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ABSTRACT

DEEP LEARNING BASED AUTOMATIC MODULATION

CLASSIFICATION IN THE PRESENCE OF CARRIER

PHASE OFFSET AND CARRIER FREQUENCY OFFSET

Automatic Modulation Classification (AMC) has emerged after the efforts of

making the modulation classification process autonomous. Since then, various meth-

ods, algorithms, and tools have been used in the AMC field, such as likelihood-based

methods, the goodness of fit tests, feature-based methods, machine learning-based

methods, and deep learning-based methods. With the help of these methods, the mod-

ulation classification operation can be performed automatically without any human

input. In this thesis, we survey these methods in detail and propose our methods to

contribute to the AMC field. First, we proposed a blind feature-based algorithm that

uses K-nearest neighbor (KNN) to perform classification. When the number of sym-

bols in each signal decreases, the classification process may encounter an error floor.

The main goal of the proposed feature-based algorithm is to combat this error floor.

Then, we proposed a novel polar coordinate approach in deep learning to classify the

signals that are affected by carrier phase offset (CPO). The polar coordinate approach

converts the rotational effect of CPO into the translational effect, which makes the

classification easier. Finally, we propose a 2-staged deep learning-based classification

algorithm under the presence of carrier frequency offset (CFO). In the first stage, the

algorithm estimates the CFO amount and in the second stage, it classifies the CFO-

affected signals. Finally, we conclude the thesis by discussing the future works and

possible improvements.
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ÖZET

TAŞIYICI FAZ KAYMASI VE TAŞIYICI FREKANS

KAYMASI ALTINDA DERİN ÖĞRENME TEMELLİ

OTOMATİK MODÜLASYON SINIFLANDIRMA

Otomatik modülasyon sınıflandırma (OMS), modülasyon sınıflandırma işlemlerini

otonom bir hale getirme çabalarının sonucunda ortaya çıkmış bir alandır. OMS’nin or-

taya çıkmasından bu yana birçok çok metot ve algoritma, OMS alanında kullanılmıştır.

Bunları; olabilirlik temelli sınıflandırma, sınama temelli sınıflandırma, öznitelik temelli

sınıflandırma, derin öğrenme temelli sınıflandırma ve makine öğrenmesi temelli sınıflan-

dırma olarak ayırabiliriz. Bu metotlar yardımıyla modülasyon sınıflandırma işlemleri

tamamen otomatik bir şekilde yapılabilir. Bu tezde, bu metotları yakından inceleyeceğiz

ve OMS alanına katkıda bulunacak kendi algoritmalarımızı tanıtacağız. Önerdiğimiz al-

goritmalardan ilki K-en yakın komşu (KEYK) algoritması kullanan bir öznitelik temelli

sınıflandırma. Her bir sinyaldeki sembol sayısı düşünüldüğünde, sınıflandırma yaparken

bir hata tabanı ile karşılaşma ihtimali yüksektir. Bizim önerdiğimiz algoritmanın

asıl amacı da bu durumla başa çıkmaktır. Önerdiğimiz bir diğer algoritma ise po-

lar koordinat temelli bir derin öğrenme algoritması. Bu algoritma, taşıyıcı faz kayması

(TFAK) etkisinde olan sinyalleri sınıflandırmayı hedeflemektedir. Polar koordinatlar ise

dönme etkisini, doğrusal hareket etkisine çevirerek sınıflandırmayı kolaylaştırmaktadır.

Önerdiğimiz son algoritma ise taşıyıcı frekans kayması (TFRK) yaşayan sinyalleri 2

aşamalı ve derin öğrenme temelli sınıflandırma algoritması. İlk aşamada; algoritma,

TFRK kestirmesi yaparak frekans kayması etkisini azaltmayı amaçlar. İkinci aşamada

ise bu sinyalleri sınıflandırmayı amaçlar. Son olarak, ileride yapılabilecek işleri ve

gelişmeleri tartışarak tezi noktalıyoruz.
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1. INTRODUCTION

Since the day wireless communication entered our lives, modulations and modula-

tion techniques have been topics of interest for communication engineers. Modulations

make long-distance communication possible due to their ability to work in the high-

frequency range. However, modulating a signal essentially means encoding a signal in

a certain way. Therefore, the receiver needs to know the received signal’s modulation

technique to decode it, or demodulate it in this case, accordingly.

In one scenario, both the receiver and transmitter may agree on the set of stan-

dards, including modulation techniques, beforehand to enable cooperative communica-

tion. As a result, the receiver would know the modulation types which are necessary

for the demodulation process. For some other cases, the receiver may want to classify

a received signal due to various reasons, such as spectrum monitoring or intelligence

gathering. Since the communication is not cooperative, the receiver would not know

the modulation; therefore, some kind of modulation classification would be required to

determine the modulation type.

In this chapter, we will discuss automatic modulation classification (AMC), its

applications, and literature review of AMC.

1.1. Automatic Modulation Classification

At first, the modulation classification process was operated manually by an engi-

neer by looking at the characteristics of the signal, such as its bandwidths, moments,

phases, etc. However, due to the human factor, this process was slow and inefficient.

The necessity of improving the efficiency resulted in a new method that is called auto-

matic modulation classification.
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AMC determines the received signal’s modulation type, which is necessary to

demodulate the given signal to recover the whole message as accurate as it can. The

whole AMC operation is performed automatically by an AMC algorithm without any

human input during the process.

1.2. AMC Applications

1.2.1. Military Applications

Similar to most of the technological developments in history; first, AMC was

developed to be utilized in military applications. The main motivation for military

scenarios is to interfere in the communication line. We can divide military applications

into three main applications: gathering intelligence, attacking the communication line,

and protecting the data. AMC can be employed to interfere in as a third party and

demodulate the signal to recover the intelligence in the enemy’s communication line.

Gathering intelligence during wars proved to be important on many occasions through-

out history.

AMC can also be used to attack the communication line along with jammers.

Jammers are used to generate high power signals to disrupt the real signal in the

transmission line and widely used in the world. However, the jammer needs to prop-

agate a signal that has the same characteristic as the signal in the transmission line.

Therefore, the jammer also needs to know the modulation type of the signal in order to

imitate it. Otherwise, the receiver of the communication would be able to demodulate

and decode the system easily with the help of a sequence of filters.

Lastly, an AMC system may be used to offer protection. If the receiver and

transmitter manage to classify the modulation of jammers, they can adaptively change

the modulation type to avoid jammer signals.
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1.2.2. Civil Applications

Civil applications of AMC, on the other hand, focus on the performance. Spec-

trum monitoring, for instance, is one of the civil areas where AMC is used. In spectrum

monitoring, relevant agencies control all the signals in the transmission line and their

frequency bands in order to prevent any interference from outside sources. If any in-

terference or bandwidth overlap occurs, relevant agencies could identify the unknown

source by demodulating the signal. Therefore, AMC is required to find the modulation

type of the unknown signal.

In some other scenarios, the transmitter may use a dynamic modulation scheme,

where the system changes the modulation type according to the changing channel

conditions. For instance; the transmitter may change the modulation type to more

robust ones, such as BPSK or QPSK, when the channel becomes noisy. As the noise

level decreases, the transmitter may prioritize the higher bit rate and use modulation

types, such as 64-QAM or 256-QAM. To adapt to these changes, the receiver could

perform AMC, If this information is not known at the receiver end.

As a result, these applications show that AMC is being utilized in many systems

and developing and implementing a good AMC algorithm only enhances the perfor-

mance of these systems further.

1.3. Literature Review

The entire AMC literature can be divided into two subcategories: blind and non-

blind AMC. In non-blind AMC, the receiver is assumed to know the channel state

information (CSI) or in other words, the receiver knows the characteristics of the

communication channel. In blind AMC, on the other hand, the receiver does not know

anything about the channel or the signal. Therefore, blind AMC is a more complicated

problem.
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The first and the most popular non-blind AMC method is likelihood-based classi-

fication. The first step to the main algorithm of the likelihood-based classifier is finding

a likelihood function for each modulation type and signal sample. The second step is

comparing the outputs of the different modulation likelihood functions to determine the

modulation type. Depending on the known CSI, There are different likelihood-based

classifiers in the literature.

When the CSI and all the other parameters, except the modulation type, are

known perfectly, maximum likelihood (ML) classifiers are used. First, in [1], AMC is

performed by using ML classifiers. In the following years, ML classifiers were also used

in [2–4] with various ML classifier methods.

ML classifiers need perfect knowledge of CSI and it is not viable if one or more

parameters are unknown. To overcome this problem, average likelihood ratio test

(ALRT) is developed. ALRT is first used in the AMC area in [5]. Instead of writing

down the known parameters, ALRT takes the integral of the unknown parameters over

all possible values. Later, ALRT is also utilized in [6] to perform AMC. Since ALRT

makes the problem significantly more complex because of the integrals, generalized

likelihood ratio test (GLRT) is developed. GLRT employed first in [7] for AMC. Instead

of taking integrals, GLRT treats the unknown parameters as deterministic unknown

parameters and maximizes the likelihood function over all possible values.

Both ALRT and GLRT have their own problems. ALRT makes the problem

more complex and its alternative, GLRT, performs a biased classification and it is not

possible to use it for certain modulation types. Therefore, in [7], hybrid likelihood ratio

test (HLRT) is also proposed for the AMC problem. HLRT is a hybrid form of ALRT

and GRLT. Some parameters are treated as probabilistic parameters as if the classifier

is ALRT and some other parameters are treated as deterministic parameters as if the

classifier is GLRT.
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Instead of using likelihood tests over analytical expressions, another method to

perform AMC is performing tests over empirical distributions of the signals, assuming

the signal is long enough.

One of those tests is Kolmogorov-Smirnov (KS) test, which is first proposed in [8]

and explained in detail in [9]. KS test simply compares two distributions and scores

how well they fit. In [10], this test is adapted to the problem of AMC. Later, in [11], the

KS test for AMC is improved further. Computational efficiency alongside the accuracy

is also important. Therefore, in [12], the complexity is reduced by lowering the number

of comparison points and the performance is improved by choosing comparison points

in key areas.

