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Boğaziçi University

2022



iii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors Prof. Emin Anarım and Prof. Mutlu

Koca, for their patience, contributions, and valuable guidance during this thesis. I am

extremely grateful for their endless support and always being ready to help with every

obstacle I encountered during this journey.

In addition, I would like to thank Prof. Hakan Delic, Prof. Fatih Alagöz, and
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ABSTRACT

NETWORK INTRUSION DETECTION WITH

PAYLOAD-BASED APPROACH

Rapidly growing network systems become more vulnerable to threats with the

improved sophistication of attack techniques. Various types of network attacks af-

fect networks in different ways and continue to be a serious threat despite developing

intrusion detection mechanisms. Early detection of network intrusions is crucial to

taking precautions and reducing the damage to the system. In addition, the ability

to distinguish attacker flows from legitimate ones ensures that the network continues

to provide service safely to the clients. In this thesis, payload-based features that

characterize network flows are proposed to provide early detection of network attacks

and to identify attacker flows. Besides the features conventionally used in application

classification, features based on greedy algorithm-based metrics that allow comparing

defined probability distributions over different sample spaces at various lengths are also

used. Moreover, features based on spectral domain analysis of payload sequences are

extracted to capture the complicated patterns that are not observed in the original

domain. Also, features based on discrete cosine transforms are utilized in the charac-

terization of these network flows. These features are extracted using N-gram analysis

for various N values. In the classification stage, SVM models trained with these fea-

tures are used. Performance evaluation is given for publicly available IDS 2012 and IDS

2017 datasets that contain different kinds of attack traces. Early detection of network

intrusions based on features extracted from the first 3 and 5 packets of a flow achieves

high detection rates while detecting network intrusions early.
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ÖZET

YÜK TABANLI YAKLAŞIM İLE AĞ SALDIRILARININ

TESPİTİ

Hızla büyüyen ağ sistemleri, gelişmiş sofistike saldırı teknikleri ile tehditlere daha

açık hale gelmektedir. Ağları farklı şekillerde etkileyen çeşitli ağ saldırıları, saldırı tespit

mekanizmaları geliştirse de ciddi bir tehdit olmaya devam etmektedir. Ağ saldırılarının

erken tespiti, önlem almak ve sistemin zarar görmesini azaltmak için çok önemlidir.

Ayrıca, saldırgan akışlarını meşru akışlardan ayırt etme yeteneği, ağın istemcilere

güvenli bir şekilde hizmet vermeye devam etmesini sağlar. Bu tezde, ağ saldırılarının

erken tespitini sağlamak ve saldırgan akışları belirlemek için ağ akışlarını karakter-

ize eden yük tabanlı özellikler önerilmiştir. Uygulama sınıflandırmasında gelenek-

sel olarak kullanılan özniteliklerin yanı sıra, çeşitli uzunluklarda farklı örnek uzayları

üzerinde tanımlanmış olasılık dağılımlarının karşılaştırılmasına olanak tanıyan açgözlü

algoritma tabanlı metrik temelli öznitelikler kullanılmaktadır. Ayrıca, orijinal alanda

gözlenmeyen karmaşık kalıpları yakalamak için faydalı yük dizilerinin spektral alan

analizine dayalı özellikler çıkarılmıştır. Ayrıca, bu ağ akışlarının karakterizasyonunda

ayrık kosinüs dönüşümüne dayalı özelliklerden yararlanılmıştır. Bu özellikler, çeşitli

N değerleri için N-gram analizi kullanılarak çıkarılmıştır. Sınıflandırma aşamasında

bu öznitelikler ile eğitilmiş SVM modeli kullanılır. Performans değerlendirmesi, farklı

türde saldırı izlerini içeren kamuya açık IDS 2012 ve IDS 2017 veri setleri için verilmek-

tedir. Bir akışın ilk 3 ve 5 paketinden çıkarılan özellikler, yüksek tespit oranları elde

ederek ağ izinsiz girişlerinin erken tespit edilmesini sağlamaktadır.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.1. Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . 2

1.0.2. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 3

2. NETWORK INTRUSIONS AND DETECTION ALGORITHMS . . . . . . 4

2.1. Intrusions in Network Systems . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. DoS and DDoS Attacks in Network Systems . . . . . . . . . . . 4

2.1.1.1. Bandwidth Depletion Attacks . . . . . . . . . . . . . . 6

2.1.1.2. Resource Consuming Attacks . . . . . . . . . . . . . . 7

2.1.1.3. Current DoS/DDoS Attack Taxonomy . . . . . . . . . 7

2.1.1.4. Common DoS/DDoS Attacks . . . . . . . . . . . . . . 9

2.1.2. Brute-Force Attacks . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2.1. FTP-Patator . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2.2. SSH-Patator . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3. Port Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Network Intrusion Detection Methods . . . . . . . . . . . . . . . . . . . 18

3. FUNDAMENTAL CONCEPTS IN INFORMATION THEORY . . . . . . . 25

3.1. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Kullback-Leiber Divergence . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1. Basic Properties of Kullback-Leiber Divergence . . . . . . . . . 26

3.3. Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4. Derivation of the Metric - Greedy Algorithm . . . . . . . . . . . . . . . 28

3.4.1. Computing the Metric - Greedy . . . . . . . . . . . . . . . . . . 28

3.5. Maximum Possible Entropy . . . . . . . . . . . . . . . . . . . . . . . . 31



vii

4. FLOW BASED PAYLOAD FEATURES . . . . . . . . . . . . . . . . . . . . 36

4.1. N-Gram Payload Feature Extraction . . . . . . . . . . . . . . . . . . . 36

4.2. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3. Maximum Possible Entropy & Actual Entropy . . . . . . . . . . . . . . 40

4.4. Ratio of Printable Characters . . . . . . . . . . . . . . . . . . . . . . . 41

4.5. Ratio of Unique Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6. Greedy Distance Between the Packet Payloads . . . . . . . . . . . . . . 43

4.7. Frequency Domain Analysis of Payloads . . . . . . . . . . . . . . . . . 45

4.7.0.1. Mean Frequency . . . . . . . . . . . . . . . . . . . . . 48

4.7.0.2. Peak Frequency . . . . . . . . . . . . . . . . . . . . . . 48

4.7.0.3. Spectral Entropy . . . . . . . . . . . . . . . . . . . . . 48

4.7.0.4. Greedy Distance of PSD . . . . . . . . . . . . . . . . . 49

4.8. Discrete Cosine Transform Coefficients . . . . . . . . . . . . . . . . . . 50

5. GENERAL FRAMEWORK OF INTRUSION DETECTION SYSTEM . . . 52

5.1. Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2. Feature Extraction Module . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3. Classification Module - Support Vector Machines (SVM) . . . . . . . . 54

5.3.1. Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1.1. Sigmoid Kernel . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1.2. Polynomial Kernel . . . . . . . . . . . . . . . . . . . . 58

5.3.1.3. Radial Basis Function (RBF)/Gaussian Kernel . . . . 59

6. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1. IDS 2012 Network Intrusion Dataset . . . . . . . . . . . . . . . 61

6.1.2. IDS 2017 Network Intrusion Dataset . . . . . . . . . . . . . . . 62

6.1.3. Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 64

6.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1.1. Performance Metrics . . . . . . . . . . . . . . . . . . . 65

6.2.2. Case A: Individual Attack Performance Analysis . . . . . . . . . 67

6.2.2.1. Infiltrating Network from Inside - IDS 2012 - Sunday . 68



viii

6.2.2.2. HTTP DoS - IDS 2012 - Monday . . . . . . . . . . . . 69

6.2.2.3. DDoS via IRC - IDS 2012 - Tuesday . . . . . . . . . . 70

6.2.2.4. Brute Force SSH - IDS 2012 - Thursday . . . . . . . . 71

6.2.2.5. Brute Force - Patator - FTP- IDS 2017 - Tuesday . . . 72

6.2.2.6. Brute Force - Patator - SSH- IDS 2017 - Tuesday . . . 73

6.2.2.7. DoS GoldenEye- IDS 2017 - Wednesday . . . . . . . . 75

6.2.2.8. DoS Slowhttptest- IDS 2017 - Wednesday . . . . . . . 75

6.2.2.9. DoS Hulk- IDS 2017 - Wednesday . . . . . . . . . . . . 77

6.2.2.10. DoS Slowloris- IDS 2017 - Wednesday . . . . . . . . . 78

6.2.2.11. Bot Ares- IDS 2017 - Friday . . . . . . . . . . . . . . . 79

6.2.2.12. DDoS LOIC- IDS 2017 - Friday . . . . . . . . . . . . . 81

6.2.2.13. PortScan - IDS 2017 - Friday . . . . . . . . . . . . . . 82

6.2.3. Case B: Dataset Performance Analysis . . . . . . . . . . . . . . 83

6.2.3.1. IDS 2012 Dataset . . . . . . . . . . . . . . . . . . . . . 84

6.2.3.2. IDS 2017 Dataset . . . . . . . . . . . . . . . . . . . . . 86

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX A: FLOW BASED PAYLOAD FEATURE LIST . . . . . . . . . 104



ix

LIST OF FIGURES

Figure 1.1. Global Internet Users [1]. . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2. Number of Devices connected to Internet [1]. . . . . . . . . . . . . 2

Figure 2.1. DDoS Attack Taxonomy [2]. . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2. Legitimate TCP Handshake. . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3. TCP SYN Attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.1. Comparison of Measured Entropy and Theoretical Entropy. . . . . 35

Figure 5.1. Blok Diagram of Proposed Scheme. . . . . . . . . . . . . . . . . . 52

Figure 5.2. Hyperplane with Support Vector Machines. . . . . . . . . . . . . . 57

Figure 6.1. Example of Confusion Matrix. . . . . . . . . . . . . . . . . . . . . 67

Figure 6.2. Infiltrating Network from Inside - IDS 2012 - Sunday - Confusion

Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.3. Http DoS - IDS 2012 - Sunday - Confusion Matrix. . . . . . . . . 70

Figure 6.4. DDoS IRC- IDS 2012 - Tuesday - Confusion Matrix. . . . . . . . . 71

Figure 6.5. Brute Force SSH- IDS 2012 - Thursday - Confusion Matrix. . . . . 73

Figure 6.6. BruteForce Patator - FTP - IDS 2017 - Tuesday - Confusion Matrix. 74



x

Figure 6.7. BruteForce Patator - SSH - IDS 2017 - Tuesday - Confusion Matrix. 75

Figure 6.8. DoS GoldenEye - IDS 2017 - Wednesday - Confusion Matrix. . . . 76

Figure 6.9. DoS Slowhttptest - IDS 2017 - Wednesday - Confusion Matrix. . . 77

Figure 6.10. DoS Hulk - IDS 2017 - Wednesday - Confusion Matrix. . . . . . . 78

Figure 6.11. DoS Slowloris - IDS 2017 - Wednesday - Confusion Matrix. . . . . 80

Figure 6.12. BotNet ARES- IDS 2017 - Friday - Confusion Matrix. . . . . . . . 81

Figure 6.13. DDoS LOIC- IDS 2017 - Friday - Confusion Matrix. . . . . . . . . 82

Figure 6.14. PortScan - IDS 2017 - Friday - Confusion Matrix. . . . . . . . . . 83

Figure 6.15. IDS 2012 - Confusion Matrix. . . . . . . . . . . . . . . . . . . . . 85

Figure 6.16. IDS 2012 - Multi Class - Confusion Matrix. . . . . . . . . . . . . . 86

Figure 6.17. IDS 2017 - Confusion Matrix. . . . . . . . . . . . . . . . . . . . . 88

Figure 6.18. IDS 2017 - Confusion Matrix. . . . . . . . . . . . . . . . . . . . . 89



xi

LIST OF TABLES

Table 4.1. Definitions for Fourier Transform. . . . . . . . . . . . . . . . . . . 46

Table 5.1. Summary of Payload Feature List. . . . . . . . . . . . . . . . . . . 55

Table 6.1. IDS 2012 - Number of Flows. . . . . . . . . . . . . . . . . . . . . . 62

Table 6.2. IDS 2017 - Number of Flows. . . . . . . . . . . . . . . . . . . . . . 63

Table 6.3. Infiltrating Network from Inside - IDS 2012 - Sunday - Performance

Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 6.4. HTTP DoS - IDS 2012 - Sunday - Performance Evaluation. . . . . 70

Table 6.5. DDoS IRC - IDS 2012 - Tuesday - Performance Evaluation. . . . . 71

Table 6.6. Brute Force SSH - IDS 2012 - Thursday - Performance Evaluation. 72

Table 6.7. BruteForce Patator - FTP - IDS 2017 - Tuesday - Performance

Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 6.8. BruteForce Patator - SSH - IDS 2017 - Tuesday - Performance Eval-

uation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 6.9. DoS GoldenEye - IDS 2017 - Wednesday - Performance Evaluation. 76

Table 6.10. DoS Slowhttptest - IDS 2017 - Wednesday - Performance Evaluation. 77

Table 6.11. DoS Hulk - IDS 2017 - Wednesday - Performance Evaluation. . . . 78



xii

Table 6.12. DoS Slowloris - IDS 2017 - Wednesday - Performance Evaluation. . 79

Table 6.13. BotNet Ares - IDS 2017 - Friday - Performance Evaluation. . . . . 80

Table 6.14. DDoS LOIC - IDS 2017 - Friday - Performance Evaluation. . . . . 82

Table 6.15. PortScan - IDS 2017 - Friday - Performance Evaluation. . . . . . . 83

Table 6.16. IDS 2012 - Performance Evaluation. . . . . . . . . . . . . . . . . . 85

Table 6.17. IDS 2017 - Performance Evaluation. . . . . . . . . . . . . . . . . . 87

Table A.1. Flow Based Payload Feature Name List. . . . . . . . . . . . . . . . 104



xiii

LIST OF ACRONYMS/ABBREVIATIONS

ARP Address Resolution Protocol

CIA Confidentiality, Integrity, Availability

CNN COnvolutional Neural Network

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DoS Denial of Service

DDoS Distributed Denial of Service

DNS Domain Name System

EWMA Exponentially Weighted Moving Average

FFT Fast Fourier Transform

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICMP Internet Control Message Protocol

IP Internet Protocol Address

IRC Internet Relay Chat

KL Kullback-Leiber

LOIC Low Orbit Ion Canon

P2P Peer-To-Peer

POD Ping of Death

PSD Power Spectral Density

SNMP Simple Network Management Protocol

SSH Secure Shell Protocol

SOM Self Organized Map

SVM Support Vector Machines

UDP User Datagram Protocol



1

1. INTRODUCTION

With the rapid growth of devices connecting to the Internet and other public

or private computer systems, the frameworks that support these connections become

more open to risks. The primary reason for the vulnerability is that network traffic

behavior is constantly changing. In other words, because new network threats arise

daily, the concept of normal and anomalous network traffic behavior varies. Due to

the highly variable nature of network data, analyzing the performance of a particular

algorithm to identify threats is incredibly challenging.

Computer systems and networks are threatened by viruses, malware, and cyber-

attacks even though they were first used. In 2018, the number of internet users was

about 3.9 billion all over the world, as shown in Figure 1.1. It is expected to increase to

5.3 billion in 2023, according to [1]. There is about a 35% increase in only 5 years, with

a compound annual growth rate of 6%. Similarly, the number of devices connected to

the Internet continues to increase rapidly as shown in Figure 1.1, according to Cisco

(2020). Securing connections between these devices remains a challenge as the number

of devices that are part of the Internet increases.

Figure 1.1. Global Internet Users [1].

The number of intrusions is also increasing significantly year after year. Numerous

defense and detection mechanisms against malicious activities have been proposed in

the literature to provide secure connections among network devices. However, the
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exponential growth of attackers’ computational resources and capabilities, which allows

them to introduce sophisticated malicious actions, new challenges are created on this

issue [3].

Figure 1.2. Number of Devices connected to Internet [1].

One of the primary challenges in network security is designing and implement-

ing a detection system for intrusions that can effectively monitor network activity and

identify network attacks. In order to make detection efficient, the objectives and char-

acteristics of network intrusions should be analyzed.

1.0.1. Thesis Contribution

The primary contributions of this thesis are summarized as follows.

• We conducted a small survey covering 27 different types of network attacks with

summarizing their objectives and application methods.

• Even though payload-based intrusion detection models are available in the litera-

ture, we propose novel features to characterize network flows by utilizing methods.

• A greedy algorithm-based metric previously proposed in [4] to measure the sim-

ilarities of probability distributions are used in feature extraction. It makes it

possible to calculate upper bound of Kullback-Leiber divergence on real data

without assuming strict conditions.

• We used tools generally employed in image processing tasks to extract features.

Frequency domain analysis is employed when considering payload bytes of sequen-
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tial data. Related frequency domain features generally used in image classification

tasks are utilized to characterize network flows.

• We applied the Discrete Cosine Transform to the payload sequence, and we used

the high energy coefficients to classify network flows.

• We extend these features by applying N-gram analysis, widely used in natural

language processing tasks, to capture more complex patterns.

• The classification performance of the proposed features is evaluated using detailed

diversified experiments on the widely used IDS 2012 and IDS 2017 datasets in

literature.

1.0.2. Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, explanations of a

large number of different network attacks are given. Also, a review of the literature

is given in this section. In Chapter 3, the theoretical basis of the features depends on

information theory, which is given in this section. In chapter 4, the flow-based feature

extraction methods and a detailed explanation of the proposed features are given. In

Chapter 5, the general architecture of the proposed intrusion detection algorithm is

defined. In Chapter 6, datasets used to evaluate the algorithms are introduced, and a

large number of detailed experiment results are presented. Finally, Chapter 7 concludes

our thesis by summarizing the general architecture and results.
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2. NETWORK INTRUSIONS AND DETECTION

ALGORITHMS

An overview of the various kinds of network attacks that are widely encountered

on network systems is provided in this chapter. Following that, an overview of the

literature on network anomaly detection algorithms is presented.

2.1. Intrusions in Network Systems

Most people’s daily activities rely on computer networks because of the Internet’s

rapid expansion. Network attacks try to override the network’s security measures

using the victim network’s weaknesses. Network intrusions interrupt normal network

activities by causing network equipment to fail, overloading network resources, denying

legitimate users access to their services, scanning illegally, or gaining unauthorized

access to the system. Additionally, an attacker may attempt to interrupt regular

internet usage by exploiting gaps, defects, and configuration issues in software systems.

An attack can take several forms, including a brute force, denial-of-service/denial-of-

service attack, or network scanning activity. Some of the attack types are explained in

this section.

2.1.1. DoS and DDoS Attacks in Network Systems

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are

among the most commonly encountered attack types on network systems. As the

name implies, a denial-of-service attack is an attempt by attackers to prevent users

from accessing a network system, service, website, application, or other resources.

Typically, the attack causes a machine to respond slowly or disables it.

A single-source attack is referred to as a denial-of-service attack. However, dis-

tributed denial-of-service assaults, which are launched at a target by several parties
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orchestrated by an attacker, are significantly more prevalent today. Distributed at-

tacks are more sophisticated, perhaps more damaging, and, in certain situations, more

challenging to detect and halt for the victim.

Whether the attack is DoS or DDoS, the outcome is the same—legitimate users

cannot access the services to which they are authorized. DDoS attacks are one of the

most powerful ways for attackers to get around availability, the third of three important

security principles called the CIA triad (confidentiality, integrity, and availability).

A Denial of Service attack aims to exhaust the resources of the victim. An at-

tacker sent a large number of network packets to consume the resources of the victim

side and make them unavailable for the legitimate hosts. There is no privilege require-

ment for the attacker to initiate a DoS attack. There is only one computer used in a

DoS attack.

The Distributed Denial of Service attack has the same purpose as the DoS attack.

The only difference is the way to make the victim unavailable. In the DDoS attack,

network packets are sent by many computers controlled by the attacker, while there is

only one computer used in the DoS attack. A network packet flood, generated by the

numerous computers, is sent to the victim’s computer to prevent the availability of the

computer. DDoS attacks In these attacks, computers controlled by the attackers are

frequently geographically dispersed. It makes it difficult to specify the origin of the

threat and block harmful traffic. Since DDoS attacks involve client coordination, they

are typically carried out via botnets. A botnet is an enormous collection of infected

machines (bots) managed by the attacker. These machines are also called “zombies”.

These zombies can be controlled in different ways by using various agents, and DDoS

attacks can be executed in a fully automatic way [5].

DDoS attacks can be categorized based on how they are executed and other

properties. In literature, there are several DDoS attack taxonomies based on various

aspects of DDoS attacks [2,5,6]. One of the fundamental research for the categorization

is given [2]. This study examines DDoS attacks in two categories according to their
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primary purpose. While some DDoS attacks are executed to consume bandwidth,

others aim to consume the resources of the victim’s system. The attacks in the first

category create an undesired flood on the network, blocking the regular user traffic. The

latter aims to make the victim’s system incapable of handling service requests from

regular users. The main diagram, which shows the taxonomy of the DDoS attacks

according to this categorization, is given in the Figure 2.1. General descriptions of the

main categories are as follows.

