.21. MSE performance of fully convolutional model for variable v at

each location. 46

Figure 6.22. MSE performance of fully convolutional model for variable w at

each location. 47

Figure 6.23. Month-based performance of variable tmp in fully convolutional

architecture. 48

Figure 6.24. Month-based performance of variable u in fully convolutional ar-

chitecture. 48

Figure 6.25. Month-based performance of variable v in fully convolutional ar-

chitecture. 49

xii

Figure 6.26. Month-based performance of variable w in fully convolutional ar-

chitecture. 49

Figure 6.27. MSE performance of U-Shaped model for each variable. 51

Figure 6.28. MSE performance of U-Shaped model for variable tmp at each pres-

sure level. 51

Figure 6.29. MSE performance of U-Shaped model for variable u at each pres-

sure level. 52

Figure 6.30. MSE performance of U-Shaped model for variable v at each pres-

sure level. 52

Figure 6.31. MSE performance of U-Shaped model for variable w at each pres-

sure level. 53

Figure 6.32. MSE performance of U-Shaped model for variable tmp at each lo-

cation. 54

Figure 6.33. MSE performance of U-Shaped model for variable u at each location. 54

Figure 6.34. MSE performance of U-Shaped model for variable v at each location. 55

Figure 6.35. MSE performance of U-Shaped model for variable w at each location. 55

Figure 6.36. Month-based performance of variable tmp in U-Shaped architecture. 56

Figure 6.37. Month-based performance of variable u in U-Shaped architecture. 56

Figure 6.38. Month-based performance of variable v in U-Shaped architecture. 57

xiii

Figure 6.39. Month-based performance of variable w in U-Shaped architecture. 57

Figure 6.40. Distribution comparison of GEFS, postprocessed values, and ex-

trapolated values of U-Shaped model. 59

xiv

LIST OF TABLES

Table 4.1. Selected variables, levels and region. 19

Table 4.2. Summary of proposed architectures. 25

Table 5.1. Training parameters. 27

Table 5.2. Hyperparameter search space. 29

Table 6.1. MLP best hyperparameters. 32

Table 6.2. Fully convolutional architecture best hyperparameters. 41

Table 6.3. U-Shaped architecture best hyperparameters. 50

Table 6.4. MSE values for different weather sources. 58

Table 6.5. MSE values of extrapolated variables for different weather sources. 58

Table 6.6. WMAPE values for different weather sources. 61

Table A.1. Farm codes, names, and bounding boxes of the wind power plants. 71

xv

LIST OF SYMBOLS

L(.) Loss function

M Number of predictors

N Number of instances

q Specific humidity

r Relative humidity

tmp Temperature

u U component of wind

Vt Momentum values at iteration t

v V component of wind

Wt Weight matrix at iteration t

w Vertical component of wind

X Input matrix

x Input values

Y Output matrix

y Output values

ŷ Model output values

α Numerical weather prediction model

δ Momentum parameter

λ1 Penalization parameter for the absolute sum of weights

λ2 Penalization parameter for the square sum of weights

ρ Learning rate

∇ Gradient operator

xvi

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

ADAM Adaptive Moment Optimization

ANN Artificial Neural Network

CNN Convolutional Neural Network

ECMWF European Centre for Medium-Range Weather Forecasts

EMOS Ensemble Model Output Statistics

ERA5 ECMWF Reanalysis 5th Generation

GAMLSS Generalized Additive Models for Location Scale and Shape

GEFS Global Ensemble Forecasting System

GWh Gigawatt Hour

MB Milibar

MLP Multi Layer Perceptron

MSE Mean Squared Error

MWh Megawatt Hour

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction

RMSProp Root Mean Square Propagation

WMAPE Weighted Mean Absolute Percentage Error

1

1. INTRODUCTION

Weather forecasts are significant for many applications as a part of their decision-

making processes. While they are everyday commodities to plan activities for the

public, they also have specific applications in many sectors. In aviation and marine,

they are used for scheduling flights/trips and ensuring the safety of the passengers

or crews. In agriculture, they allow to plan irrigation as well as planting and harvest

times. Especially in the energy sector, the forecasts have a crucial role. The demand for

electricity is highly affected by the weather conditions. On the other side, the renewable

sources mainly generate electricity using weather events. Having an idea about the

demand and supply beforehand allows future projections of the energy market. These

projections are used for planing the energy trades and many other energy related events.

Additionally, the forecasts save lives with extreme weather predictions that warn people

about disastrous events. It is estimated that the weather forecasting services in the US

create a value of $31.5 billion per year [1]. Since the weather forecasting methods are

getting more and more accurate with time, the decisions supported by them get better

and they create more value for the people.

The main sources of accurate forecasts are the numerical weather prediction

(NWP) models. NWP models start with an initial condition and solve the atmospheric

motion equations through time to obtain the future states of the atmosphere. While

solving the equations, the models create a grid of the area of interest and provide fore-

casts for different weather variables at different vertical values on the grid (i.e value of

relative humidity variable at longitude 25.75, latitude 32.5, and 800 mb pressure level).

NWP models are published by various meteorological institutes operationally and are

widely used throughout the world. However, they are prone to errors from different

sources. Firstly, they are sensitive to the initial conditions [2]. The errors made in

the initial conditions grow rapidly and the errors make the forecasts useless after a

level. Also, boundary condition errors and model structural errors diminish the model

accuracy [3, 4]. All of these systematic and random errors grow with a snowball effect

2

due to the chaotic nature of the atmospheric dynamics. The institutes developed the

ensemble NWP systems where the forecasts consist of different initial conditions and

different model structures. The ensembles achieved to have more robust forecasts by

quantifying the uncertainties. However, even with the recent developments, the NWP

forecasts reveal systematic biases and dispersion of ensembles that need postprocessing

to enhance the forecast accuracy [5].

Statistical postprocessing methods are widely used for correcting these problems

of the NWPs. The statistical processing methods can be categorized as methods with

distribution assumption and without distribution assumption or in other terms para-

metric and non-parametric methods. Approaches that make distribution assumptions

about the forecasts, try to estimate the parameters of the distribution. Bayesian model

averaging [6], ensemble model output statistics (EMOS) [7], boosting approach [8], gen-

eral additive models for location shape and scale [9], random forests, [10] and artificial

neural networks [11] are all employed to fit parameters of a predetermined forecast

distribution. On the other side, there are methods where no distribution assumption

is made. The studies for these postprocessing methods mainly focus on quantile re-

gression and its variants [12–16]. Also, there exist analog models [17–20] and artificial

neural network models [21] that estimate directly the forecasts instead of their distri-

bution which are shown to be promising. The methods for statistical postprocessing

need to deal with some challenges. The weather events are the combination of spatial,

temporal, and multivariate relations and the output of the postprocessing model is ex-

pected to be physically viable. Also, the NWP models are continuously developed and

their new versions are released. Since these version changes affect the systematic bias,

the postprocessing method should be designed to adapt to these changes or the NWP

sources need to release the historical reforecasts of the latest version. The reforecasts

create proper training data by providing the forecasts with the same bias structure

for decades. Global Ensemble Forecasting System (GEFS) is one of the NWP models

that provide publicly available reforecasts that goes back to 2000. Lastly, the post-

processing method is required to be timely. Getting the NWP outputs already takes

reasonable time and after a long postprocess, the forecasts can become useless. Since

3

most machine learning methods can make predictions in seconds, they are considered

proper candidates for timeliness.

In this thesis, three alternative non-parametric artificial neural network structures

are implemented to postprocess multiple weather variables in a local area in the Aegean

Region of Turkey consisting of 17×19 grid points. The multivariate structure is used to

allow the networks to model the relations between variables. As input, GEFS control

reforecasts from 2000 to 2019 are used to have large training data without version

changes. Additionally, GEFS forecasts are operational which makes this postprocessing

study operationally available. Just like [21–24], ERA5 Reanalysis in 0.25◦ × 0.25◦

resolution is selected as the target. Reanalysis datasets are the corrections of weather

forecasts after obtaining the actual observations. The resolution of the ERA5 is the

same as GEFS which makes it a suitable target choice. Then, a multi-layer perceptron

structure, a fully convolutional structure, and U-Shaped skip connections added as

an extension to the fully convolutional model are tuned to minimize the mean square

error. After that, a detailed analysis of the outputs for each structure is made for

unseen data consisting of three years. Finally, a simple case study to predict wind

power generation in 19 plants in the region is made to show the effectiveness of the

postprocessing method.

This thesis is organized as follows: Chapter 2 consists of a detailed literature

review of statistical postprocessing methods. Background information about artifi-

cial neural networks, penalized regression approaches and performance metrics are

explained in Chapter 3. Chapter 4 briefly describes the methodology under the data

sources, data preprocessing, and proposed architecture headings. The experiment set-

tings for modeling pipeline, hyperparameter tuning, and wind power forecasting are

included in Chapter 5. In Chapter 6, the results of each architecture and wind power

forecasting task are discussed in depth. Lastly, the conclusion of the thesis together

with potential future works are presented in the final chapter.

4

2. LITERATURE REVIEW

The methods for statistical postprocessing can be categorized as methods with

distribution assumption and without distribution assumption. These categories are

also called as parametric and non-parametric methods. The approaches with distribu-

tional assumptions select a proper distribution family based on the weather variable

and the parameters of the distribution are related to NWP outputs using regression

coefficients. After that, the coefficients are estimated by minimizing a loss function

such as continuous ranked probability score [25]. Bayesian model averaging is used

to calibrate the forecast ensembles [6]. Ensemble model output statistics (EMOS)

as covariates to postprocess the variables [7]. A study proposes a boosting approach

for algorithmic selection of the most useful features to estimate the regression coeffi-

cients without overfitting [8]. Generalized additive models for location scale and shape

(GAMLSS) method uses additive functions to create an estimation of the distribution

parameters [9]. Another study blends decision trees and random forests to this method

to recursively partition the space and fit different forecast distributions to each parti-

tion [10]. Artificial neural networks (ANN) are used for forecast distribution parameter

estimation [10]. The flexible structure of ANNs and their ability to estimate almost any

function using a sequence of nonlinearities in activation functions make them a perfect

candidate for postprocessing tasks. This method is able to model arbitrary relations

between the predictors and the distribution parameters. Also, the kernel dressing ap-

proach [26] and fitting kernel estimations of ensemble members [27] can be counted as

a parametric approach.

