
DEEP PACKET INSPECTION METHODS FOR NETWORK INTRUSION

DETECTION AND APPLICATION CLASSIFICATION

by

Çağatay Ateş

B.S., Electrical & Electronics Engineering, Boğaziçi University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Graduate Program in Electrical & Electronics Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors Prof. Emin Anarım and Prof. Mutlu

Koca, for their patience, contributions, and valuable guidance during this thesis. I

am very grateful for their endless support and always being ready to help with every

obstacle I encountered during this journey.

In addition, I would like to thank Prof. Hakan Delic, Prof. Fatih Alagöz, and

Assoc. Prof. Şerif Bahtiyar for being on my thesis committee and their time.

My special thanks should be given to my friends and colleagues, Pelin Damla

Ateş, Süleyman Özdel and Metehan Yıldırım, for their support all through this thesis.

I appreciate their friendship and assistance.

Finally, and very importantly, I wish to thank my mother, Demet Ateş, my father,

Mustafa Ateş, and my sister Elif Ateş, for their support throughout my life.

This work is supported by the Boğaziçi University Scientific Research Projects

under the Spectral and Entropy Approaches in Packet Classification, 18281.

iv

ABSTRACT

DEEP PACKET INSPECTION METHODS FOR

NETWORK INTRUSION DETECTION AND

APPLICATION CLASSIFICATION

Deep packet inspection methods have become more sophisticated with the rapidly

developing technology. To understand the condition of the network, many different

packet inspection techniques have been evolved. Newly developing machine learning

methods have been used recently on these systems. The aim is to know which type of

traffic is running through the network. In this thesis, different deep packet inspection

methods are proposed to detect malicious traffic and find the applications running on

the network. Time–series and flow–based methods are proposed to accomplish these

tasks. Novel feature sets are constructed to execute these methods. Greedy algorithm

which finds an upper bound for the distance between the probability distributions with

different sizes is utilized in feature extraction process. The extracted features can be

divided into two categories which are statistical features and payload–based features.

Packet header values such as IP addresses are used to derive statistical features. Also,

payload portion of packets are used to extract novel payload–based features. The fea-

ture sets are used with decision tree models in supervised learning to execute detection

procedures. Proposed approaches are used in network intrusion detection and network

application classification tasks. For network intrusion detection, performance evalua-

tion is given by using different publicly available well–known intrusion detection data

sets consisting of different types of attacks. For network application classification, a

data set consisting of real–world network traces from popular applications is used. Sim-

ulation results show that the proposed flow–based approaches have good performance

in fulfilling these tasks.

v

ÖZET

AĞ SALDIRI TESPİTİ VE UYGULAMA

SINIFLANDIRMASI İÇİN DERİN PAKET İNCELEME

YÖNTEMLERİ

Derin paket inceleme yöntemleri, hızla gelişen teknoloji ile daha sofistike hale

geldi. Ağın durumunu anlamak için birçok farklı paket inceleme tekniği geliştirilmekte-

dir. Bu sistemlerde son zamanlarda yeni gelişen makine öğrenmesi yöntemleri kul-

lanılmaya başlanmıştır. Amaç, ağ üzerinde hangi tür trafiğin olduğunu bilmektir. Bu

tezde, kötü niyetli trafiği tespit etmek ve ağ üzerinde çalışan uygulamaları bulmak için

farklı derin paket inceleme yöntemleri önerilmiştir. Bu görevleri yerine getirmek için

zaman serileri ve akış tabanlı yöntemler önerilmiştir. Bu yöntemleri uygulamak için

yeni öznitelik kümeleri oluşturulur. Öznitelik çıkarma işleminde, farklı büyüklükteki

olasılık dağılımları arasındaki uzaklık için bir üst sınır bulan açgözlü algoritma kul-

lanılmaktadır. Çıkarılan öznitelikler, istatistiksel öznitelikler ve yüke dayalı öznitelikler

olmak üzere iki kategoriye ayrılabilir. IP adresleri gibi paket başlık değerleri istatistiksel

özellikleri elde etmek için kullanılır. Ayrıca, yeni yük tabanlı özellikleri çıkarmak için

paketlerin yük kısmı kullanılır. Öznitelik kümeleri, algılama prosedürlerini yürütmek

için denetimli öğrenmede karar ağacı modelleriyle birlikte kullanılır. Önerilen yaklaşım-

lar, ağ saldırı tespiti ve ağ uygulaması sınıflandırma görevlerinde kullanılır. Ağ saldırı

tespiti için, farklı saldırı türlerinden oluşan, halka açık farklı ve iyi bilinen saldırı

tespit veri setleri kullanılarak performans değerlendirmesi yapılır. Ağ uygulamaları

sınıflandırması için popüler uygulamalardan gerçek ağ izlerinden oluşan bir veri seti

kullanılmıştır. Simülasyon sonuçları, önerilen akışa dayalı yaklaşımların bu görevleri

yerine getirmede iyi bir performansa sahip olduğunu göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Deep Packet Inspection (DPI) Systems 1

1.2. Thesis Contribution . 5

1.3. Thesis Organization . 6

2. NETWORK INTRUSION DETECTION AND APPLICATION CLASSIFICA-

TION SYSTEMS . 7

2.1. Network Intrusion Detection . 7

2.1.1. Common Network Attacks . 8

2.1.1.1. DoS/DDoS Attacks . 9

2.1.1.2. Port Scan Attacks . 11

2.1.1.3. Brute Force Attacks 12

2.1.2. Related Work About Network Intrusion Detection Systems . . . 14

2.2. Network Application Classification . 19

2.2.1. Related Work About Network Application Classification Systems 21

3. THEORETICAL BACKGROUND IN INFORMATION THEORY 24

3.1. Entropy . 24

3.2. Divergence . 28

3.3. Greedy Distance . 30

4. FEATURE EXTRACTION METHODS FOR DEEP PACKET INSPECTION

SYSTEMS . 37

4.1. Packet–Based Feature Extraction Methods 38

4.1.1. Modularity . 39

vii

4.1.2. Graph–Based Features . 44

4.1.2.1. In degree . 45

4.1.2.2. In degree weight . 45

4.1.2.3. Out degree . 45

4.1.2.4. Out degree weight . 46

4.1.2.5. Node betweenness centrality 46

4.1.2.6. Eigenvector centrality: 47

4.1.3. Information Theory Based Features 48

4.1.3.1. Entropy . 48

4.1.3.2. Greedy Distance . 49

4.2. Flow–Based Feature Extraction Methods 51

4.2.1. Statistical Flow–Based Features 51

4.2.1.1. Inter–arrival Time . 52

4.2.1.2. Packet Size . 53

4.2.1.3. Packet Arrival Pace 54

4.2.2. Payload–Based Features . 55

4.2.2.1. Entropy–Based Features 59

4.2.2.2. Greedy Distance–Based Features 59

4.2.2.3. Ratio of Printable Characters 60

5. PERFORMANCE EVALUATION OF PROPOSED DPI SOLUTIONS . . . 63

5.1. Data Sets . 63

5.1.1. Boğaziçi University DDoS Attack Data Set 63

5.1.2. IDS 2012 Network Intrusion Data Set 64

5.1.3. IDS 2017 Network Intrusion Data Set 66

5.1.4. Boğaziçi University Network Application Classification Data Set 67

5.2. Performance Metrics . 68

5.3. Packet–Based DPI Solutions . 70

5.3.1. Network Anomaly Detection Method Based on Header Informa-

tion Using Greedy Algorithm . 70

5.3.2. Clustering–based DDoS Attack Detection Using The Relation-

ship Between Packet Headers . 77

viii

5.3.3. Graph–based Fuzzy Approach Against DDoS Attacks 81

5.4. Flow–Based DPI Solutions . 87

5.4.1. Flow–Based Network Intrusion Detection System 89

5.4.1.1. Simulation Results on IDS 2012 Data Set 93

5.4.1.2. Simulation Results on IDS 2017 Data Set 101

5.4.2. Flow-Based Network Traffic Classification System 112

6. CONCLUSION & FUTURE WORK . 119

REFERENCES . 121

ix

LIST OF FIGURES

Figure 4.1. Example of a bipartite graph. 40

Figure 4.2. One mode projection applied graph. 41

Figure 4.3. Constructed clusters after the proposed method. 42

Figure 4.4. A directed graph with four nodes. 44

Figure 4.5. Demonstration of node betweenness centrality. 46

Figure 4.6. Representation of a network packet. 56

Figure 5.1. Demonstration of the distances between selected packet header values. 71

Figure 5.2. The Greedy distance between source and destination IP addresses. 73

Figure 5.3. The Greedy distance between source IP addresses and destination

port numbers . 73

Figure 5.4. The Greedy distance between source port numbers and destination

IP addresses . 73

Figure 5.5. The Greedy distance between source and destination port numbers 74

Figure 5.6. The modularity value obtained using source and destination IP

addresses. 79

x

Figure 5.7. The modularity value obtained using source port numbers and des-

tination IP addresses. 79

Figure 5.8. The block diagram of the proposed flow–based approach. 90

Figure 5.9. Confusion matrix of Monday of IDS 2012. 95

Figure 5.10. Confusion matrix of Tuesday of IDS 2012. 96

Figure 5.11. Confusion matrix of Thursday of IDS 2012. 98

Figure 5.12. Confusion matrix of Sunday of IDS 2012. 99

Figure 5.13. Confusion matrix of IDS 2012 data set with all classes. 102

Figure 5.14. Confusion matrix of Wednesday of IDS 2017. 104

Figure 5.15. Confusion matrix of Tuesday of IDS 2017. 106

Figure 5.16. Confusion matrix of Friday of IDS 2017. 108

Figure 5.17. Confusion matrix of IDS 2017 data set with all classes. 112

Figure 5.18. Confusion matrix when all features are used. 118

xi

LIST OF TABLES

Table 1.1. 7 Layers of the OSI Model. 2

Table 4.1. Packet–based Features. 50

Table 4.2. Flow–based Statistical Features. 55

Table 4.3. Payload–based Features. 62

Table 5.1. Number of Flows of IDS 2012 Data Set. 65

Table 5.2. Number of Flows of IDS 2017 Data Set. 67

Table 5.3. Number of Flows of Applications. 68

Table 5.4. Confusion matrix for 2× 2 binary classification case. 68

Table 5.5. Simulation results on BOUN data set with Greedy–Based Approach 74

Table 5.6. Simulation Results on IDS 2012 data set with Greedy–Based Ap-

proach . 76

Table 5.7. Simulation Results on IDS 2017 data set with Greedy–Based Ap-

proach. 77

Table 5.8. Simulation results on BOUN data set with Clustering–Based Ap-

proach. 80

xii

Table 5.9. Simulation Results on IDS 2012 data set with Clustering–Based

Approach. 81

Table 5.10. Simulation Results on IDS 2017 data set with Clustering–Based

Approach. 82

Table 5.11. Simulation results on BOUN data set with Graph–Based Approach. 86

Table 5.12. Simulation Results on IDS 2012 data set with Graph–Based Approach. 87

Table 5.13. Simulation Results on IDS 2017 data set with Graph–Based Approach. 88

Table 5.14. Number of flows of Monday data on IDS 2012. 93

Table 5.15. Simulation Results of IDS 2012 - Monday. 94

Table 5.16. Number of flows of Tuesday data on IDS 2012. 95

Table 5.17. Simulation Results of IDS 2012 - Tuesday. 96

Table 5.18. Number of flows of Thursday data on IDS 2012. 97

Table 5.19. Simulation Results of IDS 2012 - Thursday. 97

Table 5.20. Number of flows of Sunday data on IDS 2012. 98

Table 5.21. Simulation Results of IDS 2012 - Sunday. 99

Table 5.22. Number of flows of IDS 2012 data set with all classes. 100

Table 5.23. Simulation Results of IDS 2012. 101

xiii

Table 5.24. Number of flows of Wednesday data on IDS 2017. 102

Table 5.25. Simulation Results of IDS 2017 - Wednesday. 103

Table 5.26. Number of flows of Tuesday data on IDS 2017. 104

Table 5.27. Simulation Results of IDS 2017 - Tuesday. 105

Table 5.28. Number of flows of Friday data on IDS 2017. 106

Table 5.29. Simulation Results of IDS 2017 - Friday. 107

Table 5.30. Number of flows of whole data on IDS 2017. 108

Table 5.31. Simulation Results using Statistical Features on IDS 2017. 109

Table 5.32. Simulation Results using Payload–Based Features on IDS 2017. . . 110

Table 5.33. Simulation Results using All Features on IDS 2017. 111

Table 5.34. Simulation Results using Statistical Features. 115

Table 5.35. Simulation Results using Payload–Based Features. 116

Table 5.36. Simulation Results using All Features. 117

xiv

LIST OF ACRONYMS/ABBREVIATIONS

ACK Acknowledgement

ANN Artificial Neural Network

CLDAP Connection–less Lightweight Directory Access Protocol

CNN Convolutional Neural Network

DDoS Distributed Denial of Service

DNS Domain Name System

DoS Denial of Service

DPI Deep Packet Inspection

FTP File Transfer Protocol

GRU Gated Recurrent Unit

HTTP Hyper–text Transfer Protocol

IANA Internet Assigned Number Authority

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IoT Internet of Things

IPS Intrusion Prevention System

ISP Internet Service Provider

KL Kullback–Leibler

kNN k Nearest Neighbor

LAN Local Area Network

LLC Logical Link Control

LSTM Long Short–Time Memory

MAC Media Access Control

MLP Multilayer Perceptron

MPI Medium Packet Inspection

NLP Natural Language Processing

NTP Network Time Protocol

OSI Open Systems Interconnection

xv

P2P Peer–to–peer

PIN Personal Identification Number

POP3 Post Office Protocol 3

RNN Recurrent Neural Network

SDN Software Defined Network

SMTP Simple Mail Transfer Protocol

SOM Self Organizing Map

SPI Shallow Packet Inspection

SSH Secure Shell

SVM Support Vector Machine

SYN Synchronize

TCP Transmission Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

XMAS Christmas Tree Type Scan

1

1. INTRODUCTION

Deep Packet Inspection (DPI) is the process of analyzing the network traffic by

using different techniques [1]. The aim is to stabilize the health of the network by

protecting it against the anomalous activities. It can be considered as a filtering of the

network packets with a sophisticated manner. The network packets are checked to be

redirected to the desired destination. Any packets not complying with the set of rules

defined before are filtered out from the network to keep its robustness stable. This

process is executed by examining the contents of network packets. The details of DPI

systems with the other packet inspection systems are given in the next section.

1.1. Deep Packet Inspection (DPI) Systems

DPI can be regarded as the third method of network packet inspection tech-

niques which are Shallow Packet Inspection (SPI), Medium Packet Inspection (MPI)

and DPI [2]. SPI is the most basic packet inspection technique where only header

information of network packets are controlled. Network packets mainly have two parts

which are header information and payload portion. Header information constitutes

source and destination IP addresses, source and destination port numbers, protocol

information etc. Payload is the data that is sent from the source to destination. In

most applications, payload is encrypted to ensure the safety during the communica-

tion. In SPI techniques, the header part of network packets are examined. It can be

regarded as a static analysis of network packets. The aim is to direct the network

packets to the desired location by checking their header information. The content of

the packets, payload, is not checked. Therefore, this method is regarded as the weakest

packet inspection method. In MPI, besides checking the header information of network

packets, some portions of payload are analyzed. It can be regarded as a better version

of SPI. However, MPI is also a static method in which header information and payload

content are checked within some predefined rules. Therefore, the most sophisticated

packet inspection method is DPI.

2

Table 1.1. 7 Layers of the OSI Model.

Layer Name Properties

Application Allow access to network resources

Presentation Translates, encrypts and compresses data

Session
Establishes, manages and terminates session,

API, sockets, etc.

Transport
Provides reliable processes for message and

error delivery

Network
Moves packets from source to destination to

provide internetworking.

Data Link
Organizes bits into frames and provides

hop-to-hop delivery.

Physical

Transmits bits over a medium, provides

mechanical and electrical specifications

like coax, wireless, hubs etc.

Apart from statistical analysis, machine learning and deep learning algorithms

implemented in DPI methods makes DPI more complex and effective. Before analyzing

the DPI methods, the Open Systems Interconnection (OSI) model is described to show

which packet inspection method is used in which layer of the communication.

The OSI model consists of seven layers describing any communication occurring

through the network [3]. The aim is to define how the communication between two

sides will be. The OSI model does not differ according to any type of hardware or

computer network. The usage of OSI model is to visualize the communication network

and isolate the problems occurring during communication. Seven layers of the OSI

model are shown in Table 1.1. These layers can be briefly explained as follows:

• Application Layer: Application layer is the closest layer to the user. It is respon-

sible for file transfers, mail and other network software services. Some protocols

such as File Transfer Protocol (FTP), Domain Name System (DNS) and Hyper–

3

Text Transfer Protocol (HTTP) are run on this layer. It provides that programs

on various computer systems and networks can efficiently communicate with one

another.

• Presentation Layer: The presentation layer prepares data into understandable

format. Encryption and decryption processes on data are executed on this layer.

It sets the data to be displayed on the computer screen.

• Session Layer: The main duty of the session layer is to construct communication

channels called sessions between two sides. These sessions should be open during

data transmission and should be closed after the communication ends. This

layer is responsible for this process. It also creates checkpoints to resume the

transmission if any error occurs.

• Transport Layer: Transport layer takes data from Session layer and creates seg-

ments using it. This layer is responsible for controlling flows, regulating trans-

mission speed, and controlling errors. Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP) are run on this layer.

• Network Layer: In this layer, data is transmitted as network packets. Switching

and routing algorithms are executed in this layer. This layer uses IP addresses

to direct the packets to the destination.

• Data Link Layer: The data link layer starts and terminates the connection be-

tween two sides of communication. In this layer, network packets are fragmented

into the frames. Data is taken from network layer and sent to physical layer.

There are two main parts of this layer which are Logical Link Control (LLC) and

Media Access Control (MAC). LLC is responsible for frame robustness and error

checking. MAC addresses are used to connect the communication sides.

• Physical Layer: Physical layer is the hardware part of the communication. It

defines the type of connection which may be wireless or cable. The cables, hubs,

and repeaters work on this layer.

To relate the packet inspection methods with OSI model layers, the weakest

method, SPI, is carried out in data link and physical layers. MPI is more advanced

than SPI and is carried out in transport, network, data link and physical layers. DPI

4

is better than the previous packet inspection techniques in terms of complexity and

performance accuracy. It uses all layers in the OSI model especially the application

layer. It provides exhaustive analysis on network packets using their payload portions.

DPI is used for the management of network and protect network from malicious

activities such as viruses, worms, data leaks and other kind of anomalous traffic [4].

Packet inspection is executed using the header information and payload portion of

network packets. Also, within the development of new technology, machine learning

and deep learning methods are implemented in DPI systems. DPI techniques can be

broadly classified into three groups which are pattern or signature matching, protocol

anomaly and Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS)

solutions. Each group can be explained as follows:

• Pattern or signature matching: In this method, the network traffic is controlled

against a known network attacks. Anomaly detection is executed using the pre–

issued signatures. The drawback of this approach is that zero–day attacks cannot

be found using the old signatures.

• Protocol anomaly: In this method, the network traffic is controlled using the pro-

tocol definitions. These definitions decide which type of network traffic should be

allowed. Compared to signature matching method, it can offer detection against

unknown attacks.

• IDS/IPS solutions: The main difference between IDS and IPS is that, IDS is

about to generate alerts during malicious traffic while IPS take action to prevent

this kind of traffic. In these solutions, packet examination is carried out using

header information and payload content of network traffic. Complex algorithms

such as machine learning methods can be implemented using these systems. They

have a widespread usage compared to signature matching and protocol anomaly

methods.

There are also some challenges associated with DPI systems. By adding complex

algorithms such as machine learning methods, the DPI system can slow down the

5

network. Increasing the complexity of inspection algorithms may increase the reaction

time of the systems. Also, these systems may cause other security systems such as

firewalls to become harder to manage. Apart from these issues, DPI systems are well

used and studied in the network security field. In this work, a DPI system aiming at

the detection of malicious traffic and classification of the network traffic is proposed.

The contributions of this work is given in the next section.

1.2. Thesis Contribution

In this work, a DPI system is proposed against network attacks. This system is

also able to classify the network traffic into the applications. The main contributions

of the thesis can be stated as follows:

• To implement the DPI techniques, both packet–based and flow–based approaches

are used.

• Information theory–based features are proposed in the classification of network

traffic. Among them, the usage of Greedy distance given in [5] on network systems

is a novel perspective of the proposed system. This distance is used in both

packet–based and flow–based feature extraction procedures.

• A novel clustering algorithm given in [6] is implemented in the detection of dif-

ferent type of network attacks. This algorithm requires no parameters to execute

compared to other clustering algorithms. This is the main advantage of it.

• Novel payload–based features using the Greedy distance are extracted. It is shown

that these features are helpful in the classification of network traffic.

• The proposed system is evaluated with the popular publicly available datasets

such as ISCXIDS2012 given in [7] and CIC-IDS2017 given in [8].

6

1.3. Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, information about

different network attacks types is given. Also, literature review about network intrusion

detection systems and network application classification systems is given. In Chapter 3,

the theoretical background about the information theory metrics used in the proposed

systems is given. In Chapter 4, extracted features are explained in two categories

which are packet–based features and flow–based features. In Chapter 5, the general

architectures of proposed approaches are given. Also, simulation results are shown

with the explanation of data set used. Finally, Chapter 6 concludes the thesis by

summarizing the results and giving future work plans.

7

2. NETWORK INTRUSION DETECTION AND

APPLICATION CLASSIFICATION SYSTEMS

In this work, new DPI techniques are implemented for network anomaly detection

and application classification. For network anomaly detection, detection of different

kind of attacks is implemented with the proposed system. The most common attacks

are Denial of Service (DoS) attacks, Distributed Denial of Service (DDoS) attacks, port

scan attacks and brute force attacks. Each type of attack has also different types of

execution styles. As an example, flood attacks and protocol exploit attacks are two

types of DDoS attacks. For the network application classification, flows are labelled in

which application they belong to using the proposed system. In this chapter, common

attacks evaluated in this work are briefly explained. Then, related work about the

detection of these attacks is given. In the second part of this chapter, information

about the network application classification with the related work is given.

2.1. Network Intrusion Detection

Network intrusion detection is the process of monitoring the network traffic to

detect the malicious activities [9]. Network security systems can be divided into two

categories which are IDS and IPS. In this work, proposed system is regarded as an IDS.

The aim of IDS systems is to protect the network by detecting suspicious activities

and give alerts when necessary. If an action is taken, this system can be regarded as

intrusion prevention system. Intrusion detection systems are responsible for generating

alerts and reports such as log files to the control center of the network. These systems

can be classified into two categories which are explained below:

• Network Intrusion Detection System: These systems search the whole incoming

network traffic from all devices within the network. They are placed on strategic

points of the network to analyze the network more effectively.

• Host–based Intrusion Detection System: Instead of looking for the whole incoming

8

network traffic, these systems run on hosts or devices in the network. They are

only responsible for the device or host they run on.

Apart from categorizing the intrusion detection systems for where they are placed,

they can also be classified into two categories for their detection methods which are

signature–based and anomaly–based explained below [10]:

• Signature–based IDS : These systems use known attack patterns to detect mali-

cious activities. Examples of these patterns are byte sequences of network traffic

or known attack sequences used by malware. Existing attacks can be easily de-

tected by these systems but detecting zero–day attacks is tough process with

them.

• Anomaly–based IDS : In these systems, the aim is to detect zero–day or unknown

attacks. This is the method that has been studied extensively nowadays with the

developing machine learning methods. The challenge is to keep false positive rate

low while increasing the detection accuracy.

Intrusion detection systems are used to find the malicious traffic to keep the

network stable. Different type of attacks can be executed for different purposes. For

example, to search for the possible open ports on the network, port scan attack can be

executed. The most common attacks encountered in network systems are DoS/DDoS

attacks, brute force attacks and port scan attacks. These attacks are briefly explained

in the upcoming section.

2.1.1. Common Network Attacks

Research community of network security have been looking for better solutions

to combat with different kind of attacks. The most popular attacks evaluated by them

are DoS/DDoS attacks, brute force attacks and port scan attacks.

9

2.1.1.1. DoS/DDoS Attacks. DoS attack is the malicious attempt to disrupt the ser-

vice of any source by flooding it with different methods [11]. DoS is generally executed

by overloading the target machine or source with unnecessary requests. This causes

the blockage of some or all legitimate requests due to occupancy. DoS attack can

be exemplified as a group of people blocking the doors of a shop or workplace and

disrupting normal operations by not allowing legitimate parties to enter the store or

business. DDoS is similar to DoS attack except that multiple sources are used in it.

Attacker gains access to multiple computers or sources and use them to execute the

attack. These compromised computers can be called botnets in network terminology.

Attacker uses different methods such as viruses, trojans, malware etc. to gain access

to these devices.

