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ABSTRACT

DESIGN AND IMPLEMENTATION OF A RESPONSE

RETRIEVAL AND RERANKING SYSTEM

In this master’s thesis, we started with a baseline response retrieval and re-

ranking system that is composed of two steps: BM25 retrieval and BERT re-ranking.

After investigating the effects of several parameters and BERT model size on the base-

line approach, a novel retrieval and re-ranking system with TF-IDF retrieval and Cross-

Encoder re-ranking steps was designed and implemented. With the application of Deep

Learning models to the re-ranking step, consistent ranking performance improvements

have been observed. The research focus of this thesis is a comparative performance

study of different Transformer models. In the experiments carried on in this thesis, we

showed that smaller transformer models can out-perform larger models. Additionally,

this designed re-ranking system was re-purposed for a Question Answering task where

the answer for a given question is searched as a subset of a passage. Even though the

re-ranking system was directly used without undergoing any modifications regarding

the QA task, promising results that are worth further research have been attained.
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ÖZET

YANIT EDİNİMİ VE SIRALAMASINA DAYALI SİSTEM

TASARIMI VE GERÇEKLENMESİ

Bu yüksek lisans tezinde, çalışmaya BM25 yanıt edinimi ve BERT Transformer

modeli bazlı yeniden sıralama adımlarından oluşan genel bir yanıt alma ve yeniden

sıralama sistemiyle başlanmıştır. Bu baz yaklaşımının üzerinde birtakım genel parame-

tre değişikliklerinin ve BERT model boyutunun sistem performansı üzerindeki etki-

leri araştırıldıktan sonra, TF-IDF yanıt edinimi ve Cross-Encoder yeniden sıralama

yaklaşımlarına dayalı özgün bir yanıt edinim ve yeniden sıralama sistemi tasarlanmış

ve gerçeklenmiştir. Derin Öğrenme modellerinin yeniden sıralama adımına uygulan-

masıyla tutarlı bir sıralama performansı artışı gözlemlenmiştir. Bu tezde, araştırma

konusu odağı olarak çeşitli Transformer modellerinin karşılaştırmalı başarım çalışması

seçilmiştir. Yapılan deneylerde küçük Transformer modellerden nispeten daha büyük

modellere göre daha iyi performans alınabileceği gösterilmiştir. Son olarak, bu yanıt

sıralama sistemi, belirli bir sorunun cevabının bir pasajın alt kümesi olarak arandığı

Soru Cevaplama görevi için yeniden kullanılmıştır. Sistem üzerinde Soru Yanıtlama

görevine yönelik herhangi bir modifikasyon yapılmadan yanıt sıralama yaklaşımı doğrud

an kullanılmasına rağmen, araştırmaya açık ve umut vadeden sonuçlar elde edilmiştir.
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1. INTRODUCTION

One of the major aims in the the research field of Artificial Intelligence (AI) is to

build machines that can converse with us and respond to queries or questions mimicking

humans [6]. This goal has been historically a deep desire for researchers in the field of

conversational AI. One of the most iconic works was suggested by the great computer

scientist and one of the founders of artificial intelligence, Alan Turing. Turing test can

be considered ”passed” if a computational agent (a device) can perform on the same

level with a human being so that it is capable of tricking a human judge into believing

that it is indeed a human being.

Beyond being an intriguing academic research area, conversational systems (typ-

ically using a response retrieval and re-ranking scheme) have evolved to a level of

maturity so that such systems started finding application areas in industrial solutions.

Commercial companies utilize conversational AI to develop communication channels

with customers because AI can relieve the burden of labor in customer services. Ev-

eryday, customer service departments of companies have to face the same questions

and requests, repeatedly. This massive and repetitive workload on manpower can be

transferred to autonomous systems in an efficient and effective manner via the usage

of conversational agents. This trend is, indeed, what we have been observing in the

interactions between companies and their customers. For simple tasks, it is convenient

to use these Conversational Interfaces (CI) instead of sparing huge amount of human

resource for customer relations or using a Graphical User Interface (GUI) leading to

the burden of learning this GUI.

Another example for application areas of conversational interface is personal-

ized assistants for personal computers (PC) and other devices such as smartphones or

tablets. This trend seems to be continuing because of the improvements in the abilities

of such systems. Using these types of agents are getting easier day-by-day. Siri by

Apple, Cortana by Microsoft, Alexa by Amazon, and Google Assistant can be given as
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the most renowned examples for such systems.

1.1. Conversational Systems Taxonomy

The domain of conversational systems can be divided into sub-categories accord-

ing to a number of criteria such as interaction mode, task-orientedness, knowledge

domain, and design techniques [7]. In this section, a coarse grained map of the dia-

logue systems domain is presented to locate the subject of this thesis in the domain of

conversational or dialogue systems.

1.1.1. Interaction Mode

To facilitate the interaction of a user with a computer, conversational agents

utilizes Natural Language Processing (NLP), and Natural Language Understanding

(NLU) techniques to capture the semantics of an utterance which is either written or

uttered by a human. Therefore, conversational user interfaces can be divided into two

sub-categories: text-based and voice-based interfaces. The first example that comes to

mind for text-based assistants would be chatbots. Today, chatbots are predominantly

used in mobile applications and webpages of companies (e-commerce sites, financial

institutions, and telecom companies etc.) having voluminous and repetitive communi-

cation with customers. On the other side, voice assistants help users interact with a

system simply by uttering a query to the system. Siri by Apple, Cortana by Microsoft,

Alexa by Amazon, or Google Assistant are well-known examples of voice assistants.

Voice assistants are usually text-based assistants with Speech Recognition (SR) and

Text-to-Speech (TTS) layers surrounding the text-based chatbot system. This the-

sis implements a response retrieval and re-ranking system as the core conversational

system that can be combined with SR and TTS modules.
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1.1.2. Task-Orientedness

Another taxonomy can be made according to task-orientedness (goal-drivenness)

of dialog systems [6]. Task-oriented systems are shaped around a pre-defined task

such as technical support issues, booking systems, and querying systems. These types

of systems have strict or nearly-strict dialogue flows. For instance; when a customer

calls a voice-based assistant of a bank, it would be expected that there are certain

goals of this call such as questioning remaining credits in an account, paying a bill, or

de-activating a lost credit card. On the other hand, we have non-task-driven systems

which are also referred to as chit-chat models. Typically, there is no ultimate end-

point for communicating with these agents. These systems are designed for short and

unstructured conversations. However, these systems are good indicators for state-of-

the-art methods for modeling human-like conversations. Since there is no pre-defined

intention for the query-response system implemented in this thesis, we can consider

this work as a non-task-oriented system. Compared to task-oriented dialog systems,

building open-ended non-task-oriented conversational systems is more challenging.

1.1.3. Knowledge Domain

The domain of knowledge used in a conversational system is another criterion

for classification of such systems. Open-domain and closed-domain is the taxonomy

with respect to the knowledge domain. Open domain dialog systems use a wide range

of knowledge bases for their workings. Non-task-oriented systems where there is no

contextual depth of conversation are usually open domain models. Conversely, closed-

domain dialog systems are usually task-oriented systems using a more limited variety

in source of information. Here, the knowledge domains of the systems in this thesis

depend on the experiment sets implemented as will be seen in Methods chapter of this

report.
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1.1.4. Design Techniques

There are several approaches to design a dialog system. These approaches may

vary for different types of systems. There are three basic design approaches for con-

versational systems: rule-based, retrieval-based, and generative-based approaches [7].

All these approaches have a number of solutions to be utilized while returning an an-

swer for an utterance of a user. To exemplify, rule-based approaches generally uses

pattern matching algorithms, retrieval-based systems can use BM25 [8] algorithm for

retrieval, and generative approaches may have Sequence-to-Sequence (Seq2Seq) models

to generate relevant responses for a query or a question.

1.2. Research Focus and Main Contributions

In this thesis, we start by studying a baseline passage re-ranking problem. How-

ever, this baseline implementation uses Tensorflow 1 framework [9] which is getting

out-dated more on a daily basis with more modern deep learning frameworks emerging

such as Tensorflow 2 and PyTorch. Therefore, we, first, re-write an end-to-end IR

pipeline from scratch and utilize PyTorch giving us the ability to easily try new models

and transformer architectures through Huggingface [10]. We also pick a new dataset

which was originally intended as a Question Answering (QA) dataset. Second, we re-

purpose this new dataset as a passage re-ranking dataset and test our approaches on

it. Therefore, we have been able to make a comparative study of transformer models

on re-ranking performance which is the main contribution of this work. And third, we

also re-purpose our passage re-ranking approach as a Question Answering pipeline and

evaluate its performance on the previously mentioned QA dataset.

In Chapter 2, we give the literature review in the field. In Chapter 3, we explain

the datasets used in this work; in Chapter 4, we outline newly implemented methods

in this work. In Chapter 5, we present the evaluation metrics and their computation

methods; in Chapter 6, we present and discuss the results obtained with our models and

in Chapter 7, we review possible research areas based on this work as future work. We
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conclude this thesis report in Chapter 8 with the summary of the research conducted

and the observations made in this work.
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2. LITERATURE REVIEW

In this chapter, we review the existing publications in the literature. We start

by mentioning datasets and implementations on these datasets. And then, we survey

Transformer models and other paradigms in the field of passage retrieval and re-ranking

systems.

2.1. Datasets and Applications of Neural Networks for Information

Retrieval

With the addition of the new larger and more realistic datasets into the research

field Information Retrieval (IR), neural network architectures have been proposed,

studied, and proven to be working. Such as DRMM [11], KNRM [12], Co-PACRR [13],

and DUET [14].

However, specifically speaking for the field of passage re-ranking under IR, this

hasn’t been the case. The datasets proposed are relatively new and still in need for

further research. As a result of this limited amount of datasets to train neural models

on, the use of neural architectures lagged behind. However, TREC-CAR was one of

the first and well-researched large-enough datasets in the literature [15].

MS MARCO dataset made it possible to make experiments with neural architec-

tures and research in the domain of machine comprehension [4]. These two datasets

will be explained further in the following Datasets chapter.

On these two datasets, BERT models mostly have been parts of the most suc-

cessful approaches to the passage re-ranking problem [16]. Plus, BERT-like models

such as RoBERTa, ALBERT [17], and Electra [18] even surpassed the performance of

BERT models for several tasks.
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2.2. Transformers and BERT

BERT [19] is a pre-trained transformer neural network [20] example. Since its

release, BERT has determined the state-of-the-art results for various NLP tasks in-

cluding Question Answering, Sentence Classification, Text Summarization, Machine

Translation, and Sentence-Pair Regression.

