
PAYLOAD BASED MULTI-PHASE TRAFFIC CLASSIFICATION WITH

MAJORITY VOTING

by

Ilhan Selcuk Mert

B.S., Electrical and Electronics Engineering, Boğaziçi University, 2018
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ABSTRACT

PAYLOAD BASED MULTI-PHASE TRAFFIC

CLASSIFICATION WITH MAJORITY VOTING

Internet is becoming an essential part of our lives with even simple daily tasks

depending on it. This led to an increase in network traffic accompanied with increase

in number of applications hosted on internet. In this heavy traffic environment, clas-

sifying network flows in a fast and accurate manner, has great importance for network

management. Internet Service Providers try to address this issue by using different ap-

proaches from port-based methods to machine learning models but due to widespread

usage of dynamic ports and encrypted packets by modern applications, accuracy of

these approaches declined. To overcome this challenge, recent studies focus on solu-

tions using deep learning architectures.

In this thesis, a multi-phase classification model based on voting and deep learn-

ing is proposed for encrypted traffic classification. The proposed model relies on the

payload of the transmitted packets to classify flows. In this approach, deep learning

based classifiers are trained using different numbers of packets from flows as input and

the prediction of multi-phase model is an ensemble of these classifiers calculated by dif-

ferent voting strategies. This approach enables classification of flows starting from the

first transmitted packet with payload, and updates the predicted class as the number

of transmitted packets in flow increases. This approach has been tested on datasets

containing real network flows from various applications. The performance of proposed

approach is evaluated by comparing different classification models and different voting

strategies.
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ÖZET

ÇOĞUNLUK OYLAMASI YARDIMI İLE ÇOK AŞAMALI

TRAFİK SINIFLANDIRMA

Günümüzde internet giderek hayatımızın temel parçalarından biri olmakta, ve

en basit günlük işlerimiz bile internete bağımlı durumda bulunmaktadır. Bu du-

rum, hem internet üzerindeki uygulama sayısının hem de ağ trafiğinin artmasına ne-

den olmaktadır. Bu yoğun trafik ortamında, ağ akışlarının hızlı ve doğru bir şekilde

sınıflandırıması ağ yönetimi açısından büyük bir önem taşımaktadır. İnternet Servis

Sağlayıcıları, bağlantı noktası tabanlı yöntemlerden makine öğrenme modellerine kadar

farklı yaklaşımlar kullanarak bu sorunu çözmeye çalışmaktadır. Modern uygulamaların

dinamik bağlantı noktalarını ve şifreli paketleri yaygın olarak kullanması nedeniyle

bu yaklaşımların doğruluğu azalmaktadır. Bu zorluğun üstesinden gelmek için, son

çalışmalar derin öğrenme mimarilerini kullanan çözümler üzerine odaklanmaktadır.

Bu tezde, şifreli trafik sınıflandırması için oylamaya ve derin öğrenmeye dayalı çok

aşamalı bir sınıflandırma yordamı önerilmiştir. Önerilen yordam, akışları sınıflandırmak

için iletilen paketlerin sahip olduğu yükü kullanmaktadır. Bu yaklaşım ile, derin

öğrenme tabanlı sınıflandırıcılar, akışlardan farklı sayıda paketler kullanılarak eğitilir ve

çok aşamalı modelin tahmini, bu sınıflandırıcıların çıktılarının farklı oylama stratejileri

ile birleştirilmesi ile elde edilir. Bu yordam, yük içeren ilk paketten başlayarak akışları

sınıflandırabilir ve akışta iletilen paket sayısı arttıkça tahmin edilen sınıfı günceller.

Bu yordam, çeşitli uygulamalar için gerçek ağ akışlarını içeren veri kümeleri üzerinde

test edilmiştir. Önerilen yordamın performansı, farklı sınıflandırma modelleri ve farklı

oylama stratejileri ile karşılaştırılarak değerlendirilmiştir.
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1. INTRODUCTION

Network Traffic Classification is a task in network management dealing with the

classification of network flows according to the different properties. A network flow

consists of transmitted packets between two hosts in a given time interval. Typically,

traffic classification is employed by internet service providers (ISPs) for traffic routing,

Quality of Service management or policy enforcement (e.g., blocking packets coming

from certain applications or logging). Different classes are processed with different

policies by ISPs ensuring that users get the best service.

To classify network flows, different methods are employed. We can divide these

methods into three as follows: port-based methods, Deep Packet Inspection (DPI)

methods and statistical methods.

Port-based methods, as the name implies relies on the port information to classify

flows. This is the simplest and the fastest classification method which was widely

employed by ISPs in the past. It usually relies on a large look-up table containing known

addresses of applications. Port-based methods are easy to implement and consumes

very low resources but nowadays many applications use dynamic ports which decreases

the accuracy of port-based methods making them obsolete.

Statistical methods use the statistical features extracted from flows. These fea-

tures can be number of transmitted packets, mean packet size, packet inter arrival

times, byte frequencies etc. Usually, these features are used to train a machine learning

model (such as Decision Tree, K-NN, K-means etc.) to classify flows. These methods

are slower compared to port-based methods, but they have greater accuracy.

DPI is an umbrella term including all methods which uses the payload of net-

work packets. In DPI methods, network flows are classified by examining the payload of

their packets. DPI methods are more accurate with the cost of being slower compared

the previous two methods mentioned above and they require more processing power.
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Signatures are extracted from payload to represent applications. These extracted sig-

natures are used to create a signature database and packets are classified by comparing

their payload signatures with the database. As mentioned above this method is more

advanced compared to previous methods enabling more accurate classifications, but

the drawback of this method is, encrypted traffic hinders signature comparison. To

overcome this drawback recent studies focus on deep learning based approaches.

1.1. Motivation

Over the years, the number of applications and the transmission speed in internet

increased steadily and most of the applications are using encrypted packets. These de-

velopments pose a challenge in terms of network management. Network managers need

to classify network flows in a fast and accurate manner to ensure best service for their

users. The legacy port-based and statistical methods are insufficient to handle today’s

network traffic. Although port-based methods work very fast, many new applications

use dynamic ports which lowers port-based classifiers accuracy significantly. On the

other hand, statistical methods are accurate but slow, they require sufficient amount of

packets to be transmitted so that the calculated features are meaningful. In this thesis,

a payload based multi-phase model is proposed for traffic classification. The proposed

model starts to classify network flows starting with the first packet containing payload

and updates its prediction via majority voting as the number of transmitted packets

increase.

1.2. Contributions

The main contributions of this thesis can be summarized as follows:

• In contrast to existing classifiers, a multi-phase dynamic classifier is introduced

which can classify flows starting with first packet containing payload, and updates

its prediction as the number of transmitted packets increase via majority voting.

• Different voting procedures are explored for multi-phase model, to investigate

which packets in transmission sequence contain more information for model.
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• The multi-phase structure of proposed model allows asynchronous computation,

which qualifies proposed model for real time scenarios.

1.3. Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the related

works on network traffic classification and their advantages and disadvantages. Chapter

3 describes the proposed multi-phase model and its underlying architecture. Chapter

4 shows the experimental results and the evaluation of proposed model. Chapter 5

presents the conclusion and future work.
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2. RELATED WORK

Network traffic classification is a topic, old as internet itself. Using machine

learning algorithms for traffic classification is also not a new subject, it is studied for

more than 20 years. Examples of such works can be found in literature as early as

1990 [6]. As stated in introduction, traffic classification methods can be divided into

three categories as port-based methods, statistical methods and DPI based methods

according to information they rely on.