The frequency of executing DDoS attacks is increasing day by day. Nowadays,

even small organizations can face with disruptive DDoS attacks. The increasing number

of available attack tools makes it easier to execute [12]. A successful DDoS attack

can cause serious damage to the victims. Even large companies around the world

having strong security mechanisms can face with DDoS attacks. As an example, in

October 16, 2020, Google faces with massive DDoS attack reported in [13]. UDP

amplification attack is executed with a pace of 167 Mpps (millions of packets per

second). Another example is that in February, 2020, Amazon Web Services experiences

an extreme DDoS attack targeting an unidentified customer. The technique used in

this attack is called Connection–less Lightweight Directory Access Protocol (CLDAP)

reflection. The duration of the attack is measured as three days. It achieves the pace

of 2.3 terabytes per second.

There are many techniques used to implement DDoS attacks. These attacks may

last from a few minutes to a few months. The damage of the attack depend on the

pace and duration of it. To categorize the DDoS attacks, the network layers in OSI

model where the attack is targeted are considered. Within this property, DDoS attacks

can be classified into three categories which are volume–based attacks, protocol attacks

and application layer attacks. These attacks can be explained briefly as follows:

10

• Volume–based Attacks: The aim of this type of attack is to deplete the bandwidth

of the victim’s side. Usually, these attacks are executed with a high pace. In

general, small size packets are sent with high transmission rate to overwhelm the

victim’s side. Some examples of this attack type are UDP flood, Internet Control

Message Protocol (ICMP) flood and other type of spoofed–packet floods.

• Protocol Attacks: These attacks aim at the capacity of resources of victim side.

In OSI Model, weaknesses of network and transport layers are exploited. One of

the example of this attack type is synchronize (SYN) flood in which the attacker

sends multiple connection request packets,SYN packets, to open the ports of

victim side. It is based on using the TCP handshake principle where victim

side tries to respond all the connection requests but the final connection cannot

occur. The other examples of this attack type are ping of death, fragmented

packet attacks and Smurf DDoS.

• Application Layer Attacks: This type of DDoS attack is relatively new compared

to the aforementioned attack types. Compared to them, this attack type is has

slower pace. It focuses on the vulnerabilities in the Application layer of the

OSI model. The most popular examples are HTTP floods, DNS amplification,

Network Time Protocol (NTP) amplification and memcached reflection. For ex-

ample, DNS amplification is a reflection–based attack where the attacker uses

DNS resolvers to execute the attack with a huge amount of traffic.

Among all category of DDoS attacks, some of them are mostly used in the attack

scenarios. These are UDP flood, ICMP flood, SYN flood, ping of death, slowloris, and

HTTP flood. In UDP and ICMP flood, victim side is overwhelmed with a huge number

of UDP and ICMP packets. SYN flood as explained above, depends on the handshake

principle of TCP packets. In ping of death, packets are fragmented and sent to the

victim side as in the other flood types. Slowloris is a slow pace DDoS attack type

where it uses minimal bandwidth. HTTP flood uses HTTP GET or POST requests to

attack the victim side. It does not use spoofing IP addresses and reflection techniques.

Compared to other attack types, it requires less bandwidth like slowloris.

11

2.1.1.2. Port Scan Attacks. In order to discover an active port and take advantage of

victim side’s known vulnerability, a port scan attack involves sending client requests

to a variety of server port addresses on a host of victim [14]. The aim is to find

weakness parts of victim side to execute more damaged attacks. Attackers can use a

port scan attack to identify open ports and determine whether they can send data or

not. Additionally, this attack can also show whether the victim side uses firewalls or

other active security measures. Apart from the malicious intentions, using the port

scanning technique, businesses can also send packets to particular ports and examine

the responses for any potential vulnerabilities. The information taken with the port

scanning operation can be stated as,

• The active services,

• Users having the services,

• If anonymous logins are permitted,

• What network services need to be authenticated.

A port is a location on a computer where data interchange occurs between vari-

ous programs, the internet, and hardware or other computers. Ports are given as port

numbers in order to maintain consistency and make programming procedures simpler.

Port numbers are sorted in the order of popularity ranging from 0 to 65536. Well

known ports, which are normally set aside for internet usage but may also have some

specific applications, are those with a port number between 0 and 1023. UDP, which

is primarily used for establishing low–latency and loss–tolerating connections between

applications, and TCP, which specifies how to establish and maintain a network con-

versation between applications, are typically responsible for managing ports. Most

frequently used port number can be exemplified as port 20 (UDP) for FTP, port 80

(TCP) for HTTP and port 22 (TCP) for Secure Shell (SSH) protocol. There are dif-

ferent methods for implementing port scanning techniques [15]. They can be stated as

follows:

12

• Ping Scan: This is the easiest port scanning method. The procedure is to send

ICMP requests to various sources to get a response.

• Vanilla Scan: In this method, all 65536 port numbers are tried to be connected

at the same time. This connection is enabled using responses from SYN and

Acknowledgement (ACK) packets. However, connection attempt to the all ports

gives alert in a short time.

• SYN Scan: In this method, attacker sends SYN request, and after the response

the attacker does not continue communication. In this way, the attacker learns

whether the port is open even though the interaction is not recorded. Attackers

utilize this rapid method to identify vulnerabilities.

• Christmas Tree Type Scan (XMAS): The set of flags that are enabled within a

packet and which, when seen in a protocol analyzer like Wireshark, appear to

be blinking like a Christmas tree give XMAS scans their name. A sequence of

flags are sent during this kind of scan, and depending on how they are handled,

they may reveal information about the firewall and the status of the ports. The

system’s response to them can give the attacker information about the system’s

degree of activity.

• FTP Bounce Scan: By using an FTP server to bounce a packet, the sender can

conceal the locations using this method.

• Sweep Scan: This basic port scanning approach sends communication to a port

across a network of computers to determine which ones are active.

2.1.1.3. Brute Force Attacks. A brute force attack is a hacking technique that makes

use of trial and error to break encryption keys, password and login information [16].

It is a straightforward but effective strategy for getting unauthorized access to user

accounts, networks and systems of companies. The term, brute force, refers to attacks

that utilize excessive force in an effort to obtain critical information. Although it seems

like an old method, brute force attacks continue to be a favorite among hackers. An

application of brute–force search, which is a broad method of listing all candidates and

checking each one, is considered to be a brute–force attack.

13

In order to gain illegal access and steal user data, attackers can utilize a variety

of brute force attack techniques. Different strategies can be used by each brute force

attack to find sensitive data. These techniques can be stated as follows:

• Simple Brute Force Attacks: When the attacker uses no software at all and tries

to guess a user’s login information manually, this is known as simple brute force

attack. Usually, this is done using Personal identification number (PIN) codes or

common password combinations.

• Dictionary Attacks: A dictionary attack is a fundamental type of brute force

hacking in which the attacker chooses a target and runs potential passwords to

find the real one. Dictionary attacks are so named because they involve hackers

going through dictionaries and replacing words with symbols and numbers.

• Hybrid Brute Force Attacks: A dictionary attack method combined with a simple

brute force attack is known as hybrid brute force attack. The attacker first

needs to have access to a username before using dictionary and brute force attack

techniques to find an account login information.

• Reverse Brute Force Attacks: By beginning with a known password, a reverse

brute force attack turns the attack tactic on its head. Once they locate a match,

attackers look through millions of usernames.

• Credential Stuffing: Attackers will test a username and password combination

on numerous websites if they have one that works for one of them. Users with

reusing same login information across numerous websites are the targets of this

type of attack.

In this section, common network attacks are explained with the examples. The

most used ones are explained in more detail. In the next section, related work in the

literature about network intrusion detection systems is given.

14

2.1.2. Related Work About Network Intrusion Detection Systems

With the development of internet technologies, network attacks have evolved.

These attacks have become serious threat to any organization from small ones to the

large ones around the world. Therefore, with this rapid increase in the network attacks,

attack detection methods are also evolving day by day. This section summarizes the

existing detection mechanisms against common network attacks defined above.

The prevailing attacks against network systems are DoS/DDoS attacks. There

have been numerous solutions against these attacks ranging from signature–based tech-

niques to newly developed machine learning–based techniques. The overview of the

existing solutions against DoS/DDoS attacks is given in [17]. In this survey, first,

the DDoS attack execution strategies are explained in detail. Authors categorize the

DDoS attacks into four categories which are bandwidth depletion attacks, resource

depletion attacks, infrastructure attacks and zero–day attacks. These different types

of DDoS attacks are explained with visual demonstrations. Then, existing solutions

against DDoS attacks are given as two groups which are signature–based detection and

anomaly–based detection. Also, some DDoS mitigation tools are explanied such as Bro

given in [18] and Snort given in [19]. Another survey evaluating detection and mitiga-

tion of DDoS attacks in Software Defined Network (SDN) systems is given in [20]. In

this survey, authors explain how SDN structure is utilized in the detection of DDoS

attacks. They review about 70 popular DDoS attack detection and mitigation meth-

ods prevalent in the literature. These methods are classified into four groups which are

machine learning–based methods, Artificial Neural Network (ANN) based methods,

information theory–based methods and other statistical methods. They also discuss

the unresolved research questions, limitations and difficulties in applying DDoS attack

detection techniques in SDN. Another survey regarding DDoS attack detection schemes

against Internet of Things (IoT) networks is given in [21]. In this survey, security issues

in IoT networks are evaluated. Then, the taxonomy of DDoS attacks in IoT networks

is given. Then, various defence mechanisms against DDoS attacks are explained and

compared to each other in term of performance.

15

Among the solutions against DDoS attacks, information theory–based ones have

an important place. Entropy is a measure of randomness of a system. It is used in many

different forms to detect different kind of attacks. There have been numerous solutions

using entropy to detect DDoS attacks. The entropy of each packet header values can

be used in the detection of different type of attacks. Destination IP entropy based

DDoS attack detection methods are given in [22–26]. These solutions are proposed for

the security of SDN. In [22], authors focus on the security of data plane of SDN. They

use Floodlight controller. The data set they choose are CAIDA 2007 given in [27] and

synthetic data set created with Scapy tool. For this paper, publicly available data set

used is an old data set. Another solution given in [23] focuses on controller plane of SDN

by using POX controller. To calculate the destination IP entropy value, network packet

window with a size of 50 is used. They use synthetic data set generated with Scapy

tool. One of the drawbacks that can be stated about this work is that they do not use

publicly available data set. They state that by changing the parameters, their solution

is applicable to different controller requirements. Another proposed method given

in [24] is similar to the previous methods except that in this method mitigation policy

is also applied. The paper given in [25] combines two modules into one system which

are statistical collection module and anomaly detection module. Information distance

was used by authors to measure the deviation in network flows. They also analyze the

difference between high–rate DDoS attacks and flash events in [26]. Information theory

metrics are used to discriminate these network events.

Apart from the entropy of destination IP addresses, entropy of other packet head-

ers such as source IP addresses, source port numbers, destination port number etc. can

be used for the detection of DDoS attacks. The methods using the entropy of different

packet headers are given in [28–32]. The proposed system given in [28] is designed

for all layers in SDN which are application, control and data. Shannon entropy of IP

addresses and port numbers are used for the detection phase. Both mitigation and

detection of DDoS attacks are implemented in this system. Besides DDoS attacks,

proposed system is also able to detect port scan attacks. Joint entropy of source and

destination IP addresses are used in [29]. In this work, both mitigation and detection

16

are performed. Simulation environment is created in Mininet using real world traffic

traces taken from MAWI Working Group Traffic Archive [33]. In this system, joint

entropy of pair profiles is calculated and compared with threshold value to detect DDoS

attacks. Also, in mitigation stage, according to the joint entropy results, different rules

are applied to mitigate the attacks. High performance is obtained using the proposed

approach. Another approach using the entropy of packet header values is given in [31].

Statistical approach is implemented where a score is calculated using the entropy

values. Then, this score is compared with a threshold value to determine whether there

is anomalous traffic or not. Synthetic data set is created using Scapy and Hping tools.

Besides Shannon entropy, different type of entropy values are used to detect DDoS

attacks. Conditional entropy is used for the detection of DDoS attacks given in [34].

In this approach, conditional entropy between source and destination IP addresses is

used for the detection. Dynamic threshold is used to decide whether incoming traf-

fic is anomalous or not. Authors use LLS 2.0 data set from MIT Lincoln Lab given

in [35] to validate their results. They reach 99.372% average detection rate. Another

different usage of entropy called as ϕ–entropy is given in [36]. Authors define a new

information theory metric using Shannon entropy and sinh function. They consider

destination IP to calculate ϕ–entropy values. Network packet window size is taken as

50 and attack detection is performed if the ϕ–entropy value is higher than the static

threshold value for 5 consecutive windows. Synthetic data set is used to validate the

results with different attack traffic rates.

With the development of deep learning methods, network intrusion detection

systems have focused on applying these techniques. One of the solutions using Con-

volutional Neural Network (CNN) in the detection of DDoS attacks is given in [37].

Authors call their system as LUCID which is a practical, lightweight deep learning

solution. In this work, authors build matrices to represent the network traffic. They

treat these matrices as input images and feed them into the constructed CNN architec-

ture. For each packet, they extract 11 features to represent it. Some of these features

are packet length, TCP flags, TCP window size, UDP length etc. Time series analysis

is performed using network packet windows. Proposed approach is validated using dif-

17

ferent publicly available data sets which are ISCX2012 [7], CIC2017 and CSECIC2018

given in [8]. They reach approximately 99% accuracy in all data sets. The approach

given in [38] combines entropy based features with deep learning. Authors focus on re-

moving the static threshold situation using this approach. Simulation results are taken

using ISCX2012 data set. It is observed that there is an increase in the performance

compared to traditional threshold–based approaches. They reach 94.74% accuracy

which is higher than the paper they compare with the accuracy value of 90.04%. CNN

is also implemented in some approaches using flow–based statistical features such as

flow duration, total number of bytes etc. given in [39–42]. Statistical features are

combined with payload–based features to detect network attacks in [39]. To extract

payload–based features, word embedding and text–CNN methods are applied. Then,

whole feature set is fed into Random Forest classifier. Experiment results are taken

with ISCX2012 data set. Authors give performance results with different number of

features and different length of payload. In overall, they reach 99.13% accuracy. In [40],

CNNs are compared with Recurrent Neural Networks (RNNs). Authors compare the

performance of four deep learning architectures which are basic CNN, inception archi-

tecture CNN, Long Short–Time Memory (LSTM) and Gated Recurrent Unit (GRU).

They use ISCX2012 to compare the selected deep learning architectures. Flow–based

statistical features are used to implement these architectures. Simulations are done

using five–class model including normal, infiltrating, HTTPDoS, DDoS and Brute Force

SSH traffic. Different architectures perform better for different type of traffic. For ex-

ample, while GRU gives the best performance in normal traffic, basic CNN gives the

best performance in HTTPDoS. The approach given in [41] uses deep learning models

for intrusion detection in IoT networks. Authors compare the performance of four dif-

ferent models which are Multilayer Perceptron (MLP), CNN, LSTM and combination

of CNN and LSTM. They use DDoS samples from CICIDS2017 data set to validate

their results. By using the models mentioned, they reach highest accuracy as 97.16%.

Among different techniques implemented in intrusion detection systems, the

approach given in [43] uses Graph theory to find attacks in SDN systems. They use

flow–based approach to construct graph models. To measure the similarity between the

18

constructed graphs, Pearson correlation is used. The parameters considered during the

construction of graphs are IP addresses, port numbers, number of packets and protocol

type. In the classification phase, k Nearest Neighbor (k–NN) classifier is selected.

Simulation results are taken with CAIDA data set and a synthetic data set created using

Hping3 attack creation module. Authors show that their approach outperforms other

selected approaches using Self Organizing Map (SOM) and Support Vector Machine

(SVM). Another approach using Graph theory is given in [44]. This system uses graph

inference model which is a relational graph between the known traffic patterns and their

labels (anomalous or normal). In the feature selection process, Chow-Liu algorithm

is used to select only observable features. These features are constructed using flow–

based statistics. Simulations are done using ISCX2012 data set. They reach 89.30%

detection accuracy. Besides using Graph theory, Bloom filters are extensively used

in intrusion detection systems. An approach given in [45] uses Bloom filters for the

detection of DDoS attacks. Flow–based features are selected which are flow duration,

number of packets and total byte. Synthetic data set is created using Iperf tool.

Performance of the system is measured using different attack rates. Another different

approach used in intrusion detection systems is the application of cumulative sum given

in [46]. Authors consider number of packets to use cumulative sum. Also, adaptive

threshold is obtained using the cumulative sum. The proposed system is tested with

CAIDA [27] and DARPA [35] data sets. False alarm rate is calculated as under 11.64%

and detection duration for DDoS attacks is measured as 4.15 seconds. Queuing theory

is another method implemented in intrusion detection systems. An approach given

in [47] uses queuing theory to detect DDoS attacks. Flow table space is constructed to

use queuing theory. The approach examines the flow table state of all other switches to

find a suitable switch when the target switch is under attack. Calculating the unused

slots of other switches involves using a mathematical model based on queuing theory.

Experiments are done using synthetic data set created on Mininet. Performance of the

system is evaluated with different attack rates.

19

2.2. Network Application Classification

Traffic classification is the process of categorizing traffic flows according to the

service class, which identifies the application category to which the flow belongs. The

management of network performance is crucial for Internet Service Providers (ISPs).

The ability to classify network traffic has the potential to address a variety of net-

work issues for businesses, individuals, ISPs, and the government, including capacity

planning, anomaly detection, application performance and trend analysis. Utilizing

this method, network administrators can control resources and prevent certain flows

among other things. The growth of the network applications can also be observed.

Researchers are working to develop lightweight algorithms for classification that have

the least amount of computing needs in order to deal with the issues caused by the

growth in traffic types and transmission rates.

To define Virtual Private Networks (VPNs), it can be said that users are safely

connected to an enterprise network using VPNs. VPN uses packet–level encryption

to ensure the security of the data sent over the internet. Due to the network traffic

encryption, traffic classification for VPN connections and encrypted traffic, which re-

quires associating traffic flows towards a type of application, is difficult to complete as

stated in [48]. Therefore, newly developed solutions must consider the classification

of network traffic with encrypted packets. Only analyzing the IP addresses and port

numbers will not be adequate to determine which class the network traffic belongs.

The process of identifying the network applications or protocols that are present

in a network is known as network application classification. In the last two decades,

network application classification has become increasingly important. Numerous ap-

proaches to classify network applications have been put forth by researchers. The

techniques used in network application classification can be broadly divided into three

groups which are port–based technique, payload–based technique and machine learning–

based technique. These techniques are explained as follows:

20

• Port–based Technique: In this method, the well–known port numbers are used

to classify network traffic into the applications. Traditional network applica-

tions are listed in the Internet Assigned Number Authority (IANA) under their

ports. Applications that make use of particular protocols such as HTTP, FTP,

Post Office Protocol 3 (POP3) and ICMP, can benefit from these techniques. For

instance, email applications utilize the port number 25 Simple Mail Transfer Pro-

tocol (SMTP) to send emails, and the port number 110 (POP3) to receive emails.

Web applications use port number 80 in this fashion. However, the success rate

of port–based techniques has significantly dropped over time as more applications

began to employ dynamic port allocation. Additionally, some applications have

not submitted their port registrations to IANA, which poses a significant obstacle

for port–based techniques.

• Payload–based Technique: In this method, the packet contents are inspected in

search of the characteristics and signatures of network applications in the network

traffic. It is similar to the signature–based approach explained as one of the

approaches of DPI techniques. One of the drawbacks of this approach is that in

order to look for patterns in payload, relatively expensive hardware is required.

Also, in encrypted network application traffic, this method fails. In addition

to encryption, this approach is unable to find the application if the payload’s

signature is not recognized.

• Machine learning–based Technique: In this method, unknown classes are identi-

fied using the trained sample prediction and a machine learning classifier that has

been taught as input. Flow–based statistical features can be utilized to classify

applications. The machine learning methods offer significantly more versatility

because these features are independent of port and payload. On the other hand,

payload–based features can be added into these features to be used in application

classification as done in this thesis.

In this section, brief introduction of network application classification is given.

The approaches used in application classification are explained. In the next section,

literature review about these methods is given.

21

2.2.1. Related Work About Network Application Classification Systems

To look for the solutions provided for network traffic classification in application

identification, first attempts were made using port–based techniques. Example studies

of this approach are given in [49,50]. In [49], authors investigate the network traffic of

peer–to–peer (P2P) applications. They mention that these applications use arbitrary

port numbers. To overcome this situation, they suggest some heuristics about the be-

havior of these applications. For example, they claim that port 80 is generally selected

as destination port for the communication of these applications. Another study given

in [50] mentions about the insufficiency of well–known port–based approach. They

compare the port–based approach with content–based approach and show the supe-

riority of content–based approach. One of the studies using payload–based approach

in network traffic classification is given in [51]. In this work, authors compare the

performances of lightweight traffic classification approach with a completely stateful

approach. They show that even though the first method is less exact, it is nevertheless

suitable for a wide range of applications. On the other hand, the approach given in [52]

aims at increasing the processing speed of the network traffic classification architec-

ture. Authors propose many design options to execute the traffic classification process

in real time. They analyze the flow–based parameters such as number of packets within

a flow and packet size to find the optimum combination of them. Lastly, the approach

given in [53] is also deals with the problem of computation duration in payload–based

classification systems. Authors analyze top ten applications of the categories such as

gaming, multimedia, web browser, commercial, file sharing etc. Distributions of IP

addresses and port numbers are examined using cumulative distribution function. They

suggest Same Server IP Port Cache–based classification to improve the performance of

payload signature–based method. They reach 10–fold increase in the speed of process

and more than 10% increase in the completeness of the classification.

With the newly developing technology, network traffic classification methods fo-

cus on machine learning techniques. Also, encrypted messages make it tough for older

algorithms to classify the network traffic into applications. There are several

22

approaches using machine learning techniques for the network traffic classification given

in [54–59]. Comparison of ten different classification algorithms with features selection

techniques is given in [54]. Some of these algorithms are C4.5 Decision Tree, Naive

Bayes, Bayesian Networks, MLP Network etc. Authors use publicly available data set

National Laboratory for Applied Network Research network traces given in [60]. By

using 22 flow–based features, they reach more than 97% accuracy. Review of the stud-

ies using machine learning techniques in network traffic classification from 2004 to early

2007 is given in [55]. The approach given in [56] tries to classify the network traffic

into three classes which are normal web traffic, web traffic and audio traffic. They

combine keyword matching and statistical profiles for the classification. The features

they use are average received packet size, flow duration and ratio of packet count. The

recall rate they achieve is 84% using the synthetic data set they generated. In [57],

authors implement machine learning methods on to the payload–based features. They

use data set collected from the campus network of SunYat–Sen University. Within

the seven categories, they reach more than 90% accuracy. Another study given in [59]

focuses on network traffic classification in cloud–based systems. This research suggests

an architecture for a cloud–based traffic classification service for parallel classification

and sharing models. They use statistical information of flows as features. This data

is stored in a database on the cloud, and a machine learning–based training system is

also created.

One of the studies using different machine learning algorithms in network traffic

classification is given in [61]. In this paper, authors implement four different classifi-

cation algorithms which are J48, Random Forest, k–NN and Bayesian Network. They

use a subset of flow–based features decided using chi–square statistic value. For the

simulations, they use two data sets which are publicly available UNB ISCX Network

Traffic data set [48] and the synthetic data set they generated. The selected features

differ for these data sets due to the flow characteristics. Among 111 features 12 features

are selected for each data set. Among different classifier selections, for ISCX data set,

they reach overall 93.94% accuracy with k-NN classifier and for the synthetic data set

they reach 90.87% accuracy with Random Forest classifier.

23

Another study given in [62] proposes a multimodal multitask deep learning system

for encrypted network traffic classification. They use payload of packets to build the

features using their proposed deep learning architecture. For the simulations, ISCX

data set is used. Simulations are done using three objectives. First objective is called

encapsulation in which network traffic is classified as VPN or nonVPN. Second objective

is called traffic type in which classification is based on the application type categories

which are VoIP, File Transfer, P2P, Streaming, Chat and Email. The last objective is

called application in which directly the application of network traffic is found.

15 different applications are used such that Skype, Facebook and YouTube are the

most popular ones. Authors compare their results with 8 different approaches and

they claim that their system outperforms them. Accuracy values obtained for their

system are 93.75% for encapsulation objective, 80.78% for traffic type objective and

77.63% for application type objective.

24

3. THEORETICAL BACKGROUND IN INFORMATION

THEORY

In network anomaly detection and application classification systems, some metrics

based on information theory are extensively used. The most common used metrics are

entropy and divergence. In network anomaly detection systems, these metrics reflect

the behavior of network traffic effectively during both attack and attack–free cases.

On the other hand, to characterize the network traffic to find which applications are

running through network, these metrics are also helpful because different values are

observed with different applications. In the beginning, entropy concept is introduced.

After defining what the entropy is, divergence concept is explained.

3.1. Entropy

Entropy can be defined as a measure of uncertainty or randomness of a system.