BERT (Bidirectional Encoder Representations from Transformers) [19] is a suc-

cessful transformer implementation that has achieved state-of-the-art results for many

NLP tasks. It employs transfer learning paradigm such that it is pretrained on a

large and unlabeled dataset (Wikipedia) and fine-tuned on a down-stream dataset

(MS Marco and/or TREC CAR).

There are 5 different default sizes of BERT models as shown in Table 2.1. The

main difference between these models is the number of parameters.

Table 2.1. BERT models and their sizes.

Model Name Layers Hidden Size

BERT-Large 24 1024

BERT-Base 12 768

BERT-Medium 8 512

BERT-Mini 4 256

BERT-Tiny 2 128

As with the usage of transformer networks, the size of the models used in the

research field has been getting larger. One reason for this is that with the increasing

number of trainable parameters in the model, the capacity of the model increases. As

the capacities of these models increase, researchers utilize larger and larger corpora

to pre-train and fine-tune their models in the transfer learning paradigm. However,

this is not a sustainable strategy because larger models out-grew memory sizes of

computational units. They started not to fit into Random Access Memories (RAMs)

of Graphical Processing Units (GPUs) that they are trained with. Therefore, smaller
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models with more efficient pre-training, fine-tuning and evaluation implementations

have emerged.

Lan et. al. present two parameter reduction methods to decrease memory con-

sumption and speed up the training process [17]. Comparative experiments have shown

that this strategy helps the model scale better than BERT models. They also used

a self-supervised loss focusing on inter-sentence coherence modeling. They achieve

state-of-the-art performances with their models on several NLP challenges.

Sanh et al. proposed an approach for pre-training a smaller version of generic

purpose transformer model called DistilBERT [21]. They proved that knowledge dis-

tillation while pre-training of transformer models can decrease the size of a standard

BERT model even though preserving the model performance. They achieved this by

utilizing a triple loss comprised of language modeling, distillation, and cosine-distance

losses.

Clark et al. presented a pre-training task that is performing better in terms of

sample efficiency [18]. They manipulated the standard pre-training strategy used in

BERT. Instead of masking some words and trying to predict the masked words, Clark

et al. replaced some words with reasonable alternatives using a generator network.

Then, they trained a discriminative network to predict if each token is an original one

or a replaced one. Their experimental results showed that the representations method

learned by this strategy outperforms baseline BERT model.

2.3. Semantic Search

Earlier search engines used to find documents based on lexical matches most of

the time utilizing inverted indices [2]. On the contrary, semantic search techniques

enable search engines improve their ranking by a better comprehension of the content

of search query/question and documents/passages to be ranked, by being ale to find

synonyms and/or paraphrases. The essence of semantic search is to have a fixed-sized
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embedding, in other words a vectoral mapping, of all entries in a corpus of concern

where the corpus can be made of sentences, paragraphs, or documents. Later at search

time, a query or question is then embedded (mapped) into the same vectoral space and

the most similar mappings from the corpus are retrieved. The closeness criterion can be

cosine similarity or euclidean distance or any other metric of selection. Theoretically,

the retrieved elements of the corpus should have higher semantic similarities with the

question/query.

A taxonomy in semantic search approaches as symmetric and asymmetric seman-

tic search. In symmetric semantic search, a query and the elements in the corpus have

the same length and amount of content. Searching for similar questions can be given

as an example of this sort. For symmetric tasks, queries can be flipped in training

sets to provide symmetrical samples such that samples can be given as Query A-Query

B and Query B-Query A. For asymmetric semantic search, a short query, question or

keywords is present and the goal is to find usually a longer passage containing the

anwer for the query, question, or keywords. Flipping of the query and the elements

in the corpus usually does not improve the performance for asymmetric tasks. For a

small corpus (< 1 million elements), the similarity between the query and all elements

in the corpus can be computed by cosine-similarity.

2.4. Sentence Transformers

After their release, BERT [19] and RoBERTa [22], two of the most popular trans-

former models used in NLP, set the state-of-the-art performances for many NLP tasks.

These two models have also been used for sentence-pair regression tasks such as STS

(Semantic Textual Similarity). The problem with using these models for such tasks is

that both sentences should be fed into the network, resulting in redundancy in compu-

tational power consumed. Consider the case of finding the most similar sentence pair

in a sentence collection of size 10,000. Since BERT uses a cross-encoder, two sentences

are passed to the model and then the similarity value is computed. Such a setup would

be inefficient for several pair regression tasks as this task would require approximately
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50M cross-similarity computations which requires 65 hours of inference computations

with BERT on a modern GPU (such as V100). Imagine trying to find the most similar

question for a new question on Quora task. This would require 40 million sentence-pair

inference which will require 50 hours of computing. The nature of BERT models are

not suitable for semantic textual similarity tasks. Reimer and Gurevych [2] proposed

a modification of the pre-trained BERT network utilizing siamese and triplet network

structures to compute semantically meaningful (high semantic representational power)

sentence embeddings to be used with cosine-similarity. The authors noted in their pa-

per that this modification reduces the amount of time required for the task mentioned

above from 65 hours to 5 seconds with Sentence-BERT (SBERT) while preserving

the accuracy. On a GPU, SBERT is about 9% faster than InferSent and about 55%

faster than Universal Sentence Encoder, therefore it is computationally a more effi-

cient model [2]. This improvement makes BERT based models applicable to several

tasks including large scale semantic similarity comparison, clustering, and information

retrieval via semantic search which BERT had not been previously. The authors also

evaluated their SBERT and SRoBERTa models on several common STS and transfer

learning tasks and obtained state-of-the-art results. This implementation can be found

in their Github repository [23].

A common strategy to tackle the problem of retrieving responses from huge cor-

pora is mapping each sentence in the corpus to a vector space in a way that semantically

similar sentence are placed close to each other. To obtain the sentence embeddings,

researchers input sentences to BERT models and obtain fixed-size sentence embed-

dings. This can be done by averaging BERT output layer (commonly known as BERT

embeddings) or by taking the output of [CLS] token [24], [25], [26]. This averaging

BERT contextual embeddings methods perform even worse than averaging GloVe em-

beddings [2], [27].

The siamese network architecture of SBERT enables it to output fixed-sized vec-

tors for input sentences. When these vectors are obtained, the semantic similarity

between two sentences can be measured by cosine similarity or euclidean distance.
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This way of calculating similarity would be much more efficient than the plain BERT

method. With SBERT, the sentence embeddings calculation for 10,000 sentences takes

5 seconds and finding the most similar two would take approximately 0.01 seconds.

To do this, Reimers and Gurevych [2] fine-tuned SBERT on NLI data which results in

sentence embeddings that perform better than state-of-the-art methods. On seven Se-

mantic Textual Similarity tasks, SBERT has improved the state-of-the-art performance

compared to InferSent [28], compared to Universal Sentence Encoder (USE) [29], the

best performing method on SentEval [30], argument similarity dataset [31] , and triplet

dataset to distinguish sentences from different sections of a Wikipedia article [32].

BERT model takes two sentences separated by a special token [SEP] for sentence-

pair regression task [2]. Either 12 (for base model) or 24 (for large model) of multi-head

attention is applied and the output is then passed to a simple regression function to

create the final label. With this pipeline, BERT set a new state-of-the-art performance

for STS benchmark. This performance can even be improved using small adaptations

to the pre-training process of BERT (RoBERTa [22]).
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3. DATASETS

There are three different dataset used throughout this thesis work. These are

namely MS MARCO, TREC CAR, and Lecture Question Answering Dataset. These

three datasets are explained in the following sections 3.1, 3.2, and 3.3.

3.1. MS MARCO

MS MARCO [33], A Human Generated MAchine Reading COmprehension Dataset,

is a pioneering collection of large datasets targeting deep learning and NLP researchers

[4]. The very first released dataset was a question-answering dataset comprised of

100,000 real Bing questions with respective answers generated by humans. The last ver-

sion released include 1,000,000 question dataset, a natural language generation dataset,

a passage re-ranking dataset, a keyphrase extraction dataset, a crawling dataset, and

a conversational search dataset.

MS MARCO contains 1,010,916 anonymized questions with 1,026,758 unique an-

swers from Bing seach engine and Cortana the personal assistant of Microsoft. Every

question is paired with a human generated answer. And 182,669 questions have com-

pletely human rewritten generated answers [4]. The dataset contains 8,841,823 passages

selected from 3,363,535 web documents coming from Bing. For each question, a set

of extracted passages obtained from Bing’s search engine is provided to crowd-sourced

editors to generate answers based on these passages. The editors not only generate an-

swers for questions but also mark the passages that are relevant for a question/query.

Some questions are not answerable because of insufficient or conflicting information

in the questions. This collection of passages makes it possible to create natural lan-

guage answers. Within the borders of this collection, a question can have one or more

answers. It is also possible that a question has no answer in this candidate passage

corpus.
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There are three challenges based on MS MARCO dataset: the novice task, the

intermediate task, and the passage re-ranking task. The first one is predicting if a

question is answerable within a context of passages list, ”extract and synthesize the

answer as a human would” [4]. The second task, namely the intermediate task, differs

from the novice task in the respect that it needs to generate a well-formed answer,

meaning that the answer should make sense even without the context of the question

and passages when read-aloud. The third and the last one is to ”rank a set of retrieved

passages given a question”. This task, Passage Full Ranking, is defined as selecting

top 1000 candidate passages sorted by relevance from the whole corpus of 8.8 million

passages. Here, relevance of a passage to a query is defined as the likelihood of these

passages containing the answer for the given query or question.

The two outstanding features of MS MARCO dataset is the size of the collections

and the fact that the answers are generated by humans which gives the dataset its re-

alistic distribution. For instance, publicly available datasets usually don’t have enough

size to train deep neural networks; when the size is enough the dataset is usually syn-

thetic. However the queries in MS MARCO are real queries by real users providing

a realistic distribution for real world cases. This is the reason MS MARCO has been

used as a benchmark dataset in the research community for a while. The MS MARCO

dataset published consists of six major components: Questions, Passages, Answers,

Well-Formed Answers, Document, Question Type. A deeper insight to the dataset can

be reached from its paper [4].

An example consisting of three lines from Train Triples Small set [33] from MS

MARCO dataset is shown in Table 3.1. Every line in this file has one query, one

relevant passage and one non-relevant passage.
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Table 3.1. Samples from the MS Marco Train Triples Small [4].

Query 1: ”is a little caffeine ok during pregnancy”

Relevant Passage 1: ”We don’t know a lot about the effects of caffeine during

pregnancy on you and your baby. So it’s best to limit the amount you get each

day. If you’re pregnant, limit caffeine to 200 milligrams each day. This is about the

amount in 1½ 8-ounce cups of coffee or one 12-ounce cup of coffee.”

Non-Relevant Passage 1: ”It is generally safe for pregnant women to eat choco-

late because studies have shown to prove certain benefits of eating chocolate during

pregnancy. However, pregnant women should ensure their caffeine intake is below

200 mg per day.”