Cramer-Von Mises (CvM) test is another test that is used in the AMC problem.

CvM test is first introduced in [13]. Similar to the KS test, CvM test also compares

and scores the fit between two distributions. This test is implemented into the AMC

problem in [14].

Anderson-Darling (AD) test, which is proposed in [15], counters the shortcomings

of KS and CvM tests. Similar to the aforementioned tests, AD test also compares two

distributions, but unlike others, the AD test gives more weight to the tails of the

distribution. Therefore the AD test is more sensitive on the tails of the distributions.

Since the AD test is the weighted version of the KS test, it can also be used to perform

AMC.

Blind AMC techniques mostly involve machine learning tools. To use machine

learning, some features are needed to be extracted from a signal. Fortunately, com-

munication signals have lots of meaningful features that can be used in AMC. We

can categorize these features under three sub-categories. First one is spectral-based

features that are proposed in [16–18]. These are the features that are related to the

signal’s frequency, amplitude, and phase. The second one is Wavelet-transform-based

features. These features are obtained through continuous wavelet transform as it is



6

proposed in [19] and later adopted in [20] as well. However, these features are not

very successful in AMC when the modulation types are m-QAM and m-PSK. Finally,

the last and the most popular features in AMC are high-order statistics-based features

that are proposed first in [21] and later adopted and improved in [22, 23]. These fea-

tures consist of the combination of high-order moments of the signal. One such special

combination is called cumulants. Cumulants are proposed first in [24] and utilized

in several ways in the following years, such as [25–27], since they make classification

easier. After establishing the feature set, machine learning tools are very simple to use.

One of the popular machine learning tools for AMC is K-nearest neighbor (KNN).

KNN is a supervised learning method, which means that the number of classes is deter-

mined beforehand and the classification is performed accordingly. Since the modulation

set is selected before the AMC, KNN is suitable to be used in AMC. It was first uti-

lized in the AMC area in [28]. In KNN, each feature is used as a dimension in the

n-dimensional space, where n is the number of features in the feature set. Then, each

signal sample is placed on this space and the signal sample is classified to the closest

modulation point.

Support vector machines (SVM) can also be used as a classifier in the AMC

problem. Although SVM is used as a multi-class classifier, it is generally used as a

two-class classifier. Therefore, it is not utilized in the AMC area as much, but there

are still studies that employ SVM as the modulation classifier, such as [29]. Essentially,

SVM cuts the space half by a hyperplane and each side of the plane belongs to their

respective class.

KNN and SVM are feature-hungry methods, as the number of features increases,

the accuracy would also increase. However, that would increase the computational

budget as well. Therefore, reducing the number of features without losing accuracy

has been a topic of interest. As a result, several feature combination algorithms have

been proposed in the AMC field.



7

Logistic regression is proposed in [30]. Logistic regression is used to map an

n-dimensional feature set into a lower-dimensional one. The same can be performed

in artificial neural networks (ANN) and its use in the AMC area is proposed in [31].

In the following years, it is employed in other studies, such as [32] as well. Genetic

Programming can also be used for feature combination. Genetic programming as a

feature combination algorithm is proposed in [33] and feature combination for AMC

feature set is proposed in [34]. Later, the system is further improved in [26].

Finally, in recent years, deep learning algorithms started to be used in the AMC

area. Due to the success of the traditional algorithms, such as ML classifiers or feature-

based algorithms, the integration between deep learning algorithms and AMC hap-

pened later than the norm in the industry. After the deep learning tools started to

be taken advantage of in the AMC area, many studies emerged in the literature, such

as [35–38]. The common thing between these studies is that all of them have employed

convolutional neural networks (CNN) as a deep learning tool. CNN is preferred in the

AMC area because of its ability to recognize the patterns that modulated signals are

known to have.

1.4. Thesis Contribution

In this thesis, we will propose three new methods that contribute to the AMC

field:

• The first method is a feature-based classification method that uses the KNN algo-

rithm. Feature-based KNN classification has been implemented in the literature

before but we add two new stages to the classification process that combat the

error floor problem. These new stages are called narrower region analysis and

coefficient of variance analysis.

• The second method that we propose in this paper is a deep learning-based AMC

approach under the presence of carrier phase offset. In this method, we use a

novel polar coordinate approach to combat carrier phase offset. The polar coor-
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dinate approach increases the efficiency of the network by reducing the amount

of training data.

• The last method that we propose in this thesis is deep learning-based AMC under

the presence of carrier frequency offset. In this method, we estimate the amount

of frequency offset. Then, we use the polar coordinate approach that we proposed

beforehand to classify the received signals.

1.5. Thesis Organization

In Chapter 2, we will discuss the signal model that will be used in the rest of

the thesis and analysis of the methods that are used in AMC. In Chapter 3, we will

discuss the thesis’ contribution to the machine learning methods and the results of the

proposed methods. In Chapters 4 and 5, we will discuss the thesis’ contribution to the

deep learning methods under the presence of carrier phase offset and carrier frequency

offset respectively. After the deep learning algorithms are defined, the results will be

shown in the end. Finally, we will conclude the thesis by summarizing the works in

the thesis and discussing the future works and plans.
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2. AMC METHODS

In this section, the signal model of the modulation signal will be defined and the

AMC methods in the literature will be explained in detail.

2.1. Signal Model

A communication signal operates in the bandpass channel and most of the nega-

tive effects on the signal stem from here, excluding the other negative effects that are

caused by the imperfections in the electronic systems. However, this thesis focuses on

the bandpass channel effects. Therefore, only the bandpass channel effects are mod-

eled on a signal. Additionally, for the sake of simplicity, baseband representation of

the signal is used in this thesis to model channel effects, since these effects are also

observed in the baseband region in the same way.

Baseband representation of a transmitted signal, including all the channel effects,

is

r[n] = Aej(2πfonT+θo)

l∑
l=∞

x[l]h[nT − lT + ϵTT ] + g[n]. (2.1)

Here, x[l] is a signal vector, A is the channel gain, and h function is the resid-

ual channel effects. g[n] is the additive white Gaussian noise (AWGN) component

and AWGN affects every symbol independently. Since g[n] is a complex number, the

representation of g[n] is

g[n] = R[n] + jI[n], (2.2)

fI[n](x) = fR[n](x) =
1√
2πσ2

e−
x2

2σ2 , (2.3)

where fI[n](x) and fR[n](x) are the probability density functions (PDF) of R[n] and
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I[n], respectively.

In Equation (2.1), θ0 is the carrier phase offset (CPO). CPO causes all symbols

to rotate around the origin by the CPO value. The effect of the CPO can be seen in

Figure 2.1. Since all symbols rotate by the same amount, the characteristics of the

signal are preserved.

a) QPSK without CPO b) QPSK with CPO

Figure 2.1. Comparison of the CPO effect.

In Equation (2.1), f0 is the carrier frequency offset (CFO). Under the effect of

CFO, each symbol rotates around the origin by the CFO value with respect to the

prior symbol. Effect of CFO can be seen in Figure 2.2. Since all symbols rotate by a

different amount, the characteristics of the signal may not be preserved if the CFO is

high enough.

2.2. Likelihood-Based Methods

Likelihood-based methods have been immensely popular in the AMC area; many

researchers employed likelihood-based methods to solve the AMC problem in their

works. Likelihood-based classifiers have 2 main steps to perform classification:
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a) QPSK without CFO b) QPSK with CFO

Figure 2.2. Comparison of the CFO effect.

(i) By using the modulation schemes and signal samples, derive likelihood functions

for each modulation type to represent them.

(ii) Compare likelihood functions with each other to perform classification.

2.2.1. Maximum Likelihood-Based Classifier

The most well-known classifiers among the likelihood-based classifiers are maxi-

mum likelihood (ML) classifiers. ML classifiers are used in the AMC literature, such

as [1–4]. ML classifiers assume perfect channel knowledge. Therefore, every parameter

is known to the receiver. ML classifier function can be interpreted as a PDF as it is

proposed in [39]. The probability of a given symbol, rn = rI,n + jrQ,n, to belong to a

given modulation type, mi, is

p−→r (rl,n, rQ,n|m = mi) =
1

M(i)

M(i)∑
k=1

1

σ
√
2π
e(

−(rI,n−µI,k)2−(rQ,n−µQ,k)2

2σ2 ), (2.4)

where µn = µI,n + jµQ,n are the modulation symbols of a modulation type and σ2 is

the variance of the AWGN channel that the received signal passed through. This PDF

only gives a solution for one symbol. Since all the considered symbols are statistically

independent, this calculation can be performed for all symbols, and, for a general
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solution, all individual solutions are multiplied. As a result, the final solution becomes

p−→r (rI , rQ|m = mi) =
N∏

n=1

p−→r (rl,n, rQ,n|m = mi), (2.5)

where N is the number of symbols in the symbol vector.

Finally, This process is repeated for all the modulation types in the modulation

set and the classification is concluded according to the classification rule, which is

class(k) = argmax
i

p−→r (rI , rQ|m = mi). (2.6)

These classifiers are calculated considering the channel is AWGN. Additionally, these

calculations still apply if the channel has fading or non-Gaussian noise.