On the other hand, the methods without distributional assumptions work directly

on values and try to come up with a predictive distribution to asses forecast uncertainty.

A pioneering study suggests the use of quantile regression to approximate the predictive

distribution [27]. This method allows for the estimation of specified quantile values.

Later, the quantile regression approach is further extended. The Bayesian approach is

used to regularize the model [13]. The constrained spline quantile regression method

5

is employed to extract information from all ensemble members [14]. An extreme level-

based local quantile regression method is developed to fill the insufficiency of quantile

regression in extreme values [15]. The quantile regression forest method is also used

in statistical postprocessing [15]. In this method, the quantile estimates come from

random forests. Another decision tree-based method called ecPoint is developed to

postprocess precipitation forecast for the whole world and it is currently operational

[28]. Apart from prespecified quantiles, some studies try to estimate a quantile function

of predictions. Neural networks and Bernstein polynomials are combined together to

fit a quantile function [29]. Another method tries to approximate the histogram of

the distribution using convolutional neural networks after discretizing the target [30].

Analog methods are also used for postprocessing [17–20]. These methods try to find

a similar historical case for the input. However, the computational cost of finding

an analog grows as the training sets get larger and larger. Lastly, deep learning is

used in one study to postprocesses the whole world for bias correction and uncertainty

quantification [21]. The study shows that artificial neural networks give promising

results in postprocessing tasks.

There are a few challenges in statistical postprocessing. Weather events are a com-

bination of spatial, temporal, and multivariate information and postprocessing methods

are expected to preserve these relations. Despite the analog models are automatically

solving this problem, the other methods need adjustments to have this relation. As a

method with distributional, a special multivariate distribution is proposed to preserve

the physical relationships in low dimensions [31]. On the non-distributional side, en-

semble copula coupling [32] and the Schaake shuffling [33, 34] methods are proposed

to avoid physically unrealistic outputs. Another issue is the version changes of the

NWP models. The NWP models are improving every day and new versions of the

models are released based on these improvements. However, the bias structure may

be subject to change with the new models. This makes the outputs of the previous

versions less useful for postprocessing and limits the training data. In order to have

an ideal training set, some NWPs release the reforecasts of the new versions. These

reforecasts are the historical forecasts of the new version with the previous initial con-

6

ditions. The reforecasts create proper training data for statistical postprocessing that

extends for many decades. Large-scale data also raises problems about data volumes

and timeliness. Dealing with decades of multivariate data for a large grid on different

atmospheric levels is computationally expensive. Furthermore, the postprocessing of

this data is useful if it is released on time. Therefore, the postprocessing times should

be as small as possible to allow operational usage. Machine learning methods are good

candidates for having timely postprocessed forecasts. Even though the training time

can be long, most of the algorithms make the prediction in a few seconds.

In this thesis, three different alternative artificial neural network structures are

implemented to postprocess multiple weather variables in a local area consisting of

17 × 19 grid points in the Aegean Region of Turkey. The multivariate structure is

used to allow the networks to model intervariable relations. Unlike many other studies

that focus on one or two variables at one or a few pressure levels, this thesis conducts

postprocessing in multiple variables at multiple pressure levels. As input, GEFS control

reforecasts from 2000 to 2019 are used to have large training data without version

changes. Additionally, GEFS forecasts are operational which makes this postprocessing

study operationally available. Just like [21–24], ERA5 Reanalysis in 0.25◦ × 0.25◦

resolution is selected as the target. Reanalysis datasets are the corrections of weather

forecasts after obtaining the actual observations. The resolution of the ERA5 is the

same as GEFS which makes it a suitable target choice. Additionally, ERA5 has more

time resolution and more pressure levels. In order to preserve information on the

physical relations in ERA5, the extra values are kept during the training. This allows

the proposed models to have an extrapolation capability. The extrapolation capability

of the model also separates this thesis from the previous studies. After determining the

input and the target, a multi-layer perceptron structure, a fully convolutional structure,

and U-Shaped skip connections added as an extension to the fully convolutional model

are tuned to minimize the mean square error. Then, a detailed analysis of the outputs

for each structure is made for unseen data consisting of three years. Finally, a case

study to predict one year of wind power generation in 19 plants in the region is made

to show the effectiveness of the postprocessing method.

7

3. BACKGROUND

3.1. Tensors

In mathematics, a single value with no index is a scalar. An array of values with

a single index i is called a vector and usually denoted as ai. If values in the array is

indexed with two indices i j, it is called as a matrix and denoted as A with elements

aij. For the arrays with more than two indices, a more general term tensor is used. In

general, a tensor is an array with a variable number of indices. Tensors are denoted as

A with its elements with variable number of indices aijk....

Figure 3.1. Illustration of scalar, vector, matrix, and tensor.

Tensors are practical data representations. Allowing multiple indices, the data

can be stored in tensors with its relations (i.e spatial relations, temporal relations).

Some of the learning algorithms employ these relations to enhance their performance.

3.2. Artificial Neural Networks (ANN)

Artificial neural networks are computational models that are inspired by the

working principle of the nerve cell in the brain. Even though they are not proper

8

models for nerve cells, ANNs have interconnected artificial neurons with activation

functions similar to the nerve system. Combining these artificial neurons in various

ways returned successful results in many pattern recognition tasks. This success led to

the ANN’s popularity and its application in diverse areas. From image processing to

natural language processing, time series forecasting to audio processing, variations of

ANN are used to create state-of-the-art works.

Figure 3.2. Demonstration of a single artificial neuron.

Essentially, ANNs try to estimate a function f between its input X and its output

y using the weights W in neuron connections. The activation function g in the neurons

introduces non-linearity and allows the estimation of the complex structures. During

the estimation, the performance of the network is measured by a quantity called loss

value l. The loss value is calculated using a loss function L (i.e. mean squared error).

The ultimate goal of an ANN is to minimize the expected loss value of the estimation

by minimizing the loss function. The loss function can be denoted as

min
W

L(f(X)|y), (3.1)

where W is the weights of the network, X is the input data and y is the target values.

The optimization of the loss function is generally made by gradient-based al-

gorithms. The directed graph structure of the ANNs allows using a method called

9

back-propagation. Back-propagation algorithm allows for calculating the gradients of

the weights with respect to the loss function using the chain rule. Firstly, the weights

are initialized randomly. After obtaining the gradients the connection weights of the

network are updated using a gradient descent algorithm. Gradient descent algorithms

adjust the weights in the opposite direction of the gradient to minimize the loss. How-

ever, using these algorithms introduce a hyperparameter called learning rate (ρ) to

determine the amount of the update. Having too small learning rate can cause long

training times and larger learning rates create convergence problems. Therefore, this

parameter needs to be tuned properly. The weight update using gradient descent

algorithm is expressed as

Wt+1 = Wt + ρ∇WL(f(X)|y), (3.2)

where Wt is the weights at current iteration and Wt+1 is the weights of next iteration.

Although the learning rate is tuned, the minimization of the loss function can be

enhanced and accelerated. Using momentum (δ) is one way to do that. Instead of going

to the inverse gradient direction at each iteration separately, this approach calculates

another direction Vt from all previous gradients by weighting them in an exponentially

decaying manner. This new direction accelerates the training by providing a general

direction for minimization. Additionally, it helps to avoid local minimum and converges

to better loss values. However, this method introduces a momentum parameter δ

between 0 and 1 that needs to be tuned. Using the momentum the weight update

procedure can be modified as

Vt+1 = δ∇WL(f(X)|y) + (1− δ)Vt

Wt+1 = Wt + ρVt+1,
(3.3)

where Vt is the direction in the current iteration and Vt+1 is the new direction.

Another way to accelerate the training is using a stochastic version of the gradient

descent algorithm (SGD). Since the data in machine learning tasks consist of similar

instances, instead of calculating the gradient from all of the instances, the gradient can

be estimated from a subset of them. But, gradient estimation from the subset needs

10

to be unbiased. This property can be obtained by selecting subsets randomly. This

random selection part makes a gradient decent variation stochastic. In the stochastic

gradient descent algorithm, all the instances are shuffled at the beginning of each epoch.

Then each iteration is made by selecting a subset of instances called mini-batch and

calculating the gradient estimation from that batch. When the gradients of all instances

are calculated during the optimization, N
Batch Size

weight updates are done instead of just

one. This saves a large amount of computational cost during the training. However,

using SGD introduces batch size as a hyperparameter which requires tuning. There are

different variations of SGD to enhance the optimization process. Root Means Square

Propagation (RMSProp) is one of them [35]. It adjusts the learning rate for each

parameter separately. Another one is Adaptive Moment Optimization (ADAM) which

combines the momentum idea with learning rate adjustments in RMSProp [36].

The training of the neural networks gets more complex as the network gets deeper.

Since, the updates on the weights are done simultaneously, the effect of the update is

dependent on the changes in the other layers. Especially in deep architectures, this

dependence creates unexpected results. In order to address this issue, batch normaliza-

tion is proposed as an adaptive reparametrization of the network during training [37].

By reparametrization, it coordinates the values across many layers. Basically, batch

normalization standardizes the input using the standard deviation and mean of the

mini-batch to have a stabilization effect [38].