Query 2: ”what fruit is native to australia”

Relevant Passage 2: ”Passiflora herbertiana. A rare passion fruit native to Aus-

tralia. Fruits are green-skinned, white fleshed, with an unknown edible rating. Some

sources list the fruit as edible, sweet and tasty, while others list the fruits as being

bitter and inedible.assiflora herbertiana. A rare passion fruit native to Australia.

Fruits are green-skinned, white fleshed, with an unknown edible rating. Some sources

list the fruit as edible, sweet and tasty, while others list the fruits as being bitter

and inedible.”

Non-Relevant Passage 2: ”The kola nut is the fruit of the kola tree, a genus

(Cola) of trees that are native to the tropical rainforests of Africa.”

Query 3: ”how large is the canadian military”

Relevant Passage 3: ”The Canadian Armed Forces. 1 The first large-scale Cana-

dian peacekeeping mission started in Egypt on November 24, 1956. 2 There are

approximately 65,000 Regular Force and 25,000 reservist members in the Canadian

military. 3 In Canada, August 9 is designated as National Peacekeepers’ Day.”

Non-Relevant Passage 3: ”The Canadian Physician Health Institute (CPHI) is a

national program created in 2012 as a collaboration between the Canadian Medical

Association (CMA), the Canadian Medical Foundation (CMF) and the Provincial

and Territorial Medical Associations (PTMAs).”
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3.2. TREC CAR

CAR (Complex Answer Retrieval) [34] is a track that was run from 2017 to 2019

under the umbrella of TREC (Text REtrieval Conference) [35]. CAR is actually a com-

plex of three tasks which are passage retrieval, entity retrieval, and article construction

each having its own ground truth labels. The baseline approach in this thesis work

has an implementation for the passage retrieval task of CAR together with the passage

retrieval task of MS MARCO dataset.

Many NLP tasks including conversational answer retrieval, sub-documental re-

trieval, answer aggregation and many more share a common goal that is to output the

answers in a formatted way such as a list ranked by relevance or size. The usual chal-

lenge here is to find the relevant answer from a single source of information. However,

this approach may not be sufficient for some cases in which there are more than one

source of information. In such cases, it would be necessary to blend an answer from

different sources. Imagine a user searching for a specific need of information (can be

assumed as a query), for example a cocktail recipe. This user would like to search

for this recipe maybe in Wikipedia but not to limit himself/herself to only one source

of information. He or she may want to include information from websites, brochures,

books and so on. Here the blending of the answer would be from these different sources

of information. One thing here to note is that as the number of the information sources

increase, the likelihood of the relevant documents/passages/paragraphs being close to

each other would decrease. Meaning that, the answer should be formed from text frag-

ments that are highly distant from each other. This work historically has been made

by means of manpower which is an extremely inefficient and ineffective way to solve

the problem. TREC CAR challenge targets such a case and presents a dataset to be

studied and researched for this scenario [15]. The challenge is to investigate different

approaches to this task and to find an automated solution to retrieve relevant answers

for the end user. Therefore, TREC-CAR is intended to retrieve a response from a

more complex answer space and the complexity of the answer space is coming from the

diversity of the resources; that is, the ultimate response to be returned to the user is
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actually a combination of multiple partial answers. TREC divides this track into three

sub-tracks of TREC CAR challenge: Passage Retrieval, Entity Retrieval, and Article

Construction. For the scope of this thesis, only Passage Retrieval Task is relevant and

only this part was explored.

TREC CAR 2017 dataset (v1.5) is formed of topics, outlines, and paragraphs

obtained from an XML (Extensible Markup Language) dump (dated 20 December

2016) of English Wikipedia [15]. Each article in this dump is split into the outline

of sections and the paragraphs; and then, all these paragraphs are gathered and de-

duplicated. Note that, each section outline describes a complex topic and keeps the

information of which paragraph belongs to which section of which article. This method

provides a ground truth for the passage retrieval task. By filtering and processing,

several datasets are derived from the original English Wikipedia dump. This dataset

contains 29,678,367 unique paragraphs.

In TREC CAR, there are two kinds of ground truth signals are collected: auto-

matic and manual. For each, true paragraphs are released. While the manual ground

truth is assessed after participants submit runs, the automatic ground truth is derived

along with the dataset from the Wikipedia dump. The automatic ground truth is re-

leased for all training sets and derived as follows: if a paragraph is in the page/section,

it is considered as relevant and non-relevant otherwise. The ground truth labels is

released for three different granularities: paragraph contained in section (hierarchical),

paragraph contained in section hierarchy below top level section (toplevel), paragraph

contained anywhere in the page (article) [15]. After resolving redirects, if a hyperlink

to an entity is contained in the page/section it is defined as relevant, and non-relevant

otherwise. As with paragraphs, three granularities hierarchical, top level, and article

are collected [15].

The dataset is comprised of 5 folds each having approximately 580k queries. The

first 4 fold (approximately 2.3M queries) is used as the training set and the last one

is used as the validation set. Finally, the test set is same with TREC CAR 2017
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challenge’s evaluation set consists of 2,254 queries.

3.3. Lecture Question Answering Dataset

Arısoy and Ünlü gathered the MIT (Massachusetts Institute of Technology) Open

Course Ware (OCW) ”Signals and Systems” course videos corresponding to 11.4 hours

and their reference transcriptions which contains approximately 100K words [36], [5].

The authors generated a dataset to train a Question Answering (QA) system. After di-

viding the reference transcripts into 1309 short passages, two annotators knowledgeable

on the domain (which is signal processing for this dataset) went through these passages

and generate questions for each passage. These two annotators mark the answers for

the questions generated in the previous step. These answers were extracted as non-

divided text fragments from the corresponding passage for each question. Since this

is a dataset for a Question Answering task, the answers were selected as consecutive

words from the passages. In the training set, the average word length for is 72 passages,

for 11 for questions, and 24 for answers. An example passage and two question-answer

pairs from the dataset are presented in Table 3.2.

Similar to the training set, an eval set has also been annotated by the authors. In

total, there are 175 question-answer pairs in the test data. The average word lengths

for the questions is 11 and for answers 22. The eval data contains lecture transcriptions

corresponding to 1.2 hours lecture videos of Signals and Systems course prepared at

MEF University. The total length of this set is approximately 10,000 words. The

reference transcriptions were manually divided into 144 passages. Then, these passages

were annotated using the same approach to the training set. The evaluation dataset

obtained included 175 passage-question pairs for 94 passages. For the test data, the

average question, answer and passage lengths have been calculated as 10, 22, and 81

words.
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Table 3.2. A sample set from Lectures QA Dataset [5].

Paragraph: ”now speech and images are examples of what weve referred to as

continuous time signals in that they are functions of continuous variables an equally

important class of signals that we will be concentrating on in the course are signals

that are discrete time signals where by discrete time what we mean is that the signal

is a function of an integer variable and so specifically only takes on values at integer

values of the argument so here is a graphical illustration of a discrete time signal”

Question 1: ”what do we mean by discrete time”

Answer 1: ”by discrete time what we mean is that the signal is a function of

an integer variable and so specifically only takes on values at integer values of the

argument”

Question 2: ”why speech and images are examples of continuous time signals”

Answer 2: ”speech and images are examples of what weve referred to as continuous

time signals in that they are functions of continuous variables”

Details of the English QA dataset are summarized in Table 3.3. Although the

training set is obtained from MIT and the test set is obtained from MEF, the content

and the structure of the dataset are similar.

Table 3.3. Lecture QA Dataset Statistics [5].

TrainQA Eval

PQ pairs 305 175

Avg P Len 72 81

Avg Q Len 10 10

Avg A Len 24 22

Compared to SQuAD1.0 [37] which is the one of the most popular datasets in

the Question Answering field, this newly created QA dataset introduces longer answers

containing 22 words for train and 22 words for eval dataset [36]. The passages in the

dev partition of SQuAD1.0 contains 123 words and the answers for questions contain

3 words on average.
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The Lecture QA dataset was originally in the form of a Question Answering task

in which there are passages, questions of these passages, and answers as a subset of the

corresponding passage to each question. We transformed this dataset into a passage

re-ranking dataset. We labeled the passage that a question is intended for as relevant

and all the other passages as non-relevant. After removing two duplicate questions, we

obtained a dataset with 173 questions each having corresponding 1 relevant and 172

non-relevant passages.
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4. METHODS

In this thesis, Methods chapter is divided into three sections: Baseline Implemen-

tation, Experiments on Lecture QA Dataset, and Question Answering Experiments.

These three sections are explained in the following sections of this chapter.

4.1. Baseline Implementation

A typical information retrieval system is comprised of three sequential steps:

Retrieval, Re-ranking, and Answer Forming. These three steps are summarized in the

following as explained in Figure 4.1. The steps of this typical answer retrieval and

re-ranking system that is followed by an answer generation module can be explained as

follows: in the first step, a fixed number (e.g. 1000) of possibly relevant answers to a

given question are retrieved from a collection of passages by an efficient approach (e.g.

BM25 retrieval) [16]. In the second step, namely Passage Re-ranking, the relevancies

of these retrieved passages for the given question are scored and re-ranked by a more

computationally-intensive method. In the third and last step, the top-n of these re-

ranked documents are used as the source for an answer generation module.

When we particularly look at the second step which is Re-ranking we have the

following structure: we have a query that can be a question (e.g. ”What is the pop-

ulation of Amsterdam”) or a short expression (e.g. ”the population of Amsterdam”)

and a list of candidate responses which can be a pre-defined answer, short paragraph,

or documents list.

In a passage re-ranking system, the goal is to find the best matching passage for

the given query, according to some relevance measure such that

pmax = arg max
∀p

pr(p|q). (4.1)
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1. Retrieval

2. Re-Ranking

3. Answer Forming

Figure 4.1. A Typical Information Retrieval System.

In the paper named Passage Re-ranking with BERT by Nogueira and Cho [16],

the authors describe how they re-purpose BERT as a passage re-ranker and achieve

state-of-the-art results on the MS MARCO passage re-ranking task.

The original BERT training was intended to accomplish two tasks: Masked Lan-

guage Modeling (MLM) and Next Sentence Prediction (NSP). However, this model

is applied to other areas of NLP such as machine translation, text classification, in-

formation retrieval, text summarization, reading comprehension, question answering,

named entity recognition, natural language generation, natural language inference, or

even playing chess. The authors Nogueira and Cho used BERT for another purpose

which is Passage Re-ranking, utilizing BERT’s representational power on written text.

The source code of the implementations can be found in Github [38]. The repository

contains two implementations: one for MS MARCO challenge and one for TREC CAR

challenge. This implementation presents state-of-the-art results for TREC CAR chal-

lenge and is the top entry for MS MARCO passage retrieval task as of Jan 8th of 2019.