2.2.2. Average Likelihood Ratio Test

ML classifiers assume complete knowledge of parameters and are not viable in

many scenarios. As a result, new likelihood-based classifiers emerged. Average Like-

lihood Ratio Test (ALRT) is one of them. ALRT is first employed as a modulation

classifier in [5]. If one or more parameters about the channel are unknown, then ML

classifiers become unusable and need a modification. Instead of using the unknown

parameter, taking the integral over all possible values can be used to create likelihood

functions, as can be seen in [7]. Therefore, the likelihood function for the AMC problem

that is derived before becomes

LALRT (r|m = mi) =

∫
Φ

f(r|Φ,m = mi)f(Φ|m = mi), (2.7)

where f function is the likelihood function that is derived as an ML classifier and Φ

represents the set of unknown parameters.
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Using this function, the ratio test can be applied and the classification can be

concluded. The ratio test is given as

class =

mi LALRT (r|m = mi) > LALRT (r|m = mj)

mj LALRT (r|m = mj) > LALRT (r|m = mi)

. (2.8)

2.2.3. Generalized Likelihood Ratio Test

ALRT also has its problems. First and foremost, it is a computationally complex

problem and it is very hard to obtain an exact solution, as shown in [7]. Mostly it

comes down to making approximations. Therefore, generalized likelihood ratio test

is employed to solve the AMC problem in [7]. Instead of taking an integral over all

possible values of the unknown parameters, treating these unknown parameters as

unknown but deterministic parameters is suggested. Then, the likelihood function is

maximized over these parameters. As a result, the likelihood function becomes

LGLRT (r|m = mi) = max
Φ

(f(r|Φ,m = mi)) (2.9)

where Φ represents the set of unknown parameters. The lack of an integral in the

likelihood function results in reduced complexity. These unknown parameters can be

CPO, channel gain, and AWGN channel noise variance. In [40], it is shown that the

maximum likelihood estimation of CPO is easier to calculate before the other unknown

parameters. Therefore, the form is given as

LGLRT (r|m = mi) = max
Φ

(max
θo

(f(r|Φ, θo,m = mi))) (2.10)

is more preferable.
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Additionally, in [7], maximization over modulation scheme points is also proposed.

In its final form, the likelihood function looks like

LGLRT (r|m = mi) = max
Φ

(
max

θ

N∏
n=1

max
mk

1

M(i)

1

σ
√
2π
e

(
−(rI,n−µI,k)2−(rQ,n−µQ,k)2

2σ2

))
,

(2.11)

which reduces the complexity of the problem further. Finally, the classification rule is

given as

class =

mi LGLRT (r|m = mi) > LGLRT (r|m = mj)

mj LGLRT (r|m = mj) > LGLRT (r|m = mi)

. (2.12)

Even though ALRT solves the complexity problem, it introduces a new problem:

GLRT creates a biased classifier. GLRT gives weight to some certain points and if two

modulation types overlap on one of those points it could favor one of the modulation

types to the other one. 4-QAM and 16-QAM, for instance, have this problem. These

modulation types have very close modulation points and considering 4-QAM have

denser points due to fewer modulation points, the classifier may tend to favor 4-QAM

over 16-QAM.

2.2.4. Hybrid Likelihood Ratio Test

Since both ALRT and GLRT have their own problems, a new classifier, which

is called hybrid likelihood ratio test (HLRT), emerges. HLRT is basically the hy-

brid of GLRT and ALRT. In other words, HLRT treats some unknown parameters as

probabilistic parameters and treats the others as deterministic parameters. HLRT is

employed to solve the AMC problem in [7]. In [7], the likelihood function is averaged

over all the unknown parameters except CPO. Then, the resulting function is maxi-

mized over CPO to obtain the HLRT likelihood function. As a result, the likelihood
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function looks like

LHLRT (r|m = mi) = max
θ

(L(r|m = mi, θ)) (2.13)

and the decision rule is

class =

mi LHLRT (r|m = mi) > LHLRT (r|m = mj)

mj LHLRT (r|m = mj) > LHLRT (r|m = mi)

. (2.14)

2.3. Feature-Based Methods

Some AMC algorithms aim to extract some useful features from the signals in-

stead of using the whole signal. The primary reason for this is to reduce computational

complexity. However, these features must be selected carefully, since they should be

distinct enough to separate a signal from another and they should carry useful infor-

mation about the modulation type.

2.3.1. Spectral-Based Features

One of the feature sets that is used in AMC is spectral-based features. The idea

of using these features in AMC is employed in [16–18]. There is a total of 9 spectral-

based features. The first one is called the maximum value of the power spectral density

of the normalized centered instantaneous amplitude and the mathematical expression

is given as

γmax = max
|DFT (Acn[n])|2

N
, (2.15)

where Acn[n] defined as

Acn[n] =
A[n]

µA

− 1, (2.16)
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DFT is the discrete Fourier transform, and µA is the mean of all points of A[n]. This

feature controls the signal’s amplitude variation. Therefore, the first feature is signifi-

cant when the modulation type changes the amplitude with time.

The second feature is called the standard deviation of the absolute values of

the centered nonlinear components of the instantaneous phase, and the mathematical

expression is

σap =

√√√√ 1

Nc

(
∑

A[n]
µA

>AT

ϕ2
NL[n])− (

1

Nc

∑
A[n]
µA

>AT

|ϕNL[n]|)2, (2.17)

where ϕNL is one sample point’s nonlinear component of instantaneous phase, AT is

the threshold value for one sample point to be included in the calculation, and Nc is

the number of samples that exceeds the threshold. A threshold is applied in this case,

because low-valued sample points are more sensitive to noise. This feature controls

the signal’s instantaneous phase variation. Therefore, the second feature is significant

when the modulation type causes a change of phases.

The third feature is called the standard deviation of the absolute value of the

normalized centered instantaneous amplitude in the non-weak segment of the signal

and its mathematical expression is given as

σdp =

√√√√ 1

Nc

(
∑

A[n]
µA

>AT

ϕ2
NL[n])− (

1

Nc

∑
A[n]
µA

>AT

ϕNL[n])2. (2.18)

Everything is the same with the second feature except for the absolute value operation

in the second sum operation. This feature also measures the instantaneous phase

changes but it provides the classifier an ability to classify BPSK.
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The fourth feature is the spectrum symmetry around the carrier frequency. The

mathematical expression is given as

P =

∑ fcN
fs

−1

n=1 |Xc[n]|2 −
∑ fcN

fs
−1

n=1 |Xc[n+ fcN
fs

]|2∑ fcN
fs

−1

n=1 |Xc[n]|2 +
∑ fcN

fs
−1

n=1 |Xc[n+ fcN
fs

]|2
, (2.19)

where fc is the carrier frequency, fs is the sampling frequency, and Xc is discrete-time

Fourier transform of A[n]. This feature provides the classifier an ability to distinguish

different amplitude modulation schemes.

The fifth feature is called the standard deviation of the absolute value of the nor-

malized centered instantaneous amplitude of the signal segment and its mathematical

expression is given as

σaa =

√√√√ 1

N
(

N∑
n=1

A2
cn[n])− (

1

N

N∑
n=1

|Acn[n]|)2. (2.20)

This time, all symbols in the sequence are included in the calculation. Therefore, N is

the number of samples in the symbol sequence. This feature also controls the signal’s

amplitude variation. However, it provides the classifier an ability to classify 2-ASK

modulation.

The sixth feature is called the standard deviation of the absolute value of the

normalized and centered instantaneous frequency of the signal. The mathematical

expression is given as

σaf =

√√√√ 1

Nc

(
∑

A[n]
µA

>AT

f 2
N [n])− (

1

Nc

∑
A[n]
µA

>AT

|fN [n]|)2, (2.21)

where

fN [n] =
f [n]− 1

N

∑N
n=1 f [n]

fs
, (2.22)
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and f [n] is the instantaneous frequency vector. This feature provides the classifier an

ability to distinguish 2-FSK and 4-FSK modulations.

The seventh feature is called the standard deviation of the normalized and cen-

tered instantaneous amplitude and its mathematical expression is given as

σa =

√√√√ 1

Nc

(
∑

A[n]
µA

>AT

A2
cn[n])− (

1

Nc

∑
A[n]
µA

>AT

Acn[n])2. (2.23)

The eighth feature is called the kurtosis of the normalized and centered instan-

taneous amplitude and its mathematical expression is given as

µa
42 =

E{A4
cn[n]}

(E{A2
cn[n]})2

. (2.24)

This feature provides the classifier an ability to distinguish amplitude-based analog

modulations and amplitude-based digital modulations.

Finally, the last spectral-based feature is called the kurtosis of the normalized

and centered instantaneous frequency and its mathematical expression is given as

µf
42 =

E{f 4
N [n]}

(E{A2
N [n]})2

. (2.25)

This feature provides the classifier an ability to distinguish frequency-based analog

modulations and frequency-based digital modulations.

All these features can be used to form a decision tree that classifies both analog

and digital modulation types.
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2.3.2. Wavelet Transform-Based Features

Another feature set that can be used in the AMC area is the wavelet transform-

based feature set. The first idea to use the wavelet transform in the AMC area is

introduced in [19]. Continuous wavelet transform (CWT) is used for these features

and its mathematical formulation is given as

CWT (x; a, b) =

∫ ∞

−∞
x(t)ψ∗

a,b(t)dt, (2.26)

where x(t) is the function to be transformed, ψ is the wavelet function that is used

to take wavelet transform, and a and b are the parameters for the wavelet function.

Notice that the conjugation of the wave function is used in CWT.

There are numerous wave functions that have been used in the literature since the

1970’s when the wavelet theory was developed. There are both discrete and continuous

wavelets but in this case, continuous wavelets are used since the feature set uses CWT.

Morlet wavelet, Meyer wavelet, Poisson wavelet, or Shannon wavelet can be given as

examples. Wavelet functions can be relatively computationally expensive functions,

such as Shannon wavelet, which can be expressed as

ψShannon(t) = sinc

(
t

2

)
cos

(
3πt

2

)
. (2.27)

This complexity drives the researchers away from complex wavelet functions, such as

Shannon wavelets, to less complex wavelets. Therefore, Haar wavelet is used to extract

the feature set for AMC. Haar wavelet’s mathematical expression is

ψHaar(t) =


1, 0 ≤ t < T

2
,

−1, T
2
≤ t < T,

0, otherwise,

(2.28)
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and ψa,b(t) can be expressed as

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
. (2.29)

CWT of each modulation scheme is computed in [19]. For example, CWT of a FSK

signal is

|CWT (x; a, b)| = 4
√
S

(wc + wn)
√
a
sin2

[
(wC + wnaTs)

4

]
, (2.30)

whereas for a PSK signal, it is

|CWT (x; a, b)| = 4
√
S

(wc + wn)
√
a
sin2

[
wcaTs

4

]
. (2.31)

Finally, CWT of a QAM signal is

|CWT (x; a, b)| = 4|An|
(wc + wn)

√
a
sin2

[
wcaTs

4

]
, (2.32)

where wc is the carrier frequency, wn is each symbol’s frequency, An is each symbol’s

amplitude, Ts is the sampling interval, and S is the energy of the signal. Additionally,

CWT of ASK is computed in [20]. Its mathematical expression is

|CWT (x; a, b)| = 4|An|
(wc + wn)

√
a
sin2

[
wcaTs

4

]
, (2.33)

which is the same with CWT of a QAM signal. Therefore, it is not very easy to classify

QAM and ASK signals. However, since the transforms are distinct enough, PSK and

FSK signals can be classified accordingly.