2.1. Port-Based Methods

Port-based classifiers are the simplest and the fastest classifiers. As the name

implies, they rely on the port information to classify flows. This approach assumes

that every application uses distinct port numbers which can help to distinguish flows.

These ports are recorded into a look-up table and compared with the used ports of

incoming flows to classify flows. This assumption was reliable for the early stages

of internet but as the internet grow and the number of applications increased, this

approach became unreliable due to applications using dynamic ports. Nowadays port-

based approaches are obsolete, research focus is shifted entirely on statistical classifiers

and DPI based classifiers.

2.2. Statistical Methods

Statistical methods are slower compared to port-based methods but they far more

accurate in today’s world. As the name implies, statistical methods relies on different

statistics (features) extracted from flows such as packet inter-arrival times (PIAT),

packet sizes etc. These extracted features are used in conjunction with machine learning

algorithms or threshold and probability based approaches to classify flows. In the past

threshold and probability based approaches were more popular, but the rise of machine

learning (especially deep learning) led researchers to focus on methods using different

machine learning algorithms.
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In [7] authors use, packet size, PIAT and arrival order to create histograms (fin-

gerprints as the authors call them). To classify new flows, they calculate the above

listed statistics from flows and compare them with their created fingerprints. Using

thresholds, they assign the new flows into one of the existing classes or label it as

unknown.

In [8], authors suggest a similar method to [7], but instead of using time based

statistics, they use byte counts and probability vectors. They generate attribute meters,

such as byte frequency vectors, various request response combinations (e.g. a ’GET’

request followed by ’HTTP’ response). As in [7], they create a fingerprint database

from these attribute meters and compare the new flows with fingerprints and calculate

Kullback-Leibler divergence. They use different thresholds to classify flows.

As mentioned, recent studies focus on using machine learning algorithms to clas-

sify flows instead of extracting fingerprints and using similarity metrics with thresholds.

Machine learning based statistical methods can be divided into two as supervised ap-

proaches and unsupervised approaches. Supervised approaches are simpler compared

to its unsupervised counterpart. In supervised approaches, known flows with their fea-

tures are used to train a classifier. These classifiers learn to use extracted features to

classify flows.

In [9], authors use 249 different features such as, flow duration, port information,

payload size, PIAT to train a Naive Bayes classifier. In [10], authors use different

machine learning algorithms such as Decision Trees, Multilayer Perceptrons (MLP),

Bayesian Networks with a small set of statistical features to find a scalable, fast classi-

fier. [11] presents a similar study to the [10] with addition of Support Vector Machine

(SVM). Recent studies explore deep learning architectures to train classifiers. [12] uses

recurrent and convolutional neural networks (CNNs) as classifier using the flow statis-

tics.

In [13, 14] unsupervised approaches are examined. [13] uses Expectation Maxi-

mization algorithm which is an unsupervised Bayesian classifier, to learn classes from
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the flows and use the learned classifier to classify new flows. [14], statistical features

are used with payload information to learn clusters and flows are classified calculating

the distance between flow and cluster means.

There are also hybrid approaches which combine unsupervised learning with su-

pervised learning. An example of such approach is given in [15]. In [15], first K-means

algorithm is used to find clusters. The results of K-means is used as feature with

additional statistical features to train a Decision Tree.

The main advantage of statistical methods is that they can work well with en-

crypted traffic which is a challenging issue for DPI based methods but the drawback

is that they need to wait for certain number of packets to be transmitted in each flow

to calculate meaningful statistics. The threshold based and unsupervised learning ap-

proaches can handle unknown traffic but the supervised learning approaches can not.

Another important issue to consider for statistical methods is feature selection process

which is vital for the success of classifiers [16]. Using too many features or leaked fea-

tures can lead to overfitting whereas using too few features can result in underfitting.

Both results is undesired.

2.3. Deep Packet Inspection Based Methods

DPI based methods use the payloads of the transmitted packets. They are slower

compared to port-based and statistical methods, and usually require more processing

power. To classify flows, payloads can be compared with a signature database (similar

to fingerprints approach in [7]) where signatures are extracted from payloads or as in

recent studies payload can be fed into a machine learning algorithm as feature.

The earliest DPI based methods relies on string matching as in [17]. In [17],

authors put forward nine distinct identification methods. Six of these methods relies

on DPI by comparing different signatures extracted from payload to a known signature

database.
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In [18], a multi phase approach is presented. First, flows are classified as ap-

plication or non-application. The second step is to classify application flows into the

different applications. For the second classification, authors use the raw payload data

as feature vector. Only first n bytes of payload is considered. They use Naive Bayes,

AdaBoost and Regularized Maximum Entropy as classification algorithms.

More recent studies focus on using deep learning which can successfully handle

raw input as in image classification and text processing.

In [19], authors propose a classifier employing two neural architectures to classify

network flows by using payloads. First one uses stacked autoencoder (SAE), the second

one uses CNN. They used “ISCX VPN-nonVPN” dataset [20] to evaluate the proposed

architectures. In the proposed SAE architecture, they used five fully connected layers

with dropout technique to prevent overfitting. In proposed CNN architecture, they

used two one-dimensional convolutional layers followed by a pooling layer arguing that

the one-dimensional convolutional layers can capture the spatial dependencies present

in the payload which can distinguish different application flows. Authors also stated

that CNN based architecture outperforms the SAE based architecture for application

classification.

In [21], authors approach the network classification problem as an image classi-

fication problem. They create network images from network packets by grouping bits

into pixels. Two different deep learning models are trained using these created net-

work images as input. First of these models uses a CNN architecture. In [21], two

dimensional convolutional layers are used unlike [19]. The second proposed architec-

ture uses residual network (ResNet, a network with residual connection). It is shown

in [21] that for large payload sizes ResNet architecture outperforms CNN architecture,

but for small payload size (e.g. 36) CNN architecture performs considerably better

compared to ResNet architecture.

In [22], a hybrid approach combining DPI and statistical methods are used to

classify encrypted traffic. Payload data is processed by a hybrid network containing
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CNN and recurrent neural network (RNN) layers to extract a payload vector which

represents the flow. This vector is combined with a statistical characteristics vector,

generated by an RNN using different statistical features extracted from flows such as

packets per second. The combined vector is fed into a fully connected dense network

for classification. The proposed model is tested using traffic classification dataset pre-

sented in [20]. As a convolutional layer, one dimensional convolutional layer is used

and as a RNN, gated recurrent unit (GRU) is used. Contrary to above mentioned ar-

chitectures, packet payloads belonging to same traffic processed in parallel CNN layers

then concatenated into one where in above models payloads were first concatenated

then processed.

In [23], authors use as similar payload based approach to [22]. Packet payloads are

processed in parallel one dimensional convolutional layers and concatenated into one

vector. This vector is processed again by using another one dimensional convolutional

layer and fed into a softmax layer to generate predictions. The proposed model is

evaluated by using same dataset presented in [20]. The results are compared with

different proposed models including [19] and an architecture containing both CNNs

and long short-term memory (LSTM) layers similar to [22]. The proposed model

outperforms other models in terms of precision, recall and F1-score for almost all classes

present in dataset regardless of the input packet size. Also the authors remark that

their proposed method requires least number of epochs compared to other suggested

deep learning models.
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3. PAYLOAD BASED MULTI-PHASE TRAFFIC

CLASSIFICATION

This chapter focuses on introducing general concepts regarding the network pack-

ets, deep learning and proposed model. Before delving into the details of proposed

model, it will be appropriate to introduce preliminary information. First network

packet structure and payload processing will be described. Next, we will introduce

some general concepts regarding deep learning and techniques used in proposed model.