Figure 2.1. DDoS Attack Taxonomy [2].

2.1.1.1. Bandwidth Depletion Attacks.

2.1.1.1.1. Flood Attacks Zombie computers, controlled by the attackers, are uti-

lized in the flood attacks to deliver massive network traffic to the victim’s side. The

victim’s network bandwidth is exhausted by the large volume of traffic delivered by

the zombie computers. Flood attacks are mainly named based on the used protocols,

such as Internet Control Message Protocol (ICMP) flood and User Datagram Protocol

(UDP) flood attacks.

2.1.1.1.2. Amplification Attacks A DDoS amplification attack uses the feature

of routers to broadcast IP addresses to magnify and reflect the attack. This capability

allows a sending system to specify a broadcasting IP address as the target IP address
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rather than a specific IP address. It instructs the network’s routers to replicate and

transmit packets to all network devices in the broadcast address range. The attacker

can either send the broadcast message directly or through agents to increase the volume

of attacking traffic in this type of DDoS attack.

2.1.1.2. Resource Consuming Attacks.

2.1.1.2.1. Protocol Exploit Attacks Protocol exploiting attacks mainly use the

weaknesses of the network protocols, both at OSI layer 3 and layer 4, to make victims’

resources unavailable to legitimate users. Because of their nature, ICMP (Internet

Control Message Protocol), TCP (Transport Control Protocol), and UDP (User Data-

gram Protocol) are generally exploited in this type of attack. The main objective is to

exhaust the network’s or intermediate resources’ computational capabilities (such as

firewalls), resulting in a denial of service attack. Protocol attacks are often measured

by how many packets they send per second since they are operated at the packet level.

2.1.1.2.2. Malformed Packet Attacks An attack with malformed packets is when

the attacker orders the zombies to transmit improperly constructed IP packets to the

target’s computer to collapse it. Malformed packet threats come in two flavors. An IP

packet containing identical source and destination IP addresses can be considered as

an IP address assault. This attack can cause the affected system’s operating system

to become confused and crash. In an IP packet options attack, a malformed packet

may randomly generate the optional fields within an IP packet with quality of service

bits as one, requiring the victim system to spend additional processing time analyzing

the data. When multiplied by a sufficient number of agents, this attack can entirely

disable the victim system’s processing capability.

2.1.1.3. Current DoS/DDoS Attack Taxonomy. In recent works [7,8] and security re-

ports [9,10], the categorization of DDoS attacks is made with a slight difference. This

categorization is used more in the DDoS reports prepared by the companies in this
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field. There are three main categories: Volumetric attacks, protocol attacks, and Ap-

plication layer attacks. Volumetric attacks correspond to bandwidth depletion attacks,

while the protocol attacks cover protocol exploit attacks in the previous taxonomy.

Application layer attacks can be considered as a new category that also covers mal-

formed packet attacks exhausting the victim’s resources. It is important to note that

strictly categorizing DDoS attacks is difficult because there is some overlap in these

categories. Some volumetric attacks, such as ICMP flood and UDP flood, are based

on vulnerabilities of these protocols, and also they are considered as protocol attacks.

However, this categorization is still useful to distinguish encountered DDoS attacks. It

facilitates evaluating their effects and developing detection techniques using their gen-

eral characteristics. General definitions of these categories used in current literature

and industry are given as follows.

2.1.1.3.1. Volumetric Attacks Volumetric attack sometimes referred to as floods,

is the most prevalent sort of DDoS attack. They often flood the targeted victim’s net-

work with traffic with the intent of demanding so much bandwidth to make it impossible

to access of legitimate users. Attackers frequently use botnets to increase the amount

of traffic hitting a targeted system or service. This way enables attackers to conduct

massive DDoS attacks that can reach volumes of hundreds of gigabits per second to

terabits per second, far exceeding the capability of most organizations’ networks.

2.1.1.3.2. Protocol Attacks A protocol attack is also referred to as a computa-

tional or network attack. It creates a computational load on the resources of the victim

side, abusing vulnerabilities in the nature of the network protocols rather than aiming

to bandwidth resources. These attacks are performed in Open Systems Interconnection

layers 3 and 4. These protocols are Internet Control Message Protocol (ICMP), User

Datagram Protocol (UDP), and Transport Control Protocol (TCP). The objective is to

deplete the network’s computing capacity or intermediary resources such as firewalls,

resulting in a denial of service attack. They are often expressed in packets per second

due to the fact that protocol assaults operate at the packet level.
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2.1.1.3.3. Application Layer Attacks Application layer attacks sometimes re-

ferred to as OSI layer 7 attacks, are directed at web servers, online application plat-

forms, and individual web-based apps instead of the network itself. The attacker aims

to make a website or program inaccessible to users by bringing the server to a stand-

still. These attacks may exploit known application vulnerabilities, an application’s

underlying business logic, or higher-layer protocols such as Hypertext Transfer Pro-

tocol/Secure (HTTP/HTTPS) and Simple Network Management Protocol (SNMP).

These assaults frequently consume less bandwidth than other forms of attacks and so

do not necessarily cause a spike in traffic, making them more challenging to detect.

Attacks on the application layer are quantified in terms of requests per second.

2.1.1.4. Common DoS/DDoS Attacks.

2.1.1.4.1. SYN FLood Transport Control Protocol (TCP) requires a three-way

handshake to start the connection between client and server [11]. A three-way hand-

shake starts with an SYN (synchronize) packet, which a client sends to build the

connection via a website. Then, the server responds with an SYN-ACK (synchronize-

acknowledge) packet and waits for the client to send an ACK (acknowledge) packet.

The legitimate TCP handshake process is shown in Figure 2.2.

This volumetric attack prohibits a server from handling new connection requests.

By altering the typical method, TCP connects a client to a server. In an SYN flood

attack, the attacker purposefully does not transmit the ACK packet after SYN requests.

The recipient system’s processing and memory resources store and wait for the ACK

request for this TCP SYN request until a timeout occurs. SYN Flood attacks create

floods. Therefore, it can be considered as a volumetric attack. Besides that, it exploits

the vulnerability of the TCP protocol, and it can also be considered as a protocol

attack. IP spoofing, which modification of an internet protocol to mask the actual

IP address of the sender, is used to hide zombies’ identities. The zombies also utilize

IP spoofing to avoid the replies back because the returning packets could also create

congestion on their bandwidth.
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Figure 2.2. Legitimate TCP Handshake.

Figure 2.3. TCP SYN Attack.

2.1.1.4.2. ICMP Flood To discover network infrastructure, and calculate round-

trip time between the nodes in the network, Internet Control Message Protocol (ICMP)

packets are utilized. These are generally used for the management of network systems.

The “Ping” process, which is generally used for controlling whether destination IP and

ports are available or not, is carried out via this protocol. In these types of attacks,
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bot computers are controlled by the attacker to ping the victim’s server and get a reply

from it. This communication could create a large volume of traffic and consume the

victim’s bandwidth. In this attack, IP spoofing is also utilized by the zombies to avoid

from the replies back because the returning packets could also create congestion on

their bandwidth. ICMP Flood attacks can be considered as both volumetric attacks

and protocol attacks.

2.1.1.4.3. Smurf Attack A broadcast address is an IP address to which a com-

puter can send a packet in order to communicate with all other computers on the same

network [12]. For instance, when a new device or computer connects to a network,

it makes an effort to configure an IP address. It must obtain an IP address from a

remote service that distributes them. It does it by requesting a broadcast address. Any

machine that sends a packet to a broadcast address effectively broadcasts the request

to all hosts on the network, where hosts refer to all computers or network devices such

as routers and servers. A chosen server assigns the newly connected device an IP ad-

dress in response to the request. When an adversary transmits a faked ping packet to

a broadcast address, the address can be misused. A ping packet is a network packet

delivered between two machines to determine whether the remote system is powered

on and capable of responding to network-based queries. When a host receives a ping

packet, it responds with a ping-response packet to indicate that the receiving host is

still alive. It is a helpful tool for auditing network connections by legitimate network

administrators. When a ping packet is delivered from one device to a broadcast ad-

dress, all active hosts in the network respond with ping-response packets. Smurfing is

a technique in which an adversary spoofs its IP address and floods a broadcast address

with ping packets. Additionally, the adversary changes the faked source IP address

to that of a target machine to make the ping appear to originate from a legal target

machine. When a faked ping packet is delivered to a broadcast address, all machines in

the network respond with ping responses to the spoofed address. A sequence of faked

ping packets used in this manner can generate a flood of ping-reply packets, rendering

the legitimate target inoperable.
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2.1.1.4.4. UDP Flood User Datagram Protocol (UDP) is a protocol that does

not require a handshake process before the data transmission. Network data packets

are just sent to the receiver’s specific port, and they are processed. If there is no

application working with the coming UDP packet, the receiver replies with a message

that tells that this port is inaccessible. This message is sent via Internet Control

Message Protocol (ICMP), and it could create a high volume of traffic on the attacker

(zombie) side [13]. In order to avoid that, IP spoofing is used by the zombies to rotate

this traffic to different systems and hide their identities.

2.1.1.4.5. HTTP GET and POST floods HTTP is the protocol used to connect

clients to web servers on the Internet. HTTP GET is used to obtain data from a

predefined resource; the HTTP POST method is used to send data to a server to

create or update a resource. Without waiting for a response, attackers can simply

bring down a web server by sending a continuous stream of HTTP GET or POST

requests to the target. The server makes every effort to reply to each request but

finally runs out of resources. These application-level attacks might be challenging to

determine since the traffic seems to be valid HTTP GET and POST requests.

2.1.1.4.6. Low and Slow DDoS Attacks The purpose of Low and Slow DDoS

attacks is to discreetly and secretly shut down application resources while consuming

very little bandwidth. There are various forms of low and slow attack tools, all of which

seek to maintain an endless monopoly on server resources. Slowloris, for example,

works by creating hundreds of connection requests and maintaining each one open for

as long as possible by slowly transferring data to the server before the connection times

out. It utilizes so many server resources that the system finally becomes incapable of

handling any new, valid requests. Because these attacks consume a negligible amount

of bandwidth and occur at the application layer, where a TCP connection has already

been established, the HTTP requests also seem legitimate.
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2.1.1.4.7. ARP Poison Attack The address resolution protocol (ARP) connects

a machine’s MAC address to its IP address. The machine sends an ARP request,

including its IP address, MAC address, and the destination machine’s IP address.

When the recipient computer receives this request, it caches the sender’s IP address

and MAC address. In an ARP Poison attack, the attacker modifies the cache and

modifies the sender’s MAC address [14]. It renders the sender’s system inaccessible to

any external use. Detection can be accomplished by analyzing the ARP protocol and

determining whether or not the machine address is incorrect/bogus.

2.1.1.4.8. Back Attack The attacker attempts to crash the Apache web server

in this attack by making requests with URLs that contain a large number of forward

slashes (’/’) [15]. This value can range between 6000 and 7000, and it is adequate

to delay the server down momentarily. After the attack has ceased, the system may

recover. This type of attack is detectable by scanning the URL and applying a 100-slash

threshold.

2.1.1.4.9. Land Attack Specific older versions of TCP/IP implementations may

be vulnerable to a Local Area Network Denial of Service attack [16]. Malformed faked

TCP SYN, which is connection starting requests with the identical source and destina-

tion IP addresses as the packet are sent to a victim server in this attack [7]. It results

in the target’s machine continuing to operate while it sends replies to itself. It is an

older exploit, and recent fixes should protect most systems.

2.1.1.4.10. Neptune (SYN Flood) Attack In TCP/IP implementations, the TCP

server maintains a finite data structure that contains information about half-open con-

nections [7]. If it becomes full, each connection has a timer that deletes the oldest

record in the data structure to make room for subsequent connections to keep half-

open connection information. Neptune utilizes this functionality to launch an assault

on the TCP server. It sends an enormous number of connection requests to a TCP
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server, causing the server to populate the half-connection data structure with a large

number of entries. These messages are so enormous that the data structure fills up

before the timer associated with the initial entry ends. Additionally, the attacker trans-

mits IP-spoofed packets faster than the target machine can terminate the connection,

resulting in memory exhaustion and system breakdown. As a result, any new valid

connection is rejected, which is the primary goal of this attack.

2.1.1.4.11. Ping of Death In this form of attack, the ping command is executed

and directed toward to victim system, which may exceed the IP protocol’s maximum

allowable size of 64K bytes [17]. The attacker sends a ping command with the maximum

value allowed in the IP header’s Fragment Offset field. As a result of reassembling,

a massive packet larger than 64K bytes is created, which may cause the destination

operating system’s buffer to overflow. It may cause the operating system to slow down

or even crash. POD is no longer effective, as modern operating systems are sufficiently

secure to detect such attacks.

2.1.1.4.12. Smurf (ICMP flood) Attack The ICMP attack’s property of reply-

ing to ICMP echo packets is abused in this attack [18]. The attacker makes ICMP

echo requests to IP broadcast addresses using the victim’s faked source address. Each

machine that receives an ICMP request responds with an ICMP reply destined for

the victim’s system. It increases traffic flowing towards the victim’s computer, which

eventually results in a bottleneck at the victim’s machine’s interface.

2.1.1.4.13. Teardrop Attack This attack exploits a vulnerability in the technique

for reassembling IP fragments. The reassembly function may fail when the router

detects an error in the fragment offset field, such as packet data overlap. The fragment

offset specifies the address of the packet’s initial byte. The sum of this offset and the

packet’s length determines the fragment offset for subsequent fragments. Now, the

attacker causes some inconsistency in the fragment offset values. For instance, if the
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initial packet is 1000 bytes in length, the following fragment offset should be 1001, but

the attacker will set it to 950, crippling the entire reassembly mechanism.

2.1.1.4.14. UDP Storm Attack This attack is carried out as follows: the attacker

sends UDP packets to the first victim’s echo port, posing as a second victim on the

same network [18]. As the first victim is unaware of the faked address, it sends a reply

with some data to the second victim’s echo port. The second victim then responds with

data to the first victim, and this loop continues until an external source of interference

occurs. This traffic creates a bottleneck in the connection and may cause all genuine

transmissions to slow down.

2.1.1.4.15. Peer-to-peer denial-of-service attack Peer-to-peer (P2P) file-sharing

is a popular method of sharing and downloading files from other peers nowadays [7].

Attackers have developed an interest in P2P networks due to their enormous poten-

tial for malware distribution and DDoS attacks. P2P attacks are distinct from botnet

attacks in that they do not interact with the clients. The attacker does not transfer

traffic to the victim’s network on its own but instead instructs peer-to-peer file sharing

centers to disconnect from their present P2P network and connect to the victim’s PC.

The attacker can use this strategy to induce hundreds of thousands of machines to

attack their behalf. All of these computers are connected to a file-sharing service and

have their data flow redirected to the victim’s computer. This massive influx (thou-

sands of connections) devastates the victim network’s connectivity, initially designed

for hundreds of connections.

2.1.1.4.16. Permanent denial-of-service (PDoS) attack PDoS attacks are pri-

marily directed at the victim’s hardware system, including routers, printers, or other

networking hardware. It exploits security holes in remote administrative access con-

trol. It corrupts or modifies the firmware of devices using an updated corrupted or

damaged firmware image, resulting in significant damage that the hardware must be
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fixed or replaced entirely. Because this is a hardware-targeted attack, it consumes

fewer resources than a botnet attack. As a result, PDoS attacks are more dangerous

and have attracted the attention of numerous hackers.

2.1.1.4.17. R-U-dead-yet (RUDY) attack The “R-U-dead-yet (RUDY)” attack

generates traffic at a low rate, and volume [19]. As a result, typical defense measures

have a tough time detecting such an attack. Numerous websites have a form for users

to submit information. After submitting the information, users submit the form to the

webserver. Typically, a submit request generates an HTTP POST request to the server.

Typically, the client browser delivers this request to the server in one or two packets

before disconnecting. However, the RUDY tool delivers genuine requests to the server

via numerous packets by decompressing the data in a single packet, compelling the

webserver to keep the many connections open. Each RUDY attack keeps all sessions

occupied by sending continual long-form field submissions. Additionally, the attacker

may send a large-sized header value, which keeps the session alive and unusable for

other legal purposes.

2.1.2. Brute-Force Attacks

This attack type is a general approach used to crack passwords and get unautho-

rized access to hidden pages and content within a web application. It is essentially a

hit-and-try attack, with the attacker eventually succeeding. Numerous tools are avail-

able for performing brute force password cracking assaults, including Hydra, Medusa,

Ncrack, Metasploit modules, and Nmap NSE scripts. Additionally, there are other

tools for password hash cracking, including hashcat and hashpump.

Patator is one of the essential tools used in brute-force attacks. Patator is coded

in python and supports multi-core processing. It is more reliable and effective than

other multi-threaded tools because it saves each response to a different log file for

future analysis and supports over 30 different methods, including FTP, SSH, Telnet,

and SMTP [20].
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2.1.2.1. FTP-Patator. FTP is a well-known data transport protocol. It provides a

connection between the hosts, which makes file transfer. There are two connections

established between these hosts. While one of these connections is used to transfer

data, the other is used to control the data transfer process. The control connection is

made via port 21, while data transferring is conducted via port 20. The FTP server

authenticates users via port 21. As a result, traffic to port 21 is examined to detect

FTP brute force assaults. [21]

In this Python-based assault, the attacker attempts to guess the username and

password in order to log in legitimately. In the generation of usernames and passwords

automatically over a short period, the Patator tool is utilized [22].

2.1.2.2. SSH-Patator. SSH is a communication protocol that enables remote device

access and management. It can be considered as the next generation of Telnet protocol.

The primary distinction between telnet and SSH is that SSH employs encryption. TCP

port 22 is generally utilized in SSH protocol [21].

SSH-Patator is a Python application that uses SSH to connect to a remote ma-

chine [23], similar to FTP-Patator. The attackers attempt to generate user names and

passwords of generally admin accounts in a short amount of time in order to obtain

remote access to control over a network or a device. The first step of the attack is to

determine the hosts using SSH protocol. In this stage, generally, the server is scanned

over for specific IP blocks or subnets of a network. Then, a brute force attack starts

to get access to the system.

2.1.3. Port Scan

Port scanning is a technique attackers employ to scope out their target environ-

ment. Hackers perform this attack by sending packets to specified ports on a host

and analyzing the responses for vulnerabilities and information about the services and

versions running on the host.
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Attackers must first locate hosts on the network, and then they scan the hosts’

ports to detect weaknesses. Port scanning generally attempts to classify the responses

into three categories. When a victim device replies with a packet, it indicates this port

is open and used in communication. When there is no packet as a reply, it means that

this port is closed or filtered. While there is no service listening to the port in close

ports, there are firewalls or services listening to this port that only accept packets with

a specific format in filtered ones. Nmap is one of the most common tools mainly to

perform a port scan on a network [24].

2.2. Network Intrusion Detection Methods

Network intrusion detection algorithms are developed to detect malicious activi-

ties quickly and accurately to protect a network from damage. It has become a critical

research area as Internet technologies have advanced, and intruders have developed

new and sophisticated attack strategies. Even though numerous studies have been

published on various network attacks, there is always a need for improved intrusion

detection algorithms to prevent emerging threats.

The denial of service (DoS) attack is one of the most well-known types of network

attack. The intruder’s objective is to make a computer or other device inaccessible by

interfering with the device’s regular operation. It is accomplished by flooding the

victim machine with requests, causing it incapable of responding. When an attacker

employs a considerable number of infected machines to carry out the attack, it is

referred to as a distributed denial of service (DDoS) attack. Different forms of DDoS

attacks target specific layers. For example, HTTP flood attacks are performed on the

application layer, while SYN flood attacks are on the transport layer. Attack detection

and countermeasure mechanisms against these attacks are evolving day by day. An

overview of existing network attack detection mechanisms is given in [25], and [26].

Signature-based attack detection algorithms can be used to detect DoS/DDoS attacks.

These type of algorithms requires training data to detect an attack. One of the robust

signature-based attack detection algorithms is proposed in [27]. Machine learning-

based system designed to detect DoS and DDoS attacks. In this work, there are 33
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extracted variables for each flow. In order to reduce the number of the used features,

the proposed feature selection algorithm is applied, and eventually, 20 feature is used

in the algorithm. Entropy, coefficient of variation, quantile coefficient, and rate of

change, which are commonly used metrics in anomaly detection, are also utilized in

the detection algorithm. The designed system is evaluated with the different recent

attack datasets. These datasets are utilized to generate attacks and regular traffic on

the network test environment. Statistical methods are widely used in DDoS attack

detection algorithms, such as covariance analysis [28]. This article proposes a primary

DDoS attack detection method that uses multivariate correlation analysis. Specifically,

SYN flooding attacks are detected using covariance analysis with linear complexity.