2.3.3. Higher Order Statistics-Based Features

Higher-order statistics-based feature sets are also used in the AMC area. Espe-

cially, the cumulant-based features are very popular in the literature. These features
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are actually related to the moments of the signal. According to [41], cumulants can

be defined around characteristic functions, or in other words, moment generating func-

tions. The characteristic function is defined as

Ψ(t) = E[eixt] =
∞∑
n=0

1

n!
µn(it)

n (2.34)

and the rest of the Taylor expansion of exponential function comes after the charac-

teristic function. As a result, the cumulant generating function can be defined by the

logarithmic characteristic function,

ln(Ψ(t)) =
∞∑
n=0

1

n!
κn(it)

n, (2.35)

and its Taylor expansion coefficients are considered as cumulants. One way of obtaining

the cumulants is taking the derivative of the function. Therefore, the definition of

cumulants is

Cn =
dn ln(Ψ(t))

dtn

∣∣∣∣∣
t=0

. (2.36)

After the computation of cumulants, higher-order cumulants can be expressed as

Cmn = cum(r[n], . . . , r[n]︸ ︷︷ ︸
m−n

, r∗[n], . . . , r∗[n]︸ ︷︷ ︸
n

), (2.37)

where ∗ denotes the conjugation operation.

These features give a great insight into signals spread on the complex plane.

Therefore, as the signal patterns get similar on the complex plane, cumulants also get

closer value-wise.
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Finally, the cumulants up until the 6th order can be written as

C20 =M20, (2.38)

C21 =M21, (2.39)

C40 =M40 − 3M2
20, (2.40)

C41 =M41 − 3M20M21, (2.41)

C42 =M42 − |M20|2 − 2M2
21, (2.42)

C60 =M60 − 15M20M40 + 30M3
20, (2.43)

C61 =M61 − 5M21M40 − 10M20M41 + 30M2
20M21, (2.44)

C62 =M62 − 6M20M42 − 8M21M41 −M20M40 + 6M2
20M20 + 24M2

21M20, (2.45)

C63 =M63 − 9M21M42 + 12M3
21 − 6M20M41 + 18M20M21M20, (2.46)

where Mpq is

Mpq = E[r[n]p−q(r∗[n])q]. (2.47)

We can approximate Mpq by taking the arithmetic average of a signal vector. As a

result, the approximation of Mpq is,

M̂pq =
1

N

N∑
n=1

rp−q[n](rq[n])∗ (2.48)

where N is the length of signal vector.

All cumulant values of some popular modulation types in an ideal scenario where

noise does not exist can be seen in Table 2.1. As it can be seen from Table 2.1, values of

16-QAM’s cumulants and 64-QAM’s cumulants are very similar, since they have very

similar patterns. However, they are still distinct enough to be used in classification.
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Table 2.1. Cumulant values of some popular modulation types.

BPSK QPSK 8-PSK 16-QAM 64-QAM

C20 1 0 0 0 0

C21 1 1 1 1 1

C40 -2 1 0 -0.680 -0.619

C41 -2 0 0 0 0

C42 -2 -1 -1 -0.680 -0.618

C60 16 0 0 0 0

C61 16 -4 0 2.08 1.7972

C62 16 0 0 0 0

C63 16 4 4 2.08 1.7972

2.4. Machine Learning-Based Methods

Machine learning tools have the ability to classify a set of elements in the given

space by creating decision rules. Therefore, they are also very popular in the AMC

area.

2.4.1. K-Nearest Neighbor

K-nearest neighbor (KNN) is one of the machine learning tools that is used in

AMC. It is a supervised learning which means it needs the number of classes before-

hand. Fortunately, the number of classes is determined before the classification process

in typical AMC scenarios. The process of KNN can be defined in 6 basic steps.

(i) First of all, reference signals must be established and a feature set must be ex-

tracted. As reference signals, modulated signals are used in AMC. The noise

effects on the signal depend on the experiment. Reference signals are used as

a reference for the test data. In the previous section, a number of features are

introduced. Each one can be used in the KNN algorithm. However, the cumulant
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feature set is the popular option in the literature since this feature set is easy to

use and efficient.

(ii) The second step is feeding test signals to the system and extracting the corre-

sponding feature set. Modulation types of the test signals are not known.

(iii) After establishing the feature set, the space where classification takes place is also

created. Each feature in the feature set acts as a dimension in this space. In the

third step, distances between a test signal and reference signals are calculated

in the established space. There are many distance metrics that can be used to

compute the distance between two signals and in this step, a metric should also

be established. One of the popular distance metrics is Euclidean distance and it

can be defined as

Dist(F (A), F (B)) =

√√√√ N∑
l=1

[Fl(A)− Fl(B)]2, (2.49)

where A and B are the two signals and N is the number of features that a signal

has. Another distance metric that is used in the KNN classifier is Minkowski

distance. Its mathematical expression is

Dist(F (A), F (B)) =

( N∑
l=1

∣∣Fl(A)− Fl(B)
∣∣p) 1

p

. (2.50)

Notice that when p is 2, it becomes equivalent to the Euclidean distance. When

p is 1, then it is called Manhattan Distance and it can be expressed as

Dist(F (A), F (B)) =
N∑
l=1

∣∣Fl(A)− Fl(B)
∣∣. (2.51)

Another metric that can be used in KNN is Cosine distance. It assumes that the
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feature set for one signal is a vector and its mathematical expression is

Dist(F (A), F (B)) =

−−−→
F (A).

−−−→
F (B)∣∣∣∣−−−→F (A)

∣∣∣∣.∣∣∣∣−−−→F (B)
∣∣∣∣ . (2.52)

This distance gives the similarity between two vectors.

(iv) After all distances are calculated for a test signal, all computed distances are

sorted from minimum to maximum.

Figure 2.3. 2-D KNN visualization.

(v) k shortest distances are taken into account. Here number k is defined by the user.

It should not be too low to miss any information and it should not be too high to

include unimportant distances. Additionally, the number k should prevent any

evenness as much as possible.

(vi) In the last step, the test signal is classified to the class that has the most samples

in the shortest distances.
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Visualization of a 2-D KNN algorithm example can be seen in Figure 2.3.

KNN can perform multi-class classifications and does not need to know any pa-

rameters related to signals. Therefore, it is very easy to use for many classification

problems. The only problem is that when the number of features increases, the com-

putational efficiency decreases. Consequently, some feature reduction methods are

generally used before implementing the KNN algorithm.

2.4.2. Support Vector Machine

Support Vector Machine (SVM) is another machine learning tool that is used in

the AMC area. In KNN, each sample point is classified individually, but in SVM, it

creates a hyperplane in the space which is itself a decision rule. Therefore, it is generally

used as a 2-class classifier. The hyperplane can be expressed by an n-dimensional weight

vector, w, and an offset scalar, wo. Creating this hyperplane itself can be summarized

in 5 steps.

(i) The first step is establishing the feature set. Again, cumulants are a very popular

choice here. Then, training samples are created and these samples are used to

create the hyperplane. Lastly, w and w0 should also be initialized.

(ii) In the second step, the weight vector and offset scalar are updated according to

the reference of training samples. In SVM, two functions must be maximized;

one of them is the margin, which is the distance between the hyperplane and the

closest point to the hyperplane, the other one is the negative loss function. The

margin maximization function is

2

||w||2
(2.53)
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and the negative loss function is

−
N∑

n=1

[yi(w
Txi + w0)− 1], (2.54)

where yi is ±1, which indicates the class of input sample vector, and N is the

number of sample vectors. By maximizing these two functions, w and wo are

updated.

(iii) If one the stopping conditions is not achieved, repeat the second step; if it is

achieved, stop the algorithm. Stopping conditions can either be the successful

classification of all samples or reaching the pre-determined number of loops.

(iv) After the updating process is finalized, test samples’ locations are calculated with

respect to the hyperplane, which can be expressed as

g(x) = wTx+ wo. (2.55)

(v) Classification is performed by looking at the g(x) value. The decision rule is

Class =

mi, g(x) = wTx+ wo ≥ 0

mj, g(x) = wTx+ wo < 0

. (2.56)

Visualization of a 2-D SVM algorithm example can be seen in Figure 2.4.

After computing the hyperplane, it is relatively easy to classify test samples, since

it is an easy vector multiplication and training samples are no longer inside the picture.

The training part has also reduced the computational budget. However, unlike KNN,

SVM is generally used for 2-class classification.
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Figure 2.4. 2-D SVM visualization.

2.5. Feature Reduction Algorithms

As the number of features increases, the methods become also computationally

expensive. Therefore, in the literature, there are various methods to decrease the

number of features by morphing or combining different features in the feature set.

In this section; Logistic Regression, Artificial Neural Networks (ANN), and Genetic

Programming will be discussed.

2.5.1. Logistic Regression

Logistic regression simply is a data fitting algorithm. It is generally used to

fit data that is available in n-dimensional space to a lower-dimensional space. The

resulting fit cannot represent all data with complete accuracy but it aims to maximize

this accuracy. Logistic regression morphs and combines these dimensions into new

dimensions.
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Its morphing and combining abilities are also useful for feature reduction. There-

fore, it is one of the methods to reduce the number of features in the AMC area. The

feature set is treated as space dimensions. This feature reduction can be expressed as

f = Wg+wo, (2.57)

where g is the older M × 1 feature vector, f is the new N × 1 feature vector, W is an

M × N weight matrix and wo is an M × 1 weight offset vector. W can be updated

by iterative algorithms. In [42], some of the algorithms that update W matrix are

evaluated.

Feature reduction methods also cause some pieces of information to be lost nat-

urally and feature reduction algorithms try to minimize this loss. However, sometimes

logistic regression may cause a loss of a significant portion of the information. There-

fore, these methods should be operated carefully.