It achieves 35.87 MRR@10 (on eval set) having a margin of %27 (relative) with the

second best attempt for MS MARCO and also gives a MAP score of 33.5 while the

best entry for TREC CAR by MacAvaney et al. [39] in 2017 achieved 14.8 MAP.

Nogueira and Cho’s paper presents the implementation for a passage re-ranking

step of the IR pipeline that is presented in Figure 4.1. The goal of the re-ranker is

to predict a score si showing how relevant a candidate passage pi is to a query q.

The implementation starts from a pre-trained BERT model and fine-tunes it to the
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re-ranking task using the cross-entropy loss:

L = −
∑

j∈Jpos

log(sj)−
∑

j∈Jneg

log(1− sj).

Here in this formula Jpos represents the indices of the relevant passages and Jneg being

the indices of non-relevant passages in most relevant 1K documents retrieved from the

first stage (which is BM25 retrieval).

A coarse grained description of the algorithm is as follows:

• Feed the query as sentence A and the passage text as sentence B

• Use the BERT as a binary classifier (relevant|non-relevant)

– use the [CLS] vector as input to a single layer neural network to obtain the

probability of the passage being relevant

• Compute this probability of being relevant for each passage

• Rank the passages with respect to these probabilities (scores)

The algorithm starts with feeding the query-passage pair as Sentence A and Sen-

tence B separated by [SEP] token and completed by [CLS] token to a BERT transformer

model. Here, the query is truncated to 64 tokens at most and the passage is truncated

so that query-passage pair has 512 tokens at most which is the default sequence size

for BERT models. And, the BERT model is used as a binary classifier for this pair.

Then, the representation on the [CLS] token for this pair is fed into a single layer

neural network having the softmax probability outputs for the classification. The algo-

rithm ends with re-ranking the passages by the softmax probability of being relevant

of each passage for a given query. The output of this binary classification is the classes

Relevant or Non-relevant.

Even though in an unsupervised way, the official pre-trained BERT models have

seen the Wikipedia corpus [40]. To prevent this leak of test data in to training data, the

BERT re-ranker is pre-trained only on the half of Wikipedia corpus that is included
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in TREC-CAR’s training set. For the fine-tuning of this model on the other hand,

query-passage pairs are generated by retrieving the top-10 passages from the entire

TREC-CAR corpus with BM25 technique. At the end of this retrieval, 3M queries

each having 10 passages, there are 30M example query-passage pairs are obtained for

fine-tuning. The model is fined tuned for 400k iterations, equivalently 400k iterations

each having 32 query-passage pairs, there are 12.8M training examles. This 12.8M

training example set corresponds to only 40% of the whole training set. Fine-tuning

the model further does not increase the performance on the dev set [16].

4.2. Experiments on Lecture QA Dataset

As the main focus of this thesis, it is aimed to formulate a similar pipeline for a

question answering system with retrieve and re-rank answers approach. This approach

has been applied to Lecture Question Answering Dataset, with a modern PyTorch

library and transformer models in Huggingface repository.

Although the original dataset is actually generated for a typical question answer-

ing task of NLP [5]; in our work, this dataset is re-purposed for a passage re-ranking

task. In the original dataset, there were passages and question-answer pairs for each

passage. We extracted each question and considered every passage as a candidate pas-

sage containing the answer. It is assumed that there is only one relevant passage for

each question in the dataset since every question has an answer in its corresponding

passage. The ultimate goal is to retrieve the passage containing the answer. And this

is achieved by retrieving a small number of candidate passages from the corpus via

TF-IDF (Term Frequency Inverse Document Frequency) approach and then re-rank

this short-list using the relevance scores obtained via Cross-Encoders.

As explained in this chapter, a typical question answering pipeline consists of

three phases which are retrieval and re-ranking, and answer generation. In our imple-

mentation, the retrieval phase is done via a computationally less expensive method such

as TF-IDF. And then, it is followed by a re-ranking step which utilizes a more compu-
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tationally expensive machine learning method such as BERT. This generic framework

is also followed in the work in this work.

4.2.1. TF-IDF Retrieval Phase

In this thesis, a TF-IDF retrieval system is implemented from scratch, meaning

that, no specific library in Python is used for TF-IDF.

4.2.1.1. Preprocessing. The very first step Lower Case Conversion is a simple step

where all the characters are converted to their lower-case forms.

In Punctuation Removal step, a lookup for a symbol list is carried on. When one

of these characters is met in the text, it is replaced with a space character. Multiple

spaces are reduced down to a single space character. And, lastly commas are removed

from the text. The removed punctuation marks can be seen in Table 4.1.

Table 4.1. Removed Punctuation Marks and Symbols.

! ” # $

% & ( )

* + - .

/ : ; <

= > ? @

[ \ ] ˆ

′ { |

} ∼ \n

Apostrophe Removal step is as easy as just removing the apostrophes from the

text.

In Stop Word Removal phase, the text is tokenized with the tokenizer of the

NLTK library in Python. Then, whenever a stop word is come across, it is removed
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from the text. The stop word list is also obtained from the NLTK library in Python.

Text Number Conversion step is comprised of just changing a token if its an

integer with its string version.

For Stemming, PorterStemmer from NLTK libary of Python is used. And, Stem-

ming is applied to words when possible.

The steps in preprocesing of the text is summarized in Figure 4.2. It can be

seen that some of the pre-processing steps are applied repeatedly. The purpose of

this is cleaning the data further since the output of the stemming step may contain

punctuation marks, text numbers, and stop words.

4.2.1.2. Calculation of TF-IDFs. After preprocessing of the text, document frequen-

cies for each word are calculated. Here, the document frequency refers to simply the

number of different passages that a word appears in. Document frequencies (DF) are

converted to inverse document frequencies (IDF) by simply dividing the collection size

by the number of the passages that the words appears in and taking the logarithm of

the result. The formula for calculation of IDF values is

IDF = log(
Collection Size + 1

df + 1
).

After calculation of inverse document frequencies for each word in the corpus, term

frequency (TF) value for each word against each passage is calculated. Term Frequency

is assumed to be equal to the number of times a term appears in a passage divided by

the total number of the words in that passage.

TF-IDF value of a word in a passage is the multiplication of the TF of that word

with the IDF value of that word.
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Lower Case Conversion

Punctuation Removal

Apostrophe Removal

Stop Words Removal

Text Numbers Conversion

Stemming

Punctuation Removal

Text Numbers Conversion

Stemming

Punctuation Removal

Stop Words Removal

Figure 4.2. Preprocessing Steps.

4.2.1.3. Retrieve Docs for Each Question. After obtaining the TF-IDF values of words,

the passages are vectorized with these calculated TF-IDF values. Each question is also

pre-processed with the same preprocessing pipeline and vectorized with the TF-IDF

vectorizer obtained in the previous step.

The similarity of a question with a passage is calculated using the cosine similarity

of the TF-IDF vectors of the query and the passage. For each question, the cosine

similarity of the the question is calculated with each passage in the corpus. The
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passages are then ranked with respect to this similarity metric. Lastly, the first 5

passages with the highest similarity to the given question are retrieved from the whole

corpus as the result of the retrieval step.

This process is repeated for each question. At the end, top 5 most similar passages

to a given question are retrieved from the corpus. Despite the number of steps applied

during the retrieval phase, this phase is computationally not that expensive. Therefore,

the retrieval step is used to short-list candidate passages list for a given question.

These retrieved candidate passages are then passed to the re-ranker step which

is the second step in the IR pipeline of this thesis.

4.2.2. Re-ranking

4.2.2.1. SentenceTransformers. SentenceTransformers is a Python Framework to be

used for text, sentence, and image embeddings [41]. It is based on the research work of

Reimers and Gurevych [2]. These models are used to create embeddings for sentences.

In some of the pre-trained multilingual models, the sentence embeddings are available

in more than 100 different languages. These embeddings lie in a vector space in which

cosine similarities between these embeddings can be used to quantize the similarities

among the sentences. Moreover, other similarity metrics (e.g. euclidean similarity)

can also be used to measure similarity. This funtionality is useful for NLP tasks such

as paraphrase mining, semantic search, semantic textual similarity, and many others.

SentenceTransformers is developed with PyTorch [42] and Transformers [10] which

creates its power to have a huge collection of pre-trained models that can be fine-

tuned for down-stream tasks. There are even already fine-tuned (released) models in

SentenceTransformer’s repository.

SentenceTransformers framework not only releases Bi-Encoder which can be used

to create sentence embeddings but also Cross-Encoder models that take two input sen-

tences (such as a query, question, passage, or short document) and quantize the simi-
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larity between them. This process is done without computing the vector embeddings

for each sentence independently. The pre-trained models released by the owners of the

paper are fine-tuned on MS MARCO passage retrieval task dataset.

There are two types of networks in SentenceTransformers approach: Bi-Encoder

and Cross-Encoder. Bi-Encoders produce individual embeddings for individual sen-

tences. Two different sentences are fed into a siamese transformer structure to obtain

two different embeddings u and v. Later these two embeddings (u and v) are to be

compared with cosine similarity or a softmax classification layer. On the other side, two

input sentences are fed into Cross-Encoder architectures simultaneously. The trans-

former network is followed by a classifier to obtain a score between 0 and 1 measuring

the relevance of the passage to the query. During this process, a Cross-Encoder does

not create embeddings for each input sentences individually. Also, it is not possi-

ble to input individual sentences into a Cross-Encoder. Cross-Encoders outperform

Bi-Encoders for passage re-ranking tasks [2]; however, they lack the embeddings for

individual input sentences which can be useful for several NLP tasks.

Cross-Encoders are to be used when a pre-defined set of text pairs are to be

relevance scored. Bi-Encoders are used when individual vectoral representations for

each input sentence is necessary. For instance, clustering 10k sentences using Cross-

Encoders would require to get a relevance score for approximately 50M sentence-pair

combinations. But; with a Bi-Encoder, the embeddings for each sentence can be com-

puted individually in a short period of time. Then, it is fast to compare the fixed-sized

embeddings in a vector space.