It is introduced by Claude Shannon given in [63] called as Shannon entropy. Given a

random variable X, Shannon entropy of X is given as

H(X) = −
n∑
i=1

pi log2(pi), (3.1)

where pi is the probability of ith outcome of the event X among n different outcomes

with pi ≥ 0. After the concept of Shannon entropy is introduced, Alfred Renyi

generalized the definition of entropy by introducing α-Entropy [64], given as

Hα(X) =
1

1− α
log2

(n∑
i=1

pαi

)
, (3.2)

where α is called order. The addition of the order α generalizes the concept of entropy.

In this way, by choosing different α values, this metric can highlight the different

portions of probability distributions.

25

For example, when α ≥ 0, this metric becomes more sensitive to the events that

occur frequently. On the other hand, by defining α < 0, less frequent events are more

focused. Different kind of entropy metrics can be obtained by changing the value of

order α. Maximum value of the entropy can be found by taking α = 0, which is known

as Hartley entropy given as

H0(X) = log2(n). (3.3)

From α-Entropy, Shannon entropy can be found by taking α → 1. To show this, when

α → 1, 0
0
uncertainty appears. To solve this uncertainty, l’Hopital’s Theorem is used.

Proof. The theorem states that

lim
α→m

f(α)

g(α)
= lim

α→m

f ′(α)

g′(α)

where m = 1 in this case. Putting

f(α) = log2

(n∑
i=1

pαi

)
g(α) = 1− α,

gives

d

dα
g(α) = −1

d

dα
f(α) =

1∑n
i=1 p

α
i

n∑
i=1

d

dα
pαi ,

where

d

dα
pαi = pαi log2(pi).

26

Then, letting α → 1 gives

d

dα
f(α) =

1∑n
i=1 pi

n∑
i=1

pi log2(pi)

where denominator is the summation of all probabilities which equals to 1. To conclude,

lim
α→1

1

1− α

(n∑
i=1

pαi

)
= lim

α→1
=
f ′(α)

g′(α)
= −

n∑
i=1

pi log2(pi)

which is Shannon entropy H(X).

By taking α = 2, different type of entropy called Collision entropy is defined

given as

H2(X) = − log2

(n∑
i=1

p2i

)
. (3.4)

This entropy metric is also known as Renyi entropy. It has many application areas

such as signal processing, economics, physics etc. When α → ∞, minimum entropy is

defined given as

H∞(X)=̇min
i
(− log2(pi)) = −(max

i
log2(pi)) = − log2max

i
pi. (3.5)

Proof.

lim
α→∞

Hα(X) = lim
α→∞

1

1− α
log2

(n∑
i=1

pαi

)

For α → ∞,

1

1− α
≈ − 1

α

27

Since 0 ≤ pi ≤ 1, and if pi ≤ pj then p
α
i ≤ pαj , when α → ∞, the largest term,

(maxi pi), dominates the summation, that is

n∑
i=1

pαi ≈ max
i
pαi

and putting together with the first appromation,

lim
α→∞

Hα(X) = H∞(X) ≈ − 1

α
log2max

i
pαi = −α

α
log2max

i
pαi = − log2max

i
pi.

The minimum entropy has some important application areas such as random-

ness extractors in theoretical computer science. It also has a vital space in quantum

cryptography in the field of privacy amplification.

The different kind of entropies, by changing the order α, have the relationship

given as

H0(X) ≥ H1(X) ≥ H2(X) ≥ ... ≥ H∞(X), (3.6)

where H0(X) is the maximum entropy and H∞(X) is the minimum entropy. For the

same probability distribution, by increasing the order α, the entropy value decreases.

Apart from the order α, base of the logarithm may be changed. Different choices

of base of logarithm function can be used for different applications. Base 2 corresponds

to the unit of bits. On the other hand, base e corresponds to natural units and base

10 corresponds to dits. Common selections of the base are 2 and e. Entropy is a

popular information theory metric used in deep packet inspection systems such as

anomaly detection or network application classification. It highlights the behavior of

packet header values such as source IP addresses. In these systems, Shannon entropy

28

is the most used one. By using α-Entropy with different α values, sensitivity can be

put on which portion of distributions whether frequent ones or less frequent ones will

be analyzed. Therefore, by using this property, entropy is used in many deep packet

inspection studies.

3.2. Divergence

Based on the entropy concept, divergence is the distance between two probability

distributions [65]. Divergence measures how much these probability distributions close

to each other. Smaller divergence value show that probability distributions have similar

quantities of information. In the context of deep packet inspection, divergence measures

how much the behavior of packet header values are different from each other. For

example, source IP addresses and destination IP addresses may behave differently

during a network attack. In this case, divergence may highlight this behavior difference.

Compared to attack–free traffic, divergence value may be higher or lower. This situation

can be utilized in attack detection schemes.

Like in the entropy case, divergence is defined with the order α. For two discrete

probability distributions P = [p1, p2, ...pn] and Q = [q1, q2, ...qn], the divergence can be

calculated as

Dα(P ||Q) =
1

1− α
log2

(n∑
i=1

pαi q
1−α
i

)
, (3.7)

where α ≥ 0. When α is taken as 1, Kullback–Leibler (KL) divergence [66], which is

also called relative entropy is derived given as

D1(P ||Q) = DKL(P ||Q) =
n∑
i=1

pi log2

(pi
qi

)
. (3.8)

KL divergence measures the closeness of two probability distributions P and Q.

In other words, it is the measured distance from the approximated distribution Q when

29

the true distribution is P . KL divergence is a statistical distance but it is not a metric.

Properties of KL divergence can be written as follows:

• DKL(P ||Q) ≥ 0 and DKL(P ||Q) = 0 ⇔ P = Q

KL divergence takes values on the interval [0,∞]. When the probability distri-

butions are same, log term gives zero which in turn makes divergence zero. This

property is also known as Gibbs’ inequality.

• DKL(P ||Q) ̸= DKL(Q||P) if P ̸= Q

The distance from P to Q is generally not the same as the distance from Q to P .

Therefore, KL divergence is not commutative.

• KL divergence generally does not satisfy the triangle inequality.

Proof. The proof is given with a contrary example. The triangle inequality states

that

d(x, z) ≤ d(x, y) + d(y, z),

where d is the distance metric, x, y and z are the variables. To apply triangle

inequality in KL divergence case,

DKL(P ||R) ≤ DKL(P ||Q) +DKL(Q||R)

must hold for probability distributions P , Q and R. As an example, take the

event space as X = {0, 1}. Let P = [0.5, 0.5], Q = [0.25, 0.75] and R = [0.1, 0.9].

Calculations give, DKL(P ||R) = 0.51, DKL(P ||Q) = 0.14 and DKL(Q||R) = 0.09.

Therefore,

0.51 ≰ 0.14 + 0.09

DKL(P ||R) ≰ DKL(P ||Q) +DKL(Q||R)

in general.

30

KL divergence has many application areas ranging from Natural Language Pro-

cessing (NLP), computer vision to compression. In the context of deep packet inspec-

tion, the behavior of packet header values are analyzed using KL divergence. To satisfy

the symmetry using KL divergence, modified version of it given as

D(P ||Q) = DKL(P ||Q) +DKL(Q||P)
2

(3.9)

is used. D(P ||Q) clearly satisfies commutativity as D(P ||Q) = D(Q||P). However, it

is again generally does not satisfy the triangle inequality. Therefore, it is not a metric.

KL divergence requires both probability distributions to have same size. In other

words, as it can be seen from (3.8), both distributions, P and Q, must have n number

of elements. If one of them has different number of elements, KL divergence cannot be

applied. To solve this problem, one method is to append very small values (ϵ ≈ 0 and

ϵ > 0) to the probability distribution with less number of elements, and calculate KL

divergence with the new constructed probability distribution. However, it is not seen

as an effective method when the number of elements of the probability distributions

are very different from each other. To overcome this situation, Greedy algorithm given

in [5], is applied to probability distributions. Greedy algorithm calculates an upper

bound for the distance between two probability distributions. It is based on maximizing

the mutual information between two different probability distributions. Details of the

Gredy algorithm is given in the next section.

3.3. Greedy Distance

Greedy algorithm is used to find a distance between two probability distributions

with different cardinalities [5]. The aim is to maximize the mutual information between

these two variables having different probability distributions. For two random variables

31

X and Y , mutual information can be given as

I(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y) log2
P (x, y)

P (x)P (y)
, (3.10)

where P (X) is the marginal distribution of the random variable X, P (Y) is the

marginal distribution of the random variable Y and P (X, Y) is the joint distribu-

tion of the random variables X and Y . It can also be written in terms of entropy such

that

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X), (3.11)

where H(X) and H(Y) are the entropies defined in (3.1), H(X|Y) and H(Y |X) are

the conditional entropies given as

H(X|Y) = −
∑

x∈X,y∈Y

p(x, y) log2
p(x, y)

p(y)
(3.12)

and H(Y |X) is the same as (3.12) except that the denominator is p(x) in the log2 term.

Mutual information given in (3.11) can also be written in terms of joint entropy of X

and Y such that

I(X;Y) = H(X) +H(Y)−H(X, Y) = H(X, Y)−H(X|Y)−H(Y |X), (3.13)

where joint entropy of X and Y can be given as

H(X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y). (3.14)

The Greedy distance can be calculated as follows. Let ϕ ∈ Sn, ψ ∈ Sm be the two

probability distributions with different cardinalities. Suppose n ≥ m. There are two

NP–hard problems, which are deciding whether ψ is a fusion of ϕ or not, and obtaining

the ideal bin allocations in the bin packing problem. To overcome these situations, the

32

Greedy algorithm is one of the proposed solutions. The algorithm is explained below.

(i) Let s = 1, where s is the number of iterations. For each iteration, ns = n,

ms = m, ϕs = ϕ and ψs = ψ are defined.

(ii) Elements of ψ are sorted from largest to smallest. The first element of ϕ is

allocated to the largest element of ψ. Then, the capacity (value) of this element

of ψ is decreased by the value of the assigned element of ϕ. Then, sorting is

applied to the ψ because one of its elements’ value is changed. With this recursive

process, bin packing process is applied. If an element (ϕs)i cannot be assigned to

any bin, its index i is added to the outlier set defined as Ks

(iii) Let I
(s)
1 , ..., I

(s)
ms denote the indices of allocated elements of ϕ with corresponding

indices of ψ. Also, Ks corresponds to the outlier set of indices defined in Step

(ii). If |Ks| > 1, move to Step (iv); otherwise move to Step (v).

(iv) Unused capacities of each bin of ψs are defined as β
(s)
1 , ..., β

(s)
ms , and construct

β(s) = [β
(s)
1 , ..., β

(s)
ms]. Then, the total unused capacity cs := β(s)ems is given as

cs =
ms∑
j=1

β
(s)
j =

∑
i∈Ks

(ϕs)i. (3.15)

Since each (ψs)i, i ∈ Ks cannot be assigned to any bin, it gives (ψs)i > β
(s)
j , ∀i, j.

It means that |Ks| < ms. Next, set ns+1 = ms, ms+1 = |Ks|, and define

ϕs+1 =
1

cs
βs ∈ Sns+1, (3.16)

ψs+1 =
1

cs
[(ϕs)i)] ∈ Sms+1. (3.17)

Increase the iteration number by one and move to Step (ii).

(v) In this step, |Ks| must be equal to 0 or 1. |Ks| = 0 implies that ψs is an exact

fusion of ϕs. |Ks| = 1 implies that only one element of ϕs, call it (ϕs)k cannot be

33

allocated into any bin, therefore cs equals to the value of this element. Then, let

vs =
1

cs
β(s) ∈ Sms , (3.18)

Vs = csH(vs), (3.19)

Us = Vs +H(ϕs)−H(ψs). (3.20)

Define Ps ∈ Sns×ms by pi = bj if i ∈ I
(s)
j and pk = vs where bj is the jth unit

vector with ms components. Defining

Jϕ(P) =
n∑
i=1

ϕiH(pi), (3.21)

Vs is the minimum value of Jphis(.) given in (3.21), and Ps reaches that minimum.

Also defining Qs ∈ Sms×nS
by

Qs = [diag(ψs)]
−1P T

s diag(ϕs), (3.22)

JψS
(.) is minimized by Qs, and this minimum value is equal to Us.

(vi) All previous steps are inverted by starting with Qs+1. It gives Us+1 since it is the

minimum value of the cost function defined in (3.21). Then, the calculation of Vs

is given as

Vs = csUs+1, (3.23)

and Us is calculated using (3.20). This backward process is applied by decreasing

the iteration number by one. In each step, ms = ns+1 holds and cs values are

recalled.

After completing these steps and reaching from the last iteration to the initial

iteration, a possible maximum value of the distance between two probability distribu-

34

tions is found by

dgreedy(ϕ, ψ) ≤ V1 + U1. (3.24)

dgreedy(., .) is used as a Greedy algorithm function which takes two probability dis-

tributions as inputs and gives the upper bound value of the distance between these

probability distributions. Details of the algorithm can be found in [5]. The illustration

of the Greedy algorithm is given with an example below.

Example: In this example, the Greedy algorithm is illustrated with two ran-

domly selected probability distributions. The probability distributions are ϕ ∈ S40 and

ψ ∈ S10 such that

ϕ =



0.0304 0.0333 0.0153 0.0335 0.0253 0.0148 0.0178 0.0232

0.0157 0.0355 0.0350 0.0219 0.0299 0.0155 0.0205 0.0336

0.0259 0.0139 0.0314 0.0342 0.0265 0.0287 0.0283 0.0199

0.0273 0.0139 0.0177 0.0141 0.0148 0.0307 0.0270 0.0185

0.0350 0.0353 0.0297 0.0351 0.0259 0.0160 0.0348 0.0139


,

ψ =

0.1241 0.1205 0.1192 0.1139 0.1069

0.0914 0.0875 0.0869 0.0821 0.0675

 ,
where ϕ and ψ are row vectors but for demonstration purposes, they are shown in

matrix format. The application of best–fit algorithm in the first round gives,

I
(1)
1 = {1, 7, 16, 20, 32}, I(1)2 = {2, 11, 17, 25, 33}, I(1)3 = {3, 6, 9, 22, 28}

I
(1)
4 = {4, 15, 26, 34}, I(1)5 = {5, 14, 21, 30}, I(1)6 = {8, 18, 31}

I
(1)
7 = {10, 23, 35, 38}, I(1)8 = {12, 24}, I(1)9 = {13, 27, 40}

I
(1)
10 = {19, 29}, K1 = {36, 37, 39},

where elements inside the sets given above represent the indices of values of the proba-

bility distribution ϕ. After the first round, the total unallocated capacity c1 is 0.0924.

35

In the second round, new probability distributions are constructed such that

ϕ2 =

0.1237 0.0721 0.0183 0.0825 0.1934

0.0793 0.0639 0.1856 0.0521 0.1291

 ,
ψ2 =

1

c1

[
ϕ(36) ϕ(37) ϕ(39)

]
=

[
0.3317 0.2917 0.3766

]
,

where again ϕ2 is a row vector but shown in matrix format. In this round, the results

of the application of best–fit algorithm are shown as

I
(2)
1 = {2, 5}, I(2)2 = {3, 4, 7}, I(2)3 = {1, 6, 9}, K2 = {8, 10},

where indices in the sets belong to the values of ϕ2. The unallocated capacity in this

round is c2 = 0.3146. New constructed probability distributions are given as

ϕ3 =
[
0.2103 0.4037 0.3860

]
,

ψ3 =
1

c2

[
ϕ2(8) ϕ2(10)

]
=

[
0.5898 0.4102

]
.

Now, by using (3.21), P3 can be computed as

P3 =


0.9691 0.0309

0 1

1 0

 .

After that, Q3 can be computed using (3.22) given as

Q3 =

0.3456 0 0.6544

0.0158 0.9842 0

 .
After the calculation of these matrices, backward computation can be applied. V3 and

36

U3 can be computed as

V3 = Jϕ3(P3) = (ϕ3)1H((P3)1) = 0.0290,

U3 = V3 +H(ϕ3)−H(ψ3) = 0.4136.

Now, going one step further, V2 and U2 can be computed. To compute V2, P2 is

necessary. P2 is 10 × 3 matrix having 8th and 10th rows from Q3 and the rest of its

rows are elementary row vectors. The ith row of P2 is equal to the jth elementary row

vector if the index i belongs to I
(2)
j . Then,

V2 = Jϕ2(P2) = c2U3 = 0.1301,

U2 = V2 +H(ϕ2)−H(ψ2) = 1.1894.

Now, in the final stage, Q2 is calculated from P2 using (3.22) given as


0 0.2174 0 0 0.5831 0 0 0.1933 0 0.0062

0 0 0.0627 0.2827 0 0 0.2191 0 0 0.4354

0.3286 0 0 0 0 0.2105 0 0.3225 0.1384 0

 .

By using Q2, P1 is calculated where the rows given above are 36th, 37th and 39th rows

of P1. Other 37 rows of P1 are elementary vectors. Lastly, V1 and U1 are calculated as

V1 = Jϕ(P) = c1U2 = 0.1099,

U1 = V1 +H(ϕ1)−H(ψ1) = 1.4655.

Now, to conclude, the Greedy distance which is an upper bound for the distance be-

tween the probability distributions ϕ ∈ S40 and ψ ∈ S10 is found as

dgreedy(ϕ, ψ) ≤ V1 + U1 = 1.5744.

37

4. FEATURE EXTRACTION METHODS FOR DEEP

PACKET INSPECTION SYSTEMS

In this chapter, feature extraction methods for deep packet inspection systems

are explained. Features in network systems are used to model the network behavior

effectively to make analysis and inspection better. Different methods for feature ex-

traction are proposed to put emphasis on different behavior of the network traffic. In

this work, these extracted features are used in anomaly detection and network traffic

classification processes. While some features can be used in both processes, some of

them are useful for only one process.

Feature extraction methods can be broadly categorized into two groups which are

packet–based features, flow–based features. Network packets contain packet–header

values such as source IP address, destination IP address, source port number, desti-

nation port number, protocol etc. and data part which is the actual message called

payload. The payload part is often encrypted. In packet–based and flow–based feature

extraction methods, packet–header values are used. The behavior of these values dur-

ing different network traffic is highlighted with these methods. Then, these features are

used in packet inspection algorithms. On the other hand, as the name shows, payload–

based features use the payload part of the packet. These two feature extraction method

categories are not sharply separated from each other. For example, one payload–based

feature can be used within network flows. These categories are build for explaining

the methods effectively. There are some fundamental differences when processing net-

work traffic between different feature extraction methods. For example, in flow–based

feature extraction methods, network packets are gathered into flows according to their

packet–header information such that packets with same source IP address, destination

IP address, source port number, destination port number and protocol are gathered

into flow. These differences are explained in the upcoming sections.

38

4.1. Packet–Based Feature Extraction Methods

Packet–based feature extraction methods can be used in two different ways which

are analysis of each packet individually or analysis of a packet group together. In the

second method, a window is required to collect some number of packets to perform

feature extraction. Network traffic window can be selected according to some duration

or some predefined number of packets. Each choice method has some advantages

and drawbacks. When network traffic window is selected as some duration such as

one second, time–series analysis can be performed. However, if the window size is not

selected according to the network traffic pace, with the complexity of feature extraction

methods, system may not work perfectly. This may result in missing some packets and

performance slowdown. On the other hand, network traffic window size can be selected

with predefined number of packets. In the number of packets are low, network traffic

may not be modelled effectively. Also, if the number of packets are high, feature

extraction method complexity may increase. This also affect the performance of the

system. Therefore, selection of network traffic window size is an important phase for

feature extraction methods. Adaptive window size selection has to be studied and

implemented for product level works.

Packet–based features extraction methods implemented in this work uses network

traffic windows. Network packets are gathered according to some rules defined before

and feature extraction is implemented. There are different proposed algorithms used

for modelling network traffic in different ways. These algorithms use packet–header

values to analyze the behavior of these values during different network traffic. As an

example, the behavior between source IP addresses and destination IP addresses can be

analyzed by defining features focusing on this behavior. First algorithm implemented

in this work is called Modularity method consisting of a clustering algorithm followed

by an indicator function called modularity.

39

4.1.1. Modularity

The main idea in this feature extraction method is to examine the relationship

between different packet header values such as source IP addresses and destination IP

addresses. After selecting one packet header from the source side and another from

the destination side, clustering is applied to the source side based on the connections

with the destination side. Compared to the classical clustering algorithms, the clus-

tering algorithm used in the system has a major advantage. It requires no parameters

to inialize the clustering unlike the k–parameter in k–means clustering or ϵ value in

DBSCAN clustering. This in turn provides modeling the network more effectively.

Also, another strong side of this clustering algorithm is that it does not use the packet

payloads which are often unavailable from flow records. The process of the clustering

algorithm is explained below.

(i) Selected packet headers is divided into two side. X represents the source side,

and Y represents the destination side.

(ii) Bipartite graph, G = (X, Y,E), is constructed. In this graph G, X corresponds to

the all unique packet header values belonging to the source side and Y corresponds

to the all unique packet header values belonging to the destination side. Also,

E corresponds to the connections between the source side and destination side.

An example of a bipartite graph is shown in Figure 4.1. Let n be the number

of unique packet header for the source side (n = |X|) and m be the number

of unique packet header for the destination side (m = |Y |). This constructed

bipartite graph can be represented by an adjacency matrix which is

(Ai,j) =

0, if there is no connection between i and j,

1, otherwise,

(4.1)

where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}. The size of the adjacency matrix A

is n×m.

40

For a node v, deg(v) represents the number of connections it has with the other

side. Sum of the degrees in one side of a graph is equal to the total number of

edges shown as

∑
x∈X

deg(x) =
∑
y∈Y

deg(y) = |E|. (4.2)

Figure 4.1. Example of a bipartite graph.

(iii) One mode projection is applied on the constructed bipartite graph. In the one

mode projection, new edges are constructed between the nodes on the same side

of the previously constructed bipartite graph. If two nodes on the same side have

connection with a common node on the other side, one edge is created between

these nodes. For every common destination node, an edge is created between

these source nodes. It means that source nodes are projected over the destination

nodes. This in turn gives a new graph, G′ = (X,E ′), where E ′ corresponds to

the connections between the elements of the source side. One mode projection

applied version of the previous example is shown in Figure 4.2. In this example,

since x7 has no common connections to the destination side with other elements

of the source side, it can be regarded as an outlier.

41

Figure 4.2. One mode projection applied graph.

After applying the one mode projection, the connected nodes could be considered

as similar in terms of the social relationship in the network. The adjacency matrix

of this one mode projection is called as Similarity matrix Sn×n = (sij), where sij

corresponds to the number of common destination nodes which are connected

source node i and j. It is symmetric matrix and all diagonal entities are equal to

the zero, sii = 0. The representation of this matrix is given as

Sn×n =


s11 s12 . . . s1n

s21 s22 . . . s2n
...

.
...

sn1 sn2 . . . snn

 . (4.3)

(iv) In this step, construction of clusters begins. Similarity matrix constructed in the

previous step is used to form the inital clusters. Each row is assigned to a cluster.

In each row, if an entry has a value greater than zero in the similarity matrix,

then it is added to the cluster formed by this row. After forming initial clusters

by using the rows and nonzero values at the columns from the similarity matrix,

if a cluster has only one element, then it is removed from the remaining process.

(v) After obtaining the initial clusters, clusters that are subsets of other clusters are

removed. The aim of this operation is to decrease the initial number of clusters

and reduce the computation time.

42

(vi) In this step, in order to assign each element to only one cluster, if an element xi

exits in clusters Ck and Cl, then Affiliation factors of this element to these clusters

are calculated and compared. Affiliation factor indicates the loyalty degree of an

element to a cluster given as

AF (xi, Ck) =
∑
j∈Ck

sij (4.4)

where xi is a node belonging to cluster Ck. After calculating Affiliation factors

AF (xi, Ck) and AF (xi, Cl), the element is removed from the cluster which gives

lower affiliation factor. If there is an equality between affiliation factors, the

element is removed from the cluster having less number of elements. After each

process, clusters having only one element are removed. This element is added to

the compared cluster having the higher affiliation factor.

Constructed clusters of the previous example are given in Figure 4.3. Outlier node

is removed from the remaining process. After completing the steps of the clustering

algorithm, clusters have high weighted interconnections and low weighted connections

with the other nodes in the network. As a result, highly connected clusters are obtained

and they correspond to the similar nodes.

Figure 4.3. Constructed clusters after the proposed method.

43

After the clustering process, a function is necessary to signify the strength of

the clusters. Modularity metric was proposed in [6] to measure the performance of

clustering and community detection method algorithms in different network models.

The modularity of a clustering process evaluates the strength of the clustering and for

a graph G = (V,E) it is calculated as

Q =
k∑
i=1

(
li
|E|

−
(di
2|E|

)2
)
, (4.5)

where k is the number of clusters, li is the number of edges between the nodes in the

ith cluster, |E| is the total number of edges and di is the sum of the degrees of the

nodes in the ith cluster. The modularity can be regarded as the difference between

the fraction of all edges that fall into the constructed clusters and the fraction that

would do so if the graph nodes were randomly connected defined in [67]. That means

higher modularity value indicates more optimal clustering of graphs. Networks with

high modularity have strong connections between the nodes in the same cluster but

weak connections between the nodes from different clusters.