2.5.2. Artificial Neural Networks

Artificial neural networks are first introduced to the literature in [43]. Neural

networks in human brains inspire mathematicians to model this chain of command on

computation in an entirely artificial environment. As a result, many neural network

implementations are introduced to the literature.

One of the popular ANN architectures is Multilayer perceptron model (MLP).

MLP consists of layers and nodes. MLP has at least 2 layers and each layer has a

number of nodes which are called artificial neurons. Each consecutive layers’ neurons

are connected with each other, which simulates synapse. All of the connections have a

weight attached to them. By updating these weights, the desired outcome is achieved

from the end layer’s neurons.
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Figure 2.5. 3-Layer MLP Example.

In MLP, the first layer is called the input layer, the last layer is called the output

layer, and the rest of the middle layers are called hidden layers. A 3-layered MLP

model is given in Figure 2.5. In a 3-layered MLP model, the mathematical expression

for an output neuron is

yk = ϕ

( N∑
i=1

wkiϕ

( M∑
j=1

wijxj

))
, (2.58)

where yk is kth output neuron, w is weight on the connections, xj is the jth input

neuron, and ϕ is the activation function. An activation function can be chosen from

many functions. One such function is called the sigmoid function and its mathematical

expression is given as

ϕ(x) =
1

1 + e−x
. (2.59)

This function is popular because it has a very easy derivative that is given as

dϕ(x)

dx
= [1− ϕ(x)]ϕ(x). (2.60)
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Derivation is an important part of the MLP models, since the gradient descent algo-

rithm is used to update weights of the neuron connections. First, the error function

is calculated and then by using back propagation and gradient descent algorithms,

weights are updated. Each layer results in one gradient and combining these equations

results in a gradient chain. One such chain example is

∂E

∂wij

=
∂E

∂yi

∂yi
∂ui

∂ui
∂wij

(2.61)

and weights can be updated by using

wij(t+ 1) = wij(t)− κ
∂E

∂wij

, (2.62)

where κ is the learning rate.

MLP models and general neural networks can be used for classification by setting

the number of neurons at the output layer to the number of classes in the dataset.

In this case, model parameters can be updated accordingly to perform classification.

In [31,32], ANN is used for AMC. ANN models can also be used for feature reduction

by setting the number of neurons on the output layer lower than the number of layers

on the input layer.

2.5.3. Genetic Programming

Genetic programming (GP), similar to ANN, also emerged by imitating the bi-

ological life forms. It is also similar to ANN in the way of updating the parameters

of the algorithm by measuring the performance. In [34], the idea of integrating GP to

the AMC area is proposed. GP is used as a way to reduce the number of features in

a feature set and reduce the complexity along with it. The algorithm for GP can be

summarized in 5 steps.
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(i) First, the dataset needs to be established as usual. In the AMC case, this dataset

consists of a feature set that is extracted from modulated signals. Like the other

algorithms, cumulants-based feature sets are also a popular choice for the GP

algorithms.

Figure 2.6. Parent branches before cross-over operation.

Figure 2.7. Child branches after cross-over operation.
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(ii) In the second step, the starting values are selected from the feature set. These

features will be combined and morphed into new features. Thus, the number of

features will be reduced.

(iii) The iteration starts in this step. Initialized parameters form trees with each other

by combining features by some mathematical operators. Thus, parent trees are

created. Then, the fitness evaluations are done. If the stopping conditions are not

achieved, the iteration continues. If the iteration continues, new children branches

are created by generating new random branches and trees or using crossover and

mutations on the available branches. Generating new branches or trees is the

same as the initialization process. Crossover is exchanging branches between two

existing trees. Finally, Mutation is generating a new branch instead of an existing

branch on an existing tree. Crossover operation is given in Figures 2.6 and 2.7

and mutation operation is given in Figure 2.8.

Figure 2.8. Mutation Operation.

(iv) If the desired performance is achieved or the performance stays stagnant over

time, the process stops. There are several ways to form a fitness evaluation. One

of the methods, which is also used in [34], is using the resulting features in the

main problem. If the achieved result is satisfying, then the process would stop.
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(v) Finally, obtained features are used for the classification.

GP is a very efficient algorithm. It does not only reduce the computational

complexity but also improves the performance of the classifier.

2.6. Convolutional Neural Network-Based Classification

Deep learning algorithms have been immensely popular in recent years because

of their ability to solve very hard problems with great performance. There are various

deep learning sub-categories such as Recurrent Neural Networks (RNN), Feedforward

Neural Networks (FNN), or Convolutional Neural Networks (CNN). However, due to

its ability to analyze multidimensional data, CNN is a popular choice among the deep

learning networks.

The general principle of CNN is very similar to MLP. It is not surprising because

of the fact that MLP is also accepted as a deep learning network. Nonetheless, MLP

has only one kind of layer which is called fully connected dense layer but CNN has

much more variety when it comes to layers. Therefore, CNN is more flexible when

solving problems the AMC problem.

Besides fully connected dense layers, CNN has convolutional layers, pooling lay-

ers, dropout layers, and batch normalization layers. While some of these layers include

parameters to be trained, others mainly act as regularizers. The key is combining these

layers in a way that to the problems with a great performance. Since all these layers are

connected consecutively like MLP, training the parameters are also similar to the MLP

training. Loss functions are calculated first and then, by back propagation algorithms,

each parameter in the layers is trained. For more information about deep learning and

its concept, please refer to [44].
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2.6.1. Convolutional Layers

Convolution in multi-dimensional space is performed similar to the 1-D convo-

lution. The convolution filter is shifted through the whole space. In each step, the

parameters in the filter are multiplied with the values in the space where the filter is

located and all multiplied values are added together to find the result of the convolu-

tion for the respective location. Performing the same step for each location results in

a convolution operation. Visualization of 2-D convolution can be seen in Figure 2.9.

Figure 2.9. 2-D convolution visualization.
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Convolution in multi-dimensional space has been very popular because with a

specific convolution filter, some features can be extracted. For example, consider


1 0 −1

1 0 −1

1 0 −1

 (2.63)

as a convolution filter and consider



...

10 10 10 10 0 0 0 0

. . . 10 10 10 10 0 0 0 0 . . .

10 10 10 10 0 0 0 0

10 10 10 10 0 0 0 0
...


(2.64)

as the space. If the convolution is performed, the result is



...

0 0 0 30 30 0 0 0

. . . 0 0 0 30 30 0 0 0 . . .

0 0 0 30 30 0 0 0

0 0 0 30 30 0 0 0
...


. (2.65)

If the result is correctly analyzed, it can be seen that only the edges in the space

are highlighted in the results. Therefore, the specific convolution filter that is used

in the convolution operation is used to detect vertical edges. Therefore; if the filters

are specified for a certain problem correctly, they can bring up the necessary features.

Therefore, convolution can be very powerful in multidimensional spaces. Instead of

designing each filter individually, CNN can train these parameters by using loss function

and back propagation. One of the most popular methods during back propagation is
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gradient descent similar to the MLP.

2.6.2. Fully Connected Dense Layers

Fully connected dense layers or shortly dense layers have the same properties as

the dense layers that are explained in ANN. Each layer has a number of neurons and

each pair of consecutive layers’ neurons are connected with each other.

In CNN, the input data is mostly multi-dimensional, but the desired output is

generally a single output or a group of single outputs if the aim is to make a classification

or regression. Since the neurons in the dense layers have the ability to give a single

output, dense layers are generally chosen as an output layer.

2.6.3. Pooling Layers

Pooling layers are used to make the data smaller and denser by limiting the loss

of information. There are not any parameters to train in pooling layers, since they use

deterministic ways to shrink the size of the data.

There are two main pooling layers that are used in the industry. One of them is

max-pooling layers. Max-pooling layers take a frame with a pre-determined size from

the data and give the maximum number in the frame as an output. A 2×2 max-pooling

layer example can be given as


4 7 6 14

3 12 11 11

10 5 14 3

20 16 18 3


2× 2 max pooling layer
==============⇒

12 14

20 18

 . (2.66)

In this example, the 4× 4 matrix is divided into 4 2× 2 matrices and each 2x2 matrix’

maximum element is written in the place of the 2 × 2 matrix. As a result, a 2 × 2
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matrix is obtained.

The other one is average pooling layers. Average pooling layers take a frame with

a pre-determined size from the data and give the average of all numbers in the frame

as an output. A 2× 2 average pooling layer example can be given as


4 6 6 14

3 11 11 9

10 6 14 5

20 16 18 3


2× 2 average pooling layer
===============⇒

 6 10

13 10

 . (2.67)

In this example, the 4× 4 matrix is divided into 4 2× 2 matrices and the averages of

each 2x2 matrix’ 4 elements are written in the place of the 2× 2 matrix. As a result,

a 2× 2 matrix is obtained.

2.6.4. Batch Normalization

Sometimes input data of one or more of the middle layers may grow out of desired

bounds or deviate from the desired operating range. Therefore, depending on the

problem, there may be a need of keeping everything in check and stable. Normalization

of the batch in the middle of CNN layers may tick those boxes. Therefore, batch

normalization is a very popular layer in the industry. Batch normalization can be done

through

x̂i =
xi − µB√
σ2
B + ϵ

, (2.68)

where

µB =
1

m

m∑
i=1

xi, (2.69)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2, (2.70)
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and x is the input data. As it can be seen from the equations, batch normalization

layers do not have any trainable parameters.

2.6.5. Dropout

In a CNN architecture, there can be thousands of parameters easily and all these

kinds of systems tend to prioritize some of the parameters over the others and depend-

ing on the problem, it could decrease the performance of the system. To overcome this

problem, dropout is developed. Dropout temporarily disables some of the connections.

Therefore, each connection contributes to the solution similarly. Additionally, some

mistakes may be re-adjusted after disabling some of these connections.

2.6.6. Conclusion

By using all of these layers, various CNN architectures can be constructed. One

such example can be seen in Figure 2.10 which is called AlexNet. AlexNet is explained

in detail in [45].
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Figure 2.10. AlexNet Architecture.
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3. FEATURE-BASED AMC AND PERFORMANCE

EVALUATION

In this chapter, we will talk about the performance evaluation of the feature-based

method that is proposed in this thesis.