This method uses the correlations among the TCP flags, which give information about

network characteristics. During the SYN flooding attack, the number of SYN flags does

not match with the FIN flags, while it is generally matched in the typical case. This

situation is detected with the time-series calculation of the covariance value of each pair

of the TCP flag in a practical manner. Additionally to statistical features, entropy-

based features are widely used in the DDoS attack detection [29]. These features reveal

changes in the network when the attack is started. The main difference of this work

is that a large number of entropy-based features are used to detect different types

of DDoS attacks. High and low-density DDoS attacks are detected thanks to these

differentiated features. In the detection phase, different machine learning algorithms

are used to separate normal and abnormal behavior in the network. ISCX 2012 and

1998 Darpa datasets are used to validate the proposed algorithm. Another work that

is based on entropy is given in [30]. DDoS attacks that exploit the HTTP protocol in

the cloud environment are analyzed and detected in this work. The HTTP protocol is

commonly used in cloud environments due to its fundamental nature. It makes it easier

to access services on the cloud with less transmission cost. However, it makes vulnerable

the cloud services to HTTP DDoS attacks. HTTP DDoS attacks is a significant threat

to both web services and the cloud environment. It can be executed as a flood, and

it can be executed with a low number of requests in a slow way to avoid detection.

Another algorithm that uses the various information-theoretic metrics is proposed to

detect HTTP DDoS attacks in the cloud environment [30]. The entropy of the packet
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header information such as source and destination IP address, port numbers, network

protocol, and the number of bytes is used to characterize network traffic. The use

of the entropy is modified according to the nature of the DDoS attacks in HTTP

protocol. Different machine learning classifiers such as Random-Forest, Naive Bayes,

Multilayer Perceptron, Decision Tree, and K-Nearest Neighbor algorithms are tested in

the classification stage. The best result is achieved with the Random-Forest algorithm

on the CIDDS-001 dataset.

DDoS attack detection problems can be evaluated in separate domains. Extracted

features and the collected parameters could be more effective in distinguishing DDoS

attacks and the legitimate traffic on the different domains. Frequency domain analysis

could be used to get more efficient solutions [31]. This work utilizes discrete Fourier

transform and discrete wavelet transforms to transform time-domain features to the

frequency domain. It is seen that DDoS attack samples have main energy components

on low-frequency levels while the normal samples have a more uniform distribution

on the frequency domain. There is no gathering on some specific frequency levels for

the usual traffic. In the detection stage, two primary approaches are evaluated. The

traditional thresholding is compared with the Naive Bayes classifier. It is seen that the

Naive Bayes classifier gives better results than the thresholding. Regular traffic in the

Boğaziçi Dataset [32] and the actual attack traffic in the booter dataset [33] are used

for the performance evaluation.

The Neural Network algorithm is a tool that can be used in both feature extrac-

tion and classification stages of the anomaly detection systems. Auto-encoders and self-

organizing maps are widely used to detect anomalies in network systems [34–37].Self-

Organizing Maps, which summarize high dimensional data as low dimensional data, can

be utilized to extract the nonlinear statistical relations between the high dimensional

complex data points. The specialty of the Self-Organizing Maps can be used to detect

anomalous in the network traffic [34]. In this work, network connections are charac-

terized by using six parameters. Then the network is represented in two-dimensional

space. The algorithm is tested in Domain Name System (DNS), Simple Mail Transfer

Protocol (SMTP), and HyperText Transfer Protocol (HTTP) traffic. Another early
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work with used neural networks is given in [35]. In this work, the neural network is

utilized to detect network-based anomalies. Initially, statistical preprocessing is ap-

plied to the network data then neural network algorithms are applied. Perceptron,

Backpropagation (BP), Perceptron-backpropagation-hybrid (PBH), Fuzzy ARTMAP,

and Radial-based Function algorithms are applied as neural network algorithms, and

they are compared in this work. Low-intensity UDP flooding attacks are detected with

this scheme, and high accuracy results are obtained.

Dimension reduction methods can be utilized to extract features in classification

problems. Pre-calculated features are given as an input for this dimension reduction

algorithm. Then the data is represented on a different subspace which provides a

more effective solution. Auto-encoder can be used to get lower-dimensional data from

the higher one by exploding the nonlinear relationships among the features [37]. In

this work, a convolutional auto-encoder-based network anomaly detection algorithm is

proposed. The performance of this algorithm is compared with the conventional auto-

encoder and principle component analysis algorithm, which is one of the most common

dimension reduction algorithms. Authors perform their evaluations using NSL-KDD

Dataset. Another algorithm based on autoencoder models is given in [36]. This work

proposes an algorithm that depends on the two-deep learning algorithms to detect a

zero-day attack that is not encountered yet. Denoising autoencoder and deep learning

algorithms are utilized in the network modeling stage. Reconstruction distribution

(RE) is defined as a difference between inputs and the outputs of algorithms. These

algorithms are trained with the labeled data, and the reconstruction distributions are

obtained for the ordinary and anomalous data samples to model the network traffic

behavior. The anomaly threshold is calculated using the proposed stochastic model. It

is important to remark that this threshold is determined as the boundaries of the normal

data samples, and it enables to detection of zero-day attacks. NSL-KDD dataset is used

in the evaluation part. The test data in the NSL-KDD dataset contains 19 different

attack types than its training data, and it enables the evaluation of the algorithm’s

zero-day attack performance. Both algorithms give relatively close accuracy results of

about 88%.
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Convolutional Neural Network (CNN) is one of the important tools used in

network anomaly detection systems. There are some contemporary applications of

CNNs to analyze network traffic [38, 39, 39, 40] and classifies the malware on the sys-

tems [41–44].Designed Lightweight Usable CNN in DDoS Detection (LUCID) algo-

rithm [44] exploits CNN’s properties to reach high detection rates by using a small

number of features on the classifier. This algorithm is proposed to detect DDoS at-

tacks with a low computational cost in an online environment. The attack detection

algorithm has mainly two parts. In the first part preprocessing of network traffic is ex-

ecuted. In this stage, 11 features are extracted for each packet on the network. Then

the input is prepared for the main algorithm with normalization and padding. 2-D

matrix is generated from the packets for each flow on the network. In the latter part,

basic LUCID architecture is utilized to classify the network flows. The cross-entropy

approach is used as a cost function of the binary classification problem. At the end of

the algorithm, flow is labeled as normal or anomaly. The performance evaluation of

this algorithm is executed with the ISCX2012, CIC2017, and CSECIC2018 datasets.

In each dataset, samples are selected to create a new balanced dataset. UNB201X is

utilized in the validation process.

A genetic algorithm is another tool that is used in network anomaly detection

systems [45].In this work, a flow-based anomaly detection algorithm is proposed. The

network characteristics are obtained via a genetic algorithm that analyzes the network

flows and generates the Digital Signature of Network Segment using Flow (DSNSF).

It enables to predict network behavior for coming time windows and compare the

actual network traffic with the expected one. In the comparison stage, a threshold

is determined using an Exponentially Weighted Moving Average (EWMA) algorithm,

which is proposed in [46]. It enables the weighting of the previous observation according

to passing the time over the sample. In the decision stage of the algorithm, the Fuzzy

Logic scheme assigns a network sample anomaly score between 0 and 1 instead of

a binary assignment. The dataset obtained from the University Campus Network

contains three types of network anomaly. These are Denial of Service(DoS), Distributed

denial of service (DDoS), and Flash crowd anomalies. High accuracy rates are obtained

by using the proposed algorithm as 96.53%.
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Network anomaly detection algorithms generally use packet headers to detect net-

work attacks. Besides that, the payload can be analyzed to detect anomalies in the net-

work.PAYL (PAYLoad intrusion detection system) proposed by Wang and Stolfo can be

considered as one of the fundamental algorithms based on packet payloads [47].PAYL

performs n-gram analysis, a widely used tool in text classification. The system iden-

tifies anomalies by integrating a one-gram analysis approach with combining payload

length clustering method. The model is generated using a 1-byte sliding window to

calculate relative frequency values of 1-gram sequences, which directly correspond to

the bytes. There are 256 possible byte values in a payload, and a histogram of these

values is generated with the calculated relative frequency values. Individual models

are created using these histograms for each payload length in the training stage. It

employed a simplified Mahalanobis distance metric to compare new incoming traffic to

the model.

PAYL is a 1-gram approach, and it is not able to make a structural analysis

of a payload because the relative positions of the bytes are ignored in this approach.

To make a structural analysis evaluating bytes’ relative positions, a higher-order n-

gram approach (n¿1) must be used. Wang and Stolfo propose ANAGRAM to improve

the performance of PAYL [48]. Anagram is based on the storage of separate n-grams

observed in normal network traffic in a bloom filter while storing individual n-gram

values from known malicious signatures. The payload of a new incoming packet is

compared with pre-modeled n-gram values of the Bloom filter values. An alarm is

generated if there is a significant difference with the normal n-gram values.

POSEIDON proposed by Bolzoni [49], a two-tier anomalous intrusion detection

system based on payloads. A self-organizing map or SOM integrates the payload length

and relative frequency distribution. SOMs were utilized to preprocess packet payloads

in the POSEIDON architecture, whereas PAYL was employed as the base of malware

detection. SOMs were used to map high-dimensional data points to a single or multiple-

dimensional grid. The SOM’s objective was to determine payloads comparable to a

given destination address and port. Self-Organizing Maps are used to increase the

sensitivity of detection.
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Another work that utilizes packet payload is presented by Hubballi [50] and a

score-based model is proposed to detect anomalies that maintain the n-grams from the

training dataset together with their associated frequencies. A clustering technique is

used to construct several frequency bins, and each bin is assigned a score. Each n-gram

from the test packet discovered in a given bin will receive the bin’s score. A scoring

function is proposed for calculating the packet’s score, which is the sum of the scores

for each n-gram.

OCPAD is proposed in this work as a mechanism for detecting network packets

having suspicious payload content [51]. The suggested technique combines the advan-

tages of single-class classification with information on the frequency of short sequences.

As an anomaly detector, a one-class Multinomial Naive Bayes classifier is utilized in

order to identify HTTP threats. OCPAD determines a packet’s degree of maliciousness

by calculating the likelihood of each short sequence occurring in the content of known

legitimate network packets. OCPAD estimates the likelihood range for each sequence’s

occurrence from each packet during the training phase. A unique and effective data

structure called Probability Tree to hold the likelihood range of these sequences is pro-

posed. It considers a brief sequence, being anomalous during the testing phase if it is

not discovered in the database or if its likelihood of occurrence in a packet significantly

deviates from the range determined during the training phase. It provides a class label

for a test packet based on the likelihood of short anomalous sequences. Performance

evaluation is done with a large dataset of 1 million HTTP packets gathered from an

academic network, demonstrating that OCPAD has a high Detection Rate (up to 100
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3. FUNDAMENTAL CONCEPTS IN INFORMATION

THEORY

3.1. Entropy

Entropy is one of the fundamental concepts in the information theory since in-

troduced by Claude Shannon in 1948 with the paper “A Mathematical Theory of

Communication”. Entropy can be defined as a measure of information in the infor-

mation theory. In communication, more uncertainty in the bits means there is more

information. Entropy increases as the uncertainty of a random variable increases, and

it shows there is more information. When the entropy equals zero, the random vari-

able does not contain any information because there is no uncertainty. For any discrete

random variable X, Entropy H(X) can be defined as

H(X) = −
n∑
i=1

P (X = xi) log
(
P (X = xi)

)
, (3.1)

where the xi is possible value of a random variable X which can take, P (X = xi)

corresponds to the probability of random variable X is equal to xi. P (X = xi) can be

written as P (xi) and it is probability mass function which takes always positive values.

3.2. Kullback-Leiber Divergence

Kullback-Leiber(KL) divergence is known as relative entropy, which measures the

distance between probability distributions of two random variables. KL divergence is

also known as KL distance because it is a measure of the similarity of two probability

distributions with equal length. Kullback-Leiber distance between distributions of

random variables P and Q can be defined as

DKL(P ||Q) = −
∑
∈

P (i) log
Q(i)

P (i)
, (3.2)
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where X and Y are discrete random variables defined on the same sample space X.

Equal length and the same sample space requirement come from the nature of the

logarithm. A logarithm is not defined for zero. Therefore, there can be no undefined

values for one of the probability distributions.

3.2.1. Basic Properties of Kullback-Leiber Divergence

One of the fundamental property of the Kullback-Leiber divergence is that KL

distance never takes negative values and

DKL(P ||Q) ≥ 0. (3.3)

This inequality comes from Gibbs inequality, and it can be written as

−
n∑
i=1

P (xi) logP (xi) ≤ −
n∑
i=1

P (xi) logQ(xi), (3.4)

where P and Q are random variables which are defined on the same sample space.

In other words, entropy of the random variable is always less than cross entropy with

another random variable with the same sample space. The equality holds if and only

if

P (x) = Q(x) ∀x. (3.5)

It is condition for the equality in both Gibbs inequality given in (3.4) and (3.3).

Another important point is that KL distance is an non-symmetric metric and

DKL(P ||Q) ̸= DKL(Q||P ). (3.6)

The Kullback-Leibler distance is frequently used in different areas to compare different

probability distributions. However, the requirement to have the same sample space
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makes it challenging to use Kullback-Leibler in practical life. Even if it is used in real-

life applications, samples with zero probability create a problem for this metric. Besides

that, it is impossible to calculate the relative distance between the two probability dis-

tribution, which are defined on the entirely different sample spaces with different sizes.

Vidyasagar proposed a metric for the upper bound of the Kullback-Leiber distance in

2012 [4]. The metric, based on the Greedy algorithm, is introduced in the paper as

“A metric between probability distributions on finite sets of different cardinalities and

applications to order reduction”.

Before moving to the derivation of the metric, it is essential to define the mutual

information concept.

3.3. Mutual Information

Mutual information can be defined as a measure of the relationship between two

random variables with the same sample space. In other words, it measures how much

unique information contains both random variables.

The formal definition is given as

I(X, Y ) = H(X) +H(Y ) −H(X, Y ), (3.7)

where H(X, Y ) is joint probability and it rewritten as

H(X, Y ) = H(Y ) −H(Y |X) (3.8)

= H(X) −H(X|Y ). (3.9)

Mutual information is a symmetrical measure and

I(X, Y ) = I(Y,X). (3.10)
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Mutual information can be written in another way by using the Kullback-Leiber diver-

gence. Instead, mutual information is the KL distance between the joint probability

of two random variables and the product of these variables. Then it can easily be

redefined as

I(X, Y ) = DKL(PXY (X, Y )||PX(X)P |Y (Y )). (3.11)

3.4. Derivation of the Metric - Greedy Algorithm

This metric is related to the Kullback-Leiber distance’s upper bound between

two random variables. To derive a metric, initially, the problem is identified.

3.4.1. Computing the Metric - Greedy

The computation of the greedy metric is started with the defining problem. The

problem can be defined where ϕ and psi are random variables defined on Sn and Sm,

respectively. Sn and Sm are two different sample spaces that could also have different

cardinalities, m, and n. Let’s define the problem for the case n > m. The problem

is whether the combination of ψ can constitute ϕ or not. In other words, what is

the optimal bin allocation in ϕ to fill ψ. In this bin-packing problem, overstuffing is

also allowed. Instead, both problem definitions come to the same purpose, and they

are NP-hard problems. A greedy algorithm (sometimes called “best-fit algorithm” in

computer science) is generally used to solve these problems. Then, the solution can be

found with this greedy algorithm. The computation procedure is given below step by

step.

(i) Set s = 1, where s is the round counter. Define ns = n, ms = m, ϕs = ϕ, ψs = ψ.

(ii) Place each element of ϕ in the bin with the largest unused capacity. If a particular

component (ϕs)i cannot be assigned to any bin, the index i should be assigned

to an overflow index set Ts.
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(iii) When all elements of ϕs have been processed, define I
(s)
1 , ..., I

(s)
ms as the indices from

{1, ..., ns} which have been assigned to the various bins, and let Ts represents the

set of indices which are not assigned to any bin. If |Ts| > 1 proceed to Step 4;

otherwise proceed to Step 5.

(iv) Let α
(s)
1 , ..., α

(s)
ms is the unutilized remaining capacities of the ms bins, and define

α(s) = [α
(s)
1 ...α

(s)
ms ]. Then the total capacity that is not used cs := α(s)ems satisfies

cs =
ms∑
j=1

α
(s)
j =

∑
i∈Ts

(ϕs)i. (3.12)

Since each (ϕs)i, i ∈ Ts does not fit into any bin, it is clear that (ϕs)i > α
(s)
j , ∀i, j.

In turn this implies that |Ts| < ms. Next, set ns+1 = ms, ms+1 = |Ts|, and define

ϕs+1 =
1

cs
αs ∈ Sns+1 , ψs+1 =

1

cs
[(ϕs)i] ∈ Sms+1 . (3.13)

Proceed to Step 2 by increasing the counter by one.

(v) When this step is reached, |Ts| is either zero or one. If |Ts| = 0, then it implies

that ψs is a exact aggregation of ϕs. Therefore, define Vs = 0 and proceed as

follows. If |Ts| = 1, then only one element of ϕs, denoted by the variable (ϕs)k

cannot be placed into any bin, and the remaining component (ϕs)k must equal

cs. So let

vs =
1

cs
αs ∈ Sms

Vs = csH(vs)

Us = Vs +H(ϕs) −H(ψs).

(3.14)

Define Ps ∈ Sns×ms by

pi = bj if i ∈ Isj , pk = vs, (3.15)
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where bj is the jth unit vector with ms components. Then Vs is the minimum

value of Jϕs(.), and Ps achieves that minimum. Next define Qs ∈ Smsxns by

Qs = [diag(ψs)]
−1]P T

s diag(ϕs). (3.16)

Then it follows that Qs minimizes Jψs(.), and that Us corresponds to the minimum

value.

(vi) In this step, we invert all of the above steps by transposing Qs+1, applying the

transformation in (3.16), and embedding the resulting matrix into Ps. We also

correct the cost function using (3.14). Decrease the counter s by one and recall

that ms = ns+1. The unutilized capacity cs which is defined in (3.12) which has

been found during the forward iteration, and define

Vs = csUs+1, Us = Vs +H(ϕs) −H(ψs). (3.17)

Define Ps ∈ Snsxms by

pi = bj if i ∈ I
(s)
j , pi = ith row of Qs+1. (3.18)

If s = 1, halt; otherwise repeat the step.

After these steps, we compute an upper bound on the distance metric between the two

probability distributions which is

d(ϕ, ψ) ≤ V1 + U1. (3.19)

This metric is calculated as a function of ϕ and ψ, which are two random variables

with their own sample spaces. It is important to remind that there is no restriction

for the sample spaces. Computed distance will be shown as dgreedy(ϕ, ψ). The metric

based on the Greedy algorithm will be used as “Greedy” for the rest of the thesis.



31

3.5. Maximum Possible Entropy

Entropy definition is given in Section 3.1. In this entropy definition, mainly

the probabilities of the samples are utilized. However, frequencies of the samples are

utilized to calculate entropy of a sequence .

Let X is defined on the set {x1, x2, ..., xi, ..., xn}. p(x) is defined for x ∈ X and

p(xi) corresponds to the probability of xi. Then, Shannon entropy for X can be defined

as

H(X) = −
∑
x∈X

p(x) log(p(x)). (3.20)

Although different logarithm of bases can be used in the calculation, base 2 and natural

logarithm “ln” in which logarithm of the base is Euler’s number “e” is the general

selection for this base. Base convention of entropy can be easily done with using

Hb(X) = logb(a)[Ha(X)].

Expected value or average of a random variable is determined with the expecta-

tion function E[] and mathematically entropy can be shown as E[− log(p(x))]. It is

important to emphasize that entropy is not a function of the elements of a random vari-

able, but it is the function of the probabilities of these symbols. However, the frequency

of each element is used as an estimation of the probability of the element instead of

real probability values. Then, entropy for a random variable X can be calculated as

Ĥ(X) = −
∑
x∈X

f(x) log(f(x)), (3.21)

where f(x) is corresponding frequency in a sequence for value x which belongs to

previously defined for random variable X. In order to modify this formula for network

packet payloads, it is required to define some basic variables.
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Let S be the network packet’s payload sequence which contains ASCII numbers

for each byte. The length of the sequence S is represented by N , and it is equal to the

length of the payload. The maximum possible value of N is equal to the maximum

length of the payload in a network. Each symbol in a payload corresponds to the ASCII

numbers and can be considered as an alphabet A = {0, 1, 2, ..., 255}. The length of

the alphabet is equal to 256 for ASCII numbers, and it can be represented with m.

Entropy for this problem can be redefined as

ĤN(S) = −
∑
x∈A

f(x) log(f(x)), (3.22)

where f(x) corresponds to the frequency of ASCII number x in payload. ĤN(S) con-

verges to H(S) in the case the N which is the length of the sequence S (payload length

of network packet) goes to +∞ [52]. It is known as asymptotic equipartition property

theorem. It can be proven with Weak Law of Large Numbers by Bernoulli. Asymptotic

equipartition property theorem and its proof is formalized as follows.