For Retrieval and Re-ranking task, the original SentenceTransformer approach

uses the same pipeline outlined in Figure 4.1. with one difference from the baseline

implementation that is SentenceTransformer’s Retrieval step uses Bi-Encoders instead

of TF-IDF. One point to mention here is that the Reimers and Gurevych consider a

corpus of 100 passages as a long list but for production systems the usual case is having

thousands, millions, or even billions of passages in the information corpus [2]. Although
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this retrieval method is a semantic search method meaning that it can recognize syn-

onyms, acronyms, and spelling variations, it is computationally more expensive than

lexical methods. With a lexical approach such as TF-IDF, it is much faster to reduce

down the size of the candidate passages for a given query. Since the retrieval phase has

to be efficient for huge passage collections, TF-IDF method has been implemented in

this thesis. After the retrieval phase, the re-ranker improves the output of the retrieval

phase utilizing a more computationally expensive method. In Cross-Encoders, a query

and a passage is passed to the transformer model simultaneously. The end product

of the transformer network is a score between 0 and 1 that indicates how relevant the

query/passage tuple to each other. The major advantage of using Cross-Encoders is

the higher performance since Cross-Encoders perform the attention operation on the

query and the passage at the same time (cross attention). Pre-trained Bi-Encoders for

the retrieval phase are also shared through SentenceTransformer library.

Since each task in NLP has its own characteristics and challenges, it makes sense

to produce embeddings depending on the task to be achieved. Thus, training techniques

and the architectures to be used depend on the task of concern. The simplest network

architecture mapping a variable size text input to a fixed-size dense vector is given

in Figure 4.3. In this structure, the input text is fed into a transformer network and

then contextualized embedding for each token in this sentence is obtained. After this

point, a pooling [43] layer is needed to produce a fixed-sized vectoral representation

of the whole text input, the vectoral representation is named as vector u in Figure

4.3. There are many options available for the pooling approach while the simplest

one being mean-pooling. What mean-pooling does is averaging all the contextualized

embeddings for each token passing in the input text. The end result of this algorithm

is a fixed-sized vector regardless of the size of the input text. The size of this so-called

fixed-sized vector depends on the size of transformer used such that it would be a vector

of size 768 for base size models such as BERT-Base or a vector of size 1024 for large

size models such as RoBERTa-Large. In SentenceTransformer models, this fixed-sized

embedding output can also be downsized with a fully connected dense layer with Tanh

activation.
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Sentence

Transformer

Pooling

−→u (Vector Rep.)

Figure 4.3. Basic Training Architecture [1].

The loss function also plays an important role in the fine-tuning of a pre-trained

Huggingface model. The logic for selecting the best loss function for the training

depends on the task in hand. For the pre-trained model to be fine-tuned to the down-

stream task, it is necessary to indicate which text-pairs are similar to each other and

which are not so that the network can learn a mapping of these texts to a vector

space where similar texts are mapped closer to each other than the dissimilar ones. In

SentenceTransformers implementation, the simplest way of scoring sentence similarity

is employed. A similarity/relevance score between 0 and 1 is given for each sentence

pair. In our trainings, we selected 0.9 for text pairs that are relevant to each other and

0.1 for the pairs that are not relevant to each other.

In the softmax classifier objective function case, the two input sentences are fed

into the transformers, fixed-size output embeddings are obtained via pooling and the

two fixed-sized vectors obtained for each sentence are then concatenated as (u, v,

and |u-v|) to form one, long representation. This vector is then passed to the softmax

classifier which will compute the probabilities for three different classes for NLI (Natural

Language Inference) task which are entailment, neutral, and contradiction.
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BERT

pooling

−→u

Sentence B

BERT

pooling

−→v

(−→u , −→v , |−→u -−→v |)

Softmax classifier

Figure 4.4. Bi-Encoder architecture with softmax classifier objective function [2].

In Figures 4.4 and 4.5, two different approaches for calculating the similarity be-

tween sentences are shown. In Figure 4.4, a softmax classifier is applied to the outputs

of the siamese transformers for each text in the text pair. In Figure 4.5, the simi-

larity between the two input sentences is calculated via cosine-similarity between the

fixed-sized vectoral representations. The two transformer networks have tied weights

in these architectures; this approach is called siamese network structure.

There are other features of SentenceTransformer implementations such as knowl-

edge distillation, data augmentation strategies, unsupervised training of sentence em-

beddings; but, these features are not needed in our experiments as we have enough

training data coming from MS Marco sets and could manage to train our models at

least up to the size of base models (e.g. BERT-Base, RoBERTa-Base).

One strong side of SentenceTransformers is that it is initialized with pre-trained

transformer models. This also reduces down the time necessary to fine-tune Sentence-

Transformer models.
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BERT

pooling
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-1 ... 1

Figure 4.5. Bi-Encoder architecture with cosine similarity objective function [2].

SentenceTransformers have a pooling operation to the outputs of transformers

to obtain a fixed-sized sentence embedding. The three different pooling strategies are

using the output of the CLS-token, computing the mean of all output vectors (MEAN-

strategy), and computing a max-over-time of the output vectors (MAX-strategy) [2]

while the default configuration being MEAN-strategy.

Schroff et al. create siamese and triplet networks to update the weights of

BERT/RoBERTa model while fine-tuning [44]. The network structure depends on

the training data. The authors experiment with Classification Objective Function,

Regression Objective Function, and Triplet Objective function.
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Figure 4.6. Cross-Encoder Architecture [3].

The authors train SentenceTransformer architectures on a dataset combination

of SNLI [45] and Multi-Genre NLI dataset [46]. The SNLI dataset has 570,000 sentence

pairs with one of contradiction, entailment, and neutral labels. MultiNLI dataset, on

the other side, has 430,000 pairs of sentences. Fine-tuning of SentenceTransformers

is done with a 3-way softmax-classifier objective function for one epoch. A batch size

of 16 is used with Adam optimizer and the learning rate is set to 2e-5 with a linear

learning rate warm-up over 10% of the training data. The default strategy for pooling

is selected as MEAN. The architecture for Cross-Encoders can be investigated in Figure

4.6.

4.2.2.2. Pre-trained Cross-Encoders Models As Rerankers. After short-listing the can-

didate answers for a given question, the second step is re-ranking these candidate an-

swers with a more computationally expensive but a more intelligent solution to find

the most relevant passage for a given question.

In the baseline approach summarized in Figure 4.1, a BERT model is utilized

as a re-ranker. A question and a passage is fed to the model, the BERT model is

used obtain representations. The [CLS] vector (classification) is used as input to a

single layer classifier neural network to obtain the probability of the passage being

relevant [16]. The softmax output layer of this classifier network is used to calculate
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the probability of a passage being relevant to a question. And then this probability is

interpreted as the relevance score of that passage against the question.

In this thesis, this re-ranking process is replaced with the Cross-Encoders of

SentenceTransformer. Instead of using plain BERT models as classifiers, a more so-

phisticated approach to the re-ranking process is applied through Cross-Encoders.

In SentenceTransformer library, there are shared pre-trained and fine-tuned Cross-

Encoder models. These models are fine-tuned on MS Marco Passage Retrieval dataset

which is explained in Section 3.1. These models [41] can be used for semantic search;

in other words, for given keywords or a search phrase or a question, the model can find

text passages relevant for this searched item. The size of the training data these models

are fine-tuned on includes approximately 500k examples of MS MARCO dataset.

In the re-ranking phase, the pretrained and shared cross-encoder model ’cross-

encoder/ms-marco-MiniLM-L-12-v2’ is used. This model outperforms the other pre-

trained/fine-tuned models in the released pre-trained/fine-tuned model repository as

can be seen in Table 4.2. The maximum token length for this models is set to 512 tokens

meaning that any question or passage longer than this length will be trimmed after

this maximum length. The cross-encoder model is used as a relevance score generator

in this scenario. Note that the short-listed candidate responses to a given question are

already obtained in the previous retrieval phase. These short-listed candidate passages

are then paired with the question of subject.
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Table 4.2. Released Fine-tuned Model Performances on MS MARCO, runtimes were

computed on a V100 GPU using Huggingface Transformers v4 [2].

MRR@10 Docs/Sec

(MS Marco Dev)

BERT-Large as Re-ranker(Baseline) 36.53 -

ms-marco-TinyBERT-L-2 30.15 9000

ms-marco-TinyBERT-L-4 34.50 2900

ms-marco-TinyBERT-L-6 36.13 680

ms-marco-electra-base 36.41 340

ms-marco-TinyBERT-L-2-v2 32.56 9000

ms-marco-MiniLM-L-2-v2 34.85 4100

ms-marco-MiniLM-L-4-v2 37.70 2500

ms-marco-MiniLM-L-6-v2 39.01 1800

ms-marco-MiniLM-L-12-v2 39.02 960

pt-tinybert-msmarco 28.80 2900

pt-bert-base-uncased-msmarco 34.75 340

pt-bert-large-msmarco 36.48 100

electra-base-msmarco 36.89 340

bert-multlngl-pssge-reranking-msmarco 35.54 330

distilbert-cat-margin mse-T2-msmarco 37.88 720

The relevance score for each question-passage pair is obtained using the Cross-

Encoder models. Cross-Encoder models output a relevance score between -14 and

+14. This relevance score is then normalized to a value between 0 and 1. Normalized

relevance scores are calculated as

Normalized Relevance Score =
Relevance Score + 14

28
.

This normalization is only for the sake of more meaningful relevance scores. It doesn’t

affect the ranking or any other process. The candidate passages list is then re-ranked
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according to these relevance scores obtained. The expected result of this second step,

namely re-ranking step, is a better ranking of the passages in the short-listed passages

list.

4.2.2.3. Custom Fine-tuning with Huggingface. We also used pre-trained transformer

models in Huggingface repository to fine-tune it in Cross-Encoder structure. We use

MS MARCO dataset for this fine-tuning because the pre-trained and fine-tuned models

cross encoders are fine-tuned with this dataset. The authors state that they have fine-

tuned these cross-encoder models with approximately 500k training samples from MS

Marco dataset and give no further information about the fine-tuning dataset.

We have used Train Triples Small set [33]. This set is a 7.9 GB tar.gz. extension

file. When extracted, it turns into a 29GB size TSV (Tab-Separated Values) file. In

each line, there is a query and one relevant and one non-relevant passage for this query.

This is why the relevant and non-relevant class sizes are always equal to each other as

the number of the lines used increases.

For training batch size is selected 32 for distilled models (distilroberta-base,

distilbert-base) and 16 for the other models. The reason for this is that the size of the

models does not allow for training in RTX2080 Ti GPU resources that are available for

us. The number of labels for the models is selected as 1 resulting in Cross-Encoders to

be regression models that output a continuous score between 0 and 1. The max length

is not set for Cross-Encoder models; thus, the maximum length for input sequences

is set by the models’ default coming from Huggingface models. Longer sequences (in

terms of tokens) are to be truncated. Also, the default activation function which is

sigmoid function is used during the trainings.