3.1. Cumulant-Based Classification

To use a feature-based classification algorithm, the feature set needs to be selected

first. Due to their popularity and efficiency in AMC applications, cumulants are used

to perform feature-based classification. After choosing the feature set, the classification

algorithm should also be defined. Machine learning algorithms are well-suited for this

task, so the KNN algorithm is chosen to perform classification. In KNN, a distance

metric needs to be determined at the initialization step and Euclidean distance is

selected as the distance metric.

The next step is to establish target modulation classes and the corresponding

dataset. In this thesis; BPSK, QPSK, 8-PSK, 16-QAM, and 64-QAM are chosen as

the target modulation classes. These modulation types’ constellation diagrams can be

seen in Figure 3.1.

The next step is to generate the dataset. In this part, the only effect that the

signal model has is AWGN. Therefore the signal model expression is given as

r[n] = x[n] + g[n], (3.1)

where x[n] is the symbol vector, g[n] is the AWGN component, and r[n] is the received

signal. The symbol vector of each modulated signal consists of 2000 symbols. For each

modulation type, 1000 test signals have been generated for each even signal to noise

ratio (SNR) value from 0 to 20 dB.
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a) BPSK b) QPSK

d) 16-QAM e) 64-QAM

c) 8-PSK

Figure 3.1. Constellation diagrams of the selected modulation types.
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As a result, there are a total of 55000 test signals. After generating test signals,

the feature set for each test signal is needed to be extracted. Feature set consists of 9

distinct cumulants: C20, C21, C40, C41, C42, C60, C61, C62, and C63. This also means

that the space where KNN is performed is 9-dimensional. In other words, each signal

is represented by a 1 × 9 vector. 10 reference signals for each modulation type at 20

dB SNR are also generated. After establishing the reference and test signals, KNN is

utilized to perform modulation classification.

3.1.1. Results

The results can be seen in Table 3.1. The results for BPSK, QPSK, and 8-PSK

are encouraging. Cumulants manage to classify these modulations types correctly even

in relatively low SNR values. However, from the results, it can also be inferred that

the cumulants are not very successful to classify 16-QAM and 64-QAM. At first, the

performance improves as the SNR increases but the performance stays the same when

the SNR is higher. The problem is clear: The classifier confuses both modulation types

to each other even though the SNR is higher.

The bad news is, an error floor is encountered during this classification; the good

news is that the bad performance only happens when the modulation type is either

16-QAM or 64-QAM.

Table 3.1. Confusion matrices of the KNN method.

4
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 3685 1315

64-QAM 0 0 0 1332 3668
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Table 3.1. (cont.)

12
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 4276 724

64-QAM 0 0 0 709 4291

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 4435 565

64-QAM 0 0 0 623 4377

3.1.2. Root of the Problems

There could be several reasons for this poor performance. One of them could

be the length of the symbol sequence. Even though the distribution of symbols has

a uniform distribution, some marginal cases may appear if the number of symbols is

not sufficiently high. Since 16-QAM and 64-QAM have more distinct symbols than

the other modulation types, the chance of marginal cases to be occurring is not low.

Comparison between QPSK and 64-QAM histograms is given in Figure 3.2. Conse-

quently, these marginal cases may affect the cumulants significantly, which causes poor

performance.

Another reason is that 16-QAM and 64-QAM have very similar constellation pat-

terns, which can be seen in Figure 3.1. Since patterns affect the cumulants significantly,

cumulants for both modulation types tend to have closer values. Every little deviation

or marginal case may result in a wrong classification.
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a) QPSK histogram b) 64-QAM histogram

Figure 3.2. 64-QAM and QPSK symbol histograms. Number of total symbol is 2000.

3.2. How to Improve the Performance

It can be seen from the simulation results that even though we can improve the

QAM classification performance, with current features, it is not possible for the system

to be completely error-free and in this section, this issue will be addressed and a new

solution will be proposed.

3.2.1. Narrower Region of Interest

It is already known that cumulants give information about the general pattern

of a signal on the 2-D plane. Since all BPSK, QPSK, and 8-PSK constellations have

significantly different 2-D patterns, they are easily classified correctly even in low SNR

values. The problem between 16-QAM and 64-QAM is, as it’s been said before, they

have very similar patterns on the 2-D plane, especially with the presence of noise.

If they seem identical in the presence of noise, looking at the plane from another

angle may resolve this issue. In this thesis, it is proposed that looking at a narrower

region of interest could make the system more separable. This narrower region should

be selected such that both modulation types should have distinct patterns in that

region. This narrower region is specified in Figure 3.3. Since both modulation types’
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patterns are more distinct in this region, their cumulant values are also expected to be

more distinct, which leads to better separability.

a) 16-QAM & 64-QAM

b) The specified region

Figure 3.3. Visualization of the narrower region.
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The algorithm works still the same; however, the cumulant calculation only in-

cludes the symbols inside this specific region. The results can be seen in Table 3.2. For

the high SNR values, the results are promising. However; in the low SNR range, the

classifier turns into a biased classifier. In other words, the classification process favors

one modulation over the other one. In this case, the classifier favors 64-QAM.

Table 3.2. Confusion matrices of the narrower region method.

6
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 2 4998

64-QAM 0 0 0 8 4992

14
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 4132 868

64-QAM 0 0 0 4 4996

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 5000 0

64-QAM 0 0 0 0 5000

Biased classifiers are not good, even if it is only in low SNR range. However, its

high SNR performance could be very useful. Since the first classifier has a problem

in the high SNR values, which we called the error floor, and the second classifier has

a problem in low SNR range, which we called biased classifier, both classifiers can be
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combined to produce a good classifier. However, high SNR 64-QAM signals should be

separated before.

3.2.2. Separating High SNR Signals From Low SNR Signals

In this step, we have 4 types of signals: Low-SNR 16-QAM signals, low-SNR 64-

QAM signals, high-SNR 16-QAM signals, and high-SNR 64-QAM signals. High SNR

16-QAM signals are already separated from the other three by using the specific region

classifier. In this part, high-SNR 64-QAM signal should also be separated so that the

low SNR part of the first classifier and the high SNR part of the second classifier could

be combined.

Figure 3.4. Separability after CoV.
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One metric to separate the two signal groups is coefficient of variance (CoV).

First of all, the received signal is demodulated as if the received signal is 64-QAM.

Then, to measure the distribution of the symbols, CoV is utilized. CoV is a very easy

and effective algorithm to measure the distribution. The mathematical expression of

CoV is given as

CoV =
σ

µ
, (3.2)

where σ is the standard deviation of a signal and µ is the expected value of a signal.

Since the patterns are similar to each other and to ensure further separability, only the

symbols that are very close to the modulation points are included in the calculation.

As a result, the separability can be seen in Figure 3.4.

3.3. General Proposed Algorithm

First of all, initial cumulants and KNN are used to make a decision that is called

the first decision. If this decision results in a modulation type that is neither 16-QAM

nor 64-QAM, the output will be the first decision. If the decision is either 16-QAM or

64-QAM, the algorithm will move on to the second step.

In this step, only the symbols that are inside the specific region are considered.

The procedure is still the same as the first step. After computing the cumulants, KNN

is used to decide if the data belongs to 16-QAM or 64-QAM. It is already explained

that if the decision is 16-QAM, the modulation type is 16-QAM. If the decision is

64-QAM, the algorithm will move on to the third step.

In the third step, the algorithm basically decides whether the signal is in the

high SNR region or the low SNR region. First, the algorithm assumes that all the

signals are 64-QAM signals and demodulates them accordingly. Then, the CoV metric

is calculated for each signal. If any CoV value is below the pre-determined threshold,

the algorithm classifies it as a 64-QAM signal, since it means that the signal is in the
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high SNR range. If it exceeds the threshold, the algorithm decides that the signal is in

the low SNR range and classifies the signal according to the output of the first decision.

As a result, this algorithm combines the good properties of two classifiers into a

good classifier. The block diagram of the algorithm can be seen in Figure 3.5.

Figure 3.5. Block diagram of the proposed feature-based classifier.

3.4. Results

The results can be seen in Table 3.3. The results are encouraging, because it

eliminates the error floor on the high SNR region. However, It would be better to have

a lower error rate on the middle SNR regions. As a result, even though the results are

promising and encouraging, especially at the high SNR region, the result is not perfect

and can still be improved further.
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Table 3.3. Confusion matrices of the proposed method.

4
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 3667 1333

64-QAM 0 0 0 1395 3605

12
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 4282 718

64-QAM 0 0 0 731 4269

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 5000 0 0 0 0

QPSK 0 5000 0 0 0

8-PSK 0 0 5000 0 0

16-QAM 0 0 0 5000 0

64-QAM 0 0 0 0 5000
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4. AMC IN THE PRESENCE OF CARRIER PHASE

OFFSET

In this chapter, we will search for a solution when carrier phase offset (CPO)

affects the signal on top of AWGN.

4.1. CPO Presence

In the presence of CPO, the whole complex 2-D plane rotates around the ori-

gin. However, since the rotation is the same for every symbol, the overall pattern is

preserved. Therefore, the challenge of classification does not get very hard. The prob-

lem in the presence of CPO is that, for every rotation amount, new features must be

introduced to the classifier. As a result, computation gets significantly expensive.

In the light of this problem, improving efficiency is as important as improving

performance. Therefore, in this section, the focus will be on improving the efficiency

instead of improving the performance and deep learning tools will be used to perform

classification. Among deep learning networks, convolutional neural network (CNN) is

selected due to its ability to perform classification when 2D data is used.

The challenge is to design a classifier for a signal that is affected by the CPO

without using CPO affected signals as the training data. Excluding CPO affected

signals from the training dataset would greatly improve the efficiency of the classifier.

4.1.1. Signal Model

Since new effects are introduced to the signal, the signal model changes compared

to the signal model in the previous section. The new signal model contains both AWGN



53

and CPO. Therefore, the received signal can be modeled as

r[n] = e−j2πθox[n] + g[n], (4.1)

where r[n] is the received signal, x[n] is the symbol vector, g[n] is the AWGN component

and θo is the CPO value. Here, θo is constant. Therefore, each symbol is equally affected

by the CPO.