By taking packet header values pairwise, after applying the clustering algorithm

mentioned above, modularity can be calculated to show the strength of the clusters.

In anomaly detection systems, it is expected that modularity value of attack traffic is

different than the modularity value of attack–free traffic. This situation is utilized in the

proposed deep packet inspection system. In [68], DDoS attack detection module based

on the mentioned clustering algorithm and modularity value is proposed. Simulation

results show that proposed algorithm can detect DDoS attacks effectively.

44

4.1.2. Graph–Based Features

In graph–based feature extraction methods, network packet headers are modelled

as a graph. Then, connections between these packet headers are analyzed. Packet

header values are selected pairwise to obtain graph representation. These constructed

graphs may be directed or undirected. In directed graphs, connection direction is taken

into account whereas in undirected graphs, it is not. By building both type of graphs,

number of features extracted can be increased.

To apply graph–based feature extraction methods, a pair of network packet header

values such as source IP addresses and destination IP addresses are taken. Then, con-

nections between them are modelled as a graph. By using this graph, different features

can be extracted. These features reflect the relationship between selected packet header

values. Different features can be calculated using both types of constructed graphs

which are directed and undirected one. An example of a directed graph with four

nodes is shown in Figure 4.4. For this graph, as an example, nodes may represent IP

addresses and arrows between nodes represent the connections between IP addresses.

It can be said that IP address c sends network packets to IP address a.

Figure 4.4. A directed graph with four nodes.

In network terminology, arrows in graphs represent a connection between selected

packet header values. If a network packet is sent from one side to another, connection

arises between them. If only the unique connections between selected network packet

headers are considered, the constructed graph is called unweighted graph. On the other

45

hand, if the network packets transmitted between sides are considered, the constructed

graph is called weighted graph. According to the selection of the type of the graph,

different features can be extracted.

4.1.2.1. In degree. In degree values are calculated using the directed graph constructed

by selecting two packet header values. In the graph, for each node, in degree refers to

the number of nodes that start connection with this node. In other words, in degree is

the number of nodes sending packets to the selected node. For example, in Figure 4.4,

node a has an in degree value of two because nodes b and c send packets to it. Also,

node d takes packets from nodes a and c which makes its in degree value two. If IP

addresses are taken to construct graphs, in degree refers to the number of IP addresses

that send packets to the selected IP address. This value is calculated for all nodes in

the graph.

4.1.2.2. In degree weight. In degree weight is the weighted type of in degree value.

In the calculation of in degree feature, unique connections are considered. However,

for the in degree weight, how many times these connections appear are taken into

consideration. In network graphs, it refers to the number of packets that selected node

takes from other nodes. For the example given in Figure 4.4, in degree weight of node

a is three. Also, in degree weight of node d is four. Compared to in degree value, how

many times the connections appear are considered.

4.1.2.3. Out degree. The out degree is the inverse version of in degree. In the con-

structed graph, for each node, out degree represents the number of nodes that the

selected node sends packets. By taking IP addresses as an example, out degree refers

to the number of IP addresses that a specific IP address send packets to. In the graph

given in Figure 4.4, out degree for node a is two because it sends packets to nodes b

and d. Out degree is the reverse version of in degree where the direction is reversed.

46

4.1.2.4. Out degree weight. Out degree weight is the weighted version of out degree.

Instead of unique connections, number of packets are considered. As an example given

in Figure 4.4, out degree weight of node a is four.

4.1.2.5. Node betweenness centrality. Node betweenness centrality is considered as a

measure of node centrality in a graph. To calculate node betweenness centrality, all

of the shortest paths between each node pair in the graph are evaluated. The number

of shortest paths passes through the specific node corresponds to the betweenness

centrality of this node. This feature can be considered as a measure of loyalty of

nodes to the network. A node having high betweenness value shows that this node

has remarkable control power over the information transmitted between other nodes.

Node betweenness centrality is given as

NB(v) =
∑

s ̸=t̸=v∈V

σst(v)

σst
, (4.6)

where V is the set of all nodes in the graph, σst denotes the total number of shortest

paths from node s to node t and σst(v) denotes the total number of shortest paths

passing through node v. Directed graph is considered when calculating node between-

ness centrality values. As an example given in Figure 4.5, node betweenness centrality

for node a can be calculated as Nb(a) =
3.5
6

≈ 0.583.

Figure 4.5. Demonstration of node betweenness centrality.

47

4.1.2.6. Eigenvector centrality:. In graph theory, one of the measures which shows the

influence of a node in a network is called eigenvector centrality. It can be considered

as the relative weight of a node in the graph. Eigenvector centrality value of a node

can be called score of a node. The principle is that connections to high–scoring nodes

contribute more to the score of the node than low–scoring nodes. This scoring system

implies that a node having high score is connected to lots of nodes having high score

as well. To calculate eigenvector centrality, adjacency matrix, A = (as,t), can be

constructed as

as,t =

1, if node s is linked to node t,

0, if node s is not linked to node t.

(4.7)

Eigenvector centrality scores are calculated for each node by using eigenvectors of the

matrix defined in (4.7). The relative score of a node s is the sth value of the related

eigenvector of the adjacency matrix defined in [69]. Then, the centrality score for node

s can be calculated as

xs =
1

λ

∑
t∈M(s)

as,txt, (4.8)

where M(s) is the set of neighbors of node s, xt is the related eigenvalue of node t and

λ is a constant. It is seen that (4.8) can also be written as

Ax = λx, (4.9)

where x is an eigenvector of the adjacency matrix A. In general, there will be many dif-

ferent eigenvalues λ for which a nonzero eigenvector solution exists. Perron–Frobenius

theorem given in [70] guarantees that if all the components of the eigenvector are

demanded positive, then there is only one eigenvalue that satisfies this requirement.

Thus, a centrality score can be assigned to each node.

48

Graph–based features are calculated for each node in the constructed network

graph. By using these features, different algorithm can be done such as clustering

of IP addresses. Then, in packet–based analysis, features of network windows can

be calculated. As an example given in [71], graph–based features are used to cluster

the IP addresses. Then, to measure the strength of the clustering, entropy of cluster

sizes is considered. This work is implemented in DDoS attack detection schemes. It is

shown that attack and attack–traffic are differentiated from each other with the help of

graph–based features. Like this work, graph–based features may be helpful in different

deep packet inspection systems.

4.1.3. Information Theory Based Features

Information theory based features can be divided into two categories which are

entropy and Greedy distance. After collecting packets into windows by predefined

window length or time series analysis, feature extraction is performed. The importance

of using information theory based features in network traffic characterization is that

these features reflect the behavior of packet headers effectively. The change in the

value of these features corresponds to different activities such as anomalous traffic.

Therefore, these features are used widely in network traffic characterization modules.

4.1.3.1. Entropy. Entropy value of packet headers represents how much randomness

a packet header value has. Details of the entropy concept are given in Chapter 3.1.

To calculate the entropy of a packet header, first all packets within a window are

gathered. Then, unique elements of a packet header are found. There are two methods

for constructing the probability distributions of packet headers. Firstly, the occurrence

of each unique element within a window is calculated. Then, by dividing each element’s

occurrence value to the total number of packets, the probability distribution of a packet

header is constructed. In the second method, instead of counting the number of packets

that a unique packet header element is used, only unique connections it has can be

considered. These methods can be summarized as the method with the consideration on

number of packets and the method with the consideration of unique connections. Both

49

methods have some advantages and disadvantages. Considering unique connections

may be helpful in the detection of some anomalous traffic such as DDoS attacks. Then,

by using these probability distributions, entropy values are calculated. The most used

entropy values for network traffic characterization are entropy of source IP address,

destination IP address, source port number, destination port number and protocol

name.

4.1.3.2. Greedy Distance. Greedy algorithm is used to find an upper value for the

distance between two probability distributions with different sizes. Details of Greedy

algorithm is given in Chapter 3.3. To use Greedy algorithm, two of the packet header

values are selected. Then, by constructing their probability distributions, distance

between them is calculated. This feature shows the relationship between the selected

packet header values. For example, during DDoS attack, there is a dispersion on the

source IP addresses and concentration on the destination IP addresses. This different

behavior of source and destination IP addresses is highlighted with the usage of Greedy

distance.

Different selection of packet header values gives different Greedy distances. These

different selections may be helpful for detecting various attack types. For example,

while the Greedy distance between source and destination IP addresses is used in

the detection of DDoS attack, the Greedy distance between source IP address and

destination port number may be helpful in the detection of Port Scan attacks if the

attacker uses limited sources. Depending on the type of attack traffic and attacking

style, these Greedy distance values are useful for detecting that kind of anomalous

traffic. Usually, source IP addresses, destination IP addresses, source port numbers,

destination port numbers and packet length are considered when calculating Greedy

distances. Packet length is used with the quantization of possible values. If p number of

packet header values are considered, it will give
(
p
2

)
Greedy distance values. Depending

on the traffic needs to be detected, useful ones can be considered.

50

Table 4.1. Packet–based Features.

Feature Description

Modularity Clustering integrity measure

In degree Number of unique connections packet taken

In degree weight Number of connections packet taken

Out degree Number of unique connections packet sent

Out degree weight Number of connections packet sent

Node betweenness centrality Measure of connection similarity

Eigenvector centrality Influence of node in a network

Entropy Measure of randomness of packet headers

Greedy distance Distance between packet header pairs

To summarize, list of packet–based features is given in Table 4.1. These features

are calculated by gathering the packets using windows. Time–series analysis can be

implemented by using these windows. The aim of the extraction of these features is to

explore the behavior of packet header values during different network traffic cases.

51

4.2. Flow–Based Feature Extraction Methods

In network terminology, network flow is defined as the network packets having

same source IP address, destination IP address, source port number, destination port

number and protocol information. It can be considered as the packets flowing through

two communication points. Depending on the protocol used, these packets can be two–

way where source and send packets to destination and destination can send packets

to the source. In this way, packets within a flow can be considered as forward and

backward packets. By constructing the network flows, depending on the network traffic

running, connection–based features can be extracted. These features can be used in

the characterization of network traffic.

In packet–based analysis, packets running through the network are gathered to

extract features reflecting the behavior of network. The difference in the flow–based

analysis is that features are extracted for each flow. Each flow is represented by the

feature set explained below. Compared to packet–based analysis, this approach may

have some advantages such as instead of constructing network windows to analyze

the packets, connection specific features are extracted. This situation is helpful when

deciding which flows belong to which type of application or which flows containing

anomalous network traffic. In packet–based analysis, after deciding a network window

containing anomalous traffic, another investigation should be performed to find which

connections including anomalous traffic. However, in flow–based analysis, anomalous

connections are directly found. The flow–based features can be divided into two cate-

gories which are statistical features and payload–based features. Both these categories

are explained in the upcoming sections.

4.2.1. Statistical Flow–Based Features

Statistical features are used to highlight the statistical properties of network flows.

In these features some attributes are considered such as packet arrival time, packet size,

number of packets within a flow etc. By using these attributes, different features are

52

extracted for each flow. These features are useful in understanding the behavior of

network packets within the flow.

4.2.1.1. Inter–arrival Time. First attribute considered in the extraction of flow–based

features is the inter–arrival time. Inter–arrival time can be defined as the arrival time

difference of consecutive network packets within a flow. A flow consisting of N number

of packets can be shown as Fi = [P1, P2, ..., PN], where where Fi represents the i
th flow

and Pj, j ∈ {1, 2, ...N} represents the network packets within the flow. For this flow,

the inter–arrival time vector can be shown as

∆i = [δ2,1, δ3,2,, δN,N−1], (4.10)

where ∆i denotes the inter–arrival time vector for ith flow. Also, δj,j−1 represents the

arrival time difference between the jth and j − 1th packets. Since inter–arrival time is

defined between two consecutive network packets within a flow, for a flow having N

number of network packets, there will be N − 1 time difference values for this flow.

Therefore, a flow is represented by this N − 1 arrival time difference valued vector.

To use deep packet inspection methods combined with machine learning or deep

learning methods, the network flows must have same number of features. This situation

can be achieved in two ways. First way is to limit the number of packets within a

flow to the same value for all flows. In this way, if the limit packet number is N ,

then N − 1 valued inter–arrival time vector represents the flow. However, this method

causes information lost because packets are running through the network and additional

information can be gained about a flow when a new packet comes into it. Therefore,

second method can be implemented which is taking minimum, maximum, mean and

standard deviation of inter–arrival time vector. In this way, number of packets within a

flow do not affect the size of extracted features. For each inter–arrival time vector, same

number of features are extracted for each flow. Calling these features iatmin, iatmax,

iatmean and iatstd, inter–arrival time vector is used in feature extraction process.

53

At the beginning of this section, it is mentioned that depending on the type of

protocol used, packets within a flow may be in two–ways which are forward and back-

ward. If the network flow starts with connection side A sending packets to connection

side B, packets floating from A to B are called forward packets. In a similar manner,

packets floating from B to A within a flow are called backward packets. In the feature

extraction process, like using all packets within a flow once, forward and backward

packets can be analyzed separately. These features give information about the behav-

ior of the network flow deeply. For the forward packets in the flow, by using same

statistical attributes, these features are called fiatmin, fiatmax, fiatmean and fiatstd. In

a similar manner, for the backward packets, these features are called biatmin, biatmax,

biatmean and biatstd.

4.2.1.2. Packet Size. The amount of data transferred between two connection points is

important when characterizing the network traffic. According to the usage of network

packets, for example in streaming traffic or in network attack traffic, size of packets

may differ. To highlight this property, packet sizes within flows are considered. For ith

flow, packet size vector can be shown as

Li = [l1, l2, ...lN], (4.11)

where lj, j ∈ {1, 2, ...N} denotes the size of jth packet in the flow, and Li denotes

the packet size vector of ith flow. As in the previous feature, to use this feature in-

dependent of the number of packets within a flow, minimum, maximum, mean and

standard deviation of this packet size vector are used. These features are called

bytemin,bytemax,bytemean and bytestd. Since the packets within a flow can be labelled

as forward and backward, packet size feature can be derived also for forward and

backward packets. In this way, feature set is increased. These derived features are

called fbytemin, fbytemax, fbytemean, fbytestd for forward packets and bbytemin, bbytemax,

bbytemean, bbytestd for backward packets.

54

Apart from the packet sizes, the pace of data traffic can be considered. For

example, flows regarded to gaming have larger packets sent in short time intervals. To

use the data transmission rate property for flows, summation of packet sizes is divided

by the duration of the packets. It can be calculated as

bytesec =

∑N
j=1 Lj∑n

j=2 δj,j−1

, (4.12)

where vi denotes the data transmission rate for ith flow, numerator part correspond to

the summation of packets sizes and denominator part corresponds to the total duration

of N packets. Total duration is the summation of inter–arrival times of the packets

within a flow. It can also be calculated for forward and backward packets, denoted as

fbytesec and bbytesec respectively.

4.2.1.3. Packet Arrival Pace. For the last feature, packet arrival pace is considered.

It demonstrates how fast one packet is transferred by considering all packets within a

flow. For the ith flow, packet arrival pace can be calculated as

pacsec =
N∑n

j=2 δj,j−1

, (4.13)

where numerator N is the number of packets within a flow and denominator is the

total duration of N packets. This feature shows how fast one packet is arrived into the

flow. As in the previous features, for the forward and backward packets, this feature

can be called as fpacsec and bpacsec respectively.

To summarize, total 30 flow–based statistical features are extracted for classifica-

tion process. These features are calculated by using all packets within a flow, forward

packets within a flow and backward packets within a flow. Therefore, same feature

is calculated three times for three cases. The aim is to analyze packets within a flow

more deeply. Summary of flow–based statistical features calculated using all packets

within a flow are shown in Table 4.2.

55

Table 4.2. Flow–based Statistical Features.

Feature Description

iatmin Minimum value of inter-arrival time vector

iatmax Maximum value of inter-arrival time vector

iatmean Mean value of inter-arrival time vector

iatstd Standard deviation value of inter-arrival time vector

bytemin Minimum value of packet size vector

bytemax Maximum value of packet size vector

bytemean Mean value of packet size vector

bytestd Standard deviation value of packet size vector

bytesec Data transmission pace

pacsec Packet arrival pace

4.2.2. Payload–Based Features

In network terminology, the payload represents the actual data carried on the

packet. In other words, it can be defined as the actual part of the data that is intended

to be transferred. On the packets transferred with the connection created between the

source and destination, there is information that does not belong to the transferred

data such as IP addresses of the source and destination, port numbers, protocol names

but provide communication and recognition. The data to be transferred other than

this information is called payload.

New features can be derived by using the payload portions of the packets within

flows. These features are expected to behave similar for the network traffic created

with the same purpose. In this way, they can be used as distinguishing features in the

classification of different kind of network traffic. Payload–based network traffic char-

acterization methods classify the network traffic using pure application layer payload

information, excluding the packet header information of the network traffic. These

packet header information are source and destination IP addresses, source and desti-

nation port numbers and protocol name.

56

Figure 4.6. Representation of a network packet.

Nowadays, it is no longer convenient to classify the network traffic by using

packet header information containing well–known port number or IP addresses, as many

devices use private or dynamic IP addresses and changeable port numbers. Payload–

based network traffic characterization methods overcome the problem of IP address and

port number dependency, as they are not affected event if the packet header information

changes. A simple representation of TCP packets in the network traffic is given in

Figure 4.6. On this Figure, the payload part is called data. In the payload–based

network traffic characterization methods, the parts containing the header information

in a packet are not used.

A flow containing N number of packets can be demonstrated as

Fi = [P1, P2, ..., PN], (4.14)

where Fi represents the ith flow, and Pj, j ∈ {1, 2, ...N} represents the jth packet

in this flow. In a similar way, for each packet Pj, the payload portion of it can be

demonstrated as

Pj = [bj1, b
j
2, ..., b

j
m], (4.15)

where bk ∈ [0, 255] represents the kth byte in the payload of the jth packet. Also, the

value of m represents the total byte that is taken from the packet Pj’s payload.

During the extraction of payload–based features, byte values is the payload can

be taken single, pair, triple etc. The process of taking how many bytes together is called

N–gram analysis of payload. This method is usually used in the analysis of language

characteristics in the field on NLP. N represents how many elements are taken together

into the analysis. For example, if N equals one, it is called unigram and each element

57

only contains one byte value. Also, if N equals two, it is called bigram analysis.

In this method, two byte values are taken to construct elements. Depending on the

parameter N , the size of elements constructed using the payload changes. Higher value

of N means that there are more number of elements to be analyzed. However, if this

number increases, complexity of feature extraction methods will increase. Therefore,

careful selection of N value should be determined previously before implementing the

proposed system.

Payload–based features are extracted for each packet within a flow. As shown

in (4.15), a network packet in a flow has m number of bytes. The values of these

bytes are in the interval [0, 255]. To extract the payload–based features, histogram of

payload is constructed. Then, this histogram is turned into a probability distribution.

By using methods based on information theory given in Chapter 3 on the constructed

probability distributions, different payload–based features are extracted. In the process

of constructing probability distribution based on histogram of payload, the important

parameter is the value of N denoting how many bytes are taken together to be ana-

lyzed. If unigram (N = 1) analysis is performed, each byte is treated as individually.

Therefore, since values of bytes are in the interval [0, 255] the histogram of payload

has length 256. On the other hand, if bigram (N = 2) analysis is performed, bytes

are taken pairwise with the overlapping window with step size one running through

the payload. In this case, histogram of payload has length 2562 because there are

2562 combinations of all possible byte values pairwise. Compared to unigram case, size

of histogram increases. To illustrate the process with another example, consider the

trigram analysis where N = 3. In this case, each element has three byte values. There-

fore, the number of possible byte values are 2563. Also, for the cases where N ≥ 3,

the step size of overlapping window is another parameter to be considered during the

construction of histogram. For the case of N = 3, the step size of window can be one

or two. Both selections will be different probability distributions.

58

To generalize the procedure mentioned above, let D be a dictionary of length

l = 256N where N is the parameter of N–gram analysis of payload. Dictionary D can

be expressed as

D = {d1, d2, ..., di, ..., dl}, (4.16)

where di, i ∈ {1, 2, ...l} represents a unique element of all possible elements constructed

using N–gram analysis. Each di can be represented as

di = [b1, b2, ..., bN], (4.17)

where the parameter N determines the length of the element di and bj ∈ [0, 255] with

j ∈ {1, 2, ..., N}. If the occurrence number or frequency of an element di is represented

as Oi, then the comparable or normalized frequency of the element di can be expressed

as

fi =
Oi∑l
k=1Ok

, (4.18)

where fi is the normalized frequency of element di. Normalized frequency values corre-

spond to probability values of elements constructed using N–gram analysis of payload.

In this way, the probability distribution of a payload is constructed. The probability

distribution of a kth packet within a flow can be expressed as

PDk = {f1, f2, ...fi, ...fl}. (4.19)

Different payload–based features are extracted using the probability distribution of

payload given in (4.19) or directly using the dictionary D defined in (4.16). The

probability distributions are used in the extraction of features based on information

theory. Also, different type of features such as printable character ratio can be extracted

using the constructed dictionary D directly.

59

4.2.2.1. Entropy–Based Features. Entropy is used as a measure of randomness of

probability distributions. It shows how much concentrated or dispersed a probabil-

ity distribution is. In payload–based feature extraction method, entropy measure the

randomness of byte values of payload. If similar bytes are used within the payload

repeatedly, its entropy value will be low. On the other hand, if many different byte

values are used, entropy value of the payload will be high. Detailed analysis of entropy

is given in Chapter 3.1. To extract the entropy of payload, Shannon entropy given in

(3.1) is used as

H(PDk) = −
l∑

i=1

fi log(fi), (4.20)

where H(PDk) is Shannon entropy of the payload of kth packet within the flow. To

calculate the entropy value of the probability distribution of a payload, any entry of

the histogram having zero value is discarded from the probability distribution. For

each flow, if a packet within the flow contains payload, its entropy value can be cal-

culated. Therefore, as mentioned in Chapter 4.2.1, there will be as many entropy

values as the number of packets containing the payload. These entropy values con-

stitute the entropy vector of the flow. To derive same number of features for each

flow, minimum, maximum, mean and standard deviation statistics are used again. By

taking the minimum, maximum, mean and standard deviation values of the entropy

vector, features are extracted. These features can be called entropymin, entropymax,

entropymean and entropystd. Also, as given in Chapter 4.2.1, these features can be ex-

tracted for forward and backward packets within a flow. These derived features can be

called fentropymin, fentropymax, fentropymean and fentropystd for forward packets and

bentropymin, bentropymax, bentropymean and bentropystd for backward packets.

4.2.2.2. Greedy Distance–Based Features. Greedy algorithm explained in Chapter 3.3,

tries to find an upper bound value for the probability distributions with different sizes.

Constructed probability distributions of payloads of packets may contain different num-

ber of elements since number of unique bytes used in payloads may differ from each

60

other. Therefore, KL–divergence defined in Chapter 3.2 cannot be applied here. In-

stead of it, Greedy algorithm can be used to find a distance between probability dis-

tributions with different sizes. The aim of the application of Greedy algorithm is to

measure the closeness of payloads of packets within a flow. If the packets within a flow

have similar payloads, their distance value will be low. However, dissimilar payloads

give higher Greedy distance value. Since the distance value is calculated for two prob-

ability distributions, for a flow having p number of packets containing payload, there

will be
(
p
2

)
Greedy distance values. By taking two probability distributions of payloads

of packets within a flow, say kth and lth, Greedy distance between them is given as

Gk,l = dgreedy(PDk, PDl), (4.21)

where Gk,l denotes the Greedy distance between them. By using this approach, for the

ith flow, the Greedy distance vector can be shown as

Gi = [G1,2, G1,3, ..., G1,p, G2,3, ..., Gp−1,p]. (4.22)

This Greedy distance vector is used to extract the payload–based features. As in the

previous sections, minimum, maximum, mean and standard deviation values of this

vector is taken. Constructed features can be called greedymin, greedymax, greedymean

and greedystd. These features are extracted using all packets having payload within the

flow. Also, by using forward packets fgreedymin, fgreedymax, fgreedymean and fgreedystd

and by using backward packets bgreedymin, bgreedymax, bgreedymean and bgreedystd can

be extracted.

4.2.2.3. Ratio of Printable Characters. The printable characters are frequently ana-

lyzed in encrypted packet classification algorithms. The aim is to classify packets

using their payload by deeply investigating the characters. Also, in the network traffic

anomaly detection scenarios, randomly generated payloads may include low number of

printable characters. This property can be utilized in the detection of network attacks.

In most communication scenarios with packet transferring, payload of the packet is

61

encrypted using the ASCII characters usually between 0 and 255. Only bytes between

32 and 127 correspond to printable characters. They are used to compose text mes-

sages. For randomly generated payloads, the printable character ratio corresponds to

approximately 37.5% of the entire payload.