Lastly, the proposed model will be presented.

3.1. Network Packet Structure

A network packet refers to the single unit of data block transmitted on a computer

network [24]. A network packet has three main components header, trailer and payload.

The header component contains the instructions to deliver the packet to its destination

such as source IP, destination IP etc. The trailer contains control information to signal

the receiver this is the end of transmitted packet. The payload component (called

also user data) contains the actual message itself which wanted to be transmitted on

network. An example of IP packet structure is given in Figure 3.1.

As shown in Figure 3.1 an IP packet contains only header and payload. The

header parts carries information such as destination IP address, protocol and meta

information about the transmitted packet. The data corresponds to payload. It has no

trailer because IP packets are usually transmitted via Ethernet frame which possesses

its own trailer and header.

3.2. Payload Processing

As stated before, the proposed model relies only on the payloads to classify net-

work flows. Payload itself is consists of the bytes. It might have variable length (e.g. IP
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packets can have up to 65536 bytes). For classification task, the payload part of pack-

ets must be vectorized, and the length of each vector must be equal in order to train

deep learning models. For vectorization, different approaches are used in literature

with different complexities ranging from simple vector space models to representation

vectors extracted through autoencoders.

Figure 3.1. IP Packet Structure Reproduced from [1].

3.2.1. Vector Space Model

Vector Space approach is the simple and fast approach for turning a payload

into a numerical vector. This approach converts each byte into a predefined numerical

value. Usually each byte is represented by a number between 0 and 255 and the

corresponding payload is converted into a numerical vector by this mapping. Another

and more complex approach is that, instead of representing each byte as one number,

we can group sequential bytes into arrays and represent these arrays as one number, an

approach known as n-gram. The n-gram represents a continuous sequence extracted

from an input with length of n. In other words, we extend the mapping dictionary to

include not just bytes but the byte groups. The first approach results in a numerical
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vector having the same length as the payload itself and this approach can be considered

as n-gram vectorization with n = 1 also known as unigram.

Another approach is to use count vectors. In contrast to above approach, in

this approach each payload is represented by a fixed length vector. This fixed vector

keeps track of the each possible n-gram and represents the payload as the count of

each possible n-gram found in payload. This count vector can be also transformed to

distinguish certain important n-grams from the less important ones by using differ-

ent methods such as term frequency-inverse document frequency vectorization simply

known as TF-IDF [25]. In simplest terms TF-IDF weights importantance of a n-gram

by comparing the frequency of n-gram in a collection of payload. It looks how frequent

given n-gram in a given payload (term frequency part of TF-IDF) and how frequently

this n-gram found in other payloads in given collection (hence the inverse document

frequency parf of TF-IDF). A simple calculation for TF-IDF is

tf − idft,p = countp(t) · log(
N

np

) (3.1)

where countp(t) represent the count of n-gram t in payload p and N is the total number

of payloads and nt is the number of payloads where n-gram t is present. The main

advantage of this vectorization approach is, it preserves the all bytes in a more compact

representation in exchange of losing spatial information found in payload.

3.2.2. Feature Extraction via Autoencoders

Another widely used method to turn payload into a numerical vector is using

autoencoders to learn a latent features representing the payload [26]. Autoencoders

are special type of neural network where the input and output of network is the same.

Network is trained in a way that it should output the input vector. To make the learned

network robust, a small noise is added to input before feeding it into network. Usually,

autoencoders are designed as symmetric networks with a bottleneck layer in the middle

part. The output of bottleneck layer is considered as the learned representation of input

in a lower dimension. The part covering from input layer to bottleneck layer called as

encoder part which compresses the input and the part covering from bottleneck layer
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to output layer called as decoder part which decompresses the compressed input into

its original state. An example of such network is given in Figure 3.2.

Figure 3.2. Architecture of a Simple Autoencoder Reproduced from [2].

A similar approach to autoencoders is called word2vec proposed in [27]. Word2vec

uses neural networks as autoencoder but here instead of reconstructing same input at

the output layer, goal is to predict the given input by using its neighbors called as

continuous bag of words (CBOW) method or predict its neighbor by using the input

called as skip gram method. [27] suggests to use CBOW for applications where speed is

essential. By using word2vec method, latent representations for bytes can be extracted

and payload can be represented as two dimensional vector consists of representations

of bytes or aggregations can be used to lower the dimension of representation vector

into one, for example the average of all bytes can be taken.

Both of word2vec and autoencoder approaches promise more compared to the

vector space approach in exchange of computational complexity. Compared to the

vector space approach, they need a separate neural network to be trained and require

more time to process payload into vectors.
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3.3. Deep Learning

This subsection focuses on introducing general concepts regarding deep learning

which will be necessary for explaining the proposed model. Deep learning refers to a

subcategory of broader family of machine learning algorithms which employs artificial

neural networks [28]. Originally, the name deep learning is used to describe the neural

network architectures which contain more than one layer between input and output

layers. These intermediate layers are called as hidden layers. Deep learning archi-

tectures can be named by the neural networks they use such as MLP, RNNs, CNNs.

Today, deep learning models are widely used in different fields including, computer

vision, natural language processing, time-series forecasting, recommendation systems,

bioinformatic etc.

3.3.1. Multilayer Perceptron

MLP is the special name of feedforward neural networks (FNNs) with full con-

nections. In other words, each Layer contains at least one artificial neuron and that

neuron is connected to the all neurons in preceding and succeeding layers. The name

perceptron refers to a specific kind of artificial neuron with unit activation function [29].

Although in modern sense, MLP is used as an umbrella term containing all FNNs. The

FNNs are the simplest neural network architecture and contains only forward connec-

tions without feedback connections. The one of the earliest examples of such network

can be found in [30].

An artificial neuron receives the input signal and maps it into an output via

weighted sum and activation function (also referred as transfer function). The output

of a neuron is given with following formula

y = ϕ

(
N∑
i=0

wi ∗ xi

)
(3.2)

where y refers to the output of neuron, ϕ (.) is the activation function, and the vector

w =
[
w1 w2 · · · wn

]
is the weights of the neuron and x =

[
x1 x2 · · · xn

]
is the

input signal. A simple illustration of neuron can be found in Figure 3.3.
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Figure 3.3. Illustration of Neuron Reproduced from [3].

By using unit step function as activation function (also called as heaviside step

function) perceptron can be used as binary classifier or by using softmax as activa-

tion function it can be used in multiclass classification. Following functions given in

Table 3.1 are the most popular choices for activation functions.

Usually, for a model to be considered as a deep model, it should have minimum

of three layers, including the input and output layers. The deep learning models

are trained using backpropagation and a selected loss function. Loss function gives

a quantitative result measuring how well the model is fitted regarding the learning

problem which can be a classification task or a regression task. The goal is to minimize

the loss function. Backpropagation calculates the gradient of loss function with respect

to the weights in corresponding layers. The calculated gradients are used in updating

the weights using an optimization algorithm such as gradient descent. The magnitude

of update is controlled by a special parameter called learning rate. This updates takes

place in certain intervals where a batch of training observations is fed into model and

the resulting predictions is compared with the actual outputs. The size of the batch

can vary from one observation to entire training set. One complete tour of training

data is called as epoch and models are trained in epochs. As the number of epoch

increases, weights converge to a stable state which represents the optimization of loss

function. The main advantage of MLP is the resulting deep structure can learn the

non-linear functions. This is the direct result of cascading multiple layers.
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Table 3.1. List of Activation Functions.