First 150,000 lines of the Train Triples Small file is selected. The first 125,000

lines are assigned as training set. Then, the first 15,000 lines of the remaining part

are selected as the dev set and the last 10,000 lines are marked as test set. For every

line in MS MARCO set, there are two samples comprised of one relevant one non-
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relevant passage. During the forming of training, dev, and test sets, every query-

passage pair is fed as query-passage and passage-query. Therefore, for each line in MS

MARCO dataset, we obtain 4 training/dev/test samples. While training the models,

the relevant query-passage pairs are labeled as 0.9 and the non-relevant query-passage

pairs are labeled as 0.1. The decimal scores come from the regression nature of the

Cross-Encoder models. Number of epochs are selected as 1 or 4 depending on the

specific experiment. The number of warmup steps is calculated as the following formula

which corresponds to 10% of the training data. Number of warmup steps is calculated

as

Warmup Steps = (Training Data Size) ∗ (Number Of Epochs) ∗ 0.1.

4.2.2.4. Further Fine-tuning with Lecture QA Dataset. In this part, we continue fine-

tuning of our best performing model in the previous section. This process is called as

further fine-tuning in this thesis. For the further fine-tuning dataset, the training

dataset of Lecture QA Dataset prepared by Arısoy and Ünlü [5] was used. At first,

questions and passages containing the answers for these questions have been marked

as relevant question-passage pairs and then the rest of the passage collection have been

marked as non-relevant question-passage pairs. Using this approach, we obtain 304

relevant question-passage pairs and 304 * 303 = 92,112 non-relevant question-passage

pairs. There is a huge class imbalance in this dataset. We multiply the relevant pairs

by 304 times and use it in the training.

Additionally, we employ another approach to solve the class imbalance problem.

Since we have 1 relevant and 304 non-relevant passages for every question, we take

this relevant passage and we randomly take 35 of all non-relevant passages. The class

imbalance problem still exists but it is less severe. This will be the dataset for second

further fine-tuning experiment and the model using this second further fine-tuning

dataset is called further-fine-tuning-modified.
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4.3. Question Answering Experiments

Beyond for a passage re-ranking task, Cross-Encoder models can also be used for

a question answering task. Here, a question answering task refers to the Natural Lan-

guage Processing task which is basicly finding the answer of a question as a consecutive

subset of a passage. In this work, we re-purposed Cross-Encoder models so that they

can also be used for such a task. The idea stems from the fact that we can obtain a

high quality relevance score between two sentences. Given a question and a passage in

which the answer of the question lies as a consecutive subset of the corresponding pas-

sage, Cross-Encoders are used to extract the answer for the question. Each question is

paired with all the possible word spans of the passage on the other side. The relevance

score for each pair is calculated. Then, the most relevant word span is returned as the

answer of the question. Note that this is a computationally expensive process.
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5. EVALUATION

The evaluations of the approaches in this thesis are divided into three parts:

Baseline Experiments, Re-ranking, and Question Answering.

5.1. Baseline Experiments

As presented in Table 6.1, the evaluation results for the experiments on the base-

line approach are given in MAP (Mean Average Precision) and MRR (Mean Reciprocal

Rank).

5.1.1. MAP

AP (Average Precision) is calculated as follows:

AP =
n∑

k=1

p(k)rel(k).

After then, MAP score is calculated as given in the following formula:

MAP =
1

|UAll|

|UAll|∑
u=1

AP (u).

5.1.2. MRR

MRR (Mean Reciprocal Rank) score is calculated as the following:

MRR =
1

Q

Q∑
i=1

1

ranki
.
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5.2. Re-ranking

There are four different metrics shared for our re-ranking experiments: mean

NDCG, MAP, MRR, and catch@n. The computation methods for these metrics are

presented in Sections from 5.2.1 to 5.2.3.

5.2.1. NDCG

NDCG (Normalized Discounted Cumulative Gain) calculation is given in the

following formulas. First CG (Cumulative Gain) is defined as follows for a ranking

result by the system where reli represents the relevance score of a document,

CG =
N∑
i=1

reli.

To discriminate between front and end of a ranking, DCG (Discounted Cumulative

Gain) is calculated as follows:

DCG =
N∑
i=1

reli
log2(i + 1)

.

When DCG is divided by iDCG which stands for ideal Discounted Cumulative Gain

that can be attained by a system, NDCG is obtained as in the following formula,

NDCG =
DCG

iDCG
.

5.2.2. MAP and MRR in Re-ranking Experiments

One thing to note here is that although we have implemented both MAP and

MRR metrics, we have shared only MRR scores. The reason for this is that MAP and

MRR evaluations are equal to each other for only-one relevant passage re-rankings.
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If the labelings for our system was other than binary or if there were more than one

relevant passages that can be retrieved and re-ranked, these two metrics would be

different and worth to be shared separately. Since this is not the case for the scope of

this thesis, we have only shared MRR scores for our evaluations but not MAP which

has the same numeric value with MRR.

5.2.3. Catch @n

catch@n is a simple metric that denotes the number of questions (out of all

173) that the re-ranking method catches the relevant passage at n’th document. The

maximum value for n is 5 because of the fact that only 5 documents are retrieved

using TF-IDF approach. The increasing number towards catch@1 emphasizes a better

ranking performance by the system.

5.3. Question Answering

For the question answering experiments three types of evaluation metrics are

shared: the official SQuAD eval script’s F1 score, Rouge, and BLEU.

5.3.1. SQuAD Official Evaluation Script

In this evaluation metric, SQuAD’s official evaluation script [47] has been used.

This script outputs an F1 score. This score is compared with the paper from Arısoy

and Ünlü [5].

5.3.2. Rouge

Rouge is a common metric usually used to evaluate text summarization, machine

translation, and question answering systems. Rouge is a primitive but strong metric

that evaluates the overlap between hypotheses created by the system and ground truth

references. The evaluated metrics in this work are Precision, Recall, and F1 metrics at
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Rouge-1, Rouge-2, and Rouge-l levels. Although the results for Precision and Recall

results have been computed for different models, these values are not shared in Results

chapter. Instead F1 scores for unigrams, bigrams, and Longest Common Subsequence

levels are shared for the best performing model.

5.3.3. BLEU

Bilingual Evaluation Understudy (BLEU) is an evaluation metric to evaluate

the quality of hypothesis texts produced by systems with respect to golden standard

reference texts. Here, the texts that are evaluated are generally machine translation

or summarization outputs and references. The goal is to evaluate the correspondence

between the system output and reference sentences. BLEU has traditionally been used

for translation systems and one of the earlier evaluation frameworks that is proposed

to have a high correlation with manual evaluations.

BLEU always outputs a value in the range between 0 and 1, similar to Rouge. In

this thesis, BLEU scores are shared in different levels at 1, 2, 3, and 4.
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6. RESULTS AND DISCUSSION

In this chapter the results obtained in the experiments are presented and dis-

cussed. Similar to Methods chapter, this chapter is also divided into three sections:

Baseline Approach, Re-ranking Results, and Question Answering Results.

6.1. Baseline Approach

Our experiments’ on the baseline approach results are shown in Table 6.1. As

can be seen in this table, there are 4 different parameters of our experiments: query

size, passage size, BERT model that training is initialized with, and batch size. We

make changes to these hyperparameters one by one and observe their effects of the

performance of the model. The evaluation of the performances were measured with

MAP and MRR scores. We will be making comparisons only based on MAP scores

which are aligned with MRR.

The authors Nogueira and Cho [16] give two baseline results which are presented

in rows 1 and 2 in Table 6.1. The first baseline uses BERT Large model while the second

uses BERT Base model; nevertheless, these two models are not pre-trained models

officially released by Google. The pre-training of these two models are done separately

by the authors. We also re-produced these baselines in Google’s Colaboratory platform

[48]. The MAP scores reported by the authors are 0.336 for BERT-Large and 0.310 for

BERT-Base. First, we start by trying the same experiment with the same configuration

without changing anything, this experiment is presented in the third row. Although,

the authors report 0.336 MAP score on their experiments for the large model, we

measure this performance as 0.333. In rows from 4 to 7, we measure the effect of

batch size on the model performance. As can be seen, we did not observe any major

decrease until batch size of 4. Batch size of 2 loses approximately 0.03 map score;

thus, we continued our experiments with the batch size of 4. Then, we decreased the

upper limit for the size of query from 64 to 32 and did not observe a major difference
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in the performance. We also tried to reduce the total sequence length of the BERT

model from 512 to 256. This manipulation decreased MAP score from 0.331 to 0.316.

Finally, we initialized the pre-trained BERT model from the officially released BERT-

Base model instead of starting from a custom pre-trained model. This change increase

the performance of BERT-Base model from 0.310 to 0.320. The TREC CAR dataset

is composed of Wikipedia articles, header, sections and paragraphs. Since the officially

shared BERT models are pre-trained on Wikipedia corpus, the authors avoid using

the shared models. We proved that this concern has a solid ground. When the pre-

trained BERT model has seen the Wikipedia corpus during the pre-training, this dev

and test data leak into training data boosts the performance of the model to some

degree. Although this test data leak into training data happens in an in-direct way, it

has an effect on the model performance.

Table 6.1. Baseline Experiments on TREC CAR Dataset.

Exp. Id Query Passage BERT Model Batch MAP MRR

1 64 512-q Large 32 0.336 0.479

2 64 512-q Base 32 0.310 -

3 64 512-q Large 32 0.333 0.477

4 64 512-q Large 16 0.331 0.475

5 64 512-q Large 8 0.331 0.475

6 64 512-q Large 4 0.331 0.475

7 64 512-q Large 2 0.296 0.431

8 32 512-q Large 4 0.331 0.475

9 64 256-q Large 4 0.316 0.456

10 64 512-q Official-Base 4 0.320 0.454

After the first series of experiments, the experiment 10 in Table 6.1 has been

selected as a baseline for a second series of experiments. In this second series of

experiments, there are two hyperparameters of concern: hidden size and number of

layers of the BERT model that the trainings initialized with. In their repository [40],

Google shares BERT checkpoints that are pre-trained on Wikipedia corpus with varying
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hidden size and number of layers. The varying hidden sizes are 128, 256, 512, and

768. On the other side, the varying number of layers are 2, 4, 6, 8, 10, and 12. In

this cartesian variation of the released models; BERT-Tiny corresponds to 2-Layers of

hidden size 128, BERT-Mini corresponds to 4-Layers of hidden size 256, BERT-Small is

4-Layers of hidden size 512, BERT-Medium is 8-Layers of hidden size 512, and BERT-

Base is 12-Layers of hidden size 768. For the sake of completeness, BERT-Large has

24-Layers of hidden size 1024. We have initialized the fine-tuning phase with each of

these pre-trained models and measured the performance in MAP score. The results of

this second experiment series can be seen in Table 6.2. The configuration in experiment

10 in Table 6.1 is followed for all these 24 experiments. To put into the words; upper

limit of 64 tokens is used for the query, the maximum sequence length of 512 is used

and the size of the doc is adaptive depending on the size of the query, the batch size

is 4, 40k steps of warmup steps used to set the learning rate, 400k steps of training is

applied to the officially release pre-trained BERT model checkpoints.