Theorem 3.1 (The Weak Law of Large Numbers [53]). If X is independent and identi-

cally distributed (i.i.d.) random variable with mean µ = E[X] and given X1, X2, ..., Xi

is sequence of these variables with the length N . Lets define

X =
1

N

N∑
i

Xi, (3.23)

and ϵ is small positive number ϵ > 0. Then,

lim
N→∞

P (|X − µ| ≤ ϵ) = 0. (3.24)

Theorem 3.2 (Asymptotic Equipartition Property Theorem [54]). If X1, X2, ..., XN

are independent and identically distributed (i.i.d.) random variables with probability

p(X) and

− 1

N
log p(X1, X2, ..., XN) → H(X) in probability. (3.25)
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Proof. Functions of independent random variables are also independent random vari-

ables. Then, log p(Xi) is identically distributed independent random variable because

Xi are i.i.d.. Then using Theorem 3.1,

− 1

N
log p(X1, X2, ..., XN) = − 1

N

N∑
i

log(p(Xi)) (3.26)

→ −E[log(p(X))] in probability (3.27)

= H(X). (3.28)

can be obtained for large values of N . Then,

H(x) = −
∑
x∈X

p(x) log p(x) = −E[log p(x)]. (3.29)

If random variable X has uniform distribution, probability p(x) = 1
N

With using

the Theorem 3.1 and 3.2, ĤN(X) = H(X) for large values of N . It can be formalized

as

lim
N→+∞

ĤN(X) = −f(x) log f(x) (3.30)

lim
N→+∞

ĤN(X) = − 1

N
log p(x) (3.31)

lim
N→+∞

ĤN(X) = H(X), (3.32)

where f(Xi) is frequency of random variable calculated from the occurrence of the

random variable in given sequence.

Entropy is calculated for payload sequence S, and ĤN(S) is obtained to modify

these theorems to our case. Payload sequence contains elements from A = 0, 1, 2, ..., 255

with length 256. There are 256 unique ASCII numbers and in the case of uniform dis-

tribution probability of each number is equal to 1
256

. For a sufficiently long payload
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sequence, calculated entropy ĤN(S) converges to log(256) = log(28) = 8. The approx-

imation is still valid in the case that N is much higher than the length of alphabet 256

(N ≫ 256).

Calculated entropy for given payload sequence S with length N , ĤN(S), con-

verges to H(S) when N goes to infinity. In the network environment, there are some

limitations to the payload sizes of the network packets. It mainly depends on the

network protocol used in the transmission.

Monte-Carlo simulation is a mathematical approach that relies on repeatedly ran-

domizing samples to derive final findings [55]. All steps of the Monte-Carlo simulation

are repeated by computer, significantly reducing time and effort. Monte-Carlo simula-

tion is frequently used in physical and mathematical system simulations. This method

is particularly ideal for computer calculations when an accurate answer cannot be ob-

tained using a deterministic algorithm. It can be used to create models of phenomena

that have ambiguous inputs. Monte Carlo simulation will perform a large number of

iterations to get maximum entropy values by varying the length of the payload within

a suitable range in order to determine how the effect of length on maximum entropy.

It enables us to analyze the variation of ĤN(S) from H(S). In this simulation, packet

payloads are generated with uniform distribution for various payload lengths. Then,

each case is iterated 1000 times, and the following graph is obtained. Payload length

varies from 1 to 216 = 65536. However, most network packets cannot reach the upper

limit and there are some limits on the calculation of the proposed features, therefore,

the variation analysis is done up to 10000.

It is seen that the bias between ĤN(S) and H(S) is small in some regions. In

these regions, N ≪ m and N ≫ m. To express these region numerically, regions can

be defined where N < 32 and N > 4096. It means that the gap between ĤN(S) and

H(S) is higher to use ĤN(S) without bias correction for the region 32 < N < 4096.

The maximum possible entropy encountered in a payload or network packet can be

obtained by using the curve in the Figure.
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Figure 3.1. Comparison of Measured Entropy and Theoretical Entropy.
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4. FLOW BASED PAYLOAD FEATURES

In a network system, each connection can be considered a flow. The flow starts

with the first packet, which is sent from a specific source to a specific destination. Then,

network packets with the same source IP, source port, destination IP, and destination

port can be considered as a flow. Moreover, these packets must be sent with the same

protocol. It means flows contain network packets with the same 5-tuple information.

(Source IP, Source Port, Destination IP, Destination Port, and Protocol.) However,

network packets that are sent at different times cannot be considered a flow even if

they have the same 5-tuple information. In the flow definition, network packets must

be sent at a pre-defined time period after the first packet is sent. It is similar to the

time, which is when the connection is alive. In network intrusion systems, flows are

often used to look at the characteristics of these connections because each connection

is usually set up for a specific reason.

4.1. N-Gram Payload Feature Extraction

The N-gram analysis method was first introduced by Damashek in 1995 to analyze

text independently from its language [56]. It is mainly developed for natural language

processing (NLP) to analyze the characteristics of languages. N corresponds to the

number of elements in the analyzed sequence. This element could be a character or

a word in language processing. Except for zero, the value of N could be any of the

natural numbers. It is referred to as a unigram when N equals one. Each sequence

contains only one character or word, and the probability and other features of the

sequence are evaluated. In the case of N = 2, it is called a bigram, and each sequence

contains 2 elements. The probability and the other features of the sequence are utilized

to analyze the whole text. Sequences are created by using a sliding window with the

“N” width, and then the probability of the sequences is calculated for the entire text.

This method is also widely used in the network security area to extract the

characteristics of the payload vectors [47–49].
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The PAYL system, a 1-gram-based payload anomaly detector (PAYL), was pro-

posed by Wang and Stolfo [47]. The system identifies anomalies by integrating a one-

gram analysis approach based on packet payload data clustering. The system makes

use of a collection of models; each model incrementally keeps the results of the 1-gram

analysis for packets of the same length; hence, each payload length has a unique model.

Each model maintains two data series: the mean byte frequency (i.e., relative byte fre-

quencies that span several payloads of length l) and the standard deviation of the byte

frequency for each n-gram sequence. In unigram, it corresponds to each byte value in

the payload. Same variables are calculated for arriving packets in the prediction stage,

and then it is checked with the model parameters and the model parameters to see

whether there is any significant deviation from the model parameters. If there is, the

final decision will be made for this package.

POSEIDON, which is proposed by Bolzoni, is a modified PAYL architecture-

based system [49]. PAYL takes advantage of the data length variable to determine the

appropriate model. In comparison, POSEIDON classifies network packets during the

pre-processing stage using a neural network. The authors use Self-Organizing Maps

(SOMs) [57] to create unsupervised clustering. To begin with, the SOM analyzes the

entire packet payload, and the most similar neuron is given as an output. As with

PAYL, this neuron network is used to figure out the frequencies of each byte and the

standard deviation of the data.

As a general use of the N-Gram analysis for the payload analysis, the payload is

processed using a sliding window of width N , and the number of occurrences of each

n-gram sequence is collected. Let Dη be the dictionary containing all unique N-gram

sequences for any given N = η value. Length of Dη equals m, and it can be defined as

Dη = {d1, d2, ...di, ...dm}, (4.1)

where di corresponds to a unique sequence in the n-gram analysis. Create a new pay-

load sequence for N = η value from the original payload sequence using these unique

elements in Dη. This new payload sequence is used in the feature extraction stage to



38

extract these features. While some of the proposed features use the payload sequence

directly, some of them use the probability distribution of the payload sequence. To gen-

erate a probability distribution for a payload sequence with N = η, relative frequencies

for each unique element in Dη are obtained.

The occurrence of the di can be represented with theOi, and the relative frequency

of the di is fi can be obtained with the expression

fi =
Oi∑m
k=1Ok

. (4.2)

PDη refers to a probability distribution of a payload which is extracted for N = η with

m length and it can be defined as

PDη = {f1, f2, ...fi, ...fm}. (4.3)

After the generation of the probability distribution from the payload for predetermined

N values, calculations for proposed features can be easily made. In this work, N-gram

models is generated for N = 1 (unigram) , N = 2 (bigram) and N = 3 values.

The size of the probability distributions mainly depends on the unique sequences

which are obtained by the N-Gram Models. In the unigram case, each byte directly

corresponds to a sequence. The maximum possible length of a probability distribution

is equal to the maximum possible number of unique bytes. The payload can contain

values in the range 0-255 then the length of the probability distribution could be equal

to 256. However, for payloads with less length or fewer unique bytes, this distribution

length varies. Similarly, bigram case in which N=2, the maximum number of possible

unique sequences equals 256 ∗ 256 = 216. In the N = 3 case, the number of possible

unique sequences is increased to 256 ∗ 256 ∗ 256 = 224. It is much higher than the

unigram case, and the complexity of the process is increased. However, the obtained

probability distribution of sequence is generally lower than this number because only

unique sequences with a higher probability than zero are considered in the proposed
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calculation methods.

N-gram analysis is used in our work to characterize network flows more effectively

and to extract more information from the payload sequences. New payload sequences

and corresponding probability distributions are obtained for N = 1, N = 2, and N = 3

values, and each feature is calculated for each case separately. It expands the feature

space and enables us to catch more complex patterns in the payload sequences.

4.2. Entropy

The information is transferred with the payload in the network packets, which

consists of bytes that can take values in the range of 0-255. By using these byte val-

ues for each packet, histograms can be generated. In this process, byte values can

be evaluated individually or as groups of 2 and 3 in N-Gram models. In our work,

byte distribution histograms are extracted using N-Gram models, which are mainly

used in NLP processes. Then, probability distributions for each packet are obtained

by normalizing these histograms. These distributions reflect the characteristics of the

payload of the packet. It contains information about how they are produced. Different

payload vectors with different byte distribution characteristics are generated for differ-

ent applications and attacks. Besides that, the packets which are produced by the bots

in a network attack also show some different attributes than the legitimate packets.

Entropy is one of the most important information theory metrics which measures

the randomness in a probability distribution. The randomness in the attack traffic is

often different than the legitimate traffic, and the randomness level of the attack flows

are similar to each other. Entropy is commonly used to detect encrypted traffic in the

network [58,59]. The higher entropy levels indicate encrypted payload on the network

because of randomness in the nature of the encryption. There are some proposed

algorithms to perform application classification [60–62] and to detect some specific

applications [63]. Besides that, payload entropy is utilized in the detection of some

kind of malicious activities such as Botnets [64] and Malware in HTTP traffic [65].
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Payload entropy can be easily calculated for the probability distributions and

entropy value is obtained for each packet in a flow. PDη defined in 4.3 refers to a

probability distribution which is extracted for N = η with m length. It is important to

note that PDη does not contain probability values which are equals to zero. Entropy

Ĥ(X) is calculated for probability distribution PDη and

Ĥ(PDη) = −
m∑
i=1

fi log(fi). (4.4)

Higher entropy values are obtained for higher randomness levels in a payload distri-

bution. While higher entropy values are taken for more uniform distributions, small

entropy values are taken for more concentrated probability distributions.

4.3. Maximum Possible Entropy & Actual Entropy

Network protocols have different payload structures; however, they generally do

not use specific payload lengths. Packets with TCP protocol, which is commonly used

in network communication, contains a payload vector with length 0 to 1460, so payload

lengths of the network packets vary significantly.To analyze network packets regardless

of their length, it may be insufficient to use entropy alone to compare network packets

and identify patterns. The actual entropy concept also takes into account the maximum

possible entropy value of a payload vector, so the difference of the entropy from the

maximum possible entropy is slightly different from the entropy concept. This metric

measures difference between the actual randomness and maximum possible randomness

in a payload vector. This metric was used to detect encrypted network packets by

Dorfinger [59]. It is seen that this metric is also effective in extracting characteristics

of the network packets and diversifying the attacker packets from the legitimate ones.

The difference between actual entropy and maximum possible entropy can be

represented with DEmax and it can be calculated for probability distribution PDη with
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using

DEmax(PDη) = Ĥ(PDη) − ĤNmax , (4.5)

where Ĥ(PDη) corresponds to the calculated entropy value with using generated prob-

ability distribution PDη and ĤNmax corresponds to the maximum possible entropy for

the payload with length N . The derivation of the maximum possible entropy is given

in Section 3.5. The pre-calculated maximum possible entropy values for payload with

different lengths are used in this feature. The calculation of the maximum possible

entropy values are taken with the large number of iterations.

4.4. Ratio of Printable Characters

DoS and DDoS attack tools generate their packet with different methods to avoid

detection mechanisms. Various packet payload types are also generated by the attacker

to consume bandwidth and the resources of the victim’s side. Similarly, different tools

used to perform other types of network attacks create payload data in different ways.

The ratio of Printable Characters is a significant feature in order to characterize any

pattern caused by both the attacker’s traffic and legitimate traffic. Ratio of Print-

able Characters is a feature which is mainly used in the encrypted packet detection

algorithms [59] and anomaly detection applications [47, 66, 67]. Variation of the ra-

tio between the legitimate payload and malicious payload is a significant feature in

characterizing network packets.

The payload is mainly encoded with the ASCII characters, which can take values

0 to 255. Only the bytes between 32 and 127 correspond to printable characters, and

they are used mainly in text messages. In a randomly generated payload, the ratio of

these printable characters is about 37, 5%. The higher ratios are generally taken for

the text messages in which the characters are transferred.

The calculation of this feature is simple. The ratio of the total number of occur-

rences of n-gram sequences with printable characters to the number of sequences that
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are generated from the payload. The main point of this feature is to count sequences

only full with printable characters. In the N = 1 case, 1-gram sequences contain only

one byte, and straightly bytes corresponding to printable characters are counted. How-

ever, when N equals a number that is larger than one, each sequence contains more

than one byte. In this case, only the sequences with only if all bytes correspond to the

printable characters are counted to calculate this feature. This feature is represented

with RPrintableChar, and it can be formalized as

RPrintableChar =
OPrintableCharSeq∑m

i=1Oi

, (4.6)

where Oi is number of occurrence of an unique sequence Si in the N-gram analysis and

OPrintableCharSeq is the total number occurrences of n-gram sequences with printable

characters. OPrintableCharSeq is calculated using

OPrintableCharSeq =
m∑
i=1

τi ∗Oi, (4.7)

and

τi =

1, if 32 < bk < 127 for all bk ∈ di

0, otherwise,

(4.8)

where unique sequence in n-gram analysis di = {b1, b2, ..., bk, ..., bn} and bk is ASCII

value of the kth byte in the n-gram sequence.

4.5. Ratio of Unique Bytes

Characterization of the payload distribution utilizing extracted histograms is

quite significant in analyzing and detecting network anomalies. The ratio of the unique

bytes in a payload sequence is one of the valuable features to classify applications on

the network [68]. It is a crucial feature in the characterization and discrimination

process of both malicious activities, and legitimate traffic [69].



43

The ratio of unique bytes is modified for N-gram sequence analysis, and a simple

ratio of unique sequences is used as a feature. The payload is mainly encoded with

the ASCII characters, which can take values 0 to 255. In the N = 1 case,a payload

sequence can contain 256 unique sequence(same with byte in N = 1 case) value if its

length is higher than 256. The number of possible unique characters in the payload

with a smaller length than 256 is equal to the length of the payload vector. Similarly,

the bound is equal to the number of possible unique sequences for the cases N is larger

than 1. In order to remove the effect of the variations in the payload lengths, this ratio

is calculated by considering this bound.

The ratio of the unique bytes is represented with RUniqueBytes, and it can be

mathematically defined as

RUniqueBytes =

m∑
i=1

κi

min(m, lpayload)
, (4.9)

where lpayload corresponds to the length of the payload sequence and m equals to the

size of the N-gram dictionary Dη defined in (4.1). The sequence existence indicator κ

can be defined as

κi =

1, if di exists in payload

0, otherwise,

(4.10)

where di corresponds to the sequence in the N-gram dictionary.

4.6. Greedy Distance Between the Packet Payloads

The probability distribution of the payload vector represents the characteristic

of the network packet. The byte distribution is generally based on the application,

and each application has its own patterns. While some of the applications transfer

encrypted data, some of them directly transmit text, voice, video, or different types of

data. Each type of data shows distinctive patterns in the packet payloads. Similarly,
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network attacks managed by an attacker using different tools have specific patterns

in their payloads. Besides that, replicating the payload pattern of legitimate network

traffic is a very challenging task for the attacker. It can be used to differentiate attack

traffic from legitimate network traffic.

In addition to this, analysis of the similarity of the packet payloads in a network

flow exhibits some specific characteristics based on the generation way of these pack-

ets. This analysis can be performed by comparing the probability distributions of the

payloads in a flow. Kullback-Leiber divergence is one of the most used ways to com-

pare different probability distributions. It can be considered as a measure indicating

the similarity between two probability distributions. However, probability distribu-

tions generated from the packet payload may not be with the same length because the

unique n-gram sequences with zero probability are not accounted for in these probabil-

ity distributions. These distributions are generated for only observed N-gram sequences

in the payload. The main reason is that the length of these probability distributions

is significantly enormous, especially with n values larger than 1. Besides that, lots

of zero probabilities create a problem for calculation in Kullback-Leiber divergence.

The Greedy Distance metric is a measure that gives the upper limit of the Kullback-

Leiber distance without requiring the identical length probability distributions [4]. A

detailed explanation of this metric is given in Section 3.4. The greedy metric can be

easily applied to practical problems to compare probability distributions. In our work,

the greedy distance metric is used as a measure that shows the similarity between

probability distributions.

In order to calculate this metric, there must be at least 2 packet with a payload

in a flow because similarity calculation is performed for each packet pair in a flow.

Suppose that, a flow is represented with

F = {Packet1, Packet2, ..., Packetm, ...Packetk, ...PacketN}. (4.11)
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The total possible number of pairs for flow F can be taken as the 2-combinations

of N . Greedy distance computed for a pair can be represented with GPairj and

GPairj = dgreedy(PDη,m,PDη,k) Pairj = (Packetm, Packetk), (4.12)

where Pairj is the pair of Packetm and Packetk. PDη,m and PDη,k corresponds to the

probability distributions generated with η-gram analysis for Packetm and Packetk,

respectively. The number of greedy values are changes according to the number of

packets in the analyzed flow. Then, in order to generalize this feature for a flow and

to extract as a number feature, the various statistics of the greedy distance values is

used. These statistics are mean, standard deviation, minimum and maximum values.

These statistics are used as a different features to characterize network flows.

Smaller greedy distance values are obtained for packets that have similar payload

distributions. Large greedy distance values indicate various probability distributions

for the packet pair. Byte distribution characteristics of especially forward and backward

packets are varied for a different types of attacks or applications. These patterns are

extracted and utilized in the classification process.

4.7. Frequency Domain Analysis of Payloads

The frequency-domain analysis approach enables the investigation of periodic

patterns in the payload vector. Features that give information about the pattern are

extracted by transferring information from the set of bytes in a payload vector to the

frequency domain. It enables us to make analyses to characterize these flows more

efficiently.

Fourier transform enables the transformation of a signal in the spatial domain

to spectral-domain [70]. Fourier transform of a function f(x) defined in the spatial
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domain can be defined as

F (w) =

+∞∫
−∞

f(t)e−jwtdt, w ∈ (−∞,+∞), (4.13)

where j =
√
−1 and ejθ = cos(θ)+ j sin(θ) and w corresponds to the angular frequency

[71]. In this function, time variable is replaced with the angular frequency. It means

that time spectrum transferred to frequency spectrum. Similarly , inverse of Fourier

Transform can be taken with

f(t) =
1

2π

+∞∫
−∞

F (w)ejwtdt, t ∈ (−∞,+∞). (4.14)

Detailed definitions of the variables used in the equations are given in Table 4.1.

Table 4.1. Definitions for Fourier Transform.

Definitions

x(tn) input signal amplitude (real or complex) at time tn (sec)

tn nT = nth sampling instant (sec), n an integer≥ 0

T sampling period (sec)

X(wk) spectrum of x (complex valued, at frequency wk)

wk kΩ = kth frequency sample (radians per second)

Ω 2π
NT

=radian-frequency sampling interval (rad/sec)

fs
1
T

= sampling rate (samples/sec, or Hertz (Hz))

N number of time samples (number of frequency samples (integer))

e lim
n−→∞

(
1 + 1

n

)n
= 2.7182

j
√
−1, basis for complex numbers

In the Fourier Transform, integral boundaries go from −∞ to +∞, and it is

required for continuous functions or signals. However, if there are discrete signals, it is

not required. Discrete Fourier Transform (DFT) can be applied to transform discrete

signal to the frequency domain. DFT can be obtained by replacing integral with infinite
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boundaries with a finite sum function, and DFT is

X(wk) =
N−1∑
n=0

x(tn)e−jwktn k = 0, 1, 2, ..., N − 1. (4.15)

In this case, if all N elements of signal x(tn) is real, this signal can be considered as a

real signal and x ∈ RN . If x(tn) is a complex signal, it can be written as x ∈ CN .

Inverse DFT can be defined as

x(tn) =
1

N

N−1∑
k=0

X(wk)e
jwktn n = 0, 1, 2, ..., N − 1. (4.16)

Payload vectors are considered as the original signal in the spatial domain in order

to make frequency domain analysis of network packet payloads. Then, applying 1-D

Discrete Fourier Transform, frequency domain representation of the payload vector is

obtained.