Name Formula Range

Identity x (-∞,∞)

Unit Step

0 x < 0

1 x ≥ 0

{0,1}

Sigmoid
1

1 + e−x
(0,1)

Tanh
ex − e−x

ex + e−x
(-1,1)

Rectified Linear Unit (ReLU)

0 x < 0

x x ≥ 0

[0,∞)

Softmax
exj∑N
i=1 e

xi

for j = 1, 2, .., N (0,1)

3.3.2. Convolutional Neural Networks

CNNs are special FNNs, mostly used in problems containing unstructured data

like images, videos, speeches, texts [31, 32]. Main reason for this preference is that

CNNs are great to exploit spatial relations due to their unique structure. They are more

regularized compared to the MLPs meaning that they have considerably less learned

parameters which makes them prone to overfitting. This regularization achieved by

weight sharing property of convolutional layers. Hidden layers of a typical CNN archi-

tecture consists of 3 different kinds of layer. Usually these layers are found in following

order, convolutional layer, pooling layer, fully connected layer. A simple example of

CNN architecture is given in Figure 3.4

The convolutional layers, as its name implies, implement convolution operations

to their inputs. Convolution operation helps to distinguish local patterns and they are

implemented via filters. These filters traverse the input with respect to its dimensions.

This is illustrated in below Figure 3.5. As it can be seen from Figure 3.5, filters scan

the input and maps it into output by multiplying each cell with corresponding weight



16

in the filter and sums the multiplication results. This reduces the size of input. This

size reduction can be avoided by zero padding to input hence increasing its size so

that the resulting output will have the same size with original input. The output of

convolutional layers are called as feature map. The number of dimensions in filter

which is used for convolution should be equal to number of dimensions in input. The

hyperparameters in convolutional layers which needs to be decided are listed as follows,

filter size, stride (decides how many step the filter is shifted in succeeding operations)

and number of filters. All of these hyperparameters effects the shape of output. As

mentioned above CNN has to learn fewer parameters compared to its fully connected

correspondence. The reduced number of learned parameters can be explained as fol-

lows, consider an image input of size 32x32 which is a very small image compared to

today’s standards. If one decides to use a fully connected layer, each neuron must

have 32x32=1024 parameters and usually a layer consists of more than one neuron

which increases the number of learned parameters. Compared to fully connected layer,

a convolutional layer with filter of size 3x3 has only 9 parameters which reduces the

number of learned parameters significantly.

Figure 3.4. An Example of CNN.

Usually a convolutional layer is followed by a pooling layer. The purpose of pool-

ing layer is to downsample the output of convolutional layer and provide robustness to

local variations. There are two kinds of pooling, local pooling and global pooling. Lo-

cal pooling generates a new feature map by downsampling the output of convolutional

layer. Global pooling reduces each feature map into a single output, in other words it

flattens the the output of convolutional layer. Global pooling is equal to local pooling
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with pooling filter size equal to size of feature map resulting from convolutional layer.

Pooling layer works in a similar manner to convolutional layer. It consists of a filter

and implements a convolution operation but it has no learnable parameters. In other

words pooling layer can be considered as convolutional layer with a filter of constant

values. Most popular pooling operations are max pooling and average pooling. Max

pooling takes the maximum value of the current window of feature map whereas the

average pooling takes the average of current window.

Figure 3.5. An Example of Convolution with Filter Size of 3x3 and No Padding.

The fully connected layer takes the output of pooling layer. If needed, the output

of pooling layer is flattened before it is fed into fully connected layer. This layer is

same as any hidden layer in MLP. Usually more than one fully connected layer is used

to decrease the size of output of pooling layer gradually.

The CNN can be summarized as follows, first the convolutional layer extracts

features from input. Then pooling layer provides feature selection. In the last step

fully connected layers learns the given task (usually a classification task) using the

extracted features. As stated in above CNNs are usually used in image processing

due to its power to take spatial arrangements into account and extracts local patterns

as features. Every filter can be considered as a special pattern detector scanning the

entire input for a specific pattern. This is the result of weight sharing. In training

phase, convolutional layer learns the which local patterns it should look for in a given

input.
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3.3.3. Recurrent Neural Networks

In contrast to CNN and MLP networks, the output of RNNs doesn’t just depend

on only the current input but it also depends on the current state of network. This state

is called as memory. This special property of RNNs allows the processing of inputs

with any length. RNNs can be considered as filters with infinite impulse response. The

most popular RNN networks are implemented by using GRUs or LSTMs.

Classical architecture of RNN is given in below Figure 3.6. Left side of Figure 3.6

shows the the original structure and the right side shows the unfolded version of it. As

one can see from the Figure 3.6, the current output yt depends both on current input

xt and memory at−1. Due to this feedback connection provided by memory, RNNs can

handle inputs with infinite length without increasing the model size. RNNs are very

popular for processing sequential data like speech and text. Main reason is that the

current output of model depends on the past inputs (represented by memory) as well

as current input which can be very useful for tasks such as speech recognition, machine

translation, time-series forecasting. A similar weight sharing process as in CNNs is also

present in RNNs where weights are shared temporally. Meaning that the successive

inputs in time share the same weights.

Figure 3.6. General Architecture of RNN Reproduced from [4].

The early vanilla RNN networks suffered gradient problems (vanishing, explod-

ing) in training via backpropagation. In practise, gradients tends to vanish or converge



19

to infinity rendering trained network useless. To overcome these gradient problems new

variations of backpropagation are proposed such as backpropagation through time. As

stated above two most popular RNN variations are GRU and LSTM.

The LSTM is first introduced in 1997 by [33]. It can successfully prevent van-

ishing gradient problem but exploding gradient problem still can be encountered. The

vanishing gradient problem is solved by using gates in LSTM. A LSTM unit has three

gates in total namely: forget gate, input gate and output gate. Forget gate decides if

it need to retain past information coming from previous inputs or the past information

can be forgotten. Input gate relegates the impact of current input to output of LSTM

cell. Output gate calculates the output of cell. These cells work together to control

the information flow in LSTM cell. Internal structure of a LSTM cell is given below

Figure 3.7.

Figure 3.7. General Architechture of LSTM Cell Reproduced from [5].

The governing equations of LSTM can be written as

it = σ
(
xtU

i + ht−1W
i
)

(3.3)

ft = σ
(
xtU

f + ht−1W
f
)

(3.4)

ot = σ (xtU
o + ht−1W

o) (3.5)
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Čt = tanh (xtU
g + ht−1W

g) (3.6)

Ct = σ
(
ft ∗ Ct−1 + it ∗ Čt

)
(3.7)

ht = tanh (Ct) ∗ ot (3.8)

where xt denotes input vector, it is output of input gate, ft is output of forget gate,

Čt is the cell activation vector, ot is the output of output gate, ct is cell state, ht is the

hidden state vector, also called as output vector. The U and W matrices denote the

learnable weights of LSTM cell. As one can see from the governing equations the cell

state is controlled by previous state (effected by output of forget gate), cell activation

vector and input vector. The output of LSTM unit is calculated by cell state and

output of output gate.

A simplified version of LSTM is proposed in [34] which is known as GRU. The in-

ternal structure of GRU cell is very similar to LSTM cell but it doesn’t have the output

gate, hence it has fewer learnable parameters compared to LSTM cell. This simplifica-

tion reduces the required computational power and the training time in exchange for

a simpler model which can perform worse compared to its LSTM counterpart. But in

certain tasks, it is observed that networks employing GRU cells perform close to its

LSTM counterpart hence justifying their use.