Table 6.2. Model Size Experiments on TREC CAR Dataset.

H-128 H-256 H-512 H-768

L-2 0.093 0.149 0.184 0.213

L-4 0.098 0.196 0.252 0.264

L-6 0.175 0.207 0.269 0.285

L-8 0.167 0.238 0.282 0.306

L-10 0.171 0.238 0.282 0.314

L-12 0.153 0.245 0.291 0.320

According to Table 6.2; we observe that larger models, with larger hidden sizes

and more layers contained in the transformer structure, perform better than smaller

models. Another observation is the effect of decreasing hidden size has a bigger negative

impact than reducing the number of layers in the transformer model.
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6.2. Re-ranking Results

The evaluation results shared by Reimers and Gurevych for pre-trained Cross-

Encoder models were given in Table 4.2. Additional to the pre-trained Cross-Encoder

model performances, the evaluation of the baseline approach was added to this table

in the first row named ”BERT-Large as Re-ranker (Baseline)”. In the second section,

indicated by horizontal lines, the pre-trained models that are released through the

SentenceTransformer library have been evaluated. In the third and last section, the

performance evaluations for the passage re-ranking transformer models that are already

released through Huggingface have been presented. The performance evaluations are

made with MRR@10 metric on MS MARCO dev set. As can be seen from the this

table, the best performing model is the model named as ”ms-marco-MiniLM-L12-v2”.

Therefore, this model has been evaluated on Lecture Passage Re-ranking Dataset.

In Table 6.3, a comparative evaluation on Lecture Passage Re-ranking Dataset

can be seen. There are two evaluation metrics in this table: Mean-NDCG and MAP.

Even though MRR metric evaluation script has also been implemented in our work,

MRR results has not been shared in this report. The reason for this is that MRR

and MAP calculations give same numeric result for re-ranking tasks where there is

only one positive, or relevant, candidate. The evaluation of TF-IDF retrieval step is

placed at the top of this table. After TF-IDF, the best performing pre-trained Cross-

Encoder model released with SentenceTransformer library, ms-marco-MiniLM-L12-V2

has been used to re-rank the top-5 passages retrieved with TF-IDF method and the

evaluation results are shared. In the third region, indicated via horizontal lines, our

fine-tuned transformer models that are initialized by the pre-trained models with their

corresponding names have been shared.
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Table 6.3. Re-ranking Results Mean-NDCG and MAP Evaluations.

Model Mean-NDCG MAP Size(MB)

1 TF-IDF 0.771 0.712 NA

2 ms-marco-MiniLM-L-12-v2 0.839 0.801 127

3 bert-base-multlngl-cased 0.827 0.786 681

4 bert-base-multlnl-uncased 0.829 0.787 641

5 distilbert-base-uncased 0.815 0.770 256

6 distilroberta-base 0.816 0.771 316

7 dstlbert-base-uncased(4 ep.) 0.775 0.717 256

8 distilroberta-base (4 ep.) 0.800 0.750 316

9 electra-small-discriminator 0.826 0.785 52

10 albert-base-v1 0.837 0.800 45

11 albert-base-v2 0.832 0.793 45

12 further-fine-tuning 0.838 0.800 45

13 further-fine-tuning-modified 0.853 0.821 45

In Table 6.3, it can be seen that when the re-ranking step is applied, the rankings

obtained in the retrieval phase is always improved. When the best performing pre-

trained and fine-tuned on MS MARCO dataset model shared by SentenceTransformer

library is applied at the re-ranking step, we obtain an increase from 0.771 to 0.839 in

Mean-NDCG and an increase from 0.712 to 0.801 in MAP score.

Instead of using an already pre-trained and fine-tuned model, we also fine-tuned

our own re-ranker models. When the multilingual versions of BERT-Base size mod-

els are used, we achieve approximately 0.83 in Mean-NDCG and 0.786 in MAP score.

When we use distilled models such as distilbert-base-uncased or distilroberta-base, we

observe comparative results with slightly less scores in Mean-NDCG and MAP. We

achieve 0.815 Mean-NDCG and 0.770 in MAP for distilbert-base-uncased; and 0.816

Mean-NDCG and 0.771 in MAP for distilroberta-base. These two distilled models are

smaller than half size of multilingual BERT-Base models; but, they perform almost
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at the same level confirming the study [21]. After this point, we tried continuing

fine-tuning of these distilled models to see if we can see any improvement in the per-

formance. As is clear in Table 6.3, fine-tuning for 3 more epochs instead of stopping at

1 epoch didn’t result in any improvement in the performance; instead, decreased the

performance.

Beyond what has been achieved with distilled models in the previous step, we

also tried google/electra-small-discriminator and achieved same performance with Base

size models with an even smaller model.

We also tried albert-base-v1 and albert-base-v2 models. These two models are the

two smallest models that we have experimented with. In contrast, these two models (es-

pecially albert-base-v1) outperformed other models including largest models bert-base-

multilingual-cased and bert-base-multilingual-uncased. Consequently, we also achieved

higher performances with smaller models in this thesis proving our point.

Since the best performing custom fine-tuned model is albert-base-v1, we continue

with further fine-tuning of this model. Starting from already fine-tuned model, we

further fine-tune this model as explained in Section 4.2.2.4. Although we observe a

slight increase in Mean-NDCG and no change in MAP score, this further fine-tuning

decreased the model’s performance on catch@1 evaluation. We applied a randomized

downsizing to the non-relevant question-passage pairs as explained in Section 4.2.2.4.

By this method, we achieved a Mean-NDCG score of 0.853 and MAP score of 0.821

which stands for the best performing model in the thesis.

In Table 6.4, we give a finer grained and a more detailed results of the perfor-

mances of the model pool that are already shared in Table 6.3. In this new table,

evaluation metrics are catches@1, catches@2, catches@3, catches@4, and catches@5.

Here, catch@n corresponds to the ratio of questions for which the relevant passage is

ranked in the first n re-ranked results. For instance, TF-IDF retrieval step catches

the relevant passage in the first rank for 58.5% of all questions. In a similar manner,
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this retrieval step catches relevant passage in the first two ranking for 80.5% of all

questions. It can be expected that the most important evaluation metric in this ta-

ble is catch@1 metric. Thus, catch@1 has been chosen as the determining metric for

the comparisons of transformer models. The analysis in this table is made to under-

stand the performances of the models in top ranks such as the first and the first two

ranks. We observe that the best performing model for the evaluation metric catch@1,

catch@2, and catch@3 is further fine-tuned albert-base-v1 model, named further-fine-

tuning-modified (row 13). For the metric catch@4, we see ms-marco-MiniLM-L-12-v2

and bert-base-multilingual-uncased perform equal to further fine-tuned albert-base-v1

with the performance of ranking of the relevant passage at top 4 places in all of the

questions out of 164 questions that retrieval phase retrieved the relevand document in

the first 5 rankings. The most important observation of this thesis is that albert-base-

v1 ranks the relevant passage at the top place for 73.8% of total 164 questions and

further fine-tuned version of this model with non-relevant class downsizing ranks the

relevant passage at the top place for 75% questions outperforming any other models

tried in this thesis. Although, albert-base-v1 is just behind the pre-trained model with

a slight difference in the third decimal point in Mean-NDCG and MAP scores, with

a smart selection of further fine-tuning dataset, it can be the best performing model

when it comes to re-rank the relevant passage at the top place. Since these kind of

re-ranking systems are mostly used for their performance at the top ranking, we can

say that we achieve the best performing re-ranking approach with the smallest sized

transformer model that we have tried.

In Table 6.5, a detailed analysis of the re-ranking performance is presented. This

table can be interpreted as follows: the vertical numbers from 1 to 5 are the ranks

of the relevant passage from the retrieval phase. The horizontal numbers from 1 to 5

denote the ranks of the relevant passage after the re-ranking phase using the model

named further-fine-tuning-modified. Every number number in the table represents the

transition in the ranking from the retrieval phase to re-ranking phase. For instance,

there are 78 questions for which the correct passage was ranked in the first place

after the retrieval phase stayed in the first place after the re-ranking phase. Similarly,
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there are 21 questions for which the re-ranking algorithm moved the correct passages

from the second place to the first place and there are 15 questions for which the correct

passages were in the first place after the retrieval phase but these correct passages were

moved to the second place after the re-ranking step. From this table we can conclude

that although the re-ranking step may deteriorate rankings for a limited number of

questions, it improves rankings for most of the questions. The first diagonal of this table

represents the number of questions for which the ranking did not change after re-ranking

phase. Numbers below the first diagonal of this table denote the improvements in the

ranking results. Similarly, numbers above the first diagonal represent the deterioration

in the ranking performance. It can be noted that the numbers below the first diagonal

are usually bigger than the numbers above this diagonal. This is a natural result

stemming from the improvements during the re-ranking phase utilizing the transformer

models.

Table 6.4. Re-ranking Results catch@n Evaluations.

Model @1 @2 @3 @4 @5

1 TF-IDF 0.585 0.805 0.909 0.970 1.0

2 ms-marco-MiniLM-L-12-v2 0.720 0.927 0.970 1.0 1.0

3 bert-base-multilingual-cased 0.701 0.890 0.963 0.994 1.0

4 bert-base-multilingual-uncased 0.683 0.945 0.976 1.0 1.0

5 distilbert-base-uncased 0.671 0.884 0.957 0.994 1.0

6 distilroberta-base 0.671 0.896 0.951 0.982 1.0

7 dstlbert-base-uncased (4 ep.) 0.591 0.811 0.921 0.976 1.0

8 distilroberta-base (4 ep.) 0.634 0.866 0.957 0.994 1.0

9 electra-small-discriminator 0.695 0.902 0.963 0.988 1.0

10 albert-base-v1 0.738 0.872 0.957 0.994 1.0

11 albert-base-v2 0.707 0.909 0.976 0.994 1.0

12 further-fine-tuning 0.713 0.939 0.976 0.988 1.0

13 further-fine-tuning-modified 0.75 0.951 0.994 1.0 1.0
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Table 6.5. Retrieval and Re-Ranking performance of further-fine-tuning-modified

model.

Ret./Re-rank. 1 2 3 4 5

1 78 15 3 0 0

2 21 11 3 1 0

3 12 4 1 0 0

4 9 1 0 0 0

5 3 2 0 0 0

We can see a sorted comparative results for the models that have been tried in

Figures 6.1 and 6.2. These figures summarizes the results explained in this section in

terms of metrics mean-NDCG an MAP. In Figure 6.3, the catch@n counts (not ratios)

can be investigated on each level including from catch@1 to catch@5. In Figure 6.4, a

sorted comparison of model sizes can be seen.