DFT of a signal can be taken using The Fast Fourier Transform (FFT) method,

which is a numerical approach for fast and efficient computing of the Fourier transform

[72]. Discrete Fourier Transform can be computed with using Fast Fourier Transform

[73–76]. By taking DFT, the payload vector is transformed into a spectral domain.

The power spectral density is a representation of a time series’s power or variance

as a function of frequency. Power The Spectral Density of a signal being random or

periodic corresponds to its power analysis of the response in the frequency domain. It

is a tool to identify hidden periodicity in data and to expose characteristic features.

Power spectral density can be calculated by using the expression

PXX(wk) = |X(wk)| = X(wk)X
∗(wk), (4.17)

where X∗(wk) is the complex conjugate of the X(wk) and PXX(wk) is corresponds

to power spectral density function. The power spectral density function, which is
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calculated in this way, is referred to as a periodogram. There are different methods to

estimate the power spectrum of a signal. The periodogram is one of the commonly used

power spectrum estimators. It equals the Fourier transform of the auto-correlation of

the spatial domain signal.

4.7.0.1. Mean Frequency. Mean frequency is one of the useful features to show the

characteristic of a signal [77]. Mean frequency can be considered as an average fre-

quency in the power spectrum, which is calculated by dividing the sum of the multipli-

cation of power and frequency values for each instance by the sum of the powers [78,79].

It can be calculated by using

MF =

K∑
i=1

fiP (fi)

K∑
i=1

P (fi)

, (4.18)

where fi refers to the frequency value of the power spectral density and Pi is corre-

sponding power component for instance i in the spectrum. In this work, mean frequency

(MF ) and power at the mean frequency is used as a feature.

4.7.0.2. Peak Frequency. Peak power frequency and peak power are another useful

features to characterize a signal [77]. It can be calculated using

PP = max(P (f1), P (f2), ..., P (fi), ..., P (fK)), (4.19)

and Peak Power frequency is the frequency value for the maximum power at the spec-

trum.

4.7.0.3. Spectral Entropy. Spectral entropy is one of the features generally used in

classification problems of images [80] and electrocardiogram signals (ECG) [81]. It

measure of the randomness of the frequency domain representation of a signal and it

can be calculated considering normalized power values at the PSD as a probability.
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Probabilities can be obtained with using

p(fi) =
P (fi)
K∑
i=1

P (fi)

, (4.20)

where P (fi) refers to power at the frequency fi in the PSD and p(fi) corresponds to

the probability value for frequency fi.

With using Shannon entropy formula, spectral entropy can be calculated using

SE = −
K∑
i=1

p(fi) log(p(fi)). (4.21)

Spectral entropy can be used to detect deeper pattern characteristics in the payload

vector.

4.7.0.4. Greedy Distance of PSD. Power spectral density can be considered as a dis-

tribution of the powers for corresponding frequency values. Different deep periodicity

patterns can be observed in this distribution. Besides that, this distribution can be

used to define the attribute of a payload vector. Similarly, in the spatial domain, the

differences between the packet attributes in a flow can be utilized to classify these

flows more efficiently. Similarity and difference in the patterns in the payload vectors

can be changed from threat to threat. Similarly, it also shows different attributes for

different applications, and the tools which are generally used to perform these attacks

have their own patterns to execute these attacks. The difference between probability

distributions on the spectral domain can be used to differentiate these threats.

The probabilities for each frequency value are obtained from power spectral den-

sity using normalized power values. The generated probability distribution for the fre-

quency spectrum is compared with other probability distributions extracted for other

packets in a flow. The greedy distance metric, which is mentioned in Section 3 is used

in this comparison. Greedy values for each possible packet pair are obtained in a flow.
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Greedy distance value for a pair j is represented by GFPairj and Greedy distance value

for packet pair j can be represented with GFPairj and

GFPairj = dgreedy(PD(f)η,m,PD(f)η,k) Pairj = (Packetm, Packetk). (4.22)

A vector containing these greedy values is generated by obtaining greedy values for

each pair in a flow. Statistics of this vector are used as a feature for a flow in the

classification stage.

4.8. Discrete Cosine Transform Coefficients

The Discrete Cosine Transform is a mathematical technique and physical trans-

formation that is used to transform information or signal from the time domain to

the frequency domain. It is frequently used in digital signal processing applications,

where it is used in converting the input sequence to real coefficients and condensing

the information coefficients in the low-frequency range.

Discrete Cosine Transform was proposed by Nasir Ahmed in 1972 [82]. A discrete

cosine transform (DCT) is a mathematical function that describes a finite discrete data

sequence as a summation of cosine functions fluctuating at various frequencies. DCT

provides a real transformation of the spatial domain to the frequency domain. It is one

of the most common methods which is used, especially in signal processing and image

compression.

Payload vectors contain bytes in the range from 0 to 255 like images. The tech-

niques which are used in image processing can be applied to classify or analyze payload

vectors. Discrete Cosine Transform is extensively used to compress information in the

images. Components of DCT contains information that effectively summarizes the

characteristic of a payload distribution. 1-D DCT is applied to the payload vector to

get these coefficients. Then the first three coefficients with more power are utilized to

classify legitimate and attack flows in the network.
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The general equation of discrete cosine transformation from the spatial domain

to the frequency domain is

C(n) =

√
2

K

K−1∑
k=0

x(k)w(n) cos(
πn

2K
(2k + 1)), (4.23)

where

w(θ) =


1√
2
, if θ = 0

1, otherwise.

(4.24)

Inverse of the discrete cosine transformation is obtained with using

x(k) =

√
2

K

K−1∑
n=0

C(n)w(n) cos
( πn

2K
(2k − 1)

)
, (4.25)

where

w(θ) =


1√
2
, if θ = 0

1, otherwise.

(4.26)

The discrete cosine transform coefficients are sorted according to their energy proba-

bilities. Energy probabilities are obtained with normalizing energies DCT coefficients.

The expression to obtain energy probability for DCT coefficient C(n) is

pC(n) =
PC(n)

K∑
i=1

PC(i)

, (4.27)

where PC(n) is energy of the DCT coefficient C(n) and pC(n) refers to energy probability.

Energy probabilities give information about the discrimination ability and the amount

of carried information [83]. Energy probabilities is applied as a coefficient selection

criteria and first three coefficient are used to characterize network payloads.
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5. GENERAL FRAMEWORK OF INTRUSION

DETECTION SYSTEM

A general overview of the proposed anomaly detection scheme is presented in this

chapter. Network anomaly detection systems process streaming network packets and

detect intrusions on the network. The proposed anomaly detection scheme consists of

three main modules. These modules can be summarized as pre-processing module, fea-

ture extraction module and classification module. The Block diagram of the proposed

scheme is given in Figure 5.1. Pre-processing module extract flows from the network

data in the first place. Then, the payload information of a predetermined number of

network packets in a flow is extracted and given as an output of this module. In the

feature extraction module, byte sequences are evaluated with N-gram analysis, and new

byte sequences for each N value are generated. After that, conventional and proposed

features are extracted to characterize network flows. These flow features are classified

with the SVM classifier, and flow is labeled according to the result of the classification

module.

Figure 5.1. Blok Diagram of Proposed Scheme.

Section 5.1 describes pre-processing module in detail. Feature extraction module

is explained in Section 5.2 and summary of the proposed features are given. In Section

5.3, detailed information is given about SVM classifier.



53

5.1. Data Pre-Processing

In a network system, data is carried by network packets. These packets go from

their sources to their destinations. Various protocols store this information in various

layers. These packets route from some network devices to their destinations. Network

environment, packet capture is executed on these network devices while the network

traffic is flowing. One of the most common ways to capture these network packets is

by using the Wireshark tool. Wireshark is a free and open-source tool that is used in

network protocol analysis, network monitoring, and troubleshooting. Wireshark is a

project started by Gerald Combs in 1998 and continues with the volunteer contributions

of networking specialists worldwide. It is written in the C and C++ programming

languages, and it enables you to capture and analyze network packets flowing through

the network interface. The captured network packets are generally stored in pcap

format.

Publicly available datasets contain raw network packet data in pcap files [20,84].

These pcap files store all network packets flowing through the network devices during

the data capturing process. In these pcap files, there is no division based on the

network flows. Various tools have been developed in various environments to analyze

network packets using a flow-based approach, such as OpenFlow [85]. OpenFlow is a

flow-based networking communication protocol that enables network devices to route

network packets. Besides that, it enables us to analyze network packets on the network

controller. However, publicly available datasets provide raw data in pcap format, and

flow-based categorization and division operations are required to analyze network flows.

In the pre-processing stage, network packets are categorized into flows using the Python

library ’pcap-splitter’ [86]. This library allows us to divide a pcap file into its subsets

based on flows. This means this library separates a pcap file into new pcap files, and

these files contain network packets that belong to only one flow. Then, these pcap files

are converted to CSV files so that Matlab can read them. These CSV files contain

packet header information and payload bytes in ASCII format.
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The pre-processing module extracts flows from the “pcap” files of the IDS 2012

and IDS 2017, and corresponding labels are matched for the evaluation. Then, payload

sequences of packets in a flow are extracted as a sequence of byte values in this mod-

ule. These payload sequences are processed separately for each flow in the proposed

framework.

5.2. Feature Extraction Module

The proposed system mainly analyzes the network flows to detect intrusions on

the network. In this module, features are extracted for each flow by using the payload

sequences of the packets in that flow. Initially, N-gram analysis is used in the generation

of the new payload vectors. Different payload vectors are obtained for each N value.

In this work, new payload sequences are obtained for N = 1, N = 2 and N = 3

values. As a second stage, defined features in Chapter 4 are extracted to characterize

network flows in order to separate intrusions from legitimate ones. These features are

also extracted for different parts of the flow. These parts are forward packets and

backward packets. Forward packets correspond to the packets in a flow going from the

source to the destination, while backward packets are replies from the destination side.

Features are extracted separately for forward, backward, and all packets in a flow. This

approach improves the characterization performance of the proposed features because

patterns can be changed for different segments of the flows. A summary of the features

is given in Table 5.1. A detailed overall list of the features is given in Table A.1.

5.3. Classification Module - Support Vector Machines (SVM)

A constructed feature vector containing a large number of features exploits net-

work characteristics efficiently. The Support Vector Machine (SVM) algorithm is used

in the detection stage. The Support Vector Machine (SVM) is one of the most effective

classifiers. It can handle both linear and non-linear functions by utilizing a variety

of kernels. SVM may be implemented on datasets with a greater number of features

without increasing the system’s complexity [87].
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Table 5.1. Summary of Payload Feature List.

Feature Names

1 Ratio of Printable Characters

2 Ratio of Unique Bytes

3 Shannon Entropy

4 Maximum - Actual Entropy

5 Greedy Distance of Payload Distributions

6 Mean Frequency

7 Peak Frequency

8 Spectral Entropy

9 Greedy Distance of Power Spectral Densities

10 Discrete Cosine Coefficients

SVM produces a class from one of two possible labels in its simplistic definition.

Classification can be performed without assuming and optimizing any other parameters

because SVM classifiers are non-parametric statistical machine learning tools [88]. This

implies that no assumptions regarding the distribution of data are made. Support

Vector Machine is a method for supervised classification, and it uses class labels in the

training phase. It generates a hyperplane between the classes to classify data. It is

the maximum separable boundary between distinct classes. An example of an SVM

hyperplane is given in Figure 5.2.

Training data with containing n arbitrary point can be represented with a set

of (x1, y1), ..., (xi, yi), ..., (xn, yn). The dimension of the x is equal to the number of

features, and it can be represented as a d. y corresponds to an element indicating the

class of a random sample. Representation is given as

(x1, y1), ..., (xi, yi), ..., (xn, yn) ,where x ∈ ℜd, y ∈ {−1,+1}. (5.1)
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Equation for optimal decision plane is given as

(wT × x) + b = 0, (5.2)

where w represents weight vector, x corresponds to input vector and b is the bias

term. With using this equations and trained data points, the main condition for this

hyper-plane is

yi((wT × x) + b) ≥ 1. (5.3)

Overall classification problems solved with SVM can be represented as

minimize
1

2
||w||

subject to yi((wT × x) + b) ≥ 1 ∀i = 1, . . . , N.

(5.4)

Linear separable data points can be easily classified using SVM, but it is not able

to be applied to non-linear separable cases. For non-linear cases, kernels are used to

transform data points from two-dimensional space to n dimensional space. This kernel

trick makes SVM still applicable for non-linear cases. Kernels can be categorized into

two main categories: Linear and non-linear kernels. Although the optimization for

non-linear kernels is much more complex than for linear kernels, they can be used to

achieve better separation between distinct data classes.

5.3.1. Kernel Trick

SVM is applicable only to linear separable problems. A kernel trick is used to

adapt the SVM algorithm for various data types, and it makes SVM applicable to

non-linear separable problems [89]. The kernel trick is a very effective tool because

it makes it possible to solve non-linear problems by using the methods proposed for

linear problems. By using only the dot product of two vectors, the original feature

space is transferred to another feature space. Data attributes linearly to the mapped

high dimensional feature space, although it shows non-linear behavior in its original
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feature space. The kernel function can be defined as

K(x,y) = ϕ(x) · ϕ(z). (5.5)

Using the kernel in the SVM algorithm enables us to add dimensions to make data

linearly separable. The original data samples belong to different classes and could not

be separable with a linear boundary. Original data samples are transferred to another

feature space by adding a new dimension by using the kernel trick. Data samples are

linearly separable in the new feature space, and the SVM algorithm finds the optimum

hyperplane for the classification problem. The projection of the optimal hyperplane

onto the original feature space is not linear. This trick makes it possible to classify

non-linearly separable data with the SVM algorithm.

Figure 5.2. Hyperplane with Support Vector Machines.

There are 3 common nonlinear kernel types: Sigmoid Kernel, Polynomial Kernel,

and RBF Kernel. They are given as follows.

5.3.1.1. Sigmoid Kernel. The Hyperbolic Tangent Kernel is also referred to as the

Sigmoid Kernel or the Multilayer Perceptron (MLP) kernel. The Sigmoid Kernel orig-

inates in the field of Neural Networks, in which the bipolar sigmoid activation function

is frequently applied to activate artificial neurons.



58

A sigmoid kernel function-based SVM model is equivalent to a two-layer per-

ceptron neural network. Due to its origins in neural network theory, this kernel was

incredibly popular for support vector machine algorithms. Additionally, it is practi-

cally applicable and shows good performance because it only requires a positive-definite

condition.

The sigmoid kernel can be defined as

K(x,y) = tanh(a1x · z + a2), (5.6)

where a1 and a2 adjustable parameters. a1 corresponds to the slope, while a2 is a

constant for interception. Generally, a1 equals to 1
N

where N is the size of the data [90].

5.3.1.2. Polynomial Kernel. The polynomial kernel is one of the most frequently used

kernel functions used with Support Vector Machines(SVMs) to classify non-linear sep-

arable data instances. It represents the original variables over a feature space con-

structed by the polynomial functions of the original features. The general definition of

polynomial kernel function is given as

K(x,y) = (x · z + a)d =

( N∑
j=1

xizi + a

)d

, (5.7)

where x and z are vectors on the input space, and a is a parameter that enables to

adjustment of the effects of the high-order and low-order components in the polynomial

function. a ≥ 0 and in the case where a = 0 is referred as a homogeneous kernel.
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Special case for d = 2 is referred as quadratic kernel and it can be written as

K(x,y) = (x · z + a)2 =

( N∑
j=1

xizi + a

)2

=
N∑
j=1

(x2i )(z
2
i ) +

N∑
i=1

i−1∑
j=1

(
√

2xixj)(
√

2zizj)

+
N∑
j=1

(
√

2axj)(
√

2azj) + a2.

(5.8)

Polynomial kernel is suitable for the normalized data samples. Normalization is applied

for proposed features and quadratic kernel is used in our classification problem.

5.3.1.3. Radial Basis Function (RBF)/Gaussian Kernel. Radial basis function (RBF)

kernels can be considered as one of the most generic forms of kernelization. With close

resemblance to the Gaussian distribution, RBF kernel is one of the extensively used

kernel types. The RBF kernel function measures the similarities or closeness of two

vectors x and z. Mathematically expression for RBF kernel can be given as

K(x,y) = exp
(
− ||x− z||2

2σ2

)
, (5.9)

where ||x− z|| corresponds to L2-norm or euclidean distance between x and z vectors.

σ is variance and a hyper-parameter for this kernel.
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6. EXPERIMENTS AND RESULTS

This chapter provides experiment results regarding the intrusion detection sys-

tem discussed in the previous chapter. The proposed features given in Chapter 4 are

implemented in the framework described in Chapter 5. Before discussing the results,

a detailed dataset explanation is given in Section 6.1.

6.1. Datasets

Performance evaluation of the proposed algorithm is tested on IDS 2012 [84] and

IDS 2017 [20], which are commonly used in the network anomaly detection literature.

These datasets contain different types of network attacks such as DDoS, DoS, PortScan,

etc.

The Canadian Cyber-Security Institute generates IDS 2012 and IDS 2017 network

intrusion datasets by considering specific characteristics. These characteristics are

significant because some problems usually encountered in other network attack datasets

significantly impact performance evaluation. These characteristics are realistic network

and traffic, labeled dataset, total interaction capture, complete capture, and diverse

intrusion scenarios.

• Realistic Network: Network intrusions and legitimate network traffic should not

exhibit any artificial behavior. The effects of the network attacks should be the

same as the real network systems, and the responses of the serves against the

attack should be realistic. There should not be any additional capture causing

inconsistencies in the generated dataset.

• Labelled Dataset: Labels of the captured raw data should be available publicly.

The dataset should not be required any manual labeling because it makes it

harder to use the dataset.

• Total Interaction Capture: In the capturing process, all network traffic, including

internal LANs, should be observed. The data is essential in the evaluation of the
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effects of network attacks on the overall system.

• Complete Capture: Most of the publicly available intrusion detection datasets are

heavily anonymized because of privacy concerns. Anonymization and removing

raw data of the captured traffic make it impossible to use the dataset from the

researchers in some cases. This dataset is captured in the controlled simulation

environment, and it does not require anonymization and other operations needed

because of privacy concerns.

• Diverse Intrusion Detection Scenarios: Dataset should contain different types

of network attacks to evaluate the performance of network intrusion detection

algorithms.

6.1.1. IDS 2012 Network Intrusion Dataset

IDS 2012 Network Intrusion Dataset consists of network traffic for seven days.

While 3 days (Wednesday, Friday, and Saturday) contain only normal network traffic,

the other 4 days contain both attack and regular traffic. In this work, days that contain

only normal traffic are not used in the evaluation.

Network intrusions on Sunday, Monday, Tuesday, and Thursday are explained as

follows.

• IDS 2012 - Sunday: An intrusion, which is called infiltrating the network from

inside, is simulated on this day. The attacker gains unauthorized access from a

host inside the network in this attack type. Captured data contains both attacks

and legitimate activity in the network.

• IDS 2012 - Monday: HTTP Denial of Service attack is simulated on this day.

This attack is performed with characteristics such as stealthy and low bandwidth

consumption. “Slowrois” attack tool is utilized to perform HTTP DoS attacks

without creating a flood in the network.

• IDS 2012 - Tuesday:Distributed Denial of Service attack is implemented using an

Internet Relay Chat (IRC) Botnet, which is an emerging threat to the network

systems. This attack is performed via the infected host on the network.
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• IDS 2012 - Thursday: A Brute Force attack is implemented by utilizing the

“brutessh” tool, which allows you to perform a brute force attack in an “SSH”

environment.

The number of flows for attacks and legitimate flows for each day is summarized

in the Table 6.1.

Table 6.1. IDS 2012 - Number of Flows.

Flow Label Number of Flows

Sunday
Normal 106705

Infiltrating network from inside 9966

Monday
Normal 111160

HTTP DoS 3130

Tuesday
Normal 232888

DDoS via IRC 10995

Thursday
Normal 152233

Brute Force - SSH 4753

6.1.2. IDS 2017 Network Intrusion Dataset

The IDS 2017 dataset was generated by considering the principles mentioned

above. Different types of network intrusion activity are captured in the simulation

environment. A labeled dataset containing raw packet data is publicly available. This

dataset contains five-day network activity of anomalous and routine behaviors. While

Monday’s network traffic data consists of only legitimate flows, the other days contain

both intrusion and regular network activity. Besides that, the number of flows with

payload for network attacks on Thursday is deficient, so Monday and Thursday are

not used in the evaluation. Network intrusions on Tuesday, Wednesday, and Friday are

explained as follows.

• IDS2017-Tuesday: Brute force, being one of the most common network attacks,

is simulated using the “Patator” tool. This attack is implemented using FTP and
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SSH methods.

• IDS2017-Wednesday: Different DoS/DDoS attacks are simulated on this day.

These network attacks are DoS Slowloris, DoS Slowhttptest, DoS Hulk, and DoS

GoldenEye. These attacks exploit various vulnerabilities in the network and

show different characteristics. On this day, the Heartbleed Port 444 attack is

also implemented, but there are very small numbers of samples belonging to this

attack, so it is not used in the evaluation.

• IDS2017-Friday: Bot, DDoS and PortScan attacks are implemented on this day.