To summarize, RNNs are very useful for temporal data where the current output

is effected by past outputs and inputs. Due to this special property they are widely used

in time-series problems as well as text and speech processing problems. By reversing

the flow of data and training a new neural network, a bidirectional RNN can be imple-

mented. In this mode, the output of forward and backward network are concatenated

and the combined output is the output of bidirectional network.

3.4. Proposed Model

In this thesis our main purpose is to present a deep learning based ensemble

model which can classify network flows by using their packet payloads. This section
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presents the proposed model. The model consists of three main modules. These mod-

ules are payload preprocessor, deep learning models and majority voter. The overall

architecture is given in Figure 3.8. The proposed model predicts an application class

for a given flow starting from the first packet with payload and updates its predictions

as the new packets with payload are acquired which enables the proposed model to be

flexible and responsive to the contents of new packets.

Figure 3.8. Overall Architecture of Proposed Model.

As shown in Figure 3.8, the outlying working principles of proposed model can

be explained as follows. The model starts to generate predictions with the first packet

containing payload from the flow. The payload is turned into a numerical vector with

a fixed length and fed into the corresponding deep learning model which uses one

packet vector to classify flows. The returned application prediction is published as

the application type of the flow and stored. When the second packet with payload is

acquired from flow, it is also processed as the first packet and the payload vectors of

first two packets fed into a different deep learning model. This model is similar to the

first model but it uses two payload vectors to classify flows. The returned application

prediction is published as the application type of the flow and stored. Same process

is repeated with the third packet with payload but this time instead of returning the

application prediction of the deep learning model with three packets as is, majority
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voting is applied using the current prediction with previous two application predictions

obtained from previous models. The resulting prediction of voter is returned as the

application type of the flow. This process is repeated as the new packets with payloads

are acquired from the flow and the application type of flow is updated according to the

result of majority voting module. This approach enables asynchronous computation,

meaning we can start to generate predictions as the new packets arrive and store them

to use later in voting procedure. In other words by the time, fifth packet arrives, we

will be already have predictions from the previous models to use in voting.

In the remainder of this section the modules of proposed model will be explained

in details, starting with the payload preprocessing followed by deep learning models

and majority voting methodology.

3.4.1. Payload Preprocessing

As described in above section 3.2 payloads are needed to be vectorized and made

model ready to train subsequent deep learning models. Usually deep learning models

require a fixed size of input to be trained. This is also true for our proposed deep

learning architecture. To preprocess payloads into a training ready vectors, two pre-

processing methods are considered. One employing a vector space approach, other is

using feature extraction via autoencoders.

The implemented vector space approach can be described as follows, in the first

step headers are removed from the packets. Second step is to turn the bytes in payload

into corresponding numerical values between 0 and 255. Third step is the length

modification by truncation and padding. This modification is done to equalize the

length of vectors. Let Pi denote the payload vector of the ith packet

Pi =
[
xi
1 xi

2 · · · xi
n

]
(3.9)

where xt ∈ {0, 1, · · · , 255} corresponds the tth payload byte of ith packet and n is equal

to length of payload vector which is a hyperparameter to be decided. If the payload

size is larger than n, payload is truncated in such a way that it contains first n bytes.
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On the other hand, if the payload size is smaller than n, payload vector is padded with

zeros until its length is equal to n. As a result, each packet payload is represented by

a vector Pi with equal size of n. This process is illustrated in Figure 3.9. As shown

in Figure 3.9, first payloads are extracted, then they are truncated or padded to make

their size equal.

Figure 3.9. Packet Vectorization.

The above described vector space approach retains the spatial relations in payload

but to retain the all bytes in payloads, the hyperparameter n which is the length of

payload vector must be set large enough which will be impractical in implementation.

To overcome this, TF-IDF approach can be used but we opted to not use it due to the

nature of TF-IDF which removes the spatial relations from payload. In this problem

spatial relations are considered more important and by setting an appropriate number

for n the information loss can be minimized.

The second approach uses autoencoders to extract latent features from payloads.

For autoencoders two architecture is considered one uses simple fully connected layers

and the other one uses convolutional layers. The autoencoder takes the processed

payload vectors from the first approach as input. Also one needs to condsider an

additional hyperparameter in autoencoder approach, h which is the embedding size.

An example of usage of autoencoders to process payloads given in [35].

3.4.2. Proposed Deep Learning Architecture

Our proposed deep learning architecture carries properties of all introduced net-

works namely CNN,RNN and MLP, in other words it uses fully connected layers, con-
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volutional layers and LSTM. We propose one general architecture similar to introduced

in [22]. This architecture is adapted with small adjustments according to number of

packets in input side. The overall architecture for classifier which uses 4 packets is

given Figure 3.10. The proposed architecture can be divided into two parts. First part

consists of parallel flows which extracts payload features from payload vectors and uses

LSTM to extract flow based features. The first part covers from input layer to bidirec-

tional LSTM and can be named as feature extraction part. Second part can be named

as classifier part. This part classifies the flows based on the extracted features coming

from the first part.

This architecture integrates the second payload preprocessing approach (feature

extraction via autoencoders) in it via convolutional layers. Instead of training a sep-

arate network to extract features and train a separate classifier, this is done in one

integrated network. So the first part of architecture can be considered as the exten-

sion of payload preprocessing to extract latent representation vector from payload. The

proposed architecture complies with intrinsic nature of network packets indicating that

the relation between sequential packets are retained. The parallel processing of pack-

ets from the same flow, speeds up the processing and extracts individual properties of

each payload. At the end of the first part, the extracted payload features are combined

and fed into bidirectional LSTM to extract flow features because sequential packets

can’t be considered independent from each other. For example, let us consider a video

which will be streamed. It is impossible to transmit all of the video in one packet due

to established protocol limits. So usually this video is divided into separate packets

and transmitted as multiple packets. Then the receiver combines the information from

these packets and reconstruct the video. As one can see from this example, an object

is divided into separate sequential packets, revealing the relationship between sequen-

tial packets. In this case, the sequential packets are the smaller parts of the same

object. As stated, processing the extracted features from payloads with bidirectional

LSTM, can be considered as extracting the flow based features for classification. In the

classifier part, these flow based features are fed into fully connected layers to generate

application prediction.
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Figure 3.10. Proposed Deep Learning Architecture for 4 Packets.
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The parallel part of the feature extraction part is implemented to extract packet

based features from payloads to represent each packet. This feature extraction is real-

ized by using convolutional layers. For this purpose, we opted to use one dimensional

convolutional layers. As one can see from the Figure 3.10 convolutional layers are

stacked and residual connection is used to further increase the non-linearity of ex-

tracted features enabling model to explore more complex relations in payloads. By

using pooling layers, downsampling, in other words feature selection is achieved which

provides dimension reduction and robustness to local variations. There are two main

reasons behind using convolutional layers, first one is their proven ability to extract

local features by exploring spatial relations and the second one is encryption. Nowa-

days most of the transmitted packets are encrypted and this makes it impossible to

extract semantic information from the payloads directly. By using convolutional layers

we hope to extract patterns which can be more useful in this case as in [19]. This

parallel structure is named as ResPacket in [22].