Lastly, the dropout method is also used to increase the model performance. It

is used as a regularization method to control the model complexity and to deal with

overfitting. The idea of the dropout is randomly removing nodes from the network

during the training. This allows the construction of different thinned architectures and

sampling from them. Therefore, it behaves like an ensemble of multiple thinned models

to regularize the model and improve its performance [39].

11

Figure 3.3. Applying dropout to a standard neural network [40].

3.2.1. Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron is a neural network layout where every neuron is con-

nected to all neurons in the succeeding layer. This layout is also called the standard

neural network architecture. The number of layers and the hidden size of the layers

are can be arbitrary integers. Figure 3.4 demonstrates an example of MLP structure.

Figure 3.4. Demonstration of an example MLP [40].

3.2.2. Convolutional Neural Network (CNN)

Convolutional Neural Networks are a special kind of neural network to deal with

the data that has a grid-like topology (i.e. time series data, image data). It employs an

12

operation called convolution (even though many libraries implement a similar function

called cross-correlation function) to introduce parameter sharing and sparse interac-

tions. During the convolution operation, the input is multiplied with a weight matrix

called kernel to calculate the output as shown in Figure 3.5. Since the kernel is applied

to all inputs by sliding it, the parameters in the kernel interact with multiple inputs

to construct the output. In other words, unlike MLP, this operation shares the param-

eters along many input-output relations. Also, this implies sparse interactions since

the contribution of an input to a single output is only made if the kernel size is large

enough. The kernel size, stride amount of the kernel, and padding of the input before

the operation are hyperparameters of the convolution operation.

Figure 3.5. Demonstration of a convolution operation in 2D [40].

Another concept introduced by CNNs is pooling. Pooling is made by replacing

the output with the summary statistics of itself and its neighborhood. This operation

makes the transformation invariant to small changes in the neighborhood. In pooling,

the size of the neighborhood is treated as a hyperparameter.

13

3.2.3. Skip Connections

As the name suggests, skip connections are the connection from the previous

layers to deeper layers. These connections are used to flow the information to deeper

parts of the network to obtain performance improvements. In ResNet [41], the skip

connections are called residual connections and they are used in addition form. These

connections in ResNet architecture allow the model to deal with the degradation prob-

lem by smoothing out the loss surface. In DenseNet architecture [42], the skip connec-

tions are named dense connections and they are used for feature reusability. The aim

of these dense connections is to make use of the previously learned features in deeper

layers. Skip connections are also used in biomedical image segmentation. The Popular

U-Net [43] model employs the skip connections between its encoder and decoder to

deal with medical images. In this model, the connections are arranged in a U-Shaped

manner.

Figure 3.6. Skip connection example.

14

3.3. Penalized Regression Approaches

The classic regression models suffer from having large multivariate predictors

when the number of samples is not sufficient enough. In order to solve this prob-

lem, penalized regression approaches are developed. In penalized regression models,

a penalization term behaves as regularization and forces the model to emphasize the

important predictors. Even though the aim is the same, the effect of the penalization

differs depending on the penalization method. There are three different popular penal-

ization methods. First one, Lasso regression uses the L1 norm of the coefficients as the

penalization term. This term forces the weights of the unnecessary predictors towards

zero. In other terms, it makes a subsample selection to predictors. Another one is

Ridge regression. This method employs the L2 norm to regularize the regression coef-

ficients. Using the square of the coefficients penalizes the large coefficients more and

ensures a coefficient gets large values if it is really necessary. Lastly, the ElasticNet [44]

uses the linear combination of L1 and L2 penalty terms to obtain the benefits of Lasso

and Ridge regressions. All of these methods introduce one or two hyperparameters to

determine the strength of the penalty. The penalty hyperparameters are usually tuned

using cross-validation methods. The loss function of ElasticNet is expressed as

L =
1

2

N∑
i=1

(y − ŷ)2 + λ1

M∑
j=1

|wj|+ λ2

M∑
j=1

w2
j , (3.4)

where for λ1 = 0 the function becomes the Ridge objective and for λ2 = 0 it expresses

the Lasso objective.

There are many implementations of penalized regression approaches. GLM-

Net [45] package of R is prominent among them. The package is designed for fitting

generalized linear models and it also fits penalized regression models using penalized

maximum likelihood. It works with many alternative distribution families. Its paral-

lelized and fast optimization algorithms exploit sparsity to further increase the training

speed. Additionally, the package comes with cross-validation and plotting utilities.

15

3.4. Performance Metrics

There are two different performance metrics used in this thesis. The first one,

mean squared error (MSE) is used for training and evaluating the postprocessing model.

The other one, weighted mean absolute percentage error (WMAPE) is used for evalu-

ating the wind power forecasts.

3.4.1. Mean Squared Error (MSE)

Mean squared error is a metric to measure the mean deviation from the real

values. Its square term allows punishing the large deviations more. Since in weather

forecasting case avoiding large deviations are critical, MSE is preferred for both training

and performance evaluation tasks. The MSE metric is expressed as

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (3.5)

3.4.2. Weighted Mean Absolute Percentage Error (WMAPE)

In wind forecasting task, rather than the performance of a single observation the

total performance within the forecast period is important due to the unstable nature of

the wind power generation. Therefore, instead of using mean absolute percentage error,

its weighted form is preferred. In WMAPE, the weights are set as |yi|∑N
i=1 |yi|

which implies

the proportion of generation over a total generation in the period. The WMAPE metric

for a period is expressed as

WMAPE =

∑N
i=1 |yi − ŷi|∑N

i=1 |yi|
. (3.6)

16

4. METHODOLOGY

Numerical Weather Prediction (NWP) postprocessing is a method to refine the

weather forecast resulting from physical models. The statistical postprocessing models

try to correct the errors caused by initial conditions and physical simplifications. In

order to perform this task, an NWP model together with its historical forecasts, and

the ground truth of these forecasts are required. Then a statistical model is constructed

to map the forecasts to the ground truth. In this process, the mapping is optimized

using a loss function. However, different weather variables have different scales. For

example temperature in Kelvin can be between 270 and 315 for a location and relative

humidity is between 0 and 1. Therefore, in order to have an equal contribution to the

loss function, the weather data is needed to be scaled. Also, the weather data is needed

to be shaped properly to benefit from its multidimensional structure before optimizing

the model.

This chapter summarizes the methodology followed in this thesis to perform sta-

tistical NWP postprocessing without any distributional assumption. Firstly, the data

sources are introduced in detail. This step involves the selection of weather variables

and levels together with preprocessing such as scaling and tensor shaping. Secondly, it

introduces proposed architectures and their parametrization.

4.1. Data

The data sources in this thesis can be divided into three categories. Two of

them are considered as the main ones since they construct the input and output of

the postprocessing task. These two sets are global weather sets and they are in the

form of multidimensional tensors where the dimensions are time, weather variable

(ie. temperature, humidity, etc.), atmospheric level (ie. 975 mb, etc.), latitude and

longitude. A value in a global set is represented by αtijkl where α is the NWP source, t

is the time index, i is the variable index, j is the pressure level index, k is the latitude

17

index and l is the longitude index. Another data set is the wind power generation data

used in the validation part of the main task. This set includes the hourly generation

data in MWh for different wind farms. The data section presents the information about

these data resources and how they are preprocessed to proper form.

4.1.1. Data Sources

4.1.1.1. Global Ensemble Forecasting System (GEFS). Global Ensemble Forecasting Sys-

tem forecasts are published by National Oceanic and Atmospheric Administration

(NOAA) and are publicly available [46]. The three hourly forecasts are global and

the resolution of the forecasts is 0.25◦ × 0.25◦ in latitudes and longitudes. It consists

of the forecasts of 6 different weather variables at 25 different pressure levels between

1 mb to 1000 mb. The name GEFS includes the word ”ensemble” because NOAA

releases a control model together with 30 perturbations of it to obtain more robust

forecasts. The latest version of the GEFS is v12 and it has been released with daily

reforecasts from 2000 to 2020 with 5 or 11 perturbations. Having the reforecast allows

having the same simplifications and biases throughout the whole period. This prop-

erty of GEFS makes it a perfect candidate as an input to a postprocessing task. Also,

NOAA continues to publish the forecasts from GEFS which creates an opportunity to

use the proposed postprocessing method in real-time. GEFS data is the input to the

postprocessing models and it is represented by variable X with values xijkl.

4.1.1.2. ECMWF Reanalysis 5th Generation. Unlike GEFS, ECMWF Reanalysis 5th

Generation (ERA5) is not a forecast model but a reanalysis of the forecasts after collect-

ing actual measurements from alternative sources all around the globe [47]. Therefore,

it creates a consistent global weather data set of the past and many studies treat it as

ground truth weather [21–24]. The reanalysis starts in 1958 and the archive is updated

regularly to include recent dates. ERA5 is also 0.25◦ × 0.25◦ resolution and it includes

hourly pressure level values. In the hourly pressure levels set there are 16 different

weather variables and 39 different pressure levels between 1 mb and 1000 mb. ERA5

data is the output of postprocessing models and it is represented by Y with values yijkl.

18

4.1.1.3. Wind Power Generation. Wind Power Generation data is public and obtained

from the transparency platform of Energy Exchange Istanbul [48]. About 355 wind

farms with approximately 11 GWh installed capacity are included in the data [49].

For every farm, the set has the hourly generation data in MWh since their operation

start date. The generation data is used as a target during the predictive performance

measures of the postprocessed weather data. It is denoted as P with values ptf where

t is the time index and f is the farm index.

4.1.2. Data Preprocessing

Data preprocessing is applied to weather data sets in four steps. Firstly, a subset

of weather variables and atmospheric pressure levels is extracted from the data. Later,

a local region is selected, then the values are scaled between 0 and 1 using min-max

scaling. Finally, ERA5 tensors are shaped into three hourly groups to match with

GEFS inputs in the time dimension.