Bot attack is implemented using the python-based “Ares” tool. The DDoS attack

is carried out with the Low Orbit Ion Canon (LOIC) tool, which generates floods

in the TCP, UDP, and HTTP protocols. Portscan attack is performed with

“Nmap”, a well-known tool for this attack type.

The number of flows belonging to legitimate and anomalous network activity is

given in the Table 6.2.

Table 6.2. IDS 2017 - Number of Flows.

Flow Label Number of Flows

Tuesday

Normal 149964

Brute Force - Patator - FTP 3942

Brute Force - Patator - SSH 2955

Wednesday

Normal 152638

DoS GoldenEye 7367

DoS Hulk 152318

DoS Slowhttptest 810

DoS Slowloris 1989

Friday

Normal 82782

Bot - Ares 1153

DDoS - LOIC 47158

PortScan 86738
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6.1.3. Dataset Preprocessing

IDS 2012 and IDS 2017 datasets contain two types of files. One is a “CSV” file

that contains summary information about each flow and its label. Another one is raw

network traffic data in “pcap” format. This data contains unmodified packet payload

data, which enables an analysis of packet payload to detect intrusions.

Label of network flows are given in “CSV” files in these public datasets [20, 84].

In the pre-processing stage of the dataset, each raw network packet from “pcap” files

is labeled using “CSV” files. In this stage, network packets are grouped based on

flows and flow-id and time extracted. Flow-id generated using source IP, destination

IP, source port, destination port, and protocol information. By using Flow ID and

timestamp information, the label is found from the “CSV” file and matched with the

network packets. However, some of these network flows labeled in the “CSV” files do

not match with the network flows obtained from the raw “pcap” files. The leading

cause of that time information is not the same for them in “pcap” and “CSV” files.

These unlabelled flows are not used in the evaluation stage. Only the safely labeled

flows are used in this stage. The given numbers of flows belong to the only safely

labeled flows.

6.2. Results

The performance of the proposed algorithm is tested on IDS 2012 and IDS 2017

datasets. These datasets and pre-processing stage are explained in Section 6.1. Train-

ing and test datasets are generated in different ways to evaluate performance efficiently.

In Case A, a one-class classification model is trained. In the second Case B, One-class

and Multi-Class classification models are trained for each dataset separately. In this

case, all attack samples belonging to IDS 2012 and IDS 2017 datasets are used sepa-

rately in the training of the classification model.
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6.2.1. Evaluation

Algorithm performance is evaluated with well-known performance metrics. These

are accuracy, specificity, precision, recall, false-positive rate, and F1-Score. F1-Score

is a metric accounting for both precision and recall, and it is better to use to evaluate

overall performance. In each scenario, a table is provided with performance metrics for

the features extracted from 3, 5, and 10 packages in a flow. Besides that, for detailed

analysis, a confusion matrix is given for each scenario for 5 packet case. 5 packet case is

selected for detailed analysis because early detection is essential in intrusion detection.

The 3-packet case for some attack cases is not sufficient to characterize the attack flows;

however, the 5-packet case performed well in most cases.

6.2.1.1. Performance Metrics. Well-known performance metrics are used to evaluate

the accuracy of the network intrusion detection performance. These metrics are accu-

racy, specificity, precision, recall, false-positive rate, F1-Score, and confusion matrix.

6.2.1.1.1. Accuracy: The general accuracy of classifier is calculated by compar-

ing the results of the intrusion detection algorithm with the real labels. The following

equation describes the calculation of this metric,

Accuracy =
(TP + TN)

(TP + FN + FP + TN)
. (6.1)

6.2.1.1.2. Specificity: Specificity, which is also known as True Negative Rate,

is a term that refers to the ratio of samples labeled as normal, given the samples are

actually normal and it can be defined as

Specificity =
TN

(TN + FP )
. (6.2)
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6.2.1.1.3. Precision: Precision, which is also known as a positive predictive

value, refers to the ratio of detected true attack samples to all samples labeled as an

attack. This metric can be formulated as

Precision =
TP

(TP + FP )
. (6.3)

6.2.1.1.4. Recall: Recall which is also known as true positive rate, sensitivity

or detection rate refers to the ratio of succesfully detected attack samples. It can be

calculated using the following expression,

Recall =
TP

(TP + FN)
. (6.4)

6.2.1.1.5. False Positive Rate: False-positive rate, which is also known as the

false alarm rate, is the percentage of legitimate traffic that is incorrectly labeled as an

attack. It can be formulated as

FalsePositiveRate =
(TP + TN)

(TP + FN + FP + TN)
. (6.5)

6.2.1.1.6. F1-Score: F1-Score is calculated using precision and recall values. It

corresponds to the harmonic mean of these values, and the F1-score aggregates both

into a single metric. It can be formulated as

F1 − Score = 2 × (precision× recall)

(precision+ recall)
. (6.6)

6.2.1.1.7. Confusion Matrix: An example of a confusion matrix is given in Fig-

ure 6.1. In the confusion matrix, rows belong to actual class labels while the columns

correspond to predicted classes. Central matrix cells contain the number of flows for

actual and predicted classes. The ratios given on the right side are True Positive (TP)
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and False Negative (FN) rates for each class. The rates given below the table show

False Predictive Values (FPV) and False Discovery Rates (FDR), respectively.

• TP = Number of attack samples predicted as an attack

• TN = Number of normal samples predicted as also normal

• FP = Number of normal samples predicted as an attack

• FN = number of attack samples predicted as normal

• TPR= Ratio of incorrectly labeled samples among actual normal samples.

• FNR= Ratio of incorrectly labeled samples among actual attack samples.

• FPR= Ratio of incorrectly labeled samples among predicted normal samples.

• FDR= Ratio of incorrectly labeled attack samples among predicted normal sam-

ples.

Figure 6.1. Example of Confusion Matrix.

6.2.2. Case A: Individual Attack Performance Analysis

IDS 2012 and IDS 2017 datasets are used to evaluate the performance. It can

easily seen that these dataset are unbalanced dataset with varying sample numbers
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from 810 to 232888 for each class from Table 6.1 and 6.2. In order to reduce the effect

of unbalance distribution, each attack is evaluated one by one. Normal data is taken

randomly from the day when the selected attack is simulated. The number of samples is

determined according to the class with the lowest number of flows for each evaluation.

For example, DoS Slowloris contains 1989 samples and the normal class on the same

day contains 152638 samples from Table 6.2. In this case, 1989 samples are taken from

both DoS Slowloris and Normal classes, then randomly selected 70% samples are used

in training while the remaining 30% samples are used in the test phase. One Class

SVM model is trained with a quadratic kernel.

6.2.2.1. Infiltrating Network from Inside - IDS 2012 - Sunday. The number of flows

belonging to this attack is 9966, and the number of legitimate flows on this day equals

106705. A randomly selected 9966 flows from the normal class, and all flows of the

infiltrating network from inside attack are used in the evaluation.

The proposed payload-based intrusion detection system detects infiltrating Net-

work from Inside attack flows. Performance evaluations are given for 3, 5, and 10

packet cases in Table 6.3. The attack detection performance of the algorithm slightly

increases when the number of packets used in the feature extraction increases. How-

ever, even in the 3 packet case, the F1-Score is 0.9841. In this case, 99.60% of attack

flows are detected, although there are some false alarms.

Table 6.3. Infiltrating Network from Inside - IDS 2012 - Sunday - Performance

Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9839 0.9719 0.9726 0.9960 0.0281 0.9841

5 Packet 0.9854 0.9732 0.9739 0.9973 0.0268 0.9855

10 Packet 0.9871 0.9779 0.9783 0.9974 0.0221 0.9872

The training dataset contains a total of 13952 flows for each class, and the test

dataset has 5980 flows. Figure 6.2 shows a complexity matrix containing a detailed

analysis of five packet cases. In this case, 80 attack flows are predicted as normal,
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corresponding to 2.7% of the total flow. 13 normal sample is predicted as an attack,

and a false alarm is generated. It accounts for %0.4 percent of all legitimate flows.

Figure 6.2. Infiltrating Network from Inside - IDS 2012 - Sunday - Confusion Matrix.

6.2.2.2. HTTP DoS - IDS 2012 - Monday. The total number of flows associated with

this attack is 3130, while the total number of legitimate flows on this day is 111, 160.

Randomly selected 3130 flows from the normal class, and all flows of HTTP DoS attack

are used in the evaluation.

The algorithm’s performance in detecting HTTP DoS flows is provided in Table

6.4. The features are extracted from flows of 3,5, and 10 packets. It is observed

that using 5 packets improves performance compared to using 3 packets. However, 10

packets decrease the accuracy and recall ratio while significantly improving the false-

positive rate. Therefore, there is a decrease in the algorithm’s overall performance

when 10-packet is used. The primary reason for this issue is that some attack flows

have fewer than 10 packets, which results in performance degradation.

The training dataset has a total of 4632 flows for each class, whereas the test

dataset contains 1986 flows. In Figure 6.3, a detailed analysis of the 5-packet case is

presented as a complexity matrix. It is seen that number of the wrong prediction is
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very small. There are no missed HTTP DoS attack flows, but there are seven false

positives for legitimate flows. Although the number of training samples is relatively

limited for this attack situation, features can be used to properly describe network

flows to distinguish legitimate flows from malicious ones.

Table 6.4. HTTP DoS - IDS 2012 - Sunday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9955 0.9932 0.9939 0.9969 0.0060 0.9955

5 Packet 0.9960 0.9940 0.9940 0.9980 0.0060 0.9960

10 Packet 0.9950 0.9970 0.9970 0.9930 0.0030 0.9950

Figure 6.3. Http DoS - IDS 2012 - Sunday - Confusion Matrix.

6.2.2.3. DDoS via IRC - IDS 2012 - Tuesday. The number of flows belonging to this

attack is 10995, and the number of legitimate flows on this day equals 232888. Ran-

domly selected 10995 flows from the normal class, and all flows from the DDOS attack

are used in the evaluation.

DDoS attack flows simulated via the Internet Relay Chat (IRC) protocol are

detected by the proposed payload-based intrusion detection system. Performance eval-

uations are given for 3,5 and 10 packet cases in Table 6.5. There is a small performance

increase for all performance metrics when the number of packets increases. DDoS at-
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tack flows are detected with a low false-positive rate. Therefore, these features can

effectively characterize DDoS attacks performed using the IRC protocol.

Table 6.5. DDoS IRC - IDS 2012 - Tuesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9938 0.9933 0.9933 0.9942 0.0067 0.9938

5 Packet 0.9941 0.9939 0.9939 0.9942 0.0061 0.9941

10 Packet 0.9948 0.9948 0.9948 0.9948 0.0052 0.9948

The training dataset contains a total of 15392 flows for each class, and the test

dataset has 6598 flows. A detailed analysis of the 5-packet case is given as a complexity

matrix in Figure 6.4. There are a total of 38 wrong predictions out of 6598 network

flows in the DDoS IRC attack case. It corresponds to 0.6% of the tested network flows.

It can be seen that extracted features performed well to distinguish DDoS attacks from

legitimate ones.

Figure 6.4. DDoS IRC- IDS 2012 - Tuesday - Confusion Matrix.

6.2.2.4. Brute Force SSH - IDS 2012 - Thursday. The total number of flows associ-

ated with this attempt is 4753, while the total number of legitimate activities on this

day is 152233. The evaluation uses randomly selected 4753 flows from the normal class,

and all flows from the Brute Force SSH attack.
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The presented payload-based intrusion detection system identifies Brute Force-

SSH attack flows. Performance evaluations for 3, 5, and 10 packet cases are provided

in Table 6.6. The table represents how the overall performance of the attack detection

algorithm declines as the number of packets used in feature extraction grows. It is

due to the nature of Brute Force attacks. It contains a small number of packets in a

flow, whereas valid flows contain a greater number of packets. It results in a decline

in performance. It indicates the importance of selecting the appropriate number of

packets to extract features for different attack cases. With a Brute Force attack on

the SSH protocol, a high detection rate can be obtained with early attack detection by

processing only 3 packets.

Table 6.6. Brute Force SSH - IDS 2012 - Thursday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9968 0.9944 0.9944 0.9993 0.0056 0.9969

5 Packet 0.9961 0.9930 0.9930 0.9993 0.0070 0.9962

10 Packet 0.9919 0.9979 0.9979 0.9860 0.0021 0.9919

The training dataset contains a total of 6654 flows for each class, and the test

dataset has 2852 flows. Detailed analysis of the 5-packet case is given as a complexity

matrix in Figure 6.5. There are only 2 missed attacks out of 1426 attack flows, which

corresponds to 0.1% of attack flows. There were 14 false alarms out of 1426 legitimate

flows. In brute force attack cases, the total error rate is 0.5% percent.

6.2.2.5. Brute Force - Patator - FTP- IDS 2017 - Tuesday. The number of flows be-

longing to this attack is 3942, and the number of legitimate flows on this day equals

149964. Randomly selected 3942 flows from the normal class, and all flows of Brute

Force - Patator - FTP attack are used in the evaluation.

Brute Force - Patator - FTP attack flows are detected by the proposed payload-

based intrusion detection system. Performance evaluation given for 3,5 and 10 packet

cases in Table 6.7. Brute force attacks can be easily detected by using proposed

payload-based features. Precision for the detection of attack samples is very high.
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At the same time, the ratio of false alarms is very small. These attack flows can be

detected even by using 3 packet features. It means that damage of the Brute Force

attack can be prevented with early detection.

Figure 6.5. Brute Force SSH- IDS 2012 - Thursday - Confusion Matrix.

Table 6.7. BruteForce Patator - FTP - IDS 2017 - Tuesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9987 0.9975 0.9975 0.9999 0.0025 0.9987

5 Packet 0.9996 0.9999 0.9999 0.9992 0.0001 0.9996

10 Packet 0.9987 0.9992 0.9992 0.9983 0.0008 0.9987

The training dataset contains a total 5518 number of flows for each class, and the

test dataset has 2366 flows. Detailed analysis of 5 packet case is given as a complexity

matrix in Figure 6.6. It can be seen that there is no misclassified attack flow in the

complexity matrix for the FTP-Patator type Brute Force attack. Attack flows are

effectively characterized by the proposed payload-based features. Only 2 normal flow

is labeled as attack flows, and it generates false alarms, but the ratio of false alarms is

quite small and 0.2%.

6.2.2.6. Brute Force - Patator - SSH- IDS 2017 - Tuesday. The number of flows be-

longing to this attack is 2955, and the number of legitimate flows on this day equals
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149964. Randomly selected 2955 flows from the normal class, and all flows of Brute

Force - Patator - SSH attack are used in the evaluation.

Figure 6.6. BruteForce Patator - FTP - IDS 2017 - Tuesday - Confusion Matrix.

Brute Force - Patator - SSH attack flows are detected by the proposed payload-

based intrusion detection system. Performance evaluation given for 3,5 and 10 packet

cases in Table 6.8. Similar to the FTP-Patator attack, the Brute Force attack, which

exploits SSH protocol, is also easily detectable with payload-based features. The per-

formance metrics indicate that attack flow detection is executed for all 3, 5, and 10

packet features with very low false-positive rates.

The training dataset contains a total 4136 number of flows for each class, and

the test dataset has 1774 flows. Detailed analysis of the 5-packet case is given as a

complexity matrix in Figure 6.7. Similar to the FTP-Brute Force attack, there are only

2 missed samples of the SSH-Brute Force attack in the test phase. The missed sample

ratio is 0.2% of the total attack samples. There is no false alarm in this classification.

Payload-based features are pretty valuable for detecting Brute Force attacks.
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Table 6.8. BruteForce Patator - SSH - IDS 2017 - Tuesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9977 0.9989 0.9989 0.9966 0.0011 0.9977

5 Packet 0.9983 0.9989 0.9989 0.9977 0.0011 0.9983

10 Packet 0.9977 0.9955 0.9955 0.9999 0.0045 0.9978

Figure 6.7. BruteForce Patator - SSH - IDS 2017 - Tuesday - Confusion Matrix.

6.2.2.7. DoS GoldenEye- IDS 2017 - Wednesday. The number of flows belonging to

this attack is 7367, and the number of legitimate flows on this day equals 152638.

Randomly selected 7367 flows from the normal class, and all flows of the DoS GoldenEye

attack are used in the evaluation. DoS GoldenEye attack flows are detected by the

proposed payload-based intrusion detection system. Performance evaluation given for

3,5 and 10 packet cases in Table 6.13.

The training dataset contains a total 10312 number of flows for each class, and

the test dataset has 4422 flows. Detailed analysis of the 5-packet case is given as a

complexity matrix in Figure 6.8.

6.2.2.8. DoS Slowhttptest- IDS 2017 - Wednesday. The number of flows belonging to

this attack is 810, and the number of legitimate flows on this day equals 152638. Ran-
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domly selected 810 flows from the normal class, and all flows of the DoS Slowhttptest

attack are used in the evaluation.

Table 6.9. DoS GoldenEye - IDS 2017 - Wednesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9907 0.9815 0.9818 1.000 0.0185 0.9910

5 Packet 0.9948 0.9905 0.9906 0.9991 0.0095 0.9948

10 Packet 0.9966 0.9941 0.9941 0.9991 0.0059 0.9966

Figure 6.8. DoS GoldenEye - IDS 2017 - Wednesday - Confusion Matrix.

DoS Slowhttptest attack flows are detected by the proposed payload-based in-

trusion detection system. Performance evaluation given for 3,5 and 10 packet cases

in Table 6.10. DoS Slowhttptest attack is effectively detected with proposed payload

features. Even if the number of samples is small for this attack scenario, the SVM

classifier is able to learn the boundaries between attack and legitimate samples. For

all 3, 5, and 10-packet cases, proposed features can model the attribute of the attack

flows. High F1-Score ratios are obtained for these three cases.

The training dataset contains a total 1134 number of flows for each class, and

the test dataset has 486 flows. Detailed analysis of the 5-packet case is given as a
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complexity matrix in Figure 6.9. The misclassification rates for DoS Slowhttptest and

normal class are meager and 0.8% and 0.4%, respectively. DoS Slowhttptest can be

detected efficiently with payload analysis. The false-positive rate is 0.2% for this case.

Table 6.10. DoS Slowhttptest - IDS 2017 - Wednesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9938 0.9992 0.9993 0.9877 0.0011 0.9938

5 Packet 0.9938 0.9959 0.9979 0.9918 0.0021 0.9938

10 Packet 0.9959 0.9994 0.9992 0.9918 0.0011 0.9959

Figure 6.9. DoS Slowhttptest - IDS 2017 - Wednesday - Confusion Matrix.

6.2.2.9. DoS Hulk- IDS 2017 - Wednesday. The number of flows belonging to this at-

tack is 152318, and the number of legitimate flows on this day equals 152638. Randomly

selected 152318 flows from the normal class, and all flows of the DoS Hulk attack are

used in the evaluation.

DoS Hulk attack flows are detected by the proposed payload-based intrusion

detection system. Performance evaluation given for 3,5 and 10 packet cases in Table

6.10. Even if 3 packet features are capable of representing the attack attributes, they

can be used on early attack detection with a high precision rate. The performance

is slightly improved, and false-positive rates are decreased when the number of the
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processed packets increases. F1-Score obtained for the 5-packet case is 0.9921, implying

that DoS Hulk attack samples can be detected effectively.

Table 6.11. DoS Hulk - IDS 2017 - Wednesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9920 0.9865 0.9866 0.9975 0.0135 0.9920

5 Packet 0.9921 0.9865 0.9867 0.9976 0.0135 0.9921

10 Packet 0.9927 0.9877 0.9879 0.9976 0.0123 0.9927

The training dataset contains a total 213244 number of flows for each class, and

the test dataset has 91392 flows. Detailed analysis of the 5-packet case is given as a

complexity matrix in Figure 6.10. DDoS Hulk attacks create floods on the network

to exhaust network resources. The number of samples in the evaluation dataset is

relatively high. Only 111 flow belonging to the attack is missed out of 45596 flows. It

corresponds to 0.2% of the total attack flows. There are 615 false alarms generated on

the system, but it is 0.65% of the whole network flows evaluated in the test phase.

Figure 6.10. DoS Hulk - IDS 2017 - Wednesday - Confusion Matrix.

6.2.2.10. DoS Slowloris- IDS 2017 - Wednesday. The number of flows belonging to

this attack is 1989, and the number of legitimate flows on this day equals 152638.

Randomly selected 810 flows from the normal class and all flows of the DoS Slowrois
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attack are used in the evaluation.

DoS Slowloris attack flows are detected by the proposed payload-based intrusion

detection system. Performance evaluation given for 3,5 and 10 packet cases in Table

6.12. Slowloris attack can be detected efficiently by using 3, 5, and 10 packet features.

3-packet features provide early detection of attack samples with very high precision.

The false-positive rate is very low for 5 and 10 packet cases. There is no big difference

between 3, 5, and 10 packet cases, but the best performance is taken for the 5-packet

case according to F1-Score.