To construct the ratio of printable characters features, each element di defined

in (4.17) is analyzed. Each byte in the element di is checked whether it is printable or

not according to the rule given as

ρi =

1, if 32 < bk < 127 for all bk ∈ di,

0, otherwise,

(4.23)

where ρi is equal to one if all bytes in the element di is printable. After constructing

the dictionary of a packet payload defined in (4.16), each element in this dictionary is

analyzed. If an element is not printable, its printable character occurrence rate is set

to zero. Printable character occurrence rate for an element di can be defined as

Opci =

Oi, if ρi = 1

, 0, otherwise.

(4.24)

Then, for the payload of the kth packet within the flow, ratio of printable characters

can be calculated as

Rpck =

∑l
i=1Opci∑l
i=1Oi

, (4.25)

where numerator is the summation of occurrences of printable elements and denom-

inator is the summation of occurrences of all elements. In this way, for each packet

containing payload within the flow, the printable character ratio is defined. The print-

able character ratio vector is constructed using all printable character ratio values for

the packets in the flow. Then, as in the previous features, minimum, maximum, mean

and standard deviation statistics are used to extract the features for each flow.

62

Table 4.3. Payload–based Features.

Feature Description

entropymin Minimum value of payload entropy vector

entropymax Maximum value of payload entropy vector

entropymean Mean value of payload entropy vector

entropystd Standard deviation value of payload entropy vector

greedymin Minimum value of Greedy distances between payloads

greedymax Maximum value of Greedy distances between payloads

greedymean Mean value of Greedy distances between payloads

greedystd Standard deviation value of Greedy distances between payloads

printmin Minimum value of printable character ratio vector

printmax Maximum value of printable character ratio vector

printmean Mean value of printable character ratio vector

printstd Standard deviation value of printable character ratio vector

These features can be called printmin, printmax, printmean and printstd. Printable

character ratio feature can also be derived for forward and backward packets. They can

be called fprintmin, fprintmax, fprintmean and fprintstd for forward packets, bprintmin,

bprintmax, bprintmean and bprintstd for backward packets respectively.

To summarize, payload–based features extracted using all packets having payload

within a flow are given in Table 4.3. These features are grouped into three main

categories which are entropy, Greedy distance and printable character ratio. This

feature set can be enriched using different N values for the N–gram payload analysis.

Each different N value gives whole new feature set. However, increasing the value of

N results in the increase of the complexity of feature extraction process. Also, for

the values of N ≥ 3, the step size of window should be defined. Different selections

give different features. Also, these features can be defined for forward and backward

packets within a flow. Thus, among different combination of features, most useful ones

have to be selected.

63

5. PERFORMANCE EVALUATION OF PROPOSED DPI

SOLUTIONS

In this chapter, simulation results of proposed DPI solutions for network anomaly

detection and network traffic classification cases are given. The proposed systems

are divided into two categories as in Chapter 4 for feature extraction methods such

as packet–based solutions and flow–based solutions. In both packet–based and flow–

based solutions, network anomaly detection solutions are available. On the other hand,

network traffic classification solutions are available for only flow–based case due to the

characteristics of network traffic generated by different applications. Before explaining

the proposed approaches with the results taken from different data sets, the data sets

used in the performance evaluation of these systems will be explained.

5.1. Data Sets

In this section, data sets used to test the proposed approaches are explained.

For network anomaly detection, three data sets are used which are Boğaziçi University

DDoS Attack data set (BOUN data set), IDS 2012 and IDS 2017 data sets. All data

sets include DDoS attack. Also, IDS 2012 and IDS 2017 data sets include different

type of attacks such as brute force, port scan, DoS etc. On the other hand, for the

network traffic classification case, the application classification data set generated by

Boğaziçi University members is used. It includes network traces from multiple popular

applications such as WhatsApp, Youtube, Steam etc. All the details about the data

sets are given below.

5.1.1. Boğaziçi University DDoS Attack Data Set

In this data set, one victim server on the campus serves as the attack’s main

hub. The data set was captured in one of the campus’s main switch [72]. Therefore, in

addition to the DDoS attack traffic, it also includes varied kinds of network traffic. By

64

using a mirroring technique, network traffic is taken from the port on campus routers.

The network traffic recording server receives perfect copies of all incoming and outgoing

packets flowing through the mirrored interface thanks to the mirroring operation on

router interfaces. Average network traffic pace in terms of packets per second is 1800.

There are two different attack scenarios implemented in this data set. One of them use

UDP Flood and the other one uses TCP Flood. In all cases, 8–minute network traffic

is collected. In each of them, DDoS attack is executed four times with different packet

rates. The attack rates for both UDP and TCP flood are 1000, 1500, 2000 and 2500

packets per second. The collection of data is done by using repeatedly 80 s waiting

period and 20 s attack period.

This DDoS attack data set includes properties like network–based probing of two–

way legal user traffic that has been mixed in with DDoS attack packets. Additionally,

it contains attacks of various speeds to aid researchers in developing and testing their

intrusion detection methods for a range of attack densities. This data set offers a broad

overview of DDoS attacks of the resource depletion category that were gathered from

campus network’s backbone routers.

5.1.2. IDS 2012 Network Intrusion Data Set

The UNB ISCX IDS 2012 data set given in [7] includes seven days of network

traffic consisting of normal and malicious traces. While tree day of the data don’t

include attack traces, the other four days include different attack traces such as brute

force, DoS etc. An important point about the data set is that it includes full packet

payloads. The characteristics of the data set can be stated as follows:

• Realistic network and traffic: The generated data set do not include any artificial

trace insertion that may result in the performance downgrade. The aim is to

paint a clearer picture of the actual consequences of network attacks and the

related actions taken by workstations.

65

Table 5.1. Number of Flows of IDS 2012 Data Set.

Flow Label Number of Flows

Sunday
Normal 106705

Infiltrating network from inside 9966

Monday
Normal 111160

HTTP DoS 3130

Tuesday
Normal 232888

DDoS via IRC 10995

Thursday
Normal 152233

Brute Force - SSH 4753

• Labelled data set: All flows given in the data set is labelled as normal or anoma-

lous. Also, anomalous flows are labelled with the type of the attack such as DoS

attack.

• Total interaction capture: All network interactions, whether internal or between

Local Area Networks (LANs), are taken into account.

• Complete capture: Due to the privacy concern, most data sets are not suitable for

the usage because of the anonymization or complete removal of packet payloads.

This data set completely eliminates the need for any sanitization, maintaining the

data set’s naturalness in the process by being collected in a controlled testbed

environment.

• Diverse attack scenarios: Many network attacks are considered with diverse

schemes.

To use this data set, days containing both normal and malicious traffic are used.

On these days, besides normal traffic, the attacks considered are HTTP DoS attack on

Monday, DDoS attack on Tuesday, Brute Force SSH attack on Thursday and infiltrating

the network from inside attack on Sunday. Number of flows generated for each day

with the type of traffic are given in Table 5.1

66

5.1.3. IDS 2017 Network Intrusion Data Set

Another data set generated for anomaly detection purposes including different

network attacks is given in [8]. This data set, which closely reflects actual real–world

data, contains the most recent and benign common attacks. It contains five day of

network traffic with four of them including both normal and attack traces. One day

consists of fully normal network traces. The properties of the generated data set can

be stated as follows:

• Complete network configuration: Modem, firewall, switches, routers as well as

the existence of different operating systems make up a full network topology.

• Labelled data set: All flows whether anomalous or not labelled with normal or

the type of attack it includes.

• Complete interaction: By using two distinct networks, internet connectivity as

well as the communication between internal LANs are covered.

• Available protocols: Different type of protocols are available on the network traffic

such as HTTP, HTTPs, FTP, SSH etc.

• Attack diversity: Most common attacks are executed such as brute force, DoS,

DDoS, port scan etc.

To use this data set, days with normal and anomalous traffic are used. These are

brute force attacks on Tuesday, DoS attacks on Wednesday and port scan, DDoS and

bot attacks on Friday. The number of flows for each day of data is given in Table 5.2.

67

Table 5.2. Number of Flows of IDS 2017 Data Set.

Flow Label Number of Flows

Tuesday

Normal 142674

Brute Force - Patator - FTP 3941

Brute Force - Patator - SSH 2945

Wednesday

Normal 144935

DoS GoldenEye 5529

DoS Hulk 150924

DoS Slowhttptest 804

DoS Slowloris 1988

Friday

Normal 76723

Botnet 393

DDoS - LOIC 47158

Port Scan 329

5.1.4. Boğaziçi University Network Application Classification Data Set

The application traffic classification data set generated by Boğaziçi University

members is given in [73]. The data set contains network traces from well–known appli-

cations such as Facebook, Discord, Telegram, WhatsApp, Zoom etc. It has real–world

network traces prepared for the performance testing of proposed network traffic classifi-

cation algorithms. This data set contains network traffic from 22 different applications.

Number of flows of each application are given in Table 5.3.

From Table 5.3 it is seen that while some applications have large number of flows,

some of them have small number of flows. To prepare a balanced data set to train the

model, some flows of applications having large number of flows are randomly selected.

For each simulation, random selection of flows is performed to obtain a more realistic

result.

68

Table 5.3. Number of Flows of Applications.

Amazon Prime 2001 CyberGhost 474

Dropbox 510 Deezer 760

Discord 646 Epic Games 1650

Facebook 477 Hotspot 395

ITunes 787 Microsoft Teams 559

Proton VPN 557 Skype 996

Slack 1364 Soulseekqt 2249

Spotify 2129 Steam 547

Telegram 374 Tunnelbear 15076

Tunneln 3110 Ultrasurf 12279

Whatsapp 442 Zoom 703

5.2. Performance Metrics

To measure the performance of the proposed systems, well–known performance

metrics such as precision, recall, accuracy etc. are used. To illustrate the derivation of

these metrics, consider a confusion matrix for 2× 2 binary classification case given in

Table 5.4.

Table 5.4. Confusion matrix for 2× 2 binary classification case.

Actual: Negative Actual: Positive

Prediction: Negative True Negative False Negative

Prediction: Positive False Positive True Positive

True Positive (TP) is the number of correctly predicted samples in Positive class.

True Negative (TN) is the number of correctly predicted samples in Negative class.

False Positive (FP) is the number of wrong predictions of Negative class. In other

works, it is the number of samples labelled as Positive while being Negative. In a

similar manner, False Negative (FN) it the number of samples labelled as Negative

while being Positive. By using these values, performance metrics are calculated which

can be shown as follows:

69

• False Positive Rate (FPR) = FP
All Negative

= FP
TN+FP

,

• False Negative Rate (FNR) = FN
All Positive

= FN
TP+FN

,

• True Positive Rate (TPR) = TP
All Positive

= TP
TP+FN

,

• True Negative Rate (TNR) = TN
All Negative

= TN
TN+FP

.

The aim of the proposed approaches is to keep TPR and TNR values high while

keeping FPR and FNR values low. Besides these metrics, there are some other metrics

representing the performance of the proposed solution effectively which are precision,

recall, accuracy and F1–score. These metrics can be calculated as follows:

• Accuracy = TP+TN
All Samples

= TP+TN
TP+TN+FP+FN

,

• Precision = TP
TP+FP

,

• Recall = TP
TP+FN

= TPR,

• Specificity = TN
TN+FP

= TNR,

• F1–score = 2
1

Precision
+ 1

Recall

= 2×Precision×Recall
Precision+Recall

.

Among these accuracy gives prediction performance of all samples. Precision

measures among all positive predictions, how many of them are truly positive. F1–score

is the harmonic mean of precision and recall. Both false positives and false negatives

are considered in the calculation of it. As a result, it works well on an imbalanced data

set.

70

5.3. Packet–Based DPI Solutions

In this section, packet–based DPI solutions for network anomaly detection case

are given. In packet–based solutions, network packets are gathered in a time–series

manner to be analyzed. This gathering process is done using non–overlapping windows.

The length of these windows may be time dependent or number of packets dependent.

In time dependent case, network window duration is predetermined by using historical

knowledge of the analyzed network or by considering the packet arrival rate. The

important condition is that duration of the network window should be larger than

the execution time of proposed packet inspection method. If this condition is not

met, proposed packet inspection system lags behind the ongoing network traffic. On

the other hand, length of the network window may be selected using predetermined

number of packets. In this case, same problem mentioned before may occur because if

the pace of network traffic increases more than expected, proposed packet inspection

system may lags behind this traffic. Therefore, careful selection of the length of the

network window is an important research point. Also, there are some studies focusing

on determining the length of the network window dynamically considering the pace of

the network traffic.

5.3.1. Network Anomaly Detection Method Based on Header Information

Using Greedy Algorithm

The proposed system uses Greedy algorithm given in Chapter 3.3 as basis to

inspect DDoS attacks. In this system, packet–based inspection is performed in which

non–overlapping windows are run through the network traffic. In a specified duration,

by using the window, network packets are gathered. Then, feature extraction is im-

plemented using these collected packets. After that, by using the pre–trained model

using the features, new incoming network window is labelled as anomalous or not. In

this system, network window is labelled. It means that network packets constituting

the window have anomalous packets or attack–free packets.

71

Figure 5.1. Demonstration of the distances between selected packet header values.

To use the Greedy algorithm, packet header values are used. In this system,

the distances between packet header values are calculated using the Greedy algorithm.

The packet header values used in this system are source IP address, destination IP

address, source port number, destination port number and packet length. By taking

these packet header values pairwise, distance between each pair of them is calculated.

Let V = {v1, v2, v3, v4, v5} represents the selected packet header values. For example,

v1 may correspond to source IP addresses. By taking a pair of packet header values,

probability distributions of selected packet header values are constructed. To construct

these probability distributions, unique connections between the selected packet header

values are considered. Therefore, probability distribution of ith packet header value

depending on jth packet header value can be shown as Pvij. By using these constructed

probability distributions, the Greedy distance between them is calculated as

gdij = dgreedy(Pvij, Pvji), (5.1)

where i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, 3, 4, 5} and i ̸= j. Since five different packet header

values are selected for the analysis, it gives
(
5
2

)
= 10 different distance values. The

illustration of the distances between packet header values is shown in Figure 5.1.

For each network window, ten different features are calculated. These features

72

are calculated to reflect the relationship between packet header values. The aim is

to highlight the behavior change in the packet header values when anomalous event

occurs. For example, during DDoS attack, if spoofed source IP addresses are used,

there will be a dispersion in the source IP addresses side. On the other hand, since

anomalous packets tend to go to the same destination, there will be a concentration

in the destination IP address side. Therefore, compared to the attack–free case, it

is expected that the Greedy distance between source and destination IP addresses

increases. Another example is that during port scan attacks, numerous destination

ports are checked for availability. Therefore, there will be a dispersion in the destination

port number side. If a same source is used for the execution of the attack, the Greedy

distance between source IP address and destination port number increases. As in these

examples, by using different combination of packet header values, characteristics of

different network attacks can be revealed.

The DDoS attack detection method is tested with a data set taken from Boğaziçi

University campus network given in [72]. A DDoS attack’s primary characteristics

include sudden changes in traffic and flow dis–symmetries such as dispersed source IP

addresses and concentrated destination IP addresses. Additionally, it has been noted

that this attack has an impact on the distribution of port numbers and packet lengths.

The difference in probability distribution concentration leads to higher distance values.

In contrast, if the probability distributions are similar, the distance measure becomes

small. Therefore, distance values are more stable with one another when there is no

attack.

From Boğaziçi University data set, simulation results on the UDP Flood data

are shown here. Seven of the ten distance results are useful for the detection of DDoS

attacks. In different kind of attacks, this number may change. The best indicator of the

DDoS attack is the distance between the source and destination IP addresses given in

Figure 5.2. Spoofed source IP addresses and most of the packets going through victim

IP address is the reason of these results. A similar relationship is observed between

source IP addresses and destination port numbers given in Figure 5.3.

73

Figure 5.2. The Greedy distance between source and destination IP addresses.

IP addresses and port numbers at the same side tend to move together during the

DDoS attack but the limited number of source ports compared to source IP addresses

affects results. From Figures 5.4 and 5.5, it is observed that the separation of distance

values is not clear like in Figures 5.2 and 5.3.

Figure 5.3. The Greedy distance between source IP addresses and destination port

numbers

Figure 5.4. The Greedy distance between source port numbers and destination IP

addresses

74

Figure 5.5. The Greedy distance between source and destination port numbers

Table 5.5. Simulation results on BOUN data set with Greedy–Based Approach

Day Type of Traffic Accuracy Recall Precision F1 Score

TCP Flood

Normal 0.9990 0.9992 0.9996 0.9994

DDoS 0.9990 0.9981 0.9962 0.9971

Overall 0.9990 0.9990 0.9990 0.9990

UDP Flood

Normal 0.9993 0.9991 1 0.9996

DDoS 0.9993 1 0.9962 0.9981

Overall 0.9993 0.9993 0.9993 0.9993

For the simulation results on Boğaziçi University data set, supervised learning

is applied using quadratic SVM kernel. Window size is taken as 50 ms. %70 percent

of the data is taken as training, and %30 percent of the data is taken as test data.

10–fold cross–validation is applied in the training phase. Simulation results for the two

different scenarios implemented in Boğaziçi University data set is given in Table 5.5.

It is observed that proposed system detects generated DDoS attacks in this data set

effectively. Only a few samples are miss–labelled. The overall precision rate obtained

is 99.98% in UDP Flood and 99.94% in TCP Flood. The strength of the proposed

algorithm is measured with its ability to detect even slow rate attacks. The first attack

in UDP Flood is the slowest one with the pace of 1000 packets per second. The Greedy

distance values are lower compared to other attack cases. Since the average network

traffic rate is 1800 packers per second, even in the half rate of it, DDoS attacks are

detected. However, if the pace of the attack is lowered much more, the proposed system

will have difficulty in the attack detection.

75

Besides Boğaziçi University data set, the proposed approach is tested with IDS

2012 and IDS 2017 data sets. To execute the simulations on these data sets, window

duration is defined with a number of packets. The reason for this situation is that

both data sets are prepared for flow–based analysis. Therefore, there are some huge

gaps between packets in terms of duration. Therefore, by considering the detection

algorithm complexity, 100 packets are taken as a window for the analysis. As in

Boğaziçi University data set, quadratic SVM is used as the classification kernel.

IDS 2012 data set contains four days of data combining normal and malicious

activities. In this data set, for each day, the number of benign samples are much

larger than the number of attack samples. Each day contains malicious traffic from

one attack type. Four days of attacks are simulated. The simulation results are given

in Table 5.6. Monday data contains HTTP DoS attack. It is almost perfectly detected

with the proposed approach. The calculated precision value for this attack type is

99.98%. Tuesday data contains benign traffic with DDoS attack traffic. The accuracy

calculated for this case is 93.02% which is lower than expected. Precision rate for

the DDoS attack is 90.77%. The performance metrics are above 90% but these are

not satisfactory results. Thursday data contains Brute Force SSH attack with benign

traffic. The obtained precision value for this attack type is 90.75%. In overall, 97.57%

accuracy is obtained. The worst performance is obtained with Infiltration attack on

Sunday data. The detection of this type of attack is tough with the proposed packet–

based approach. For this attack, 82.67% detection rate is obtained.

IDS 2017 data set contains four days of data combining normal and malicious

activities. On Friday, there are DDoS, Port Scan and Botnet attacks. Since in time–

series analysis, there are small number of Botnet attack samples compared to other

attacks, this class is excluded from the remaining process. Also, on Wednesday, there

are different types of DoS attacks. When labelling all DoS attacks into a same class,

the proposed approach detects these attacks effectively. On Tuesday data, two different

Brute Force attack which are FTP Patator and SSH Patator are combined into one

Brute Force class.

76

Table 5.6. Simulation Results on IDS 2012 data set with Greedy–Based Approach

Day Type of Traffic Accuracy Recall Precision F1 Score

Monday

Normal 0.9998 0.9998 1 0.9999

HTTP DoS 0.9998 1 0.9846 0.9992

Overall 0.9998 0.9998 0.9998 0.9998

Tuesday

Normal 0.9302 0.9384 0.9454 0.9419

DDoS 0.9302 0.9291 0.9077 0.9128

Overall 0.9302 0.9301 0.9302 0.9302

Thursday

Normal 0.9757 0.9843 0.9873 0.9858

Brute Force SSH 0.9757 0.9239 0.9075 0.9156

Overall 0.9757 0.9756 0.9757 0.9756

Sunday

Normal 0.9124 0.8642 0.9893 0.9225

Infiltration 0.9124 0.9858 0.8267 0.8993

Overall 0.9124 0.9217 0.9124 0.9115

The simulation results for the IDS 2017 data set is given in Table 5.7. On Friday,

overall 98.06% precision rate is achieved. For DDoS attacks, the precision rate is 98.44%

and for Port Scan attacks the precision rate is 98.68%. On Wednesday, different type

of DoS attacks are detected. Overall precision rate is 98.34%. DoS attacks are detected

with a 98.2% precision rate. Relatively low performance is obtained on Tuesday data

with Brute Force attacks. The obtained precision value for Brute Force attacks is

83.06%.

77

Table 5.7. Simulation Results on IDS 2017 data set with Greedy–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

Friday

Normal 0.9817 0.9886 0.9768 0.9827

DDoS 0.9809 0.9653 0.9844 0.9747

Port Scan 0.9986 0.9981 0.9868 0.9924

Overall 0.9830 0.9808 0.9806 0.9806

Wednesday

Normal 0.9834 0.9793 0.9851 0.9822

DoS 0.9834 0.9871 0.9820 0.9846

Overall 0.9834 0.9835 0.9834 0.9835

Tuesday

Normal 0.9048 0.8647 0.9713 0.9149

Brute Force 0.9048 0.9629 0.8306 0.8919

Overall 0.9048 0.9112 0.9048 0.9040

5.3.2. Clustering–based DDoS Attack Detection Using The Relationship

Between Packet Headers

In this system, a clustering algorithm explained in Chapter 4.1.1 is implemented

for the detection of DDoS attacks. This clustering algorithm is proposed for analyz-

ing the pair–wise behavior of packet header values. For example, according to the

connections between source and destination IP addresses, the IP addresses having sim-

ilar behavior are gathered into the same group. This process can also be applied to

the other packet header values such as port numbers. The aim is to find suspicious

packet header values such as attacking IP addresses to identify the anomalous traffic

effectively.

The proposed system is a packet–based system where non–overlapping network

windows are used for the time–series analysis. As in the previous system, network

window is labelled as anomalous or not. The advantage of this proposed system is

that by clustering the packet header values according to the connections between each

other, when the attack traffic is detected, suspicious packet header values are found.

For example, the attacking IP addresses tend to be clustered into one group while

78

the attack–free IP addresses are dispersed into the other groups. Another advantage

of the proposed clustering algorithm is that it does not require any parameters. For

example, in k–Means clustering, the k parameter is required to form the clusters. Also,

in dBScan method, ϵ parameter is required to define the minimum distance between

cluster centers and points. Modularity value measures how well constructed clusters

are resemble to each other. If the clusters have similar connections and similar number

of elements, the modularity value of the constructed network will be high. However,

if there is an outlier cluster like a cluster having much more elements than the other

clusters, the modularity value will be low. This property is examined in the proposed

attack detection module. During an attack, since attacking packet header values tend

to form a cluster seperate from the other clusters, modularity value is expected to

decrease.

Non–overlapping network window is run through the network traffic to extract

the features and implement the detection algorithm. Window size is taken as 50 ms.

Packet header values are selected pair–wise to apply clustering algorithm. Simulations

are carried out using BOUN data set including three different DDoS attack scenarios.

From the results it is seen that the modularity value of the clusters of source IP

addresses constructed using the connections of them with the destination IP addresses

gives discriminative results when comparing the attack and attack–free cases. During

the attack traffic, attacking IP addresses form a cluster that is different and larger than

the other clusters since these IP addresses have the similar behavior that is to go to

the same destination IP address. Therefore, the size of this cluster is higher compared

to other clusters. This situation lowers the modularity value. Also, in the same way,

modularity value decreases during the attack traffic when the clusters of source port

numbers are constructed using the connections of them with destination IP addresses.

These results can be seen from Figures 5.6 and 5.7.

79

Figure 5.6. The modularity value obtained using source and destination IP addresses.

Figure 5.7. The modularity value obtained using source port numbers and destination

IP addresses.

Simulation results are shown using true positive rate, false positive rate, accuracy

and precision values. Two attack scenarios, UDP Flood and TCP Flood, are evalu-

ated using the proposed algorithm. For each case, 70% percent of data is taken as

training and 30% of data is taken as test. 10–fold cross–validation method is applied

in training phase. For the kernel of the training model, quadratic SVM is selected.

Performance results are shown in Table 5.8. Best results are obtained with the UDP

Flood attack case. Compared to the Greedy algorithm–based method explained in

Chapter 5.3.1, slightly worse performance is obtained. However, the proposed system

has many advantages such as no parameter requirement in the clustering algorithm

and direct detection of anomalous packet header values. The obtained precision value

for TCP Flood is 99.86% and for UDP Flood is 99.93%.