Another popular choice to extract flow based features is to use two dimensional

convolutional layers as in [36]. In this approach network flows are represented as two

dimensional images constructed by sequential packet payloads. The width of the con-

structed images is equal to length of payload vectors and the height of the constructed

image is equal to the number of sequential packets which will be used for application

prediction. In this approach both payload based and flow based relations explored

concurrently and the resulting vector is can be considered as flow based features which

are ready to classification omitting the need of using LSTM. In our work this approach

is also considered but it is deemed inferior to above approach. The main reason is

this approach can fall to a pitfall and extract non-existing relations between packets

which could lead model to overfit training data. By non-existing relations, we refer the

bytes found in same location in sequential packets. For example, in this approach a

two dimensional convolutional layer will try to explore relations between fifth bytes of

successive packets but this relation does not carry meaning in terms of network traffic

especially if the payloads are encrypted which is the case here. So instead of using two

dimensional convolutional layer approach as in [36], we preferred to one dimensional

convolutional layer to extract payload based features as in [22], [23] and use a recurrent
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layer to explore flow based relations which considered more logical compared to the

two dimensional convolutional layer approach.

As mentioned above the second part of the feature extraction part is implemented

by bidirectional LSTM. This part starts with merging of of payload based feature vec-

tors which were extracted in first part via convolutional and pooling layers in parallel.

This merged vector is fed into a bidirectional RNN layer to explore both forward and

backward relations between packets. For RNN layer, both GRU and LSTM are consid-

ered and the performance of both GRU and LSTM based architectures are compared.

The performance of both architecture were similar with LSTM having the upper hand

with a small margin which led us to choose LSTM over GRU. We chose to use LSTM

to extract flow based features. LSTMs are widely used in time series problems. Net-

work flow classification also can be considered as a time series problem. Both GRU

and LSTM has memory to retain long term relations found in input. For example

let us consider a flow with two sent packets with a received packet in between. Here

two transmitted packets can be related and the received packet can interrupt this but

LSTM can preserve this information due to its nature. The journey of payload vectors

are shown in Figure 3.11.

In the classifier part of proposed architecture, the extracted flow features are

fed into fully connected layers followed by an output layer with softmax function to

generate predictions. This part is a typical multi-class MLP classifier.

As mentioned in previous sections for different number of available packets differ-

ent models are trained. In total five model is trained for inputs containing 1,2,3,4 and

5 packets. These models share the same architecture described in this section. The

only significant difference is that the models for inputs containing one and two packets

do not include LSTM. The reason for this exclusion is that these models contain very

few packets that the exploring correlations between packets degrades the performance

of trained models. In these models an additional fully connected layer is included in

place of LSTM.
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Figure 3.11. Illustration of Feature Extraction for 4 Packets as Input.

3.4.3. Majority Voting

The last module in proposed traffic classification model is the majority voting

based on the past predictions made by previous classifiers which used less packets.

The main purpose of including a voting mechanism in proposed model is to increase

the accuracy of flow classification without waiting for additional packets. This enables

model to make better predictions with available information. Our proposed model

starts to make application predictions for flows starting with the first packet with

payload, in other words it starts to classification as soon as possible and as the number

of transmitted packets increases new predictions are generated by using corresponding

classifiers and the overall prediction for flow is updated. Instead of directly using

the prediction of current classifier, the proposed model looks for a consensus between

recent predictions. For example when the fourth packet with payload is received, the

corresponding classifier (the one which uses four packets as input) is used to generate

application prediction, then the previous predictions, made by classifiers with inputs

containing two and three packets, use in conjunction with latest prediction to update



29

the application prediction via majority voting. By using majority voting, we are aiming

to prevent latest received packets from misleading the classifier due to its content. For

example, the flow can be belong to a chat application but the latest received packet

can contain images which can lead model to predict the application as a social media

application. Of course, as the number of the packets used in input increases, the effect

of these misleading packets are reduced but our purpose in this study to make correct

classification in a fast manner using minimum number of packets so that it can be

used in real time systems. In other words we don’t have the luxury to wait additional

packets to reduce the effect of these misleading packets. Our solution is as mentioned

above is to use majority voting.

Different strategies are tested for majority voting. These strategies can be sum-

marized as follows.

• Majority voting by using all available predictions

• Majority voting by using all latest three predictions

• Majority voting by using the odd-numbered predictions

In case of an equality the latest available prediction is selected as the overall prediction.
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4. EXPERIMENTS AND RESULTS

The proposed network classification model is tested on two real world traffic

datasets. The proposed model is compared with other baseline models to evaluate the

its performance and to show the advantages of proposed model. Before presenting the

experimentation results, we will introduce the used datasets briefly and give details

regarding the experiment setting.

4.1. Traffic Classification Datasets

To evaluate the performance of both proposed model and other benchmark mod-

els, two dataset is selected. First one is ”Application Based Network Traffic Dataset”

[37] which is public dataset hosted on Kaggle and the second one is a private dataset

created by a private company which we can’t reveal. For the remainder of this thesis

the second dataset will be named as ”Private Dataset”.

”Application Based Network Traffic Dataset” dataset contains flows from 22 dif-

ferent applications varying from chat applications to video streaming applications. The

complete list of applications given with their number of flows in below Table 4.1. More

details regarding the dataset can be found in [38]. Although the dataset contains

approximately 4800 flows, we discard the flows which don’t contain any packet with

payload. We also discard the packets whose payload consists of zero bytes only. The

remaining number of flows is 39879 and its distribution to applications is given in Ta-

ble 4.1. As the stated in previous sections, we only care for the first five packets with

payloads. Each flow is represented by a flow matrix constructed from first 5 packets

with payload and chosen fixed length of payload. For this thesis we represent each flow

with 180 bytes of each payload. These payloads are extracted from each flows con-

verted into numerical vectors with clipping and padding operations to make it length

180. If a flow contains less than five packets with payload, then padded payload vectors

(vectors with zeros) are appended to flows to make it up for missing packets. In the

end we have 39879 flows, each represented by 5x180 matrix.
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Table 4.1. Application List of Application Based Network Traffic Dataset.

Application Number of Flows

Amazon Prime Video 1978

CyberGhost 385

Deezer 750

Discord 440

Dropbox 491

Epic Games 1346

Facebook 436

Hotspot Shield 437

iTunes 742

Microsoft Teams 495

ProtonVPN 554

Skype 912

Slack 1352

Soulseekqt 110

Spotify 1776

Steam 520

Telegram 372

TunnelBear 12339

TuneIn 1790

Ultrasurf 11437

Whatsapp 432

Zoom 784

The ”Private Dataset” contains 34 different applications. The total number of

flows is 20495. The complete list of applications with their flow counts given in Ta-

ble 4.2. Same preprocessing steps described in above are also applied to this dataset.

This dataset is more challenging compared to the above described public dataset due

to its limited flow size and increased number of application types.
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Table 4.2. Application List from Private Dataset.

Application Number of Flows

Bip 720

Discord 395

Facebook 1405

Fiesta 180

Hangouts 125

ICQ 110

League Of Legends 685

Line 125

Linkedin 400

Ms Stream 100

Minecraft 3090

PokemonGo 530

Pplive 255

Ppstream 965

Pubg 575

Quake 310

Riot Games 650

Signal 100

Skype 135

Snapchat 860

Steam 960

Tor 810

Tango 1255

Telegram 215

Tiktok 1680

Twitter 400

Ultrasurf 835

UTorrent 150
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Table 4.2. Application List from Private Dataset. (cont.)