4.1.2.1. Variable-Level Selection. The selection of variables and levels is made because

of two reasons. Firstly, ERA5 has 16 different variables at 39 different pressure levels,

in a total of 624 values at each location at each hour. Similarly, GEFS has 6 differ-

ent variables at 25 alternative pressure levels, in a total of 150 values per location at

every third hour. Thus, the size of the data introduces extra computational complex-

ity without selection. Secondly, it is aimed to focus on more common variable level

combinations that have larger operational use cases in wind power forecasting tasks.

Therefore as variables; temperature (tmp), u component of wind (u), v component of

wind (v), vertical component of wind (w) and humidity (q) or relative humidity (r)

are selected as the variables. For the pressure levels, the values between 1000 mb and

800 mb are selected since they are closer to the surface where more operational needs

occur. Using these selections, GEFS is reduced to five variables and seven pressure

levels, and ERA5 is reduced to the same variables but nine pressure levels since it has

more pressure levels in the selected range.

19

4.1.2.2. Region Selection. Region selection is a necessary step to make the postprocess-

ing task local. Wind farm intensity of the regions is considered as selection criteria

to validate postprocessing performance in multiple wind power forecasting tasks. As

a result, the Aegean Region of Turkey which has about 37% of the wind generation

capacity of the country [50] is selected as the local region. The region is between 36.5

and 40.5 in latitudes and 25 and 29.5 in longitudes and it creates a 17×19 grid in 0.25◦

resolution. Figure 4.1 shows the boundary box of the selected area in western Turkey.

Table 4.1. Selected variables, levels and region.

Dimension ERA5 GEFS

Variable tmp, u, v, w, r tmp, u, v, w, q

Level
1000, 975, 950, 925, 900,

875, 850, 825, 800 mb

1000, 975, 950, 925,

900, 850, 800 mb

Latitude [36.5, 40.5] [36.5, 40.5]

Longitude [25, 29.5] [25, 29.5]

Figure 4.1. Selected region.

20

4.1.2.3. Scaling. The weather data sets are scaled for two reasons. Firstly, the scale of

the variables at alternative pressure levels and location combinations is different. This

difference creates an unfair contribution to the loss function and the values in larger

domains mainly decrease or increase the total loss during the optimization. Scaling

makes the contribution to loss function equal for every point in the data. Secondly, the

model comparison is distorted with the evaluation metrics that do not scale invariant.

In that case, a model that processes variables with a larger range slightly better would

be preferred to the model that outperforms the first model in variables with a smaller

range.

As the scaling method min-max scaling is selected. Min-max scaling transforms

the values in every feature between 0 and 1 by subtracting the minimum observation

value and dividing the result by the observed range. The equation of the scaling

operation can be expressed as

α̂tijkl =
αtijkl −min(αijkl)

max(αijkl)−min(αijkl)
. (4.1)

Additionally, in order to preserve the comparability of GEFS and ERA5 values the

common ijkl combinations in both of the data sets are scaled together. This allowed

comparing the improvement of the postprocessed values with respect to GEFS in the

scaled domain.

4.1.2.4. Tensor Shaping. GEFS is published three hourly however ERA5 is released

hourly as discussed in Section 4.1.1. In order to train a model, these two sets need to

be matched in the time dimension. Subsampling the hours that are not present in GEFS

from ERA5 is a straightforward solution. Another way is to group ERA5 into three

hourly values and try to predict three hours at once from a single GEFS hour. Even

though subsampling is the easiest way, it causes the loss of one-third of ERA5 data.

Considering the data requirements of the deep learning architectures, subsampling is

not preferred. Also, predicting three hours of ERA5 adds an extrapolation capability to

the models. Considering these benefits, the three hourly prediction scenario is favored.

Thus, the ERA5 tensors are shaped into three hourly groups. Figure 4.2 shows how

three hourly GEFS instances are matched with hourly ERA5 instances.

21

At the end, GEFS tensors are fed into the model in (3 hourly time × variable ×

pressure level × latitude × longitude) dimensions with sizes (batch size × 5 × 7 × 17 ×

19) and ERA5 tensors are fed as target in(3 hourly time × [t, t+1, t+2] × variable ×

pressure level×latitude×longitude) dimensions with sizes (batch size×3×5×9×17×19).

Figure 4.2. Input and output schema.

4.2. Proposed Architectures

This section briefly summarizes three alternative architecture proposals for the

postprocessing model. The first one, Multi-Layer Perceptron (MLP) is chosen as a

base model. The second architecture, Fully Convolutional ANN introduces convolution

operation to share parameters along the spatial dimension. The last one, U-Shaped

ANN adds residual connections to Fully Convolutional ANN in a U-shaped manner

inspired by U-Net [43].

4.2.1. Multi-Layer Perceptron (MLP)

MLP architecture consists of multiple fully connected blocks that share a constant

hidden size. The blocks consist of a fully connected layer, batch normalization, ReLU

activation function, and a drop out layer. The drop out ratio and batch normalization

usage are set as hyperparameters. Figure 4.3 shows the proposed MLP architecture.

22

Figure 4.3. MLP architecture.

In order to pass the GEFS input to this architecture, the data is flattened along

all dimensions and passed to the network. Similarly, the output of the network is in a

single dimension. Therefore, it is needed to reshape the output of this model to ERA5

output size. Since, the size of GEFS tensor is about 11.3K (5×7×17×19) the first layer

needs to have 11.3K×hidden size parameters. On the output side ERA5 tensor size is

about 43.6K (3× 5× 9× 17× 19) and the last layer needs to have 43.6K × hidden size

parameters. Having these many parameters restricts the hidden size and the depth

options with limited resources. In this architecture, the hidden size value is considered

as a hyperparameter to control the model complexity. Additionally, the number of

layers is not predetermined but tuned for the same reason.

4.2.2. Fully Convolutional Artificial Neural Network

In order to address the problems that come with the high number of parameters

in MLP, the Fully Convolutional ANN architecture in Figure 4.4 is proposed. Using

convolutional blocks instead of fully connected ones allows sharing of parameters along

the spatial dimension. Besides reducing the number of parameters this architecture

utilizes spatial relations by having kernels that extract features from nearby locations.

Like fully connected blocks, convolutional blocks consist of convolution layer, batch

23

normalization, ReLU activation, pooling and drop out where drop out value, batch

normalization usage, and whether to use average or max pooling are hyperparameters

to tune.

The convolution operation is made in 2D and along latitude and longitude di-

mensions. The other dimensions are flattened into channels. Similar to hidden size in

MLP, the number of output channels in all blocks is held constant. Additionally, the

number of output channels and number of blocks are considered as hyperparameters

to control the model complexity.

Figure 4.4. Fully convolutional ANN architecture.

4.2.3. U-Shaped Artificial Neural Network

The input of a postprocessing task is expected to be similar to the output values

however there is a place for improvement. Basically, the postprocessing model needs

to adjust all the values in the input by correcting the systematic errors and biases.

Thus the input values create a good starting point for the output values. However,

carrying all the information to the deeper layers is a challenge. When the architectures

get deeper the degradation problem starts to occur and the information from previous

layers cannot be passed to the deeper layers properly [41]. In order to tackle this

problem adding skip connections to the fully convolutional ANN is considered [41] [42].

By connecting previous outputs to deeper layers, skip connections helps to preserve the

information throughout the whole network. One of the previous studies that utilize

24

this idea is U-Net [43]. U-Net is an extension of fully convolutional networks and it is

used for medical image segmentation. It employs a U-shaped network that introduces

skip connections between the sides of the U. Considering the success of these skip

connections in the U-net, the skip connections in this architecture are constructed in a

U-shaped structure as shown in Figure 4.5. Unlike previous architectures, the number

of blocks is not used to control the model complexity and is held constant at eight. For

the number of channels, again a single value is used and its value is tuned.

Figure 4.5. U-Shaped ANN architecture.

25

Table 4.2. Summary of proposed architectures.

Block Type Parameters

MLP Fully Connected

Dropout Ratio

Batch Normalization Usage

of Blocks

Hidden Size

Fully Conv. ANN Convolution

Dropout Ratio

Batch Normalization Usage

Pooling Type

of Blocks

of Output Channels

U-Shaped ANN Convolution

Dropout Ratio

Batch Normalization Usage

Pooling Type

of Output Channels

26

5. EXPERIMENTS

5.1. Modeling Pipeline

This section explains the postprocessing modeling pipeline for a single experiment

in detail. A single experiment is considered as the combination of training, validation,

and testing of a postprocessing model in a specified parameter setting. The codes for

the experiments can be found at the github repository [51].

Since the obtaining and preprocessing data is independent of the model param-

eters, it is done for a single time and the prepossessed versions are stored. GEFS

data is downloaded in grib2 [52] format. Then, its levels and variables are filtered as

mentioned in Subsection 4.1.2.1. Also, the region is selected according to Subsection

4.1.2.2. Similarly, ERA5 is downloaded in grib2 format, its variables and levels are

filtered and the same region is extracted. The resulting data from both data sets are

saved in a daily manner to allow parallel data loading during the training. After that,

the data is split into three periods before training. Between 2000-2015 are used for

training, the year 2016 is picked for validation, and 2017-2019 are reserved for test-

ing. Lastly, the min-max value for each location, variable, and level combination is

calculated and saved to be used in scaling.

Figure 5.1. Train validation and test periods.