4.1.2. Training Dataset

The CNN classifier aims to classify CPO affected signals, but the training dataset

only contains the signals that are affected by the AWGN. Therefore, the signal model

for the training dataset consists of received signals of the form

r[n] = x[n] + g[n], (4.2)

where r[n] is the received signal, x[n] is the symbol vector, and g[n] is the AWGN

component.

For every even SNR value from 0 to 20 dB, 1000 signals that consist of 1000 sym-

bols are generated, which results in 11000 samples for one modulation type. Like the

discussion provided in the previous section, 5 target modulation classes are considered

in this section: BPSK, QPSK, 8-PSK, 16-QAM, and 64-QAM. Therefore, there are a

total of 55000 signals for the training dataset.

4.1.3. Training Dataset Generating Procedure

Since CNN shows its ability best when more than 1-dimensional, preferably 2-D,

dataset is fed to the system, instead of cumulants, a new dataset needs to be generated

for the CNN approach. Fortunately, modulated signals are complex numbers that can

be represented on the 2-D plane.
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The signal generating procedure can be summarized in four steps.

(i) First, each complex symbol in a modulated signal vector is marked on the 2-D

complex plane. Since each signal has 1000 symbols in it, there will be 1000 marks

on the 2-D complex plane.

(ii) In the second step, an n× n grid that covers all the symbols on the 2-D complex

plane is drawn. This results in a group of grids with equal size.

(iii) In the third step, the number of symbols in each grid is measured and noted in

their respective grids. Thus, a 2-D histogram of symbols is calculated.

(iv) In the fourth step, this n × n histogram is converted into a 2-D 8-bit gray-scale

image by normalizing the histogram. Each grid becomes a pixel and normalization

makes the highest value in the histogram 255 and makes the lowest value 0. The

rest of the values are scaled accordingly.

This process is performed for each signal in the training dataset which results in

55000 8-bit gray-scale images. Example images from each modulation type can be seen

in Figure 4.1.

4.1.4. CNN Architecture

The AMC problem, in this case, is a relatively simple task, because complex

features are not needed to be extracted from the images. Therefore, a simple CNN

architecture is used in this case. In [46], a simple but effective architecture in classifi-

cation problems is introduced, which is called VGG-16. In this section, a very similar

architecture to the VGG-16 is used.

The input layer to the CNN architecture is a convolutional layer that has an input

size of 48× 48× 1. This convolutional layer has 8 3× 3 filters. Another convolutional

layer follows the input layer with another 8 3×3 filters. The next layer is a max-pooling
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layer with a 2 × 2 window. Following the max-pooling layer, another 2 consecutive

convolutional layers are used in the architecture with 16 3 × 3 filters. Again, a 2 × 2

max-pooling layer is used after the consecutive convolutional layers. After the second

max-pooling layer, 3 consecutive convolutional layers with 32 3×3 filters are used. The

third 2×2 max-pooling layer follows the third string of convolutional layers. This time,

a flatten layer is used in the architecture, which converts the 3-D data to 1-D data.

After that, 2 dense layers with 70 neurons each are added to the architecture. Finally,

the output layer, which is a dense layer with 5 neurons, is added to the architecture. 5

neurons are used for the output layer, because the classifier is a 5-class classifier. The

architecture can also be seen in Figure 4.2. This network will be called the Cartesian

network in the rest of the thesis.

a) BPSK b) QPSK c) 8-PSK

d) 16-QAM e) 64-QAM

Figure 4.1. Samples from the cartesian dataset.
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Figure 4.2. CNN architecture for the classification of CPO affected signals with a

max-pooling layer.

4.1.5. Results

The results can be seen in Table 4.1. Each test sample has a CPO, θo, that

is uniformly distributed between 0 and 2π. The results are poor for the Cartesian

network. Therefore, feeding the complex data directly to the network does not work

clearly and some changes are needed to be done on the training dataset.
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Table 4.1. Confusion matrices of Cartesian network with max-pooling layer.

4
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 241 227 0 7 0

QPSK 0 422 576 2 0

8-PSK 0 13 984 2 1

16-QAM 0 27 430 346 197

64-QAM 0 18 293 286 403

12
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 231 257 0 2 1

QPSK 0 417 578 4 1

8-PSK 0 26 970 3 1

16-QAM 0 12 392 354 242

64-QAM 0 18 306 102 574

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 247 309 442 1 1

QPSK 0 552 445 1 2

8-PSK 0 19 975 5 1

16-QAM 0 18 238 359 385

64-QAM 0 10 301 28 661

4.2. Polar Coordinates and CPO

CNNs are robust to the translational effects on the 2-D plane due to the nature

of convolution. Convolution results would not change in the presence of translation,

the results would only shift. Thus, the resulting 2-D image would only be the shifted

version of the result before the translation effect. However, CPO has a rotational effect

on the dataset and CNN does not have the ability to compensate for it. As a result,

the results would differ significantly. Therefore, either the network itself or the dataset

should compensate for this rotational effect. For the network itself to compensate for
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it, rotated images should be fed to the network which, contradicts with the challenge.

Therefore, the dataset itself should compensate for this effect.

Thus, we propose using the polar coordinates instead of the Cartesian coordi-

nates. CPO causes rotation in the Cartesian coordinates but rotation in the Cartesian

coordinates corresponds to translation in the polar coordinates.

To understand this effect, both coordinate systems should be analyzed. In the

Cartesian coordinate system, (x, y), the real part of the modulated signal is represented

by x and the imaginary part of the modulated signal is represented by y. Representation

of the polar coordinates, (r, θ), in terms of the Cartesian coordinates is

r =
√
x2 + y2, (4.3)

θ = tan−1(y/x), (4.4)

where r is the length and θ is the angle of the complex modulated signal.

The rotational effect changes both x and y values in the Cartesian coordinates,

but, in the polar coordinates, it only changes the θ values. Therefore, it can be seen

that rotational effects correspond to the translational effects in the polar coordinates.

4.2.1. Methodology

The methodology is the same as the one presented in the previous section. The

only difference is that before generating the dataset, all the signals are converted into

polar coordinates instead of Cartesian coordinates. Example images from the polar

dataset can be seen in Figure 4.3.
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a) BPSK b) QPSK c) 8-PSK

d) 16-QAM e) 64-QAM

Figure 4.3. Samples from the Cartesian dataset.

4.2.2. Results

The results can be seen in Table 4.2. Each test sample has a CPO, θo, that is

uniformly distributed between 0 and 2π.

Table 4.2. Confusion matrices of the polar network with max-pooling layer.

4
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 330 401 131 104 34

QPSK 0 392 601 7 0

8-PSK 0 1 998 0 1

16-QAM 0 5 47 306 642

64-QAM 0 1 10 139 850
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Table 4.2. (cont.)

12
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 390 0 610 4 0

QPSK 669 240 91 0 0

8-PSK 0 0 1000 0 0

16-QAM 0 0 158 469 373

64-QAM 0 0 306 10 684

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 376 574 0 50 0

QPSK 585 394 3 18 0

8-PSK 0 0 1000 0 0

16-QAM 5 2 56 937 0

64-QAM 0 0 96 0 904

The results are better than the previous results but they are still not very good.

Therefore, the network should be more robust to the translational effects, which CNN

is known to be.

4.3. Global Average Pooling

Even though the convolution results in a shifted outcome, the poor results in the

previous section show that the classifier is also sensitive to the shifted results. The

problem arises at the transition between convolutional layers and dense layers. If the

network manages to transfer the information from convolutional layers to dense layers

without losing information pertaining to the translation effect, then the classifier would

be expected to work. To compensate for this effect, a global average pooling layer is

added after the third string of convolutional layers instead of a max-pooling layer. The

global average pooling layers take the average of the whole plane. Therefore, shifting

does not change the outcome of the convolutional layer group. As a result, the new

CNN architecture can be seen in Figure 4.4.
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Figure 4.4. CNN architecture for the classification of CPO affected signals with a

global average pooling layer.

4.3.1. Results

The results can be seen in Table 4.3. Each test sample has a CPO, θo, that is

uniformly distributed between 0 and 2π. The results are promising and show that the

combination of the polar dataset and global average pooling layer grants to the network

the ability of good classification performance without using a CPO affected dataset.
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Table 4.3. Confusion matrices of the polar network with a global average pooling

layer.
4
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 1000 0 0 0 0

QPSK 0 643 342 15 0

8-PSK 0 0 1000 0 0

16-QAM 0 13 159 420 408

64-QAM 0 1 23 111 865

12
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 1000 0 0 0 0

QPSK 0 1000 0 0 0

8-PSK 0 0 1000 0 0

16-QAM 0 0 0 821 179

64-QAM 0 0 0 0 1000

20
d
B

S
N
R

BPSK QPSK 8-PSK 16-QAM 64-QAM

BPSK 1000 0 0 0 0

QPSK 0 1000 0 0 0

8-PSK 0 0 1000 0 0

16-QAM 0 0 0 1000 0

64-QAM 0 0 0 0 1000
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5. AMC UNDER THE PRESENCE OF CARRIER

FREQUENCY OFFSET

Since the signals do not lose their characteristics under the CPO effect, the signals

are still very easy to identify. Their complex 2-D plane representation only rotates

around the origin which preserves the pattern. However, the CFO effect is harder to

deal with, since all the symbols on the complex 2-D plane rotate around the origin by

a different amount. The only thing that is constant under the presence of CFO is the

difference of rotation amount between two consecutive symbols.

If the received signal is only affected by the CPO and AWGN, it is easier to

analyze the signal if the modulation type is classified correctly due to preserved char-

acteristics. However, it is harder to analyze the signal if the signal is under the presence

of CFO. Therefore, estimating the CFO amount to recover the signal is as important

as classifying the signal correctly.

Considering the effects of CFO, in this chapter, we will try to estimate the CFO

amount of the received signal and then, perform classification. We will use deep learning

tools to perform regression and classification. Finally, BPSK, QPSK, and 8-PSK are

chosen as the modulation classes.