WebThunder 370

Wickr 355

Yammer 205

iTunes 1440

Tunnelbear 105

The resulting distributions of datasets are unbalanced. For example Tunnelbear

contains more than times flows compared to Soulseekqt. To balance these datasets

we could use undersampling or oversampling methods but considering that the deep

learning models require large amount of data we opted to not use any undersampling

methods. We also decided to not use oversampling methods to balance the dataset in

fear of overfitting the training data. Instead we decided to use Recall, Precision and

F1 score as our main metrics which are widely used in unbalanced problems.

4.2. Experiment Setting and Evaluation

To evaluate the performance of proposed classification model, we trained 5 deep

learning models in total, each corresponding to a different input size and compared

them with the three baseline models. These baseline models are Logistic Regression,

SVM and RandomForest. The baseline models uses TF-IDF vectors extracted from

payloads. We selected the model which have 5 packets as input, to decide the payload

length parameter for classification models. The decided payload length is used in

classification models. We also used a transfer learning method to shorten the training

time of models. We used the learned weights in previous model to train next model.

For example we used the learned weights from deep learning model which has 3 packets

as input, to initialize the training of model which has 4 packets as input. Subsequently,

for the training of model with 5 packets, we used the weights from the model with 4

packets. We used categorical crossentropy as loss function for all trained models and all

models are trained using the ADAM optimizer [39]. The 80 percent of the data is used

as training set and the remaining 20 percent used as test set. We didn’t set a separate
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validation set instead we used 5-fold cross validation for hyperparameter tuning. After

finding the optimal parameters with cross validation we used all of the training set to

train our model with the found hyperparameters, and evaluated the resulting model

using the test set. The deep learning models are implemented using Keras [40] library

in Python.

To compare the proposed models with baseline models and evaluate their perfor-

mances following classification metrics are selected:

• Accuracy

• Precision

• Recall

• F1 score

The accuracy measures overall performance of classifier, by calculating the ratio of

correct predictions to all predictions. The precision and recall are class specific metrics.

Precision measures the correctness of all predictions for a given class. It is calculated

for a given class by using the all predictions carrying the label of that class. It is the

ratio of the number of observations belonging to specific class and predicted correctly

to the number of observations predicted as belonging to that specific class. The recall

metric can be considered as a complementary part for precision. The recall measures

how much of the observations belonging to specific class predicted correctly. It is the

ratio of number of observations belonging to specific class and predicted correctly to

number of observations belonging to specific class. A good classifier must have high

precision and recall. The last metric which we used for evaluation called as F1 score.

It is the harmonic mean of precision and recall and provides a single measurement to

compare classifiers. F1 score is used in situations where accuracy metric may not be

reliable its own. This usually occurs when the dataset is unbalanced as in our case.

In such cases predicting only the majority class as label can lead to misleading results

in terms of accuracy. For example if the majority class consists of the 90 percent

of dataset, then returning this class as prediction for all observations will result in

accuracy of 90 percent which is can be considered as a good result in most of the cases.
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So in cases where the underlying dataset is unbalanced, precision and recall are used

as primary metrics. But it is not easy to compare two classifiers where one of them

has higher recall and the other one has higher precision. This is where the F1 score

steps in. In this work although all metrics are reported, we rely on weighted F1 score

to compare different models. The weighted F1 score is calculated by taking the mean

of F1 scores of all classes with respect to their support.

4.3. Results

4.3.1. Payload Length

In this section, the results of experiments are presented showing the advantages

of using the proposed model but firstly, we present the results of payload length ex-

periment in which we tried to decide the optimal number for payload length to use

in our models as mentioned in above sections. To decide the payload length we used

the model with 5 packets (in other words model whose input consists of first five pack-

ets with payload of flows) with ”Application Based Network Traffic Dataset” as input

dataset. Using this setting, we tried different numbers as payload length n ranging

from 50 to 180. The results are presented in Figure 4.1 and Figure 4.2.

Figure 4.1. Accuracy versus Payload Length.
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Figure 4.2. Weighted F1 Score versus Payload Length.

As expected, as the payload length increases, both accuracy and weighted F1

score is also increase. The shape of the Figure 4.1 and Figure 4.2 are similar to sigmoid

function, showing a clear jump between payload length of 75 and 100, indicating that

it is better to select payload length greater than 85. After the payload length of 85,

we see a diminishing return. Increasing the length of payload after 150 seems to be

very inefficient because we see that after payload length of 150 both plots reach to a

plateau. In light of these observations, we decided to select payload length n as 100

which can be considered as the start of plateau, so it is a reasonable choice, hence all

following models are trained using the payload length of 100.

4.3.2. Application Based Network Traffic Dataset

The overall flow classification results for ”Application Based Network Traffic

Dataset” are given in Table 4.3. The precision, recall and F1 score metrics are calcu-

lated by taking the weighted averages. When we inspect the Table 4.3, we can see easily

that increasing the number of packets leads to more accurate classifications. This holds

true for all of the models listed in Table 4.3. We can also see that the proposed deep

learning based classifier outperforms all the baseline models for all number of packets in

all metrics with a considerable margin and adding voting to proposed classifier results

in a better performance.
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Table 4.3. Classification Results for Application Based Network Traffic Dataset.

Model Number of
Metric

Packets Accuracy Precision Recall F1 Score

SVM

1 0.786 0.767 0.786 0.769

2 0.804 0.852 0.804 0.797

3 0.868 0.86 0.868 0.856

4 0.884 0.909 0.884 0.891

5 0.909 0.921 0.909 0.912

Random Forest

1 0.786 0.741 0.786 0.74

2 0.82 0.791 0.82 0.784

3 0.838 0.817 0.838 0.81

4 0.843 0.818 0.843 0.812

5 0.853 0.834 0.853 0.821

Logistic Regression

1 0.819 0.784 0.819 0.793

2 0.876 0.863 0.876 0.859

3 0.88 0.869 0.88 0.87

4 0.9 0.898 0.9 0.89

5 0.926 0.926 0.926 0.925

Proposed Classifier

1 0.85 0.844 0.85 0.835

2 0.893 0.901 0.893 0.892

3 0.902 0.9 0.902 0.897

4 0.922 0.929 0.922 0.915

5 0.961 0.963 0.961 0.96

Proposed Classifier

3 0.913 0.919 0.913 0.911

4 0.94 0.946 0.94 0.932

with Voting 5 0.971 0.974 0.971 0.965



38

The confusion matrices for individual models are also given in from Figure 4.3

to Figure 4.7.When we inspect confusion matrices closely we can see that the classifier

confuses some applications such as Slack and Spotify. Similar confusion is also present

in applications which regulates network traffic such as ProtoVPN and Ultrasurf. Clas-

sifiers tend to misclassify flows belonging to these applications. Increasing the number

of packets from flows corrects these classification errors.

Figure 4.3. Confusion Matrix for Model with 1 Packet.

We also explored different majority voting scenarios which are presented in Ta-

ble 4.4. The results suggest that the best approach is to apply majority voting to the

the previous two models in conjunction with current model. Another point to consider

is using models from early stages (models with one or two payload packets) are not

that helpful. We can argue that for example when we reached to the fifth packet,

the prediction of the first model can be outdated and using it in majority voting with

fifth model is not beneficial as other scenarios. This can be seen from comparing the

results of 1,2,3,4,5 with 2,3,4,5 or 1,2,3,4,5 with 1,3,5 which also shows the same effect.

Removing models with two and four packets, decreases the performance considerably.
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Figure 4.4. Confusion Matrix for Model with 2 Packets.

Figure 4.5. Confusion Matrix for Model with 3 Packets.
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Figure 4.6. Confusion Matrix for Model with 4 Packets.