Table 6.12. DoS Slowloris - IDS 2017 - Wednesday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9950 0.9933 0.9933 0.9966 0.0067 0.9950

5 Packet 0.9958 0.9983 0.9983 0.9933 0.0017 0.9958

10 Packet 0.9933 0.9933 0.9933 0.9933 0.0067 0.9933

The training dataset contains a total of 2784 flows for each class, and the test

dataset has 1194 flows. Detailed analysis of the 5-packet case is given as a complexity

matrix in Figure 6.11. The misclassification rate for both classes is 0.3% for the DoS

Slowloris attack. These attack flows are differentiated by the proposed payload-based

features efficiently, and the SVM classifier is suitable for classifying these flows.

6.2.2.11. Bot Ares- IDS 2017 - Friday. The number of flows belonging to this attack

is 1153, and the number of legitimate flows on this day equals 82782. In the evaluation,

1153 flows from the normal class, and all flows from the Bot-Ares attack are chosen at

random.

Attack flows simulated with the python-based ARES tool are detected by the

proposed payload-based intrusion detection system. Performance evaluations are given

for 3, 5, and 10 packet cases in Table 6.13. Detection performance for 3,5 and 10 packet

cases does not differ too much. The detection performance is similar in each case, but

the false positive rate decreases, and the detection performance slightly improves as
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the number of used packets increases. The F1-Score metric can be used to assess the

classifier’s overall performance, which depends on both precision and recall rates. It is

increased from 0.9730 to 0.9787 when the number of analyzed packets increases. 10-

packet can be used for more accurate detection, but 3 packet cases also provide early

detection of attack flows with high accuracy.

Figure 6.11. DoS Slowloris - IDS 2017 - Wednesday - Confusion Matrix.

The training dataset contains a total of 1614 flows for each class, and the test

dataset has 692 flows. A detailed analysis of the 5-packet case is given as a complexity

matrix in Figure 6.12. In the complexity matrix, it can be seen that the number

of missed attack flows is really low and corresponds to 0.3% of total attack flows.

4.3% of the normal flows are predicted as Bot Ares attacks. It has a relatively high

misclassification rate. It can be improved by increasing the number of samples in the

training dataset.

Table 6.13. BotNet Ares - IDS 2017 - Friday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9725 0.9566 0.9580 0.9884 0.0434 0.9730

5 Packet 0.9769 0.9566 0.9583 0.9971 0.0434 0.9773

10 Packet 0.9783 0.9595 0.9610 0.9971 0.0405 0.9787



81

6.2.2.12. DDoS LOIC- IDS 2017 - Friday. The number of flows belonging to this at-

tack is 47158, and the number of legitimate flows on this day equals 82782. Randomly

selected 47158 flows from the normal class, and all flows of a DDoS LOIC attack were

used in the evaluation.

Figure 6.12. BotNet ARES- IDS 2017 - Friday - Confusion Matrix.

The DDoS LOIC attack flows are detected by the proposed payload-based intru-

sion detection system. Performance evaluations are given for 3, 5, and 10 packet cases

in Table 6.14. There is a big improvement in the detection performance of the 5 and

10 packet cases compared with the 3-packet case. The features extracted from the 3

packets in a flow are not sufficient to explain the attributes of DDoS attack flows. The

F1-Score for the 5 packet case is 2 percentage points higher than the 3 packet case.

However, there is no significant improvement in performance for the 10 packet case.

The performance metrics are slightly higher than in the 5 packet case. Five packet

features are preferable when the importance of early detection with high accuracy is

accounted for.

The training dataset contains a total of 33011 flows, and the test dataset has 14148

flows for each class. A detailed analysis of the 5-packet case is given as a complexity

matrix in Figure 6.13. It can be seen that DDoS attacks are detected with a very high

recall rate. However, the number of false alarms and the misclassification of the normal
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flows is 5.7% of the total legitimate samples. It means the false positive rate for DDoS

attacks performed with a tool called LOIC is higher than the other attack cases.

Table 6.14. DDoS LOIC - IDS 2017 - Friday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9496 0.9242 0.9278 0.9751 0.0758 0.9509

5 Packet 0.9709 0.9418 0.9450 0.9999 0.0582 0.9717

10 Packet 0.9715 0.9430 0.9461 1.000 0.0570 0.9723

Figure 6.13. DDoS LOIC- IDS 2017 - Friday - Confusion Matrix.

6.2.2.13. PortScan - IDS 2017 - Friday. The number of flows belonging to this attack

is 86738, and the number of legitimate flows on this day equals 82782. Randomly

selected 82782 flows from the PortScan attack class, and all flows of legitimate flows

on Friday are used in the evaluation.

PortScan attack flows are detected by the proposed payload-based intrusion de-

tection system. Performance evaluation given for 3,5 and 10 packet cases in Table 6.15.

The portScan attack can be detected with a very low false-positive rate using even 3

packet features. Increasing the number of packets improves the overall performance

according to F1-Score with an increasing recall rate. However, false-positive rates,

which indicate the false alarm ratio, are also increasing for the PortScan attack.
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The training dataset contains a total 115894 number of flows for each class, and

the test dataset has 49670 flows. Detailed analysis of the 5-packet case is given as a

complexity matrix in Figure 6.14. The total number of misclassified samples is 718 in

the PortScan attack case. It corresponds to 1.4% of the total flows in test data. The

ratio of false-positive rate is 2.6%, and the number of false alarms is 644. The number

of missed attack flows is 74, and it is 0.3% of attack flows in the test data. Although

there are some false alarms, the detection of the PortScan attack is performed with a

very high detection rate.

Table 6.15. PortScan - IDS 2017 - Friday - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive - Rate F1-Score

3 Packet 0.9845 0.9964 0.9963 0.9725 0.0036 0.9843

5 Packet 0.9851 0.9729 0.9736 0.9972 0.0271 0.9852

10 Packet 0.9858 0.9743 0.9749 0.9974 0.0257 0.9860

Figure 6.14. PortScan - IDS 2017 - Friday - Confusion Matrix.

6.2.3. Case B: Dataset Performance Analysis

In this case, one-class SVM is trained for all attacks and legitimate flows in IDS

2012 and IDS 2017 datasets separately. These datasets are unbalanced dataset with

varying sample numbers from 810 to 232888 for each class from Table 6.1 and 6.2.
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In order to reduce to effects of unbalanced distribution, the maximum sample size is

determined as 20 000 flows for attack classes. If it is lower than 20 000, all network flows

of a class are used in the evaluation. 20 000 flow is randomly selected for the classes

with a higher sample size. Legitimate network flows are randomly selected according

to the total number of flows in the attack class. Then, 70% of each class is selected

randomly to train a one-class SVM model, and a test dataset is generated using the

remaining samples from each class. In order to handle non-linear distinctions between

the classes, a one-class SVM algorithm is trained using a quadratic kernel.

In this case, multi-class SVM is also trained to evaluate the ability of the proposed

features to distinguish different attack types. Multi-class SVM is trained with both

attack and legitimate flows in the datasets.

6.2.3.1. IDS 2012 Dataset. The IDS 2012 dataset contains four different attack types,

each with its particular objectives. While HTTP DoS attacks and DDoS attacks try

to exhaust network resources, Brute Force attacks and Infiltrating attacks try to gain

unauthorized access in different ways. These attacks are assigned to only one attack

class, and randomly selected same number of legitimate flows are used in the evaluation.

Performance evaluation metrics for trained one-class SVM are given in Table 6.16

for 3, 5, and 10 packet cases. It can be seen that the best performance is taken for

the 5 packet cases based on the F1-Score. There is a clear performance increase in the

5 packet case compared to the 3 packet case. In the 10 packet case, there is quite a

decrease in F1-Score, where there is an improvement in the false positive rate. There is

no big improvement because the number of payload packets, specifically flows belonging

to attack, is generally less than 10. Using more packets in the network disrupts the

characterization of legitimate and attack flows. There is no big difference between 5

and 10 packet cases. The 5 packet case will provide early detection with almost the

same accuracy as the 10 packet case. Also, using the 5 packet case will reduce the

computational load of the anomaly detection algorithm.
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Table 6.16. IDS 2012 - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9853 0.9913 0.9940 0.9812 0.0087 0.9874

5 Packet 0.9887 0.9915 0.9941 0.9868 0.0085 0.9904

10 Packet 0.9859 0.9918 0.9943 0.9819 0.0082 0.9880

Confusion matrix for the 5 packet case is given in Figure 6.15. There is an equal

number of flows in the evaluation dataset for both legitimate and attack flows. 141

attack flow is missed out of 8608 attack flows, and it corresponds to 1.6% of the total

attack flows. Misclassified normal flows are 0.3% of total normal flows, and only 26

normal flows are labeled as attack flows. Proposed features can reveal the attributes

of the legitimate and attack flows, and quadratic SVM can effectively classify these

network flows.

Figure 6.15. IDS 2012 - Confusion Matrix.
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The performance of the proposed feature to characterize various attack types and

the legitimate flows is evaluated with the trained multi-class SVM. There are Brute

Force, DDoS, DoS, and Intrafiltrating attacks in this dataset. Therefore, a 5-class SVM

classifier was trained. In the Multi-class SVM, the most misclassified classes are HTTP

DoS and Infiltrating Attacks. These features do not show discriminating attributes for

these classes. Specifically, network flows belonging to an HTTP DoS attack are labeled

as infiltrating attacks. Considering missed HTTP DoS attack flows, 47% of HTTP

DoS attack flows are misclassified. However, the detection rate of the attack flows is

still high for the multi-class SVM case. Best performance is taken for the DDoS attack

flows, and only 0.5% of the DDoS attack flows are mislabeled. The general separation

capability of the proposed features is relatively high, except for one class.

Figure 6.16. IDS 2012 - Multi Class - Confusion Matrix.

6.2.3.2. IDS 2017 Dataset. The IDS 2017 dataset contains 9 different attack types,

which are given in Table 6.2. There are two different types of brute force attacks,

which are done via SSH and FTP protocols. Network activity captured on Wednes-

day contains different types of DoS attacks, such as DoS Hulk and DoS Slowhttptest,

having completely different attributes from each other. The data captured on Fri-

day contains three different attack types: DDoS, Bot, and PortScan. Therefore, this

dataset contains a variety of attacks that are performed with particular objectives.
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Although this dataset contains various attacks, extracted features are able to diversify

attack flows from the usual user activities. A one-class SVM is trained by assigning all

attacks to one general “Attack” class. It helps to evaluate the real intrusion detection

performance of the features. Besides that, multi-class SVM is trained to identify attack

types.

All attack flows in the IDS 2017 dataset are detected by the proposed payload-

based intrusion detection system. Performance evaluations are given for 3, 5, and

10 packet cases in Table 6.17. It is seen that the lowest performance is obtained in

the 3 packet case, particularly for some attack cases, such as DDOS LOIC. Detection

performance for extracted features using 3 packet payload information is weak, as

shown in Case A. Similarly, using 10 packets to extract features can reduce the detection

rate for some attacks such as DoS Slowloris and GoldenEye. According to the attributes

of attacks, the optimal number of packets can be diversified attack by attack. The best

performance was obtained in the 5-packet case overall. Although it costs more to delay

detection than a 3-packet case, it provides better precision and recall rates. It also

provides early detection and better detection rates compared with the 10-packet case.

Table 6.17. IDS 2017 - Performance Evaluation.

Accuracy Specificity Precision Recall FalsePositive Rate F1-Score

3 Packet 0.9761 0.9598 0.9610 0.9923 0.0402 0.9764

5 Packet 0.9803 0.9634 0.9646 0.9972 0.0366 0.9806

10 Packet 0.9789 0.9607 0.9621 0.9971 0.0393 0.9793

Detailed analysis of the 5-packet case is given as a complexity matrix in Figure

6.17. The training dataset contains a total of 23467 samples for each class. The number

of missed attack flows is 68, while its ratio corresponds to 0.3% of total flows belonging

to intrusion activity. 96.3% of legitimate flows are correctly labeled, while the 3.7% of

them cause false alarms. The total error rate in this scenario is equal to 2%.

All attacks in the IDS 2017 dataset are grouped into one “Attack” class, and

the performance of the one-class SVM is analyzed. The detection of the attack type
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is critical to taking countermeasures against the attacker. It enables us to reduce the

damage of the attack and preserve the security of the information. In order to evalu-

ate the performance in distinguishing different attacks, a multi-class SVM classifier is

trained by using both attack and normal network flows. There are 9 different types

of network attacks and a legitimate class, then 10-class SVM classifier is trained. The

complexity matrix for the multi-class SVM trained with the features extracted using

5 packets in a flow is given in Figure 6.18. In the complexity matrix, it can be seen

that 231 network flows belonging to the Bot attack are labeled as a PortScan attack.

The misclassification ratio of the Bot attack flows is very high at 66.8%. Proposed

features can not differentiate Bot Ares attack flows and PortScan flows. Second, most

misclassification is observed between DDoS and Normal network flows. Both classes

have a large number of training and test flows, and this ratio is 1.4% of total DDoS

flows. 0.6% of the overall attack flows is labeled as legitimate flows, and they are

missed. Although the trained multi-class SVM contains 10 different attack classes, the

total number of missed attack flows is 34. The proposed features efficiently characterize

FTP-Patator attack flows, and there are no missed flows. At the same time, there are

no flows that belong to the other classes and are predicted as FTP-Patator. It can be

considered the best-performed class.

Figure 6.17. IDS 2017 - Confusion Matrix.
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Figure 6.18. IDS 2017 - Confusion Matrix.
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7. CONCLUSION

Early detection of network attacks is crucial to provide security of network sys-

tems against intrusions affecting users in various ways. Early detection of malicious

connections enables us to prevent the potential loss caused by these activities. Detect-

ing whether there are any attacks on the network is an essential operation to take the

necessary precautions. Besides that, distinguishing the legitimate connections from the

attackers is significant work for the system to continue to serve. Analyzing network

packet payload is an approach to identify whether there is an attack on the network

and determine which connections belong to the attack. Its primary reason is that the

construction way of packet payloads of legitimate flows and intrusions have distinct

patterns in their payloads. Moreover, imitating the characteristics of the legitimate

packet payloads on the network is quite a challenging task for the attacker side. There-

fore, packet payload analysis is significant in characterizing and classifying network

flows.

This thesis evaluates the performance of features conventionally used in appli-

cation classification in detecting attacks on the network. Proposed features reveal

both patterns in the byte distribution within the packet and patterns between packets.

Greedy algorithm-based metrics allow comparing defined probability distributions over

different sample spaces at various lengths to analyze the attributes of these distribu-

tions and characterize the network. Besides that, new features are proposed to capture

more complicated patterns in payload vectors. In this respect, spectral-domain analy-

sis of the payload sequences allows us to extract features to classify normal and attack

flows more accurately. Discrete Cosine Transform coefficients of payload sequences,

commonly used in image processing to classify and extract summarizing information,

are utilized to characterize network flows. These features are extracted from the packet

payload sequence obtained with N-gram analysis for different N values. Also, these fea-

tures are calculated for different segments of the network flow to characterize each flow

more effectively.



91

This thesis analyzes the efficiency of these payload-based features to separate

different types of attacks. These features are extracted for each flow on the network

using different packet numbers. In our analysis, flows with 3, 5, and 10 packets are

separately used for the feature extraction. There is a large number of features that can

be used to model the characteristics of both legitimate and attack flows. All of these

features are used in the classification process to train and test datasets. A one-class

and multi-class support vector machine (SVM) algorithm are used in the classification

stage. The classification performance of the SVM model trained with these features

was evaluated on the IDS 2012 and IDS 2017 datasets, which are widely used in the

literature. Performance analysis of the SVM algorithm is given in detail for both

datasets, which contain various types of network attacks.

The performance of the SVM algorithm trained with proposed payload-based

features that exploit attributes of flows is tested for mainly six different types of attack.

Some of these attacks are executed in the simulation environment via different tools and

methods. These attacks are also considered different attack types, and performance

evaluation is executed for 13 different attack types. High accuracy rates are achieved

against these attack types even when the features extracted from 3-packet flows are

used. These 3-packet features provide early detection of an attack with high accuracy

rates. However, 5 and 10 packet cases generally improve the performance of detection.

When the trade-off between early detection and detection accuracy is considered, 5-

packet cases are generally preferable ones for all attack types. The 5-packet features

provide high precision and recall rates alongside early detection of attack flows.

In this thesis, all features are used in the training stage of the classification

model. Instead of calculating all the features for the real-time application, only some

of the discriminating features can be used according to the requirements of the network

system. In this thesis, it is shown that network payloads can be used as an identifier of

network attacks. Features indicating the similarities between payload byte distributions

are valuable for modeling network flows. Frequency domain analysis and discrete cosine

transform, previously not applied in this domain, provide a crucial contribution to

detecting network intrusions.
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APPENDIX A: FLOW BASED PAYLOAD FEATURE LIST

Table A.1. Flow Based Payload Feature Name List.

No Feature Names

1 N=1 - General Ratio of Printable Characters - Mean

2 N=1 - General Ratio of Printable Characters - Min

3 N=1 - General Ratio of Printable Characters - Max

4 N=1 - General Ratio of Printable Characters - Std

5 N=1 - General - Ratio of Unique Bytes - Mean

6 N=1 - General - Ratio of Unique Bytes - Min

7 N=1 - General - Ratio of Unique Bytes - Max

8 N=1 - General - Ratio of Unique Bytes - Std

9 N=1 - General - Entropy - Mean

10 N=1 - General - Entropy - Min

11 N=1 - General - Entropy - Max

12 N=1 - General - Entropy - Std

13 N=1 - General - Actual Entropy - Mean

14 N=1 - General - Actual Entropy - Min

15 N=1 - General - Actual Entropy - Max

16 N=1 - General - Actual Entropy - Std

17 N=1 - General - Greedy Distance of Packets - Mean

18 N=1 - General - Greedy Distance of Packets - Min

19 N=1 - General - Greedy Distance of Packets - Max

20 N=1 - General - Greedy Distance of Packets - Std

21 N=1 - General - Mean Frequency - Mean

22 N=1 - General - Mean Frequency - Min

23 N=1 - General - Mean Frequency - Max

24 N=1 - General - Mean Frequency - Std



105

Table A.1. Flow Based Payload Feature Name List. (cont.)