During the experiments, Python 3.9.1 is used as the programming language. The

training is made by using the Pytorch Lightning [53] framework which is an extension of

Pytorch [54]. For each experiment, the models are initialized with random weights and

27

moved to the GPU for faster training. Then, a data loader scaled and fed the data to

models in batches. The batch size is considered as a hyperparameter for training. For

each batch, the gradients are calculated with respect to the loss function via Pytorch’s

autograd functionality. As the loss function, mean square error is used because of its

ability to penalize larger deviations more. After that, the weights in the model are

updated using the Adam [36] optimizer. The amount of updates is determined by a

hyperparameter called the learning rate. Also, in order to regularize the models, the

weight decay parameter is employed to penalize the weights according to the L2 norm.

The weight updates are made in batches and using all batches for the update is

called an epoch. At the end of each epoch, the performance of the validation period

is calculated and reported. As the training stopping condition, a maximum of 30

epochs threshold is set. Also, an early stopping condition is introduced to terminate

unpromising trials and to avoid overfitting. The early stopping is performed if the

improvement in validation loss is less than 0.0001 at the last five epochs. Finally, when

the training ends, the model weights are saved. Both scaled and unscaled performance

on the test period is calculated and reported. Lastly, the model outputs of the test

period are dumped for further analysis.

Table 5.1. Training parameters.

Training Parameters Value

Batch Size Hyperparameter

Learning Rate Hyperparameter

Weight Decay Hyperparameter

Max Epoch 30

Early Stop Patience 5 epochs

Early Stop Delta 0.0001

28

5.2. Hyperparameter Tuning

The performance of the deep learning models is highly sensitive to the hyper-

parameters used in the model development. Therefore, tuning these parameters is

essential for obtaining high-performing models. The hyperparameters in proposed ar-

chitectures can be divided into two categories. First, the model hyperparameters are

mentioned in Section 4.2. They are used for controlling the model complexity and each

proposed architecture has its own model hyperparameters. The other category is the

training hyperparameters mentioned in Section 5.1. These parameters are used for the

optimization of the weights. The training hyperparameters are not architecture-specific

and tuned in every architecture. In order to tune the hyperparameters, a parameter

space is required. Considering the training time of the proposed architectures, a pre-

liminary study is made to shrink the search space. The final search space is presented

in Table 5.2.

For each architecture, the hyperparameters are tuned for 48 hours using a pa-

rameter tuning framework called Optuna [55]. Even though Optuna has a Bayesian

optimization schema, it is not preferred due to concerns about Bayesian hyperparam-

eter optimization of deep learning models [38]. Instead, random search is employed

during the optimization. While evaluating the trials, the test data set is not used and

the optimization is made based on validation loss value. After tuning the hyperparam-

eters, the architectures with the best validation score are chosen and postprocessed

values for the test period are extracted.

5.3. Wind Power Forecasting

Wind power forecasting is an important problem for energy traders and power

plant operators. While forecasting wind power, having well-forecasted wind variables

is essential for high-accuracy models. This makes wind forecasting a useful task to

show the effect of the proposed postprocessing model.

29

Table 5.2. Hyperparameter search space.

Parameter Source Hyperparameter Candidate Values

Training

Batch Size 8, 16, 32, 64, 128

Learning Rate 0.001, 0.01, 0.1

Weight Decay 0.0001, 0.001, 0.01

MLP

Dropout Ratio 0, 0.1, 0.2

Batch Normalization Usage True, False

of Blocks 2, 3, 4, 5, 6, 7, 8

Hidden Size 32, 64, 128, 256, 512, 1024

Fully Conv. ANN

Dropout Ratio 0, 0.1, 0.2

Batch Normalization Usage True, False

Pooling Type Average, Max

of Blocks 2, 3, 4, 5, 6, 7, 8

of Output Channels 32, 64, 128, 256, 512, 1024

U-Shaped ANN

Dropout Ration 0, 0.1, 0.2

Batch Normalization Usage True, False

Pooling Type Average, Max

of Output Channels 32, 64, 128, 256, 512, 1024

The power forecasting is made for 19 farms located in the selected region. Figure

5.2 demonstrates the location of these farms. For every farm, 0.25◦ × 0.25◦ boundary

box is extracted from GEFS, model outputs, and ERA5 in the test period. As variables,

u and v components of wind are selected. For pressure levels, 1000 mb, 975 mb, and

950 mb are included. From the u and v components of the wind, wind speed and wind

direction are calculated. Then, all of these selected values are shaped into a tabular

format where time is the row index and other dimensions are represented in columns.

The square and cube of the wind speeds are extracted as features of the tabular data.

30

Figure 5.2. Location of the selected farms in the selected region.

The production values mentioned in the Section 4.1.1.3 are used as the target

in this task. A stable production period is determined for every farm. If there is no

stable period, the farm is eliminated from the tests since it would require additional

preprocessing steps. In total, 19 wind power plants are selected for comparison.

For the regression task, a generalized linear model with lasso regularization is

used from R’s glmnet [45] package. The regularization parameter is determined by

using ten-fold cross-validation in the training period. As the training period, 2017 and

2018 are used and 2019 is left out for the test. Since the weather has yearly seasonality,

having one year of the test period is preferred to eliminate seasonal effects.

For all three weather sources and all wind farms, total and monthly WMAPE is

calculated for 2019 values. Finally, all WMAPE values are reported for weather source

comparison.

31

6. RESULTS

This chapter summarizes the results obtained from the experiments. Firstly hy-

perparameter tuning results are presented for each architecture. Secondly, the overlap-

ping postprocessed values are compared with GEFS and the effect of postprocessing is

measured. This comparison is made for each variable separately. Also, pressure level-

based, location-based, and monthly comparisons are presented. After that, the per-

formance of alternative architectures is compared and the best architecture is selected

for further analysis. Then the outputs of the best postprocessing model is compared

for non-overlapping hours to show the performance of the extrapolation capability of

the model. Finally, the postprocessed wind variables from the best model are used to

predict wind power generation in multiple wind farms and the predictive performance

is reported.

6.1. Multi-Layer Perceptron

This section presents the results from the MLP architecture mentioned in the

Subsection 4.2.1. Firstly, hyperparameter tuning is made according to the experiment

setting mentioned in Section 5.2. The minimum MSE loss for the validation period is

observed as 0.00265 in the scaled domain. The best parameters in terms of validation

loss are presented in Table 6.1. After, the model trained with the best hyperparameters

is evaluated in the test period. During the evaluation, the values are converted back

to the real scale. Therefore, the evaluation is made for each variable separately.

32

Table 6.1. MLP best hyperparameters.

Hyperparameter Value

Batch Size 32

Learning Rate 0.001

Weight Decay 0

of Blocks 4

Hidden Size 1024

Dropout Ratio 0.1

Batchnorm Usage True

6.1.1. Variable-Based Performance

MLP architecture obtained better wind speed variables than the initial values

as shown in Figure 6.1. However, tmp estimates are worse. This situation can be

explained by the model’s hidden size. The MLP architecture has an information flow

bottleneck in the hidden layers. When the hidden size is not large enough all necessary

information cannot flow through the output. As mentioned in Section 4.2, increas-

ing the size of the hidden dimension by one introduces 43.6K additional parameter.

These extra parameters make training longer and harder. They also require additional

computational resources to deal with the model size.

33

Figure 6.1. MSE performance of MLP model for each variable.

6.1.2. Variable-Pressure Level-Based Performance

The pressure level-based performances of variables tmp, u, v, and w are presented

in Figures 6.2, 6.3, 6.4 and 6.5 respectively. The MSE values of the MLP Model tend

to increase as the pressure level drops. This causes worse estimations of variables tmp,

u, and v at lower pressure levels. However, the model achieves better performance

for every variable at higher pressure levels. For w, this model achieves significant

improvements in MSE values.

34

Figure 6.2. MSE performance of MLP model for variable tmp at each pressure level.

Figure 6.3. MSE performance of MLP model for variable u at each pressure level.

35

Figure 6.4. MSE performance of MLP model for variable v at each pressure level.

Figure 6.5. MSE performance of MLP model for variable w at each pressure level.

36

6.1.3. Variable-Location Based Performance

The location-based performances of variables tmp, u, v and w are presented in

Figures 6.6, 6.7, 6.8 and 6.9 respectively. The layout of the locations in the figure has

geographic correspondence with the region in Figure 4.1. Therefore, the left (west)

sides of the heatmaps are equivalent to the coastal region, and the right (east) sides

represent the inland region. The performance of GEFS in tmp degrades from coastal to

inland regions. The MLP model smooths the error of this variable through the region.

As a result, the errors in the coastal region degrade and the ones in the inland improve.

The model also behaves similarly for variable v. For u the north and south borders are

the locations with worse MSE values but the remaining area improves with the model.

Lastly, the model reduces the errors of variable w almost in all locations.

Figure 6.6. MSE performance of MLP model for variable tmp at each location.

37

Figure 6.7. MSE performance of MLP model for variable u at each location.

Figure 6.8. MSE performance of MLP model for variable v at each location.

38

Figure 6.9. MSE performance of MLP model for variable w at each location.

6.1.4. Variable-Month Based Performance

The month-based performances of variables tmp, u, v, and w are presented in

Figures 6.10, 6.11, 6.12 and 6.13 respectively. This seasonality analysis shows that the

errors of GEFS are not uniform throughout the year. For each variable, the median

error and the variance of it change depending on the month of the year. Figure 6.10

demonstrates that postprocessing tmp with the MLP model increases both variance

and the median of the errors in almost all months. However, for u and v, the situation

is the opposite. Even though the improvement is small, the MLP model achieves to

deal with outlier models better. For variable w, apart from carrying the median to

lower values, it successfully reduces the variance of the errors in most of the months.

39

Figure 6.10. Month-based performance of variable tmp in MLP architecture.

Figure 6.11. Month-based performance of variable u in MLP architecture.

40

Figure 6.12. Month-based performance of variable v in MLP architecture.

Figure 6.13. Month-based performance of variable w in MLP architecture.