80

Table 5.8. Simulation results on BOUN data set with Clustering–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

TCP Flood

Normal 0.9986 0.9987 0.9996 0.9992

DDoS 0.9986 0.9981 0.9943 0.9962

Overall 0.9986 0.9986 0.9986 0.9986

UDP Flood

Normal 0.9993 0.9996 0.9996 0.9996

DDoS 0.9993 0.9981 0.9981 0.9981

Overall 0.9993 0.9993 0.9993 0.9993

Besides BOUN data set, four days of attack traffic with normal traffic of IDS 2012

data set are simulated. Simulatin results are given in Table 5.9. It is observed that

the proposed approach has a high detection rate of HTTP DoS attacks. The precision

rate for this attack is 99.34%. Compared to Greedy–based approach given in Chapter

5.3.1, DDoS attack detection rate increases to 92.29%. Also, another improvement

is observed on Brute Force SSH attacks with a detection rate of 94.42%. However,

infiltration attacks are hard to detect with this proposed approach. The obtained

precision value for this attack type is 84.90%.

Three days of IDS 2017 data set are also tested with this proposed approach.

Simulation results are given in Table 5.10. In this approach, the detection rate of

Port Scan attacks decreases. It is observed that the proposed system is more suitable

for the detection of DoS and DDoS attacks. DoS attacks ara detected with 100%

precision rate. However, compared to the Greedy–based approach given in Chapter

5.3.1, the detection rate of DDoS attacks decreases to 97.54%. For Port Scan attacks

83.40% precision are is observed. Also, for Brute Force attacks 82.03% precision rate

is observed. These results show the deficiencies of the proposed approach. The reason

for this low detection rate is that the network window cannot highlight the behavior

of the attack traffic perfectly. Since both Port Scan and Brute Force attacks have low

pace compared to DoS and DDoS attacks, the windows do not have enough attacks

packets to represent their behavior.

81

Table 5.9. Simulation Results on IDS 2012 data set with Clustering–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

Monday

Normal 0.9963 0.9941 0.9989 0.9965

HTTP DoS 0.9963 0.9988 0.9934 0.9961

Overall 0.9963 0.9963 0.9963 0.9963

Tuesday

Normal 0.9455 0.9332 0.9658 0.9492

DDoS 0.9455 0.9603 0.9229 0.9412

Overall 0.9455 0.9460 0.9455 0.9454

Thursday

Normal 0.9709 0.9521 0.9948 0.9730

Brute Force SSH 0.9709 0.9940 0.9442 0.9684

Overall 0.9709 0.9719 0.9709 0.9709

Sunday

Normal 0.9127 0.8725 0.9772 0.9219

Infiltration 0.9127 0.9706 0.8409 0.9011

Overall 0.9127 0.9189 0.9127 0.9121

5.3.3. Graph–based Fuzzy Approach Against DDoS Attacks

In this system, graph–based features defined in Chapter 4.1.2 are used to imple-

ment DDoS attack detection module. As in the previous solutions, packet header values

are analyzed. By selecting a pair of packet header values, the relationship between them

is examined. This relationship is modelled as a graph represented as G(V,E) where

V corresponds to the nodes or entities and E corresponds to the connections between

the nodes. After the construction of graph, several graph–based features mentioned in

Chapter 4.1.2 are calculated for each node of the graph. These features are in degree,

in degree weight, out degree, out degree weight, node betweenness centrality and eigen-

vector centrality. They are chosen in order to distinguish attack traffic from benign

traffic more efficiently.

82

Table 5.10. Simulation Results on IDS 2017 data set with Clustering–Based

Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

Friday

Normal 0.9760 0.9816 0.9732 0.9774

DDoS 0.9621 0.9268 0.9754 0.9505

Port Scan 0.9839 0.9933 0.8340 0.9067

Overall 0.9715 0.9623 0.9610 0.9607

Wednesday

Normal 0.9946 1 0.9884 0.9942

DoS 0.9946 0.9901 1 0.9950

Overall 0.9946 0.9947 0.9946 0.9946

Tuesday

Normal 0.9019 0.8582 0.9750 0.9128

Brute Force 0.9019 0.9671 0.8203 0.8877

Overall 0.9019 0.9097 0.9019 0.9010

The extracted graph–based features are used to cluster the nodes of the graph.

The aim is to observe the behavior of packet header values during normal and malicious

traffic by examining the relationship between them. Instead of strictly dividing nodes

into groups, Fuzzy C–means clustering developed by Dunn [74] and Jim Bezdek [75]

is implemented. In this clustering technique, for each node, there is a probability

distribution signifying the closeness of the node to the clusters. Each entry of this

probability distribution is the probability of the closeness of this node to the cluster with

the selected index. Fuzzy C–means clustering technique is based on the minimization

of the cost function given as

Jm =
N∑
i=1

C∑
j=1

umij ||xi − cj||2 , 1 ≤ m <∞ (5.2)

where fuzzification coefficient is represented by m and (m > 1), the membership degree

of data instance xi in the jth cluster is represented by uij, xi is the ith sample of d–

dimensional measured data, cj corresponds to the d–dimensional center of the cluster

j and || ∗ || is the norm operator which corresponds to the Euclidean distance between

83

data instance and the cluster center. The data sample number is represented with N

and C refers to a predetermined number of clusters. With iterative updating the cluster

centers and the membership values for each data instance, the cost function given in

(5.2) is minimized. Membership values uij are updated according to the equation given

as

uij =
1∑C

k=1

(
||xi−cj ||
||xi−ck||

) 2
m−1

(5.3)

and cluster centers cj are updated according to the equation given as

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

. (5.4)

This iteration process is terminated when the following condition is satisfied. Termi-

nation condition can be defined as

|Jm+1 − Jm| < ϵ (5.5)

where ϵ is a termination criterion between 0 and 1 and m is the number of iteration

steps. With this method, the algorithm converges to a local minimum or a saddle point

of Jm. As a result of the process, the membership matrix U with size N × C given as

U =


u11 u12 · · · u1C

u21 u22 · · · u2C
... uij

. . .
...

uN1 uN2 · · · uNC

 (5.6)

is obtained. Each row corresponds to the data instances and each column represents

the clusters. The probability of the ith data sample being in the jth cluster is given

in the element uij. Most clustering techniques assign each data instance directly to

one cluster. However, in Fuzzy C–means clustering, the membership values specified

84

in (5.6) are used to determine the likelihood that a data instance would be in a cluster.

This value identifies how close a data instance is to a cluster. Due to the fact that the

Fuzzy C–means clustering algorithm provides information regarding whether the data

instances are easily separable or not, it may be more effective to employ this algorithm

than more conventional clustering algorithms that just provide binary decisions. After

the membership matrix U is created, for each data instance, entropy of membership

probability distribution is calculated by using the belonging probabilities of the data

instance to a cluster. Entropy of membership probability distribution can be calculated

as

Hi =
C∑
j=1

uij log
1

uij
, ∀i = 1, 2, ..., N. (5.7)

Entropy of membership probability distribution is calculated for each node in the

graph G(V,E). High value of entropy value shows the tendency of the nodes to go all

clusters. On the other hand, low value of entropy shows the tendency of nodes to go

similar clusters. For example, in DDoS attack case, most source IP addresses behave

similarly by going through a same destination IP address. Therefore, when all source

IP addresses in the network within a window are considered during attack traffic, most

of them will go to the same cluster. This lowers the entropy value of a membership

probability distribution for each node. For a network window having N number of

nodes, there will be N number of membership probability distribution entropy values.

Thus, the entropy vector of the window can be shown as H = [H1, H2, ..., HN]. The

distribution of this entropy vector is analyzed by using its histogram.

To highlight the differences of the entropy vectors between attack and attack–

free traffic cases, skewness value is used. Skewness can be defined as distortion or

asymmetry from a normal (Gaussian) distribution. The normal distribution has zero

skewness value. A curve is said to be skewed if its density is accumulated on the left or

right side. In a negative skew case, the mass of the distribution is accumulated on the

right side. It means that the left tail is longer. Conversely, the mass of the distribution

85

is accumulated on the left side in a positive skew case. For a random variable X,

skewness can be calculated as

γ = E[(
X − µ

σ
)3] =

E[(X − µ)3]

(E[(X − µ)2])
3
2

(5.8)

where µ is mean and E is expectation operator. For a distribution of n values, skewness

can be calculated as

γ =
1
n

∑n
i=1(xi − x)3

[1
n−1

∑n
i=1(xi − x)2]

3
2

(5.9)

where x is the mean value of the distribution.

During attack–free traffic, the entropy values of selected packet header values are

expected to be similar to each other. Therefore, this makes the distribution of entropy

values becoming closer to uniform distribution. It can be said that skewness values will

be closer to zero in attack–free traffic because the distribution of entropy values is closer

to normal distribution. On the other hand, during attack traffic, attacking IP addresses

or port numbers tend to behave together. Therefore, considering the entropy vector of

selected packet header values, lower values dominate this entropy vector. Therefore,

it can be said that the distribution of entropy vector in attack traffic resembles the

Gamma distribution. Thus, skewness value of it will differ from zero. This property is

utilized in the detection of attack traffic.

The proposed approach is tested on BOUN data set. Two different DDoS attack

scenarios are tested which are UDP Flood and TCP Flood. The simulation results

are given in Table 5.11. It is observed that good detection rates are achieved for both

scenarios. For TCP Flood, 99.71% precision rate is achieved. For UDP Flood, 99.86%

precision rate is achieved.

86

Table 5.11. Simulation results on BOUN data set with Graph–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

TCP Flood

Normal 0.9971 0.9971 0.9974 0.9972

DDoS 0.9971 0.9971 0.9967 0.9969

Overall 0.9971 0.9971 0.9971 0.9971

UDP Flood

Normal 0.9986 0.9987 0.9987 0.9987

DDoS 0.9986 0.9986 0.9986 0.9986

Overall 0.9986 0.9986 0.9986 0.9986

Another data set used for the simulations is IDS 2012 data set. The simulation

results of this data set are given in Table 5.12. As in the previous packet–based

methods, DoS attacks are detected with a high accuracy. The obtained precision value

for DoS attacks is 99.57%. To compare the packet–based methods which are Greedy–

based one given in Chapter 5.3.1 and Clustering–based one given in Chapter 5.3.2,

best detection rate for DDoS attacks is achieved with this approach. The obtained

precision rate for DDoS attacks is 92.49%. Also, for Brute Force SSH attacks, among

the packet–based methods, this approach gives best precision value which is 96.60%.

For infiltration attack, low performance is observed like the other packet–based methods

with 83.84% precision rate.

IDS 2017 is the another data set used in the simulations of the proposed approach.

The simulation results are given in Table 5.13. From Wednesday data, it is observed

day DoS attacks are detected with a precision value of 99.90%. For all packet–based

methods, it is seen that DoS attack detection rate is high compared to other attacks.

Also, by using this approach, Brute Force attacks are detected with a 82.24% precision

rate which is higher than the Clustering–based approach but lower than the Greedy–

based approach. For Port Scan attacks, 85.04% precision rate is achieved which is the

best among the proposed packet–based algorithms. For DDoS attacks, 98.45% precision

rate is obtained. It is also seen that for each day, benign samples are detected with a

high precision rate which are 99.47% for Friday, 99.96% for Wednesday and 97.87% for

Tuesday.

87

Table 5.12. Simulation Results on IDS 2012 data set with Graph–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

Monday

Normal 0.9959 0.9961 0.9961 0.9961

HTTP DoS 0.9959 0.9957 0.9957 0.9957

Overall 0.9959 0.9959 0.9959 0.9959

Tuesday

Normal 0.9416 0.9342 0.9566 0.9453

DDoS 0.9416 0.9503 0.9249 0.9374

Overall 0.9416 0.9418 0.9416 0.9416

Thursday

Normal 0.9790 0.9701 0.9906 0.9802

Brute Force SSH 0.9790 0.9893 0.9660 0.9775

Overall 0.9790 0.9792 0.9790 0.9789

Sunday

Normal 0.9104 0.8706 0.9750 0.9198

Infiltration 0.9104 0.9678 0.8384 0.8985

Overall 0.9104 0.9165 0.9104 0.9097

5.4. Flow–Based DPI Solutions

In flow–based DPI solutions, network packets are gathered into network flows

by using 5–tuple packet header information which are source IP address, destination

IP address, source port number, destination port number and protocol. Flow–based

approach has many advantages such that each flow is evaluated using its own charac-

teristics. Depending on the type of network traffic, characteristics of flows differ from

each other. In packet–based analysis, whole network is analyzed with time windows.

These windows reflect the behavior of the ongoing network traffic instantaneously. On

the other hand, in flow–based analysis, each flow is evaluated independently from other

flows. Extracted features differ for different type of flows. In the proposed solutions,

statistical features like data transmission rate, size of packets etc. are combined with

the features extracted from payload portion of packets. The contribution of these solu-

tions is that novel payload–based features such as the application of Greedy algorithm

on payload, improve the performance of flow–based statistical features.

88

Table 5.13. Simulation Results on IDS 2017 data set with Graph–Based Approach.

Day Type of Traffic Accuracy Recall Precision F1 Score

Friday

Normal 0.9720 0.9524 0.9947 0.9731

DDoS 0.9818 0.9456 0.9845 0.9646

Port Scan 0.9620 0.9878 0.8504 0.9140

Overall 0.9721 0.9591 0.9579 0.9569

Wednesday

Normal 0.9993 0.9991 0.9996 0.9994

DoS 0.9993 0.9996 0.9990 0.9993

Overall 0.9993 0.9993 0.9993 0.9993

Tuesday

Normal 0.9048 0.8600 0.9787 0.9155

Brute Force 0.9048 0.9719 0.8224 0.8909

Overall 0.9048 0.9129 0.9048 0.9039

There are two important parameters must be considered in the proposed flow–

based system. First parameter is that how many packets should be considered within

flows. In other words, this parameter defines when the decision about the classification

is done about the flow. For example, if five packets are considered, when a flow reaches

five packets, it goes to the classification stage and then labelled accordingly. This

parameter should not be constant because for some applications, predefined number of

packets may not be enough to represent the flow. In these situations, the probabilities

of the flow closeness to each class taken from the prediction of training model can

be considered. If one of the probabilities reaches that threshold, classification can be

performed. However, this approach may also suffer from the situation that desired

probability threshold cannot be reachable even after many packets transmitted for

the flow. Therefore, the selection of number of packets parameter or the probability

threshold parameter should be done carefully to maximize the detection accuracy.

Another parameter is to be considered is the number of bytes of the payload. Using

small portion of payload may not represent the flows effectively. On the other hand,

using whole payload may increase the complexity of the detection algorithms. While

some packets have large payloads, some of them have small ones. Selecting the same

number of bytes for all flows requires zero–padding for the packets with small payloads.

89

On the other hand, if a small number of bytes is selected, cropping should be applied

to the packets with large payloads. These situations affect the performances of the

proposed solutions. Therefore, this parameter is also should be selected carefully or

whole payload should be used.

Two flow–based solutions are proposed which are for network anomaly detec-

tion and network application classification. The performance of proposed solutions

are shown using publicly available data sets. Both systems have similar architecture.

However, they are some different requirements between them. For example, in net-

work anomaly detection system, the important condition is to detect the attack as

soon as possible. Therefore, it should be done using small number of packets within

flows. On the other hand, in network application classification system, classification

accuracy is the most important consideration. Therefore, larger number of packets can

be used compared to anomaly detection systems. To summarize, both systems require

high detection accuracy. Besides that, network anomaly detection system requires fast

detection to combat with the attack immediately.

5.4.1. Flow–Based Network Intrusion Detection System

In the flow–based approach, network packets are gathered into flows by using

their packet header information as explained before. Characteristics of the flows are

extracted using the features mentioned in Chapter 4.2. In both approaches for network

intrusion detection and for network traffic classification, statistical and payload–based

features are used. The simulations are done using the combination of these features

and usage of each type of features alone. The block diagram of the flow–based system

is given in Figure 5.8. The proposed system consists of three modules which are

Pre–processing Module, Feature Extraction Module and Classification Module. These

modules are explained below.

90

Figure 5.8. The block diagram of the proposed flow–based approach.

In the Pre–processing Module, by using the network traffic, network packets are

gathered into flows. The header information and payload parts of packets are extracted.

The data is prepared for the execution of Feature Extraction Module. In this approach,

historical network traffic is used for the preparation of the training model. The training

of the model is performed offline. By using the feature extraction module, flows having

more packets than the predefined threshold, are analyzed. These flows are used in the

training of the model. In the testing phase, while the network traffic is running, packets

are gathered into the flows. When a new packet comes, if it belongs to a existing flow,

then it is added to this flow’s packet list. However, if this new packet does not belong to

any flows, a new flow is created with this packet’s header information. If a flow reaches

predefined number of packets, feature extraction is performed. Then, this flow is sent

to the Classification Module to be predicted its behavior. When the flow reaches this

module, there are two options. In the first option, if the closeness probability of flow

to a class is high enough, then this flow is labelled with this class. After this labelling,

new packets related to this flow are directly sent to the desired location. However, in

the second options, if the closeness probability is not enough, then new packets for

the flow are waited. After the arrival of new packets, classification is performed again.

In this way, reliability of the classification can be increased. However, newly arriving

packets may also affect the classification worse. Therefore, all probability values with

each incoming packet are saved and then decision is made accordingly.

To verify the effectiveness of this approach, simulations are performed using IDS

2012 and IDS 2017 data sets. The details about the data sets are given in Chapter 5.1.2

91

and 5.1.3 respectively. These data set are popularly used in network intrusion detection

systems. To show the results, each day of each data set is evaluated individually.

For example, Wednesday data in IDS 2017 data set consists of benign traffic with

multiple types of DoS traffic such as DoS Hulk, DoS Golden Eye etc. The detection of

malicious traffic even with the execution type of the attack is performed on these data

sets. To take the simulation results, packets having payloads are selected. Statistical

and payload–based features are extracted using the packets having payloads. Also,

the header information such as IP addresses or port numbers are removed from the

payloads to make the analysis more reliable. Instead of selecting a portion of payloads,

total payloads are used for the feature extraction. The reason for this implementation

is that in this approach, payloads are used to build probability distributions by taking

histograms of them. For some approaches, deep learning techniques are implemented

on payloads to construct new features. To make this, input size has to be constant

for each flow. Therefore, a byte number is decided and taken from each payload. If a

payload does not have that size, zero–padding is applied. In this proposed approach,

this implementation is not necessary.

Another parameter is to be considered is the minimum number of packets within a

flow. The feature extraction is performed after a flow reaches that predefined number of

packets. This number is set to be five in these simulations. Flows having less number of

packets than this threshold is discarded from the classification process. If this threshold

value is set to high, many flows have to be discarded from the remaining process. On

the other hand, setting this value too low results in the addition of insignificant flows

into the classification. Therefore, an optimal value of five is selected for the rest of the

simulations.

Simulation results are given by using IDS 2012 and IDS 2017 data sets respec-

tively. The performance of the proposed approach is demonstrated using the perfor-

mance metrics defined in Chapter 5.2. These values are calculated for the overall

system as well as for each class considered in a simulation. Results are shown using

statistical features alone, payload–based features alone, and the combination of both

92

features. The contribution of the proposed payload–based features is demonstrated

with the results. For the classification phase, Ensemble Decision Tree methods are

used which are bagging and boosting decision trees. These methods can be briefly

explained as follows:

• Bagging Decision Trees: The idea behind bagging is that more accurate results

would be obtained if several trees are trained and the average (or, in the case of

classification, the majority vote) of their output is used to predict the label of

a new observation. For example, if there are four decision trees, three of them

giving same label to a new observation and one of them gives different label, by

majority counting the label given by three of them is given to the observation.

This is the basic idea behind bagging decision trees. The goal is to divide the

training samples, which were selected at random with replacement, into several

subsets of data. Each subset of data is now used to train the decision trees of each

group. In the end, there will be an ensemble of various models. It is more reliable

than using just one decision tree to utilize the average of all the predictions from

many trees.

• Boosting Decision Trees: Another ensemble method for building a set of pre-

dictors is boosting. Building a sequence of trees, each of which is an improved

version of previous one, is the concept of boosting. Every tree is created by learn-

ing from its previous errors. This method involves teaching learners sequentially,

starting with early learners fitting basic models to the data and moving on to

later learners checking the data for errors. In other words, successive trees (ran-

dom sample) are fit with the aim of resolving the net error from the previous

tree at each stage. An input’s weight is increased when a hypothesis incorrectly

classifies it, increasing the likelihood that the subsequent hypothesis will classify

it properly. Weak learners can become better performers by merging the entire

set at the end.

93

Table 5.14. Number of flows of Monday data on IDS 2012.

Flow Type Number of Flows

Normal 3240

HTTP DoS 1620

5.4.1.1. Simulation Results on IDS 2012 Data Set. IDS 2012 data set is a well–known

data set used in many intrusion detection systems. It includes collected network traffic

within duration of a week. Among the days of data set, since three days do not include

malicious traffic, they are excluded from the simulations. The other four days are used

in simulations. These days include benign traffic with HTTP DoS, Brute Force SSH,

DDoS and infiltrating the network from inside attacks traffic. All network traces include

full payloads. Simulation results are given day by day. Then, all network traces are

gathered to build multi–attack detection system. In the end, this system’s performance

metrics are given. In all simulations, 70% of data is taken as training and 30% of

data is taken as test. 10–fold cross–validation method is applied in training phase.

AdaBOOST Ensemble Decision Tree is used as a classification method. Simulation

results are given with different feature sets which are statistical features, payload–

based features and combination of statistical and payload–based features.

Monday: First day of the analyzed data of IDS 2012 is Monday which includes

HTTP DoS attacks with benign traffic. Binary classification is implemented in this

case. Since benign traces have huge amount of flow samples, appropriate portion

of them is selected for simulations. The distributions of the number of flows after

implementing 5–packet threshold for each flow is given in Table 5.14.

94

Table 5.15. Simulation Results of IDS 2012 - Monday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9952 0.9949 0.9979 0.9964

HTTP DoS 0.9952 0.9959 0.9897 0.9928

Overall 0.9952 0.9952 0.9952 0.9952

Payload

Based

Features

Normal 0.9979 0.9969 1 0.9985

HTTP DoS 0.9979 1 0.9938 0.9969

Overall 0.9979 0.9979 0.9979 0.9979

All

Features

Normal 0.9973 0.9959 1 0.9979

HTTP DoS 0.9973 1 0.9918 0.9959

Overall 0.9973 0.9973 0.9973 0.9973

Simulation results with different features sets on Monday of IDS 2012 data set is

given in Table 5.15. It is observed that both feature sets are able to discriminate the

attack traffic from normal traffic. From the performance metrics for each class as well

as the overall system, it is observed that the proposed approach has a good performance

on the classification of HTTP DoS attacks. The calculated overall accuracy by using

payload–based features is 99.79%. Also, precision value of the attack class is found

to be 99.38%. Moreover, since the data set is not balanced, flow numbers are very

different for normal and attack cases, F1–score can be considered. It is found to be

99.79% which shows the good performance of the proposed approach.

Confusion matrix for the Monday data of IDS 2012 data set taken by using all

features is given in Figure 5.9. In this matrix, diagonal entries represent true detections.

For example, 4 HTTP DoS samples are labelled as benign class. For the benign class,

all test samples are correctly labelled. In total, 1454 out of 1458 samples are correctly

labelled which corresponds to 99.73% accuracy.

95

Figure 5.9. Confusion matrix of Monday of IDS 2012.

Table 5.16. Number of flows of Tuesday data on IDS 2012.

Flow Type Number of Flows

Normal 21962

DDoS 10981

Tuesday: This day of the IDS 2012 data set contains network traces from benign

and DDoS attack traffic. As in the other days of this data set, binary classification

model is trained. Since benign samples have relatively large number of flow samples,

appropriate amount of them is selected randomly. The distribution of the number of

flows after the random selection of benign samples and application of 5–packet threshold

is given in Table 5.16.

Simulation results with selecting different feature sets are given in Table 5.17.

Since benign traffic has many flow samples, its size is reduced to get away from the

over–fitting problem. The random selection of benign samples process is repeated

multiple times to get a more reliable result. The result given in Table 5.17 is the mean

of all repetitions. When all features are used, it is observed that the precision value of

99.76% is reached for benign class and 98.91% is reached for DDoS class. In overall,

99.47% accuracy is obtained. Also, it is observed that statistical and payload–based

features have similar results. The best performance is obtained when combining both

feature sets.

96

Table 5.17. Simulation Results of IDS 2012 - Tuesday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9928 0.9976 0.9917 0.9946

DDoS 0.9928 0.9835 0.9951 0.9893

Overall 0.9928 0.9929 0.9928 0.9928

Payload

Based

Features

Normal 0.9930 0.9966 0.9929 0.9948

DDoS 0.9930 0.9858 0.9933 0.9896

Overall 0.9930 0.9930 0.9930 0.9930

All

Features

Normal 0.9947 0.9976 0.9945 0.9960

DDoS 0.9947 0.9891 0.9951 0.9921

Overall 0.9947 0.9948 0.9947 0.9947

Figure 5.10. Confusion matrix of Tuesday of IDS 2012.