Figure 4.7. Confusion Matrix for Model with 5 Packets.
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We applied majority voting starting with model whose input consist of three

packets. Given majority voting mechanism in Table 4.3 uses the previous two models

in addition to the current model. For example the results given as proposed classifier

with voting for packet number 5, are acquired by using the majority voting between

classifiers with packet numbers 3,4 and 5.

Table 4.4. Voting Scenarios.

Models used in Voting Accuracy Precision Recall F1 Score

1,2,3,4,5 0.964 0.966 0.964 0.961

1,2,3,4 0.925 0.93 0.925 0.918

2,3,4,5 0.965 0.969 0.965 0.963

1,3,5 0.956 0.962 0.956 0.954

2,4,5 0.968 0.970 0.968 0.963

Results listed in Table 4.3 and 4.4 implicate that using a voting mechanism benefi-

cial for network classification task. It boosts the performance of given latest applicable

models. In other words if we have first 5 packets from a network flow, it is more ben-

eficial to use a voting strategy instead of simply relying the result of classifier with

5 packets as input. This performance gain comes from the decreasing of effects of

packets with misleading payloads. This can be seen from the sankey diagram given

in Figure 4.8. Figure 4.8 shows the overall accuracy of proposed classifier for different

number of packets. If a flow is classified correctly then it belongs to ”True” side if not

then it is belong to ”False” side. From Figure 4.8, we can see the number of correctly

classified flows for different number of packets. It also shows the journey of a classifica-

tion status of flows from one classifier to the next one. From the given sankey diagram,

we can see that at the each level (each time an additional packet is used) status of some

flows changes. Some flows join the false group and some flows join the true group. This

exchange occurs at every stage, but as expected as the packet number increases, the

size of false group and the size of true classified flows which join to the false group

decreases. Indicating that using more packets will result in better performance wit

respect to classifying flows as soon as possible without additional packets.
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Figure 4.8. Overall Accuracy for different Packet Numbers for Application Based

Network Traffic Dataset.

The same sankey diagram for classifier which employs voting starting from third

stage is given in Figure 4.9. Comparing two diagrams reveal the advantages of using

voting. The main difference between them are the size of the true predictions which

turn into false at the next stage. We can argue that the latest packet from these flows

misleads the classifier resulting in an error. By employing voting the size of this group

can be reduced considerably which translates into better overall performance.

4.3.3. Private Dataset

We also tested the proposed approach on dataset we called as ”Private Dataset”.

The results are given in Table 4.5. For this dataset, we applied the same majority

voting strategy as in above using the previous two models in addition to the current

model. The results verify the advantages of using proposed approach. The proposed

classifier outperforms all baseline models and adding voting mechanism increases the

performance showing the benefits of employing voting. As stated in section 4.1 this

dataset is more challenging (both due to its smaller size and its increased class number)

compared to the ”Application Based Network Traffic Dataset” and the overall results

shows that. The sankey diagrams are given in Figure 4.10 and Figure 4.11.
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Figure 4.9. Overall Accuracy for different Packet Numbers using Voting for

Application Based Network Traffic Dataset.

Figure 4.10. Overall Accuracy for different Packet Numbers for Private Dataset.

The effects of the proposed voting mechanism is much more visible in this case

which can be attributed to more challenging characteristic of the ”Private Dataset”.

The size of the true predictions which turn into false predictions at the next stage are

reduced drastically. In light of these observations, we can argue that the employing

voting becomes more crucial in cases with more classes, which are naturally more

challenging to classify and make easier for classifier to be misled by new packets.
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Using voting minimizes the errors attributed to misleading content of new packets. It

is also more apparent that the even though this misclassification is avoided with voting

significantly, the performance boost is not that significant. This is due to the stagnation

resulting from majority voting. On the downside using voting anchors the predictions

to their respective classes even though the content of the new packet contains necessary

information for correct classification. But the benefits of using outweights this downside

resulting in a overall better performance.

Figure 4.11. Classifier Accuracy for different Packet Number using Voting for Private

Dataset.
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Table 4.5. Classification Results for Private Dataset.

Model Number of
Metric

Packets Accuracy Precision Recall F1 Score

SVM

1 0.514 0.558 0.514 0.511

2 0.744 0.724 0.744 0.732

3 0.789 0.81 0.789 0.774

4 0.796 0.824 0.796 0.782

5 0.827 0.839 0.827 0.822

Random Forest

1 0.52 0.553 0.52 0.539

2 0.672 0.659 0.672 0.662

3 0.775 0.811 0.775 0.74

4 0.783 0.823 0.783 0.775

5 0.819 0.826 0.819 0.808

Logistic Regression

1 0.539 0.567 0.539 0.537

2 0.762 0.769 0.762 0.753

3 0.795 0.803 0.795 0.785

4 0.832 0.841 0.832 0.829

5 0.846 0.86 0.846 0.842

Proposed Classifier

1 0.578 0.581 0.578 0.563

2 0.842 0.832 0.842 0.833

3 0.85 0.862 0.85 0.852

4 0.874 0.875 0.874 0.868

5 0.877 0.879 0.877 0.873

Proposed Classifier

3 0.856 0.853 0.856 0.852

4 0.882 0.88 0.882 0.878

with Voting 5 0.888 0.891 0.888 0.885
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5. CONCLUSION

The classification of network flows is an important issue for the network man-

agement and it is crucial for ISPs that the classification should be done as soon as

possible. The legacy port-based and DPI methods have shortcomings dealing with the

dynamic ports and encrypted content. Although statistical methods can deal both of

these problems, its slowness pose a problem. The new DPI based methods employs

deep learning based approaches to deal with encrypted content. Using deep learning

based approaches help to overcome the challenge posed by encrypted content.

This thesis proposes a payload based multi-phase classifier which employs voting

mechanism to deliver fast and accurate predictions. In this context, by fast we refer to

using minimum amount of packets without waiting more packets to be transmitted in

network. To classify flows based on the payloads carried by the packets, a deep learning

architecture employing CNN and RNN is proposed and to enhance the performance of

proposed architecture majority voting is employed. The payload from the packets are

vectorized and fed into the proposed architecture in parallel as input. The proposed

architecture process these payloads vectors in parallel by using convolutional layers to

extract payload features. These payload features are further fed into a LSTM to extract

flow features. Fully connected layers use extracted flow features to classify flows.

The proposed classifier is tested against baseline models using two datasets, one

is a public dataset available at kaggle [37] and the other one is a private dataset created

by a private company. In both datasets, the proposed architecture outperforms the all

baseline models (SVM, RandomForest and Logistic Regression) for different number of

input packets. In addition, the proposed classifier with voting mechanism outperforms

the proposed architecture. To find optimal payload length different lengths are tested.

It is seen that the increasing payload length increases the model performance but after

a certain number performance gain in minimal indicating a diminishing return. For

all models increasing the number of packets, increases the model performance. The

performance boost of voting mechanism can be attributed to the prevention of new
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mistakes due to latest packets. This is shown clearly in sankey diagrams given in

Section 4. The benefits of using voting mechanism can be seen by comparing the size

of the true predictions which turn into false prediction at the next stage.

As for the future works, we plan to test this method in larger datasets with more

classes and another aspect we didn’t consider but plan to is the unknown class. It

is impractical to limit the number of applications in a network. To achieve a good

performance in real life, the proposed classifier should be able to handle network flows

belonging to the unknown or new applications. For this purpose a threshold can be

introduced which can help to detect flows belonging to the unknown class.
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