41

6.2. Fully Convolutional Artificial Neural Network

This section presents the results from the Fully Convolutional architecture men-

tioned in the Section 4.2.2. The hyperparameter tuning of the model is made according

to the experiment setting mentioned in Section 5.2. The minimum MSE loss for the

validation period is observed as 0.00227 in the scaled domain. The best parameters

in terms of validation loss are presented in Table 6.2. After the model trained with

the best hyperparameters is evaluated in the test period. During the evaluation, the

values are converted back to the real scale. Therefore, the evaluation is made for each

variable separately.

Table 6.2. Fully convolutional architecture best hyperparameters.

Hyperparameter Value

Batch Size 8

Learning Rate 0.001

Weight Decay 0

Number of Blocks 4

of Channels 512

Dropout Ratio 0

Batchnorm Usage True

Pooling Function Max Pooling

42

6.2.1. Variable-Based Performance

Figure 6.14 shows that Fully Convolutional architecture obtained better MSE

values in all variables when compared with GEFS.

Figure 6.14. MSE performance of fully convolutional model for each variable.

6.2.2. Variable-Pressure Level-Based Performance

The pressure level-based performances of variables tmp, u, v, and w are presented

in Figures 6.15, 6.16, 6.17 and 6.18 respectively. The model achieves better errors for

all wind variables at each pressure level. For tmp the MSE values are better than GEFS

for high pressures however, there is a small degradation in 800 and 850 mb levels.

43

Figure 6.15. MSE performance of fully convolutional model for variable tmp at each

pressure level.

Figure 6.16. MSE performance of fully convolutional model for variable u at each

pressure level.

44

Figure 6.17. MSE performance of fully convolutional model for variable v at each

pressure level.

Figure 6.18. MSE performance of fully convolutional model for variable w at each

pressure level.

45

6.2.3. Variable-Location Based Performance

The location-based performances of variables tmp, u, v and w are presented in

Figures 6.19, 6.20, 6.21 and 6.22 respectively. The layout of the locations in the figure

has geographic correspondence with the region in Figure 4.1. Therefore, the left (west)

sides of the heat maps are equivalent to the coastal region, and the right (east) sides

represent the inland region. For all variables, the MSE values of almost every location

are reduced after postprocessing with the Fully Convolutional model. It fixes the inland

region of variable tmp while improving the others. For u and v, all locations gain lighter

colors, and for w high error region in the middle is almost fixed.

Figure 6.19. MSE performance of fully convolutional model for variable tmp at each

location.

46

Figure 6.20. MSE performance of fully convolutional model for variable u at each

location.

Figure 6.21. MSE performance of fully convolutional model for variable v at each

location.

47

Figure 6.22. MSE performance of fully convolutional model for variable w at each

location.

6.2.4. Variable-Month Based Performance

The month-based performances of variables tmp, u, v, and w are presented in

Figures 6.23, 6.24, 6.25 and 6.26 respectively. The figures show that the model achieves

to decrease in the median value and the variance of errors throughout the year for all

variables.

48

Figure 6.23. Month-based performance of variable tmp in fully convolutional

architecture.

Figure 6.24. Month-based performance of variable u in fully convolutional

architecture.

49

Figure 6.25. Month-based performance of variable v in fully convolutional

architecture.

Figure 6.26. Month-based performance of variable w in fully convolutional

architecture.

50

6.3. U-Shaped Artificial Neural Network

This section presents the results from the U-Shaped architecture mentioned in

Section 4.2.3. The hyperparameter tuning of the model is made according to the

experiment setting mentioned in Section 5.2. The minimum MSE loss for the validation

period is observed as 0.00213 in the scaled domain. The best parameters in terms of

validation loss are presented in Table 6.3. After the model trained with the best

hyperparameters is evaluated in the test period. During the evaluation, the values are

converted back to the real scale. Therefore, the evaluation is made for each variable

separately.

Table 6.3. U-Shaped architecture best hyperparameters.

Hyperparameter Value

Batch Size 16

Learning Rate 0.001

Weight Decay 0

of Channels 512

Dropout Ratio 0

Batchnorm Usage True

Pooling Function Average Pooling

6.3.1. Variable-Based Performance

Figure 6.27 shows that U-Shaped architecture obtained better MSE values in all

variables when compared with GEFS.

51

Figure 6.27. MSE performance of U-Shaped model for each variable.

6.3.2. Variable-Pressure Level-Based Performance

The pressure level-based performances of variables tmp, u, v, and w are presented

in Figures 6.28, 6.29, 6.30 and 6.31 respectively. The model achieves better errors for

all wind variables at each pressure level. For tmp the MSE values are better than

GEFS for high pressures however, it falls behind in 800 and 850 mb levels.

Figure 6.28. MSE performance of U-Shaped model for variable tmp at each pressure

level.

52

Figure 6.29. MSE performance of U-Shaped model for variable u at each pressure

level.

Figure 6.30. MSE performance of U-Shaped model for variable v at each pressure

level.

53

Figure 6.31. MSE performance of U-Shaped model for variable w at each pressure

level.

6.3.3. Variable-Location Based Performance

The location-based performances of variables tmp, u, v and w are presented in

Figures 6.32, 6.33, 6.34 and 6.35 respectively. The layout of the locations in the figure

has geographic correspondence with the region in Figure 4.1. Therefore, the left (west)

sides of the heat maps are equivalent to the coastal region, and the right (east) sides

represent the inland region. For all variables, the MSE values of almost every location

are reduced with the model. It fixes the inland region of variable tmp while improving

the others. For u and v, all locations gain lighter colors, and for w high error region in

the middle is almost fixed.

54

Figure 6.32. MSE performance of U-Shaped model for variable tmp at each location.

Figure 6.33. MSE performance of U-Shaped model for variable u at each location.

55

Figure 6.34. MSE performance of U-Shaped model for variable v at each location.

Figure 6.35. MSE performance of U-Shaped model for variable w at each location.

56

6.3.4. Variable-Month Based Performance

The month-based performances of variables tmp, u, v, and w are presented in

Figures 6.23, 6.24, 6.25 and 6.26 respectively. The figures show that the model achieves

to decrease in the median value and the variance of errors throughout the year for all

variables.

Figure 6.36. Month-based performance of variable tmp in U-Shaped architecture.

Figure 6.37. Month-based performance of variable u in U-Shaped architecture.

57

Figure 6.38. Month-based performance of variable v in U-Shaped architecture.

Figure 6.39. Month-based performance of variable w in U-Shaped architecture.

6.4. Comparing Architectures

After analyzing the details of each proposed architecture in detail, the final com-

parison of the models is made based on the MSE values of all variables. Table 6.4

presents these values with the errors before any postprocessing (GEFS). The results

indicate that except for variable tmp in MLP, all of the methods decrease the MSE

58

values of every variable. MLP gets the best error for variable w, however, it performs

poorly on the other ones. U-Shaped and Fully Convolutional models achieve similar

MSE values. They both achieve great improvement when they are compared with

GEFS. Especially at w, the U-Shaped model almost performs as well as MLP which

mainly focuses on postprocess variable w. Additionally, the U-shaped performs best

at variable v. The performance of the error of extrapolated values is showed in Table

6.5. For extrapolated values, U-Shaped model achieves better results than other ar-

chitectures in all of the wind variables. As a result, the U-Shaped model is selected as

the best model by considering its performance in both postprocessed and extrapolated

values.

Table 6.4. MSE values of variables for different weather sources.

Model Name tmp u v w

GEFS 1.2175 2.6998 2.9829 0.0698

MLP 1.3164 2.3715 2.7288 0.0302

Fully Convolutional 0.7415 1.8493 1.9789 0.0421

U-Shaped 0.8070 1.8789 1.9112 0.0315

Table 6.5. MSE values of extrapolated variables for different weather sources.

Model Name tmp u v w

MLP 1.3240 2.5305 2.9515 0.0317

Fully Convolutional 0.8104 2.0983 2.2935 0.0434

U-Shaped 0.8687 2.0383 2.1870 0.0354

6.5. Extrapolation Capability of the Best Model

Previous sections have presented the results based on overlapping times, variables,

and levels of GEFS and ERA5. But, the model also includes times, variables, and

levels that don’t present in GEFS to enrich the information during training. The

59

outputs of these dimensions are considered extrapolated. Unlike the overlapping values,

there is no prior benchmark for them. However, comparing the error distribution of

these values with the error distribution of the overlapping hours gives an idea about

the extrapolation capability of the model. Figure 6.40 shows the box plot errors of

each variable for GEFS, postprocessed values, and extrapolated values. GEFS and

postprocessed values only include the beginning hour of the 3 hourly periods. The

extrapolated values consist of the remaining two hours. The results demonstrate that

the extrapolation is not as good as the postprocessing but the median error values are

close. Additionally, when it is compared to GEFS, the error distribution of extrapolated

values has a better median value and less variance.

Figure 6.40. Distribution comparison of GEFS, postprocessed values, and

extrapolated values of U-Shaped model.

6.6. Wind Power Forecasting

After selecting the U-Shaped model as the best model, the wind variables of all

sources from the test period are used for wind power forecasting. As the training

period, 2017 and 2018 are selected and the test performances are reported for the year

2019. The forecasting experiments are done as described in Section 5.3 for five different

60

sources. The resulting WMAPE values of each source for 19 different power plants are

reported in Table 6.6.

The power generation of a wind farm is also affected by operational problems

however, having better forecasts in many alternative power plants makes these effects

ignorable while evaluating the quality of the weather source. The results support

that ERA5 is a superior weather source. The postprocessed versions enhances the

GEFS values and generates better forecasts for almost every farm. Especially, U-

Shaped model achieves the best results for 13 out of 19 farms which supports the

selection of U-Shaped model over the others. Additionally, the U-Shaped model usually

obtains WMAPE values close to ERA5. In summary, the results demonstrate that

postprocessing has an effect on a real-world problem and not only on MSE values.