Header 1 Header 2

25 N=1 - General - Peak Frequency - Mean

26 N=1 - General - Peak Frequency - Min

27 N=1 - General - Peak Frequency - Max

28 N=1 - General - Peak Frequency - Std

29 N=1 - General - Spectral Entropy - Mean

30 N=1 - General - Spectral Entropy - Min

31 N=1 - General - Spectral Entropy - Max

32 N=1 - General - Spectral Entropy - Std

33 N=1 - General - Greedy Distance of PSDs - Mean

34 N=1 - General - Greedy Distance of PSDs - Min

35 N=1 - General - Greedy Distance of PSDs - Max

36 N=1 - General - Greedy Distance of PSDs - Std

37 N=1 - General - DCT Coefficient 1 - Mean

38 N=1 - General - DCT Coefficient 1 - Min

39 N=1 - General - DCT Coefficient 1 - Max

40 N=1 - General - DCT Coefficient 1 - Std

41 N=1 - General - DCT Coefficient 2 - Mean

42 N=1 - General -DCT Coefficient 2 - Min

43 N=1 - General - DCT Coefficient 2 - Max

44 N=1 - General - DCT Coefficient 2 - Std

45 N=1 - General - DCT Coefficient 3 - Mean

46 N=1 - General -DCT Coefficient 3 - Min

47 N=1 - General - DCT Coefficient 3 - Max

48 N=1 - General - DCT Coefficient 3 - Std

49 N=1 - Forward - Ratio of Printable Characters - Mean

50 N=1 - Forward - Ratio of Printable Characters - Min

51 N=1 - Forward - Ratio of Printable Characters - Max

52 N=1 - Forward - Ratio of Printable Characters - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

53 N=1 - Forward - Ratio of Unique Bytes - Mean

54 N=1 - Forward - Ratio of Unique Bytes - Min

55 N=1 - Forward - Ratio of Unique Bytes - Max

56 N=1 - Forward - Ratio of Unique Bytes - Std

57 N=1 - Forward - Entropy - Mean

58 N=1 - Forward - Entropy - Min

59 N=1 - Forward - Entropy - Max

60 N=1 - Forward - Entropy - Std

61 N=1 - Forward - Actual Entropy - Mean

62 N=1 - Forward - Actual Entropy - Min

63 N=1 - Forward - Actual Entropy - Max

64 N=1 - Forward - Actual Entropy - Std

65 N=1 - Forward - Greedy Distance of Packets - Mean

66 N=1 - Forward - Greedy Distance of Packets - Min

67 N=1 - Forward - Greedy Distance of Packets - Max

68 N=1 - Forward - Greedy Distance of Packets - Std

69 N=1 - Forward - Mean Frequency - Mean

70 N=1 - Forward - Mean Frequency - Min

71 N=1 - Forward - Mean Frequency - Max

72 N=1 - Forward - Mean Frequency - Std

73 N=1 - Forward - Peak Frequency - Mean

74 N=1 - Forward - Peak Frequency - Min

75 N=1 - Forward - Peak Frequency - Max

76 N=1 - Forward - Peak Frequency - Std

77 N=1 - Forward - Spectral Entropy - Mean

78 N=1 - Forward - Spectral Entropy - Min

79 N=1 - Forward - Spectral Entropy - Max

80 N=1 - Forward - Spectral Entropy - Std



107

Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

81 N=1 - Forward - Greedy Distance of PSDs - Mean

82 N=1 - Forward - Greedy Distance of PSDs - Min

83 N=1 - Forward - Greedy Distance of PSDs - Max

84 N=1 - Forward - Greedy Distance of PSDs - Std

85 N=1 - Forward - DCT Coefficient 1 - Mean

86 N=1 - Forward - DCT Coefficient 1 - Min

87 N=1 - Forward - DCT Coefficient 1 - Max

88 N=1 - Forward - DCT Coefficient 1 - Std

89 N=1 - Forward - DCT Coefficient 2 - Mean

90 N=1 - Forward -DCT Coefficient 2 - Min

91 N=1 - Forward - DCT Coefficient 2 - Max

92 N=1 - Forward - DCT Coefficient 2 - Std

93 N=1 - Forward - DCT Coefficient 3 - Mean

94 N=1 - Forward -DCT Coefficient 3 - Min

95 N=1 - Forward - DCT Coefficient 3 - Max

96 N=1 - Forward - DCT Coefficient 3 - Std

97 N=1 - Backward - Ratio of Printable Characters - Mean

98 N=1 - Backward - Ratio of Printable Characters - Min

99 N=1 - Backward - Ratio of Printable Characters - Max

100 N=1 - Backward - Ratio of Printable Characters - Std

101 N=1 - Backward - Ratio of Unique Bytes - Mean

102 N=1 - Backward - Ratio of Unique Bytes - Min

103 N=1 - Backward - Ratio of Unique Bytes - Max

104 N=1 - Backward - Ratio of Unique Bytes - Std

105 N=1 - Backward - Entropy - Mean

106 N=1 - Backward - Entropy - Min

107 N=1 - Backward - Entropy - Max

108 N=1 - Backward - Entropy - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

109 N=1 - Backward - Actual Entropy - Mean

110 N=1 - Backward - Actual Entropy - Min

111 N=1 - Backward - Actual Entropy - Max

112 N=1 - Backward - Actual Entropy - Std

113 N=1 - Backward - Greedy Distance of Packets - Mean

114 N=1 - Backward - Greedy Distance of Packets - Min

115 N=1 - Backward - Greedy Distance of Packets - Max

116 N=1 - Backward - Greedy Distance of Packets - Std

117 N=1 - Backward - Mean Frequency - Mean

118 N=1 - Backward - Mean Frequency - Min

119 N=1 - Backward - Mean Frequency - Max

120 N=1 - Backward - Mean Frequency - Std

121 N=1 - Backward - Peak Frequency - Mean

122 N=1 - Backward - Peak Frequency - Min

123 N=1 - Backward - Peak Frequency - Max

124 N=1 - Backward - Peak Frequency - Std

125 N=1 - Backward - Spectral Entropy - Mean

126 N=1 - Backward - Spectral Entropy - Min

127 N=1 - Backward - Spectral Entropy - Max

128 N=1 - Backward - Spectral Entropy - Std

129 N=1 - Backward - Greedy Distance of PSDs - Mean

130 N=1 - Backward - Greedy Distance of PSDs - Min

131 N=1 - Backward - Greedy Distance of PSDs - Max

132 N=1 - Backward - Greedy Distance of PSDs - Std

133 N=1 - Backward - DCT Coefficient 1 - Mean

134 N=1 - Backward - DCT Coefficient 1 - Min

135 N=1 - Backward - DCT Coefficient 1 - Max

136 N=1 - Backward - DCT Coefficient 1 - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

137 N=1 - Backward - DCT Coefficient 2 - Mean

138 N=1 - Backward -DCT Coefficient 2 - Min

139 N=1 - Backward - DCT Coefficient 2 - Max

140 N=1 - Backward - DCT Coefficient 2 - Std

141 N=1 - Backward - DCT Coefficient 3 - Mean

142 N=1 - Backward -DCT Coefficient 3 - Min

143 N=1 - Backward - DCT Coefficient 3 - Max

144 N=1 - Backward - DCT Coefficient 3 - Std

145 N=2 - General Ratio of Printable Characters - Mean

146 N=2 - General Ratio of Printable Characters - Min

147 N=2 - General Ratio of Printable Characters - Max

148 N=2 - General Ratio of Printable Characters - Std

149 N=2 - General - Ratio of Unique Bytes - Mean

150 N=2 - General - Ratio of Unique Bytes - Min

151 N=2 - General - Ratio of Unique Bytes - Max

152 N=2 - General - Ratio of Unique Bytes - Std

153 N=2 - General - Entropy - Mean

154 N=2 - General - Entropy - Min

155 N=2 - General - Entropy - Max

156 N=2 - General - Entropy - Std

157 N=2 - General - Actual Entropy - Mean

158 N=2 - General - Actual Entropy - Min

159 N=2 - General - Actual Entropy - Max

160 N=2 - General - Actual Entropy - Std

161 N=2 - General - Greedy Distance of Packets - Mean

162 N=2 - General - Greedy Distance of Packets - Min

163 N=2 - General - Greedy Distance of Packets - Max

164 N=2 - General - Greedy Distance of Packets - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

165 N=2 - General - Mean Frequency - Mean

166 N=2 - General - Mean Frequency - Min

167 N=2 - General - Mean Frequency - Max

168 N=2 - General - Mean Frequency - Std

169 N=2 - General - Peak Frequency - Mean

170 N=2 - General - Peak Frequency - Min

171 N=2 - General - Peak Frequency - Max

172 N=2 - General - Peak Frequency - Std

173 N=2 - General - Spectral Entropy - Mean

174 N=2 - General - Spectral Entropy - Min

175 N=2 - General - Spectral Entropy - Max

176 N=2 - General - Spectral Entropy - Std

177 N=2 - General - Greedy Distance of PSDs - Mean

178 N=2 - General - Greedy Distance of PSDs - Min

179 N=2 - General - Greedy Distance of PSDs - Max

180 N=2 - General - Greedy Distance of PSDs - Std

181 N=2 - General - DCT Coefficient 1 - Mean

182 N=2 - General - DCT Coefficient 1 - Min

183 N=2 - General - DCT Coefficient 1 - Max

184 N=2 - General - DCT Coefficient 1 - Std

185 N=2 - General - DCT Coefficient 2 - Mean

186 N=2 - General -DCT Coefficient 2 - Min

187 N=2 - General - DCT Coefficient 2 - Max

188 N=2 - General - DCT Coefficient 2 - Std

189 N=2 - General - DCT Coefficient 3 - Mean

190 N=2 - General -DCT Coefficient 3 - Min

191 N=2 - General - DCT Coefficient 3 - Max

192 N=2 - General - DCT Coefficient 3 - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

193 N=2 - Forward - Ratio of Printable Characters - Mean

194 N=2 - Forward - Ratio of Printable Characters - Min

195 N=2 - Forward - Ratio of Printable Characters - Max

196 N=2 - Forward - Ratio of Printable Characters - Std

197 N=2 - Forward - Ratio of Unique Bytes - Mean

198 N=2 - Forward - Ratio of Unique Bytes - Min

199 N=2 - Forward - Ratio of Unique Bytes - Max

200 N=2 - Forward - Ratio of Unique Bytes - Std

201 N=2 - Forward - Entropy - Mean

202 N=2 - Forward - Entropy - Min

203 N=2 - Forward - Entropy - Max

204 N=2 - Forward - Entropy - Std

205 N=2 - Forward - Actual Entropy - Mean

206 N=2 - Forward - Actual Entropy - Min

207 N=2 - Forward - Actual Entropy - Max

208 N=2 - Forward - Actual Entropy - Std

209 N=2 - Forward - Greedy Distance of Packets - Mean

210 N=2 - Forward - Greedy Distance of Packets - Min

211 N=2 - Forward - Greedy Distance of Packets - Max

212 N=2 - Forward - Greedy Distance of Packets - Std

213 N=2 - Forward - Mean Frequency - Mean

214 N=2 - Forward - Mean Frequency - Min

215 N=2 - Forward - Mean Frequency - Max

216 N=2 - Forward - Mean Frequency - Std

217 N=2 - Forward - Peak Frequency - Mean

218 N=2 - Forward - Peak Frequency - Min

219 N=2 - Forward - Peak Frequency - Max

220 N=2 - Forward - Peak Frequency - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

221 N=2 - Forward - Spectral Entropy - Mean

222 N=2 - Forward - Spectral Entropy - Min

223 N=2 - Forward - Spectral Entropy - Max

224 N=2 - Forward - Spectral Entropy - Std

225 N=2 - Forward - Greedy Distance of PSDs - Mean

226 N=2 - Forward - Greedy Distance of PSDs - Min

227 N=2 - Forward - Greedy Distance of PSDs - Max

228 N=2 - Forward - Greedy Distance of PSDs - Std

229 N=2 - Forward - DCT Coefficient 1 - Mean

230 N=2 - Forward - DCT Coefficient 1 - Min

231 N=2 - Forward - DCT Coefficient 1 - Max

232 N=2 - Forward - DCT Coefficient 1 - Std

233 N=2 - Forward - DCT Coefficient 2 - Mean

234 N=2 - Forward -DCT Coefficient 2 - Min

235 N=2 - Forward - DCT Coefficient 2 - Max

236 N=2 - Forward - DCT Coefficient 2 - Std

237 N=2 - Forward - DCT Coefficient 3 - Mean

238 N=2 - Forward -DCT Coefficient 3 - Min

239 N=2 - Forward - DCT Coefficient 3 - Max

240 N=2 - Forward - DCT Coefficient 3 - Std

241 N=2 - Backward - Ratio of Printable Characters - Mean

242 N=2 - Backward - Ratio of Printable Characters - Min

243 N=2 - Backward - Ratio of Printable Characters - Max

244 N=2 - Backward - Ratio of Printable Characters - Std

245 N=2 - Backward - Ratio of Unique Bytes - Mean

246 N=2 - Backward - Ratio of Unique Bytes - Min

247 N=2 - Backward - Ratio of Unique Bytes - Max

248 N=2 - Backward - Ratio of Unique Bytes - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

249 N=2 - Backward - Entropy - Mean

250 N=2 - Backward - Entropy - Min

251 N=2 - Backward - Entropy - Max

252 N=2 - Backward - Entropy - Std

253 N=2 - Backward - Actual Entropy - Mean

254 N=2 - Backward - Actual Entropy - Min

255 N=2 - Backward - Actual Entropy - Max

256 N=2 - Backward - Actual Entropy - Std

257 N=2 - Backward - Greedy Distance of Packets - Mean

258 N=2 - Backward - Greedy Distance of Packets - Min

259 N=2 - Backward - Greedy Distance of Packets - Max

260 N=2 - Backward - Greedy Distance of Packets - Std

261 N=2 - Backward - Mean Frequency - Mean

262 N=2 - Backward - Mean Frequency - Min

263 N=2 - Backward - Mean Frequency - Max

264 N=2 - Backward - Mean Frequency - Std

265 N=2 - Backward - Peak Frequency - Mean

266 N=2 - Backward - Peak Frequency - Min

267 N=2 - Backward - Peak Frequency - Max

268 N=2 - Backward - Peak Frequency - Std

269 N=2 - Backward - Spectral Entropy - Mean

270 N=2 - Backward - Spectral Entropy - Min

271 N=2 - Backward - Spectral Entropy - Max

272 N=2 - Backward - Spectral Entropy - Std

273 N=2 - Backward - Greedy Distance of PSDs - Mean

274 N=2 - Backward - Greedy Distance of PSDs - Min

275 N=2 - Backward - Greedy Distance of PSDs - Max

276 N=2 - Backward - Greedy Distance of PSDs - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

277 N=2 - Backward - DCT Coefficient 1 - Mean

278 N=2 - Backward - DCT Coefficient 1 - Min

279 N=2 - Backward - DCT Coefficient 1 - Max

280 N=2 - Backward - DCT Coefficient 1 - Std

281 N=2 - Backward - DCT Coefficient 2 - Mean

282 N=2 - Backward -DCT Coefficient 2 - Min

283 N=2 - Backward - DCT Coefficient 2 - Max

284 N=2 - Backward - DCT Coefficient 2 - Std

285 N=2 - Backward - DCT Coefficient 3 - Mean

286 N=2 - Backward -DCT Coefficient 3 - Min

287 N=2 - Backward - DCT Coefficient 3 - Max

288 N=2 - Backward - DCT Coefficient 3 - Std

289 N=3 - General Ratio of Printable Characters - Mean

290 N=3 - General Ratio of Printable Characters - Min

291 N=3 - General Ratio of Printable Characters - Max

292 N=3 - General Ratio of Printable Characters - Std

293 N=3 - General - Ratio of Unique Bytes - Mean

294 N=3 - General - Ratio of Unique Bytes - Min

295 N=3 - General - Ratio of Unique Bytes - Max

296 N=3 - General - Ratio of Unique Bytes - Std

297 N=3 - General - Entropy - Mean

298 N=3 - General - Entropy - Min

299 N=3 - General - Entropy - Max

300 N=3 - General - Entropy - Std

301 N=3 - General - Actual Entropy - Mean

302 N=3 - General - Actual Entropy - Min

303 N=3 - General - Actual Entropy - Max

304 N=3 - General - Actual Entropy - Std



115

Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

305 N=3 - General - Greedy Distance of Packets - Mean

306 N=3 - General - Greedy Distance of Packets - Min

307 N=3 - General - Greedy Distance of Packets - Max

308 N=3 - General - Greedy Distance of Packets - Std

309 N=3 - General - Mean Frequency - Mean

310 N=3 - General - Mean Frequency - Min

311 N=3 - General - Mean Frequency - Max

312 N=3 - General - Mean Frequency - Std

313 N=3 - General - Peak Frequency - Mean

314 N=3 - General - Peak Frequency - Min

315 N=3 - General - Peak Frequency - Max

316 N=3 - General - Peak Frequency - Std

317 N=3 - General - Spectral Entropy - Mean

318 N=3 - General - Spectral Entropy - Min

319 N=3 - General - Spectral Entropy - Max

320 N=3 - General - Spectral Entropy - Std

321 N=3 - General - Greedy Distance of PSDs - Mean

322 N=3 - General - Greedy Distance of PSDs - Min

323 N=3 - General - Greedy Distance of PSDs - Max

324 N=3 - General - Greedy Distance of PSDs - Std

325 N=3 - General - DCT Coefficient 1 - Mean

326 N=3 - General - DCT Coefficient 1 - Min

327 N=3 - General - DCT Coefficient 1 - Max

328 N=3 - General - DCT Coefficient 1 - Std

329 N=3 - General - DCT Coefficient 2 - Mean

330 N=3 - General -DCT Coefficient 2 - Min

331 N=3 - General - DCT Coefficient 2 - Max

332 N=3 - General - DCT Coefficient 2 - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

333 N=3 - General - DCT Coefficient 3 - Mean

334 N=3 - General -DCT Coefficient 3 - Min

335 N=3 - General - DCT Coefficient 3 - Max

336 N=3 - General - DCT Coefficient 3 - Std

337 N=3 - Forward - Ratio of Printable Characters - Mean

338 N=3 - Forward - Ratio of Printable Characters - Min

339 N=3 - Forward - Ratio of Printable Characters - Max

340 N=3 - Forward - Ratio of Printable Characters - Std

341 N=3 - Forward - Ratio of Unique Bytes - Mean

342 N=3 - Forward - Ratio of Unique Bytes - Min

343 N=3 - Forward - Ratio of Unique Bytes - Max

344 N=3 - Forward - Ratio of Unique Bytes - Std

345 N=3 - Forward - Entropy - Mean

346 N=3 - Forward - Entropy - Min

347 N=3 - Forward - Entropy - Max

348 N=3 - Forward - Entropy - Std

349 N=3 - Forward - Actual Entropy - Mean

350 N=3 - Forward - Actual Entropy - Min

351 N=3 - Forward - Actual Entropy - Max

352 N=3 - Forward - Actual Entropy - Std

353 N=3 - Forward - Greedy Distance of Packets - Mean

354 N=3 - Forward - Greedy Distance of Packets - Min

355 N=3 - Forward - Greedy Distance of Packets - Max

356 N=3 - Forward - Greedy Distance of Packets - Std

357 N=3 - Forward - Mean Frequency - Mean

358 N=3 - Forward - Mean Frequency - Min

359 N=3 - Forward - Mean Frequency - Max

360 N=3 - Forward - Mean Frequency - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

361 N=3 - Forward - Peak Frequency - Mean

362 N=3 - Forward - Peak Frequency - Min

363 N=3 - Forward - Peak Frequency - Max

364 N=3 - Forward - Peak Frequency - Std

365 N=3 - Forward - Spectral Entropy - Mean

366 N=3 - Forward - Spectral Entropy - Min

367 N=3 - Forward - Spectral Entropy - Max

368 N=3 - Forward - Spectral Entropy - Std

369 N=3 - Forward - Greedy Distance of PSDs - Mean

370 N=3 - Forward - Greedy Distance of PSDs - Min

371 N=3 - Forward - Greedy Distance of PSDs - Max

372 N=3 - Forward - Greedy Distance of PSDs - Std

373 N=3 - Forward - DCT Coefficient 1 - Mean

374 N=3 - Forward - DCT Coefficient 1 - Min

375 N=3 - Forward - DCT Coefficient 1 - Max

376 N=3 - Forward - DCT Coefficient 1 - Std

377 N=3 - Forward - DCT Coefficient 2 - Mean

378 N=3 - Forward -DCT Coefficient 2 - Min

379 N=3 - Forward - DCT Coefficient 2 - Max

380 N=3 - Forward - DCT Coefficient 2 - Std

381 N=3 - Forward - DCT Coefficient 3 - Mean

382 N=3 - Forward -DCT Coefficient 3 - Min

383 N=3 - Forward - DCT Coefficient 3 - Max

384 N=3 - Forward - DCT Coefficient 3 - Std

385 N=3 - Backward - Ratio of Printable Characters - Mean

386 N=3 - Backward - Ratio of Printable Characters - Min

387 N=3 - Backward - Ratio of Printable Characters - Max

388 N=3 - Backward - Ratio of Printable Characters - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

389 N=3 - Backward - Ratio of Unique Bytes - Mean

390 N=3 - Backward - Ratio of Unique Bytes - Min

391 N=3 - Backward - Ratio of Unique Bytes - Max

392 N=3 - Backward - Ratio of Unique Bytes - Std

393 N=3 - Backward - Entropy - Mean

394 N=3 - Backward - Entropy - Min

395 N=3 - Backward - Entropy - Max

396 N=3 - Backward - Entropy - Std

397 N=3 - Backward - Actual Entropy - Mean

398 N=3 - Backward - Actual Entropy - Min

399 N=3 - Backward - Actual Entropy - Max

400 N=3 - Backward - Actual Entropy - Std

401 N=3 - Backward - Greedy Distance of Packets - Mean

402 N=3 - Backward - Greedy Distance of Packets - Min

403 N=3 - Backward - Greedy Distance of Packets - Max

404 N=3 - Backward - Greedy Distance of Packets - Std

405 N=3 - Backward - Mean Frequency - Mean

406 N=3 - Backward - Mean Frequency - Min

407 N=3 - Backward - Mean Frequency - Max

408 N=3 - Backward - Mean Frequency - Std

409 N=3 - Backward - Peak Frequency - Mean

410 N=3 - Backward - Peak Frequency - Min

411 N=3 - Backward - Peak Frequency - Max

412 N=3 - Backward - Peak Frequency - Std

413 N=3 - Backward - Spectral Entropy - Mean

414 N=3 - Backward - Spectral Entropy - Min

415 N=3 - Backward - Spectral Entropy - Max

416 N=3 - Backward - Spectral Entropy - Std
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Table A.1. Flow Based Payload Feature Name List. (cont.)

No Feature Names

417 N=3 - Backward - Greedy Distance of PSDs - Mean

418 N=3 - Backward - Greedy Distance of PSDs - Min

419 N=3 - Backward - Greedy Distance of PSDs - Max

420 N=3 - Backward - Greedy Distance of PSDs - Std

421 N=3 - Backward - DCT Coefficient 1 - Mean

422 N=3 - Backward - DCT Coefficient 1 - Min

423 N=3 - Backward - DCT Coefficient 1 - Max

424 N=3 - Backward - DCT Coefficient 1 - Std

425 N=3 - Backward - DCT Coefficient 2 - Mean

426 N=3 - Backward -DCT Coefficient 2 - Min

427 N=3 - Backward - DCT Coefficient 2 - Max

428 N=3 - Backward - DCT Coefficient 2 - Std

429 N=3 - Backward - DCT Coefficient 3 - Mean

430 N=3 - Backward -DCT Coefficient 3 - Min

431 N=3 - Backward - DCT Coefficient 3 - Max

432 N=3 - Backward - DCT Coefficient 3 - Std