5.1. Signal Model

The signal model evolves further compared to the CPO case. The signal model

with the added effect of CFO is defined as

r[n] = e−j2π(fonT+θo)x[n] + g[n], (5.1)

where r[n] is the received signal, x[n] is the symbol vector, g[n] is the AWGN com-

ponent, θo is the CPO amount, and fo is the CFO amount. Here, fo is constant, but
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since it is multiplied with n, it affects every signal differently.

5.2. CFO Estimation

In this section, we will try to estimate the CFO amount of the received signal.

5.2.1. Training Dataset

In this part, it is not possible to use the complex 2-D plane representation to

generate the dataset, unlike in the case of CPO. Therefore, a new representation that

preserves the characteristics of the signals is required to be used under the presence

of CFO. Since relative rotation between consecutive symbols remains the same, differ-

ences between consecutive symbols are used to create a new 2-D representation. The

relative angle between two consecutive symbols, θf , and the distance between two con-

secutive symbols, df , are used to create the axes of the new 2-D representation. The

mathematical expression of the (df , θf ) is given as

df = |r[n+ 1]− r[n]|, (5.2)

θf = tan−1

(
Im{r[n+ 1]− r[n]}
Re{r[n+ 1]− r[n]}

)
. (5.3)

As a result, a more stable 2-D representation of the data with its own characteristics

can be obtained.

Generating the training dataset is very similar to the procedure that is used for

the CPO case. Only the new 2-D representation is used under the CFO case instead

of a Cartesian or polar representation. For every even SNR value from 0 to 20 dB,

2000 signals that consist of 1000 symbols each are generated, which results in 22000

samples for one modulation type. 3 modulation types are considered in this part. As

a result, 66000 8-bit gray-scale images are generated for the training dataset. Samples

from this dataset, which we call differential dataset in the rest of the thesis, are given

in Figure 5.1.
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a) BPSK b) QPSK

c) 8-PSK

Figure 5.1. Samples from the differential dataset.

5.2.2. CNN Architecture

In this part, a very similar CNN architecture that is used in the previous section

is used. However, since this problem is a regression problem rather than a classification

problem, some changes are required. The most notable change is using a dense layer

with only 1 neuron as an output layer, since only a single output is needed. Robustness

to translational effect is also not important in this case. Therefore, a max-pooling layer

is used instead of a global average layer for further sensitivity. The CNN architecture
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can be seen in Figure 5.8. The sensitivity is important in this case, since even the tiniest

difference could affect the signal significantly. Therefore, depending on the desired

sensitivity, the input size may be re-adjusted. For higher sensitivity, for instance,

using a larger input size is more reasonable. The trade-off is, the larger input size is

also computationally more expensive.

Figure 5.2. CNN architecture for the CFO estimation.

5.2.3. Results

The results are encouraging in this part. When the input size is larger, the

network gives very precise results, especially in the high SNR range. When the input
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size is not large, the results are still very consistent but not very precise which is

expected. The results when the input size is larger are given in Figures 5.3, 5.4, and

5.5. Especially, in the high SNR region, the performance is very good. As the SNR

decreases, the results look more scattered but they are still very consistent apart from

one or two samples.

a) 14 dB b) 20 dB

Figure 5.3. CFO Estimation comparison of BPSK in terms of SNR. The CFO is

uniformly distributed between 2 and -2.

a) 14 dB b) 20 dB

Figure 5.4. CFO Estimation comparison of QPSK in terms of SNR. The CFO is

uniformly distributed between 2 and -2.
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a) 14 dB b) 20 dB

Figure 5.5. CFO Estimation comparison of 8-PSK in terms of SNR. The CFO is

uniformly distributed between 2 and -2.

The results when the input size is smaller are given in Figure 5.6. Precision is

not very good compared to the other results but it is still very consistent as expected.

Therefore, it can be concluded that the proposed network can be utilized to estimate

the CFO value if the given signal belongs to BPSK, QPSK, or 8-PSK classes, especially

if the signal is in the high SNR region.

a) QPSK b) 8-PSK

Figure 5.6. CFO Estimation of QPSK and 8-PSK when the input size is smaller. The

CFO is uniformly distributed between 10 and -10.
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5.3. Classification

In this section, we will try to classify the signals after minimizing the CFO effect.

5.3.1. Training Dataset and CNN Architecture

Hypothetically, after eliminating the CFO effect from the received signal, the

signal turns into a signal that is only affected by the CPO and AWGN. Therefore, the

trained network that is used to classify CPO affected signals can also be used here.

However, eliminating the CFO entirely is not very possible and even a minuscule CFO

value like 0.1 degrees per symbol may cause the signal to lose its own characteristics

after 1000 symbols.

To prevent this issue, only 100 symbols per signal are considered for the test data

considering the accuracy of the CFO estimation. This solution comes with its own

problems. Since the trained network is trained by using signals with 1000 symbols,

the results are not as accurate as expected. Therefore, a new network is needed to be

trained.

First of all, a new training dataset needs to be created. This training dataset will

be similar to the dataset that is created before the classification of signals under the

presence of CPO. For each even SNR value from 0 to 20, 1000 signals are generated

for each modulation type. However, this time, each signal has only 100 symbols. The

dataset generation procedure is also the same as the procedure of the polar dataset

generation. Samples from the new polar dataset are given in Figure 5.7. Since only

BPSK, QPSK and 8-PSK are included in the dataset, using 100 symbols is still enough

to define these modulation types. However, they are not as dense and smooth as the

CPO affected dataset that is used in the previous chapter. Using 100 symbols would

not have been enough to define 16-QAM and 64-QAM signals due to their number of

distinct symbols.
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Second, a CNN architecture needs to be established to classify the received sig-

nals. Since the problems are very similar, the same CNN architecture that is used for

the CPO case is used here which is given in Figure 4.4. The only difference is that the

dense layer has 3 neurons, since the number of modulation classes is 3. Therefore, the

network is revised to classify these modulation types. The new CNN architecture can

be seen in Figure 5.8.

a) BPSK b) QPSK

c) 8-PSK

Figure 5.7. Samples from the new polar dataset.
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Figure 5.8. CNN architecture for the classification of CFO affected signals.

5.3.2. Results

The results can be seenin Table 5.1. The classification results are also very

promising and encouraging. Especially, at the high SNR values, the performance is

very good. Clearly, not having both 16-QAM and 64-QAM signals in the classification

process also helps. Considering the results that are obtained in the previous chapters,

we can conclude that the classification performance decreases with the CFO effect.

However, it is expected, since the number of symbols per signal is reduced significantly

because of the CFO.
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Table 5.1. Confusion matrices of the polar network with CFO affected test data.

8
d
B

S
N
R

BPSK QPSK 8-PSK

BPSK 2000 0 0

QPSK 1 1885 114

8-PSK 12 52 1936
14

d
B

S
N
R

BPSK QPSK 8-PSK

BPSK 2000 0 0

QPSK 0 2000 0

8-PSK 0 1 1999

20
d
B

S
N
R

BPSK QPSK 8-PSK

BPSK 2000 0 0

QPSK 0 2000 0

8-PSK 0 0 2000

To conclude, both regression and classification networks show good performances

despite some of the drawbacks, such as reduced number of symbols, CFO effects, etc.

However, the performance is still open to improvements. Including other modulation

types and improving the classification and regression accuracy could be counted as

some of the improvements.
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6. CONCLUSION

To summarize, AMC denotes the autonomous process of classification of the

modulation types of any given modulated signal. First, we surveyed the various AMC

methods that are employed in the literature. The likelihood-based classifiers are one of

the first methods that are utilized in the AMC area. The goodness of fit tests, feature-

based methods, machine learning-based methods, and deep learning-based methods

followed the likelihood-based classifiers in the AMC field. While some of these methods

perform classifications blindly, others assume prior knowledge ahead of the classification

process. In this thesis, blind AMC methods have been investigated.

The first algorithm that we proposed in this thesis uses feature-based methods

and machine learning tools. Since high-order cumulants are a popular choice in the lit-

erature, they are chosen as the feature set and KNN is chosen as the machine learning

tool. The problem in the feature-based algorithms is the error floor that is encoun-

tered during the QAM classification in the high SNR region. Our proposed 3-staged

algorithm manages to eliminate this error floor in the high SNR region. However, it

performs relatively poorly in the middle SNR region.

We then propose a deep learning-based AMC algorithm under the presence of

CPO in Chapter 4. This algorithm focuses on efficiency rather than performance. By

using a novel polar coordinate approach, we manage to build a CNN architecture that

classifies CPO-affected signals without using any CPO-affected signals in the training

phase. The polar coordinate approach allows us to convert the rotation effect that is

caused by the CPO, into the translation effect. Additionally, the global average pooling

layer helps the network compensate for the translation effect. Therefore, we do not

have to use the CPO-affected signals to train the network. As a result, the network

performs very well, especially in the high SNR region.
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Finally, we propose a deep learning-based AMC algorithm under the presence of

CFO in Chapter 5. This algorithm consists of two stages. In the first stage, a network

is built to estimate the CFO amount by using regression. The reason behind the CFO

estimation is to make it easier to analyze the signal. The results show that the first

stage works very well and the network performs with great precision. After mitigating

the CFO effect, the second stage comes into play. In the second stage, the same network

that is used for the CPO-affected signals is used to perform classification. However,

the number of symbols inside each signal is reduced from 1000 to 100 to prevent any

adverse effects of CFO. As a result, the classification network performs well. The

results are not as good as the results in the previous chapters, but it is expected under

the presence of CFO. Overall, the whole algorithm works well to perform classification.

Even though each algorithm that we proposed in this thesis performs well, they

are still open to improvement. As feature works, the performance of the proposed

feature-based algorithm is relatively weak in the middle SNR region. Another stage

that improves the performance in that region may be added to the system. The deep

learning-based algorithm in Chapter 4 shows great efficiency but its performance can

also be improved. Since the angles of the signals are cyclic, some information can be

lost during the transition from 2π to 0. Some kind of cyclic convolution may be added

to the network to improve the performance. The deep learning-based algorithm in

Chapter 5 also shows great performance, but it only includes m-PSK signals. Therefore,

other modulation types may be added to the target modulation classes to expand the

coverage of the algorithm.
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