61

Table 6.6. WMAPE values for different weather sources.

Farm Code GEFS ERA5 U-Shaped Fully Conv. MLP

40W000000000573X 0.3425 0.3080 0.3307 0.3496 0.3551

40W000000000587M 0.3466 0.2992 0.2862 0.3014 0.2891

40W000000000726Y 0.3911 0.3713 0.3882 0.3747 0.3945

40W000000000748O 0.3942 0.3684 0.3852 0.3795 0.3799

40W000000000760Y 0.2997 0.2569 0.2658 0.2705 0.2804

40W000000001581T 0.3561 0.3316 0.3458 0.3485 0.3460

40W000000002141F 0.3685 0.3123 0.2982 0.3159 0.3073

40W000000003302C 0.5182 0.4950 0.5021 0.5047 0.5061

40W0000000042063 0.3064 0.2779 0.2899 0.2880 0.3048

40W000000004889N 0.4336 0.3687 0.3525 0.3690 0.3721

40W000000005541L 0.2976 0.2796 0.2849 0.2755 0.2851

40W000000005611Q 0.3524 0.2972 0.3145 0.3135 0.3299

40W000000005874V 0.3779 0.3446 0.3597 0.3611 0.3765

40W0000000065377 0.3718 0.3403 0.3611 0.3544 0.3536

40W000000006616B 0.3468 0.3289 0.3723 0.3837 0.3922

40W0000000070982 0.3816 0.3637 0.3864 0.3930 0.3795

40W000000008459S 0.3213 0.2939 0.3091 0.3116 0.3247

40W000000008698A 0.4021 0.3640 0.3659 0.3608 0.3707

40W000000010501F 0.3283 0.2941 0.2919 0.2991 0.2992

62

7. CONCLUSION

Weather forecasts play a crucial role in many decision-making processes. The

accuracy of the forecasts has a direct effect on the quality of the decisions. Currently,

the main supply of weather forecasts is the numerical weather prediction (NWP) mod-

els. These models start from an initial state and solve the equations of atmospheric

motion to come up with the future states of the atmosphere. However, these models

are prone to errors from the initial states, boundary conditions, and model structures.

These errors in the models grow rapidly due to the chaotic nature of the atmosphere

dynamics. Therefore, the output of the NWP models needs postprocessing to fix these

systematic errors and have more accurate forecasts.

In this thesis, alternative deep learning architectures are evaluated to statistically

postprocess the forecast of an NWP model called Global Ensemble Forecasting System

(GEFS). The Aegean Region of Turkey is selected as a local area to postprocess multiple

weather variables at multiple pressure levels. The first architecture, the multilayer

perceptron (MLP) failed to obtain better forecasts than GEFS for some of the variables

at some pressure levels. On the other side, the fully convolutional architecture and its

extension with skip connections achieved error distributions with significantly less mean

and variance than the initial values for each level and pressure. Location-based analyses

showed that the improvement applies to whole points in the region. The extension,

the U-Shaped model is chosen over the fully convolutional architecture due to its more

preferable error distributions.

Additionally, the models have extrapolation capability since they are trained to

a response that has more resolution in terms of time and pressure levels. These extra

values are kept to allow the model to learn from this information and they introduced an

extrapolation capability to the postprocessing models. The extrapolation capability of

the chosen model is validated by comparing the error distributions of the extrapolated

values with the error distribution of the GEFS forecasts and postprocessed values.

63

The results showed that extrapolated values are significantly better than GEFS and

slightly worse than postprocessed ones. Lastly, a case study on 19 wind power plants

demonstrated that the forecasts made by the U-Shaped model outputs are not far from

the ones made by ERA5 and are significantly better than using GEFS in almost all of

the plants.

There is a broad space for future works in statistical postprocessing using deep

learning. First of all, the effect of the variable-level selection can be investigated fur-

ther. Secondly, the proposed models are not capable of modeling temporal relations.

Experimenting on how to model temporal relations and measuring the effect of model-

ing them could lead to better postprocessing methods. The convolutions in this study

are made in 2D along latitude and longitude values, however 3D convolutions includ-

ing pressure levels may lead to better spatial modeling. Since all values are the results

of physical processes, the method can be combined with physics-informed learning to

come up with physically more satisfying results. Also, there can be improvements in

model inputs. Apart from the control GEFS forecasts, the ensemble members of GEFS

can be fed to the models. Using these ensembles is expected to behave like adversarial

training and make the models more robust to input changes. Another study can be

made by using different sources of NWP models to blend the sources during the post-

processing. By using multiple NWPs, models can make use of more information to

come up with superior postprocessed values. Lastly, the input values can be perturbed

and fed to the model to create postprocessing-based ensembles that define the forecast

uncertainty.

64

REFERENCES

1. Lazo, J. K., R. E. Morss and J. L. Demuth, “300 Billion Served: Sources, Percep-

tions, Uses, and Values of Weather Forecasts”, Bulletin of the American Meteoro-

logical Society , Vol. 90, No. 6, pp. 785 – 798, 2009.

2. Vannitsem, S., “Predictability of Large-Scale Atmospheric Motions: Lyapunov Ex-

ponents and Error Dynamics”, Chaos: An Interdisciplinary Journal of Nonlinear

Science, Vol. 27, No. 3, p. 032101, 2017.

3. Nicolis, C., R. A. Perdigao and S. Vannitsem, “Dynamics of Prediction Errors

Under the Combined Effect of Initial Condition and Model Errors”, Journal of the

Atmospheric Sciences , Vol. 66, No. 3, pp. 766–778, 2009.

4. Nicolis, C., “Dynamics of Model Error: The Role of the Boundary Conditions”,

Journal of the Atmospheric Sciences , Vol. 64, No. 1, pp. 204–215, 2007.

5. Vannitsem, S., J. B. Bremnes, J. Demaeyer, G. R. Evans, J. Flowerdew, S. Hemri,

S. Lerch, N. Roberts, S. Theis, A. Atencia, Z. B. Bouallègue, J. Bhend,

M. Dabernig, L. D. Cruz, L. Hieta, O. Mestre, L. Moret, I. O. Plenković,

M. Schmeits, M. Taillardat, J. V. den Bergh, B. V. Schaeybroeck, K. Whan and

J. Ylhaisi, “Statistical Postprocessing for Weather Forecasts: Review, Challenges,

and Avenues in a Big Data World”, Bulletin of the American Meteorological Soci-

ety , Vol. 102, No. 3, pp. E681–E699, 2021.

6. Raftery, A. E., T. Gneiting, F. Balabdaoui and M. Polakowski, “Using Bayesian

Model Averaging to Calibrate Forecast Ensembles”, Monthly Weather Review , Vol.

133, No. 5, pp. 1155–1174, 2005.

7. Gneiting, T., A. E. Raftery, A. H. Westveld III and T. Goldman, “Calibrated

Probabilistic Forecasting using Ensemble Model Output Statistics and Minimum

65

CRPS Estimation”, Monthly Weather Review , Vol. 133, No. 5, pp. 1098–1118,

2005.

8. Messner, J. W., G. J. Mayr and A. Zeileis, “Non-homogeneous Boosting for Pre-

dictor Selection in Ensemble Post-Processing”, Monthly Weather Review , Vol. 145,

pp. 137–147, 2017.

9. Lang, M. N., G. J. Mayr, R. Stauffer and A. Zeileis, “Bivariate Gaussian Models for

Wind Vectors in a Distributional Regression Framework”, Advances in Statistical

Climatology, Meteorology and Oceanography , Vol. 5, No. 2, pp. 115–132, 2019.

10. Schlosser, L., T. Hothorn, R. Stauffer and A. Zeileis, “Distributional Regression

Forests for Probabilistic Precipitation Forecasting in Complex Terrain”, The An-

nals of Applied Statistics , Vol. 13, No. 3, pp. 1564–1589, 2019.

11. Rasp, S. and S. Lerch, “Neural Networks for Postprocessing Ensemble Weather

Forecasts”, Monthly Weather Review , Vol. 146, No. 11, pp. 3885–3900, 2018.

12. Bremnes, J. B., “Probabilistic Forecasts of Precipitation in Terms of Quantiles

using NWP Model Output”, Monthly Weather Review , Vol. 132, No. 1, pp. 338–

347, 2004.

13. Wahl, S., Uncertainty in Mesoscale Numerical Weather Prediction: Probabilis-

tic Forecasting of Precipitation, Ph.D. Thesis, Rheinische Friedrich-Wilhelms-

Universität Bonn, 2015.

14. Bremnes, J. B., “Constrained Quantile Regression Splines for Ensemble Postpro-

cessing”, Monthly Weather Review , Vol. 147, No. 5, pp. 1769–1780, 2019.

15. Velthoen, J., J.-J. Cai, G. Jongbloed and M. Schmeits, “Improving Precipitation

Forecasts using Extreme Quantile Regression”, Extremes , Vol. 22, No. 4, pp. 599–

622, 2019.

66

16. Taillardat, M., O. Mestre, M. Zamo and P. Naveau, “Calibrated Ensemble Fore-

casts using Quantile Regression Forests and Ensemble Model Output Statistics”,

Monthly Weather Review , Vol. 144, No. 6, pp. 2375–2393, 2016.

17. Hamill, T. M. and J. S. Whitaker, “Probabilistic Quantitative Precipitation Fore-

casts Based on Reforecast Analogs: Theory and Application”, Monthly Weather

Review , Vol. 134, No. 11, pp. 3209–3229, 2006.

18. Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan and K. Searight, “Proba-

bilistic Weather Prediction with an Analog Ensemble”, Monthly Weather Review ,

Vol. 141, No. 10, pp. 3498–3516, 2013.