Confusion matrix of Tuesday data of IDS 2012 data set taken with using all

features is given in Figure 5.10. It is observed that 16 out of 3294 DDoS samples are

labelled as benign and 36 out of 6588 benign samples are labelled as DDoS. In total,

9830 out of 9882 samples are detected correctly which corresponds to 99.47% accuracy.

Thursday: Thursday of IDS 2012 data set includes benign traffic with brute

force attack traces implemented on SSH protocol. In this data set, one–day network

traffic is classified as binary classification. Number of samples are tried to be balanced

using random selection of the samples from the benign class. Also, flows having less

than 5 packets are discarded from the remaining process. The distribution of number

of flows for each class is given in Table 5.18.

97

Table 5.18. Number of flows of Thursday data on IDS 2012.

Flow Type Number of Flows

Normal 9420

Brute Force – SSH 4710

Table 5.19. Simulation Results of IDS 2012 - Thursday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 1 1 1 1

Brute Force - SSH 1 1 1 1

Overall 1 1 1 1

Payload

Based

Features

Normal 0.9995 0.9996 0.9996 0.9996

Brute Force - SSH 0.9995 0.9993 0.9993 0.9993

Overall 0.9995 0.9995 0.9995 0.9995

All

Features

Normal 0.9998 0.9996 1 0.9998

Brute Force - SSH 0.9998 1 0.9993 0.9996

Overall 0.9998 0.9998 0.9998 0.9998

Simulation results taken with different feature sets are given in Table 5.19. Since

random selection is applied for the samples of benign class, the classification process is

repeated multiple times and mean of these results are given. Statistical features gives

the best result. The precision value of 100% is obtained for benign class and 100% is

obtained for Brute Force SSH class. There is a slight performance difference between

statistical and payload–based features. With payload–based features, 99.95% accuracy

is obtained.

Confusion matrix taken with using all features in Thursday data is given in Figure

5.11. 1412 out of 1413 Brute Force SSH samples are truly detected. Also, all benign

samples are correctly labelled. In total, among 4239 samples, 4238 of them are truly

detected.

98

Figure 5.11. Confusion matrix of Thursday of IDS 2012.

Table 5.20. Number of flows of Sunday data on IDS 2012.

Flow Type Number of Flows

Normal 2630

Infiltration 1315

Sunday: Sunday data consists of traces called infiltrating the network from inside

and normal activities. As in the previous days, binary classification is performed. To

obtain a more balanced data set, appropriate number of flows are selected from benign

samples. The distribution of flow numbers of both classes is given in Table 5.20.

Simulations results taken with both feature sets alone and the combination of

feature sets are given in Table 5.21 in terms of performance metrics. Similar results

are obtained by using these feature sets. When all features are used, for normal classes

96.57% precision is obtained while for infiltration class 100% precision is obtained.

Overall accuracy is found to be 97.63%. Statistical and payload–based feature sets

give similar results. When they are combined, better performance results are obtained.

Confusion matrix taken with all features on Sunday of IDS 2012 data set is given

in Figure 5.12. 28 out of 394 infiltration attack samples are labelled as normal while

all normal samples are labelled as normal. In total, among 1183 samples, 1155 of them

are truly detected.

99

Table 5.21. Simulation Results of IDS 2012 - Sunday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9704 0.9724 0.9835 0.9779

Infiltration 0.9704 0.9662 0.9442 0.9551

Overall 0.9704 0.9704 0.9704 0.9703

Payload

Based

Features

Normal 0.9713 0.9655 0.9924 0.9788

Infiltration 0.9713 0.9839 0.9289 0.9556

Overall 0.9713 0.9716 0.9713 0.9710

All

Features

Normal 0.9763 0.9657 1 0.9826

Infiltration 0.9763 1 0.9289 0.9632

Overall 0.9763 0.9771 0.9763 0.9761

Figure 5.12. Confusion matrix of Sunday of IDS 2012.

Total: In this part, attack samples from all days are gathered to build a multi–

class network intrusion detection model. Attack samples from each day are taken with

an equal amount of benign samples to build this model. Therefore, benign samples

have most flows. The distribution of the number of flows for each class is given in

Table 5.22. As in the previous days, same methods are applied such as flows having

more than 5 packets are considered.

100

Table 5.22. Number of flows of IDS 2012 data set with all classes.

Flow Type Number of Flows

Normal 5587

Infiltration 394

HTTP Dos 486

DDoS 3294

Brute Force – SSH 1413

Simulation results of the constructed multi–class classification model is given in

Table 5.23. All feature sets give similar performances. To compare them in terms of

overall accuracy, statistical features give the best performance with a value of 99.08%.

The most miss-labelled class is the infiltration class. Its precision values are low com-

pared to other classes. Although best performance is obtained with statistical features

in terms of accuracy, in some cases different feature sets are better. For example, in

DDoS class, payload–based features give the best accuracy. Also, in Brute Force –

SSH class, all features give the best accuracy. If the detection simplicity of attacks are

compared, it is observed that the easiest one is Brute Force – SSH. On the other hand,

the toughest one is infiltration attack. DDoS attacks are detected in a better accuracy

than HTTP DoS attacks.

Confusion matrix of the multi–class model constructed using all features is given

in Figure 5.13. It is observed that for DDoS attacks, 45 samples are labelled as normal.

The other samples are correctly labelled. Also, 15 samples of Brute Force – SSH attack

are labelled as normal. The most wrong labelling is seen on the Infiltration attack. 97

samples of it are labelled as normal. In general, missed samples of attack traces are

labelled as normal. However, it is observed that 16 samples of normal class are labelled

as DDoS attack. In total, among 11174 samples 10982 of them are truly labelled which

corresponds to 98.88% accuracy.

101

Table 5.23. Simulation Results of IDS 2012.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9858 0.9795 0.9923 0.9859

Infiltration 0.9911 0.9773 0.7665 0.8592

HTTP DoS 0.9988 0.9958 0.9774 0.9865

DDoS 0.9952 0.9909 0.9927 0.9918

Brute Force - SSH 0.9978 0.9860 0.9965 0.9912

Overall 0.9908 0.9843 0.9843 0.9839

Payload

Based

Features

Normal 0.9806 0.9701 0.9918 0.9808

Infiltration 0.9889 0.9787 0.7005 0.8166

HTTP DoS 0.9979 0.9833 0.9691 0.9762

DDoS 0.9956 0.9954 0.9897 0.9925

Brute Force - SSH 0.9969 0.9832 0.9922 0.9877

Overall 0.9881 0.9801 0.9800 0.9791

All

Features

Normal 0.9830 0.9732 0.9934 0.9832

Infiltration 0.9913 0.9714 0.7766 0.8632

HTTP DoS 0.9991 1 0.9794 0.9896

DDoS 0.9926 0.9902 0.9845 0.9874

Brute Force - SSH 0.9989 0.9986 0.9929 0.9957

Overall 0.9888 0.9825 0.9825 0.9820

5.4.1.2. Simulation Results on IDS 2017 Data Set. IDS 2017 data set is a popular

data set extensively used in network intrusion detection research area. It includes

five–day network traffic. Days with malicious traffic are used in these simulations.

Therefore, network traces from Tuesday, Wednesday and Friday are used in the sim-

ulations. Day by day simulation results are given in this section. Also, by combining

these days, overall result for the IDS 2017 data set is given. In all simulations, 70%

of the data is taken as training and 30% of the data is taken as test. 10–fold cross–

validation is applied in the training phase. 3 different simulation results are given which

are taken with only statistical features, only payload–based features and combination

of statistical and payload–based features.

102

Figure 5.13. Confusion matrix of IDS 2012 data set with all classes.

Table 5.24. Number of flows of Wednesday data on IDS 2017.

Flow Type Number of Flows

Normal 8742

DoS Hulk 7968

DoS Golden Eye 5529

DoS slowloris 1988

DoS Slowhttptest 804

Wednesday: Wednesday data consists of benign traces with malicious traces

from different DoS attacks. The types of DoS attacks implemented in this data are

DoS Hulk, DoS Golden Eye, DoS slowloris and DoS Slowhttptest. 5–class classification

model is trained. Most of the flows are belong to DoS Hulk and benign traffic. To

prepare a more balanced data set, appropriate number of samples are taken from

Normal and DoS Hulk classes. Then, simulation is performed multiple times to obtain

more reliable results. The distribution of the number of flows after implementing 5–

packet threshold for each flow in given in Table 5.24.

Simulation results with different feature sets on Wednesday of IDS 2017 data

set are given in Table 5.25. It is observed that payload–based features outperforms

statistical features with a slight improvement in performance metrics. When these

feature sets are combined, there is a slight performance improvement observed. The

results are given with different performance metrics defined for each class since the

number of flows of classes differ from each other.

103

Table 5.25. Simulation Results of IDS 2017 - Wednesday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9925 0.9996 0.9790 0.9892

DoS Hulk 0.9798 0.9556 0.9820 0.9686

DoS Golden Eye 0.9855 0.9714 0.9626 0.9670

DoS Slowloris 0.9996 0.9983 0.9966 0.9975

DoS Slowhttptest 0.9995 0.9837 1 0.9918

Overall 0.9877 0.9788 0.9784 0.9785

Payload

Based

Features

Normal 0.9923 0.9996 0.9783 0.9888

DoS Hulk 0.9904 0.9719 0.9987 0.9851

DoS Golden Eye 0.9963 0.9957 0.9873 0.9915

DoS Slowloris 0.9992 0.9933 0.9966 0.9950

DoS Slowhttptest 0.9997 0.9918 1 0.9959

Overall 0.9934 0.9892 0.9889 0.9890

All

Features

Normal 0.9933 0.9992 0.9817 0.9904

DoS Hulk 0.9927 0.9791 0.9983 0.9886

DoS Golden Eye 0.9977 0.9946 0.9952 0.9949

DoS Slowloris 0.9997 1 0.9966 0.9983

DoS Slowhttptest 1 1 1 1

Overall 0.9948 0.9919 0.9917 0.9917

From the results, it is seen that the best performance is obtained by using all

features together. The overall accuracy for this case is 99.48%. Since the data is

unbalanced where most of the flows belong to Normal and DoS Hulk classes, F1–score

is a better evaluation metric. The overall F1–score is calculated as 99.17% which shows

the good performance of the proposed approach. DoS Slowhttptest class is perfectly

detected in all cases.

104

Figure 5.14. Confusion matrix of Wednesday of IDS 2017.

Table 5.26. Number of flows of Tuesday data on IDS 2017.

Flow Type Number of Flows

Normal 13772

FTP Parator 3941

SSH Parator 2945

For the demonstration of simulation results, the confusion matrix taken with

payload–based features is given in Figure 5.14. It is observed that for DoS Slowloris

class, one sample is labelled as benign and one sample is labelled as DoS Golden Eye.

Other samples are correctly labelled. Also, it it seen that 4871 out of 4885 attack

samples are correctly labelled. It means 99.71% attack detection rate. However, 48

samples of benign traces are labelled as different DoS attacks. In total, among 7445

flow samples, 7507 of them are correctly detected.

Tuesday: Tuesday data consists of normal network traffic with malicious network

traffic from FTP Patator and SSH Patator attacks. These are brute force attacks

implemented using FTP and SSH protocols. In this day, 3–class classification model is

trained. The distribution of the number of flows after implementing 5–packet threshold

for each flow in given in Table 5.26.

105

Table 5.27. Simulation Results of IDS 2017 - Tuesday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9987 0.9985 0.9995 0.9990

FTP Patator 0.9997 1 0.9983 0.9992

SSH Patator 0.9990 0.9997 0.9954 0.9996

Overall 0.9989 0.9987 0.9987 0.9987

Payload

Based

Features

Normal 0.9994 0.9998 0.9993 0.9995

FTP Patator 0.9997 0.9983 1 0.9992

SSH Patator 0.9997 0.9989 0.9989 0.9989

Overall 0.9995 0.9994 0.9994 0.9994

All

Features

Normal 0.9992 0.9995 0.9993 0.9994

FTP Patator 0.9995 0.9983 0.9992 0.9987

SSH Patator 0.9997 0.9989 0.9989 0.9989

Overall 0.9993 0.9992 0.9992 0.9992

Simulation results with different feature sets on Tuesday of IDS 2017 data set are

given in Table 5.27. Both feature sets perform good results. Payload–based features

have slightly better results than statistical features. Overall accuracy obtained with

using all features is 99.93%. Also, for the attack traces, 99.83% precision is achieved

for FTP Patator attack and 99.89% precision is achieved for SSH Patator attack.

Compared to the previous day of data which is Wednesday including different type

of DoS attacks, it is observed that the proposed system also detects different type of

attacks which is brute force attack on this day. This shows that the proposed approach

has a good performance of this data. While attack traces have similar number of

flows, benign traces have larger number of flows. Therefore, F1–score should also be

considered which is calculated as 99.92% by using all features.

106

Figure 5.15. Confusion matrix of Tuesday of IDS 2017.

Table 5.28. Number of flows of Friday data on IDS 2017.

Flow Type Number of Flows

Normal 22045

DDoS 15788

Botnet 393

Port Scan 329

The confusion matrix generated using all features on Tuesday of IDS 2017 data

set is given in Figure 5.15. It is observed that 2 samples of FTP Patator and 4 samples

of SSH Patator are labelled as benign. It is important to note that the attack traces

are not mixed to each other. In other words, there are not any FTP Patator samples

labelled as SSH Patator and vice versa. Some benign samples are labelled as attack but

the number of these samples have a small portion among all benign samples. Among

6184 flow samples, 6176 of them are correctly labelled.

Friday: The other day used in the simulations is Monday which contains attack

traces from DDoS, Botnet and Port Scan attacks. Compared to other days, this day

contains different type of attacks. Most samples belong to benign and DDoS traces.

Botnet and Port Scan attack traces have low number of samples compared to them.

4–class classification model is trained. The distribution of the number of flows after

implementing 5–packet threshold for each flow is given in Table 5.28.

107

Table 5.29. Simulation Results of IDS 2017 - Friday.

Feature Set Flow Type Accuracy Recall Precision F1 Score

Statistical

Features

Normal 0.9578 0.9837 0.9418 0.9623

DDoS 0.9580 0.9235 0.9785 0.9502

Botnet 0.9999 0.9915 1 0.9957

Port Scan 0.9999 1 0.9898 0.9949

Overall 0.9587 0.9593 0.9578 0.9579

Payload

Based

Features

Normal 0.9610 0.9867 0.9445 0.9652

DDoS 0.9610 0.9269 0.9823 0.9538

Botnet 1 1 1 1

Port Scan 1 1 1 1

Overall 0.9617 0.9625 0.9610 0.9611

All

Features

Normal 0.9625 0.9815 0.9524 0.9667

DDoS 0.9626 0.9336 0.9751 0.9552

Botnet 1 1 1 1

Port Scan 0.9999 1 0.9898 0.9949

Overall 0.9632 0.9632 0.9625 0.9626

Simulation results with different feature sets on Friday of IDS 2017 data set are

given in Table 5.29. Payload–based features outperform statistical features with a slight

difference in terms of performance metrics. Compared to other days, this day includes

different type of attacks. The simulations results show that proposed approach clearly

discriminate these attacks. Overall accuracy obtained with using all features is 96.32%.

Since benign and DDoS traces have large amount of samples, other performance metrics

should be considered.

As in the previous days, since the data has unequal distributions, F1–score should

be considered. In overall, it is calculated as 96.26% which shows the detection capability

of the proposed approach. Although this result is low compared to the other F1–scores

in other days, the main reason for this situation is the unbalanced flow samples for the

classes in this model.

108

Figure 5.16. Confusion matrix of Friday of IDS 2017.

The confusion matrix taken with payload–based features is given in Figure 5.16.

It is observed that as in the previous day Tuesday, attack traces are not mixed to each

other. In other words, miss–labelling of attack traces results in benign labels. While

only 118 samples of DDoS attack traces are labelled as benign, 315 benign traces

are labelled as DDoS. This corresponds to the 4.76% of all benign samples. All flow

samples from botnet class are correctly labelled. Also, only 1 sample of Port Scan

class is labelled as benign. In overall, 11130 samples out of 5481 samples are correctly

detected which corresponds to 96.25% detection rate.

Table 5.30. Number of flows of whole data on IDS 2017.

Flow Type Number of Flows

Normal 31193

DoS Hulk 5578

DoS Golden Eye 3871

DoS Slowloris 1392

DoS Slowhttptest 5788

FTP Parator 2759

SSH Parator 2062

DDoS 11052

Botnet 276

Port Scan 563

109

Table 5.31. Simulation Results using Statistical Features on IDS 2017.

Application Type Accuracy Recall Precision F1 Score

Normal 0.9785 0.9905 0.9686 0.9794

Bot 1 1 1 1

DDoS 0.9803 0.9236 0.9759 0.9490

Port Scan 0.9999 1 0.9897 0.9948

FTP Patator 0.9999 0.9991 1 0.9995

SSH Patator 0.9998 0.9966 0.9988 0.9977

DoS Hulk 0.9979 0.9826 0.9962 0.9894

DoS Slowloris 0.9999 1 0.9983 0.9991

DoS Golden Eye 0.9990 0.9951 0.9909 0.9930

DoS Slowhttptest 0.9998 0.9917 0.9958 0.9937

Overall 0.9847 0.9785 0.9778 0.9780

Total: By using all attack traces from all days of IDS 2017 data set, with a

selection of suitable amount of benign traffic samples, performance on the whole IDS

2017 data set is given below. By combining all days of IDS 2017, 10–class model is

constructed containing classes which are benign, DoS Hulk, DoS Golden Eye, DoS

slowloris, DoS Slowhttptest, FTP Parator, SSH Parator, DDoS, Botnet and Port Scan.

The number of flows for each class is given in Table 5.30.

The simulation results taken by using only statistical features are given in Table

5.31. Performance metrics for all classes with the overall results are given. The overall

accuracy obtained in this case is 98.47%. Since the data set in unbalanced where

most of the samples belong to Normal, DDoS and Dos Hulk classes, it is important to

consider the F1–score which gives better interpretation when the data is unbalanced.

The overall F1–score is calculated as 97.80% where it shows the good performance of

the proposed approach. Only one class has F1–score below 95% which is DDoS attack.

The reason for this situation is that since DDoS class has more samples compared to

other attacks, some attacks are labelled as DDoS. Brute force attacks which are FTP

Patator and SSH Patator are detected almost perfectly.

110

Table 5.32. Simulation Results using Payload–Based Features on IDS 2017.

Application Type Accuracy Recall Precision F1 Score

Normal 0.9764 0.9911 0.9640 0.9773

Bot 1 1 1 1

DDoS 0.9786 0.9141 0.9778 0.9449

Port Scan 0.9999 1 0.9897 0.9948

FTP Patator 0.9998 0.9991 0.9983 0.9987

SSH Patator 0.9997 0.9965 0.9954 0.9960

DoS Hulk 0.9979 0.9826 0.9962 0.9894

DoS Slowloris 0.9998 0.9966 0.9983 0.9974

DoS Golden Eye 0.9992 0.9927 0.9963 0.9945

DoS Slowhttptest 0.9999 1 0.9958 0.9979

Overall 0.9833 0.9769 0.9759 0.9761

The simulation results taken with using only payload–based features are given in

Table 5.32. The overall F1–score obtained in this case is 97.61% which is lower than

the one obtained with using statistical–fetaures. The worst performance is obtained

with DDoS attack class with an F1–score of 94.49%. Wrongly detected DDoS samples

are labelled as Normal. Compared to the results taken with statistical features, only

for two classes which are DoS Golden Eye and Dos Slowhttptest results improved.

However, although for the other classes, performance decreases, it is still in a good

level with having 97.59% precision rate.

The simulation results obtained by using all features are given in Table 5.33. The

overall F1–score in this case is 97.78%. The improved results in terms of F1–score

are for the classes Normal, DDoS, DoS Hulk, Golden Eye Slowhttptest. There is low

performance decrease resulting from a few miss–labelling of samples seen on the other

classes. However, in overall detection rate is improved with a value of 97.85%.

111

Table 5.33. Simulation Results using All Features on IDS 2017.

Application Type Accuracy Recall Precision F1 Score

Normal 0.9789 0.9945 0.9655 0.9798

Bot 1 1 1 1

DDoS 0.9807 0.9173 0.9860 0.9504

Port Scan 0.9999 1 0.9795 0.9896

FTP Patator 0.9999 0.9991 1 0.9995

SSH Patator 0.9998 0.9966 0.9988 0.9977

DoS Hulk 0.9983 0.9835 0.9991 0.9912

DoS Slowloris 0.9999 1 0.9983 0.9991

DoS Golden Eye 0.9994 0.9963 0.9945 0.9954

DoS Slowhttptest 0.9999 1 0.9958 0.9979

Overall 0.9851 0.9797 0.9785 0.9787

The confusion matrix obtained by using all features is given in Figure 5.17. It is

observed that some benign samples are miss–labelled with different type of attacks such

as DDoS, Dos Golden Eye, DoS Hulk, FTP Patator and SSH Patator. For example,

421 benign samples are labelled as DDoS. Also, for the DDoS class, 66 samples of it

are labelled as benign. The other types of attacks are slightly mixed to each other such

as 9 DoS Golden Eye samples are labelled as DoS Hulk. Also, 2 Dos Hulk samples are

labelled as DoS Golden Eye. In total, among 25267 samples 24725 of them are truly

detected which corresponds to 97.85% detection rate.

112

Figure 5.17. Confusion matrix of IDS 2017 data set with all classes.

5.4.2. Flow-Based Network Traffic Classification System

In the proposed approach is tested on the application classification data set given

in [73]. The details of the data set is given in Chapter 5.1.4. This data set includes

real–world up–to-date network traces from multiple applications. The proposed system

is used for detecting which type of applications flows belong to. As in the intrusion

detection system given in Chapter 5.4.1, statistical and payload–based features are used

alone and in combination to take the performance results. 70% of the data is taken

as training and 30% of the data is taken as test. 10–fold cross–validation is applied

in the training stage. All flows in the data set are given into the simulations without

applying any random selections.

The simulation results are given in three parts as in Chapter 5.4.1 where statistical

and payload–based features are used alone and both features sets are combined. The

results when statistical features are used are given in Table 5.34. For each application,

accuracy, precision, recall and F1–score values are given. Also, the overall performance

metric values are given at the end of the table. To compare the results, since the

data set is unbalanced where Tunnelbear and Ultrasurf applications have relatively

high number of flow, F1–score is a better evaluation metric. Calculated F1–score for

113

statistical features is 98.06%. While most of the applications are detected with a high

precision, Discord, Dropbox, Microsoft Teams and Steam applications give precision

values below 90%. The reason for this situation is that statistical properties of the flows

of these applications may resemble with the other flows in the model. On the other

hand, two different chat applications which are Whatsapp and Telegram are detected

perfectly and not mixed to each other. Also, VPN applications such as Proton VPN,

Tunnelbear and Ultrasurf give good F1–score results which are above 98.21%, 99.51%

and 99.24% respectively.

The simulation results when payload–based features are used alone are given

in Table 5.35. Compared to statistical features, worse performance is obtained by

using payload–features alone. Calculated overall F1–score is 94.53% which is smaller

than 98.06% calculated by using only statistical features. Similar payloads of packets

make it tougher to detect applications using only payload–based applications. Among

applications, in terms of F1–score, three applications give better results which are

ITunes, Soulseekqt and Tunnelbear. It is observed that payload–based features may

be helpful for the detection of some applications but for the whole data set by using

these features alone, the performance decreases.

The simulation results when both features sets are used are given in Table 5.36.

The best performance is obtained when the feature sets are used together. Overall

F1–score calculated for this case is 98.55% which is best among all cases. Two appli-

cations give precision values below 90% which are Discord with 83.58% and Microsoft

Teams with 75.83%. Compared to statistical features, the detection rates of 17 out of

22 applications increases. Also, both chat applications Telegram and Whatsapp are

perfectly detected in this case. Most improvement in terms of F1–score is observed on

Steam application.

The confusion matrix when all features are used is given in Figure 5.18. By

using this matrix, miss–labelled samples can be found. It is observed that most miss–

labelling is given into Spotify and Ultrasurf applications. For example, 4 Amazon

114

Prime Video application flows are labelled as Ultrasurf. Also, 12 Microsoft Teams

application samples are labelled as Spotify. 8 Microsoft Teams application samples

are labelled as Skype. The other miss–labelling scenarios are small compared to these

cases. Altough Tunnelbear application has the most samples, only 2 of its samples

are labelled as Steam and only 3 Ultrasurf samples are labelled as Tunnelbear. In

total, among 11520 samples 11355 of them are correctly detected which corresponds to

98.57% overall precision value.

115

Table 5.34. Simulation Results using Statistical Features.