6.3. Question Answering Results

As explained in Section 4.3, we have also re-purposed our best performing passage

re-ranker model as a Question Answering module. In this third part of the Results

Chapter, we give the evaluation of the performance for this approach. The evaluation

for such a Question Answering pipeline is very similar to that of Machine Translation

or Text Summarization We have reference answers for each question and hypothesis

answer obtained by our model as described in Section 4.3.

There are three evaluations for the performance of this Question Answering

pipeline: SQuAD evaluation script’s F1 score, Rouge, and BLEU.

SQuAD evaluation script’s F1 scores are presented in Table 6.6. Rouge evalu-

ations are presented in Table 6.7. And similarly BLEU evaluations are presented in

Table 6.8.
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Figure 6.1. Our Re-ranking Implementation on Lecture Passage Re-ranking Dataset,

m-NDCG results.

Figure 6.2. Our Re-ranking Implementation on Lecture Passage Re-ranking Dataset,

MAP results.
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Figure 6.3. Our Re-ranking Implementation on Lecture Passage Re-ranking Dataset,

catch@n results.

Figure 6.4. Our Re-ranking Implementation on Lecture Passage Re-ranking Dataset,

Model Sizes.
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We evaluated two models from our passage re-ranking trainings which are albert-

base-v1 and further-fine-tuning-modified using SQuAD offical evaluation script as can

be seen in Table 6.6. Since albert-base-v1 model performed better for this metric, we

also evaluated it with Rouge and BLEU metrics.

Table 6.6. Question Answering Task SQuAD F1 Evaluation.

Model SQuAD F1

albert-base-v1 49.96

further-fine-tuning-modified 41.27

In Table 6.6, the evaluations for the QA task that is described in Section 4.3 is

presented in SQuAD official evaluation script’s F1 metric. We have tried two models:

albert-base-v1 and further-fine-tuning-modified. Since albert-base-v1 model performed

better in this metric, we continued evaluations on this model with other metrics in-

cluding Rouge and BLEU.

In Table 6.7, Rouge-n measures the number of matching n-grams between hy-

potheses and references. Rouge-l corresponds to Longest Common Subsequence (LCS)

between hypotheses and references. The computation method for precision, recall, and

F1 is given in the following formulas:

precision =
number of n-grams found in hypotheses and reference

number of n-grams found in hypotheses
,

recall =
number of n-grams found in hypotheses and reference

number of n-grams found in references
,

F1 =
2 ∗ precision ∗ recall

precision + recall
.
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Table 6.7. Question Answering Task Rouge Evaluation.

Metric Precision Recall F1

Rouge-1 0.733 0.592 0.564

Rouge-2 0.625 0.514 0.458

Rouge-l 0.705 0.565 0.540

In Table 6.7, the evaluations for the QA task is presented in Rouge metric. We

see a performance of 0.564 F1 on Rouge-1 level, 0.458 on Rouge-2 level, and 0.540

on Rouge-l level. In their paper, Arısoy and Ünlü [5] mention that they observe a

word level F1 score of 0.481 with MatchLSTM [49] and 0.467 with MReader [50] and

outperform these baselines with 0.689 on the same Lecture QA Dataset. Here in our

work, we achieve an F1 score of 0.4996 already outperforming the two baselines in the

work of Arısoy and Ünlü [5]. They achieve an F1 score of 0.689 with BERT based

methods; however, considering that the focus of our research has not been Question

Answering and we don’t make any specific modifications to our re-ranker system while

re-purposing it towards the QA task, utilizing re-rankers in QA seems to be fertile

research area.

In addition to Rouge evaluations of the model; in Table 6.8, BLEU evaluations

for the same model is presented.

Table 6.8. Question Answering Task BLEU Evaluation.

BLEU score 43.73

Brevity Penalty 1.000

Hypothesis Length (characters) 4107

Reference Length (characters) 3893

Hyp/Ref Ratio 1.055

In Table 6.8, we also present BLEU scores for our model on the same task. BLEU

is an algorithm to evaluate the quality of machine-translated text. Here, quality refers

to the correspondence between an algorithms output and human translations.
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Two examples from Lecture QA Dataset including passages, questions, answers,

and predicted answers by albert-base-v1 model are shared in Tables 6.9 and 6.10.

Table 6.9. Sample 1 from Lecture QA Dataset (eval) [5].

Paragraph: signals are defined as functions of one or more independent variables

that typically carry some type of information this figure shows a one dimensional

signal here x axis is the time and y axis is the value of the function f of t for instance

the y axis can represent the temperature or speed

Question: what is the definition of signals

True Answer: signals are defined as functions of one or more independent variables

that typically carry some type of information

Predicted Answer: signals are defined as functions of one or more independent

variables

Table 6.10. Sample 2 from Lecture QA Dataset (eval) [5].

Paragraph: a discrete time complex exponential signal is defined as given here

where capital c and alpha are in general complex numbers alternatively it is ex-

pressed as given below

Question: how can we define a discrete time complex exponential signal mathe-

matically

True Answer: a discrete time complex exponential signal is defined as given here

where capital c and alpha are in general complex numbers

Predicted Answer: a discrete time complex exponential signal is defined as given

here where capital c and alpha are in general complex numbers alternatively it is

expressed

For Rouge metrics Rouge package and for BLEU evaluations sacrebleu package

in Python programming language has been used. However; the important point is

that independent of the implementation to evaluate scores, even with such a primitive

application of re-ranking approach to the QA task, intriguing numeric evaluations have

been achieved.
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7. FUTURE WORK

The first improvement area for this work seems to be expanding transformer

model pool that is evaluated. We have actually implemented the experiments for these

new models including BERT-Base, RoBERTa-Base, xlnet-base-cased [51], xlm-roberta-

base [52], Microsoft’s deberta-base [53], roberta-large, bert-large-uncased, bert-large-

cased, xlm-roberta-large, bert-multilingual-passage-reranking-msmarco and many oth-

ers. However; because of the lack of enough computational resources, we couldn’t try

all these models.

Secondly, fine-tunings of the pre-trained Huggingface models have been done

such that inputting query and passage in both query-passage and passage-query orders.

Instead of this method, only query-passage order can be fed to the transformer networks

and the size of the training dataset can be doubled by this way. Since the Passage Re-

ranking task that is reseached in this work is actually an asymmetric semantic search,

this new approach should improve the results.

The retrieval step can also be further improved. Since the TF-IDF structure

retrieves the relevant document in top-5 ranking for 165 of all 173 questions, we did

not see any urgency to improve the performance of the retrieval step. But, if the same

approaches in this work are to be applied to larger collections of passages, documents,

answers; it can be beneficial to improve the performance of the retrieval step. For

instance, BM25 approach can be implemented towards this goal.

Another point that is open to improvement is that the domain knowledge of Lec-

ture QA Dataset can be integrated to pre-training or fine-tuning processes of models.

In Table 7.1, an example from Lecture QA Dataset is shown. As can be observed from

this example, there are words and acronyms such as Laplace Transforms, Region of

Convergence (ROC) in the passages and questions. If this domain knowledge can be

trained to the transformer models, the model performance would improve further.
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Table 7.1. A sample from Lecture QA Dataset (eval) including domain knowledge [5].

Paragraph: now lets look at the constraints on the region of convergence note

that these constraints allow us to specify or to reconstruct the roc from knowledge

of only the algebraic laplace transform expression and certain characteristics of the

time domain function the first property states that the roc of x of s contains strips

parallel to the j omega axis in the s plane this property can be easily verified by

using the fact that the roc only depends on the real part of s the second property

states that for rational laplace transforms the roc does not contain any pole note

that x of s is infinite at pole locations therefore the laplace transform integral does

not converge at a pole

Question 1: can the roc contain any poles

Answer 1: for rational laplace transforms the roc does not contain any pole

Question 2: does the laplace transform converge at a pole

Answer 2: the laplace transform integral does not converge at a pole

Lastly, the same approach can be applied to languages other than English with

an easy switch to multilingual models existing in the Huggingface repository.
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8. CONCLUSION

In this work, a number of experiments have been conducted for the tasks of

Passage Retrieval, Passage Re-ranking, and Question Answering. In the first phase

which is baseline experiments, effects of several hyperparameters such as query size,

passage size, the size of the pre-trained BERT model, and batch size are investigated.

After this step, an extensive study of transformer model size with respect to hidden

size and number of layers has been done. It has been observed that clipping query

and passages can have a negative impact on the model performance. Larger BERT

models performed better in the baseline implementation. Batch size didn’t have an

effect on model performance between 32 and 4; but, when it is selected as 2, this

change decreased the performance. When we have a test dataset leak into training

data for passage re-ranking systems, this can create a positive bias in the performance

of BERT models, even though this leak happened during pre-training phase indirectly.

Also, it has been observed that for BERT models officially shared by Google through

their Github repository, the effect of reducing hidden size has a bigger negative effect

that reducing the number of layers of the model.

In the Passage Re-ranking experiments, we have achieved the same and even

better performances with relatively smaller transformers compared to larger and slower

models. We obtained best results with ALBERT’s Base v1 model on our passage re-

ranking task when we integrate a domain dataset in the fine-tuning process. This

model outperformed eight other larger transformer networks.

We also re-purposed our best performing passage re-ranking transformer for a

Question Answering task. Even without any study towards the QA task, we achieved

comparable results that are open and curious to more research in the field.
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APPENDIX A: PERMISSIONS ABOUT FIGURE USAGE

In this thesis, ”Figure 4.4. Bi-Encoder architecture with cosine similarity ob-

jective function” and ”Figure 4.5. Bi-Encoder architecture with softmax classifier ob-

jective function” are re-drawn versions of ”Figure 1: SBERT architecture with clas-

sification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT

networks have tied weights (siamese network structure).” and ”Figure 2: SBERT ar-

chitecture at inference, for example, to compute similarity scores. This architecture is

also used with the regression objective function.” from the paper ”Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks” by Nils Reimers and Iryna

Gurevych, published in Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natu-

ral Language Processing, pages 3982–3992, Hong Kong, China, November 3–7, 2019 [2].

This paper was published in EMNLP 2019 and it is accessible through ACL Anthology

(https://aclanthology.org/D19-1410.pdf). The contents in ACL Anthology is open un-

der Creative Commons Attribution 4.0 International License (https://creativecommon-

s.org/licenses/by/4.0/).

In addition to this, ”Figure 4.3. Basic Training Architecture” and ”Figure 4.6.

Cross-Encoder Architecture” are re-drawn versions of figures from the website of the

same publication (https://www.sbert.net/docs/training/overview.html and https://w-

ww.sbert.net/examples/applications/cross-encoder/README.html, respectively).

Plus, the authors of the same publication has been reached and their permission

have been attained as can be seen in Figure A.1.
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Figure A.1. Received permission about the usage of Figures 4.3, 4.4, 4.5, and 4.6.