19. Alessandrini, S., L. Delle Monache, C. M. Rozoff and W. E. Lewis, “Probabilis-

tic Prediction of Tropical Cyclone Intensity with an Analog Ensemble”, Monthly

Weather Review , Vol. 146, No. 6, pp. 1723–1744, 2018.

20. Odak Plenković, I., I. Schicker, M. Dabernig, K. Horvath and E. Keresturi,

“Analog-Based Post-Processing of the ALADIN-LAEF Ensemble Predictions in

Complex Terrain”, Quarterly Journal of the Royal Meteorological Society , Vol.

146, No. 729, pp. 1842–1860, 2020.

21. Grönquist, P., C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li and T. Hoefler,

“Deep Learning for Post-Processing Ensemble Weather Forecasts”, Philosophical

Transactions of the Royal Society A, Vol. 379, No. 2194, p. 20200092, 2021.

22. Pathak, J., S. Subramanian, P. Z. Harrington, S. Raja, A. Chattopadhyay,

M. Mardani, T. Kurth, D. Hall, Z.-Y. Li, K. Azizzadenesheli, P. Hassan-

zadeh, K. Kashinath and A. Anandkumar, “FourCastNet: A Global Data-

driven High-resolution Weather Model using Adaptive Fourier Neural Operators”,

ArXiv:2202.11214 [physics.ao-ph], 2022.

23. Arcomano, T., I. Szunyogh, J. Pathak, A. Wikner, B. R. Hunt and E. Ott, “A Ma-

67

chine Learning-based Global Atmospheric Forecast Model”, Geophysical Research

Letters , Vol. 47, No. 9, p. e2020GL087776, 2020.

24. Keisler, R., “Forecasting Global Weather with Graph Neural Networks”,

ArXiv:2202.07575 [physics.ao-ph], 2022.

25. Gneiting, T. and A. E. Raftery, “Strictly Proper Scoring Rules, Prediction, and

Estimation”, Journal of the American Statistical Association, Vol. 102, No. 477,

pp. 359–378, 2007.

26. Roulston, M. S. and L. A. Smith, “Combining Dynamical and Statistical Ensem-

bles”, Tellus A: Dynamic Meteorology and Oceanography , Vol. 55, No. 1, pp. 16–30,

2003.

27. Bröcker, J. and L. A. Smith, “From Ensemble Forecasts to Predictive Distribution

Functions”, Tellus A: Dynamic Meteorology and Oceanography , Vol. 60, No. 4, pp.

663–678, 2008.

28. Hewson, T. D. and F. M. Pillosu, “A New Low-Cost Technique Improves Weather

Forecasts Across the World”, ArXiv:2003.14397 [physics.ao-ph], 2020.

29. Bremnes, J. B., “Ensemble Postprocessing using Quantile Function Regression

Based on Neural Networks and Bernstein Polynomials”, Monthly Weather Review ,

Vol. 148, No. 1, pp. 403–414, 2020.

30. Veldkamp, S., K. Whan, S. Dirksen and M. Schmeits, “Statistical Postprocessing

of Wind Speed Forecasts using Convolutional Neural Networks”, Monthly Weather

Review , Vol. 149, No. 4, pp. 1141–1152, 2021.

31. Pinson, P. and R. Girard, “Evaluating the Quality of Scenarios of Short-Term

Wind Power Generation”, Applied Energy , Vol. 96, pp. 12–20, 2012.

32. Schefzik, R., T. L. Thorarinsdottir and T. Gneiting, “Uncertainty Quantification in

68

Complex Simulation Models using Ensemble Copula Coupling”, Statistical Science,

Vol. 28, No. 4, pp. 616–640, 2013.

33. Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan and R. Wilby, “The Schaake

Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Pre-

cipitation and Temperature Fields”, Journal of Hydrometeorology , Vol. 5, No. 1,

pp. 243–262, 2004.

34. Sperati, S., S. Alessandrini and L. Delle Monache, “Gridded Probabilistic Weather

Forecasts with an Analog Ensemble”, Quarterly Journal of the Royal Meteorological

Society , Vol. 143, No. 708, pp. 2874–2885, 2017.

35. Tieleman, T. and G. Hinton, “Lecture 6.5-rmsprop: Divide the Gradient by a

Running Average of its Recent Magnitude”, COURSERA: Neural Networks for

Machine Learning , Vol. 4, No. 2, pp. 26–31, 2012.

36. Kingma, D. and J. Ba, “Adam: A Method for Stochastic Optimization”, Interna-

tional Conference on Learning Representations , 2014.

37. Ioffe, S. and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift”, International Conference on Machine

Learning , pp. 448–456, PMLR, 2015.

38. Goodfellow, I., Y. Bengio and A. Courville, Deep Learning , MIT press, 2016.

39. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

“Dropout: a Simple Way to Prevent Neural Networks from Overfitting”, The Jour-

nal of Machine Learning Research, Vol. 15, No. 1, pp. 1929–1958, 2014.

40. Veličković, P., “TikZ”, 2018, https://github.com/PetarV-/TikZ, accessed on

July 27, 2022.

41. He, K., X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recog-

69

nition”, Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 770–778, 2016.

42. Huang, G., Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely Connected

Convolutional Networks”, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 4700–4708, 2017.

43. Ronneberger, O., P. Fischer and T. Brox, “U-net: Convolutional Networks for

Biomedical Image Segmentation”, International Conference on Medical Image

Computing and Computer-assisted Intervention, pp. 234–241, Springer, 2015.

44. Zou, H. and T. Hastie, “Regularization and Variable Selection via the Elastic Net”,

Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 67,

No. 2, pp. 301–320, 2005.

45. Friedman, J., T. Hastie and R. Tibshirani, “Regularization Paths for Generalized

Linear Models via Coordinate Descent”, Journal of Statistical Software, Vol. 33,

No. 1, p. 1, 2010.

46. Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J.

Galarneau, Y. Zhu and W. Lapenta, “NOAA’s Second-Generation Global Medium-

Range Ensemble Reforecast Dataset”, Bulletin of the American Meteorological So-

ciety , Vol. 94, No. 10, pp. 1553 – 1565, 2013.

47. Hersbach, H., W. Bell, P. Berrisford, A. Horányi, M.-S. J., J. Nicolas, R. Radu,

D. Schepers, A. Simmons, C. Soci and D. Dee, “Global Reanalysis: Goodbye ERA-

Interim, Hello ERA5”, ECMWF Newsletter , pp. 17–24, 2019.

48. “Gerçek Zamanlı Üretim - Energy Exchange Istanbul”, 2017,

https://seffaflik.epias.com.tr/transparency/uretim/gerceklesen-ure-

tim/gercek-zamanli-uretim.xhtml, accessed on June 29, 2022.

49. “Yük Tevzi Dairesi Başkanlığı - Aralık Kurulu Güç Raporu”, 2021,

70

https://webapi.teias.gov.tr/file/9e6326b1-5273-45c9-8f90-6d511cac882

a?download, accessed on June 29, 2022.

50. “8th Turkish Wind Energy Congress”, 2022,

https://tureb.com.tr//lib/uploads/4e77501b714739a9.pdf, accessed on

August 12, 2022.

51. Kıvrıl, Y. H., “Statistical Postprocessing of Local Numerical

Weather Prediction Model Forecasts using Deep Learning”, 2022,

https://github.com/harunkivril/nnPostProcess.

52. “NCEP WMO GRIB2 Documentation”, https://www.nco.ncep.noaa.gov/pmb/

docs/grib2/grib2 doc/, accessed on August 12, 2022.

53. Falcon, W., “Pytorch Lightning”, 2022, https://github.com/PyTorchLightning/

pytorch-lightning.

54. Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chin-

tala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,

Advances in Neural Information Processing Systems 32 , pp. 8024–8035, Vancouver,

BC, Canada, 2019.

55. Akiba, T., S. Sano, T. Yanase, T. Ohta and M. Koyama, “Optuna: A Next-

generation Hyperparameter Optimization Framework”, Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing , pp. 2623–2631, 2019.

71

APPENDIX A: WIND FARMS METADATA

Table A.1. Farm codes, names, and bounding boxes of the power plants.

Farm Code Farm Name Left Right Bottom Above

40W000000000573X BARES 28.00 28.25 40.25 40.50

40W000000000748O MAZI RES 26.25 26.50 38.00 38.25

40W000000002141F BERGAMA RES 27.00 27.25 38.75 39.00

40W000000003302C SOMA1-2 RES 27.50 27.75 39.25 39.50

40W0000000065377 ZEYTİNELİ RES 26.25 26.50 38.00 38.25

40W000000008698A PİTANE RES 26.75 27.00 38.75 39.00

40W000000000760Y SOMA RES 27.75 28.00 39.25 39.50

40W000000004889N SEYİTALİ RES 27.00 27.25 38.75 39.00

40W000000005611Q POYRAZ RES 28.00 28.25 39.75 40.00

40W0000000042063 KUYUCAK RES 27.75 28.00 39.25 39.50

40W000000010501F KIRKAGAC RES 27.50 27.75 39.00 39.25

40W000000000587M YUNTDAG RES 27.00 27.25 38.75 39.00

40W000000001581T KOCADAG RES 26.50 26.75 38.25 38.50

40W000000005541L GERES 27.75 28.00 39.00 39.25

40W000000000726Y DUZOVA RES 27.00 27.25 39.00 39.25

40W000000006616B EDINCIK RES 27.75 28.00 40.25 40.50

40W000000005874V GUNAYDIN RES 28.00 28.25 39.75 40.00

40W0000000070982 SALMAN RES 26.25 26.50 38.50 38.75

40W000000008459S ORTAMANDIRA RES 27.75 28.00 39.50 39.75