Application Type Accuracy Recall Precision F1 Score

Amazon Prime 0.9988 0.9862 0.9913 0.9888

CyberGhost 0.9996 0.9805 0.9805 0.9805

Deezer 0.998 0.9436 0.9571 0.9503

Discord 0.9968 0.9224 0.7985 0.8560

Dropbox 0.9990 0.9726 0.8875 0.9281

Epic Games 0.9976 0.9700 0.9627 0.9663

Facebook 0.9996 0.9840 0.9840 0.9840

Hotspot 0.9997 1 0.9375 0.9677

ITunes 0.9983 0.9447 0.9669 0.9557

Microsoft Teams 0.9958 0.9173 0.7449 0.8222

Proton VPN 0.9994 0.9705 0.9939 0.9821

Skype 0.9960 0.9157 0.9191 0.9174

Slack 0.9996 0.9938 0.9938 0.9938

Soulseekqt 0.9990 0.9523 0.9433 0.9478

Spotify 0.9960 0.9455 0.9642 0.9548

Steam 0.9968 0.9076 0.8309 0.8676

Telegram 1 1 1 1

Tunnelbear 0.9967 0.9915 0.9987 0.9951

Tunneln 0.9994 0.9943 0.9943 0.9943

Ultrasurf 0.9959 0.9891 0.9958 0.9924

Whatsapp 0.9999 0.9891 1 0.9945

Zoom 0.9989 0.9825 0.9656 0.9740

Overall 0.9971 0.9807 0.9810 0.9806

116

Table 5.35. Simulation Results using Payload–Based Features.

Application Type Accuracy Recall Precision F1 Score

Amazon Prime 0.9930 0.9355 0.9258 0.9306

CyberGhost 0.9973 0.8461 0.8543 0.8502

Deezer 0.9931 0.8133 0.8095 0.8114

Discord 0.9957 0.8455 0.7761 0.8093

Dropbox 0.9987 0.9459 0.8750 0.9090

Epic Games 0.9950 0.9346 0.9230 0.9288

Facebook 0.9995 0.9761 0.9840 0.9800

Hotspot 0.9986 0.8809 0.7708 0.8222

ITunes 0.9990 0.9589 0.9905 0.9744

Microsoft Teams 0.9906 0.7157 0.4563 0.5573

Proton VPN 0.9971 0.8633 0.9518 0.9054

Skype 0.9951 0.8970 0.8970 0.8970

Slack 0.9915 0.8817 0.8080 0.8432

Soulseekqt 0.9993 0.9900 0.9339 0.9611

Spotify 0.9832 0.8387 0.7638 0.7995

Steam 0.9951 0.8412 0.7464 0.7910

Telegram 0.9990 0.9545 0.9459 0.9502

Tunnelbear 0.9991 0.9981 0.9992 0.9987

Tunneln 0.9986 0.9850 0.9850 0.9850

Ultrasurf 0.9781 0.9383 0.9839 0.9606

Whatsapp 0.9986 0.9411 0.8791 0.9090

Zoom 0.9979 0.9336 0.9656 0.9493

Overall 0.9916 0.9452 0.9470 0.9453

117

Table 5.36. Simulation Results using All Features.

Application Type Accuracy Recall Precision F1 Score

Amazon Prime 0.9986 0.9845 0.9879 0.9862

CyberGhost 0.9997 0.9807 0.9902 0.9855

Deezer 0.9988 0.9758 0.9619 0.9688

Discord 0.9977 0.96551 0.8358 0.8960

Dropbox 0.9994 1 0.9250 0.9610

Epic Games 0.9981 0.9727 0.9751 0.9739

Facebook 0.9998 1 0.9840 0.9919

Hotspot 0.9997 0.9787 0.9583 0.9684

ITunes 0.9994 0.9813 0.9905 0.9859

Microsoft Teams 0.9960 0.9186 0.7583 0.8308

Proton VPN 0.9996 0.9939 0.9819 0.9878

Skype 0.9971 0.9192 0.9632 0.9407

Slack 0.9995 0.9907 0.9938 0.9922

Soulseekqt 0.9997 1 0.9716 0.9856

Spotify 0.9953 0.9360 0.9583 0.9470

Steam 0.9982 0.9236 0.9366 0.9300

Telegram 1 1 1 1

Tunnelbear 0.9995 0.9992 0.9994 0.9993

Tunneln 0.9995 0.9962 0.9943 0.9953

Ultrasurf 0.9960 0.9882 0.9971 0.9926

Whatsapp 1 1 1 1

Zoom 0.9988 0.9741 0.9699 0.9720

Overall 0.9982 0.9856 0.9857 0.9855

118

F
ig
u
re

5.
18
.
C
on

fu
si
on

m
at
ri
x
w
h
en

al
l
fe
at
u
re
s
ar
e
u
se
d
.

119

6. CONCLUSION & FUTURE WORK

In this thesis, different deep packet inspection systems are proposed for network

intrusion detection and network application classification purposes. These systems are

grouped into two categories which are packet–based systems and flow–based systems.

To use these systems, novel features are extracted. For packet–based systems, Greedy

algorithm is implemented for finding an upper bound for the distance between proba-

bility distributions with different sizes. Entropy which is a measure of the randomness

of a system is also utilized in the extraction of features. Besides these information

theory–based metrics, a clustering algorithm is proposed to analyze the relationship

between a pair of packet header values. This algorithm is used for cluster one packet

header values such as source IP addresses depending on the connections between an-

other packet header value such as destination IP addresses. To highlight the strength

of the clustering algorithm, modularity value is calculated. Strong modularity value

shows the constructed clusters are more similar to each other. Also, in another ap-

proach, the network is modelled by using the graph theory features. As in the other

approaches, relationships between the packet header values are analyzed. For flow–

based systems, two different types of features are used which are statistical features

and payload–based features. Statistical features are derived using the header informa-

tion of the packets within the flows. For example, data transmission rate of the flow is

one of the statistical features. Also, payload portions of packets are analyzed to derive

the novel features. Entropy and Greedy algorithm concepts are used to derive these

features. By constructing the histogram of payloads, they are treated as probability

distributions. These probability distributions are used with information theory met-

rics to derive the features. Moreover, printable character ratio within a payload is also

considered as a feature.

Packet–based approaches use windows to execute time–series analysis. The size of

these windows may be decided using a pre–defined duration or pre–defined number of

packets. Simulation results show that these approaches are successful in the detection

120

of DoS and DDoS attacks. However, it is observed that for Brute Force and Port Scan

attacks, these approaches cannot reach the satisfactory detection rate. The reason

for this situation is that in these types of attacks, the window may not have enough

malicious packets to highlight the attack behavior. Therefore, the discrimination of

the attack traffic from normal traffic cannot be observed clearly.

In flow–based approaches, network packets are gathered into flows by using their

source IP addresses, destination IP addresses, source port numbers, destination port

numbers and protocol information. This approach has advantages over packet–based

approaches such that the behavior of network packets is extracted more effectively.

Therefore, it is observed that the attacks that cannot be detected with sufficiently

high accuracy in packet–based approaches are detected with a better accuracy. Also,

flow–based approaches are used in the network application classification task. A data

set consisting of real–world traces of 22 different popular applications is used for the

performance evaluation. It is observed that the proposed approach has a high detection

rate.

For a future work, the analysis of different types of attacks will be implemented.

Also, network application classification system will be improved by adding new fea-

tures. More applications will be tested using the proposed approach. Also, a compre-

hensive system is studied about combining packet–based and flow–based approaches

for network intrusion detection task. For example, the first module of the system uses

packet–based approaches to give early warnings to the system. Then, flow–based ap-

proaches make more detailed analysis to find the attack traces. Moreover, clustering

algorithm and graph–based approach given in packet–based systems will be developed

to be placed in flow–based systems.

121

REFERENCES

1. El-Maghraby, R. T., N. M. Abd Elazim and A. M. Bahaa-Eldin, “A Survey on

Deep Packet Inspection”, International Conference on Computer Engineering and

Systems (ICCES), pp. 188–197, Cairo, Egypt, 2017.

2. Bujlow, T., V. Carela-Español and P. Barlet-Ros, “Extended Independent Com-

parison of Popular Deep Packet Inspection (DPI) Tools for Traffic Classification”,

https://vbn.aau.dk/en/publications/extended-independent-comparison,

accessed on July 15, 2022.

3. Froehlich, A., L. Rosencrance and K. Gat-

tine, “OSI model (Open Systems Interconnection)”,

https://www.techtarget.com/searchnetworking/definition/OSI, accessed

on July 15, 2022.

4. AbuHmed, T., A. Mohaisen and D. Nyang, “A Survey on Deep Packet Inspection

for Intrusion Detection Systems”, arXiv preprint arXiv:0803.0037 , 2008.

5. Vidyasagar, M., “A Metric Between Probability Distributions on Finite Sets of

Different Cardinalities and Applications to Order Reduction”, IEEE Transactions

on Automatic Control , Vol. 57, No. 10, pp. 2464–2477, 2012.

6. Newman, M. E., “Modularity and Community Structure in Networks”, Proceedings

of the National Academy of Sciences , Vol. 103, No. 23, pp. 8577–8582, 2006.

7. Shiravi, A., H. Shiravi, M. Tavallaee and A. A. Ghorbani, “Toward Developing a

Systematic Approach to Generate Benchmark Datasets for Intrusion Detection”,

Computers & Security , Vol. 31, No. 3, pp. 357–374, 2012.

8. Sharafaldin, I., A. H. Lashkari and A. A. Ghorbani, “Toward Generating a New

Intrusion Detection Dataset and Intrusion Traffic Characterization”, International

122

Conference on Information Systems Security and Privacy (ICISSP), Vol. 1, pp.

108–116, 2018.

9. Mukherjee, B., L. T. Heberlein and K. N. Levitt, “Network Intrusion Detection”,

Network Security Journals , Vol. 8, No. 3, pp. 26–41, 1994.

10. Northcutt, S. and J. Novak, Network Intrusion Detection, Sams Publishing, 2002.

11. Warburton, D., “Distributed Denial of Service Attack Trends”,

https://www.f5.com/labs/articles/threat-intelligence, accessed on

July 15, 2022.

12. Kaspersky, “Distributed Denial of Service: Anatomy and Impact of DDoS

Attacks”, https://usa.kaspersky.com/resource-center/preemptive-safety,

accessed on July 15, 2022.

13. Nicholson, P., “Five Most Famous DDoS Attacks and Then Some”,

https://www.a10networks.com/blog/5-most-famous-ddos-attacks, accessed

on July 15, 2022.

14. De Vivo, M., E. Carrasco, G. Isern and G. O. De Vivo, “A Review of Port Scanning

Techniques”, SIGCOMM Computer Communication Review , Vol. 29, No. 2, pp.

41–48, 1999.

15. Bhuyan, M. H., D. K. Bhattacharyya and J. K. Kalita, “Surveying Port Scans

and Their Detection Methodologies”, The Computer Journal , Vol. 54, No. 10, pp.

1565–1581, 2011.

16. Knudsen, L. R. and M. J. Robshaw, “Brute Force Attacks”, The Block Cipher

Companion, pp. 95–108, 2011.

17. Mahjabin, T., Y. Xiao, G. Sun and W. Jiang, “A Survey of Distributed Denial-of-

service Attack, Prevention, and Mitigation Techniques”, International Journal of

123

Distributed Sensor Networks , Vol. 13, No. 12, pp. 1–33, 2017.

18. Paxson, V., “Bro: A System for Detecting Network Intruders in Real-time”, Com-

puter Networks , Vol. 31, No. 24, pp. 2435–2463, 1999.

19. Roesch, M., “Snort: Lightweight Intrusion Detection for Networks”, Lisa, Vol. 99,

No. 1, pp. 229–238, 1999.

20. Singh, J. and S. Behal, “Detection and Mitigation of DDoS Attacks in SDN: A

Comprehensive Review, Research Challenges and Future Directions”, Computer

Science Review , Vol. 37, pp. 1–25, 2020.

21. Vishwakarma, R. and A. K. Jain, “A Survey of DDoS Attacking Techniques and

Defence Mechanisms in the IoT Network”, Telecommunication Systems , Vol. 73,

No. 1, pp. 3–25, 2020.

22. Wang, R., Z. Jia and L. Ju, “An Entropy-based Distributed DDoS Detection Mech-

anism in Software-defined Networking”, IEEE Trustcom/BigDataSE/ISPA, Vol. 1,

pp. 310–317, Helsinki, Finland, 2015.

23. Mousavi, S. M. and M. St-Hilaire, “Early Detection of DDoS Attacks Against SDN

Controllers”, International Conference on Computing, Networking and Communi-

cations (ICNC), pp. 77–81, Garden Grove, CA, USA, 2015.

24. Tsai, S.-C., I. Liu, C.-T. Lu, C.-H. Chang, J.-S. Li et al., “Defending Cloud Com-

puting Environment Against the Challenge of DDoS Attacks Based on Software

Defined Network”, Advances in Intelligent Information Hiding and Multimedia Sig-

nal Processing , pp. 285–292, Springer, 2017.

25. Sahoo, K. S., D. Puthal, M. Tiwary, J. J. Rodrigues, B. Sahoo and R. Dash,

“An Early Detection of Low Rate DDoS Attack to SDN Based Data Center Net-

works Using Information Distance Metrics”, Future Generation Computer Systems ,

Vol. 89, pp. 685–697, 2018.

124

26. Sahoo, K. S., M. Tiwary and B. Sahoo, “Detection of High Rate DDoS Attack

from Flash Events using Information Metrics in Software Defined Networks”, In-

ternational Conference on Communication Systems & Networks (COMSNETS),

pp. 421–424, Bengaluru, India, 2018.

27. CAIDA, “The CAIDA UCSD DDoS Attack 2007 Dataset”,

https://www.caida.org/catalog/datasets/ddos-2007080-dataset, accessed

on July 15, 2022.

28. Boite, J., P.-A. Nardin, F. Rebecchi, M. Bouet and V. Conan, “Statesec: Stateful

Monitoring for DDoS Protection in Software Defined Networks”, IEEE Conference

on Network Softwarization (NetSoft), pp. 1–9, Bologna, Italy, 2017.

29. Kalkan, K., L. Altay, G. Gür and F. Alagöz, “JESS: Joint Entropy-based DDoS

Defense Scheme in SDN”, IEEE Journal on Selected Areas in Communications ,

Vol. 36, No. 10, pp. 2358–2372, 2018.

30. Hong, G.-C., C.-N. Lee and M.-F. Lee, “Dynamic Threshold for DDoS Mitigation

in SDN Environment”, Asia-Pacific Signal and Information Processing Association

Annual Summit and Conference (APSIPA ASC), pp. 1–7, Lanzhou, China, 2019.

31. Ahalawat, A., S. S. Dash, A. Panda and K. S. Babu, “Entropy Based DDoS De-

tection and Mitigation in OpenFlow Enabled SDN”, International Conference on

Vision Towards Emerging Trends in Communication and Networking (ViTECoN),

pp. 1–5, Vellore, India, 2019.

32. Cui, J., M. Wang, Y. Luo and H. Zhong, “DDoS Detection and Defense Mechanism

based on Cognitive-inspired Computing in SDN”, Future Generation Computer

Systems , Vol. 97, pp. 275–283, 2019.

33. MAWILAB, “MAWI Working Group Traffic Archive”,

http://mawi.wide.ad.jp/mawi/, accessed on July 15, 2022.

125

34. Xuanyuan, M., V. Ramsurrun and A. Seeam, “Detection and Mitigation of DDoS

Attacks using Conditional Entropy in Software-defined Networking”, nternational

Conference on Advanced Computing (ICoAC), pp. 66–71, Chennai, India, 2019.

35. MIT, “MIT Lincoln Laboratory 2000 DARPA Intrusion Detection Data Set”,

https://www.ll.mit.edu/r-d/datasets, accessed on July 15, 2022.

36. Li, R. and B. Wu, “Early Detection of DDoS based on ϕ–entropy in SDN Net-

works”, IEEE Information Technology, Networking, Electronic and Automation

Control Conference (ITNEC), pp. 731–735, Chongqing, China, 2020.

37. Doriguzzi-Corin, R., S. Millar, S. Scott-Hayward, J. Martinez-del Rincon and

D. Siracusa, “Lucid: A Practical, Lightweight Deep Learning Solution for DDoS

Attack Detection”, IEEE Transactions on Network and Service Management ,

Vol. 17, No. 2, pp. 876–889, 2020.

38. Koay, A., A. Chen, I. Welch and W. K. Seah, “A New Multi Classifier System using

Entropy-based Features in DDoS Attack Detection”, International Conference on

Information Networking (ICOIN), pp. 162–167, Chiang Mai, Thailand, 2018.

39. Min, E., J. Long, Q. Liu, J. Cui and W. Chen, “TR-IDS: Anomaly-based Intru-

sion Detection through Text-convolutional Neural Network and Random Forest”,

Security and Communication Networks , Vol. 1, 2018.

40. Cui, J., J. Long, E. Min, Q. Liu and Q. Li, “Comparative Study of CNN and RNN

for Deep Learning based Intrusion Detection System”, Lecture Notes in Computer

Science, Vol. 11067, pp. 159–170, 2018.

41. Roopak, M., G. Y. Tian and J. Chambers, “Deep Learning Models for Cyber Se-

curity in IoT Networks”, IEEE Annual Computing and Communication Workshop

and Conference (CCWC), pp. 452–457, Las Vegas, NV, USA, 2019.

42. Homayoun, S., M. Ahmadzadeh, S. Hashemi, A. Dehghantanha and R. Khayami,

126

“BoTShark: A Deep Learning Approach for Botnet Traffic Detection”, Cyber

Threat Intelligence, pp. 137–153, 2018.

43. AlEroud, A. and I. Alsmadi, “Identifying Cyber-attacks on Software Defined Net-

works: An Inference-based Intrusion Detection Approach”, Journal of Network and

Computer Applications , Vol. 80, pp. 152–164, 2017.

44. Wang, B., Y. Zheng, W. Lou and Y. T. Hou, “DDoS Attack Protection in the

Era of Cloud Computing and Software-defined Networking”, Computer Networks ,

Vol. 81, pp. 308–319, 2015.

45. Xiao, P., Z. Li, H. Qi, W. Qu and H. Yu, “An Efficient DDoS Eetection with Bloom

Filter in SDN”, IEEE Trustcom/BigDataSE/ISPA, pp. 1–6, Tianjin, China, 2016.

46. Conti, M., A. Gangwal and M. S. Gaur, “A Comprehensive and Effective Mecha-

nism for DDoS Detection in SDN”, IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob), pp. 1–8, Rome,

Italy, 2017.

47. Bhushan, K. and B. B. Gupta, “Distributed Denial of Service (DDoS) Attack

Mitigation in Software Defined Network (SDN)-based Cloud Computing Environ-

ment”, Journal of Ambient Intelligence and Humanized Computing , Vol. 10, No. 5,

pp. 1985–1997, 2019.

48. Draper-Gil, G., A. H. Lashkari, M. S. I. Mamun and A. A. Ghorbani, “Character-

ization of Encrypted and Vpn Traffic using Time-related Features”, International

Conference on Information Systems Security and Srivacy (ICISSP), pp. 407–414,

New Brunswick, Canada, 2016.

49. Karagiannis, T., A. Broido, N. Brownlee, K. Claffy and M. Faloutsos, “File-sharing

in the Internet: A Characterization of P2P Traffic in the Backbone”, University of

California, Riverside, USA, Tech. Rep, Vol. 1, No. 1, pp. 1–13, 2003.

127

50. Moore, A. W. and K. Papagiannaki, “Toward the Accurate Identification of Net-

work Applications”, International Workshop on Passive and Active Network Mea-

surement , pp. 41–54, Berlin, Germany, 2005.

51. Risso, F., M. Baldi, O. Morandi, A. Baldini and P. Monclus, “Lightweight, Payload-

based Traffic Classification: An Experimental Evaluation”, IEEE International

Conference on Communications , pp. 5869–5875, Beijing, China, 2008.

52. Park, J.-S., S.-H. Yoon and M.-S. Kim, “Software Architecture for a Lightweight

Payload Signature-based Traffic Classification System”, International Workshop

on Traffic Monitoring and Analysis , pp. 136–149, Berlin, Germany, 2011.

53. Park, J.-S., S.-H. Yoon and M.-S. Kim, “Performance Improvement of Payload

Signature-based Traffic Classification System using Application Traffic Temporal

Locality”, Asia-Pacific Network Operations and Management Symposium (AP-

NOMS), pp. 1–6, Hiroshima, Japan, 2013.

54. Williams, N. and S. Zander, “Evaluating Machine Learning Algorithms for Auto-

mated Network Application Identification”, Swinburne University of Technology.

Centre for Advanced Internet Architectures , Vol. 1, No. 1, pp. 1–14, 2006.

55. Nguyen, T. T. and G. Armitage, “A Survey of Techniques for Internet Traffic Clas-

sification using Machine Learning”, IEEE Communications Surveys & Tutorials ,

Vol. 10, No. 4, pp. 56–76, 2008.

56. Kaoprakhon, S. and V. Visoottiviseth, “Classification of Audio and Video Traffic

over HTTP Protocol”, International Symposium on Communications and Infor-

mation Technology , pp. 1534–1539, Icheon, Korea (South), 2009.

57. Wang, J.-M., C.-L. Qian, C.-H. Che and H.-T. He, “Study on Process of Network

Traffic Classification using Machine Learning”, Annual ChinaGrid Conference, pp.

262–266, Guangzhou, China, 2010.

128

58. Dong, S., D. Zhou and W. Ding, “The Study of Network Traffic Identification

based on Machine Learning Algorithm”, International Conference on Computa-

tional Intelligence and Communication Networks , pp. 205–208, Mathura, India,

2012.

59. Huang, N.-F., G.-Y. Jai, C.-H. Chen and H.-C. Chao, “On the Cloud-based Net-

work Traffic Classification and Applications Identification Service”, International

Conference on Selected Topics in Mobile and Wireless Networking , pp. 36–41, Avi-

gnon, France, 2012.

60. NLANR, “National Laboratory for Applied Network Research (NLANR) Network

Traces”, http://pma.nlanr.net/Special/, accessed on July 15, 2022.

61. Yamansavascilar, B., M. A. Guvensan, A. G. Yavuz and M. E. Karsligil, “Applica-

tion Identification via Network Traffic Classification”, International Conference on

Computing, Networking and Communications (ICNC), pp. 843–848, Silicon Valley,

CA, USA, 2017.

62. Aceto, G., D. Ciuonzo, A. Montieri and A. Pescapé, “Distiller: Encrypted Traffic

Classification via Multimodal Multitask Deep Dearning”, Journal of Network and

Computer Applications , Vol. 183, No. 1, pp. 1–17, 2021.

63. Shannon, C. E., “A Mathematical Theory of Communication”, The Bell System

Technical Journal , Vol. 27, No. 3, pp. 379–423, 1948.

64. Rényi, A., “On the Foundations of Information Theory”, Revue de l’Institut Inter-

national de Statistique, pp. 1–14, 1965.

65. Ash, R. B., Information Theory , Courier Corporation, 2012.

66. Van Erven, T. and P. Harremos, “Rényi Divergence and Kullback-Leibler Diver-

gence”, IEEE Transactions on Information Theory , Vol. 60, No. 7, pp. 3797–3820,

2014.

129

67. Han, J., J. Pei and M. Kamber, Data Mining: Concepts and Techniques , Elsevier,

2011.

68. Ateş, Ç., S. Özdel and E. Anarım, “Clustering Based DDoS Attack Detection Using

the Relationship Between Packet Headers”, Innovations in Intelligent Systems and

Applications Conference (ASYU), Izmir, Turkey, 2019.

69. Chowdhury, S., M. Khanzadeh, R. Akula, F. Zhang, S. Zhang, H. Medal, M. Maru-

fuzzaman and L. Bian, “Botnet Detection Using Graph-based Feature Clustering”,

Journal of Big Data, Vol. 4, No. 1, 2017.

70. Kifer, Y., “Perron-Frobenius Theorem, Large Deviations, and Random Perturba-

tions in Random Environments”, Mathematische Zeitschrift , Vol. 222, No. 4, pp.

677–698, 1996.

71. Ates, C., S. Özdel and E. Anarim, “Graph-based Fuzzy Approach Against DDoS

attacks”, Journal of Intelligent & Fuzzy Systems , Vol. 39, No. 5, pp. 6315–6324,

2020.

72. Erhan, D. and E. Anarım, “Boğaziçi University Distributed Denial of Service

Dataset”, Data in Brief , Vol. 32, No. 1, pp. 1–6, 2020.

73. Karayaka, M., A. Bayer, S. Balkı, M. Koca and E. Anarım, “Application Based

Network Traffic Dataset and SPID Analysis”, Signal Processing and Communica-

tions Applications Conference (SIU), Safranbolu, Turkey, 2022.

74. Dunn, J. C., A Fuzzy Relative of the Isodata Process and its use in Detecting

Compact Well-separated Clusters , 1973.

75. Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms ,

Springer Science & Business Media, 2013.

